1 /* 2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "jvm.h" 27 #include "aot/aotLoader.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/icBuffer.hpp" 34 #include "code/compiledMethod.inline.hpp" 35 #include "code/scopeDesc.hpp" 36 #include "code/vtableStubs.hpp" 37 #include "compiler/abstractCompiler.hpp" 38 #include "compiler/compileBroker.hpp" 39 #include "compiler/disassembler.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jfr/jfrEvents.hpp" 45 #include "logging/log.hpp" 46 #include "memory/metaspaceShared.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "oops/access.hpp" 51 #include "oops/fieldStreams.hpp" 52 #include "oops/klass.hpp" 53 #include "oops/method.inline.hpp" 54 #include "oops/objArrayKlass.hpp" 55 #include "oops/objArrayOop.inline.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "oops/valueKlass.inline.hpp" 58 #include "prims/forte.hpp" 59 #include "prims/jvmtiExport.hpp" 60 #include "prims/methodHandles.hpp" 61 #include "prims/nativeLookup.hpp" 62 #include "runtime/arguments.hpp" 63 #include "runtime/atomic.hpp" 64 #include "runtime/biasedLocking.hpp" 65 #include "runtime/compilationPolicy.hpp" 66 #include "runtime/frame.inline.hpp" 67 #include "runtime/handles.inline.hpp" 68 #include "runtime/init.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/java.hpp" 71 #include "runtime/javaCalls.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/stubRoutines.hpp" 74 #include "runtime/vframe.inline.hpp" 75 #include "runtime/vframeArray.hpp" 76 #include "utilities/copy.hpp" 77 #include "utilities/dtrace.hpp" 78 #include "utilities/events.hpp" 79 #include "utilities/hashtable.inline.hpp" 80 #include "utilities/macros.hpp" 81 #include "utilities/xmlstream.hpp" 82 #ifdef COMPILER1 83 #include "c1/c1_Runtime1.hpp" 84 #endif 85 86 // Shared stub locations 87 RuntimeStub* SharedRuntime::_wrong_method_blob; 88 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 89 RuntimeStub* SharedRuntime::_ic_miss_blob; 90 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 91 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 92 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 93 94 DeoptimizationBlob* SharedRuntime::_deopt_blob; 95 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 96 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 97 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 98 99 #ifdef COMPILER2 100 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 101 #endif // COMPILER2 102 103 104 //----------------------------generate_stubs----------------------------------- 105 void SharedRuntime::generate_stubs() { 106 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 107 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 108 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 109 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 110 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 111 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 112 113 #if COMPILER2_OR_JVMCI 114 // Vectors are generated only by C2 and JVMCI. 115 bool support_wide = is_wide_vector(MaxVectorSize); 116 if (support_wide) { 117 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 118 } 119 #endif // COMPILER2_OR_JVMCI 120 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 121 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 122 123 generate_deopt_blob(); 124 125 #ifdef COMPILER2 126 generate_uncommon_trap_blob(); 127 #endif // COMPILER2 128 } 129 130 #include <math.h> 131 132 // Implementation of SharedRuntime 133 134 #ifndef PRODUCT 135 // For statistics 136 int SharedRuntime::_ic_miss_ctr = 0; 137 int SharedRuntime::_wrong_method_ctr = 0; 138 int SharedRuntime::_resolve_static_ctr = 0; 139 int SharedRuntime::_resolve_virtual_ctr = 0; 140 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 141 int SharedRuntime::_implicit_null_throws = 0; 142 int SharedRuntime::_implicit_div0_throws = 0; 143 int SharedRuntime::_throw_null_ctr = 0; 144 145 int SharedRuntime::_nof_normal_calls = 0; 146 int SharedRuntime::_nof_optimized_calls = 0; 147 int SharedRuntime::_nof_inlined_calls = 0; 148 int SharedRuntime::_nof_megamorphic_calls = 0; 149 int SharedRuntime::_nof_static_calls = 0; 150 int SharedRuntime::_nof_inlined_static_calls = 0; 151 int SharedRuntime::_nof_interface_calls = 0; 152 int SharedRuntime::_nof_optimized_interface_calls = 0; 153 int SharedRuntime::_nof_inlined_interface_calls = 0; 154 int SharedRuntime::_nof_megamorphic_interface_calls = 0; 155 int SharedRuntime::_nof_removable_exceptions = 0; 156 157 int SharedRuntime::_new_instance_ctr=0; 158 int SharedRuntime::_new_array_ctr=0; 159 int SharedRuntime::_multi1_ctr=0; 160 int SharedRuntime::_multi2_ctr=0; 161 int SharedRuntime::_multi3_ctr=0; 162 int SharedRuntime::_multi4_ctr=0; 163 int SharedRuntime::_multi5_ctr=0; 164 int SharedRuntime::_mon_enter_stub_ctr=0; 165 int SharedRuntime::_mon_exit_stub_ctr=0; 166 int SharedRuntime::_mon_enter_ctr=0; 167 int SharedRuntime::_mon_exit_ctr=0; 168 int SharedRuntime::_partial_subtype_ctr=0; 169 int SharedRuntime::_jbyte_array_copy_ctr=0; 170 int SharedRuntime::_jshort_array_copy_ctr=0; 171 int SharedRuntime::_jint_array_copy_ctr=0; 172 int SharedRuntime::_jlong_array_copy_ctr=0; 173 int SharedRuntime::_oop_array_copy_ctr=0; 174 int SharedRuntime::_checkcast_array_copy_ctr=0; 175 int SharedRuntime::_unsafe_array_copy_ctr=0; 176 int SharedRuntime::_generic_array_copy_ctr=0; 177 int SharedRuntime::_slow_array_copy_ctr=0; 178 int SharedRuntime::_find_handler_ctr=0; 179 int SharedRuntime::_rethrow_ctr=0; 180 181 int SharedRuntime::_ICmiss_index = 0; 182 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 184 185 186 void SharedRuntime::trace_ic_miss(address at) { 187 for (int i = 0; i < _ICmiss_index; i++) { 188 if (_ICmiss_at[i] == at) { 189 _ICmiss_count[i]++; 190 return; 191 } 192 } 193 int index = _ICmiss_index++; 194 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 195 _ICmiss_at[index] = at; 196 _ICmiss_count[index] = 1; 197 } 198 199 void SharedRuntime::print_ic_miss_histogram() { 200 if (ICMissHistogram) { 201 tty->print_cr("IC Miss Histogram:"); 202 int tot_misses = 0; 203 for (int i = 0; i < _ICmiss_index; i++) { 204 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 205 tot_misses += _ICmiss_count[i]; 206 } 207 tty->print_cr("Total IC misses: %7d", tot_misses); 208 } 209 } 210 #endif // PRODUCT 211 212 213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 214 return x * y; 215 JRT_END 216 217 218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 219 if (x == min_jlong && y == CONST64(-1)) { 220 return x; 221 } else { 222 return x / y; 223 } 224 JRT_END 225 226 227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 228 if (x == min_jlong && y == CONST64(-1)) { 229 return 0; 230 } else { 231 return x % y; 232 } 233 JRT_END 234 235 236 const juint float_sign_mask = 0x7FFFFFFF; 237 const juint float_infinity = 0x7F800000; 238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 239 const julong double_infinity = CONST64(0x7FF0000000000000); 240 241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 242 #ifdef _WIN64 243 // 64-bit Windows on amd64 returns the wrong values for 244 // infinity operands. 245 union { jfloat f; juint i; } xbits, ybits; 246 xbits.f = x; 247 ybits.f = y; 248 // x Mod Infinity == x unless x is infinity 249 if (((xbits.i & float_sign_mask) != float_infinity) && 250 ((ybits.i & float_sign_mask) == float_infinity) ) { 251 return x; 252 } 253 return ((jfloat)fmod_winx64((double)x, (double)y)); 254 #else 255 return ((jfloat)fmod((double)x,(double)y)); 256 #endif 257 JRT_END 258 259 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 261 #ifdef _WIN64 262 union { jdouble d; julong l; } xbits, ybits; 263 xbits.d = x; 264 ybits.d = y; 265 // x Mod Infinity == x unless x is infinity 266 if (((xbits.l & double_sign_mask) != double_infinity) && 267 ((ybits.l & double_sign_mask) == double_infinity) ) { 268 return x; 269 } 270 return ((jdouble)fmod_winx64((double)x, (double)y)); 271 #else 272 return ((jdouble)fmod((double)x,(double)y)); 273 #endif 274 JRT_END 275 276 #ifdef __SOFTFP__ 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 278 return x + y; 279 JRT_END 280 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 282 return x - y; 283 JRT_END 284 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 286 return x * y; 287 JRT_END 288 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 290 return x / y; 291 JRT_END 292 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 294 return x + y; 295 JRT_END 296 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 298 return x - y; 299 JRT_END 300 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 302 return x * y; 303 JRT_END 304 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 306 return x / y; 307 JRT_END 308 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 310 return (jfloat)x; 311 JRT_END 312 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 314 return (jdouble)x; 315 JRT_END 316 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 318 return (jdouble)x; 319 JRT_END 320 321 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 322 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 323 JRT_END 324 325 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 326 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 327 JRT_END 328 329 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 330 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 331 JRT_END 332 333 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 334 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 335 JRT_END 336 337 // Functions to return the opposite of the aeabi functions for nan. 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 339 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 340 JRT_END 341 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 343 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 344 JRT_END 345 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 347 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 348 JRT_END 349 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 351 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 352 JRT_END 353 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 355 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 356 JRT_END 357 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 359 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 360 JRT_END 361 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 363 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 364 JRT_END 365 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 367 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 368 JRT_END 369 370 // Intrinsics make gcc generate code for these. 371 float SharedRuntime::fneg(float f) { 372 return -f; 373 } 374 375 double SharedRuntime::dneg(double f) { 376 return -f; 377 } 378 379 #endif // __SOFTFP__ 380 381 #if defined(__SOFTFP__) || defined(E500V2) 382 // Intrinsics make gcc generate code for these. 383 double SharedRuntime::dabs(double f) { 384 return (f <= (double)0.0) ? (double)0.0 - f : f; 385 } 386 387 #endif 388 389 #if defined(__SOFTFP__) || defined(PPC) 390 double SharedRuntime::dsqrt(double f) { 391 return sqrt(f); 392 } 393 #endif 394 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 396 if (g_isnan(x)) 397 return 0; 398 if (x >= (jfloat) max_jint) 399 return max_jint; 400 if (x <= (jfloat) min_jint) 401 return min_jint; 402 return (jint) x; 403 JRT_END 404 405 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 407 if (g_isnan(x)) 408 return 0; 409 if (x >= (jfloat) max_jlong) 410 return max_jlong; 411 if (x <= (jfloat) min_jlong) 412 return min_jlong; 413 return (jlong) x; 414 JRT_END 415 416 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 418 if (g_isnan(x)) 419 return 0; 420 if (x >= (jdouble) max_jint) 421 return max_jint; 422 if (x <= (jdouble) min_jint) 423 return min_jint; 424 return (jint) x; 425 JRT_END 426 427 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 429 if (g_isnan(x)) 430 return 0; 431 if (x >= (jdouble) max_jlong) 432 return max_jlong; 433 if (x <= (jdouble) min_jlong) 434 return min_jlong; 435 return (jlong) x; 436 JRT_END 437 438 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 440 return (jfloat)x; 441 JRT_END 442 443 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 445 return (jfloat)x; 446 JRT_END 447 448 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 450 return (jdouble)x; 451 JRT_END 452 453 // Exception handling across interpreter/compiler boundaries 454 // 455 // exception_handler_for_return_address(...) returns the continuation address. 456 // The continuation address is the entry point of the exception handler of the 457 // previous frame depending on the return address. 458 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { 460 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 461 assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 462 463 // Reset method handle flag. 464 thread->set_is_method_handle_return(false); 465 466 #if INCLUDE_JVMCI 467 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 468 // and other exception handler continuations do not read it 469 thread->set_exception_pc(NULL); 470 #endif // INCLUDE_JVMCI 471 472 // The fastest case first 473 CodeBlob* blob = CodeCache::find_blob(return_address); 474 CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL; 475 if (nm != NULL) { 476 // Set flag if return address is a method handle call site. 477 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 478 // native nmethods don't have exception handlers 479 assert(!nm->is_native_method(), "no exception handler"); 480 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 481 if (nm->is_deopt_pc(return_address)) { 482 // If we come here because of a stack overflow, the stack may be 483 // unguarded. Reguard the stack otherwise if we return to the 484 // deopt blob and the stack bang causes a stack overflow we 485 // crash. 486 bool guard_pages_enabled = thread->stack_guards_enabled(); 487 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); 488 if (thread->reserved_stack_activation() != thread->stack_base()) { 489 thread->set_reserved_stack_activation(thread->stack_base()); 490 } 491 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 492 return SharedRuntime::deopt_blob()->unpack_with_exception(); 493 } else { 494 return nm->exception_begin(); 495 } 496 } 497 498 // Entry code 499 if (StubRoutines::returns_to_call_stub(return_address)) { 500 return StubRoutines::catch_exception_entry(); 501 } 502 // Interpreted code 503 if (Interpreter::contains(return_address)) { 504 return Interpreter::rethrow_exception_entry(); 505 } 506 507 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); 508 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); 509 510 #ifndef PRODUCT 511 { ResourceMark rm; 512 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 513 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 514 tty->print_cr("b) other problem"); 515 } 516 #endif // PRODUCT 517 518 ShouldNotReachHere(); 519 return NULL; 520 } 521 522 523 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) 524 return raw_exception_handler_for_return_address(thread, return_address); 525 JRT_END 526 527 528 address SharedRuntime::get_poll_stub(address pc) { 529 address stub; 530 // Look up the code blob 531 CodeBlob *cb = CodeCache::find_blob(pc); 532 533 // Should be an nmethod 534 guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod"); 535 536 // Look up the relocation information 537 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc), 538 "safepoint polling: type must be poll"); 539 540 #ifdef ASSERT 541 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 542 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 543 Disassembler::decode(cb); 544 fatal("Only polling locations are used for safepoint"); 545 } 546 #endif 547 548 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc); 549 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors(); 550 if (at_poll_return) { 551 assert(SharedRuntime::polling_page_return_handler_blob() != NULL, 552 "polling page return stub not created yet"); 553 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 554 } else if (has_wide_vectors) { 555 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL, 556 "polling page vectors safepoint stub not created yet"); 557 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 558 } else { 559 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, 560 "polling page safepoint stub not created yet"); 561 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 562 } 563 log_debug(safepoint)("... found polling page %s exception at pc = " 564 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 565 at_poll_return ? "return" : "loop", 566 (intptr_t)pc, (intptr_t)stub); 567 return stub; 568 } 569 570 571 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { 572 assert(caller.is_interpreted_frame(), ""); 573 int args_size = ArgumentSizeComputer(sig).size() + 1; 574 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); 575 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1)); 576 assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop"); 577 return result; 578 } 579 580 581 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { 582 if (JvmtiExport::can_post_on_exceptions()) { 583 vframeStream vfst(thread, true); 584 methodHandle method = methodHandle(thread, vfst.method()); 585 address bcp = method()->bcp_from(vfst.bci()); 586 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); 587 } 588 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); 589 } 590 591 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { 592 Handle h_exception = Exceptions::new_exception(thread, name, message); 593 throw_and_post_jvmti_exception(thread, h_exception); 594 } 595 596 // The interpreter code to call this tracing function is only 597 // called/generated when UL is on for redefine, class and has the right level 598 // and tags. Since obsolete methods are never compiled, we don't have 599 // to modify the compilers to generate calls to this function. 