1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/access.hpp"
  51 #include "oops/fieldStreams.hpp"
  52 #include "oops/klass.hpp"
  53 #include "oops/method.inline.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/valueKlass.inline.hpp"
  58 #include "prims/forte.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/methodHandles.hpp"
  61 #include "prims/nativeLookup.hpp"
  62 #include "runtime/arguments.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/biasedLocking.hpp"
  65 #include "runtime/compilationPolicy.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/hashtable.inline.hpp"
  80 #include "utilities/macros.hpp"
  81 #include "utilities/xmlstream.hpp"
  82 #ifdef COMPILER1
  83 #include "c1/c1_Runtime1.hpp"
  84 #endif
  85 
  86 // Shared stub locations
  87 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  88 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  89 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  93 
  94 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  98 
  99 #ifdef COMPILER2
 100 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 101 #endif // COMPILER2
 102 
 103 
 104 //----------------------------generate_stubs-----------------------------------
 105 void SharedRuntime::generate_stubs() {
 106   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 107   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 108   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 109   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 110   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 111   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 112 
 113 #if COMPILER2_OR_JVMCI
 114   // Vectors are generated only by C2 and JVMCI.
 115   bool support_wide = is_wide_vector(MaxVectorSize);
 116   if (support_wide) {
 117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 118   }
 119 #endif // COMPILER2_OR_JVMCI
 120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 122 
 123   generate_deopt_blob();
 124 
 125 #ifdef COMPILER2
 126   generate_uncommon_trap_blob();
 127 #endif // COMPILER2
 128 }
 129 
 130 #include <math.h>
 131 
 132 // Implementation of SharedRuntime
 133 
 134 #ifndef PRODUCT
 135 // For statistics
 136 int SharedRuntime::_ic_miss_ctr = 0;
 137 int SharedRuntime::_wrong_method_ctr = 0;
 138 int SharedRuntime::_resolve_static_ctr = 0;
 139 int SharedRuntime::_resolve_virtual_ctr = 0;
 140 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 141 int SharedRuntime::_implicit_null_throws = 0;
 142 int SharedRuntime::_implicit_div0_throws = 0;
 143 int SharedRuntime::_throw_null_ctr = 0;
 144 
 145 int SharedRuntime::_nof_normal_calls = 0;
 146 int SharedRuntime::_nof_optimized_calls = 0;
 147 int SharedRuntime::_nof_inlined_calls = 0;
 148 int SharedRuntime::_nof_megamorphic_calls = 0;
 149 int SharedRuntime::_nof_static_calls = 0;
 150 int SharedRuntime::_nof_inlined_static_calls = 0;
 151 int SharedRuntime::_nof_interface_calls = 0;
 152 int SharedRuntime::_nof_optimized_interface_calls = 0;
 153 int SharedRuntime::_nof_inlined_interface_calls = 0;
 154 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 155 int SharedRuntime::_nof_removable_exceptions = 0;
 156 
 157 int SharedRuntime::_new_instance_ctr=0;
 158 int SharedRuntime::_new_array_ctr=0;
 159 int SharedRuntime::_multi1_ctr=0;
 160 int SharedRuntime::_multi2_ctr=0;
 161 int SharedRuntime::_multi3_ctr=0;
 162 int SharedRuntime::_multi4_ctr=0;
 163 int SharedRuntime::_multi5_ctr=0;
 164 int SharedRuntime::_mon_enter_stub_ctr=0;
 165 int SharedRuntime::_mon_exit_stub_ctr=0;
 166 int SharedRuntime::_mon_enter_ctr=0;
 167 int SharedRuntime::_mon_exit_ctr=0;
 168 int SharedRuntime::_partial_subtype_ctr=0;
 169 int SharedRuntime::_jbyte_array_copy_ctr=0;
 170 int SharedRuntime::_jshort_array_copy_ctr=0;
 171 int SharedRuntime::_jint_array_copy_ctr=0;
 172 int SharedRuntime::_jlong_array_copy_ctr=0;
 173 int SharedRuntime::_oop_array_copy_ctr=0;
 174 int SharedRuntime::_checkcast_array_copy_ctr=0;
 175 int SharedRuntime::_unsafe_array_copy_ctr=0;
 176 int SharedRuntime::_generic_array_copy_ctr=0;
 177 int SharedRuntime::_slow_array_copy_ctr=0;
 178 int SharedRuntime::_find_handler_ctr=0;
 179 int SharedRuntime::_rethrow_ctr=0;
 180 
 181 int     SharedRuntime::_ICmiss_index                    = 0;
 182 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 184 
 185 
 186 void SharedRuntime::trace_ic_miss(address at) {
 187   for (int i = 0; i < _ICmiss_index; i++) {
 188     if (_ICmiss_at[i] == at) {
 189       _ICmiss_count[i]++;
 190       return;
 191     }
 192   }
 193   int index = _ICmiss_index++;
 194   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 195   _ICmiss_at[index] = at;
 196   _ICmiss_count[index] = 1;
 197 }
 198 
 199 void SharedRuntime::print_ic_miss_histogram() {
 200   if (ICMissHistogram) {
 201     tty->print_cr("IC Miss Histogram:");
 202     int tot_misses = 0;
 203     for (int i = 0; i < _ICmiss_index; i++) {
 204       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 205       tot_misses += _ICmiss_count[i];
 206     }
 207     tty->print_cr("Total IC misses: %7d", tot_misses);
 208   }
 209 }
 210 #endif // PRODUCT
 211 
 212 
 213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 214   return x * y;
 215 JRT_END
 216 
 217 
 218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 219   if (x == min_jlong && y == CONST64(-1)) {
 220     return x;
 221   } else {
 222     return x / y;
 223   }
 224 JRT_END
 225 
 226 
 227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 228   if (x == min_jlong && y == CONST64(-1)) {
 229     return 0;
 230   } else {
 231     return x % y;
 232   }
 233 JRT_END
 234 
 235 
 236 const juint  float_sign_mask  = 0x7FFFFFFF;
 237 const juint  float_infinity   = 0x7F800000;
 238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 239 const julong double_infinity  = CONST64(0x7FF0000000000000);
 240 
 241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 242 #ifdef _WIN64
 243   // 64-bit Windows on amd64 returns the wrong values for
 244   // infinity operands.
 245   union { jfloat f; juint i; } xbits, ybits;
 246   xbits.f = x;
 247   ybits.f = y;
 248   // x Mod Infinity == x unless x is infinity
 249   if (((xbits.i & float_sign_mask) != float_infinity) &&
 250        ((ybits.i & float_sign_mask) == float_infinity) ) {
 251     return x;
 252   }
 253   return ((jfloat)fmod_winx64((double)x, (double)y));
 254 #else
 255   return ((jfloat)fmod((double)x,(double)y));
 256 #endif
 257 JRT_END
 258 
 259 
 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 261 #ifdef _WIN64
 262   union { jdouble d; julong l; } xbits, ybits;
 263   xbits.d = x;
 264   ybits.d = y;
 265   // x Mod Infinity == x unless x is infinity
 266   if (((xbits.l & double_sign_mask) != double_infinity) &&
 267        ((ybits.l & double_sign_mask) == double_infinity) ) {
 268     return x;
 269   }
 270   return ((jdouble)fmod_winx64((double)x, (double)y));
 271 #else
 272   return ((jdouble)fmod((double)x,(double)y));
 273 #endif
 274 JRT_END
 275 
 276 #ifdef __SOFTFP__
 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 278   return x + y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 282   return x - y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 286   return x * y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 290   return x / y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 310   return (jfloat)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 318   return (jdouble)x;
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 322   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 326   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 330   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 // Functions to return the opposite of the aeabi functions for nan.
 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 343   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 351   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 359   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 367   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 // Intrinsics make gcc generate code for these.
 371 float  SharedRuntime::fneg(float f)   {
 372   return -f;
 373 }
 374 
 375 double SharedRuntime::dneg(double f)  {
 376   return -f;
 377 }
 378 
 379 #endif // __SOFTFP__
 380 
 381 #if defined(__SOFTFP__) || defined(E500V2)
 382 // Intrinsics make gcc generate code for these.
 383 double SharedRuntime::dabs(double f)  {
 384   return (f <= (double)0.0) ? (double)0.0 - f : f;
 385 }
 386 
 387 #endif
 388 
 389 #if defined(__SOFTFP__) || defined(PPC)
 390 double SharedRuntime::dsqrt(double f) {
 391   return sqrt(f);
 392 }
 393 #endif
 394 
 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 396   if (g_isnan(x))
 397     return 0;
 398   if (x >= (jfloat) max_jint)
 399     return max_jint;
 400   if (x <= (jfloat) min_jint)
 401     return min_jint;
 402   return (jint) x;
 403 JRT_END
 404 
 405 
 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jlong)
 410     return max_jlong;
 411   if (x <= (jfloat) min_jlong)
 412     return min_jlong;
 413   return (jlong) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jdouble) max_jint)
 421     return max_jint;
 422   if (x <= (jdouble) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jlong)
 432     return max_jlong;
 433   if (x <= (jdouble) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 440   return (jfloat)x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 450   return (jdouble)x;
 451 JRT_END
 452 
 453 // Exception handling across interpreter/compiler boundaries
 454 //
 455 // exception_handler_for_return_address(...) returns the continuation address.
 456 // The continuation address is the entry point of the exception handler of the
 457 // previous frame depending on the return address.
 458 
 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 460   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 461   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 462 
 463   // Reset method handle flag.
 464   thread->set_is_method_handle_return(false);
 465 
 466 #if INCLUDE_JVMCI
 467   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 468   // and other exception handler continuations do not read it
 469   thread->set_exception_pc(NULL);
 470 #endif // INCLUDE_JVMCI
 471 
 472   // The fastest case first
 473   CodeBlob* blob = CodeCache::find_blob(return_address);
 474   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 475   if (nm != NULL) {
 476     // Set flag if return address is a method handle call site.
