1 /* 2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "jvm.h" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "code/nmethod.hpp" 32 #include "code/pcDesc.hpp" 33 #include "code/scopeDesc.hpp" 34 #include "interpreter/bytecode.hpp" 35 #include "interpreter/interpreter.hpp" 36 #include "interpreter/oopMapCache.hpp" 37 #include "memory/allocation.inline.hpp" 38 #include "memory/oopFactory.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "memory/universe.hpp" 41 #include "oops/constantPool.hpp" 42 #include "oops/method.hpp" 43 #include "oops/objArrayKlass.hpp" 44 #include "oops/objArrayOop.inline.hpp" 45 #include "oops/oop.inline.hpp" 46 #include "oops/fieldStreams.hpp" 47 #include "oops/typeArrayOop.inline.hpp" 48 #include "oops/valueArrayKlass.hpp" 49 #include "oops/valueArrayOop.hpp" 50 #include "oops/valueKlass.hpp" 51 #include "oops/verifyOopClosure.hpp" 52 #include "prims/jvmtiThreadState.hpp" 53 #include "runtime/biasedLocking.hpp" 54 #include "runtime/compilationPolicy.hpp" 55 #include "runtime/deoptimization.hpp" 56 #include "runtime/fieldDescriptor.hpp" 57 #include "runtime/fieldDescriptor.inline.hpp" 58 #include "runtime/frame.inline.hpp" 59 #include "runtime/jniHandles.inline.hpp" 60 #include "runtime/handles.inline.hpp" 61 #include "runtime/interfaceSupport.inline.hpp" 62 #include "runtime/safepointVerifiers.hpp" 63 #include "runtime/sharedRuntime.hpp" 64 #include "runtime/signature.hpp" 65 #include "runtime/stubRoutines.hpp" 66 #include "runtime/thread.hpp" 67 #include "runtime/threadSMR.hpp" 68 #include "runtime/vframe.hpp" 69 #include "runtime/vframeArray.hpp" 70 #include "runtime/vframe_hp.hpp" 71 #include "utilities/events.hpp" 72 #include "utilities/preserveException.hpp" 73 #include "utilities/xmlstream.hpp" 74 75 76 bool DeoptimizationMarker::_is_active = false; 77 78 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 79 int caller_adjustment, 80 int caller_actual_parameters, 81 int number_of_frames, 82 intptr_t* frame_sizes, 83 address* frame_pcs, 84 BasicType return_type, 85 int exec_mode) { 86 _size_of_deoptimized_frame = size_of_deoptimized_frame; 87 _caller_adjustment = caller_adjustment; 88 _caller_actual_parameters = caller_actual_parameters; 89 _number_of_frames = number_of_frames; 90 _frame_sizes = frame_sizes; 91 _frame_pcs = frame_pcs; 92 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 93 _return_type = return_type; 94 _initial_info = 0; 95 // PD (x86 only) 96 _counter_temp = 0; 97 _unpack_kind = exec_mode; 98 _sender_sp_temp = 0; 99 100 _total_frame_sizes = size_of_frames(); 101 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 102 } 103 104 105 Deoptimization::UnrollBlock::~UnrollBlock() { 106 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 107 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 108 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 109 } 110 111 112 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const { 113 assert(register_number < RegisterMap::reg_count, "checking register number"); 114 return &_register_block[register_number * 2]; 115 } 116 117 118 119 int Deoptimization::UnrollBlock::size_of_frames() const { 120 // Acount first for the adjustment of the initial frame 121 int result = _caller_adjustment; 122 for (int index = 0; index < number_of_frames(); index++) { 123 result += frame_sizes()[index]; 124 } 125 return result; 126 } 127 128 129 void Deoptimization::UnrollBlock::print() { 130 ttyLocker ttyl; 131 tty->print_cr("UnrollBlock"); 132 tty->print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 133 tty->print( " frame_sizes: "); 134 for (int index = 0; index < number_of_frames(); index++) { 135 tty->print(INTX_FORMAT " ", frame_sizes()[index]); 136 } 137 tty->cr(); 138 } 139 140 141 // In order to make fetch_unroll_info work properly with escape 142 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and 143 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation 144 // of previously eliminated objects occurs in realloc_objects, which is 145 // called from the method fetch_unroll_info_helper below. 146 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode)) 147 // It is actually ok to allocate handles in a leaf method. It causes no safepoints, 148 // but makes the entry a little slower. There is however a little dance we have to 149 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro 150 151 // fetch_unroll_info() is called at the beginning of the deoptimization 152 // handler. Note this fact before we start generating temporary frames 153 // that can confuse an asynchronous stack walker. This counter is 154 // decremented at the end of unpack_frames(). 155 if (TraceDeoptimization) { 156 tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread)); 157 } 158 thread->inc_in_deopt_handler(); 159 160 return fetch_unroll_info_helper(thread, exec_mode); 161 JRT_END 162 163 164 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 165 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) { 166 167 // Note: there is a safepoint safety issue here. No matter whether we enter 168 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 169 // the vframeArray is created. 170 // 171 172 // Allocate our special deoptimization ResourceMark 173 DeoptResourceMark* dmark = new DeoptResourceMark(thread); 174 assert(thread->deopt_mark() == NULL, "Pending deopt!"); 175 thread->set_deopt_mark(dmark); 176 177 frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect 178 RegisterMap map(thread, true); 179 RegisterMap dummy_map(thread, false); 180 // Now get the deoptee with a valid map 181 frame deoptee = stub_frame.sender(&map); 182 // Set the deoptee nmethod 183 assert(thread->deopt_compiled_method() == NULL, "Pending deopt!"); 184 CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null(); 185 thread->set_deopt_compiled_method(cm); 186 187 if (VerifyStack) { 188 thread->validate_frame_layout(); 189 } 190 191 // Create a growable array of VFrames where each VFrame represents an inlined 192 // Java frame. This storage is allocated with the usual system arena. 193 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 194 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 195 vframe* vf = vframe::new_vframe(&deoptee, &map, thread); 196 while (!vf->is_top()) { 197 assert(vf->is_compiled_frame(), "Wrong frame type"); 198 chunk->push(compiledVFrame::cast(vf)); 199 vf = vf->sender(); 200 } 201 assert(vf->is_compiled_frame(), "Wrong frame type"); 202 chunk->push(compiledVFrame::cast(vf)); 203 204 bool realloc_failures = false; 205 206 #if COMPILER2_OR_JVMCI 207 // Reallocate the non-escaping objects and restore their fields. Then 208 // relock objects if synchronization on them was eliminated. 209 #if !INCLUDE_JVMCI 210 if (DoEscapeAnalysis || EliminateNestedLocks) { 211 if (EliminateAllocations) { 212 #endif // INCLUDE_JVMCI 213 assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames"); 214 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects(); 215 216 // The flag return_oop() indicates call sites which return oop 217 // in compiled code. Such sites include java method calls, 218 // runtime calls (for example, used to allocate new objects/arrays 219 // on slow code path) and any other calls generated in compiled code. 220 // It is not guaranteed that we can get such information here only 221 // by analyzing bytecode in deoptimized frames. This is why this flag 222 // is set during method compilation (see Compile::Process_OopMap_Node()). 223 // If the previous frame was popped or if we are dispatching an exception, 224 // we don't have an oop result. 225 ScopeDesc* scope = chunk->at(0)->scope(); 226 bool save_oop_result = scope->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt); 227 // In case of the return of multiple values, we must take care 228 // of all oop return values. 229 GrowableArray<Handle> return_oops; 230 ValueKlass* vk = NULL; 231 if (save_oop_result && scope->return_vt()) { 232 vk = ValueKlass::returned_value_klass(map); 233 if (vk != NULL) { 234 vk->save_oop_fields(map, return_oops); 235 save_oop_result = false; 236 } 237 } 238 if (save_oop_result) { 239 // Reallocation may trigger GC. If deoptimization happened on return from 240 // call which returns oop we need to save it since it is not in oopmap. 241 oop result = deoptee.saved_oop_result(&map); 242 assert(oopDesc::is_oop_or_null(result), "must be oop"); 243 return_oops.push(Handle(thread, result)); 244 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 245 if (TraceDeoptimization) { 246 ttyLocker ttyl; 247 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 248 } 249 } 250 if (objects != NULL || vk != NULL) { 251 bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci(); 252 JRT_BLOCK 253 if (vk != NULL) { 254 realloc_failures = realloc_value_type_result(vk, map, return_oops, THREAD); 255 } 256 if (objects != NULL) { 257 realloc_failures = realloc_failures || realloc_objects(thread, &deoptee, &map, objects, THREAD); 258 reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal, THREAD); 259 } 260 JRT_END 261 #ifndef PRODUCT 262 if (TraceDeoptimization) { 263 ttyLocker ttyl; 264 tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 265 print_objects(objects, realloc_failures); 266 } 267 #endif 268 } 269 if (save_oop_result || vk != NULL) { 270 // Restore result. 271 assert(return_oops.length() == 1, "no value type"); 272 deoptee.set_saved_oop_result(&map, return_oops.pop()()); 273 } 274 #if !INCLUDE_JVMCI 275 } 276 if (EliminateLocks) { 277 #endif // INCLUDE_JVMCI 278 #ifndef PRODUCT 279 bool first = true; 280 #endif 281 for (int i = 0; i < chunk->length(); i++) { 282 compiledVFrame* cvf = chunk->at(i); 283 assert (cvf->scope() != NULL,"expect only compiled java frames"); 284 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 285 if (monitors->is_nonempty()) { 286 relock_objects(monitors, thread, realloc_failures); 287 #ifndef PRODUCT 288 if (PrintDeoptimizationDetails) { 289 ttyLocker ttyl; 290 for (int j = 0; j < monitors->length(); j++) { 291 MonitorInfo* mi = monitors->at(j); 292 if (mi->eliminated()) { 293 if (first) { 294 first = false; 295 tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 296 } 297 if (mi->owner_is_scalar_replaced()) { 298 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 299 tty->print_cr(" failed reallocation for klass %s", k->external_name()); 300 } else { 301 tty->print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 302 } 303 } 304 } 305 } 306 #endif // !PRODUCT 307 } 308 } 309 #if !INCLUDE_JVMCI 310 } 311 } 312 #endif // INCLUDE_JVMCI 313 #endif // COMPILER2_OR_JVMCI 314 315 ScopeDesc* trap_scope = chunk->at(0)->scope(); 316 Handle exceptionObject; 317 if (trap_scope->rethrow_exception()) { 318 if (PrintDeoptimizationDetails) { 319 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 320 } 321 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 322 guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw"); 323 ScopeValue* topOfStack = expressions->top(); 324 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 325 guarantee(exceptionObject() != NULL, "exception oop can not be null"); 326 } 327 328 // Ensure that no safepoint is taken after pointers have been stored 329 // in fields of rematerialized objects. If a safepoint occurs from here on 330 // out the java state residing in the vframeArray will be missed. 