600 // 601 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 602 JavaThread* thread, Method* method)) 603 if (method->is_obsolete()) { 604 // We are calling an obsolete method, but this is not necessarily 605 // an error. Our method could have been redefined just after we 606 // fetched the Method* from the constant pool. 607 ResourceMark rm; 608 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 609 } 610 return 0; 611 JRT_END 612 613 // ret_pc points into caller; we are returning caller's exception handler 614 // for given exception 615 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception, 616 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 617 assert(cm != NULL, "must exist"); 618 ResourceMark rm; 619 620 #if INCLUDE_JVMCI 621 if (cm->is_compiled_by_jvmci()) { 622 // lookup exception handler for this pc 623 int catch_pco = ret_pc - cm->code_begin(); 624 ExceptionHandlerTable table(cm); 625 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 626 if (t != NULL) { 627 return cm->code_begin() + t->pco(); 628 } else { 629 return Deoptimization::deoptimize_for_missing_exception_handler(cm); 630 } 631 } 632 #endif // INCLUDE_JVMCI 633 634 nmethod* nm = cm->as_nmethod(); 635 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 636 // determine handler bci, if any 637 EXCEPTION_MARK; 638 639 int handler_bci = -1; 640 int scope_depth = 0; 641 if (!force_unwind) { 642 int bci = sd->bci(); 643 bool recursive_exception = false; 644 do { 645 bool skip_scope_increment = false; 646 // exception handler lookup 647 Klass* ek = exception->klass(); 648 methodHandle mh(THREAD, sd->method()); 649 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 650 if (HAS_PENDING_EXCEPTION) { 651 recursive_exception = true; 652 // We threw an exception while trying to find the exception handler. 653 // Transfer the new exception to the exception handle which will 654 // be set into thread local storage, and do another lookup for an 655 // exception handler for this exception, this time starting at the 656 // BCI of the exception handler which caused the exception to be 657 // thrown (bugs 4307310 and 4546590). Set "exception" reference 658 // argument to ensure that the correct exception is thrown (4870175). 659 recursive_exception_occurred = true; 660 exception = Handle(THREAD, PENDING_EXCEPTION); 661 CLEAR_PENDING_EXCEPTION; 662 if (handler_bci >= 0) { 663 bci = handler_bci; 664 handler_bci = -1; 665 skip_scope_increment = true; 666 } 667 } 668 else { 669 recursive_exception = false; 670 } 671 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 672 sd = sd->sender(); 673 if (sd != NULL) { 674 bci = sd->bci(); 675 } 676 ++scope_depth; 677 } 678 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); 679 } 680 681 // found handling method => lookup exception handler 682 int catch_pco = ret_pc - nm->code_begin(); 683 684 ExceptionHandlerTable table(nm); 685 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 686 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { 687 // Allow abbreviated catch tables. The idea is to allow a method 688 // to materialize its exceptions without committing to the exact 689 // routing of exceptions. In particular this is needed for adding 690 // a synthetic handler to unlock monitors when inlining 691 // synchronized methods since the unlock path isn't represented in 692 // the bytecodes. 693 t = table.entry_for(catch_pco, -1, 0); 694 } 695 696 #ifdef COMPILER1 697 if (t == NULL && nm->is_compiled_by_c1()) { 698 assert(nm->unwind_handler_begin() != NULL, ""); 699 return nm->unwind_handler_begin(); 700 } 701 #endif 702 703 if (t == NULL) { 704 ttyLocker ttyl; 705 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci); 706 tty->print_cr(" Exception:"); 707 exception->print(); 708 tty->cr(); 709 tty->print_cr(" Compiled exception table :"); 710 table.print(); 711 nm->print_code(); 712 guarantee(false, "missing exception handler"); 713 return NULL; 714 } 715 716 return nm->code_begin() + t->pco(); 717 } 718 719 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) 720 // These errors occur only at call sites 721 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); 722 JRT_END 723 724 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 725 // These errors occur only at call sites 726 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 727 JRT_END 728 729 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) 730 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 731 JRT_END 732 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) 734 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 735 JRT_END 736 737 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) 738 // This entry point is effectively only used for NullPointerExceptions which occur at inline 739 // cache sites (when the callee activation is not yet set up) so we are at a call site 740 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 741 JRT_END 742 743 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) 744 throw_StackOverflowError_common(thread, false); 745 JRT_END 746 747 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread)) 748 throw_StackOverflowError_common(thread, true); 749 JRT_END 750 751 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) { 752 // We avoid using the normal exception construction in this case because 753 // it performs an upcall to Java, and we're already out of stack space. 754 Thread* THREAD = thread; 755 Klass* k = SystemDictionary::StackOverflowError_klass(); 756 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 757 if (delayed) { 758 java_lang_Throwable::set_message(exception_oop, 759 Universe::delayed_stack_overflow_error_message()); 760 } 761 Handle exception (thread, exception_oop); 762 if (StackTraceInThrowable) { 763 java_lang_Throwable::fill_in_stack_trace(exception); 764 } 765 // Increment counter for hs_err file reporting 766 Atomic::inc(&Exceptions::_stack_overflow_errors); 767 throw_and_post_jvmti_exception(thread, exception); 768 } 769 770 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, 771 address pc, 772 ImplicitExceptionKind exception_kind) 773 { 774 address target_pc = NULL; 775 776 if (Interpreter::contains(pc)) { 777 #ifdef CC_INTERP 778 // C++ interpreter doesn't throw implicit exceptions 779 ShouldNotReachHere(); 780 #else 781 switch (exception_kind) { 782 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 783 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 784 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 785 default: ShouldNotReachHere(); 786 } 787 #endif // !CC_INTERP 788 } else { 789 switch (exception_kind) { 790 case STACK_OVERFLOW: { 791 // Stack overflow only occurs upon frame setup; the callee is 792 // going to be unwound. Dispatch to a shared runtime stub 793 // which will cause the StackOverflowError to be fabricated 794 // and processed. 795 // Stack overflow should never occur during deoptimization: 796 // the compiled method bangs the stack by as much as the 797 // interpreter would need in case of a deoptimization. The 798 // deoptimization blob and uncommon trap blob bang the stack 799 // in a debug VM to verify the correctness of the compiled 800 // method stack banging. 801 assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap"); 802 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 803 return StubRoutines::throw_StackOverflowError_entry(); 804 } 805 806 case IMPLICIT_NULL: { 807 if (VtableStubs::contains(pc)) { 808 // We haven't yet entered the callee frame. Fabricate an 809 // exception and begin dispatching it in the caller. Since 810 // the caller was at a call site, it's safe to destroy all 811 // caller-saved registers, as these entry points do. 812 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 813 814 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. 815 if (vt_stub == NULL) return NULL; 816 817 if (vt_stub->is_abstract_method_error(pc)) { 818 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 819 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 820 // Instead of throwing the abstract method error here directly, we re-resolve 821 // and will throw the AbstractMethodError during resolve. As a result, we'll 822 // get a more detailed error message. 823 return SharedRuntime::get_handle_wrong_method_stub(); 824 } else { 825 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 826 // Assert that the signal comes from the expected location in stub code. 827 assert(vt_stub->is_null_pointer_exception(pc), 828 "obtained signal from unexpected location in stub code"); 829 return StubRoutines::throw_NullPointerException_at_call_entry(); 830 } 831 } else { 832 CodeBlob* cb = CodeCache::find_blob(pc); 833 834 // If code blob is NULL, then return NULL to signal handler to report the SEGV error. 835 if (cb == NULL) return NULL; 836 837 // Exception happened in CodeCache. Must be either: 838 // 1. Inline-cache check in C2I handler blob, 839 // 2. Inline-cache check in nmethod, or 840 // 3. Implicit null exception in nmethod 841 842 if (!cb->is_compiled()) { 843 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 844 if (!is_in_blob) { 845 // Allow normal crash reporting to handle this 846 return NULL; 847 } 848 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 849 // There is no handler here, so we will simply unwind. 850 return StubRoutines::throw_NullPointerException_at_call_entry(); 851 } 852 853 // Otherwise, it's a compiled method. Consult its exception handlers. 854 CompiledMethod* cm = (CompiledMethod*)cb; 855 if (cm->inlinecache_check_contains(pc)) { 856 // exception happened inside inline-cache check code 857 // => the nmethod is not yet active (i.e., the frame 858 // is not set up yet) => use return address pushed by 859 // caller => don't push another return address 860 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 861 return StubRoutines::throw_NullPointerException_at_call_entry(); 862 } 863 864 if (cm->method()->is_method_handle_intrinsic()) { 865 // exception happened inside MH dispatch code, similar to a vtable stub 866 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 867 return StubRoutines::throw_NullPointerException_at_call_entry(); 868 } 869 870 #ifndef PRODUCT 871 _implicit_null_throws++; 872 #endif 873 target_pc = cm->continuation_for_implicit_null_exception(pc); 874 // If there's an unexpected fault, target_pc might be NULL, 875 // in which case we want to fall through into the normal 876 // error handling code. 877 } 878 879 break; // fall through 880 } 881 882 883 case IMPLICIT_DIVIDE_BY_ZERO: { 884 CompiledMethod* cm = CodeCache::find_compiled(pc); 885 guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions"); 886 #ifndef PRODUCT 887 _implicit_div0_throws++; 888 #endif 889 target_pc = cm->continuation_for_implicit_div0_exception(pc); 890 // If there's an unexpected fault, target_pc might be NULL, 891 // in which case we want to fall through into the normal 892 // error handling code. 893 break; // fall through 894 } 895 896 default: ShouldNotReachHere(); 897 } 898 899 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 900 901 if (exception_kind == IMPLICIT_NULL) { 902 #ifndef PRODUCT 903 // for AbortVMOnException flag 904 Exceptions::debug_check_abort("java.lang.NullPointerException"); 905 #endif //PRODUCT 906 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 907 } else { 908 #ifndef PRODUCT 909 // for AbortVMOnException flag 910 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 911 #endif //PRODUCT 912 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 913 } 914 return target_pc; 915 } 916 917 ShouldNotReachHere(); 918 return NULL; 919 } 920 921 922 /** 923 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 924 * installed in the native function entry of all native Java methods before 925 * they get linked to their actual native methods. 926 * 927 * \note 928 * This method actually never gets called! The reason is because 929 * the interpreter's native entries call NativeLookup::lookup() which 930 * throws the exception when the lookup fails. The exception is then 931 * caught and forwarded on the return from NativeLookup::lookup() call 932 * before the call to the native function. This might change in the future. 933 */ 934 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 935 { 936 // We return a bad value here to make sure that the exception is 937 // forwarded before we look at the return value. 938 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 939 } 940 JNI_END 941 942 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 943 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 944 } 945 946 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 947 #if INCLUDE_JVMCI 948 if (!obj->klass()->has_finalizer()) { 949 return; 950 } 951 #endif // INCLUDE_JVMCI 952 assert(oopDesc::is_oop(obj), "must be a valid oop"); 953 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 954 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 955 JRT_END 956 957 958 jlong SharedRuntime::get_java_tid(Thread* thread) { 959 if (thread != NULL) { 960 if (thread->is_Java_thread()) { 961 oop obj = ((JavaThread*)thread)->threadObj(); 962 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); 963 } 964 } 965 return 0; 966 } 967 968 /** 969 * This function ought to be a void function, but cannot be because 970 * it gets turned into a tail-call on sparc, which runs into dtrace bug 971 * 6254741. Once that is fixed we can remove the dummy return value. 972 */ 973 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) { 974 return dtrace_object_alloc_base(Thread::current(), o, size); 975 } 976 977 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) { 978 assert(DTraceAllocProbes, "wrong call"); 979 Klass* klass = o->klass(); 980 Symbol* name = klass->name(); 981 HOTSPOT_OBJECT_ALLOC( 982 get_java_tid(thread), 983 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 984 return 0; 985 } 986 987 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 988 JavaThread* thread, Method* method)) 989 assert(DTraceMethodProbes, "wrong call"); 990 Symbol* kname = method->klass_name(); 991 Symbol* name = method->name(); 992 Symbol* sig = method->signature(); 993 HOTSPOT_METHOD_ENTRY( 994 get_java_tid(thread), 995 (char *) kname->bytes(), kname->utf8_length(), 996 (char *) name->bytes(), name->utf8_length(), 997 (char *) sig->bytes(), sig->utf8_length()); 998 return 0; 999 JRT_END 1000 1001 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1002 JavaThread* thread, Method* method)) 1003 assert(DTraceMethodProbes, "wrong call"); 1004 Symbol* kname = method->klass_name(); 1005 Symbol* name = method->name(); 1006 Symbol* sig = method->signature(); 1007 HOTSPOT_METHOD_RETURN( 1008 get_java_tid(thread), 1009 (char *) kname->bytes(), kname->utf8_length(), 1010 (char *) name->bytes(), name->utf8_length(), 1011 (char *) sig->bytes(), sig->utf8_length()); 1012 return 0; 1013 JRT_END 1014 1015 1016 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1017 // for a call current in progress, i.e., arguments has been pushed on stack 1018 // put callee has not been invoked yet. Used by: resolve virtual/static, 1019 // vtable updates, etc. Caller frame must be compiled. 1020 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1021 ResourceMark rm(THREAD); 1022 1023 // last java frame on stack (which includes native call frames) 1024 vframeStream vfst(thread, true); // Do not skip and javaCalls 1025 1026 return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD); 1027 } 1028 1029 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) { 1030 CompiledMethod* caller = vfst.nm(); 1031 1032 nmethodLocker caller_lock(caller); 1033 1034 address pc = vfst.frame_pc(); 1035 { // Get call instruction under lock because another thread may be busy patching it. 1036 CompiledICLocker ic_locker(caller); 1037 return caller->attached_method_before_pc(pc); 1038 } 1039 return NULL; 1040 } 1041 1042 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1043 // for a call current in progress, i.e., arguments has been pushed on stack 1044 // but callee has not been invoked yet. Caller frame must be compiled. 