 477     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 478     // native nmethods don't have exception handlers
 479     assert(!nm->is_native_method(), "no exception handler");
 480     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 481     if (nm->is_deopt_pc(return_address)) {
 482       // If we come here because of a stack overflow, the stack may be
 483       // unguarded. Reguard the stack otherwise if we return to the
 484       // deopt blob and the stack bang causes a stack overflow we
 485       // crash.
 486       bool guard_pages_enabled = thread->stack_guards_enabled();
 487       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 488       if (thread->reserved_stack_activation() != thread->stack_base()) {
 489         thread->set_reserved_stack_activation(thread->stack_base());
 490       }
 491       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 492       return SharedRuntime::deopt_blob()->unpack_with_exception();
 493     } else {
 494       return nm->exception_begin();
 495     }
 496   }
 497 
 498   // Entry code
 499   if (StubRoutines::returns_to_call_stub(return_address)) {
 500     return StubRoutines::catch_exception_entry();
 501   }
 502   // Interpreted code
 503   if (Interpreter::contains(return_address)) {
 504     return Interpreter::rethrow_exception_entry();
 505   }
 506 
 507   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 508   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 509 
 510 #ifndef PRODUCT
 511   { ResourceMark rm;
 512     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 513     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 514     tty->print_cr("b) other problem");
 515   }
 516 #endif // PRODUCT
 517 
 518   ShouldNotReachHere();
 519   return NULL;
 520 }
 521 
 522 
 523 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 524   return raw_exception_handler_for_return_address(thread, return_address);
 525 JRT_END
 526 
 527 
 528 address SharedRuntime::get_poll_stub(address pc) {
 529   address stub;
 530   // Look up the code blob
 531   CodeBlob *cb = CodeCache::find_blob(pc);
 532 
 533   // Should be an nmethod
 534   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 535 
 536   // Look up the relocation information
 537   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 538     "safepoint polling: type must be poll");
 539 
 540 #ifdef ASSERT
 541   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 542     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 543     Disassembler::decode(cb);
 544     fatal("Only polling locations are used for safepoint");
 545   }
 546 #endif
 547 
 548   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 549   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 550   if (at_poll_return) {
 551     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 552            "polling page return stub not created yet");
 553     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 554   } else if (has_wide_vectors) {
 555     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 556            "polling page vectors safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 558   } else {
 559     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 560            "polling page safepoint stub not created yet");
 561     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 562   }
 563   log_debug(safepoint)("... found polling page %s exception at pc = "
 564                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 565                        at_poll_return ? "return" : "loop",
 566                        (intptr_t)pc, (intptr_t)stub);
 567   return stub;
 568 }
 569 
 570 
 571 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 572   assert(caller.is_interpreted_frame(), "");
 573   int args_size = ArgumentSizeComputer(sig).size() + 1;
 574   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 575   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 576   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 577   return result;
 578 }
 579 
 580 
 581 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 582   if (JvmtiExport::can_post_on_exceptions()) {
 583     vframeStream vfst(thread, true);
 584     methodHandle method = methodHandle(thread, vfst.method());
 585     address bcp = method()->bcp_from(vfst.bci());
 586     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 587   }
 588   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 589 }
 590 
 591 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 592   Handle h_exception = Exceptions::new_exception(thread, name, message);
 593   throw_and_post_jvmti_exception(thread, h_exception);
 594 }
 595 
 596 // The interpreter code to call this tracing function is only
 597 // called/generated when UL is on for redefine, class and has the right level
 598 // and tags. Since obsolete methods are never compiled, we don't have
 599 // to modify the compilers to generate calls to this function.
 600 //
 601 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 602     JavaThread* thread, Method* method))
 603   if (method->is_obsolete()) {
 604     // We are calling an obsolete method, but this is not necessarily
 605     // an error. Our method could have been redefined just after we
 606     // fetched the Method* from the constant pool.
 607     ResourceMark rm;
 608     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 609   }
 610   return 0;
 611 JRT_END
 612 
 613 // ret_pc points into caller; we are returning caller's exception handler
 614 // for given exception
 615 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 616                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 617   assert(cm != NULL, "must exist");
 618   ResourceMark rm;
 619 
 620 #if INCLUDE_JVMCI
 621   if (cm->is_compiled_by_jvmci()) {
 622     // lookup exception handler for this pc
 623     int catch_pco = ret_pc - cm->code_begin();
 624     ExceptionHandlerTable table(cm);
 625     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 626     if (t != NULL) {
 627       return cm->code_begin() + t->pco();
 628     } else {
 629       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 630     }
 631   }
 632 #endif // INCLUDE_JVMCI
 633 
 634   nmethod* nm = cm->as_nmethod();
 635   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 636   // determine handler bci, if any
 637   EXCEPTION_MARK;
 638 
 639   int handler_bci = -1;
 640   int scope_depth = 0;
 641   if (!force_unwind) {
 642     int bci = sd->bci();
 643     bool recursive_exception = false;
 644     do {
 645       bool skip_scope_increment = false;
 646       // exception handler lookup
 647       Klass* ek = exception->klass();
 648       methodHandle mh(THREAD, sd->method());
 649       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 650       if (HAS_PENDING_EXCEPTION) {
 651         recursive_exception = true;
 652         // We threw an exception while trying to find the exception handler.
 653         // Transfer the new exception to the exception handle which will
 654         // be set into thread local storage, and do another lookup for an
 655         // exception handler for this exception, this time starting at the
 656         // BCI of the exception handler which caused the exception to be
 657         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 658         // argument to ensure that the correct exception is thrown (4870175).
 659         recursive_exception_occurred = true;
 660         exception = Handle(THREAD, PENDING_EXCEPTION);
 661         CLEAR_PENDING_EXCEPTION;
 662         if (handler_bci >= 0) {
 663           bci = handler_bci;
 664           handler_bci = -1;
 665           skip_scope_increment = true;
 666         }
 667       }
 668       else {
 669         recursive_exception = false;
 670       }
 671       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 672         sd = sd->sender();
 673         if (sd != NULL) {
 674           bci = sd->bci();
 675         }
 676         ++scope_depth;
 677       }
 678     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 679   }
 680 
 681   // found handling method => lookup exception handler
 682   int catch_pco = ret_pc - nm->code_begin();
 683 
 684   ExceptionHandlerTable table(nm);
 685   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 686   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 687     // Allow abbreviated catch tables.  The idea is to allow a method
 688     // to materialize its exceptions without committing to the exact
 689     // routing of exceptions.  In particular this is needed for adding
 690     // a synthetic handler to unlock monitors when inlining
 691     // synchronized methods since the unlock path isn't represented in
 692     // the bytecodes.
 693     t = table.entry_for(catch_pco, -1, 0);
 694   }
 695 
 696 #ifdef COMPILER1
 697   if (t == NULL && nm->is_compiled_by_c1()) {
 698     assert(nm->unwind_handler_begin() != NULL, "");
 699     return nm->unwind_handler_begin();
 700   }
 701 #endif
 702 
 703   if (t == NULL) {
 704     ttyLocker ttyl;
 705     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 706     tty->print_cr("   Exception:");
 707     exception->print();
 708     tty->cr();
 709     tty->print_cr(" Compiled exception table :");
 710     table.print();
 711     nm->print_code();
 712     guarantee(false, "missing exception handler");
 713     return NULL;
 714   }
 715 
 716   return nm->code_begin() + t->pco();
 717 }
 718 
 719 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 720   // These errors occur only at call sites
 721   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 722 JRT_END
 723 
 724 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 725   // These errors occur only at call sites
 726   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 727 JRT_END
 728 
 729 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 734   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 735 JRT_END
 736 
 737 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 738   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 739   // cache sites (when the callee activation is not yet set up) so we are at a call site
 740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 744   throw_StackOverflowError_common(thread, false);
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 748   throw_StackOverflowError_common(thread, true);
 749 JRT_END
 750 
 751 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 752   // We avoid using the normal exception construction in this case because
 753   // it performs an upcall to Java, and we're already out of stack space.
 754   Thread* THREAD = thread;
 755   Klass* k = SystemDictionary::StackOverflowError_klass();
 756   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 757   if (delayed) {
 758     java_lang_Throwable::set_message(exception_oop,
 759                                      Universe::delayed_stack_overflow_error_message());
 760   }
 761   Handle exception (thread, exception_oop);
 762   if (StackTraceInThrowable) {
 763     java_lang_Throwable::fill_in_stack_trace(exception);
 764   }
 765   // Increment counter for hs_err file reporting
 766   Atomic::inc(&Exceptions::_stack_overflow_errors);
 767   throw_and_post_jvmti_exception(thread, exception);
 768 }
 769 
 770 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 771                                                            address pc,
 772                                                            ImplicitExceptionKind exception_kind)
 773 {
 774   address target_pc = NULL;
 775 
 776   if (Interpreter::contains(pc)) {
 777 #ifdef CC_INTERP
 778     // C++ interpreter doesn't throw implicit exceptions
 779     ShouldNotReachHere();
 780 #else
 781     switch (exception_kind) {
 782       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 783       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 784       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 785       default:                      ShouldNotReachHere();
 786     }
 787 #endif // !CC_INTERP
 788   } else {
 789     switch (exception_kind) {
 790       case STACK_OVERFLOW: {
 791         // Stack overflow only occurs upon frame setup; the callee is
 792         // going to be unwound. Dispatch to a shared runtime stub
 793         // which will cause the StackOverflowError to be fabricated
 794         // and processed.