331 NoSafepointVerifier no_safepoint; 332 333 vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures); 334 #if COMPILER2_OR_JVMCI 335 if (realloc_failures) { 336 pop_frames_failed_reallocs(thread, array); 337 } 338 #endif 339 340 assert(thread->vframe_array_head() == NULL, "Pending deopt!"); 341 thread->set_vframe_array_head(array); 342 343 // Now that the vframeArray has been created if we have any deferred local writes 344 // added by jvmti then we can free up that structure as the data is now in the 345 // vframeArray 346 347 if (thread->deferred_locals() != NULL) { 348 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals(); 349 int i = 0; 350 do { 351 // Because of inlining we could have multiple vframes for a single frame 352 // and several of the vframes could have deferred writes. Find them all. 353 if (list->at(i)->id() == array->original().id()) { 354 jvmtiDeferredLocalVariableSet* dlv = list->at(i); 355 list->remove_at(i); 356 // individual jvmtiDeferredLocalVariableSet are CHeapObj's 357 delete dlv; 358 } else { 359 i++; 360 } 361 } while ( i < list->length() ); 362 if (list->length() == 0) { 363 thread->set_deferred_locals(NULL); 364 // free the list and elements back to C heap. 365 delete list; 366 } 367 368 } 369 370 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 371 CodeBlob* cb = stub_frame.cb(); 372 // Verify we have the right vframeArray 373 assert(cb->frame_size() >= 0, "Unexpected frame size"); 374 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 375 376 // If the deopt call site is a MethodHandle invoke call site we have 377 // to adjust the unpack_sp. 378 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 379 if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc())) 380 unpack_sp = deoptee.unextended_sp(); 381 382 #ifdef ASSERT 383 assert(cb->is_deoptimization_stub() || 384 cb->is_uncommon_trap_stub() || 385 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 386 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 387 "unexpected code blob: %s", cb->name()); 388 #endif 389 390 // This is a guarantee instead of an assert because if vframe doesn't match 391 // we will unpack the wrong deoptimized frame and wind up in strange places 392 // where it will be very difficult to figure out what went wrong. Better 393 // to die an early death here than some very obscure death later when the 394 // trail is cold. 395 // Note: on ia64 this guarantee can be fooled by frames with no memory stack 396 // in that it will fail to detect a problem when there is one. This needs 397 // more work in tiger timeframe. 398 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 399 400 int number_of_frames = array->frames(); 401 402 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 403 // virtual activation, which is the reverse of the elements in the vframes array. 404 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 405 // +1 because we always have an interpreter return address for the final slot. 406 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 407 int popframe_extra_args = 0; 408 // Create an interpreter return address for the stub to use as its return 409 // address so the skeletal frames are perfectly walkable 410 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 411 412 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 413 // activation be put back on the expression stack of the caller for reexecution 414 if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) { 415 popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words()); 416 } 417 418 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 419 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 420 // than simply use array->sender.pc(). This requires us to walk the current set of frames 421 // 422 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 423 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 424 425 // It's possible that the number of parameters at the call site is 426 // different than number of arguments in the callee when method 427 // handles are used. If the caller is interpreted get the real 428 // value so that the proper amount of space can be added to it's 429 // frame. 430 bool caller_was_method_handle = false; 431 if (deopt_sender.is_interpreted_frame()) { 432 methodHandle method = deopt_sender.interpreter_frame_method(); 433 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci()); 434 if (cur.is_invokedynamic() || cur.is_invokehandle()) { 435 // Method handle invokes may involve fairly arbitrary chains of 436 // calls so it's impossible to know how much actual space the 437 // caller has for locals. 438 caller_was_method_handle = true; 439 } 440 } 441 442 // 443 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 444 // frame_sizes/frame_pcs[1] next oldest frame (int) 445 // frame_sizes/frame_pcs[n] youngest frame (int) 446 // 447 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 448 // owns the space for the return address to it's caller). Confusing ain't it. 449 // 450 // The vframe array can address vframes with indices running from 451 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 452 // When we create the skeletal frames we need the oldest frame to be in the zero slot 453 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 454 // so things look a little strange in this loop. 455 // 456 int callee_parameters = 0; 457 int callee_locals = 0; 458 for (int index = 0; index < array->frames(); index++ ) { 459 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 460 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 461 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 462 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 463 callee_locals, 464 index == 0, 465 popframe_extra_args); 466 // This pc doesn't have to be perfect just good enough to identify the frame 467 // as interpreted so the skeleton frame will be walkable 468 // The correct pc will be set when the skeleton frame is completely filled out 469 // The final pc we store in the loop is wrong and will be overwritten below 470 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 471 472 callee_parameters = array->element(index)->method()->size_of_parameters(); 473 callee_locals = array->element(index)->method()->max_locals(); 474 popframe_extra_args = 0; 475 } 476 477 // Compute whether the root vframe returns a float or double value. 478 BasicType return_type; 479 { 480 methodHandle method(thread, array->element(0)->method()); 481 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 482 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 483 } 484 485 // Compute information for handling adapters and adjusting the frame size of the caller. 486 int caller_adjustment = 0; 487 488 // Compute the amount the oldest interpreter frame will have to adjust 489 // its caller's stack by. If the caller is a compiled frame then 490 // we pretend that the callee has no parameters so that the 491 // extension counts for the full amount of locals and not just 492 // locals-parms. This is because without a c2i adapter the parm 493 // area as created by the compiled frame will not be usable by 494 // the interpreter. (Depending on the calling convention there 495 // may not even be enough space). 496 497 // QQQ I'd rather see this pushed down into last_frame_adjust 498 // and have it take the sender (aka caller). 499 500 if (deopt_sender.is_compiled_frame() || caller_was_method_handle) { 501 caller_adjustment = last_frame_adjust(0, callee_locals); 502 } else if (callee_locals > callee_parameters) { 503 // The caller frame may need extending to accommodate 504 // non-parameter locals of the first unpacked interpreted frame. 505 // Compute that adjustment. 506 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 507 } 508 509 // If the sender is deoptimized we must retrieve the address of the handler 510 // since the frame will "magically" show the original pc before the deopt 511 // and we'd undo the deopt. 512 513 frame_pcs[0] = deopt_sender.raw_pc(); 514 515 assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc"); 516 517 #if INCLUDE_JVMCI 518 if (exceptionObject() != NULL) { 519 thread->set_exception_oop(exceptionObject()); 520 exec_mode = Unpack_exception; 521 } 522 #endif 523 524 if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 525 assert(thread->has_pending_exception(), "should have thrown OOME"); 526 thread->set_exception_oop(thread->pending_exception()); 527 thread->clear_pending_exception(); 528 exec_mode = Unpack_exception; 529 } 530 531 #if INCLUDE_JVMCI 532 if (thread->frames_to_pop_failed_realloc() > 0) { 533 thread->set_pending_monitorenter(false); 534 } 535 #endif 536 537 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 538 caller_adjustment * BytesPerWord, 539 caller_was_method_handle ? 0 : callee_parameters, 540 number_of_frames, 541 frame_sizes, 542 frame_pcs, 543 return_type, 544 exec_mode); 545 // On some platforms, we need a way to pass some platform dependent 546 // information to the unpacking code so the skeletal frames come out 547 // correct (initial fp value, unextended sp, ...) 548 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 549 550 if (array->frames() > 1) { 551 if (VerifyStack && TraceDeoptimization) { 552 ttyLocker ttyl; 553 tty->print_cr("Deoptimizing method containing inlining"); 554 } 555 } 556 557 array->set_unroll_block(info); 558 return info; 559 } 560 561 // Called to cleanup deoptimization data structures in normal case 562 // after unpacking to stack and when stack overflow error occurs 563 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 564 vframeArray *array) { 565 566 // Get array if coming from exception 567 if (array == NULL) { 568 array = thread->vframe_array_head(); 569 } 570 thread->set_vframe_array_head(NULL); 571 572 // Free the previous UnrollBlock 573 vframeArray* old_array = thread->vframe_array_last(); 574 thread->set_vframe_array_last(array); 575 576 if (old_array != NULL) { 577 UnrollBlock* old_info = old_array->unroll_block(); 578 old_array->set_unroll_block(NULL); 579 delete old_info; 580 delete old_array; 581 } 582 583 // Deallocate any resource creating in this routine and any ResourceObjs allocated 584 // inside the vframeArray (StackValueCollections) 585 586 delete thread->deopt_mark(); 587 thread->set_deopt_mark(NULL); 588 thread->set_deopt_compiled_method(NULL); 589 590 591 if (JvmtiExport::can_pop_frame()) { 592 #ifndef CC_INTERP 593 // Regardless of whether we entered this routine with the pending 594 // popframe condition bit set, we should always clear it now 595 thread->clear_popframe_condition(); 596 #else 597 // C++ interpreter will clear has_pending_popframe when it enters 598 // with method_resume. For deopt_resume2 we clear it now. 599 if (thread->popframe_forcing_deopt_reexecution()) 600 thread->clear_popframe_condition(); 601 #endif /* CC_INTERP */ 602 } 603 604 // unpack_frames() is called at the end of the deoptimization handler 605 // and (in C2) at the end of the uncommon trap handler. Note this fact 606 // so that an asynchronous stack walker can work again. This counter is 607 // incremented at the beginning of fetch_unroll_info() and (in C2) at 608 // the beginning of uncommon_trap(). 609 thread->dec_in_deopt_handler(); 610 } 611 612 // Moved from cpu directories because none of the cpus has callee save values. 613 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 614 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 615 616 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 617 // the days we had adapter frames. When we deoptimize a situation where a 618 // compiled caller calls a compiled caller will have registers it expects 619 // to survive the call to the callee. If we deoptimize the callee the only 620 // way we can restore these registers is to have the oldest interpreter 621 // frame that we create restore these values. That is what this routine 622 // will accomplish. 