1045 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, 1046 vframeStream& vfst, 1047 Bytecodes::Code& bc, 1048 CallInfo& callinfo, TRAPS) { 1049 Handle receiver; 1050 Handle nullHandle; //create a handy null handle for exception returns 1051 1052 assert(!vfst.at_end(), "Java frame must exist"); 1053 1054 // Find caller and bci from vframe 1055 methodHandle caller(THREAD, vfst.method()); 1056 int bci = vfst.bci(); 1057 1058 Bytecode_invoke bytecode(caller, bci); 1059 int bytecode_index = bytecode.index(); 1060 bc = bytecode.invoke_code(); 1061 1062 methodHandle attached_method = extract_attached_method(vfst); 1063 if (attached_method.not_null()) { 1064 methodHandle callee = bytecode.static_target(CHECK_NH); 1065 vmIntrinsics::ID id = callee->intrinsic_id(); 1066 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1067 // it attaches statically resolved method to the call site. 1068 if (MethodHandles::is_signature_polymorphic(id) && 1069 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1070 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1071 1072 // Adjust invocation mode according to the attached method. 1073 switch (bc) { 1074 case Bytecodes::_invokevirtual: 1075 if (attached_method->method_holder()->is_interface()) { 1076 bc = Bytecodes::_invokeinterface; 1077 } 1078 break; 1079 case Bytecodes::_invokeinterface: 1080 if (!attached_method->method_holder()->is_interface()) { 1081 bc = Bytecodes::_invokevirtual; 1082 } 1083 break; 1084 case Bytecodes::_invokehandle: 1085 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1086 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1087 : Bytecodes::_invokevirtual; 1088 } 1089 break; 1090 default: 1091 break; 1092 } 1093 } else { 1094 assert(attached_method->has_scalarized_args(), "invalid use of attached method"); 1095 if (!attached_method->method_holder()->is_value()) { 1096 // Ignore the attached method in this case to not confuse below code 1097 attached_method = NULL; 1098 } 1099 } 1100 } 1101 1102 assert(bc != Bytecodes::_illegal, "not initialized"); 1103 1104 bool has_receiver = bc != Bytecodes::_invokestatic && 1105 bc != Bytecodes::_invokedynamic && 1106 bc != Bytecodes::_invokehandle; 1107 1108 // Find receiver for non-static call 1109 if (has_receiver) { 1110 // This register map must be update since we need to find the receiver for 1111 // compiled frames. The receiver might be in a register. 1112 RegisterMap reg_map2(thread); 1113 frame stubFrame = thread->last_frame(); 1114 // Caller-frame is a compiled frame 1115 frame callerFrame = stubFrame.sender(®_map2); 1116 bool caller_is_c1 = false; 1117 1118 if (callerFrame.is_compiled_frame() && !callerFrame.is_deoptimized_frame()) { 1119 caller_is_c1 = callerFrame.cb()->is_compiled_by_c1(); 1120 } 1121 1122 methodHandle callee = attached_method; 1123 if (callee.is_null()) { 1124 callee = bytecode.static_target(CHECK_NH); 1125 if (callee.is_null()) { 1126 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1127 } 1128 } 1129 if (!caller_is_c1 && callee->has_scalarized_args() && callee->method_holder()->is_value()) { 1130 // If the receiver is a value type that is passed as fields, no oop is available. 1131 // Resolve the call without receiver null checking. 1132 assert(!attached_method.is_null(), "must have attached method"); 1133 if (bc == Bytecodes::_invokevirtual) { 1134 LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature()); 1135 LinkResolver::resolve_virtual_call(callinfo, receiver, callee->method_holder(), link_info, /*check_null_and_abstract=*/ false, CHECK_NH); 1136 } else { 1137 assert(bc == Bytecodes::_invokeinterface, "anything else?"); 1138 LinkInfo link_info(constantPoolHandle(THREAD, caller->constants()), bytecode_index, CHECK_NH); 1139 LinkResolver::resolve_interface_call(callinfo, receiver, callee->method_holder(), link_info, /*check_null_and_abstract=*/ false, CHECK_NH); 1140 } 1141 return receiver; // is null 1142 } else { 1143 // Retrieve from a compiled argument list 1144 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); 1145 1146 if (receiver.is_null()) { 1147 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1148 } 1149 } 1150 } 1151 1152 // Resolve method 1153 if (attached_method.not_null()) { 1154 // Parameterized by attached method. 1155 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1156 } else { 1157 // Parameterized by bytecode. 1158 constantPoolHandle constants(THREAD, caller->constants()); 1159 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1160 } 1161 1162 #ifdef ASSERT 1163 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1164 if (has_receiver) { 1165 assert(receiver.not_null(), "should have thrown exception"); 1166 Klass* receiver_klass = receiver->klass(); 1167 Klass* rk = NULL; 1168 if (attached_method.not_null()) { 1169 // In case there's resolved method attached, use its holder during the check. 1170 rk = attached_method->method_holder(); 1171 } else { 1172 // Klass is already loaded. 1173 constantPoolHandle constants(THREAD, caller->constants()); 1174 rk = constants->klass_ref_at(bytecode_index, CHECK_NH); 1175 } 1176 Klass* static_receiver_klass = rk; 1177 methodHandle callee = callinfo.selected_method(); 1178 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1179 "actual receiver must be subclass of static receiver klass"); 1180 if (receiver_klass->is_instance_klass()) { 1181 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1182 tty->print_cr("ERROR: Klass not yet initialized!!"); 1183 receiver_klass->print(); 1184 } 1185 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1186 } 1187 } 1188 #endif 1189 1190 return receiver; 1191 } 1192 1193 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { 1194 ResourceMark rm(THREAD); 1195 // We need first to check if any Java activations (compiled, interpreted) 1196 // exist on the stack since last JavaCall. If not, we need 1197 // to get the target method from the JavaCall wrapper. 1198 vframeStream vfst(thread, true); // Do not skip any javaCalls 1199 methodHandle callee_method; 1200 if (vfst.at_end()) { 1201 // No Java frames were found on stack since we did the JavaCall. 1202 // Hence the stack can only contain an entry_frame. We need to 1203 // find the target method from the stub frame. 1204 RegisterMap reg_map(thread, false); 1205 frame fr = thread->last_frame(); 1206 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1207 fr = fr.sender(®_map); 1208 assert(fr.is_entry_frame(), "must be"); 1209 // fr is now pointing to the entry frame. 1210 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); 1211 } else { 1212 Bytecodes::Code bc; 1213 CallInfo callinfo; 1214 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); 1215 callee_method = callinfo.selected_method(); 1216 } 1217 assert(callee_method()->is_method(), "must be"); 1218 return callee_method; 1219 } 1220 1221 // Resolves a call. 1222 methodHandle SharedRuntime::resolve_helper(JavaThread *thread, 1223 bool is_virtual, 1224 bool is_optimized, 1225 bool* caller_is_c1, TRAPS) { 1226 methodHandle callee_method; 1227 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, caller_is_c1, THREAD); 1228 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1229 int retry_count = 0; 1230 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1231 callee_method->method_holder() != SystemDictionary::Object_klass()) { 1232 // If has a pending exception then there is no need to re-try to 1233 // resolve this method. 1234 // If the method has been redefined, we need to try again. 1235 // Hack: we have no way to update the vtables of arrays, so don't 1236 // require that java.lang.Object has been updated. 1237 1238 // It is very unlikely that method is redefined more than 100 times 1239 // in the middle of resolve. If it is looping here more than 100 times 1240 // means then there could be a bug here. 1241 guarantee((retry_count++ < 100), 1242 "Could not resolve to latest version of redefined method"); 1243 // method is redefined in the middle of resolve so re-try. 1244 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, caller_is_c1, THREAD); 1245 } 1246 } 1247 return callee_method; 1248 } 1249 1250 // This fails if resolution required refilling of IC stubs 1251 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame, 1252 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized, 1253 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) { 1254 StaticCallInfo static_call_info; 1255 CompiledICInfo virtual_call_info; 1256 1257 // Make sure the callee nmethod does not get deoptimized and removed before 1258 // we are done patching the code. 1259 CompiledMethod* callee = callee_method->code(); 1260 1261 if (callee != NULL) { 1262 assert(callee->is_compiled(), "must be nmethod for patching"); 1263 } 1264 1265 if (callee != NULL && !callee->is_in_use()) { 1266 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded. 1267 callee = NULL; 1268 } 1269 nmethodLocker nl_callee(callee); 1270 #ifdef ASSERT 1271 address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below 1272 #endif 1273 1274 bool is_nmethod = caller_nm->is_nmethod(); 1275 bool caller_is_c1 = caller_nm->is_compiled_by_c1(); 1276 1277 if (is_virtual) { 1278 Klass* receiver_klass = NULL; 1279 if (ValueTypePassFieldsAsArgs && !caller_is_c1 && callee_method->method_holder()->is_value()) { 1280 // If the receiver is a value type that is passed as fields, no oop is available 1281 receiver_klass = callee_method->method_holder(); 1282 } else { 1283 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check"); 1284 receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass(); 1285 } 1286 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1287 CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass, 1288 is_optimized, static_bound, is_nmethod, caller_is_c1, virtual_call_info, 1289 CHECK_false); 1290 } else { 1291 // static call 1292 CompiledStaticCall::compute_entry(callee_method, caller_nm, static_call_info); 1293 } 1294 1295 // grab lock, check for deoptimization and potentially patch caller 1296 { 1297 CompiledICLocker ml(caller_nm); 1298 1299 // Lock blocks for safepoint during which both nmethods can change state. 1300 1301 // Now that we are ready to patch if the Method* was redefined then 1302 // don't update call site and let the caller retry. 1303 // Don't update call site if callee nmethod was unloaded or deoptimized. 1304 // Don't update call site if callee nmethod was replaced by an other nmethod 1305 // which may happen when multiply alive nmethod (tiered compilation) 1306 // will be supported. 1307 if (!callee_method->is_old() && 1308 (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) { 1309 #ifdef ASSERT 1310 // We must not try to patch to jump to an already unloaded method. 1311 if (dest_entry_point != 0) { 1312 CodeBlob* cb = CodeCache::find_blob(dest_entry_point); 1313 assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee), 1314 "should not call unloaded nmethod"); 1315 } 1316 #endif 1317 if (is_virtual) { 1318 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1319 if (inline_cache->is_clean()) { 1320 if (!inline_cache->set_to_monomorphic(virtual_call_info)) { 1321 return false; 1322 } 1323 } 1324 } else { 1325 if (VM_Version::supports_fast_class_init_checks() && 1326 invoke_code == Bytecodes::_invokestatic && 1327 callee_method->needs_clinit_barrier() && 1328 callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) { 1329 return true; // skip patching for JVMCI or AOT code 1330 } 1331 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc()); 1332 if (ssc->is_clean()) ssc->set(static_call_info); 1333 } 1334 } 1335 } // unlock CompiledICLocker 1336 return true; 1337 } 1338 1339 // Resolves a call. The compilers generate code for calls that go here 1340 // and are patched with the real destination of the call. 1341 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, 1342 bool is_virtual, 1343 bool is_optimized, 1344 bool* caller_is_c1, TRAPS) { 1345 1346 ResourceMark rm(thread); 1347 RegisterMap cbl_map(thread, false); 1348 frame caller_frame = thread->last_frame().sender(&cbl_map); 1349 1350 CodeBlob* caller_cb = caller_frame.cb(); 1351 guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method"); 1352 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null(); 1353 *caller_is_c1 = caller_nm->is_compiled_by_c1(); 1354 1355 // make sure caller is not getting deoptimized 1356 // and removed before we are done with it. 1357 // CLEANUP - with lazy deopt shouldn't need this lock 1358 nmethodLocker caller_lock(caller_nm); 1359 1360 if (!is_virtual && !is_optimized) { 1361 SimpleScopeDesc ssd(caller_nm, caller_frame.pc()); 1362 Bytecode bc(ssd.method(), ssd.method()->bcp_from(ssd.bci())); 1363 // Substitutability test implementation piggy backs on static call resolution 1364 if (bc.code() == Bytecodes::_if_acmpeq || bc.code() == Bytecodes::_if_acmpne) { 1365 SystemDictionary::ValueBootstrapMethods_klass()->initialize(CHECK_NULL); 1366 return SystemDictionary::ValueBootstrapMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature()); 1367 } 1368 } 1369 1370 // determine call info & receiver 1371 // note: a) receiver is NULL for static calls 1372 // b) an exception is thrown if receiver is NULL for non-static calls 1373 CallInfo call_info; 1374 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1375 Handle receiver = find_callee_info(thread, invoke_code, 1376 call_info, CHECK_(methodHandle())); 1377 methodHandle callee_method = call_info.selected_method(); 1378 1379 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1380 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1381 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1382 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1383 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1384 1385 assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive"); 1386 1387 #ifndef PRODUCT 1388 // tracing/debugging/statistics 1389 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1390 (is_virtual) ? (&_resolve_virtual_ctr) : 1391 (&_resolve_static_ctr); 1392 Atomic::inc(addr); 1393 1394 if (TraceCallFixup) { 1395 ResourceMark rm(thread); 1396 tty->print("resolving %s%s (%s) call to", 1397 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1398 Bytecodes::name(invoke_code)); 1399 callee_method->print_short_name(tty); 1400 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1401 p2i(caller_frame.pc()), p2i(callee_method->code())); 1402 } 1403 #endif 1404 1405 if (invoke_code == Bytecodes::_invokestatic) { 1406 assert(callee_method->method_holder()->is_initialized() || 1407 callee_method->method_holder()->is_reentrant_initialization(thread), 1408 "invalid class initialization state for invoke_static"); 1409 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1410 // In order to keep class initialization check, do not patch call 1411 // site for static call when the class is not fully initialized. 1412 // Proper check is enforced by call site re-resolution on every invocation. 1413 // 1414 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1415 // explicit class initialization check is put in nmethod entry (VEP). 1416 assert(callee_method->method_holder()->is_linked(), "must be"); 1417 return callee_method; 1418 } 1419 } 1420 1421 // JSR 292 key invariant: 1422 // If the resolved method is a MethodHandle invoke target, the call 1423 // site must be a MethodHandle call site, because the lambda form might tail-call 1424 // leaving the stack in a state unknown to either caller or callee 1425 // TODO detune for now but we might need it again 1426 // assert(!callee_method->is_compiled_lambda_form() || 1427 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1428 1429 // Compute entry points. This might require generation of C2I converter 1430 // frames, so we cannot be holding any locks here. Furthermore, the 1431 // computation of the entry points is independent of patching the call. We 1432 // always return the entry-point, but we only patch the stub if the call has 1433 // not been deoptimized. Return values: For a virtual call this is an 1434 // (cached_oop, destination address) pair. For a static call/optimized 1435 // virtual this is just a destination address. 1436 1437 // Patching IC caches may fail if we run out if transition stubs. 1438 // We refill the ic stubs then and try again. 1439 for (;;) { 1440 ICRefillVerifier ic_refill_verifier; 1441 bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm, 1442 is_virtual, is_optimized, receiver, 1443 call_info, invoke_code, CHECK_(methodHandle())); 1444 if (successful) { 1445 return callee_method; 1446 } else { 1447 InlineCacheBuffer::refill_ic_stubs(); 1448 } 1449 } 1450 1451 } 1452 1453 1454 // Inline caches exist only in compiled code 1455 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) 1456 #ifdef ASSERT 1457 RegisterMap reg_map(thread, false); 1458 frame stub_frame = thread->last_frame(); 1459 assert(stub_frame.is_runtime_frame(), "sanity check"); 1460 frame caller_frame = stub_frame.sender(®_map); 1461 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); 1462 #endif /* ASSERT */ 1463 1464 methodHandle callee_method; 1465 bool is_optimized = false; 1466 bool caller_is_c1 = false; 1467 JRT_BLOCK 1468 callee_method = SharedRuntime::handle_ic_miss_helper(thread, is_optimized, caller_is_c1, CHECK_NULL); 1469 // Return Method* through TLS 1470 thread->set_vm_result_2(callee_method()); 1471 JRT_BLOCK_END 1472 // return compiled code entry point after potential safepoints 1473 return entry_for_handle_wrong_method(callee_method, false, is_optimized, caller_is_c1); 1474 JRT_END 1475 1476 1477 // Handle call site that has been made non-entrant 1478 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) 1479 // 6243940 We might end up in here if the callee is deoptimized 1480 // as we race to call it. We don't want to take a safepoint if 1481 // the caller was interpreted because the caller frame will look 1482 // interpreted to the stack walkers and arguments are now 1483 // "compiled" so it is much better to make this transition 1484 // invisible to the stack walking code. The i2c path will 1485 // place the callee method in the callee_target. It is stashed 1486 // there because if we try and find the callee by normal means a 1487 // safepoint is possible and have trouble gc'ing the compiled args. 1488 RegisterMap reg_map(thread, false); 1489 frame stub_frame = thread->last_frame(); 1490 assert(stub_frame.is_runtime_frame(), "sanity check"); 1491 frame caller_frame = stub_frame.sender(®_map); 1492 1493 if (caller_frame.is_interpreted_frame() || 1494 caller_frame.is_entry_frame()) { 1495 Method* callee = thread->callee_target(); 1496 guarantee(callee != NULL && callee->is_method(), "bad handshake"); 1497 thread->set_vm_result_2(callee); 1498 thread->set_callee_target(NULL); 1499 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1500 // Bypass class initialization checks in c2i when caller is in native. 