 795         // Stack overflow should never occur during deoptimization:
 796         // the compiled method bangs the stack by as much as the
 797         // interpreter would need in case of a deoptimization. The
 798         // deoptimization blob and uncommon trap blob bang the stack
 799         // in a debug VM to verify the correctness of the compiled
 800         // method stack banging.
 801         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 802         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 803         return StubRoutines::throw_StackOverflowError_entry();
 804       }
 805 
 806       case IMPLICIT_NULL: {
 807         if (VtableStubs::contains(pc)) {
 808           // We haven't yet entered the callee frame. Fabricate an
 809           // exception and begin dispatching it in the caller. Since
 810           // the caller was at a call site, it's safe to destroy all
 811           // caller-saved registers, as these entry points do.
 812           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 813 
 814           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 815           if (vt_stub == NULL) return NULL;
 816 
 817           if (vt_stub->is_abstract_method_error(pc)) {
 818             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 819             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 820             // Instead of throwing the abstract method error here directly, we re-resolve
 821             // and will throw the AbstractMethodError during resolve. As a result, we'll
 822             // get a more detailed error message.
 823             return SharedRuntime::get_handle_wrong_method_stub();
 824           } else {
 825             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 826             // Assert that the signal comes from the expected location in stub code.
 827             assert(vt_stub->is_null_pointer_exception(pc),
 828                    "obtained signal from unexpected location in stub code");
 829             return StubRoutines::throw_NullPointerException_at_call_entry();
 830           }
 831         } else {
 832           CodeBlob* cb = CodeCache::find_blob(pc);
 833 
 834           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 835           if (cb == NULL) return NULL;
 836 
 837           // Exception happened in CodeCache. Must be either:
 838           // 1. Inline-cache check in C2I handler blob,
 839           // 2. Inline-cache check in nmethod, or
 840           // 3. Implicit null exception in nmethod
 841 
 842           if (!cb->is_compiled()) {
 843             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 844             if (!is_in_blob) {
 845               // Allow normal crash reporting to handle this
 846               return NULL;
 847             }
 848             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 849             // There is no handler here, so we will simply unwind.
 850             return StubRoutines::throw_NullPointerException_at_call_entry();
 851           }
 852 
 853           // Otherwise, it's a compiled method.  Consult its exception handlers.
 854           CompiledMethod* cm = (CompiledMethod*)cb;
 855           if (cm->inlinecache_check_contains(pc)) {
 856             // exception happened inside inline-cache check code
 857             // => the nmethod is not yet active (i.e., the frame
 858             // is not set up yet) => use return address pushed by
 859             // caller => don't push another return address
 860             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 861             return StubRoutines::throw_NullPointerException_at_call_entry();
 862           }
 863 
 864           if (cm->method()->is_method_handle_intrinsic()) {
 865             // exception happened inside MH dispatch code, similar to a vtable stub
 866             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 867             return StubRoutines::throw_NullPointerException_at_call_entry();
 868           }
 869 
 870 #ifndef PRODUCT
 871           _implicit_null_throws++;
 872 #endif
 873           target_pc = cm->continuation_for_implicit_null_exception(pc);
 874           // If there's an unexpected fault, target_pc might be NULL,
 875           // in which case we want to fall through into the normal
 876           // error handling code.
 877         }
 878 
 879         break; // fall through
 880       }
 881 
 882 
 883       case IMPLICIT_DIVIDE_BY_ZERO: {
 884         CompiledMethod* cm = CodeCache::find_compiled(pc);
 885         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 886 #ifndef PRODUCT
 887         _implicit_div0_throws++;
 888 #endif
 889         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 890         // If there's an unexpected fault, target_pc might be NULL,
 891         // in which case we want to fall through into the normal
 892         // error handling code.
 893         break; // fall through
 894       }
 895 
 896       default: ShouldNotReachHere();
 897     }
 898 
 899     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 900 
 901     if (exception_kind == IMPLICIT_NULL) {
 902 #ifndef PRODUCT
 903       // for AbortVMOnException flag
 904       Exceptions::debug_check_abort("java.lang.NullPointerException");
 905 #endif //PRODUCT
 906       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 907     } else {
 908 #ifndef PRODUCT
 909       // for AbortVMOnException flag
 910       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 911 #endif //PRODUCT
 912       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 913     }
 914     return target_pc;
 915   }
 916 
 917   ShouldNotReachHere();
 918   return NULL;
 919 }
 920 
 921 
 922 /**
 923  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 924  * installed in the native function entry of all native Java methods before
 925  * they get linked to their actual native methods.
 926  *
 927  * \note
 928  * This method actually never gets called!  The reason is because
 929  * the interpreter's native entries call NativeLookup::lookup() which
 930  * throws the exception when the lookup fails.  The exception is then
 931  * caught and forwarded on the return from NativeLookup::lookup() call
 932  * before the call to the native function.  This might change in the future.
 933  */
 934 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 935 {
 936   // We return a bad value here to make sure that the exception is
 937   // forwarded before we look at the return value.
 938   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 939 }
 940 JNI_END
 941 
 942 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 943   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 944 }
 945 
 946 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 947 #if INCLUDE_JVMCI
 948   if (!obj->klass()->has_finalizer()) {
 949     return;
 950   }
 951 #endif // INCLUDE_JVMCI
 952   assert(oopDesc::is_oop(obj), "must be a valid oop");
 953   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 954   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 955 JRT_END
 956 
 957 
 958 jlong SharedRuntime::get_java_tid(Thread* thread) {
 959   if (thread != NULL) {
 960     if (thread->is_Java_thread()) {
 961       oop obj = ((JavaThread*)thread)->threadObj();
 962       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 963     }
 964   }
 965   return 0;
 966 }
 967 
 968 /**
 969  * This function ought to be a void function, but cannot be because
 970  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 971  * 6254741.  Once that is fixed we can remove the dummy return value.
 972  */
 973 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 974   return dtrace_object_alloc_base(Thread::current(), o, size);
 975 }
 976 
 977 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 978   assert(DTraceAllocProbes, "wrong call");
 979   Klass* klass = o->klass();
 980   Symbol* name = klass->name();
 981   HOTSPOT_OBJECT_ALLOC(
 982                    get_java_tid(thread),
 983                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 984   return 0;
 985 }
 986 
 987 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 988     JavaThread* thread, Method* method))
 989   assert(DTraceMethodProbes, "wrong call");
 990   Symbol* kname = method->klass_name();
 991   Symbol* name = method->name();
 992   Symbol* sig = method->signature();
 993   HOTSPOT_METHOD_ENTRY(
 994       get_java_tid(thread),
 995       (char *) kname->bytes(), kname->utf8_length(),
 996       (char *) name->bytes(), name->utf8_length(),
 997       (char *) sig->bytes(), sig->utf8_length());
 998   return 0;
 999 JRT_END
1000 
1001 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1002     JavaThread* thread, Method* method))
1003   assert(DTraceMethodProbes, "wrong call");
1004   Symbol* kname = method->klass_name();
1005   Symbol* name = method->name();
1006   Symbol* sig = method->signature();
1007   HOTSPOT_METHOD_RETURN(
1008       get_java_tid(thread),
1009       (char *) kname->bytes(), kname->utf8_length(),
1010       (char *) name->bytes(), name->utf8_length(),
1011       (char *) sig->bytes(), sig->utf8_length());
1012   return 0;
1013 JRT_END
1014 
1015 
1016 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1017 // for a call current in progress, i.e., arguments has been pushed on stack
1018 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1019 // vtable updates, etc.  Caller frame must be compiled.
1020 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1021   ResourceMark rm(THREAD);
1022 
1023   // last java frame on stack (which includes native call frames)
1024   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1025 
1026   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1027 }
1028 
1029 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1030   CompiledMethod* caller = vfst.nm();
1031 
1032   nmethodLocker caller_lock(caller);
1033 
1034   address pc = vfst.frame_pc();
1035   { // Get call instruction under lock because another thread may be busy patching it.
1036     CompiledICLocker ic_locker(caller);
1037     return caller->attached_method_before_pc(pc);
1038   }
1039   return NULL;
1040 }
1041 
1042 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1043 // for a call current in progress, i.e., arguments has been pushed on stack
1044 // but callee has not been invoked yet.  Caller frame must be compiled.
1045 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1046                                               vframeStream& vfst,
1047                                               Bytecodes::Code& bc,
1048                                               CallInfo& callinfo, TRAPS) {
1049   Handle receiver;
1050   Handle nullHandle;  //create a handy null handle for exception returns
1051 
1052   assert(!vfst.at_end(), "Java frame must exist");
1053 
1054   // Find caller and bci from vframe
1055   methodHandle caller(THREAD, vfst.method());
1056   int          bci   = vfst.bci();
1057 
1058   Bytecode_invoke bytecode(caller, bci);
1059   int bytecode_index = bytecode.index();
1060   bc = bytecode.invoke_code();
1061 
1062   methodHandle attached_method = extract_attached_method(vfst);
1063   if (attached_method.not_null()) {
1064     methodHandle callee = bytecode.static_target(CHECK_NH);
1065     vmIntrinsics::ID id = callee->intrinsic_id();
1066     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1067     // it attaches statically resolved method to the call site.
1068     if (MethodHandles::is_signature_polymorphic(id) &&
1069         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1070       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1071 
1072       // Adjust invocation mode according to the attached method.