623 624 // At the moment we have modified c2 to not have any callee save registers 625 // so this problem does not exist and this routine is just a place holder. 626 627 assert(f->is_interpreted_frame(), "must be interpreted"); 628 } 629 630 // Return BasicType of value being returned 631 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 632 633 // We are already active in the special DeoptResourceMark any ResourceObj's we 634 // allocate will be freed at the end of the routine. 635 636 // It is actually ok to allocate handles in a leaf method. It causes no safepoints, 637 // but makes the entry a little slower. There is however a little dance we have to 638 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro 639 ResetNoHandleMark rnhm; // No-op in release/product versions 640 HandleMark hm; 641 642 frame stub_frame = thread->last_frame(); 643 644 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 645 // must point to the vframeArray for the unpack frame. 646 vframeArray* array = thread->vframe_array_head(); 647 648 #ifndef PRODUCT 649 if (TraceDeoptimization) { 650 ttyLocker ttyl; 651 tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", 652 p2i(thread), p2i(array), exec_mode); 653 } 654 #endif 655 Events::log_deopt_message(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d", 656 p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode); 657 658 UnrollBlock* info = array->unroll_block(); 659 660 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 661 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 662 663 BasicType bt = info->return_type(); 664 665 // If we have an exception pending, claim that the return type is an oop 666 // so the deopt_blob does not overwrite the exception_oop. 667 668 if (exec_mode == Unpack_exception) 669 bt = T_OBJECT; 670 671 // Cleanup thread deopt data 672 cleanup_deopt_info(thread, array); 673 674 #ifndef PRODUCT 675 if (VerifyStack) { 676 ResourceMark res_mark; 677 // Clear pending exception to not break verification code (restored afterwards) 678 PRESERVE_EXCEPTION_MARK; 679 680 thread->validate_frame_layout(); 681 682 // Verify that the just-unpacked frames match the interpreter's 683 // notions of expression stack and locals 684 vframeArray* cur_array = thread->vframe_array_last(); 685 RegisterMap rm(thread, false); 686 rm.set_include_argument_oops(false); 687 bool is_top_frame = true; 688 int callee_size_of_parameters = 0; 689 int callee_max_locals = 0; 690 for (int i = 0; i < cur_array->frames(); i++) { 691 vframeArrayElement* el = cur_array->element(i); 692 frame* iframe = el->iframe(); 693 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 694 695 // Get the oop map for this bci 696 InterpreterOopMap mask; 697 int cur_invoke_parameter_size = 0; 698 bool try_next_mask = false; 699 int next_mask_expression_stack_size = -1; 700 int top_frame_expression_stack_adjustment = 0; 701 methodHandle mh(thread, iframe->interpreter_frame_method()); 702 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 703 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 704 int max_bci = mh->code_size(); 705 // Get to the next bytecode if possible 706 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 707 // Check to see if we can grab the number of outgoing arguments 708 // at an uncommon trap for an invoke (where the compiler 709 // generates debug info before the invoke has executed) 710 Bytecodes::Code cur_code = str.next(); 711 if (Bytecodes::is_invoke(cur_code)) { 712 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 713 cur_invoke_parameter_size = invoke.size_of_parameters(); 714 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) { 715 callee_size_of_parameters++; 716 } 717 } 718 if (str.bci() < max_bci) { 719 Bytecodes::Code next_code = str.next(); 720 if (next_code >= 0) { 721 // The interpreter oop map generator reports results before 722 // the current bytecode has executed except in the case of 723 // calls. It seems to be hard to tell whether the compiler 724 // has emitted debug information matching the "state before" 725 // a given bytecode or the state after, so we try both 726 if (!Bytecodes::is_invoke(cur_code) && cur_code != Bytecodes::_athrow) { 727 // Get expression stack size for the next bytecode 728 InterpreterOopMap next_mask; 729 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 730 next_mask_expression_stack_size = next_mask.expression_stack_size(); 731 if (Bytecodes::is_invoke(next_code)) { 732 Bytecode_invoke invoke(mh, str.bci()); 733 next_mask_expression_stack_size += invoke.size_of_parameters(); 734 } 735 // Need to subtract off the size of the result type of 736 // the bytecode because this is not described in the 737 // debug info but returned to the interpreter in the TOS 738 // caching register 739 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 740 if (bytecode_result_type != T_ILLEGAL) { 741 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 742 } 743 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 744 try_next_mask = true; 745 } 746 } 747 } 748 749 // Verify stack depth and oops in frame 750 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 751 if (!( 752 /* SPARC */ 753 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 754 /* x86 */ 755 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 756 (try_next_mask && 757 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 758 top_frame_expression_stack_adjustment))) || 759 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 760 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 761 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 762 )) { 763 { 764 ttyLocker ttyl; 765 766 // Print out some information that will help us debug the problem 767 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 768 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 769 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 770 iframe->interpreter_frame_expression_stack_size()); 771 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 772 tty->print_cr(" try_next_mask = %d", try_next_mask); 773 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 774 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 775 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 776 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 777 tty->print_cr(" exec_mode = %d", exec_mode); 778 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 779 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 780 tty->print_cr(" Interpreted frames:"); 781 for (int k = 0; k < cur_array->frames(); k++) { 782 vframeArrayElement* el = cur_array->element(k); 783 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 784 } 785 cur_array->print_on_2(tty); 786 } // release tty lock before calling guarantee 787 guarantee(false, "wrong number of expression stack elements during deopt"); 788 } 789 VerifyOopClosure verify; 790 iframe->oops_interpreted_do(&verify, &rm, false); 791 callee_size_of_parameters = mh->size_of_parameters(); 792 callee_max_locals = mh->max_locals(); 793 is_top_frame = false; 794 } 795 } 796 #endif /* !PRODUCT */ 797 798 799 return bt; 800 JRT_END 801 802 803 int Deoptimization::deoptimize_dependents() { 804 Threads::deoptimized_wrt_marked_nmethods(); 805 return 0; 806 } 807 808 Deoptimization::DeoptAction Deoptimization::_unloaded_action 809 = Deoptimization::Action_reinterpret; 810 811 812 813 #if INCLUDE_JVMCI || INCLUDE_AOT 814 template<typename CacheType> 815 class BoxCacheBase : public CHeapObj<mtCompiler> { 816 protected: 817 static InstanceKlass* find_cache_klass(Symbol* klass_name, TRAPS) { 818 ResourceMark rm; 819 char* klass_name_str = klass_name->as_C_string(); 820 Klass* k = SystemDictionary::find(klass_name, Handle(), Handle(), THREAD); 821 guarantee(k != NULL, "%s must be loaded", klass_name_str); 822 InstanceKlass* ik = InstanceKlass::cast(k); 823 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 824 CacheType::compute_offsets(ik); 825 return ik; 826 } 827 }; 828 829 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 830 PrimitiveType _low; 831 PrimitiveType _high; 832 jobject _cache; 833 protected: 834 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 835 BoxCache(Thread* thread) { 836 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(CacheType::symbol(), thread); 837 objArrayOop cache = CacheType::cache(ik); 838 assert(cache->length() > 0, "Empty cache"); 839 _low = BoxType::value(cache->obj_at(0)); 840 _high = _low + cache->length() - 1; 841 _cache = JNIHandles::make_global(Handle(thread, cache)); 842 } 843 ~BoxCache() { 844 JNIHandles::destroy_global(_cache); 845 } 846 public: 847 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 848 if (_singleton == NULL) { 849 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 850 if (!Atomic::replace_if_null(s, &_singleton)) { 851 delete s; 852 } 853 } 854 return _singleton; 855 } 856 oop lookup(PrimitiveType value) { 857 if (_low <= value && value <= _high) { 858 int offset = value - _low; 859 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 860 } 861 return NULL; 862 } 863 oop lookup_raw(intptr_t raw_value) { 864 // Have to cast to avoid little/big-endian problems. 865 if (sizeof(PrimitiveType) > sizeof(jint)) { 866 jlong value = (jlong)raw_value; 867 return lookup(value); 868 } 869 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 870 return lookup(value); 871 } 872 }; 873 874 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 875 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 876 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 877 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 878 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 879 880 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = NULL; 881 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = NULL; 882 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = NULL; 883 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = NULL; 884 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = NULL; 885 886 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 887 jobject _true_cache; 888 jobject _false_cache; 889 protected: 890 static BooleanBoxCache *_singleton; 891 BooleanBoxCache(Thread *thread) { 892 InstanceKlass* ik = find_cache_klass(java_lang_Boolean::symbol(), thread); 893 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 894 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 895 } 896 ~BooleanBoxCache() { 897 JNIHandles::destroy_global(_true_cache); 898 JNIHandles::destroy_global(_false_cache); 899 } 900 public: 901 static BooleanBoxCache* singleton(Thread* thread) { 902 if (_singleton == NULL) { 903 BooleanBoxCache* s = new BooleanBoxCache(thread); 904 if (!Atomic::replace_if_null(s, &_singleton)) { 905 delete s; 906 } 907 } 908 return _singleton; 909 } 910 oop lookup_raw(intptr_t raw_value) { 911 // Have to cast to avoid little/big-endian problems. 