1501 // JNI calls to static methods don't have class initialization checks. 1502 // Fast class initialization checks are present in c2i adapters and call into 1503 // SharedRuntime::handle_wrong_method() on the slow path. 1504 // 1505 // JVM upcalls may land here as well, but there's a proper check present in 1506 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1507 // so bypassing it in c2i adapter is benign. 1508 return callee->get_c2i_no_clinit_check_entry(); 1509 } else { 1510 return callee->get_c2i_entry(); 1511 } 1512 } 1513 1514 // Must be compiled to compiled path which is safe to stackwalk 1515 methodHandle callee_method; 1516 bool is_static_call = false; 1517 bool is_optimized = false; 1518 bool caller_is_c1 = false; 1519 JRT_BLOCK 1520 // Force resolving of caller (if we called from compiled frame) 1521 callee_method = SharedRuntime::reresolve_call_site(thread, is_static_call, is_optimized, caller_is_c1, CHECK_NULL); 1522 thread->set_vm_result_2(callee_method()); 1523 JRT_BLOCK_END 1524 // return compiled code entry point after potential safepoints 1525 return entry_for_handle_wrong_method(callee_method, is_static_call, is_optimized, caller_is_c1); 1526 JRT_END 1527 1528 // Handle abstract method call 1529 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread)) 1530 // Verbose error message for AbstractMethodError. 1531 // Get the called method from the invoke bytecode. 1532 vframeStream vfst(thread, true); 1533 assert(!vfst.at_end(), "Java frame must exist"); 1534 methodHandle caller(vfst.method()); 1535 Bytecode_invoke invoke(caller, vfst.bci()); 1536 DEBUG_ONLY( invoke.verify(); ) 1537 1538 // Find the compiled caller frame. 1539 RegisterMap reg_map(thread); 1540 frame stubFrame = thread->last_frame(); 1541 assert(stubFrame.is_runtime_frame(), "must be"); 1542 frame callerFrame = stubFrame.sender(®_map); 1543 assert(callerFrame.is_compiled_frame(), "must be"); 1544 1545 // Install exception and return forward entry. 1546 address res = StubRoutines::throw_AbstractMethodError_entry(); 1547 JRT_BLOCK 1548 methodHandle callee = invoke.static_target(thread); 1549 if (!callee.is_null()) { 1550 oop recv = callerFrame.retrieve_receiver(®_map); 1551 Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL; 1552 LinkResolver::throw_abstract_method_error(callee, recv_klass, thread); 1553 res = StubRoutines::forward_exception_entry(); 1554 } 1555 JRT_BLOCK_END 1556 return res; 1557 JRT_END 1558 1559 1560 // resolve a static call and patch code 1561 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) 1562 methodHandle callee_method; 1563 bool caller_is_c1; 1564 JRT_BLOCK 1565 callee_method = SharedRuntime::resolve_helper(thread, false, false, &caller_is_c1, CHECK_NULL); 1566 thread->set_vm_result_2(callee_method()); 1567 JRT_BLOCK_END 1568 // return compiled code entry point after potential safepoints 1569 address entry = caller_is_c1 ? 1570 callee_method->verified_value_code_entry() : callee_method->verified_code_entry(); 1571 assert(entry != NULL, "Jump to zero!"); 1572 return entry; 1573 JRT_END 1574 1575 1576 // resolve virtual call and update inline cache to monomorphic 1577 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) 1578 methodHandle callee_method; 1579 bool caller_is_c1; 1580 JRT_BLOCK 1581 callee_method = SharedRuntime::resolve_helper(thread, true, false, &caller_is_c1, CHECK_NULL); 1582 thread->set_vm_result_2(callee_method()); 1583 JRT_BLOCK_END 1584 // return compiled code entry point after potential safepoints 1585 address entry = caller_is_c1 ? 1586 callee_method->verified_value_code_entry() : callee_method->verified_value_ro_code_entry(); 1587 assert(entry != NULL, "Jump to zero!"); 1588 return entry; 1589 JRT_END 1590 1591 1592 // Resolve a virtual call that can be statically bound (e.g., always 1593 // monomorphic, so it has no inline cache). Patch code to resolved target. 1594 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) 1595 methodHandle callee_method; 1596 bool caller_is_c1; 1597 JRT_BLOCK 1598 callee_method = SharedRuntime::resolve_helper(thread, true, true, &caller_is_c1, CHECK_NULL); 1599 thread->set_vm_result_2(callee_method()); 1600 JRT_BLOCK_END 1601 // return compiled code entry point after potential safepoints 1602 address entry = caller_is_c1 ? 1603 callee_method->verified_value_code_entry() : callee_method->verified_code_entry(); 1604 assert(entry != NULL, "Jump to zero!"); 1605 return entry; 1606 JRT_END 1607 1608 // The handle_ic_miss_helper_internal function returns false if it failed due 1609 // to either running out of vtable stubs or ic stubs due to IC transitions 1610 // to transitional states. The needs_ic_stub_refill value will be set if 1611 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper 1612 // refills the IC stubs and tries again. 1613 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm, 1614 const frame& caller_frame, methodHandle callee_method, 1615 Bytecodes::Code bc, CallInfo& call_info, 1616 bool& needs_ic_stub_refill, bool& is_optimized, bool caller_is_c1, TRAPS) { 1617 CompiledICLocker ml(caller_nm); 1618 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1619 bool should_be_mono = false; 1620 if (inline_cache->is_optimized()) { 1621 if (TraceCallFixup) { 1622 ResourceMark rm(THREAD); 1623 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1624 callee_method->print_short_name(tty); 1625 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1626 } 1627 is_optimized = true; 1628 should_be_mono = true; 1629 } else if (inline_cache->is_icholder_call()) { 1630 CompiledICHolder* ic_oop = inline_cache->cached_icholder(); 1631 if (ic_oop != NULL) { 1632 if (!ic_oop->is_loader_alive()) { 1633 // Deferred IC cleaning due to concurrent class unloading 1634 if (!inline_cache->set_to_clean()) { 1635 needs_ic_stub_refill = true; 1636 return false; 1637 } 1638 } else if (receiver()->klass() == ic_oop->holder_klass()) { 1639 // This isn't a real miss. We must have seen that compiled code 1640 // is now available and we want the call site converted to a 1641 // monomorphic compiled call site. 1642 // We can't assert for callee_method->code() != NULL because it 1643 // could have been deoptimized in the meantime 1644 if (TraceCallFixup) { 1645 ResourceMark rm(THREAD); 1646 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1647 callee_method->print_short_name(tty); 1648 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1649 } 1650 should_be_mono = true; 1651 } 1652 } 1653 } 1654 1655 if (should_be_mono) { 1656 // We have a path that was monomorphic but was going interpreted 1657 // and now we have (or had) a compiled entry. We correct the IC 1658 // by using a new icBuffer. 1659 CompiledICInfo info; 1660 Klass* receiver_klass = receiver()->klass(); 1661 inline_cache->compute_monomorphic_entry(callee_method, 1662 receiver_klass, 1663 inline_cache->is_optimized(), 1664 false, caller_nm->is_nmethod(), 1665 caller_nm->is_compiled_by_c1(), 1666 info, CHECK_false); 1667 if (!inline_cache->set_to_monomorphic(info)) { 1668 needs_ic_stub_refill = true; 1669 return false; 1670 } 1671 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1672 // Potential change to megamorphic 1673 1674 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, caller_is_c1, CHECK_false); 1675 if (needs_ic_stub_refill) { 1676 return false; 1677 } 1678 if (!successful) { 1679 if (!inline_cache->set_to_clean()) { 1680 needs_ic_stub_refill = true; 1681 return false; 1682 } 1683 } 1684 } else { 1685 // Either clean or megamorphic 1686 } 1687 return true; 1688 } 1689 1690 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, bool& is_optimized, bool& caller_is_c1, TRAPS) { 1691 ResourceMark rm(thread); 1692 CallInfo call_info; 1693 Bytecodes::Code bc; 1694 1695 // receiver is NULL for static calls. An exception is thrown for NULL 1696 // receivers for non-static calls 1697 Handle receiver = find_callee_info(thread, bc, call_info, 1698 CHECK_(methodHandle())); 1699 // Compiler1 can produce virtual call sites that can actually be statically bound 1700 // If we fell thru to below we would think that the site was going megamorphic 1701 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1702 // we'd try and do a vtable dispatch however methods that can be statically bound 1703 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1704 // reresolution of the call site (as if we did a handle_wrong_method and not an 1705 // plain ic_miss) and the site will be converted to an optimized virtual call site 1706 // never to miss again. I don't believe C2 will produce code like this but if it 1707 // did this would still be the correct thing to do for it too, hence no ifdef. 1708 // 1709 if (call_info.resolved_method()->can_be_statically_bound()) { 1710 bool is_static_call = false; 1711 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, is_static_call, is_optimized, caller_is_c1, CHECK_(methodHandle())); 1712 assert(!is_static_call, "IC miss at static call?"); 1713 if (TraceCallFixup) { 1714 RegisterMap reg_map(thread, false); 1715 frame caller_frame = thread->last_frame().sender(®_map); 1716 ResourceMark rm(thread); 1717 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1718 callee_method->print_short_name(tty); 1719 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc())); 1720 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1721 } 1722 return callee_method; 1723 } 1724 1725 methodHandle callee_method = call_info.selected_method(); 1726 1727 #ifndef PRODUCT 1728 Atomic::inc(&_ic_miss_ctr); 1729 1730 // Statistics & Tracing 1731 if (TraceCallFixup) { 1732 ResourceMark rm(thread); 1733 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1734 callee_method->print_short_name(tty); 1735 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1736 } 1737 1738 if (ICMissHistogram) { 1739 MutexLocker m(VMStatistic_lock); 1740 RegisterMap reg_map(thread, false); 1741 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub 1742 // produce statistics under the lock 1743 trace_ic_miss(f.pc()); 1744 } 1745 #endif 1746 1747 // install an event collector so that when a vtable stub is created the 1748 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1749 // event can't be posted when the stub is created as locks are held 1750 // - instead the event will be deferred until the event collector goes 1751 // out of scope. 1752 JvmtiDynamicCodeEventCollector event_collector; 1753 1754 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1755 // Transitioning IC caches may require transition stubs. If we run out 1756 // of transition stubs, we have to drop locks and perform a safepoint 1757 // that refills them. 1758 RegisterMap reg_map(thread, false); 1759 frame caller_frame = thread->last_frame().sender(®_map); 1760 CodeBlob* cb = caller_frame.cb(); 1761 CompiledMethod* caller_nm = cb->as_compiled_method(); 1762 caller_is_c1 = caller_nm->is_compiled_by_c1(); 1763 1764 for (;;) { 1765 ICRefillVerifier ic_refill_verifier; 1766 bool needs_ic_stub_refill = false; 1767 bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method, 1768 bc, call_info, needs_ic_stub_refill, is_optimized, caller_is_c1, CHECK_(methodHandle())); 1769 if (successful || !needs_ic_stub_refill) { 1770 return callee_method; 1771 } else { 1772 InlineCacheBuffer::refill_ic_stubs(); 1773 } 1774 } 1775 } 1776 1777 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) { 1778 CompiledICLocker ml(caller_nm); 1779 if (is_static_call) { 1780 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr); 1781 if (!ssc->is_clean()) { 1782 return ssc->set_to_clean(); 1783 } 1784 } else { 1785 // compiled, dispatched call (which used to call an interpreted method) 1786 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1787 if (!inline_cache->is_clean()) { 1788 return inline_cache->set_to_clean(); 1789 } 1790 } 1791 return true; 1792 } 1793 1794 // 1795 // Resets a call-site in compiled code so it will get resolved again. 1796 // This routines handles both virtual call sites, optimized virtual call 1797 // sites, and static call sites. Typically used to change a call sites 1798 // destination from compiled to interpreted. 1799 // 1800 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) { 1801 ResourceMark rm(thread); 1802 RegisterMap reg_map(thread, false); 1803 frame stub_frame = thread->last_frame(); 1804 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1805 frame caller = stub_frame.sender(®_map); 1806 1807 // Do nothing if the frame isn't a live compiled frame. 1808 // nmethod could be deoptimized by the time we get here 1809 // so no update to the caller is needed. 1810 1811 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1812 1813 address pc = caller.pc(); 1814 1815 // Check for static or virtual call 1816 CompiledMethod* caller_nm = CodeCache::find_compiled(pc); 1817 caller_is_c1 = caller_nm->is_compiled_by_c1(); 1818 1819 // Default call_addr is the location of the "basic" call. 1820 // Determine the address of the call we a reresolving. With 1821 // Inline Caches we will always find a recognizable call. 1822 // With Inline Caches disabled we may or may not find a 1823 // recognizable call. We will always find a call for static 1824 // calls and for optimized virtual calls. For vanilla virtual 1825 // calls it depends on the state of the UseInlineCaches switch. 1826 // 1827 // With Inline Caches disabled we can get here for a virtual call 1828 // for two reasons: 1829 // 1 - calling an abstract method. The vtable for abstract methods 1830 // will run us thru handle_wrong_method and we will eventually 1831 // end up in the interpreter to throw the ame. 1832 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1833 // call and between the time we fetch the entry address and 1834 // we jump to it the target gets deoptimized. Similar to 1 1835 // we will wind up in the interprter (thru a c2i with c2). 1836 // 1837 address call_addr = NULL; 1838 { 1839 // Get call instruction under lock because another thread may be 1840 // busy patching it. 1841 CompiledICLocker ml(caller_nm); 1842 // Location of call instruction 1843 call_addr = caller_nm->call_instruction_address(pc); 1844 } 1845 // Make sure nmethod doesn't get deoptimized and removed until 1846 // this is done with it. 1847 // CLEANUP - with lazy deopt shouldn't need this lock 1848 nmethodLocker nmlock(caller_nm); 1849 1850 if (call_addr != NULL) { 1851 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1852 int ret = iter.next(); // Get item 1853 if (ret) { 1854 assert(iter.addr() == call_addr, "must find call"); 1855 if (iter.type() == relocInfo::static_call_type) { 1856 is_static_call = true; 1857 } else { 1858 assert(iter.type() == relocInfo::virtual_call_type || 1859 iter.type() == relocInfo::opt_virtual_call_type 1860 , "unexpected relocInfo. type"); 1861 is_optimized = (iter.type() == relocInfo::opt_virtual_call_type); 1862 } 1863 } else { 1864 assert(!UseInlineCaches, "relocation info. must exist for this address"); 1865 } 1866 1867 // Cleaning the inline cache will force a new resolve. This is more robust 1868 // than directly setting it to the new destination, since resolving of calls 1869 // is always done through the same code path. (experience shows that it 1870 // leads to very hard to track down bugs, if an inline cache gets updated 1871 // to a wrong method). It should not be performance critical, since the 1872 // resolve is only done once. 1873 1874 for (;;) { 1875 ICRefillVerifier ic_refill_verifier; 1876 if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) { 1877 InlineCacheBuffer::refill_ic_stubs(); 1878 } else { 1879 break; 1880 } 1881 } 1882 } 1883 } 1884 1885 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); 1886 1887 #ifndef PRODUCT 1888 Atomic::inc(&_wrong_method_ctr); 1889 1890 if (TraceCallFixup) { 1891 ResourceMark rm(thread); 1892 tty->print("handle_wrong_method reresolving call to"); 1893 callee_method->print_short_name(tty); 1894 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1895 } 1896 #endif 1897 1898 return callee_method; 1899 } 1900 1901 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1902 // The faulting unsafe accesses should be changed to throw the error 1903 // synchronously instead. Meanwhile the faulting instruction will be 1904 // skipped over (effectively turning it into a no-op) and an 1905 // asynchronous exception will be raised which the thread will 1906 // handle at a later point. If the instruction is a load it will 1907 // return garbage. 