1073       switch (bc) {
1074         case Bytecodes::_invokevirtual:
1075           if (attached_method->method_holder()->is_interface()) {
1076             bc = Bytecodes::_invokeinterface;
1077           }
1078           break;
1079         case Bytecodes::_invokeinterface:
1080           if (!attached_method->method_holder()->is_interface()) {
1081             bc = Bytecodes::_invokevirtual;
1082           }
1083           break;
1084         case Bytecodes::_invokehandle:
1085           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1086             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1087                                               : Bytecodes::_invokevirtual;
1088           }
1089           break;
1090         default:
1091           break;
1092       }
1093     } else {
1094       assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1095       if (!attached_method->method_holder()->is_value()) {
1096         // Ignore the attached method in this case to not confuse below code
1097         attached_method = NULL;
1098       }
1099     }
1100   }
1101 
1102   assert(bc != Bytecodes::_illegal, "not initialized");
1103 
1104   bool has_receiver = bc != Bytecodes::_invokestatic &&
1105                       bc != Bytecodes::_invokedynamic &&
1106                       bc != Bytecodes::_invokehandle;
1107 
1108   // Find receiver for non-static call
1109   if (has_receiver) {
1110     // This register map must be update since we need to find the receiver for
1111     // compiled frames. The receiver might be in a register.
1112     RegisterMap reg_map2(thread);
1113     frame stubFrame   = thread->last_frame();
1114     // Caller-frame is a compiled frame
1115     frame callerFrame = stubFrame.sender(&reg_map2);
1116     bool caller_is_c1 = false;
1117 
1118     if (callerFrame.is_compiled_frame() && !callerFrame.is_deoptimized_frame()) {
1119       caller_is_c1 = callerFrame.cb()->is_compiled_by_c1();
1120     }
1121 
1122     methodHandle callee = attached_method;
1123     if (callee.is_null()) {
1124       callee = bytecode.static_target(CHECK_NH);
1125       if (callee.is_null()) {
1126         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1127       }
1128     }
1129     if (!caller_is_c1 && callee->has_scalarized_args() && callee->method_holder()->is_value()) {
1130       // If the receiver is a value type that is passed as fields, no oop is available.
1131       // Resolve the call without receiver null checking.
1132       assert(!attached_method.is_null(), "must have attached method");
1133       if (bc == Bytecodes::_invokevirtual) {
1134         LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1135         LinkResolver::resolve_virtual_call(callinfo, receiver, callee->method_holder(), link_info, /*check_null_and_abstract=*/ false, CHECK_NH);
1136       } else {
1137         assert(bc == Bytecodes::_invokeinterface, "anything else?");
1138         LinkInfo link_info(constantPoolHandle(THREAD, caller->constants()), bytecode_index, CHECK_NH);
1139         LinkResolver::resolve_interface_call(callinfo, receiver, callee->method_holder(), link_info, /*check_null_and_abstract=*/ false, CHECK_NH);
1140       }
1141       return receiver; // is null
1142     } else {
1143       // Retrieve from a compiled argument list
1144       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1145 
1146       if (receiver.is_null()) {
1147         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1148       }
1149     }
1150   }
1151 
1152   // Resolve method
1153   if (attached_method.not_null()) {
1154     // Parameterized by attached method.
1155     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1156   } else {
1157     // Parameterized by bytecode.
1158     constantPoolHandle constants(THREAD, caller->constants());
1159     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1160   }
1161 
1162 #ifdef ASSERT
1163   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1164   if (has_receiver) {
1165     assert(receiver.not_null(), "should have thrown exception");
1166     Klass* receiver_klass = receiver->klass();
1167     Klass* rk = NULL;
1168     if (attached_method.not_null()) {
1169       // In case there's resolved method attached, use its holder during the check.
1170       rk = attached_method->method_holder();
1171     } else {
1172       // Klass is already loaded.
1173       constantPoolHandle constants(THREAD, caller->constants());
1174       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1175     }
1176     Klass* static_receiver_klass = rk;
1177     methodHandle callee = callinfo.selected_method();
1178     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1179            "actual receiver must be subclass of static receiver klass");
1180     if (receiver_klass->is_instance_klass()) {
1181       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1182         tty->print_cr("ERROR: Klass not yet initialized!!");
1183         receiver_klass->print();
1184       }
1185       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1186     }
1187   }
1188 #endif
1189 
1190   return receiver;
1191 }
1192 
1193 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1194   ResourceMark rm(THREAD);
1195   // We need first to check if any Java activations (compiled, interpreted)
1196   // exist on the stack since last JavaCall.  If not, we need
1197   // to get the target method from the JavaCall wrapper.
1198   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1199   methodHandle callee_method;
1200   if (vfst.at_end()) {
1201     // No Java frames were found on stack since we did the JavaCall.
1202     // Hence the stack can only contain an entry_frame.  We need to
1203     // find the target method from the stub frame.
1204     RegisterMap reg_map(thread, false);
1205     frame fr = thread->last_frame();
1206     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1207     fr = fr.sender(&reg_map);
1208     assert(fr.is_entry_frame(), "must be");
1209     // fr is now pointing to the entry frame.
1210     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1211   } else {
1212     Bytecodes::Code bc;
1213     CallInfo callinfo;
1214     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1215     callee_method = callinfo.selected_method();
1216   }
1217   assert(callee_method()->is_method(), "must be");
1218   return callee_method;
1219 }
1220 
1221 // Resolves a call.
1222 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1223                                            bool is_virtual,
1224                                            bool is_optimized,
1225                                            bool* caller_is_c1, TRAPS) {
1226   methodHandle callee_method;
1227   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, caller_is_c1, THREAD);
1228   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1229     int retry_count = 0;
1230     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1231            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1232       // If has a pending exception then there is no need to re-try to
1233       // resolve this method.
1234       // If the method has been redefined, we need to try again.
1235       // Hack: we have no way to update the vtables of arrays, so don't
1236       // require that java.lang.Object has been updated.
1237 
1238       // It is very unlikely that method is redefined more than 100 times
1239       // in the middle of resolve. If it is looping here more than 100 times
1240       // means then there could be a bug here.
1241       guarantee((retry_count++ < 100),
1242                 "Could not resolve to latest version of redefined method");
1243       // method is redefined in the middle of resolve so re-try.
1244       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, caller_is_c1, THREAD);
1245     }
1246   }
1247   return callee_method;
1248 }
1249 
1250 // This fails if resolution required refilling of IC stubs
1251 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1252                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1253                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1254   StaticCallInfo static_call_info;
1255   CompiledICInfo virtual_call_info;
1256 
1257   // Make sure the callee nmethod does not get deoptimized and removed before
1258   // we are done patching the code.
1259   CompiledMethod* callee = callee_method->code();
1260 
1261   if (callee != NULL) {
1262     assert(callee->is_compiled(), "must be nmethod for patching");
1263   }
1264 
1265   if (callee != NULL && !callee->is_in_use()) {
1266     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1267     callee = NULL;
1268   }
1269   nmethodLocker nl_callee(callee);
1270 #ifdef ASSERT
1271   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1272 #endif
1273 
1274   bool is_nmethod = caller_nm->is_nmethod();
1275   bool caller_is_c1 = caller_nm->is_compiled_by_c1();
1276 
1277   if (is_virtual) {
1278     Klass* receiver_klass = NULL;
1279     if (ValueTypePassFieldsAsArgs && !caller_is_c1 && callee_method->method_holder()->is_value()) {
1280       // If the receiver is a value type that is passed as fields, no oop is available
1281       receiver_klass = callee_method->method_holder();
1282     } else {
1283       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1284       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1285     }
1286     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1287     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1288                      is_optimized, static_bound, is_nmethod, caller_is_c1, virtual_call_info,
1289                      CHECK_false);
1290   } else {
1291     // static call
1292     CompiledStaticCall::compute_entry(callee_method, caller_nm, static_call_info);
1293   }
1294 
1295   // grab lock, check for deoptimization and potentially patch caller
1296   {
1297     CompiledICLocker ml(caller_nm);
1298 
1299     // Lock blocks for safepoint during which both nmethods can change state.
1300 
1301     // Now that we are ready to patch if the Method* was redefined then
1302     // don't update call site and let the caller retry.
1303     // Don't update call site if callee nmethod was unloaded or deoptimized.
1304     // Don't update call site if callee nmethod was replaced by an other nmethod
1305     // which may happen when multiply alive nmethod (tiered compilation)
1306     // will be supported.
1307     if (!callee_method->is_old() &&
1308         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1309 #ifdef ASSERT
1310       // We must not try to patch to jump to an already unloaded method.
1311       if (dest_entry_point != 0) {
1312         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1313         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1314                "should not call unloaded nmethod");
1315       }
1316 #endif
1317       if (is_virtual) {
1318         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1319         if (inline_cache->is_clean()) {
1320           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1321             return false;
1322           }
1323         }
1324       } else {
1325         if (VM_Version::supports_fast_class_init_checks() &&
1326             invoke_code == Bytecodes::_invokestatic &&
1327             callee_method->needs_clinit_barrier() &&
1328             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1329           return true; // skip patching for JVMCI or AOT code
1330         }
1331         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1332         if (ssc->is_clean()) ssc->set(static_call_info);
1333       }
1334     }
1335   } // unlock CompiledICLocker
1336   return true;
1337 }
1338 
1339 // Resolves a call.  The compilers generate code for calls that go here
1340 // and are patched with the real destination of the call.
1341 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1342                                                bool is_virtual,
1343                                                bool is_optimized,
1344                                                bool* caller_is_c1, TRAPS) {
1345 
1346   ResourceMark rm(thread);
1347   RegisterMap cbl_map(thread, false);
1348   frame caller_frame = thread->last_frame().sender(&cbl_map);
1349 
1350   CodeBlob* caller_cb = caller_frame.cb();
1351   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1352   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1353   *caller_is_c1 = caller_nm->is_compiled_by_c1();
1354 
1355   // make sure caller is not getting deoptimized
1356   // and removed before we are done with it.