912 jboolean value = (jboolean)*((jint*)&raw_value); 913 return lookup(value); 914 } 915 oop lookup(jboolean value) { 916 if (value != 0) { 917 return JNIHandles::resolve_non_null(_true_cache); 918 } 919 return JNIHandles::resolve_non_null(_false_cache); 920 } 921 }; 922 923 BooleanBoxCache* BooleanBoxCache::_singleton = NULL; 924 925 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, TRAPS) { 926 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 927 BasicType box_type = SystemDictionary::box_klass_type(k); 928 if (box_type != T_OBJECT) { 929 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 930 switch(box_type) { 931 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 932 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 933 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 934 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 935 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 936 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 937 default:; 938 } 939 } 940 return NULL; 941 } 942 #endif // INCLUDE_JVMCI || INCLUDE_AOT 943 944 #if COMPILER2_OR_JVMCI 945 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 946 Handle pending_exception(THREAD, thread->pending_exception()); 947 const char* exception_file = thread->exception_file(); 948 int exception_line = thread->exception_line(); 949 thread->clear_pending_exception(); 950 951 bool failures = false; 952 953 for (int i = 0; i < objects->length(); i++) { 954 assert(objects->at(i)->is_object(), "invalid debug information"); 955 ObjectValue* sv = (ObjectValue*) objects->at(i); 956 957 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 958 oop obj = NULL; 959 960 if (k->is_instance_klass()) { 961 #if INCLUDE_JVMCI || INCLUDE_AOT 962 CompiledMethod* cm = fr->cb()->as_compiled_method_or_null(); 963 if (cm->is_compiled_by_jvmci() && sv->is_auto_box()) { 964 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 965 obj = get_cached_box(abv, fr, reg_map, THREAD); 966 if (obj != NULL) { 967 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 968 abv->set_cached(true); 969 } 970 } 971 #endif // INCLUDE_JVMCI || INCLUDE_AOT 972 InstanceKlass* ik = InstanceKlass::cast(k); 973 if (obj == NULL) { 974 obj = ik->allocate_instance(THREAD); 975 } 976 } else if (k->is_valueArray_klass()) { 977 ValueArrayKlass* ak = ValueArrayKlass::cast(k); 978 // Value type array must be zeroed because not all memory is reassigned 979 obj = ak->allocate(sv->field_size(), THREAD); 980 } else if (k->is_typeArray_klass()) { 981 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 982 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 983 int len = sv->field_size() / type2size[ak->element_type()]; 984 obj = ak->allocate(len, THREAD); 985 } else if (k->is_objArray_klass()) { 986 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 987 obj = ak->allocate(sv->field_size(), THREAD); 988 } 989 990 if (obj == NULL) { 991 failures = true; 992 } 993 994 assert(sv->value().is_null(), "redundant reallocation"); 995 assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception"); 996 CLEAR_PENDING_EXCEPTION; 997 sv->set_value(obj); 998 } 999 1000 if (failures) { 1001 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1002 } else if (pending_exception.not_null()) { 1003 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1004 } 1005 1006 return failures; 1007 } 1008 1009 // We're deoptimizing at the return of a call, value type fields are 1010 // in registers. When we go back to the interpreter, it will expect a 1011 // reference to a value type instance. Allocate and initialize it from 1012 // the register values here. 1013 bool Deoptimization::realloc_value_type_result(ValueKlass* vk, const RegisterMap& map, GrowableArray<Handle>& return_oops, TRAPS) { 1014 oop new_vt = vk->realloc_result(map, return_oops, THREAD); 1015 if (new_vt == NULL) { 1016 CLEAR_PENDING_EXCEPTION; 1017 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), true); 1018 } 1019 return_oops.clear(); 1020 return_oops.push(Handle(THREAD, new_vt)); 1021 return false; 1022 } 1023 1024 // restore elements of an eliminated type array 1025 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1026 int index = 0; 1027 intptr_t val; 1028 1029 for (int i = 0; i < sv->field_size(); i++) { 1030 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1031 switch(type) { 1032 case T_LONG: case T_DOUBLE: { 1033 assert(value->type() == T_INT, "Agreement."); 1034 StackValue* low = 1035 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1036 #ifdef _LP64 1037 jlong res = (jlong)low->get_int(); 1038 #else 1039 #ifdef SPARC 1040 // For SPARC we have to swap high and low words. 1041 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int()); 1042 #else 1043 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1044 #endif //SPARC 1045 #endif 1046 obj->long_at_put(index, res); 1047 break; 1048 } 1049 1050 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem. 1051 case T_INT: case T_FLOAT: { // 4 bytes. 1052 assert(value->type() == T_INT, "Agreement."); 1053 bool big_value = false; 1054 if (i + 1 < sv->field_size() && type == T_INT) { 1055 if (sv->field_at(i)->is_location()) { 1056 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1057 if (type == Location::dbl || type == Location::lng) { 1058 big_value = true; 1059 } 1060 } else if (sv->field_at(i)->is_constant_int()) { 1061 ScopeValue* next_scope_field = sv->field_at(i + 1); 1062 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1063 big_value = true; 1064 } 1065 } 1066 } 1067 1068 if (big_value) { 1069 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1070 #ifdef _LP64 1071 jlong res = (jlong)low->get_int(); 1072 #else 1073 #ifdef SPARC 1074 // For SPARC we have to swap high and low words. 1075 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int()); 1076 #else 1077 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1078 #endif //SPARC 1079 #endif 1080 obj->int_at_put(index, (jint)*((jint*)&res)); 1081 obj->int_at_put(++index, (jint)*(((jint*)&res) + 1)); 1082 } else { 1083 val = value->get_int(); 1084 obj->int_at_put(index, (jint)*((jint*)&val)); 1085 } 1086 break; 1087 } 1088 1089 case T_SHORT: 1090 assert(value->type() == T_INT, "Agreement."); 1091 val = value->get_int(); 1092 obj->short_at_put(index, (jshort)*((jint*)&val)); 1093 break; 1094 1095 case T_CHAR: 1096 assert(value->type() == T_INT, "Agreement."); 1097 val = value->get_int(); 1098 obj->char_at_put(index, (jchar)*((jint*)&val)); 1099 break; 1100 1101 case T_BYTE: 1102 assert(value->type() == T_INT, "Agreement."); 1103 val = value->get_int(); 1104 obj->byte_at_put(index, (jbyte)*((jint*)&val)); 1105 break; 1106 1107 case T_BOOLEAN: 1108 assert(value->type() == T_INT, "Agreement."); 1109 val = value->get_int(); 1110 obj->bool_at_put(index, (jboolean)*((jint*)&val)); 1111 break; 1112 1113 default: 1114 ShouldNotReachHere(); 1115 } 1116 index++; 1117 } 1118 } 1119 1120 1121 // restore fields of an eliminated object array 1122 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1123 for (int i = 0; i < sv->field_size(); i++) { 1124 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1125 assert(value->type() == T_OBJECT, "object element expected"); 1126 obj->obj_at_put(i, value->get_obj()()); 1127 } 1128 } 1129 1130 class ReassignedField { 1131 public: 1132 int _offset; 1133 BasicType _type; 1134 InstanceKlass* _klass; 1135 public: 1136 ReassignedField() { 1137 _offset = 0; 1138 _type = T_ILLEGAL; 1139 _klass = NULL; 1140 } 1141 }; 1142 1143 int compare(ReassignedField* left, ReassignedField* right) { 1144 return left->_offset - right->_offset; 1145 } 1146 1147 // Restore fields of an eliminated instance object using the same field order 1148 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true) 1149 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal, int base_offset, TRAPS) { 1150 if (klass->superklass() != NULL) { 1151 svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal, 0, CHECK_0); 1152 } 1153 1154 GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>(); 1155 for (AllFieldStream fs(klass); !fs.done(); fs.next()) { 1156 if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) { 1157 ReassignedField field; 1158 field._offset = fs.offset(); 1159 field._type = FieldType::basic_type(fs.signature()); 1160 if (field._type == T_VALUETYPE) { 1161 field._type = T_OBJECT; 1162 } 1163 if (fs.is_flattened()) { 1164 // Resolve klass of flattened value type field 1165 Klass* vk = klass->get_value_field_klass(fs.index()); 1166 field._klass = ValueKlass::cast(vk); 1167 field._type = T_VALUETYPE; 1168 } 1169 fields->append(field); 1170 } 1171 } 1172 fields->sort(compare); 1173 for (int i = 0; i < fields->length(); i++) { 1174 intptr_t val; 1175 ScopeValue* scope_field = sv->field_at(svIndex); 1176 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1177 int offset = base_offset + fields->at(i)._offset; 1178 BasicType type = fields->at(i)._type; 1179 switch (type) { 1180 case T_OBJECT: 1181 case T_ARRAY: 1182 assert(value->type() == T_OBJECT, "Agreement."); 1183 obj->obj_field_put(offset, value->get_obj()()); 1184 break; 1185 1186 case T_VALUETYPE: { 1187 // Recursively re-assign flattened value type fields 1188 InstanceKlass* vk = fields->at(i)._klass; 1189 assert(vk != NULL, "must be resolved"); 1190 offset -= ValueKlass::cast(vk)->first_field_offset(); // Adjust offset to omit oop header 1191 svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, skip_internal, offset, CHECK_0); 1192 continue; // Continue because we don't need to increment svIndex 1193 } 1194 1195 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem. 1196 case T_INT: case T_FLOAT: { // 4 bytes. 1197 assert(value->type() == T_INT, "Agreement."); 1198 bool big_value = false; 1199 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1200 if (scope_field->is_location()) { 1201 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1202 if (type == Location::dbl || type == Location::lng) { 1203 big_value = true; 1204 } 1205 } 1206 if (scope_field->is_constant_int()) { 1207 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1208 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1209 big_value = true; 1210 } 1211 } 1212 } 1213 1214 if (big_value) { 1215 i++; 1216 assert(i < fields->length(), "second T_INT field needed"); 1217 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1218 } else { 1219 val = value->get_int(); 1220 obj->int_field_put(offset, (jint)*((jint*)&val)); 1221 break; 1222 } 1223 } 1224 /* no break */ 1225 1226 case T_LONG: case T_DOUBLE: { 1227 assert(value->type() == T_INT, "Agreement."); 1228 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1229 #ifdef _LP64 1230 jlong res = (jlong)low->get_int(); 1231 #else 1232 #ifdef SPARC 1233 // For SPARC we have to swap high and low words. 