1908 1909 // Request an async exception. 1910 thread->set_pending_unsafe_access_error(); 1911 1912 // Return address of next instruction to execute. 1913 return next_pc; 1914 } 1915 1916 #ifdef ASSERT 1917 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1918 const BasicType* sig_bt, 1919 const VMRegPair* regs) { 1920 ResourceMark rm; 1921 const int total_args_passed = method->size_of_parameters(); 1922 const VMRegPair* regs_with_member_name = regs; 1923 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1924 1925 const int member_arg_pos = total_args_passed - 1; 1926 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1927 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1928 1929 const bool is_outgoing = method->is_method_handle_intrinsic(); 1930 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing); 1931 1932 for (int i = 0; i < member_arg_pos; i++) { 1933 VMReg a = regs_with_member_name[i].first(); 1934 VMReg b = regs_without_member_name[i].first(); 1935 assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value()); 1936 } 1937 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1938 } 1939 #endif 1940 1941 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) { 1942 if (destination != entry_point) { 1943 CodeBlob* callee = CodeCache::find_blob(destination); 1944 // callee == cb seems weird. It means calling interpreter thru stub. 1945 if (callee != NULL && (callee == cb || callee->is_adapter_blob())) { 1946 // static call or optimized virtual 1947 if (TraceCallFixup) { 1948 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1949 moop->print_short_name(tty); 1950 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1951 } 1952 return true; 1953 } else { 1954 if (TraceCallFixup) { 1955 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1956 moop->print_short_name(tty); 1957 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1958 } 1959 // assert is too strong could also be resolve destinations. 1960 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 1961 } 1962 } else { 1963 if (TraceCallFixup) { 1964 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1965 moop->print_short_name(tty); 1966 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1967 } 1968 } 1969 return false; 1970 } 1971 1972 // --------------------------------------------------------------------------- 1973 // We are calling the interpreter via a c2i. Normally this would mean that 1974 // we were called by a compiled method. However we could have lost a race 1975 // where we went int -> i2c -> c2i and so the caller could in fact be 1976 // interpreted. If the caller is compiled we attempt to patch the caller 1977 // so he no longer calls into the interpreter. 1978 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1979 Method* moop(method); 1980 1981 // It's possible that deoptimization can occur at a call site which hasn't 1982 // been resolved yet, in which case this function will be called from 1983 // an nmethod that has been patched for deopt and we can ignore the 1984 // request for a fixup. 1985 // Also it is possible that we lost a race in that from_compiled_entry 1986 // is now back to the i2c in that case we don't need to patch and if 1987 // we did we'd leap into space because the callsite needs to use 1988 // "to interpreter" stub in order to load up the Method*. Don't 1989 // ask me how I know this... 1990 1991 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1992 if (cb == NULL || !cb->is_compiled()) { 1993 return; 1994 } 1995 address entry_point = moop->from_compiled_entry_no_trampoline(cb->is_compiled_by_c1()); 1996 if (entry_point == moop->get_c2i_entry()) { 1997 return; 1998 } 1999 2000 // The check above makes sure this is a nmethod. 2001 CompiledMethod* nm = cb->as_compiled_method_or_null(); 2002 assert(nm, "must be"); 2003 2004 // Get the return PC for the passed caller PC. 2005 address return_pc = caller_pc + frame::pc_return_offset; 2006 2007 // There is a benign race here. We could be attempting to patch to a compiled 2008 // entry point at the same time the callee is being deoptimized. If that is 2009 // the case then entry_point may in fact point to a c2i and we'd patch the 2010 // call site with the same old data. clear_code will set code() to NULL 2011 // at the end of it. If we happen to see that NULL then we can skip trying 2012 // to patch. If we hit the window where the callee has a c2i in the 2013 // from_compiled_entry and the NULL isn't present yet then we lose the race 2014 // and patch the code with the same old data. Asi es la vida. 2015 2016 if (moop->code() == NULL) return; 2017 2018 if (nm->is_in_use()) { 2019 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 2020 CompiledICLocker ic_locker(nm); 2021 if (NativeCall::is_call_before(return_pc)) { 2022 ResourceMark mark; 2023 NativeCallWrapper* call = nm->call_wrapper_before(return_pc); 2024 // 2025 // bug 6281185. We might get here after resolving a call site to a vanilla 2026 // virtual call. Because the resolvee uses the verified entry it may then 2027 // see compiled code and attempt to patch the site by calling us. This would 2028 // then incorrectly convert the call site to optimized and its downhill from 2029 // there. If you're lucky you'll get the assert in the bugid, if not you've 2030 // just made a call site that could be megamorphic into a monomorphic site 2031 // for the rest of its life! Just another racing bug in the life of 2032 // fixup_callers_callsite ... 2033 // 2034 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 2035 iter.next(); 2036 assert(iter.has_current(), "must have a reloc at java call site"); 2037 relocInfo::relocType typ = iter.reloc()->type(); 2038 if (typ != relocInfo::static_call_type && 2039 typ != relocInfo::opt_virtual_call_type && 2040 typ != relocInfo::static_stub_type) { 2041 return; 2042 } 2043 address destination = call->destination(); 2044 if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) { 2045 call->set_destination_mt_safe(entry_point); 2046 } 2047 } 2048 } 2049 JRT_END 2050 2051 2052 // same as JVM_Arraycopy, but called directly from compiled code 2053 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 2054 oopDesc* dest, jint dest_pos, 2055 jint length, 2056 JavaThread* thread)) { 2057 #ifndef PRODUCT 2058 _slow_array_copy_ctr++; 2059 #endif 2060 // Check if we have null pointers 2061 if (src == NULL || dest == NULL) { 2062 THROW(vmSymbols::java_lang_NullPointerException()); 2063 } 2064 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 2065 // even though the copy_array API also performs dynamic checks to ensure 2066 // that src and dest are truly arrays (and are conformable). 2067 // The copy_array mechanism is awkward and could be removed, but 2068 // the compilers don't call this function except as a last resort, 2069 // so it probably doesn't matter. 2070 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 2071 (arrayOopDesc*)dest, dest_pos, 2072 length, thread); 2073 } 2074 JRT_END 2075 2076 // The caller of generate_class_cast_message() (or one of its callers) 2077 // must use a ResourceMark in order to correctly free the result. 2078 char* SharedRuntime::generate_class_cast_message( 2079 JavaThread* thread, Klass* caster_klass) { 2080 2081 // Get target class name from the checkcast instruction 2082 vframeStream vfst(thread, true); 2083 assert(!vfst.at_end(), "Java frame must exist"); 2084 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 2085 constantPoolHandle cpool(thread, vfst.method()->constants()); 2086 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 2087 Symbol* target_klass_name = NULL; 2088 if (target_klass == NULL) { 2089 // This klass should be resolved, but just in case, get the name in the klass slot. 2090 target_klass_name = cpool->klass_name_at(cc.index()); 2091 } 2092 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 2093 } 2094 2095 2096 // The caller of generate_class_cast_message() (or one of its callers) 2097 // must use a ResourceMark in order to correctly free the result. 2098 char* SharedRuntime::generate_class_cast_message( 2099 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 2100 const char* caster_name = caster_klass->external_name(); 2101 2102 assert(target_klass != NULL || target_klass_name != NULL, "one must be provided"); 2103 const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() : 2104 target_klass->external_name(); 2105 2106 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 2107 2108 const char* caster_klass_description = ""; 2109 const char* target_klass_description = ""; 2110 const char* klass_separator = ""; 2111 if (target_klass != NULL && caster_klass->module() == target_klass->module()) { 2112 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 2113 } else { 2114 caster_klass_description = caster_klass->class_in_module_of_loader(); 2115 target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : ""; 2116 klass_separator = (target_klass != NULL) ? "; " : ""; 2117 } 2118 2119 // add 3 for parenthesis and preceeding space 2120 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2121 2122 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2123 if (message == NULL) { 2124 // Shouldn't happen, but don't cause even more problems if it does 2125 message = const_cast<char*>(caster_klass->external_name()); 2126 } else { 2127 jio_snprintf(message, 2128 msglen, 2129 "class %s cannot be cast to class %s (%s%s%s)", 2130 caster_name, 2131 target_name, 2132 caster_klass_description, 2133 klass_separator, 2134 target_klass_description 2135 ); 2136 } 2137 return message; 2138 } 2139 2140 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2141 (void) JavaThread::current()->reguard_stack(); 2142 JRT_END 2143 2144 2145 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2146 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) 2147 if (!SafepointSynchronize::is_synchronizing()) { 2148 // Only try quick_enter() if we're not trying to reach a safepoint 2149 // so that the calling thread reaches the safepoint more quickly. 2150 if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return; 2151 } 2152 // NO_ASYNC required because an async exception on the state transition destructor 2153 // would leave you with the lock held and it would never be released. 2154 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2155 // and the model is that an exception implies the method failed. 2156 JRT_BLOCK_NO_ASYNC 2157 oop obj(_obj); 2158 if (PrintBiasedLockingStatistics) { 2159 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 2160 } 2161 Handle h_obj(THREAD, obj); 2162 ObjectSynchronizer::enter(h_obj, lock, CHECK); 2163 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2164 JRT_BLOCK_END 2165 JRT_END 2166 2167 // Handles the uncommon cases of monitor unlocking in compiled code 2168 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD)) 2169 oop obj(_obj); 2170 assert(JavaThread::current() == THREAD, "invariant"); 2171 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore 2172 // testing was unable to ever fire the assert that guarded it so I have removed it. 2173 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); 2174 #undef MIGHT_HAVE_PENDING 2175 #ifdef MIGHT_HAVE_PENDING 2176 // Save and restore any pending_exception around the exception mark. 2177 // While the slow_exit must not throw an exception, we could come into 2178 // this routine with one set. 2179 oop pending_excep = NULL; 2180 const char* pending_file; 2181 int pending_line; 2182 if (HAS_PENDING_EXCEPTION) { 2183 pending_excep = PENDING_EXCEPTION; 2184 pending_file = THREAD->exception_file(); 2185 pending_line = THREAD->exception_line(); 2186 CLEAR_PENDING_EXCEPTION; 2187 } 2188 #endif /* MIGHT_HAVE_PENDING */ 2189 2190 { 2191 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2192 EXCEPTION_MARK; 2193 ObjectSynchronizer::exit(obj, lock, THREAD); 2194 } 2195 2196 #ifdef MIGHT_HAVE_PENDING 2197 if (pending_excep != NULL) { 2198 THREAD->set_pending_exception(pending_excep, pending_file, pending_line); 2199 } 2200 #endif /* MIGHT_HAVE_PENDING */ 2201 JRT_END 2202 2203 #ifndef PRODUCT 2204 2205 void SharedRuntime::print_statistics() { 2206 ttyLocker ttyl; 2207 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); 2208 2209 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); 2210 2211 SharedRuntime::print_ic_miss_histogram(); 2212 2213 if (CountRemovableExceptions) { 2214 if (_nof_removable_exceptions > 0) { 2215 Unimplemented(); // this counter is not yet incremented 2216 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); 2217 } 2218 } 2219 2220 // Dump the JRT_ENTRY counters 2221 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 2222 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr); 2223 if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); 2224 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 2225 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 2226 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 2227 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 2228 2229 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr); 2230 tty->print_cr("%5d wrong method", _wrong_method_ctr); 2231 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr); 2232 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr); 2233 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2234 2235 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr); 2236 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr); 2237 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr); 2238 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr); 2239 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr); 2240 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr); 2241 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr); 2242 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr); 2243 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr); 2244 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr); 2245 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr); 2246 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr); 2247 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr); 2248 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr); 2249 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr); 2250 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr); 2251 2252 AdapterHandlerLibrary::print_statistics(); 2253 2254 if (xtty != NULL) xtty->tail("statistics"); 2255 } 2256 2257 inline double percent(int x, int y) { 2258 return 100.0 * x / MAX2(y, 1); 2259 } 2260 2261 class MethodArityHistogram { 2262 public: 2263 enum { MAX_ARITY = 256 }; 2264 private: 2265 static int _arity_histogram[MAX_ARITY]; // histogram of #args 2266 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words 2267 static int _max_arity; // max. arity seen 2268 static int _max_size; // max. arg size seen 2269 2270 static void add_method_to_histogram(nmethod* nm) { 2271 if (CompiledMethod::nmethod_access_is_safe(nm)) { 2272 Method* method = nm->method(); 2273 ArgumentCount args(method->signature()); 2274 int arity = args.size() + (method->is_static() ? 0 : 1); 2275 int argsize = method->size_of_parameters(); 2276 arity = MIN2(arity, MAX_ARITY-1); 2277 argsize = MIN2(argsize, MAX_ARITY-1); 2278 int count = method->compiled_invocation_count(); 2279 _arity_histogram[arity] += count; 2280 _size_histogram[argsize] += count; 2281 _max_arity = MAX2(_max_arity, arity); 2282 _max_size = MAX2(_max_size, argsize); 2283 } 2284 } 2285 2286 void print_histogram_helper(int n, int* histo, const char* name) { 2287 const int N = MIN2(5, n); 2288 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2289 double sum = 0; 2290 double weighted_sum = 0; 2291 int i; 2292 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 2293 double rest = sum; 2294 double percent = sum / 100; 2295 for (i = 0; i <= N; i++) { 2296 rest -= histo[i]; 2297 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); 2298 } 2299 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); 2300 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2301 } 2302 2303 void print_histogram() { 2304 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2305 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2306 tty->print_cr("\nSame for parameter size (in words):"); 2307 print_histogram_helper(_max_size, _size_histogram, "size"); 2308 tty->cr(); 2309 } 2310 2311 public: 2312 MethodArityHistogram() { 2313 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2314 _max_arity = _max_size = 0; 2315 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2316 CodeCache::nmethods_do(add_method_to_histogram); 2317 print_histogram(); 2318 } 2319 }; 2320 2321 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2322 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2323 int MethodArityHistogram::_max_arity; 2324 int MethodArityHistogram::_max_size; 2325 2326 void SharedRuntime::print_call_statistics(int comp_total) { 2327 tty->print_cr("Calls from compiled code:"); 2328 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2329 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; 2330 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; 2331 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); 2332 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2333 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2334 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); 2335 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2336 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2337 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2338 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2339 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); 2340 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2341 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); 2342 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2343 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2344 tty->cr(); 2345 tty->print_cr("Note 1: counter updates are not MT-safe."); 2346 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2347 tty->print_cr(" %% in nested categories are relative to their category"); 2348 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2349 tty->cr(); 2350 2351 MethodArityHistogram h; 2352 } 2353 #endif 2354 2355 2356 // A simple wrapper class around the calling convention information 2357 // that allows sharing of adapters for the same calling convention. 