1357   // CLEANUP - with lazy deopt shouldn't need this lock
1358   nmethodLocker caller_lock(caller_nm);
1359 
1360   if (!is_virtual && !is_optimized) {
1361     SimpleScopeDesc ssd(caller_nm, caller_frame.pc());
1362     Bytecode bc(ssd.method(), ssd.method()->bcp_from(ssd.bci()));
1363     // Substitutability test implementation piggy backs on static call resolution
1364     if (bc.code() == Bytecodes::_if_acmpeq || bc.code() == Bytecodes::_if_acmpne) {
1365       SystemDictionary::ValueBootstrapMethods_klass()->initialize(CHECK_NULL);
1366       return SystemDictionary::ValueBootstrapMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature());
1367     }
1368   }
1369 
1370   // determine call info & receiver
1371   // note: a) receiver is NULL for static calls
1372   //       b) an exception is thrown if receiver is NULL for non-static calls
1373   CallInfo call_info;
1374   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1375   Handle receiver = find_callee_info(thread, invoke_code,
1376                                      call_info, CHECK_(methodHandle()));
1377   methodHandle callee_method = call_info.selected_method();
1378 
1379   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1380          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1381          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1382          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1383          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1384 
1385   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1386 
1387 #ifndef PRODUCT
1388   // tracing/debugging/statistics
1389   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1390                 (is_virtual) ? (&_resolve_virtual_ctr) :
1391                                (&_resolve_static_ctr);
1392   Atomic::inc(addr);
1393 
1394   if (TraceCallFixup) {
1395     ResourceMark rm(thread);
1396     tty->print("resolving %s%s (%s) call to",
1397       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1398       Bytecodes::name(invoke_code));
1399     callee_method->print_short_name(tty);
1400     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1401                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1402   }
1403 #endif
1404 
1405   if (invoke_code == Bytecodes::_invokestatic) {
1406     assert(callee_method->method_holder()->is_initialized() ||
1407            callee_method->method_holder()->is_reentrant_initialization(thread),
1408            "invalid class initialization state for invoke_static");
1409     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1410       // In order to keep class initialization check, do not patch call
1411       // site for static call when the class is not fully initialized.
1412       // Proper check is enforced by call site re-resolution on every invocation.
1413       //
1414       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1415       // explicit class initialization check is put in nmethod entry (VEP).
1416       assert(callee_method->method_holder()->is_linked(), "must be");
1417       return callee_method;
1418     }
1419   }
1420 
1421   // JSR 292 key invariant:
1422   // If the resolved method is a MethodHandle invoke target, the call
1423   // site must be a MethodHandle call site, because the lambda form might tail-call
1424   // leaving the stack in a state unknown to either caller or callee
1425   // TODO detune for now but we might need it again
1426 //  assert(!callee_method->is_compiled_lambda_form() ||
1427 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1428 
1429   // Compute entry points. This might require generation of C2I converter
1430   // frames, so we cannot be holding any locks here. Furthermore, the
1431   // computation of the entry points is independent of patching the call.  We
1432   // always return the entry-point, but we only patch the stub if the call has
1433   // not been deoptimized.  Return values: For a virtual call this is an
1434   // (cached_oop, destination address) pair. For a static call/optimized
1435   // virtual this is just a destination address.
1436 
1437   // Patching IC caches may fail if we run out if transition stubs.
1438   // We refill the ic stubs then and try again.
1439   for (;;) {
1440     ICRefillVerifier ic_refill_verifier;
1441     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1442                                                   is_virtual, is_optimized, receiver,
1443                                                   call_info, invoke_code, CHECK_(methodHandle()));
1444     if (successful) {
1445       return callee_method;
1446     } else {
1447       InlineCacheBuffer::refill_ic_stubs();
1448     }
1449   }
1450 
1451 }
1452 
1453 
1454 // Inline caches exist only in compiled code
1455 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1456 #ifdef ASSERT
1457   RegisterMap reg_map(thread, false);
1458   frame stub_frame = thread->last_frame();
1459   assert(stub_frame.is_runtime_frame(), "sanity check");
1460   frame caller_frame = stub_frame.sender(&reg_map);
1461   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1462 #endif /* ASSERT */
1463 
1464   methodHandle callee_method;
1465   bool is_optimized = false;
1466   bool caller_is_c1 = false;
1467   JRT_BLOCK
1468     callee_method = SharedRuntime::handle_ic_miss_helper(thread, is_optimized, caller_is_c1, CHECK_NULL);
1469     // Return Method* through TLS
1470     thread->set_vm_result_2(callee_method());
1471   JRT_BLOCK_END
1472   // return compiled code entry point after potential safepoints
1473   return entry_for_handle_wrong_method(callee_method, false, is_optimized, caller_is_c1);
1474 JRT_END
1475 
1476 
1477 // Handle call site that has been made non-entrant
1478 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1479   // 6243940 We might end up in here if the callee is deoptimized
1480   // as we race to call it.  We don't want to take a safepoint if
1481   // the caller was interpreted because the caller frame will look
1482   // interpreted to the stack walkers and arguments are now
1483   // "compiled" so it is much better to make this transition
1484   // invisible to the stack walking code. The i2c path will
1485   // place the callee method in the callee_target. It is stashed
1486   // there because if we try and find the callee by normal means a
1487   // safepoint is possible and have trouble gc'ing the compiled args.
1488   RegisterMap reg_map(thread, false);
1489   frame stub_frame = thread->last_frame();
1490   assert(stub_frame.is_runtime_frame(), "sanity check");
1491   frame caller_frame = stub_frame.sender(&reg_map);
1492 
1493   if (caller_frame.is_interpreted_frame() ||
1494       caller_frame.is_entry_frame()) {
1495     Method* callee = thread->callee_target();
1496     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1497     thread->set_vm_result_2(callee);
1498     thread->set_callee_target(NULL);
1499     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1500       // Bypass class initialization checks in c2i when caller is in native.
1501       // JNI calls to static methods don't have class initialization checks.
1502       // Fast class initialization checks are present in c2i adapters and call into
1503       // SharedRuntime::handle_wrong_method() on the slow path.
1504       //
1505       // JVM upcalls may land here as well, but there's a proper check present in
1506       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1507       // so bypassing it in c2i adapter is benign.
1508       return callee->get_c2i_no_clinit_check_entry();
1509     } else {
1510       return callee->get_c2i_entry();
1511     }
1512   }
1513 
1514   // Must be compiled to compiled path which is safe to stackwalk
1515   methodHandle callee_method;
1516   bool is_static_call = false;
1517   bool is_optimized = false;
1518   bool caller_is_c1 = false;
1519   JRT_BLOCK
1520     // Force resolving of caller (if we called from compiled frame)
1521     callee_method = SharedRuntime::reresolve_call_site(thread, is_static_call, is_optimized, caller_is_c1, CHECK_NULL);
1522     thread->set_vm_result_2(callee_method());
1523   JRT_BLOCK_END
1524   // return compiled code entry point after potential safepoints
1525   return entry_for_handle_wrong_method(callee_method, is_static_call, is_optimized, caller_is_c1);
1526 JRT_END
1527 
1528 // Handle abstract method call
1529 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1530   // Verbose error message for AbstractMethodError.
1531   // Get the called method from the invoke bytecode.
1532   vframeStream vfst(thread, true);
1533   assert(!vfst.at_end(), "Java frame must exist");
1534   methodHandle caller(vfst.method());
1535   Bytecode_invoke invoke(caller, vfst.bci());
1536   DEBUG_ONLY( invoke.verify(); )
1537 
1538   // Find the compiled caller frame.
1539   RegisterMap reg_map(thread);
1540   frame stubFrame = thread->last_frame();
1541   assert(stubFrame.is_runtime_frame(), "must be");
1542   frame callerFrame = stubFrame.sender(&reg_map);
1543   assert(callerFrame.is_compiled_frame(), "must be");
1544 
1545   // Install exception and return forward entry.
1546   address res = StubRoutines::throw_AbstractMethodError_entry();
1547   JRT_BLOCK
1548     methodHandle callee = invoke.static_target(thread);
1549     if (!callee.is_null()) {
1550       oop recv = callerFrame.retrieve_receiver(&reg_map);
1551       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1552       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1553       res = StubRoutines::forward_exception_entry();
1554     }
1555   JRT_BLOCK_END
1556   return res;
1557 JRT_END
1558 
1559 
1560 // resolve a static call and patch code
1561 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1562   methodHandle callee_method;
1563   bool caller_is_c1;
1564   JRT_BLOCK
1565     callee_method = SharedRuntime::resolve_helper(thread, false, false, &caller_is_c1, CHECK_NULL);
1566     thread->set_vm_result_2(callee_method());
1567   JRT_BLOCK_END
1568   // return compiled code entry point after potential safepoints
1569   address entry = caller_is_c1 ?
1570     callee_method->verified_value_code_entry() : callee_method->verified_code_entry();
1571   assert(entry != NULL, "Jump to zero!");
1572   return entry;
1573 JRT_END
1574 
1575 
1576 // resolve virtual call and update inline cache to monomorphic
1577 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1578   methodHandle callee_method;
1579   bool caller_is_c1;
1580   JRT_BLOCK
1581     callee_method = SharedRuntime::resolve_helper(thread, true, false, &caller_is_c1, CHECK_NULL);
1582     thread->set_vm_result_2(callee_method());
1583   JRT_BLOCK_END
1584   // return compiled code entry point after potential safepoints
1585   address entry = caller_is_c1 ?
1586     callee_method->verified_value_code_entry() : callee_method->verified_value_ro_code_entry();
1587   assert(entry != NULL, "Jump to zero!");
1588   return entry;
1589 JRT_END
1590 
1591 
1592 // Resolve a virtual call that can be statically bound (e.g., always
1593 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1594 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1595   methodHandle callee_method;
1596   bool caller_is_c1;
1597   JRT_BLOCK
1598     callee_method = SharedRuntime::resolve_helper(thread, true, true, &caller_is_c1, CHECK_NULL);
1599     thread->set_vm_result_2(callee_method());
1600   JRT_BLOCK_END
1601   // return compiled code entry point after potential safepoints
1602   address entry = caller_is_c1 ?