1234 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int()); 1235 #else 1236 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1237 #endif //SPARC 1238 #endif 1239 obj->long_field_put(offset, res); 1240 break; 1241 } 1242 1243 case T_SHORT: 1244 assert(value->type() == T_INT, "Agreement."); 1245 val = value->get_int(); 1246 obj->short_field_put(offset, (jshort)*((jint*)&val)); 1247 break; 1248 1249 case T_CHAR: 1250 assert(value->type() == T_INT, "Agreement."); 1251 val = value->get_int(); 1252 obj->char_field_put(offset, (jchar)*((jint*)&val)); 1253 break; 1254 1255 case T_BYTE: 1256 assert(value->type() == T_INT, "Agreement."); 1257 val = value->get_int(); 1258 obj->byte_field_put(offset, (jbyte)*((jint*)&val)); 1259 break; 1260 1261 case T_BOOLEAN: 1262 assert(value->type() == T_INT, "Agreement."); 1263 val = value->get_int(); 1264 obj->bool_field_put(offset, (jboolean)*((jint*)&val)); 1265 break; 1266 1267 default: 1268 ShouldNotReachHere(); 1269 } 1270 svIndex++; 1271 } 1272 return svIndex; 1273 } 1274 1275 // restore fields of an eliminated value type array 1276 void Deoptimization::reassign_value_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, valueArrayOop obj, ValueArrayKlass* vak, TRAPS) { 1277 ValueKlass* vk = vak->element_klass(); 1278 assert(vk->flatten_array(), "should only be used for flattened value type arrays"); 1279 // Adjust offset to omit oop header 1280 int base_offset = arrayOopDesc::base_offset_in_bytes(T_VALUETYPE) - ValueKlass::cast(vk)->first_field_offset(); 1281 // Initialize all elements of the flattened value type array 1282 for (int i = 0; i < sv->field_size(); i++) { 1283 ScopeValue* val = sv->field_at(i); 1284 int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper())); 1285 reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, false /* skip_internal */, offset, CHECK); 1286 } 1287 } 1288 1289 // restore fields of all eliminated objects and arrays 1290 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal, TRAPS) { 1291 for (int i = 0; i < objects->length(); i++) { 1292 ObjectValue* sv = (ObjectValue*) objects->at(i); 1293 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1294 Handle obj = sv->value(); 1295 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 1296 if (PrintDeoptimizationDetails) { 1297 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1298 } 1299 if (obj.is_null()) { 1300 continue; 1301 } 1302 #if INCLUDE_JVMCI || INCLUDE_AOT 1303 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1304 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1305 continue; 1306 } 1307 #endif // INCLUDE_JVMCI || INCLUDE_AOT 1308 if (k->is_instance_klass()) { 1309 InstanceKlass* ik = InstanceKlass::cast(k); 1310 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal, 0, CHECK); 1311 } else if (k->is_valueArray_klass()) { 1312 ValueArrayKlass* vak = ValueArrayKlass::cast(k); 1313 reassign_value_array_elements(fr, reg_map, sv, (valueArrayOop) obj(), vak, CHECK); 1314 } else if (k->is_typeArray_klass()) { 1315 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1316 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1317 } else if (k->is_objArray_klass()) { 1318 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1319 } 1320 } 1321 } 1322 1323 1324 // relock objects for which synchronization was eliminated 1325 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) { 1326 for (int i = 0; i < monitors->length(); i++) { 1327 MonitorInfo* mon_info = monitors->at(i); 1328 if (mon_info->eliminated()) { 1329 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1330 if (!mon_info->owner_is_scalar_replaced()) { 1331 Handle obj(thread, mon_info->owner()); 1332 markWord mark = obj->mark(); 1333 if (UseBiasedLocking && mark.has_bias_pattern()) { 1334 // New allocated objects may have the mark set to anonymously biased. 1335 // Also the deoptimized method may called methods with synchronization 1336 // where the thread-local object is bias locked to the current thread. 1337 assert(mark.is_biased_anonymously() || 1338 mark.biased_locker() == thread, "should be locked to current thread"); 1339 // Reset mark word to unbiased prototype. 1340 markWord unbiased_prototype = markWord::prototype().set_age(mark.age()); 1341 obj->set_mark(unbiased_prototype); 1342 } 1343 BasicLock* lock = mon_info->lock(); 1344 ObjectSynchronizer::enter(obj, lock, thread); 1345 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1346 } 1347 } 1348 } 1349 } 1350 1351 1352 #ifndef PRODUCT 1353 // print information about reallocated objects 1354 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) { 1355 fieldDescriptor fd; 1356 1357 for (int i = 0; i < objects->length(); i++) { 1358 ObjectValue* sv = (ObjectValue*) objects->at(i); 1359 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1360 Handle obj = sv->value(); 1361 1362 tty->print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 1363 k->print_value(); 1364 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 1365 if (obj.is_null()) { 1366 tty->print(" allocation failed"); 1367 } else { 1368 tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize); 1369 } 1370 tty->cr(); 1371 1372 if (Verbose && !obj.is_null()) { 1373 k->oop_print_on(obj(), tty); 1374 } 1375 } 1376 } 1377 #endif 1378 #endif // COMPILER2_OR_JVMCI 1379 1380 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1381 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1382 1383 #ifndef PRODUCT 1384 if (PrintDeoptimizationDetails) { 1385 ttyLocker ttyl; 1386 tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread)); 1387 fr.print_on(tty); 1388 tty->print_cr(" Virtual frames (innermost first):"); 1389 for (int index = 0; index < chunk->length(); index++) { 1390 compiledVFrame* vf = chunk->at(index); 1391 tty->print(" %2d - ", index); 1392 vf->print_value(); 1393 int bci = chunk->at(index)->raw_bci(); 1394 const char* code_name; 1395 if (bci == SynchronizationEntryBCI) { 1396 code_name = "sync entry"; 1397 } else { 1398 Bytecodes::Code code = vf->method()->code_at(bci); 1399 code_name = Bytecodes::name(code); 1400 } 1401 tty->print(" - %s", code_name); 1402 tty->print_cr(" @ bci %d ", bci); 1403 if (Verbose) { 1404 vf->print(); 1405 tty->cr(); 1406 } 1407 } 1408 } 1409 #endif 1410 1411 // Register map for next frame (used for stack crawl). We capture 1412 // the state of the deopt'ing frame's caller. Thus if we need to 1413 // stuff a C2I adapter we can properly fill in the callee-save 1414 // register locations. 1415 frame caller = fr.sender(reg_map); 1416 int frame_size = caller.sp() - fr.sp(); 1417 1418 frame sender = caller; 1419 1420 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1421 // the vframeArray containing the unpacking information is allocated in the C heap. 1422 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1423 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1424 1425 // Compare the vframeArray to the collected vframes 1426 assert(array->structural_compare(thread, chunk), "just checking"); 1427 1428 #ifndef PRODUCT 1429 if (PrintDeoptimizationDetails) { 1430 ttyLocker ttyl; 1431 tty->print_cr(" Created vframeArray " INTPTR_FORMAT, p2i(array)); 1432 } 1433 #endif // PRODUCT 1434 1435 return array; 1436 } 1437 1438 #if COMPILER2_OR_JVMCI 1439 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1440 // Reallocation of some scalar replaced objects failed. Record 1441 // that we need to pop all the interpreter frames for the 1442 // deoptimized compiled frame. 1443 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1444 thread->set_frames_to_pop_failed_realloc(array->frames()); 1445 // Unlock all monitors here otherwise the interpreter will see a 1446 // mix of locked and unlocked monitors (because of failed 1447 // reallocations of synchronized objects) and be confused. 1448 for (int i = 0; i < array->frames(); i++) { 1449 MonitorChunk* monitors = array->element(i)->monitors(); 1450 if (monitors != NULL) { 1451 for (int j = 0; j < monitors->number_of_monitors(); j++) { 1452 BasicObjectLock* src = monitors->at(j); 1453 if (src->obj() != NULL) { 1454 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1455 } 1456 } 1457 array->element(i)->free_monitors(thread); 1458 #ifdef ASSERT 1459 array->element(i)->set_removed_monitors(); 1460 #endif 1461 } 1462 } 1463 } 1464 #endif 1465 1466 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) { 1467 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 1468 Thread* thread = Thread::current(); 1469 for (int i = 0; i < monitors->length(); i++) { 1470 MonitorInfo* mon_info = monitors->at(i); 1471 if (!mon_info->eliminated() && mon_info->owner() != NULL) { 1472 objects_to_revoke->append(Handle(thread, mon_info->owner())); 1473 } 1474 } 1475 } 1476 1477 1478 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) { 1479 if (!UseBiasedLocking) { 1480 return; 1481 } 1482 1483 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 1484 1485 // Unfortunately we don't have a RegisterMap available in most of 1486 // the places we want to call this routine so we need to walk the 1487 // stack again to update the register map. 1488 if (map == NULL || !map->update_map()) { 1489 StackFrameStream sfs(thread, true); 1490 bool found = false; 1491 while (!found && !sfs.is_done()) { 1492 frame* cur = sfs.current(); 1493 sfs.next(); 1494 found = cur->id() == fr.id(); 1495 } 1496 assert(found, "frame to be deoptimized not found on target thread's stack"); 1497 map = sfs.register_map(); 1498 } 1499 1500 vframe* vf = vframe::new_vframe(&fr, map, thread); 1501 compiledVFrame* cvf = compiledVFrame::cast(vf); 1502 // Revoke monitors' biases in all scopes 1503 while (!cvf->is_top()) { 1504 collect_monitors(cvf, objects_to_revoke); 1505 cvf = compiledVFrame::cast(cvf->sender()); 1506 } 1507 collect_monitors(cvf, objects_to_revoke); 1508 1509 if (SafepointSynchronize::is_at_safepoint()) { 1510 BiasedLocking::revoke_at_safepoint(objects_to_revoke); 1511 } else { 1512 BiasedLocking::revoke(objects_to_revoke, thread); 1513 } 1514 } 1515 1516 1517 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1518 assert(fr.can_be_deoptimized(), "checking frame type"); 1519 1520 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1521 1522 if (LogCompilation && xtty != NULL) { 1523 CompiledMethod* cm = fr.cb()->as_compiled_method_or_null(); 1524 assert(cm != NULL, "only compiled methods can deopt"); 1525 1526 ttyLocker ttyl; 1527 xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1528 cm->log_identity(xtty); 1529 xtty->end_head(); 1530 for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1531 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1532 xtty->method(sd->method()); 1533 xtty->end_elem(); 1534 if (sd->is_top()) break; 1535 } 1536 xtty->tail("deoptimized"); 1537 } 1538 1539 // Patch the compiled method so that when execution returns to it we will 1540 // deopt the execution state and return to the interpreter. 1541 fr.deoptimize(thread); 1542 } 1543 1544 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) { 1545 deoptimize(thread, fr, map, Reason_constraint); 1546 } 1547 1548 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) { 1549 // Deoptimize only if the frame comes from compile code. 1550 // Do not deoptimize the frame which is already patched 1551 // during the execution of the loops below. 1552 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1553 return; 1554 } 1555 ResourceMark rm; 1556 DeoptimizationMarker dm; 1557 if (UseBiasedLocking) { 1558 revoke_biases_of_monitors(thread, fr, map); 1559 } 1560 deoptimize_single_frame(thread, fr, reason); 1561 1562 } 1563 1564 #if INCLUDE_JVMCI 1565 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) { 1566 // there is no exception handler for this pc => deoptimize 1567 cm->make_not_entrant(); 1568 1569 // Use Deoptimization::deoptimize for all of its side-effects: 1570 // revoking biases of monitors, gathering traps statistics, logging... 1571 // it also patches the return pc but we do not care about that 1572 // since we return a continuation to the deopt_blob below. 1573 JavaThread* thread = JavaThread::current(); 1574 RegisterMap reg_map(thread, UseBiasedLocking); 1575 frame runtime_frame = thread->last_frame(); 1576 frame caller_frame = runtime_frame.sender(®_map); 1577 assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method"); 1578 Deoptimization::deoptimize(thread, caller_frame, ®_map, Deoptimization::Reason_not_compiled_exception_handler); 1579 1580 MethodData* trap_mdo = get_method_data(thread, cm->method(), true); 1581 if (trap_mdo != NULL) { 1582 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1583 } 1584 1585 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1586 } 1587 #endif 1588 1589 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1590 assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(), 1591 "can only deoptimize other thread at a safepoint"); 1592 // Compute frame and register map based on thread and sp. 1593 RegisterMap reg_map(thread, UseBiasedLocking); 1594 frame fr = thread->last_frame(); 1595 while (fr.id() != id) { 1596 fr = fr.sender(®_map); 1597 } 1598 deoptimize(thread, fr, ®_map, reason); 1599 } 1600 1601 1602 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1603 if (thread == Thread::current()) { 1604 Deoptimization::deoptimize_frame_internal(thread, id, reason); 1605 } else { 1606 VM_DeoptimizeFrame deopt(thread, id, reason); 1607 VMThread::execute(&deopt); 1608 } 1609 } 1610 1611 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 1612 deoptimize_frame(thread, id, Reason_constraint); 1613 } 1614 1615 // JVMTI PopFrame support 1616 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 1617 { 1618 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 1619 } 1620 JRT_END 1621 1622 MethodData* 1623 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 1624 bool create_if_missing) { 1625 Thread* THREAD = thread; 1626 MethodData* mdo = m()->method_data(); 1627 if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) { 1628 // Build an MDO. Ignore errors like OutOfMemory; 1629 // that simply means we won't have an MDO to update. 