2358 class AdapterFingerPrint : public CHeapObj<mtCode> { 2359 private: 2360 enum { 2361 _basic_type_bits = 4, 2362 _basic_type_mask = right_n_bits(_basic_type_bits), 2363 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2364 _compact_int_count = 3 2365 }; 2366 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2367 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2368 2369 union { 2370 int _compact[_compact_int_count]; 2371 int* _fingerprint; 2372 } _value; 2373 int _length; // A negative length indicates the fingerprint is in the compact form, 2374 // Otherwise _value._fingerprint is the array. 2375 2376 // Remap BasicTypes that are handled equivalently by the adapters. 2377 // These are correct for the current system but someday it might be 2378 // necessary to make this mapping platform dependent. 2379 static int adapter_encoding(BasicType in, bool is_valuetype) { 2380 switch (in) { 2381 case T_BOOLEAN: 2382 case T_BYTE: 2383 case T_SHORT: 2384 case T_CHAR: { 2385 if (is_valuetype) { 2386 // Do not widen value type field types 2387 assert(ValueTypePassFieldsAsArgs, "must be enabled"); 2388 return in; 2389 } else { 2390 // They are all promoted to T_INT in the calling convention 2391 return T_INT; 2392 } 2393 } 2394 2395 case T_VALUETYPE: { 2396 // If value types are passed as fields, return 'in' to differentiate 2397 // between a T_VALUETYPE and a T_OBJECT in the signature. 2398 return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false); 2399 } 2400 2401 case T_OBJECT: 2402 case T_ARRAY: 2403 // In other words, we assume that any register good enough for 2404 // an int or long is good enough for a managed pointer. 2405 #ifdef _LP64 2406 return T_LONG; 2407 #else 2408 return T_INT; 2409 #endif 2410 2411 case T_INT: 2412 case T_LONG: 2413 case T_FLOAT: 2414 case T_DOUBLE: 2415 case T_VOID: 2416 return in; 2417 2418 default: 2419 ShouldNotReachHere(); 2420 return T_CONFLICT; 2421 } 2422 } 2423 2424 public: 2425 AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2426 // The fingerprint is based on the BasicType signature encoded 2427 // into an array of ints with eight entries per int. 2428 int total_args_passed = (sig != NULL) ? sig->length() : 0; 2429 int* ptr; 2430 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2431 if (len <= _compact_int_count) { 2432 assert(_compact_int_count == 3, "else change next line"); 2433 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2434 // Storing the signature encoded as signed chars hits about 98% 2435 // of the time. 2436 _length = -len; 2437 ptr = _value._compact; 2438 } else { 2439 _length = len; 2440 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2441 ptr = _value._fingerprint; 2442 } 2443 2444 // Now pack the BasicTypes with 8 per int 2445 int sig_index = 0; 2446 BasicType prev_sbt = T_ILLEGAL; 2447 int vt_count = 0; 2448 for (int index = 0; index < len; index++) { 2449 int value = 0; 2450 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2451 int bt = 0; 2452 if (sig_index < total_args_passed) { 2453 BasicType sbt = sig->at(sig_index++)._bt; 2454 if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) { 2455 // Found start of value type in signature 2456 vt_count++; 2457 if (sig_index == 1 && has_ro_adapter) { 2458 // With a ro_adapter, replace receiver value type delimiter by T_VOID to prevent matching 2459 // with other adapters that have the same value type as first argument and no receiver. 2460 sbt = T_VOID; 2461 } 2462 } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID && 2463 prev_sbt != T_LONG && prev_sbt != T_DOUBLE) { 2464 // Found end of value type in signature 2465 vt_count--; 2466 assert(vt_count >= 0, "invalid vt_count"); 2467 } 2468 bt = adapter_encoding(sbt, vt_count > 0); 2469 prev_sbt = sbt; 2470 } 2471 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2472 value = (value << _basic_type_bits) | bt; 2473 } 2474 ptr[index] = value; 2475 } 2476 assert(vt_count == 0, "invalid vt_count"); 2477 } 2478 2479 ~AdapterFingerPrint() { 2480 if (_length > 0) { 2481 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2482 } 2483 } 2484 2485 int value(int index) { 2486 if (_length < 0) { 2487 return _value._compact[index]; 2488 } 2489 return _value._fingerprint[index]; 2490 } 2491 int length() { 2492 if (_length < 0) return -_length; 2493 return _length; 2494 } 2495 2496 bool is_compact() { 2497 return _length <= 0; 2498 } 2499 2500 unsigned int compute_hash() { 2501 int hash = 0; 2502 for (int i = 0; i < length(); i++) { 2503 int v = value(i); 2504 hash = (hash << 8) ^ v ^ (hash >> 5); 2505 } 2506 return (unsigned int)hash; 2507 } 2508 2509 const char* as_string() { 2510 stringStream st; 2511 st.print("0x"); 2512 for (int i = 0; i < length(); i++) { 2513 st.print("%08x", value(i)); 2514 } 2515 return st.as_string(); 2516 } 2517 2518 bool equals(AdapterFingerPrint* other) { 2519 if (other->_length != _length) { 2520 return false; 2521 } 2522 if (_length < 0) { 2523 assert(_compact_int_count == 3, "else change next line"); 2524 return _value._compact[0] == other->_value._compact[0] && 2525 _value._compact[1] == other->_value._compact[1] && 2526 _value._compact[2] == other->_value._compact[2]; 2527 } else { 2528 for (int i = 0; i < _length; i++) { 2529 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2530 return false; 2531 } 2532 } 2533 } 2534 return true; 2535 } 2536 }; 2537 2538 2539 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2540 class AdapterHandlerTable : public BasicHashtable<mtCode> { 2541 friend class AdapterHandlerTableIterator; 2542 2543 private: 2544 2545 #ifndef PRODUCT 2546 static int _lookups; // number of calls to lookup 2547 static int _buckets; // number of buckets checked 2548 static int _equals; // number of buckets checked with matching hash 2549 static int _hits; // number of successful lookups 2550 static int _compact; // number of equals calls with compact signature 2551 #endif 2552 2553 AdapterHandlerEntry* bucket(int i) { 2554 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i); 2555 } 2556 2557 public: 2558 AdapterHandlerTable() 2559 : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { } 2560 2561 // Create a new entry suitable for insertion in the table 2562 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, 2563 address c2i_value_entry, address c2i_value_ro_entry, 2564 address c2i_unverified_entry, address c2i_unverified_value_entry, address c2i_no_clinit_check_entry) { 2565 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash()); 2566 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry, 2567 c2i_unverified_entry, c2i_unverified_value_entry, c2i_no_clinit_check_entry); 2568 if (DumpSharedSpaces) { 2569 ((CDSAdapterHandlerEntry*)entry)->init(); 2570 } 2571 return entry; 2572 } 2573 2574 // Insert an entry into the table 2575 void add(AdapterHandlerEntry* entry) { 2576 int index = hash_to_index(entry->hash()); 2577 add_entry(index, entry); 2578 } 2579 2580 void free_entry(AdapterHandlerEntry* entry) { 2581 entry->deallocate(); 2582 BasicHashtable<mtCode>::free_entry(entry); 2583 } 2584 2585 // Find a entry with the same fingerprint if it exists 2586 AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) { 2587 NOT_PRODUCT(_lookups++); 2588 AdapterFingerPrint fp(sig, has_ro_adapter); 2589 unsigned int hash = fp.compute_hash(); 2590 int index = hash_to_index(hash); 2591 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2592 NOT_PRODUCT(_buckets++); 2593 if (e->hash() == hash) { 2594 NOT_PRODUCT(_equals++); 2595 if (fp.equals(e->fingerprint())) { 2596 #ifndef PRODUCT 2597 if (fp.is_compact()) _compact++; 2598 _hits++; 2599 #endif 2600 return e; 2601 } 2602 } 2603 } 2604 return NULL; 2605 } 2606 2607 #ifndef PRODUCT 2608 void print_statistics() { 2609 ResourceMark rm; 2610 int longest = 0; 2611 int empty = 0; 2612 int total = 0; 2613 int nonempty = 0; 2614 for (int index = 0; index < table_size(); index++) { 2615 int count = 0; 2616 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2617 count++; 2618 } 2619 if (count != 0) nonempty++; 2620 if (count == 0) empty++; 2621 if (count > longest) longest = count; 2622 total += count; 2623 } 2624 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", 2625 empty, longest, total, total / (double)nonempty); 2626 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", 2627 _lookups, _buckets, _equals, _hits, _compact); 2628 } 2629 #endif 2630 }; 2631 2632 2633 #ifndef PRODUCT 2634 2635 int AdapterHandlerTable::_lookups; 2636 int AdapterHandlerTable::_buckets; 2637 int AdapterHandlerTable::_equals; 2638 int AdapterHandlerTable::_hits; 2639 int AdapterHandlerTable::_compact; 2640 2641 #endif 2642 2643 class AdapterHandlerTableIterator : public StackObj { 2644 private: 2645 AdapterHandlerTable* _table; 2646 int _index; 2647 AdapterHandlerEntry* _current; 2648 2649 void scan() { 2650 while (_index < _table->table_size()) { 2651 AdapterHandlerEntry* a = _table->bucket(_index); 2652 _index++; 2653 if (a != NULL) { 2654 _current = a; 2655 return; 2656 } 2657 } 2658 } 2659 2660 public: 2661 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { 2662 scan(); 2663 } 2664 bool has_next() { 2665 return _current != NULL; 2666 } 2667 AdapterHandlerEntry* next() { 2668 if (_current != NULL) { 2669 AdapterHandlerEntry* result = _current; 2670 _current = _current->next(); 2671 if (_current == NULL) scan(); 2672 return result; 2673 } else { 2674 return NULL; 2675 } 2676 } 2677 }; 2678 2679 2680 // --------------------------------------------------------------------------- 2681 // Implementation of AdapterHandlerLibrary 2682 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; 2683 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; 2684 const int AdapterHandlerLibrary_size = 16*K; 2685 BufferBlob* AdapterHandlerLibrary::_buffer = NULL; 2686 2687 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2688 // Should be called only when AdapterHandlerLibrary_lock is active. 2689 if (_buffer == NULL) // Initialize lazily 2690 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2691 return _buffer; 2692 } 2693 2694 extern "C" void unexpected_adapter_call() { 2695 ShouldNotCallThis(); 2696 } 2697 2698 void AdapterHandlerLibrary::initialize() { 2699 if (_adapters != NULL) return; 2700 _adapters = new AdapterHandlerTable(); 2701 2702 // Create a special handler for abstract methods. Abstract methods 2703 // are never compiled so an i2c entry is somewhat meaningless, but 2704 // throw AbstractMethodError just in case. 2705 // Pass wrong_method_abstract for the c2i transitions to return 2706 // AbstractMethodError for invalid invocations. 2707 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2708 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL), 2709 StubRoutines::throw_AbstractMethodError_entry(), 2710 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2711 wrong_method_abstract, wrong_method_abstract); 2712 } 2713 2714 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2715 address i2c_entry, 2716 address c2i_entry, 2717 address c2i_value_entry, 2718 address c2i_value_ro_entry, 2719 address c2i_unverified_entry, 2720 address c2i_unverified_value_entry, 2721 address c2i_no_clinit_check_entry) { 2722 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry, c2i_unverified_entry, 2723 c2i_unverified_value_entry, c2i_no_clinit_check_entry); 2724 } 2725 2726 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2727 AdapterHandlerEntry* entry = get_adapter0(method); 2728 if (method->is_shared()) { 2729 // See comments around Method::link_method() 2730 MutexLocker mu(AdapterHandlerLibrary_lock); 2731 if (method->adapter() == NULL) { 2732 method->update_adapter_trampoline(entry); 2733 } 2734 address trampoline = method->from_compiled_entry(); 2735 if (*(int*)trampoline == 0) { 2736 CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size()); 2737 MacroAssembler _masm(&buffer); 2738 SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry()); 2739 assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros."); 2740 2741 if (PrintInterpreter) { 2742 Disassembler::decode(buffer.insts_begin(), buffer.insts_end()); 2743 } 2744 } 2745 } 2746 2747 return entry; 2748 } 2749 2750 CompiledEntrySignature::CompiledEntrySignature(Method* method) : 2751 _method(method), _num_value_args(0), _has_value_recv(false), 2752 _sig_cc(NULL), _sig_cc_ro(NULL), _regs(NULL), _regs_cc(NULL), _regs_cc_ro(NULL), 2753 _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0), 2754 _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _has_scalarized_args(false) { 2755 _has_reserved_entries = false; 2756 _sig = new GrowableArray<SigEntry>(method->size_of_parameters()); 2757 2758 } 2759 2760 int CompiledEntrySignature::compute_scalarized_cc(GrowableArray<SigEntry>*& sig_cc, VMRegPair*& regs_cc, bool scalar_receiver) { 2761 InstanceKlass* holder = _method->method_holder(); 2762 sig_cc = new GrowableArray<SigEntry>(_method->size_of_parameters()); 2763 if (!_method->is_static()) { 2764 if (holder->is_value() && scalar_receiver && ValueKlass::cast(holder)->is_scalarizable()) { 2765 sig_cc->appendAll(ValueKlass::cast(holder)->extended_sig()); 2766 } else { 2767 SigEntry::add_entry(sig_cc, T_OBJECT); 2768 } 2769 } 2770 Thread* THREAD = Thread::current(); 2771 for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) { 2772 if (ss.type() == T_VALUETYPE) { 2773 ValueKlass* vk = ss.as_value_klass(holder); 2774 if (vk->is_scalarizable()) { 2775 sig_cc->appendAll(vk->extended_sig()); 2776 } else { 2777 SigEntry::add_entry(sig_cc, T_OBJECT); 2778 } 2779 } else { 2780 SigEntry::add_entry(sig_cc, ss.type()); 2781 } 2782 } 2783 regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc->length() + 2); 2784 return SharedRuntime::java_calling_convention(sig_cc, regs_cc); 2785 } 2786 2787 int CompiledEntrySignature::insert_reserved_entry(int ret_off) { 2788 // Find index in signature that belongs to return address slot 2789 BasicType bt = T_ILLEGAL; 2790 int i = 0; 2791 for (uint off = 0; i < _sig_cc->length(); ++i) { 2792 if (SigEntry::skip_value_delimiters(_sig_cc, i)) { 2793 VMReg first = _regs_cc[off++].first(); 2794 if (first->is_valid() && first->is_stack()) { 2795 // Select a type for the reserved entry that will end up on the stack 2796 bt = _sig_cc->at(i)._bt; 2797 if (((int)first->reg2stack() + VMRegImpl::slots_per_word) == ret_off) { 2798 break; // Index of the return address found 2799 } 2800 } 2801 } 2802 } 2803 // Insert reserved entry and re-compute calling convention 2804 SigEntry::insert_reserved_entry(_sig_cc, i, bt); 2805 return SharedRuntime::java_calling_convention(_sig_cc, _regs_cc); 2806 } 2807 2808 // See if we can save space by sharing the same entry for VVEP and VVEP(RO), 2809 // or the same entry for VEP and VVEP(RO). 2810 CodeOffsets::Entries CompiledEntrySignature::c1_value_ro_entry_type() const { 2811 if (!has_scalarized_args()) { 2812 // VEP/VVEP/VVEP(RO) all share the same entry. There's no packing. 2813 return CodeOffsets::Verified_Entry; 2814 } 2815 if (_method->is_static()) { 2816 // Static methods don't need VVEP(RO) 2817 return CodeOffsets::Verified_Entry; 2818 } 2819 2820 if (has_value_recv()) { 2821 if (num_value_args() == 1) { 2822 // Share same entry for VVEP and VVEP(RO). 2823 // This is quite common: we have an instance method in a ValueKlass that has 2824 // no value args other than <this>. 2825 return CodeOffsets::Verified_Value_Entry; 2826 } else { 2827 assert(num_value_args() > 1, "must be"); 2828 // No sharing: 2829 // VVEP(RO) -- <this> is passed as object 2830 // VEP -- <this> is passed as fields 2831 return CodeOffsets::Verified_Value_Entry_RO; 2832 } 2833 } 2834 2835 // Either a static method, or <this> is not a value type 2836 if (args_on_stack_cc() != args_on_stack_cc_ro() || _has_reserved_entries) { 2837 // No sharing: 2838 // Some arguments are passed on the stack, and we have inserted reserved entries 2839 // into the VEP, but we never insert reserved entries into the VVEP(RO). 