1603     callee_method->verified_value_code_entry() : callee_method->verified_code_entry();
1604   assert(entry != NULL, "Jump to zero!");
1605   return entry;
1606 JRT_END
1607 
1608 // The handle_ic_miss_helper_internal function returns false if it failed due
1609 // to either running out of vtable stubs or ic stubs due to IC transitions
1610 // to transitional states. The needs_ic_stub_refill value will be set if
1611 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1612 // refills the IC stubs and tries again.
1613 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1614                                                    const frame& caller_frame, methodHandle callee_method,
1615                                                    Bytecodes::Code bc, CallInfo& call_info,
1616                                                    bool& needs_ic_stub_refill, bool& is_optimized, bool caller_is_c1, TRAPS) {
1617   CompiledICLocker ml(caller_nm);
1618   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1619   bool should_be_mono = false;
1620   if (inline_cache->is_optimized()) {
1621     if (TraceCallFixup) {
1622       ResourceMark rm(THREAD);
1623       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1624       callee_method->print_short_name(tty);
1625       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1626     }
1627     is_optimized = true;
1628     should_be_mono = true;
1629   } else if (inline_cache->is_icholder_call()) {
1630     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1631     if (ic_oop != NULL) {
1632       if (!ic_oop->is_loader_alive()) {
1633         // Deferred IC cleaning due to concurrent class unloading
1634         if (!inline_cache->set_to_clean()) {
1635           needs_ic_stub_refill = true;
1636           return false;
1637         }
1638       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1639         // This isn't a real miss. We must have seen that compiled code
1640         // is now available and we want the call site converted to a
1641         // monomorphic compiled call site.
1642         // We can't assert for callee_method->code() != NULL because it
1643         // could have been deoptimized in the meantime
1644         if (TraceCallFixup) {
1645           ResourceMark rm(THREAD);
1646           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1647           callee_method->print_short_name(tty);
1648           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1649         }
1650         should_be_mono = true;
1651       }
1652     }
1653   }
1654 
1655   if (should_be_mono) {
1656     // We have a path that was monomorphic but was going interpreted
1657     // and now we have (or had) a compiled entry. We correct the IC
1658     // by using a new icBuffer.
1659     CompiledICInfo info;
1660     Klass* receiver_klass = receiver()->klass();
1661     inline_cache->compute_monomorphic_entry(callee_method,
1662                                             receiver_klass,
1663                                             inline_cache->is_optimized(),
1664                                             false, caller_nm->is_nmethod(),
1665                                             caller_nm->is_compiled_by_c1(),
1666                                             info, CHECK_false);
1667     if (!inline_cache->set_to_monomorphic(info)) {
1668       needs_ic_stub_refill = true;
1669       return false;
1670     }
1671   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1672     // Potential change to megamorphic
1673 
1674     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, caller_is_c1, CHECK_false);
1675     if (needs_ic_stub_refill) {
1676       return false;
1677     }
1678     if (!successful) {
1679       if (!inline_cache->set_to_clean()) {
1680         needs_ic_stub_refill = true;
1681         return false;
1682       }
1683     }
1684   } else {
1685     // Either clean or megamorphic
1686   }
1687   return true;
1688 }
1689 
1690 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1691   ResourceMark rm(thread);
1692   CallInfo call_info;
1693   Bytecodes::Code bc;
1694 
1695   // receiver is NULL for static calls. An exception is thrown for NULL
1696   // receivers for non-static calls
1697   Handle receiver = find_callee_info(thread, bc, call_info,
1698                                      CHECK_(methodHandle()));
1699   // Compiler1 can produce virtual call sites that can actually be statically bound
1700   // If we fell thru to below we would think that the site was going megamorphic
1701   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1702   // we'd try and do a vtable dispatch however methods that can be statically bound
1703   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1704   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1705   // plain ic_miss) and the site will be converted to an optimized virtual call site
1706   // never to miss again. I don't believe C2 will produce code like this but if it
1707   // did this would still be the correct thing to do for it too, hence no ifdef.
1708   //
1709   if (call_info.resolved_method()->can_be_statically_bound()) {
1710     bool is_static_call = false;
1711     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, is_static_call, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1712     assert(!is_static_call, "IC miss at static call?");
1713     if (TraceCallFixup) {
1714       RegisterMap reg_map(thread, false);
1715       frame caller_frame = thread->last_frame().sender(&reg_map);
1716       ResourceMark rm(thread);
1717       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1718       callee_method->print_short_name(tty);
1719       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1720       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1721     }
1722     return callee_method;
1723   }
1724 
1725   methodHandle callee_method = call_info.selected_method();
1726 
1727 #ifndef PRODUCT
1728   Atomic::inc(&_ic_miss_ctr);
1729 
1730   // Statistics & Tracing
1731   if (TraceCallFixup) {
1732     ResourceMark rm(thread);
1733     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1734     callee_method->print_short_name(tty);
1735     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1736   }
1737 
1738   if (ICMissHistogram) {
1739     MutexLocker m(VMStatistic_lock);
1740     RegisterMap reg_map(thread, false);
1741     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1742     // produce statistics under the lock
1743     trace_ic_miss(f.pc());
1744   }
1745 #endif
1746 
1747   // install an event collector so that when a vtable stub is created the
1748   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1749   // event can't be posted when the stub is created as locks are held
1750   // - instead the event will be deferred until the event collector goes
1751   // out of scope.
1752   JvmtiDynamicCodeEventCollector event_collector;
1753 
1754   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1755   // Transitioning IC caches may require transition stubs. If we run out
1756   // of transition stubs, we have to drop locks and perform a safepoint
1757   // that refills them.
1758   RegisterMap reg_map(thread, false);
1759   frame caller_frame = thread->last_frame().sender(&reg_map);
1760   CodeBlob* cb = caller_frame.cb();
1761   CompiledMethod* caller_nm = cb->as_compiled_method();
1762   caller_is_c1 = caller_nm->is_compiled_by_c1();
1763 
1764   for (;;) {
1765     ICRefillVerifier ic_refill_verifier;
1766     bool needs_ic_stub_refill = false;
1767     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1768                                                      bc, call_info, needs_ic_stub_refill, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1769     if (successful || !needs_ic_stub_refill) {
1770       return callee_method;
1771     } else {
1772       InlineCacheBuffer::refill_ic_stubs();
1773     }
1774   }
1775 }
1776 
1777 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1778   CompiledICLocker ml(caller_nm);
1779   if (is_static_call) {
1780     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1781     if (!ssc->is_clean()) {
1782       return ssc->set_to_clean();
1783     }
1784   } else {
1785     // compiled, dispatched call (which used to call an interpreted method)
1786     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1787     if (!inline_cache->is_clean()) {
1788       return inline_cache->set_to_clean();
1789     }
1790   }
1791   return true;
1792 }
1793 
1794 //
1795 // Resets a call-site in compiled code so it will get resolved again.
1796 // This routines handles both virtual call sites, optimized virtual call
1797 // sites, and static call sites. Typically used to change a call sites
1798 // destination from compiled to interpreted.
1799 //
1800 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, bool& is_static_call, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1801   ResourceMark rm(thread);
1802   RegisterMap reg_map(thread, false);
1803   frame stub_frame = thread->last_frame();
1804   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1805   frame caller = stub_frame.sender(&reg_map);
1806 
1807   // Do nothing if the frame isn't a live compiled frame.
1808   // nmethod could be deoptimized by the time we get here
1809   // so no update to the caller is needed.
1810 
1811   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1812 
1813     address pc = caller.pc();
1814 
1815     // Check for static or virtual call
1816     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1817     caller_is_c1 = caller_nm->is_compiled_by_c1();
1818 
1819     // Default call_addr is the location of the "basic" call.
1820     // Determine the address of the call we a reresolving. With
1821     // Inline Caches we will always find a recognizable call.
1822     // With Inline Caches disabled we may or may not find a
1823     // recognizable call. We will always find a call for static
1824     // calls and for optimized virtual calls. For vanilla virtual
1825     // calls it depends on the state of the UseInlineCaches switch.
1826     //
1827     // With Inline Caches disabled we can get here for a virtual call
1828     // for two reasons:
1829     //   1 - calling an abstract method. The vtable for abstract methods
1830     //       will run us thru handle_wrong_method and we will eventually
1831     //       end up in the interpreter to throw the ame.
1832     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1833     //       call and between the time we fetch the entry address and
1834     //       we jump to it the target gets deoptimized. Similar to 1
1835     //       we will wind up in the interprter (thru a c2i with c2).
1836     //
1837     address call_addr = NULL;
1838     {
1839       // Get call instruction under lock because another thread may be
1840       // busy patching it.
1841       CompiledICLocker ml(caller_nm);
1842       // Location of call instruction
1843       call_addr = caller_nm->call_instruction_address(pc);
1844     }
1845     // Make sure nmethod doesn't get deoptimized and removed until
1846     // this is done with it.
1847     // CLEANUP - with lazy deopt shouldn't need this lock
1848     nmethodLocker nmlock(caller_nm);
1849 
1850     if (call_addr != NULL) {
1851       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1852       int ret = iter.next(); // Get item
1853       if (ret) {
1854         assert(iter.addr() == call_addr, "must find call");
1855         if (iter.type() == relocInfo::static_call_type) {
1856           is_static_call = true;
1857         } else {
1858           assert(iter.type() == relocInfo::virtual_call_type ||
1859                  iter.type() == relocInfo::opt_virtual_call_type
1860                 , "unexpected relocInfo. type");
1861           is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1862         }
1863       } else {
1864         assert(!UseInlineCaches, "relocation info. must exist for this address");
1865       }
1866 
1867       // Cleaning the inline cache will force a new resolve. This is more robust
1868       // than directly setting it to the new destination, since resolving of calls
1869       // is always done through the same code path. (experience shows that it
1870       // leads to very hard to track down bugs, if an inline cache gets updated
1871       // to a wrong method). It should not be performance critical, since the
1872       // resolve is only done once.