1630 Method::build_interpreter_method_data(m, THREAD); 1631 if (HAS_PENDING_EXCEPTION) { 1632 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1633 CLEAR_PENDING_EXCEPTION; 1634 } 1635 mdo = m()->method_data(); 1636 } 1637 return mdo; 1638 } 1639 1640 #if COMPILER2_OR_JVMCI 1641 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 1642 // in case of an unresolved klass entry, load the class. 1643 if (constant_pool->tag_at(index).is_unresolved_klass()) { 1644 Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK); 1645 return; 1646 } 1647 1648 if (!constant_pool->tag_at(index).is_symbol()) return; 1649 1650 Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader()); 1651 Symbol* symbol = constant_pool->symbol_at(index); 1652 1653 // class name? 1654 if (symbol->char_at(0) != '(') { 1655 Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain()); 1656 SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK); 1657 return; 1658 } 1659 1660 // then it must be a signature! 1661 ResourceMark rm(THREAD); 1662 for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) { 1663 if (ss.is_object()) { 1664 Symbol* class_name = ss.as_symbol(); 1665 Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain()); 1666 SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK); 1667 } 1668 } 1669 } 1670 1671 1672 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) { 1673 EXCEPTION_MARK; 1674 load_class_by_index(constant_pool, index, THREAD); 1675 if (HAS_PENDING_EXCEPTION) { 1676 // Exception happened during classloading. We ignore the exception here, since it 1677 // is going to be rethrown since the current activation is going to be deoptimized and 1678 // the interpreter will re-execute the bytecode. 1679 CLEAR_PENDING_EXCEPTION; 1680 // Class loading called java code which may have caused a stack 1681 // overflow. If the exception was thrown right before the return 1682 // to the runtime the stack is no longer guarded. Reguard the 1683 // stack otherwise if we return to the uncommon trap blob and the 1684 // stack bang causes a stack overflow we crash. 1685 assert(THREAD->is_Java_thread(), "only a java thread can be here"); 1686 JavaThread* thread = (JavaThread*)THREAD; 1687 bool guard_pages_enabled = thread->stack_guards_enabled(); 1688 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); 1689 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 1690 } 1691 } 1692 1693 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) { 1694 HandleMark hm; 1695 1696 // uncommon_trap() is called at the beginning of the uncommon trap 1697 // handler. Note this fact before we start generating temporary frames 1698 // that can confuse an asynchronous stack walker. This counter is 1699 // decremented at the end of unpack_frames(). 1700 thread->inc_in_deopt_handler(); 1701 1702 // We need to update the map if we have biased locking. 1703 #if INCLUDE_JVMCI 1704 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 1705 RegisterMap reg_map(thread, true); 1706 #else 1707 RegisterMap reg_map(thread, UseBiasedLocking); 1708 #endif 1709 frame stub_frame = thread->last_frame(); 1710 frame fr = stub_frame.sender(®_map); 1711 // Make sure the calling nmethod is not getting deoptimized and removed 1712 // before we are done with it. 1713 nmethodLocker nl(fr.pc()); 1714 1715 // Log a message 1716 Events::log_deopt_message(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 1717 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 1718 1719 { 1720 ResourceMark rm; 1721 1722 // Revoke biases of any monitors in the frame to ensure we can migrate them 1723 revoke_biases_of_monitors(thread, fr, ®_map); 1724 1725 DeoptReason reason = trap_request_reason(trap_request); 1726 DeoptAction action = trap_request_action(trap_request); 1727 #if INCLUDE_JVMCI 1728 int debug_id = trap_request_debug_id(trap_request); 1729 #endif 1730 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 1731 1732 vframe* vf = vframe::new_vframe(&fr, ®_map, thread); 1733 compiledVFrame* cvf = compiledVFrame::cast(vf); 1734 1735 CompiledMethod* nm = cvf->code(); 1736 1737 ScopeDesc* trap_scope = cvf->scope(); 1738 1739 if (TraceDeoptimization) { 1740 ttyLocker ttyl; 1741 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 1742 #if INCLUDE_JVMCI 1743 , debug_id 1744 #endif 1745 ); 1746 } 1747 1748 methodHandle trap_method = trap_scope->method(); 1749 int trap_bci = trap_scope->bci(); 1750 #if INCLUDE_JVMCI 1751 jlong speculation = thread->pending_failed_speculation(); 1752 if (nm->is_compiled_by_jvmci() && nm->is_nmethod()) { // Exclude AOTed methods 1753 nm->as_nmethod()->update_speculation(thread); 1754 } else { 1755 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 1756 } 1757 1758 if (trap_bci == SynchronizationEntryBCI) { 1759 trap_bci = 0; 1760 thread->set_pending_monitorenter(true); 1761 } 1762 1763 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 1764 thread->set_pending_transfer_to_interpreter(true); 1765 } 1766 #endif 1767 1768 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 1769 // Record this event in the histogram. 1770 gather_statistics(reason, action, trap_bc); 1771 1772 // Ensure that we can record deopt. history: 1773 // Need MDO to record RTM code generation state. 1774 bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking ); 1775 1776 methodHandle profiled_method; 1777 #if INCLUDE_JVMCI 1778 if (nm->is_compiled_by_jvmci()) { 1779 profiled_method = nm->method(); 1780 } else { 1781 profiled_method = trap_method; 1782 } 1783 #else 1784 profiled_method = trap_method; 1785 #endif 1786 1787 MethodData* trap_mdo = 1788 get_method_data(thread, profiled_method, create_if_missing); 1789 1790 // Log a message 1791 Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 1792 trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()), 1793 trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 1794 1795 // Print a bunch of diagnostics, if requested. 1796 if (TraceDeoptimization || LogCompilation) { 1797 ResourceMark rm; 1798 ttyLocker ttyl; 1799 char buf[100]; 1800 if (xtty != NULL) { 1801 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s", 1802 os::current_thread_id(), 1803 format_trap_request(buf, sizeof(buf), trap_request)); 1804 #if INCLUDE_JVMCI 1805 if (speculation != 0) { 1806 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 1807 } 1808 #endif 1809 nm->log_identity(xtty); 1810 } 1811 Symbol* class_name = NULL; 1812 bool unresolved = false; 1813 if (unloaded_class_index >= 0) { 1814 constantPoolHandle constants (THREAD, trap_method->constants()); 1815 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 1816 class_name = constants->klass_name_at(unloaded_class_index); 1817 unresolved = true; 1818 if (xtty != NULL) 1819 xtty->print(" unresolved='1'"); 1820 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 1821 class_name = constants->symbol_at(unloaded_class_index); 1822 } 1823 if (xtty != NULL) 1824 xtty->name(class_name); 1825 } 1826 if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) { 1827 // Dump the relevant MDO state. 1828 // This is the deopt count for the current reason, any previous 1829 // reasons or recompiles seen at this point. 1830 int dcnt = trap_mdo->trap_count(reason); 1831 if (dcnt != 0) 1832 xtty->print(" count='%d'", dcnt); 1833 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 1834 int dos = (pdata == NULL)? 0: pdata->trap_state(); 1835 if (dos != 0) { 1836 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 1837 if (trap_state_is_recompiled(dos)) { 1838 int recnt2 = trap_mdo->overflow_recompile_count(); 1839 if (recnt2 != 0) 1840 xtty->print(" recompiles2='%d'", recnt2); 1841 } 1842 } 1843 } 1844 if (xtty != NULL) { 1845 xtty->stamp(); 1846 xtty->end_head(); 1847 } 1848 if (TraceDeoptimization) { // make noise on the tty 1849 tty->print("Uncommon trap occurred in"); 1850 nm->method()->print_short_name(tty); 1851 tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 1852 #if INCLUDE_JVMCI 1853 if (nm->is_nmethod()) { 1854 const char* installed_code_name = nm->as_nmethod()->jvmci_name(); 1855 if (installed_code_name != NULL) { 1856 tty->print(" (JVMCI: installed code name=%s) ", installed_code_name); 1857 } 1858 } 1859 #endif 1860 tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 1861 p2i(fr.pc()), 1862 os::current_thread_id(), 1863 trap_reason_name(reason), 1864 trap_action_name(action), 1865 unloaded_class_index 1866 #if INCLUDE_JVMCI 1867 , debug_id 1868 #endif 1869 ); 1870 if (class_name != NULL) { 1871 tty->print(unresolved ? " unresolved class: " : " symbol: "); 1872 class_name->print_symbol_on(tty); 1873 } 1874 tty->cr(); 1875 } 1876 if (xtty != NULL) { 1877 // Log the precise location of the trap. 1878 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 1879 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1880 xtty->method(sd->method()); 1881 xtty->end_elem(); 1882 if (sd->is_top()) break; 1883 } 1884 xtty->tail("uncommon_trap"); 1885 } 1886 } 1887 // (End diagnostic printout.) 1888 1889 // Load class if necessary 1890 if (unloaded_class_index >= 0) { 1891 constantPoolHandle constants(THREAD, trap_method->constants()); 1892 load_class_by_index(constants, unloaded_class_index); 1893 } 1894 1895 // Flush the nmethod if necessary and desirable. 1896 // 1897 // We need to avoid situations where we are re-flushing the nmethod 1898 // because of a hot deoptimization site. Repeated flushes at the same 1899 // point need to be detected by the compiler and avoided. If the compiler 1900 // cannot avoid them (or has a bug and "refuses" to avoid them), this 1901 // module must take measures to avoid an infinite cycle of recompilation 1902 // and deoptimization. There are several such measures: 1903 // 1904 // 1. If a recompilation is ordered a second time at some site X 1905 // and for the same reason R, the action is adjusted to 'reinterpret', 1906 // to give the interpreter time to exercise the method more thoroughly. 1907 // If this happens, the method's overflow_recompile_count is incremented. 1908 // 1909 // 2. If the compiler fails to reduce the deoptimization rate, then 1910 // the method's overflow_recompile_count will begin to exceed the set 1911 // limit PerBytecodeRecompilationCutoff. If this happens, the action 1912 // is adjusted to 'make_not_compilable', and the method is abandoned 1913 // to the interpreter. This is a performance hit for hot methods, 1914 // but is better than a disastrous infinite cycle of recompilations. 1915 // (Actually, only the method containing the site X is abandoned.) 1916 // 1917 // 3. In parallel with the previous measures, if the total number of 1918 // recompilations of a method exceeds the much larger set limit 1919 // PerMethodRecompilationCutoff, the method is abandoned. 1920 // This should only happen if the method is very large and has 1921 // many "lukewarm" deoptimizations. The code which enforces this 1922 // limit is elsewhere (class nmethod, class Method). 