2840 return CodeOffsets::Verified_Value_Entry_RO; 2841 } else { 2842 // Share same entry for VEP and VVEP(RO). 2843 return CodeOffsets::Verified_Entry; 2844 } 2845 } 2846 2847 2848 void CompiledEntrySignature::compute_calling_conventions() { 2849 // Get the (non-scalarized) signature and check for value type arguments 2850 if (!_method->is_static()) { 2851 if (_method->method_holder()->is_value() && ValueKlass::cast(_method->method_holder())->is_scalarizable()) { 2852 _has_value_recv = true; 2853 _num_value_args++; 2854 } 2855 SigEntry::add_entry(_sig, T_OBJECT); 2856 } 2857 for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) { 2858 BasicType bt = ss.type(); 2859 if (bt == T_VALUETYPE) { 2860 if (ss.as_value_klass(_method->method_holder())->is_scalarizable()) { 2861 _num_value_args++; 2862 } 2863 bt = T_OBJECT; 2864 } 2865 SigEntry::add_entry(_sig, bt); 2866 } 2867 if (_method->is_abstract() && !(ValueTypePassFieldsAsArgs && has_value_arg())) { 2868 return; 2869 } 2870 2871 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2872 _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length()); 2873 _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs); 2874 2875 // Now compute the scalarized calling convention if there are value types in the signature 2876 _sig_cc = _sig; 2877 _sig_cc_ro = _sig; 2878 _regs_cc = _regs; 2879 _regs_cc_ro = _regs; 2880 _args_on_stack_cc = _args_on_stack; 2881 _args_on_stack_cc_ro = _args_on_stack; 2882 2883 if (ValueTypePassFieldsAsArgs && has_value_arg() && !_method->is_native()) { 2884 _args_on_stack_cc = compute_scalarized_cc(_sig_cc, _regs_cc, /* scalar_receiver = */ true); 2885 2886 _sig_cc_ro = _sig_cc; 2887 _regs_cc_ro = _regs_cc; 2888 _args_on_stack_cc_ro = _args_on_stack_cc; 2889 if (_has_value_recv || _args_on_stack_cc > _args_on_stack) { 2890 // For interface calls, we need another entry point / adapter to unpack the receiver 2891 _args_on_stack_cc_ro = compute_scalarized_cc(_sig_cc_ro, _regs_cc_ro, /* scalar_receiver = */ false); 2892 } 2893 2894 // Compute the stack extension that is required to convert between the calling conventions. 2895 // The stack slots at these offsets are occupied by the return address with the unscalarized 2896 // calling convention. Don't use them for arguments with the scalarized calling convention. 2897 int ret_off = _args_on_stack_cc - _args_on_stack; 2898 int ret_off_ro = _args_on_stack_cc - _args_on_stack_cc_ro; 2899 assert(ret_off_ro <= 0 || ret_off > 0, "receiver unpacking requires more stack space than expected"); 2900 2901 if (ret_off > 0) { 2902 // Make sure the stack of the scalarized calling convention with the reserved 2903 // entries (2 slots each) remains 16-byte (4 slots) aligned after stack extension. 2904 int alignment = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 2905 if (ret_off_ro != ret_off && ret_off_ro >= 0) { 2906 ret_off += 4; // Account for two reserved entries (4 slots) 2907 ret_off_ro += 4; 2908 ret_off = align_up(ret_off, alignment); 2909 ret_off_ro = align_up(ret_off_ro, alignment); 2910 // TODO can we avoid wasting a stack slot here? 2911 //assert(ret_off != ret_off_ro, "fail"); 2912 if (ret_off > ret_off_ro) { 2913 swap(ret_off, ret_off_ro); // Sort by offset 2914 } 2915 _args_on_stack_cc = insert_reserved_entry(ret_off); 2916 _args_on_stack_cc = insert_reserved_entry(ret_off_ro); 2917 } else { 2918 ret_off += 2; // Account for one reserved entry (2 slots) 2919 ret_off = align_up(ret_off, alignment); 2920 _args_on_stack_cc = insert_reserved_entry(ret_off); 2921 } 2922 2923 _has_reserved_entries = true; 2924 } 2925 2926 // Upper bound on stack arguments to avoid hitting the argument limit and 2927 // bailing out of compilation ("unsupported incoming calling sequence"). 2928 // TODO we need a reasonable limit (flag?) here 2929 if (_args_on_stack_cc > 50) { 2930 // Don't scalarize value type arguments 2931 _sig_cc = _sig; 2932 _sig_cc_ro = _sig; 2933 _regs_cc = _regs; 2934 _regs_cc_ro = _regs; 2935 _args_on_stack_cc = _args_on_stack; 2936 _args_on_stack_cc_ro = _args_on_stack; 2937 } else { 2938 _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack); 2939 _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro); 2940 _has_scalarized_args = true; 2941 } 2942 } 2943 } 2944 2945 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) { 2946 // Use customized signature handler. Need to lock around updates to 2947 // the AdapterHandlerTable (it is not safe for concurrent readers 2948 // and a single writer: this could be fixed if it becomes a 2949 // problem). 2950 2951 ResourceMark rm; 2952 2953 NOT_PRODUCT(int insts_size = 0); 2954 AdapterBlob* new_adapter = NULL; 2955 AdapterHandlerEntry* entry = NULL; 2956 AdapterFingerPrint* fingerprint = NULL; 2957 2958 { 2959 MutexLocker mu(AdapterHandlerLibrary_lock); 2960 // make sure data structure is initialized 2961 initialize(); 2962 2963 CompiledEntrySignature ces(method()); 2964 { 2965 MutexUnlocker mul(AdapterHandlerLibrary_lock); 2966 ces.compute_calling_conventions(); 2967 } 2968 GrowableArray<SigEntry>& sig = ces.sig(); 2969 GrowableArray<SigEntry>& sig_cc = ces.sig_cc(); 2970 GrowableArray<SigEntry>& sig_cc_ro = ces.sig_cc_ro(); 2971 VMRegPair* regs = ces.regs(); 2972 VMRegPair* regs_cc = ces.regs_cc(); 2973 VMRegPair* regs_cc_ro = ces.regs_cc_ro(); 2974 2975 if (ces.has_scalarized_args()) { 2976 method->set_has_scalarized_args(true); 2977 method->set_c1_needs_stack_repair(ces.c1_needs_stack_repair()); 2978 method->set_c2_needs_stack_repair(ces.c2_needs_stack_repair()); 2979 } 2980 2981 if (method->is_abstract()) { 2982 if (ces.has_scalarized_args()) { 2983 // Save a C heap allocated version of the signature for abstract methods with scalarized value type arguments 2984 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2985 entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL), 2986 StubRoutines::throw_AbstractMethodError_entry(), 2987 wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, 2988 wrong_method_abstract, wrong_method_abstract); 2989 GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc_ro.length(), true); 2990 heap_sig->appendAll(&sig_cc_ro); 2991 entry->set_sig_cc(heap_sig); 2992 return entry; 2993 } else { 2994 return _abstract_method_handler; 2995 } 2996 } 2997 2998 // Lookup method signature's fingerprint 2999 entry = _adapters->lookup(&sig_cc, regs_cc != regs_cc_ro); 3000 3001 #ifdef ASSERT 3002 AdapterHandlerEntry* shared_entry = NULL; 3003 // Start adapter sharing verification only after the VM is booted. 3004 if (VerifyAdapterSharing && (entry != NULL)) { 3005 shared_entry = entry; 3006 entry = NULL; 3007 } 3008 #endif 3009 3010 if (entry != NULL) { 3011 return entry; 3012 } 3013 3014 // Make a C heap allocated version of the fingerprint to store in the adapter 3015 fingerprint = new AdapterFingerPrint(&sig_cc, regs_cc != regs_cc_ro); 3016 3017 // StubRoutines::code2() is initialized after this function can be called. As a result, 3018 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated 3019 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C 3020 // stub that ensure that an I2C stub is called from an interpreter frame. 3021 bool contains_all_checks = StubRoutines::code2() != NULL; 3022 3023 // Create I2C & C2I handlers 3024 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3025 if (buf != NULL) { 3026 CodeBuffer buffer(buf); 3027 short buffer_locs[20]; 3028 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3029 sizeof(buffer_locs)/sizeof(relocInfo)); 3030 3031 MacroAssembler _masm(&buffer); 3032 entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 3033 ces.args_on_stack(), 3034 &sig, 3035 regs, 3036 &sig_cc, 3037 regs_cc, 3038 &sig_cc_ro, 3039 regs_cc_ro, 3040 fingerprint, 3041 new_adapter); 3042 3043 if (ces.has_scalarized_args()) { 3044 // Save a C heap allocated version of the scalarized signature and store it in the adapter 3045 GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc.length(), true); 3046 heap_sig->appendAll(&sig_cc); 3047 entry->set_sig_cc(heap_sig); 3048 } 3049 3050 #ifdef ASSERT 3051 if (VerifyAdapterSharing) { 3052 if (shared_entry != NULL) { 3053 if (!shared_entry->compare_code(buf->code_begin(), buffer.insts_size())) { 3054 method->print(); 3055 } 3056 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match"); 3057 // Release the one just created and return the original 3058 _adapters->free_entry(entry); 3059 return shared_entry; 3060 } else { 3061 entry->save_code(buf->code_begin(), buffer.insts_size()); 3062 } 3063 } 3064 #endif 3065 3066 NOT_PRODUCT(insts_size = buffer.insts_size()); 3067 } 3068 if (new_adapter == NULL) { 3069 // CodeCache is full, disable compilation 3070 // Ought to log this but compile log is only per compile thread 3071 // and we're some non descript Java thread. 3072 return NULL; // Out of CodeCache space 3073 } 3074 entry->relocate(new_adapter->content_begin()); 3075 #ifndef PRODUCT 3076 // debugging suppport 3077 if (PrintAdapterHandlers || PrintStubCode) { 3078 ttyLocker ttyl; 3079 entry->print_adapter_on(tty); 3080 tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)", 3081 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), 3082 method->signature()->as_C_string(), fingerprint->as_string(), insts_size); 3083 tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry()); 3084 if (Verbose || PrintStubCode) { 3085 address first_pc = entry->base_address(); 3086 if (first_pc != NULL) { 3087 Disassembler::decode(first_pc, first_pc + insts_size); 3088 tty->cr(); 3089 } 3090 } 3091 } 3092 #endif 3093 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 3094 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 3095 if (contains_all_checks || !VerifyAdapterCalls) { 3096 _adapters->add(entry); 3097 } 3098 } 3099 // Outside of the lock 3100 if (new_adapter != NULL) { 3101 char blob_id[256]; 3102 jio_snprintf(blob_id, 3103 sizeof(blob_id), 3104 "%s(%s)@" PTR_FORMAT, 3105 new_adapter->name(), 3106 fingerprint->as_string(), 3107 new_adapter->content_begin()); 3108 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 3109 3110 if (JvmtiExport::should_post_dynamic_code_generated()) { 3111 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 3112 } 3113 } 3114 return entry; 3115 } 3116 3117 address AdapterHandlerEntry::base_address() { 3118 address base = _i2c_entry; 3119 if (base == NULL) base = _c2i_entry; 3120 assert(base <= _c2i_entry || _c2i_entry == NULL, ""); 3121 assert(base <= _c2i_value_entry || _c2i_value_entry == NULL, ""); 3122 assert(base <= _c2i_value_ro_entry || _c2i_value_ro_entry == NULL, ""); 3123 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, ""); 3124 assert(base <= _c2i_unverified_value_entry || _c2i_unverified_value_entry == NULL, ""); 3125 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, ""); 3126 return base; 3127 } 3128 3129 void AdapterHandlerEntry::relocate(address new_base) { 3130 address old_base = base_address(); 3131 assert(old_base != NULL, ""); 3132 ptrdiff_t delta = new_base - old_base; 3133 if (_i2c_entry != NULL) 3134 _i2c_entry += delta; 3135 if (_c2i_entry != NULL) 3136 _c2i_entry += delta; 3137 if (_c2i_value_entry != NULL) 3138 _c2i_value_entry += delta; 3139 if (_c2i_value_ro_entry != NULL) 3140 _c2i_value_ro_entry += delta; 3141 if (_c2i_unverified_entry != NULL) 3142 _c2i_unverified_entry += delta; 3143 if (_c2i_unverified_value_entry != NULL) 3144 _c2i_unverified_value_entry += delta; 3145 if (_c2i_no_clinit_check_entry != NULL) 3146 _c2i_no_clinit_check_entry += delta; 3147 assert(base_address() == new_base, ""); 3148 } 3149 3150 3151 void AdapterHandlerEntry::deallocate() { 3152 delete _fingerprint; 3153 if (_sig_cc != NULL) { 3154 delete _sig_cc; 3155 } 3156 #ifdef ASSERT 3157 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 3158 #endif 3159 } 3160 3161 3162 #ifdef ASSERT 3163 // Capture the code before relocation so that it can be compared 3164 // against other versions. If the code is captured after relocation 3165 // then relative instructions won't be equivalent. 3166 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3167 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3168 _saved_code_length = length; 3169 memcpy(_saved_code, buffer, length); 3170 } 3171 3172 3173 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) { 3174 if (length != _saved_code_length) { 3175 return false; 3176 } 3177 3178 return (memcmp(buffer, _saved_code, length) == 0) ? true : false; 3179 } 3180 #endif 3181 3182 3183 /** 3184 * Create a native wrapper for this native method. The wrapper converts the 3185 * Java-compiled calling convention to the native convention, handles 3186 * arguments, and transitions to native. On return from the native we transition 3187 * back to java blocking if a safepoint is in progress. 3188 */ 3189 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3190 ResourceMark rm; 3191 nmethod* nm = NULL; 3192 address critical_entry = NULL; 3193 3194 assert(method->is_native(), "must be native"); 3195 assert(method->is_method_handle_intrinsic() || 3196 method->has_native_function(), "must have something valid to call!"); 3197 3198 if (CriticalJNINatives && !method->is_method_handle_intrinsic()) { 3199 // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock. 3200 critical_entry = NativeLookup::lookup_critical_entry(method); 3201 } 3202 3203 { 3204 // Perform the work while holding the lock, but perform any printing outside the lock 3205 MutexLocker mu(AdapterHandlerLibrary_lock); 3206 // See if somebody beat us to it 3207 if (method->code() != NULL) { 3208 return; 3209 } 3210 3211 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3212 assert(compile_id > 0, "Must generate native wrapper"); 3213 3214 3215 ResourceMark rm; 3216 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3217 if (buf != NULL) { 3218 CodeBuffer buffer(buf); 3219 double locs_buf[20]; 3220 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3221 MacroAssembler _masm(&buffer); 3222 3223 // Fill in the signature array, for the calling-convention call. 3224 const int total_args_passed = method->size_of_parameters(); 3225 3226 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 3227 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3228 int i=0; 3229 if (!method->is_static()) // Pass in receiver first 3230 sig_bt[i++] = T_OBJECT; 3231 SignatureStream ss(method->signature()); 3232 for (; !ss.at_return_type(); ss.next()) { 3233 BasicType bt = ss.type(); 3234 sig_bt[i++] = bt; // Collect remaining bits of signature 3235 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 3236 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 3237 } 3238 assert(i == total_args_passed, ""); 3239 BasicType ret_type = ss.type(); 3240 3241 // Now get the compiled-Java layout as input (or output) arguments. 3242 // NOTE: Stubs for compiled entry points of method handle intrinsics 3243 // are just trampolines so the argument registers must be outgoing ones. 3244 const bool is_outgoing = method->is_method_handle_intrinsic(); 3245 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing); 3246 3247 // Generate the compiled-to-native wrapper code 3248 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry); 3249 3250 if (nm != NULL) { 3251 method->set_code(method, nm); 3252 3253 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple)); 3254 if (directive->PrintAssemblyOption) { 3255 nm->print_code(); 3256 } 3257 DirectivesStack::release(directive); 3258 } 3259 } 3260 } // Unlock AdapterHandlerLibrary_lock 3261 3262 3263 // Install the generated code. 3264 if (nm != NULL) { 3265 const char *msg = method->is_static() ? "(static)" : ""; 3266 CompileTask::print_ul(nm, msg); 3267 if (PrintCompilation) { 3268 ttyLocker ttyl; 3269 CompileTask::print(tty, nm, msg); 3270 } 3271 nm->post_compiled_method_load_event(); 3272 } 3273 } 3274 3275 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread)) 3276 assert(thread == JavaThread::current(), "must be"); 3277 // The code is about to enter a JNI lazy critical native method and 3278 // _needs_gc is true, so if this thread is already in a critical 3279 // section then just return, otherwise this thread should block 3280 // until needs_gc has been cleared. 3281 if (thread->in_critical()) { 3282 return; 3283 } 3284 // Lock and unlock a critical section to give the system a chance to block 3285 GCLocker::lock_critical(thread); 3286 GCLocker::unlock_critical(thread); 3287 JRT_END 3288 3289 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj)) 3290 assert(Universe::heap()->supports_object_pinning(), "Why we are here?"); 3291 assert(obj != NULL, "Should not be null"); 3292 oop o(obj); 3293 o = Universe::heap()->pin_object(thread, o); 3294 assert(o != NULL, "Should not be null"); 3295 return o; 3296 JRT_END 3297 3298 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj)) 3299 assert(Universe::heap()->supports_object_pinning(), "Why we are here?"); 3300 assert(obj != NULL, "Should not be null"); 3301 oop o(obj); 3302 Universe::heap()->unpin_object(thread, o); 3303 JRT_END 3304 3305 // ------------------------------------------------------------------------- 3306 // Java-Java calling convention 3307 // (what you use when Java calls Java) 3308 3309 //------------------------------name_for_receiver---------------------------------- 3310 // For a given signature, return the VMReg for parameter 0. 