1873 
1874       for (;;) {
1875         ICRefillVerifier ic_refill_verifier;
1876         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1877           InlineCacheBuffer::refill_ic_stubs();
1878         } else {
1879           break;
1880         }
1881       }
1882     }
1883   }
1884 
1885   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1886 
1887 #ifndef PRODUCT
1888   Atomic::inc(&_wrong_method_ctr);
1889 
1890   if (TraceCallFixup) {
1891     ResourceMark rm(thread);
1892     tty->print("handle_wrong_method reresolving call to");
1893     callee_method->print_short_name(tty);
1894     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1895   }
1896 #endif
1897 
1898   return callee_method;
1899 }
1900 
1901 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1902   // The faulting unsafe accesses should be changed to throw the error
1903   // synchronously instead. Meanwhile the faulting instruction will be
1904   // skipped over (effectively turning it into a no-op) and an
1905   // asynchronous exception will be raised which the thread will
1906   // handle at a later point. If the instruction is a load it will
1907   // return garbage.
1908 
1909   // Request an async exception.
1910   thread->set_pending_unsafe_access_error();
1911 
1912   // Return address of next instruction to execute.
1913   return next_pc;
1914 }
1915 
1916 #ifdef ASSERT
1917 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1918                                                                 const BasicType* sig_bt,
1919                                                                 const VMRegPair* regs) {
1920   ResourceMark rm;
1921   const int total_args_passed = method->size_of_parameters();
1922   const VMRegPair*    regs_with_member_name = regs;
1923         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1924 
1925   const int member_arg_pos = total_args_passed - 1;
1926   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1927   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1928 
1929   const bool is_outgoing = method->is_method_handle_intrinsic();
1930   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1931 
1932   for (int i = 0; i < member_arg_pos; i++) {
1933     VMReg a =    regs_with_member_name[i].first();
1934     VMReg b = regs_without_member_name[i].first();
1935     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1936   }
1937   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1938 }
1939 #endif
1940 
1941 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1942   if (destination != entry_point) {
1943     CodeBlob* callee = CodeCache::find_blob(destination);
1944     // callee == cb seems weird. It means calling interpreter thru stub.
1945     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1946       // static call or optimized virtual
1947       if (TraceCallFixup) {
1948         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1949         moop->print_short_name(tty);
1950         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1951       }
1952       return true;
1953     } else {
1954       if (TraceCallFixup) {
1955         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1956         moop->print_short_name(tty);
1957         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1958       }
1959       // assert is too strong could also be resolve destinations.
1960       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1961     }
1962   } else {
1963     if (TraceCallFixup) {
1964       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1965       moop->print_short_name(tty);
1966       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1967     }
1968   }
1969   return false;
1970 }
1971 
1972 // ---------------------------------------------------------------------------
1973 // We are calling the interpreter via a c2i. Normally this would mean that
1974 // we were called by a compiled method. However we could have lost a race
1975 // where we went int -> i2c -> c2i and so the caller could in fact be
1976 // interpreted. If the caller is compiled we attempt to patch the caller
1977 // so he no longer calls into the interpreter.
1978 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1979   Method* moop(method);
1980 
1981   // It's possible that deoptimization can occur at a call site which hasn't
1982   // been resolved yet, in which case this function will be called from
1983   // an nmethod that has been patched for deopt and we can ignore the
1984   // request for a fixup.
1985   // Also it is possible that we lost a race in that from_compiled_entry
1986   // is now back to the i2c in that case we don't need to patch and if
1987   // we did we'd leap into space because the callsite needs to use
1988   // "to interpreter" stub in order to load up the Method*. Don't
1989   // ask me how I know this...
1990 
1991   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1992   if (cb == NULL || !cb->is_compiled()) {
1993     return;
1994   }
1995   address entry_point = moop->from_compiled_entry_no_trampoline(cb->is_compiled_by_c1());
1996   if (entry_point == moop->get_c2i_entry()) {
1997     return;
1998   }
1999 
2000   // The check above makes sure this is a nmethod.
2001   CompiledMethod* nm = cb->as_compiled_method_or_null();
2002   assert(nm, "must be");
2003 
2004   // Get the return PC for the passed caller PC.
2005   address return_pc = caller_pc + frame::pc_return_offset;
2006 
2007   // There is a benign race here. We could be attempting to patch to a compiled
2008   // entry point at the same time the callee is being deoptimized. If that is
2009   // the case then entry_point may in fact point to a c2i and we'd patch the
2010   // call site with the same old data. clear_code will set code() to NULL
2011   // at the end of it. If we happen to see that NULL then we can skip trying
2012   // to patch. If we hit the window where the callee has a c2i in the
2013   // from_compiled_entry and the NULL isn't present yet then we lose the race
2014   // and patch the code with the same old data. Asi es la vida.
2015 
2016   if (moop->code() == NULL) return;
2017 
2018   if (nm->is_in_use()) {
2019     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
2020     CompiledICLocker ic_locker(nm);
2021     if (NativeCall::is_call_before(return_pc)) {
2022       ResourceMark mark;
2023       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
2024       //
2025       // bug 6281185. We might get here after resolving a call site to a vanilla
2026       // virtual call. Because the resolvee uses the verified entry it may then
2027       // see compiled code and attempt to patch the site by calling us. This would
2028       // then incorrectly convert the call site to optimized and its downhill from
2029       // there. If you're lucky you'll get the assert in the bugid, if not you've
2030       // just made a call site that could be megamorphic into a monomorphic site
2031       // for the rest of its life! Just another racing bug in the life of
2032       // fixup_callers_callsite ...
2033       //
2034       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2035       iter.next();
2036       assert(iter.has_current(), "must have a reloc at java call site");
2037       relocInfo::relocType typ = iter.reloc()->type();
2038       if (typ != relocInfo::static_call_type &&
2039            typ != relocInfo::opt_virtual_call_type &&
2040            typ != relocInfo::static_stub_type) {
2041         return;
2042       }
2043       address destination = call->destination();
2044       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2045         call->set_destination_mt_safe(entry_point);
2046       }
2047     }
2048   }
2049 JRT_END
2050 
2051 
2052 // same as JVM_Arraycopy, but called directly from compiled code
2053 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2054                                                 oopDesc* dest, jint dest_pos,
2055                                                 jint length,
2056                                                 JavaThread* thread)) {
2057 #ifndef PRODUCT
2058   _slow_array_copy_ctr++;
2059 #endif
2060   // Check if we have null pointers
2061   if (src == NULL || dest == NULL) {
2062     THROW(vmSymbols::java_lang_NullPointerException());
2063   }
2064   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2065   // even though the copy_array API also performs dynamic checks to ensure
2066   // that src and dest are truly arrays (and are conformable).
2067   // The copy_array mechanism is awkward and could be removed, but
2068   // the compilers don't call this function except as a last resort,
2069   // so it probably doesn't matter.
2070   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2071                                         (arrayOopDesc*)dest, dest_pos,
2072                                         length, thread);
2073 }
2074 JRT_END
2075 
2076 // The caller of generate_class_cast_message() (or one of its callers)
2077 // must use a ResourceMark in order to correctly free the result.
2078 char* SharedRuntime::generate_class_cast_message(
2079     JavaThread* thread, Klass* caster_klass) {
2080 
2081   // Get target class name from the checkcast instruction
2082   vframeStream vfst(thread, true);
2083   assert(!vfst.at_end(), "Java frame must exist");
2084   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2085   constantPoolHandle cpool(thread, vfst.method()->constants());
2086   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2087   Symbol* target_klass_name = NULL;
2088   if (target_klass == NULL) {
2089     // This klass should be resolved, but just in case, get the name in the klass slot.
2090     target_klass_name = cpool->klass_name_at(cc.index());
2091   }
2092   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2093 }
2094 
2095 
2096 // The caller of generate_class_cast_message() (or one of its callers)
2097 // must use a ResourceMark in order to correctly free the result.
2098 char* SharedRuntime::generate_class_cast_message(
2099     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2100   const char* caster_name = caster_klass->external_name();
2101 
2102   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2103   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2104                                                    target_klass->external_name();
2105 
2106   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2107 
2108   const char* caster_klass_description = "";
2109   const char* target_klass_description = "";
2110   const char* klass_separator = "";
2111   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2112     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2113   } else {
2114     caster_klass_description = caster_klass->class_in_module_of_loader();
2115     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2116     klass_separator = (target_klass != NULL) ? "; " : "";
2117   }
2118 
2119   // add 3 for parenthesis and preceeding space
2120   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2121 
2122   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2123   if (message == NULL) {
2124     // Shouldn't happen, but don't cause even more problems if it does
2125     message = const_cast<char*>(caster_klass->external_name());
2126   } else {
2127     jio_snprintf(message,
2128                  msglen,
2129                  "class %s cannot be cast to class %s (%s%s%s)",
2130                  caster_name,
2131                  target_name,
2132                  caster_klass_description,
2133                  klass_separator,
2134                  target_klass_description
2135                  );
2136   }
2137   return message;
2138 }
2139 
2140 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2141   (void) JavaThread::current()->reguard_stack();
2142 JRT_END
2143 
2144 
2145 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2146 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2147   if (!SafepointSynchronize::is_synchronizing()) {
2148     // Only try quick_enter() if we're not trying to reach a safepoint
2149     // so that the calling thread reaches the safepoint more quickly.