1923 // 1924 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 1925 // to recompile at each bytecode independently of the per-BCI cutoff. 1926 // 1927 // The decision to update code is up to the compiler, and is encoded 1928 // in the Action_xxx code. If the compiler requests Action_none 1929 // no trap state is changed, no compiled code is changed, and the 1930 // computation suffers along in the interpreter. 1931 // 1932 // The other action codes specify various tactics for decompilation 1933 // and recompilation. Action_maybe_recompile is the loosest, and 1934 // allows the compiled code to stay around until enough traps are seen, 1935 // and until the compiler gets around to recompiling the trapping method. 1936 // 1937 // The other actions cause immediate removal of the present code. 1938 1939 // Traps caused by injected profile shouldn't pollute trap counts. 1940 bool injected_profile_trap = trap_method->has_injected_profile() && 1941 (reason == Reason_intrinsic || reason == Reason_unreached); 1942 1943 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 1944 bool make_not_entrant = false; 1945 bool make_not_compilable = false; 1946 bool reprofile = false; 1947 switch (action) { 1948 case Action_none: 1949 // Keep the old code. 1950 update_trap_state = false; 1951 break; 1952 case Action_maybe_recompile: 1953 // Do not need to invalidate the present code, but we can 1954 // initiate another 1955 // Start compiler without (necessarily) invalidating the nmethod. 1956 // The system will tolerate the old code, but new code should be 1957 // generated when possible. 1958 break; 1959 case Action_reinterpret: 1960 // Go back into the interpreter for a while, and then consider 1961 // recompiling form scratch. 1962 make_not_entrant = true; 1963 // Reset invocation counter for outer most method. 1964 // This will allow the interpreter to exercise the bytecodes 1965 // for a while before recompiling. 1966 // By contrast, Action_make_not_entrant is immediate. 1967 // 1968 // Note that the compiler will track null_check, null_assert, 1969 // range_check, and class_check events and log them as if they 1970 // had been traps taken from compiled code. This will update 1971 // the MDO trap history so that the next compilation will 1972 // properly detect hot trap sites. 1973 reprofile = true; 1974 break; 1975 case Action_make_not_entrant: 1976 // Request immediate recompilation, and get rid of the old code. 1977 // Make them not entrant, so next time they are called they get 1978 // recompiled. Unloaded classes are loaded now so recompile before next 1979 // time they are called. Same for uninitialized. The interpreter will 1980 // link the missing class, if any. 1981 make_not_entrant = true; 1982 break; 1983 case Action_make_not_compilable: 1984 // Give up on compiling this method at all. 1985 make_not_entrant = true; 1986 make_not_compilable = true; 1987 break; 1988 default: 1989 ShouldNotReachHere(); 1990 } 1991 1992 // Setting +ProfileTraps fixes the following, on all platforms: 1993 // 4852688: ProfileInterpreter is off by default for ia64. The result is 1994 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 1995 // recompile relies on a MethodData* to record heroic opt failures. 1996 1997 // Whether the interpreter is producing MDO data or not, we also need 1998 // to use the MDO to detect hot deoptimization points and control 1999 // aggressive optimization. 2000 bool inc_recompile_count = false; 2001 ProfileData* pdata = NULL; 2002 if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) { 2003 assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity"); 2004 uint this_trap_count = 0; 2005 bool maybe_prior_trap = false; 2006 bool maybe_prior_recompile = false; 2007 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2008 #if INCLUDE_JVMCI 2009 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2010 #endif 2011 nm->method(), 2012 //outputs: 2013 this_trap_count, 2014 maybe_prior_trap, 2015 maybe_prior_recompile); 2016 // Because the interpreter also counts null, div0, range, and class 2017 // checks, these traps from compiled code are double-counted. 2018 // This is harmless; it just means that the PerXTrapLimit values 2019 // are in effect a little smaller than they look. 2020 2021 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2022 if (per_bc_reason != Reason_none) { 2023 // Now take action based on the partially known per-BCI history. 2024 if (maybe_prior_trap 2025 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2026 // If there are too many traps at this BCI, force a recompile. 2027 // This will allow the compiler to see the limit overflow, and 2028 // take corrective action, if possible. The compiler generally 2029 // does not use the exact PerBytecodeTrapLimit value, but instead 2030 // changes its tactics if it sees any traps at all. This provides 2031 // a little hysteresis, delaying a recompile until a trap happens 2032 // several times. 2033 // 2034 // Actually, since there is only one bit of counter per BCI, 2035 // the possible per-BCI counts are {0,1,(per-method count)}. 2036 // This produces accurate results if in fact there is only 2037 // one hot trap site, but begins to get fuzzy if there are 2038 // many sites. For example, if there are ten sites each 2039 // trapping two or more times, they each get the blame for 2040 // all of their traps. 2041 make_not_entrant = true; 2042 } 2043 2044 // Detect repeated recompilation at the same BCI, and enforce a limit. 2045 if (make_not_entrant && maybe_prior_recompile) { 2046 // More than one recompile at this point. 2047 inc_recompile_count = maybe_prior_trap; 2048 } 2049 } else { 2050 // For reasons which are not recorded per-bytecode, we simply 2051 // force recompiles unconditionally. 2052 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2053 make_not_entrant = true; 2054 } 2055 2056 // Go back to the compiler if there are too many traps in this method. 2057 if (this_trap_count >= per_method_trap_limit(reason)) { 2058 // If there are too many traps in this method, force a recompile. 2059 // This will allow the compiler to see the limit overflow, and 2060 // take corrective action, if possible. 2061 // (This condition is an unlikely backstop only, because the 2062 // PerBytecodeTrapLimit is more likely to take effect first, 2063 // if it is applicable.) 2064 make_not_entrant = true; 2065 } 2066 2067 // Here's more hysteresis: If there has been a recompile at 2068 // this trap point already, run the method in the interpreter 2069 // for a while to exercise it more thoroughly. 2070 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2071 reprofile = true; 2072 } 2073 } 2074 2075 // Take requested actions on the method: 2076 2077 // Recompile 2078 if (make_not_entrant) { 2079 if (!nm->make_not_entrant()) { 2080 return; // the call did not change nmethod's state 2081 } 2082 2083 if (pdata != NULL) { 2084 // Record the recompilation event, if any. 2085 int tstate0 = pdata->trap_state(); 2086 int tstate1 = trap_state_set_recompiled(tstate0, true); 2087 if (tstate1 != tstate0) 2088 pdata->set_trap_state(tstate1); 2089 } 2090 2091 #if INCLUDE_RTM_OPT 2092 // Restart collecting RTM locking abort statistic if the method 2093 // is recompiled for a reason other than RTM state change. 2094 // Assume that in new recompiled code the statistic could be different, 2095 // for example, due to different inlining. 2096 if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) && 2097 UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) { 2098 trap_mdo->atomic_set_rtm_state(ProfileRTM); 2099 } 2100 #endif 2101 // For code aging we count traps separately here, using make_not_entrant() 2102 // as a guard against simultaneous deopts in multiple threads. 2103 if (reason == Reason_tenured && trap_mdo != NULL) { 2104 trap_mdo->inc_tenure_traps(); 2105 } 2106 } 2107 2108 if (inc_recompile_count) { 2109 trap_mdo->inc_overflow_recompile_count(); 2110 if ((uint)trap_mdo->overflow_recompile_count() > 2111 (uint)PerBytecodeRecompilationCutoff) { 2112 // Give up on the method containing the bad BCI. 2113 if (trap_method() == nm->method()) { 2114 make_not_compilable = true; 2115 } else { 2116 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2117 // But give grace to the enclosing nm->method(). 2118 } 2119 } 2120 } 2121 2122 // Reprofile 2123 if (reprofile) { 2124 CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method()); 2125 } 2126 2127 // Give up compiling 2128 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2129 assert(make_not_entrant, "consistent"); 2130 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2131 } 2132 2133 } // Free marked resources 2134 2135 } 2136 JRT_END 2137 2138 ProfileData* 2139 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2140 int trap_bci, 2141 Deoptimization::DeoptReason reason, 2142 bool update_total_trap_count, 2143 #if INCLUDE_JVMCI 2144 bool is_osr, 2145 #endif 2146 Method* compiled_method, 2147 //outputs: 2148 uint& ret_this_trap_count, 2149 bool& ret_maybe_prior_trap, 2150 bool& ret_maybe_prior_recompile) { 2151 bool maybe_prior_trap = false; 2152 bool maybe_prior_recompile = false; 2153 uint this_trap_count = 0; 2154 if (update_total_trap_count) { 2155 uint idx = reason; 2156 #if INCLUDE_JVMCI 2157 if (is_osr) { 2158 idx += Reason_LIMIT; 2159 } 2160 #endif 2161 uint prior_trap_count = trap_mdo->trap_count(idx); 2162 this_trap_count = trap_mdo->inc_trap_count(idx); 2163 2164 // If the runtime cannot find a place to store trap history, 2165 // it is estimated based on the general condition of the method. 2166 // If the method has ever been recompiled, or has ever incurred 2167 // a trap with the present reason , then this BCI is assumed 2168 // (pessimistically) to be the culprit. 2169 maybe_prior_trap = (prior_trap_count != 0); 2170 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2171 } 2172 ProfileData* pdata = NULL; 2173 2174 2175 // For reasons which are recorded per bytecode, we check per-BCI data. 2176 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2177 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2178 if (per_bc_reason != Reason_none) { 2179 // Find the profile data for this BCI. If there isn't one, 2180 // try to allocate one from the MDO's set of spares. 2181 // This will let us detect a repeated trap at this point. 2182 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL); 2183 2184 if (pdata != NULL) { 2185 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2186 if (LogCompilation && xtty != NULL) { 2187 ttyLocker ttyl; 2188 // no more room for speculative traps in this MDO 2189 xtty->elem("speculative_traps_oom"); 2190 } 2191 } 2192 // Query the trap state of this profile datum. 2193 int tstate0 = pdata->trap_state(); 2194 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2195 maybe_prior_trap = false; 2196 if (!trap_state_is_recompiled(tstate0)) 2197 maybe_prior_recompile = false; 2198 2199 // Update the trap state of this profile datum. 2200 int tstate1 = tstate0; 2201 // Record the reason. 