3311 VMReg SharedRuntime::name_for_receiver() { 3312 VMRegPair regs; 3313 BasicType sig_bt = T_OBJECT; 3314 (void) java_calling_convention(&sig_bt, ®s, 1, true); 3315 // Return argument 0 register. In the LP64 build pointers 3316 // take 2 registers, but the VM wants only the 'main' name. 3317 return regs.first(); 3318 } 3319 3320 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3321 // This method is returning a data structure allocating as a 3322 // ResourceObject, so do not put any ResourceMarks in here. 3323 char *s = sig->as_C_string(); 3324 int len = (int)strlen(s); 3325 s++; len--; // Skip opening paren 3326 3327 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3328 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3329 int cnt = 0; 3330 if (has_receiver) { 3331 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3332 } 3333 3334 while (*s != ')') { // Find closing right paren 3335 switch (*s++) { // Switch on signature character 3336 case 'B': sig_bt[cnt++] = T_BYTE; break; 3337 case 'C': sig_bt[cnt++] = T_CHAR; break; 3338 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; 3339 case 'F': sig_bt[cnt++] = T_FLOAT; break; 3340 case 'I': sig_bt[cnt++] = T_INT; break; 3341 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; 3342 case 'S': sig_bt[cnt++] = T_SHORT; break; 3343 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; 3344 case 'V': sig_bt[cnt++] = T_VOID; break; 3345 case 'L': // Oop 3346 while (*s++ != ';'); // Skip signature 3347 sig_bt[cnt++] = T_OBJECT; 3348 break; 3349 case 'Q': // Value type 3350 while (*s++ != ';'); // Skip signature 3351 sig_bt[cnt++] = T_VALUETYPE; 3352 break; 3353 case '[': { // Array 3354 do { // Skip optional size 3355 while (*s >= '0' && *s <= '9') s++; 3356 } while (*s++ == '['); // Nested arrays? 3357 // Skip element type 3358 if (s[-1] == 'L' || s[-1] == 'Q') 3359 while (*s++ != ';'); // Skip signature 3360 sig_bt[cnt++] = T_ARRAY; 3361 break; 3362 } 3363 default : ShouldNotReachHere(); 3364 } 3365 } 3366 3367 if (has_appendix) { 3368 sig_bt[cnt++] = T_OBJECT; 3369 } 3370 3371 assert(cnt < 256, "grow table size"); 3372 3373 int comp_args_on_stack; 3374 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); 3375 3376 // the calling convention doesn't count out_preserve_stack_slots so 3377 // we must add that in to get "true" stack offsets. 3378 3379 if (comp_args_on_stack) { 3380 for (int i = 0; i < cnt; i++) { 3381 VMReg reg1 = regs[i].first(); 3382 if (reg1->is_stack()) { 3383 // Yuck 3384 reg1 = reg1->bias(out_preserve_stack_slots()); 3385 } 3386 VMReg reg2 = regs[i].second(); 3387 if (reg2->is_stack()) { 3388 // Yuck 3389 reg2 = reg2->bias(out_preserve_stack_slots()); 3390 } 3391 regs[i].set_pair(reg2, reg1); 3392 } 3393 } 3394 3395 // results 3396 *arg_size = cnt; 3397 return regs; 3398 } 3399 3400 // OSR Migration Code 3401 // 3402 // This code is used convert interpreter frames into compiled frames. It is 3403 // called from very start of a compiled OSR nmethod. A temp array is 3404 // allocated to hold the interesting bits of the interpreter frame. All 3405 // active locks are inflated to allow them to move. The displaced headers and 3406 // active interpreter locals are copied into the temp buffer. Then we return 3407 // back to the compiled code. The compiled code then pops the current 3408 // interpreter frame off the stack and pushes a new compiled frame. Then it 3409 // copies the interpreter locals and displaced headers where it wants. 3410 // Finally it calls back to free the temp buffer. 3411 // 3412 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3413 3414 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) 3415 3416 // 3417 // This code is dependent on the memory layout of the interpreter local 3418 // array and the monitors. On all of our platforms the layout is identical 3419 // so this code is shared. If some platform lays the their arrays out 3420 // differently then this code could move to platform specific code or 3421 // the code here could be modified to copy items one at a time using 3422 // frame accessor methods and be platform independent. 3423 3424 frame fr = thread->last_frame(); 3425 assert(fr.is_interpreted_frame(), ""); 3426 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3427 3428 // Figure out how many monitors are active. 3429 int active_monitor_count = 0; 3430 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3431 kptr < fr.interpreter_frame_monitor_begin(); 3432 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3433 if (kptr->obj() != NULL) active_monitor_count++; 3434 } 3435 3436 // QQQ we could place number of active monitors in the array so that compiled code 3437 // could double check it. 3438 3439 Method* moop = fr.interpreter_frame_method(); 3440 int max_locals = moop->max_locals(); 3441 // Allocate temp buffer, 1 word per local & 2 per active monitor 3442 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3443 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3444 3445 // Copy the locals. Order is preserved so that loading of longs works. 3446 // Since there's no GC I can copy the oops blindly. 3447 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3448 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3449 (HeapWord*)&buf[0], 3450 max_locals); 3451 3452 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3453 int i = max_locals; 3454 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3455 kptr2 < fr.interpreter_frame_monitor_begin(); 3456 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3457 if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array 3458 BasicLock *lock = kptr2->lock(); 3459 // Inflate so the displaced header becomes position-independent 3460 if (lock->displaced_header().is_unlocked()) 3461 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3462 // Now the displaced header is free to move 3463 buf[i++] = (intptr_t)lock->displaced_header().value(); 3464 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3465 } 3466 } 3467 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3468 3469 return buf; 3470 JRT_END 3471 3472 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3473 FREE_C_HEAP_ARRAY(intptr_t, buf); 3474 JRT_END 3475 3476 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3477 AdapterHandlerTableIterator iter(_adapters); 3478 while (iter.has_next()) { 3479 AdapterHandlerEntry* a = iter.next(); 3480 if (b == CodeCache::find_blob(a->get_i2c_entry())) return true; 3481 } 3482 return false; 3483 } 3484 3485 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3486 AdapterHandlerTableIterator iter(_adapters); 3487 while (iter.has_next()) { 3488 AdapterHandlerEntry* a = iter.next(); 3489 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3490 st->print("Adapter for signature: "); 3491 a->print_adapter_on(tty); 3492 return; 3493 } 3494 } 3495 assert(false, "Should have found handler"); 3496 } 3497 3498 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3499 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3500 if (get_i2c_entry() != NULL) { 3501 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3502 } 3503 if (get_c2i_entry() != NULL) { 3504 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3505 } 3506 if (get_c2i_entry() != NULL) { 3507 st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_value_entry())); 3508 } 3509 if (get_c2i_entry() != NULL) { 3510 st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_value_ro_entry())); 3511 } 3512 if (get_c2i_unverified_entry() != NULL) { 3513 st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3514 } 3515 if (get_c2i_unverified_entry() != NULL) { 3516 st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_value_entry())); 3517 } 3518 if (get_c2i_no_clinit_check_entry() != NULL) { 3519 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3520 } 3521 st->cr(); 3522 } 3523 3524 #if INCLUDE_CDS 3525 3526 void CDSAdapterHandlerEntry::init() { 3527 assert(DumpSharedSpaces, "used during dump time only"); 3528 _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size()); 3529 _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*)); 3530 }; 3531 3532 #endif // INCLUDE_CDS 3533 3534 3535 #ifndef PRODUCT 3536 3537 void AdapterHandlerLibrary::print_statistics() { 3538 _adapters->print_statistics(); 3539 } 3540 3541 #endif /* PRODUCT */ 3542 3543 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread)) 3544 assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone"); 3545 if (thread->stack_reserved_zone_disabled()) { 3546 thread->enable_stack_reserved_zone(); 3547 } 3548 thread->set_reserved_stack_activation(thread->stack_base()); 3549 JRT_END 3550 3551 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) { 3552 ResourceMark rm(thread); 3553 frame activation; 3554 CompiledMethod* nm = NULL; 3555 int count = 1; 3556 3557 assert(fr.is_java_frame(), "Must start on Java frame"); 3558 3559 while (true) { 3560 Method* method = NULL; 3561 bool found = false; 3562 if (fr.is_interpreted_frame()) { 3563 method = fr.interpreter_frame_method(); 3564 if (method != NULL && method->has_reserved_stack_access()) { 3565 found = true; 3566 } 3567 } else { 3568 CodeBlob* cb = fr.cb(); 3569 if (cb != NULL && cb->is_compiled()) { 3570 nm = cb->as_compiled_method(); 3571 method = nm->method(); 3572 // scope_desc_near() must be used, instead of scope_desc_at() because on 3573 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3574 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) { 3575 method = sd->method(); 3576 if (method != NULL && method->has_reserved_stack_access()) { 3577 found = true; 3578 } 3579 } 3580 } 3581 } 3582 if (found) { 3583 activation = fr; 3584 warning("Potentially dangerous stack overflow in " 3585 "ReservedStackAccess annotated method %s [%d]", 3586 method->name_and_sig_as_C_string(), count++); 3587 EventReservedStackActivation event; 3588 if (event.should_commit()) { 3589 event.set_method(method); 3590 event.commit(); 3591 } 3592 } 3593 if (fr.is_first_java_frame()) { 3594 break; 3595 } else { 3596 fr = fr.java_sender(); 3597 } 3598 } 3599 return activation; 3600 } 3601 3602 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) { 3603 // After any safepoint, just before going back to compiled code, 3604 // we inform the GC that we will be doing initializing writes to 3605 // this object in the future without emitting card-marks, so 3606 // GC may take any compensating steps. 3607 3608 oop new_obj = thread->vm_result(); 3609 if (new_obj == NULL) return; 3610 3611 BarrierSet *bs = BarrierSet::barrier_set(); 3612 bs->on_slowpath_allocation_exit(thread, new_obj); 3613 } 3614 3615 // We are at a compiled code to interpreter call. We need backing 3616 // buffers for all value type arguments. Allocate an object array to 3617 // hold them (convenient because once we're done with it we don't have 3618 // to worry about freeing it). 3619 oop SharedRuntime::allocate_value_types_impl(JavaThread* thread, methodHandle callee, bool allocate_receiver, TRAPS) { 3620 assert(ValueTypePassFieldsAsArgs, "no reason to call this"); 3621 ResourceMark rm; 3622 3623 int nb_slots = 0; 3624 InstanceKlass* holder = callee->method_holder(); 3625 allocate_receiver &= !callee->is_static() && holder->is_value(); 3626 if (allocate_receiver) { 3627 nb_slots++; 3628 } 3629 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3630 if (ss.type() == T_VALUETYPE) { 3631 nb_slots++; 3632 } 3633 } 3634 objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL); 3635 objArrayHandle array(THREAD, array_oop); 3636 int i = 0; 3637 if (allocate_receiver) { 3638 ValueKlass* vk = ValueKlass::cast(holder); 3639 oop res = vk->allocate_instance(CHECK_NULL); 3640 array->obj_at_put(i, res); 3641 i++; 3642 } 3643 for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) { 3644 if (ss.type() == T_VALUETYPE) { 3645 ValueKlass* vk = ss.as_value_klass(holder); 3646 oop res = vk->allocate_instance(CHECK_NULL); 3647 array->obj_at_put(i, res); 3648 i++; 3649 } 3650 } 3651 return array(); 3652 } 3653 3654 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method, bool allocate_receiver)) 3655 methodHandle callee(callee_method); 3656 oop array = SharedRuntime::allocate_value_types_impl(thread, callee, allocate_receiver, CHECK); 3657 thread->set_vm_result(array); 3658 thread->set_vm_result_2(callee()); // TODO: required to keep callee live? 3659 JRT_END 3660 3661 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields. 3662 // This is called from the C2I adapter after value type arguments are heap allocated and initialized. 3663 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array)) 3664 { 3665 assert(ValueTypePassFieldsAsArgs, "no reason to call this"); 3666 assert(oopDesc::is_oop(array), "should be oop"); 3667 for (int i = 0; i < array->length(); ++i) { 3668 instanceOop valueOop = (instanceOop)array->obj_at(i); 3669 ValueKlass* vk = ValueKlass::cast(valueOop->klass()); 3670 if (vk->contains_oops()) { 3671 const address dst_oop_addr = ((address) (void*) valueOop); 3672 OopMapBlock* map = vk->start_of_nonstatic_oop_maps(); 3673 OopMapBlock* const end = map + vk->nonstatic_oop_map_count(); 3674 while (map != end) { 3675 address doop_address = dst_oop_addr + map->offset(); 3676 barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())-> 3677 write_ref_array((HeapWord*) doop_address, map->count()); 3678 map++; 3679 } 3680 } 3681 } 3682 } 3683 JRT_END 3684 3685 // We're returning from an interpreted method: load each field into a 3686 // register following the calling convention 3687 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res)) 3688 { 3689 assert(res->klass()->is_value(), "only value types here"); 3690 ResourceMark rm; 3691 RegisterMap reg_map(thread); 3692 frame stubFrame = thread->last_frame(); 3693 frame callerFrame = stubFrame.sender(®_map); 3694 assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter"); 3695 3696 ValueKlass* vk = ValueKlass::cast(res->klass()); 3697 3698 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3699 const Array<VMRegPair>* regs = vk->return_regs(); 3700 3701 if (regs == NULL) { 3702 // The fields of the value klass don't fit in registers, bail out 3703 return; 3704 } 3705 3706 int j = 1; 3707 for (int i = 0; i < sig_vk->length(); i++) { 3708 BasicType bt = sig_vk->at(i)._bt; 3709 if (bt == T_VALUETYPE) { 3710 continue; 3711 } 3712 if (bt == T_VOID) { 3713 if (sig_vk->at(i-1)._bt == T_LONG || 3714 sig_vk->at(i-1)._bt == T_DOUBLE) { 3715 j++; 3716 } 3717 continue; 3718 } 3719 int off = sig_vk->at(i)._offset; 3720 assert(off > 0, "offset in object should be positive"); 3721 VMRegPair pair = regs->at(j); 3722 address loc = reg_map.location(pair.first()); 3723 switch(bt) { 3724 case T_BOOLEAN: 3725 *(jboolean*)loc = res->bool_field(off); 3726 break; 3727 case T_CHAR: 3728 *(jchar*)loc = res->char_field(off); 3729 break; 3730 case T_BYTE: 3731 *(jbyte*)loc = res->byte_field(off); 3732 break; 3733 case T_SHORT: 3734 *(jshort*)loc = res->short_field(off); 3735 break; 3736 case T_INT: { 3737 *(jint*)loc = res->int_field(off); 3738 break; 3739 } 3740 case T_LONG: 3741 #ifdef _LP64 3742 *(intptr_t*)loc = res->long_field(off); 3743 #else 3744 Unimplemented(); 3745 #endif 3746 break; 3747 case T_OBJECT: 3748 case T_ARRAY: { 3749 *(oop*)loc = res->obj_field(off); 3750 break; 3751 } 3752 case T_FLOAT: 3753 *(jfloat*)loc = res->float_field(off); 3754 break; 3755 case T_DOUBLE: 3756 *(jdouble*)loc = res->double_field(off); 3757 break; 3758 default: 3759 ShouldNotReachHere(); 3760 } 3761 j++; 3762 } 3763 assert(j == regs->length(), "missed a field?"); 3764 3765 #ifdef ASSERT 3766 VMRegPair pair = regs->at(0); 3767 address loc = reg_map.location(pair.first()); 3768 assert(*(oopDesc**)loc == res, "overwritten object"); 3769 #endif 3770 3771 thread->set_vm_result(res); 3772 } 3773 JRT_END 3774 3775 // We've returned to an interpreted method, the interpreter needs a 3776 // reference to a value type instance. Allocate it and initialize it 3777 // from field's values in registers. 3778 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res)) 3779 { 3780 ResourceMark rm; 3781 RegisterMap reg_map(thread); 3782 frame stubFrame = thread->last_frame(); 3783 frame callerFrame = stubFrame.sender(®_map); 3784 3785 #ifdef ASSERT 3786 ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map); 3787 #endif 3788 3789 if (!is_set_nth_bit(res, 0)) { 3790 // We're not returning with value type fields in registers (the 3791 // calling convention didn't allow it for this value klass) 3792 assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area"); 3793 thread->set_vm_result((oopDesc*)res); 3794 assert(verif_vk == NULL, "broken calling convention"); 3795 return; 3796 } 3797 3798 clear_nth_bit(res, 0); 3799 ValueKlass* vk = (ValueKlass*)res; 3800 assert(verif_vk == vk, "broken calling convention"); 3801 assert(Metaspace::contains((void*)res), "should be klass"); 3802 3803 // Allocate handles for every oop field so they are safe in case of 3804 // a safepoint when allocating 3805 GrowableArray<Handle> handles; 3806 vk->save_oop_fields(reg_map, handles); 3807 3808 // It's unsafe to safepoint until we are here 3809 JRT_BLOCK; 3810 { 3811 Thread* THREAD = thread; 3812 oop vt = vk->realloc_result(reg_map, handles, CHECK); 3813 thread->set_vm_result(vt); 3814 } 3815 JRT_BLOCK_END; 3816 } 3817 JRT_END 3818