2202 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2203 // Store the updated state on the MDO, for next time. 2204 if (tstate1 != tstate0) 2205 pdata->set_trap_state(tstate1); 2206 } else { 2207 if (LogCompilation && xtty != NULL) { 2208 ttyLocker ttyl; 2209 // Missing MDP? Leave a small complaint in the log. 2210 xtty->elem("missing_mdp bci='%d'", trap_bci); 2211 } 2212 } 2213 } 2214 2215 // Return results: 2216 ret_this_trap_count = this_trap_count; 2217 ret_maybe_prior_trap = maybe_prior_trap; 2218 ret_maybe_prior_recompile = maybe_prior_recompile; 2219 return pdata; 2220 } 2221 2222 void 2223 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2224 ResourceMark rm; 2225 // Ignored outputs: 2226 uint ignore_this_trap_count; 2227 bool ignore_maybe_prior_trap; 2228 bool ignore_maybe_prior_recompile; 2229 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2230 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2231 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2232 query_update_method_data(trap_mdo, trap_bci, 2233 (DeoptReason)reason, 2234 update_total_counts, 2235 #if INCLUDE_JVMCI 2236 false, 2237 #endif 2238 NULL, 2239 ignore_this_trap_count, 2240 ignore_maybe_prior_trap, 2241 ignore_maybe_prior_recompile); 2242 } 2243 2244 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) { 2245 if (TraceDeoptimization) { 2246 tty->print("Uncommon trap "); 2247 } 2248 // Still in Java no safepoints 2249 { 2250 // This enters VM and may safepoint 2251 uncommon_trap_inner(thread, trap_request); 2252 } 2253 return fetch_unroll_info_helper(thread, exec_mode); 2254 } 2255 2256 // Local derived constants. 2257 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2258 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2259 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2260 2261 //---------------------------trap_state_reason--------------------------------- 2262 Deoptimization::DeoptReason 2263 Deoptimization::trap_state_reason(int trap_state) { 2264 // This assert provides the link between the width of DataLayout::trap_bits 2265 // and the encoding of "recorded" reasons. It ensures there are enough 2266 // bits to store all needed reasons in the per-BCI MDO profile. 2267 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2268 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2269 trap_state -= recompile_bit; 2270 if (trap_state == DS_REASON_MASK) { 2271 return Reason_many; 2272 } else { 2273 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2274 return (DeoptReason)trap_state; 2275 } 2276 } 2277 //-------------------------trap_state_has_reason------------------------------- 2278 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2279 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2280 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2281 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2282 trap_state -= recompile_bit; 2283 if (trap_state == DS_REASON_MASK) { 2284 return -1; // true, unspecifically (bottom of state lattice) 2285 } else if (trap_state == reason) { 2286 return 1; // true, definitely 2287 } else if (trap_state == 0) { 2288 return 0; // false, definitely (top of state lattice) 2289 } else { 2290 return 0; // false, definitely 2291 } 2292 } 2293 //-------------------------trap_state_add_reason------------------------------- 2294 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2295 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2296 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2297 trap_state -= recompile_bit; 2298 if (trap_state == DS_REASON_MASK) { 2299 return trap_state + recompile_bit; // already at state lattice bottom 2300 } else if (trap_state == reason) { 2301 return trap_state + recompile_bit; // the condition is already true 2302 } else if (trap_state == 0) { 2303 return reason + recompile_bit; // no condition has yet been true 2304 } else { 2305 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2306 } 2307 } 2308 //-----------------------trap_state_is_recompiled------------------------------ 2309 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2310 return (trap_state & DS_RECOMPILE_BIT) != 0; 2311 } 2312 //-----------------------trap_state_set_recompiled----------------------------- 2313 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2314 if (z) return trap_state | DS_RECOMPILE_BIT; 2315 else return trap_state & ~DS_RECOMPILE_BIT; 2316 } 2317 //---------------------------format_trap_state--------------------------------- 2318 // This is used for debugging and diagnostics, including LogFile output. 2319 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2320 int trap_state) { 2321 assert(buflen > 0, "sanity"); 2322 DeoptReason reason = trap_state_reason(trap_state); 2323 bool recomp_flag = trap_state_is_recompiled(trap_state); 2324 // Re-encode the state from its decoded components. 2325 int decoded_state = 0; 2326 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2327 decoded_state = trap_state_add_reason(decoded_state, reason); 2328 if (recomp_flag) 2329 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2330 // If the state re-encodes properly, format it symbolically. 2331 // Because this routine is used for debugging and diagnostics, 2332 // be robust even if the state is a strange value. 2333 size_t len; 2334 if (decoded_state != trap_state) { 2335 // Random buggy state that doesn't decode?? 2336 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2337 } else { 2338 len = jio_snprintf(buf, buflen, "%s%s", 2339 trap_reason_name(reason), 2340 recomp_flag ? " recompiled" : ""); 2341 } 2342 return buf; 2343 } 2344 2345 2346 //--------------------------------statics-------------------------------------- 2347 const char* Deoptimization::_trap_reason_name[] = { 2348 // Note: Keep this in sync. with enum DeoptReason. 2349 "none", 2350 "null_check", 2351 "null_assert" JVMCI_ONLY("_or_unreached0"), 2352 "range_check", 2353 "class_check", 2354 "array_check", 2355 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2356 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2357 "profile_predicate", 2358 "unloaded", 2359 "uninitialized", 2360 "initialized", 2361 "unreached", 2362 "unhandled", 2363 "constraint", 2364 "div0_check", 2365 "age", 2366 "predicate", 2367 "loop_limit_check", 2368 "speculate_class_check", 2369 "speculate_null_check", 2370 "speculate_null_assert", 2371 "rtm_state_change", 2372 "unstable_if", 2373 "unstable_fused_if", 2374 #if INCLUDE_JVMCI 2375 "aliasing", 2376 "transfer_to_interpreter", 2377 "not_compiled_exception_handler", 2378 "unresolved", 2379 "jsr_mismatch", 2380 #endif 2381 "tenured" 2382 }; 2383 const char* Deoptimization::_trap_action_name[] = { 2384 // Note: Keep this in sync. with enum DeoptAction. 2385 "none", 2386 "maybe_recompile", 2387 "reinterpret", 2388 "make_not_entrant", 2389 "make_not_compilable" 2390 }; 2391 2392 const char* Deoptimization::trap_reason_name(int reason) { 2393 // Check that every reason has a name 2394 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2395 2396 if (reason == Reason_many) return "many"; 2397 if ((uint)reason < Reason_LIMIT) 2398 return _trap_reason_name[reason]; 2399 static char buf[20]; 2400 sprintf(buf, "reason%d", reason); 2401 return buf; 2402 } 2403 const char* Deoptimization::trap_action_name(int action) { 2404 // Check that every action has a name 2405 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2406 2407 if ((uint)action < Action_LIMIT) 2408 return _trap_action_name[action]; 2409 static char buf[20]; 2410 sprintf(buf, "action%d", action); 2411 return buf; 2412 } 2413 2414 // This is used for debugging and diagnostics, including LogFile output. 2415 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2416 int trap_request) { 2417 jint unloaded_class_index = trap_request_index(trap_request); 2418 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2419 const char* action = trap_action_name(trap_request_action(trap_request)); 2420 #if INCLUDE_JVMCI 2421 int debug_id = trap_request_debug_id(trap_request); 2422 #endif 2423 size_t len; 2424 if (unloaded_class_index < 0) { 2425 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2426 reason, action 2427 #if INCLUDE_JVMCI 2428 ,debug_id 2429 #endif 2430 ); 2431 } else { 2432 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2433 reason, action, unloaded_class_index 2434 #if INCLUDE_JVMCI 2435 ,debug_id 2436 #endif 2437 ); 2438 } 2439 return buf; 2440 } 2441 2442 juint Deoptimization::_deoptimization_hist 2443 [Deoptimization::Reason_LIMIT] 2444 [1 + Deoptimization::Action_LIMIT] 2445 [Deoptimization::BC_CASE_LIMIT] 2446 = {0}; 2447 2448 enum { 2449 LSB_BITS = 8, 2450 LSB_MASK = right_n_bits(LSB_BITS) 2451 }; 2452 2453 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2454 Bytecodes::Code bc) { 2455 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2456 assert(action >= 0 && action < Action_LIMIT, "oob"); 2457 _deoptimization_hist[Reason_none][0][0] += 1; // total 2458 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2459 juint* cases = _deoptimization_hist[reason][1+action]; 2460 juint* bc_counter_addr = NULL; 2461 juint bc_counter = 0; 2462 // Look for an unused counter, or an exact match to this BC. 2463 if (bc != Bytecodes::_illegal) { 2464 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2465 juint* counter_addr = &cases[bc_case]; 2466 juint counter = *counter_addr; 2467 if ((counter == 0 && bc_counter_addr == NULL) 2468 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2469 // this counter is either free or is already devoted to this BC 2470 bc_counter_addr = counter_addr; 2471 bc_counter = counter | bc; 2472 } 2473 } 2474 } 2475 if (bc_counter_addr == NULL) { 2476 // Overflow, or no given bytecode. 2477 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2478 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2479 } 2480 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2481 } 2482 2483 jint Deoptimization::total_deoptimization_count() { 2484 return _deoptimization_hist[Reason_none][0][0]; 2485 } 2486 2487 void Deoptimization::print_statistics() { 2488 juint total = total_deoptimization_count(); 2489 juint account = total; 2490 if (total != 0) { 2491 ttyLocker ttyl; 2492 if (xtty != NULL) xtty->head("statistics type='deoptimization'"); 2493 tty->print_cr("Deoptimization traps recorded:"); 2494 #define PRINT_STAT_LINE(name, r) \ 2495 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 2496 PRINT_STAT_LINE("total", total); 2497 // For each non-zero entry in the histogram, print the reason, 2498 // the action, and (if specifically known) the type of bytecode. 2499 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2500 for (int action = 0; action < Action_LIMIT; action++) { 2501 juint* cases = _deoptimization_hist[reason][1+action]; 2502 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2503 juint counter = cases[bc_case]; 2504 if (counter != 0) { 2505 char name[1*K]; 2506 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 2507 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 2508 bc = Bytecodes::_illegal; 2509 sprintf(name, "%s/%s/%s", 2510 trap_reason_name(reason), 2511 trap_action_name(action), 2512 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 2513 juint r = counter >> LSB_BITS; 2514 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 2515 account -= r; 2516 } 2517 } 2518 } 2519 } 2520 if (account != 0) { 2521 PRINT_STAT_LINE("unaccounted", account); 2522 } 2523 #undef PRINT_STAT_LINE 2524 if (xtty != NULL) xtty->tail("statistics"); 2525 } 2526 } 2527 #else // COMPILER2_OR_JVMCI 2528 2529 2530 // Stubs for C1 only system. 2531 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2532 return false; 2533 } 2534 2535 const char* Deoptimization::trap_reason_name(int reason) { 2536 return "unknown"; 2537 } 2538 2539 void Deoptimization::print_statistics() { 2540 // no output 2541 } 2542 2543 void 2544 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2545 // no udpate 2546 } 2547 2548 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2549 return 0; 2550 } 2551 2552 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2553 Bytecodes::Code bc) { 2554 // no update 2555 } 2556 2557 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2558 int trap_state) { 2559 jio_snprintf(buf, buflen, "#%d", trap_state); 2560 return buf; 2561 } 2562 2563 #endif // COMPILER2_OR_JVMCI