2150     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2151   }
2152   // NO_ASYNC required because an async exception on the state transition destructor
2153   // would leave you with the lock held and it would never be released.
2154   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2155   // and the model is that an exception implies the method failed.
2156   JRT_BLOCK_NO_ASYNC
2157   oop obj(_obj);
2158   if (PrintBiasedLockingStatistics) {
2159     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2160   }
2161   Handle h_obj(THREAD, obj);
2162   ObjectSynchronizer::enter(h_obj, lock, CHECK);
2163   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2164   JRT_BLOCK_END
2165 JRT_END
2166 
2167 // Handles the uncommon cases of monitor unlocking in compiled code
2168 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2169    oop obj(_obj);
2170   assert(JavaThread::current() == THREAD, "invariant");
2171   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2172   // testing was unable to ever fire the assert that guarded it so I have removed it.
2173   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2174 #undef MIGHT_HAVE_PENDING
2175 #ifdef MIGHT_HAVE_PENDING
2176   // Save and restore any pending_exception around the exception mark.
2177   // While the slow_exit must not throw an exception, we could come into
2178   // this routine with one set.
2179   oop pending_excep = NULL;
2180   const char* pending_file;
2181   int pending_line;
2182   if (HAS_PENDING_EXCEPTION) {
2183     pending_excep = PENDING_EXCEPTION;
2184     pending_file  = THREAD->exception_file();
2185     pending_line  = THREAD->exception_line();
2186     CLEAR_PENDING_EXCEPTION;
2187   }
2188 #endif /* MIGHT_HAVE_PENDING */
2189 
2190   {
2191     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2192     EXCEPTION_MARK;
2193     ObjectSynchronizer::exit(obj, lock, THREAD);
2194   }
2195 
2196 #ifdef MIGHT_HAVE_PENDING
2197   if (pending_excep != NULL) {
2198     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2199   }
2200 #endif /* MIGHT_HAVE_PENDING */
2201 JRT_END
2202 
2203 #ifndef PRODUCT
2204 
2205 void SharedRuntime::print_statistics() {
2206   ttyLocker ttyl;
2207   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2208 
2209   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2210 
2211   SharedRuntime::print_ic_miss_histogram();
2212 
2213   if (CountRemovableExceptions) {
2214     if (_nof_removable_exceptions > 0) {
2215       Unimplemented(); // this counter is not yet incremented
2216       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2217     }
2218   }
2219 
2220   // Dump the JRT_ENTRY counters
2221   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2222   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2223   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2224   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2225   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2226   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2227   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2228 
2229   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2230   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2231   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2232   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2233   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2234 
2235   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2236   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2237   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2238   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2239   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2240   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2241   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2242   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2243   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2244   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2245   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2246   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2247   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2248   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2249   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2250   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2251 
2252   AdapterHandlerLibrary::print_statistics();
2253 
2254   if (xtty != NULL)  xtty->tail("statistics");
2255 }
2256 
2257 inline double percent(int x, int y) {
2258   return 100.0 * x / MAX2(y, 1);
2259 }
2260 
2261 class MethodArityHistogram {
2262  public:
2263   enum { MAX_ARITY = 256 };
2264  private:
2265   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2266   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2267   static int _max_arity;                      // max. arity seen
2268   static int _max_size;                       // max. arg size seen
2269 
2270   static void add_method_to_histogram(nmethod* nm) {
2271     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2272       Method* method = nm->method();
2273       ArgumentCount args(method->signature());
2274       int arity   = args.size() + (method->is_static() ? 0 : 1);
2275       int argsize = method->size_of_parameters();
2276       arity   = MIN2(arity, MAX_ARITY-1);
2277       argsize = MIN2(argsize, MAX_ARITY-1);
2278       int count = method->compiled_invocation_count();
2279       _arity_histogram[arity]  += count;
2280       _size_histogram[argsize] += count;
2281       _max_arity = MAX2(_max_arity, arity);
2282       _max_size  = MAX2(_max_size, argsize);
2283     }
2284   }
2285 
2286   void print_histogram_helper(int n, int* histo, const char* name) {
2287     const int N = MIN2(5, n);
2288     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2289     double sum = 0;
2290     double weighted_sum = 0;
2291     int i;
2292     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2293     double rest = sum;
2294     double percent = sum / 100;
2295     for (i = 0; i <= N; i++) {
2296       rest -= histo[i];
2297       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2298     }
2299     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2300     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2301   }
2302 
2303   void print_histogram() {
2304     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2305     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2306     tty->print_cr("\nSame for parameter size (in words):");
2307     print_histogram_helper(_max_size, _size_histogram, "size");
2308     tty->cr();
2309   }
2310 
2311  public:
2312   MethodArityHistogram() {
2313     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2314     _max_arity = _max_size = 0;
2315     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2316     CodeCache::nmethods_do(add_method_to_histogram);
2317     print_histogram();
2318   }
2319 };
2320 
2321 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2322 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2323 int MethodArityHistogram::_max_arity;
2324 int MethodArityHistogram::_max_size;
2325 
2326 void SharedRuntime::print_call_statistics(int comp_total) {
2327   tty->print_cr("Calls from compiled code:");
2328   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2329   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2330   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2331   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2332   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2333   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2334   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2335   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2336   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2337   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2338   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2339   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2340   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2341   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2342   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2343   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2344   tty->cr();
2345   tty->print_cr("Note 1: counter updates are not MT-safe.");
2346   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2347   tty->print_cr("        %% in nested categories are relative to their category");
2348   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2349   tty->cr();
2350 
2351   MethodArityHistogram h;
2352 }
2353 #endif
2354 
2355 
2356 // A simple wrapper class around the calling convention information
2357 // that allows sharing of adapters for the same calling convention.
2358 class AdapterFingerPrint : public CHeapObj<mtCode> {
2359  private:
2360   enum {
2361     _basic_type_bits = 4,
2362     _basic_type_mask = right_n_bits(_basic_type_bits),
2363     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2364     _compact_int_count = 3
2365   };
2366   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2367   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2368 
2369   union {
2370     int  _compact[_compact_int_count];
2371     int* _fingerprint;
2372   } _value;
2373   int _length; // A negative length indicates the fingerprint is in the compact form,
2374                // Otherwise _value._fingerprint is the array.
2375 
2376   // Remap BasicTypes that are handled equivalently by the adapters.
2377   // These are correct for the current system but someday it might be
2378   // necessary to make this mapping platform dependent.
2379   static int adapter_encoding(BasicType in, bool is_valuetype) {
2380     switch (in) {
2381       case T_BOOLEAN:
2382       case T_BYTE:
2383       case T_SHORT:
2384       case T_CHAR: {
2385         if (is_valuetype) {
2386           // Do not widen value type field types
2387           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2388           return in;
2389         } else {
2390           // They are all promoted to T_INT in the calling convention
2391           return T_INT;
2392         }
2393       }
2394 
2395       case T_VALUETYPE: {
2396         // If value types are passed as fields, return 'in' to differentiate
2397         // between a T_VALUETYPE and a T_OBJECT in the signature.
2398         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2399       }
2400 
2401       case T_OBJECT:
2402       case T_ARRAY:
2403         // In other words, we assume that any register good enough for
2404         // an int or long is good enough for a managed pointer.
2405 #ifdef _LP64
2406         return T_LONG;
2407 #else
2408         return T_INT;
2409 #endif
2410 
2411       case T_INT:
2412       case T_LONG:
2413       case T_FLOAT:
2414       case T_DOUBLE:
2415       case T_VOID:
2416         return in;
2417 
2418       default:
2419         ShouldNotReachHere();
2420         return T_CONFLICT;
2421     }
2422   }
2423 
2424  public:
2425   AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2426     // The fingerprint is based on the BasicType signature encoded
2427     // into an array of ints with eight entries per int.
2428     int total_args_passed = (sig != NULL) ? sig->length() : 0;
2429     int* ptr;
2430     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2431     if (len <= _compact_int_count) {
2432       assert(_compact_int_count == 3, "else change next line");
2433       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2434       // Storing the signature encoded as signed chars hits about 98%
2435       // of the time.
2436       _length = -len;
2437       ptr = _value._compact;
2438     } else {
2439       _length = len;
2440       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2441       ptr = _value._fingerprint;
2442     }
2443 
2444     // Now pack the BasicTypes with 8 per int
2445     int sig_index = 0;
2446     BasicType prev_sbt = T_ILLEGAL;
2447     int vt_count = 0;
2448     for (int index = 0; index < len; index++) {
2449       int value = 0;
2450       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2451         int bt = 0;
2452         if (sig_index < total_args_passed) {
2453           BasicType sbt = sig->at(sig_index++)._bt;
2454           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2455             // Found start of value type in signature
2456             vt_count++;
2457             if (sig_index == 1 && has_ro_adapter) {
2458               // With a ro_adapter, replace receiver value type delimiter by T_VOID to prevent matching
2459               // with other adapters that have the same value type as first argument and no receiver.
2460               sbt = T_VOID;
2461             }
2462           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2463                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2464             // Found end of value type in signature
2465             vt_count--;
2466             assert(vt_count >= 0, "invalid vt_count");
2467           }
2468           bt = adapter_encoding(sbt, vt_count > 0);
2469           prev_sbt = sbt;
2470         }
2471         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2472         value = (value << _basic_type_bits) | bt;
2473       }
2474       ptr[index] = value;
2475     }
2476     assert(vt_count == 0, "invalid vt_count");
2477   }
2478 
2479   ~AdapterFingerPrint() {
2480     if (_length > 0) {
2481       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2482     }
2483   }
2484 
2485   int value(int index) {
2486     if (_length < 0) {
2487       return _value._compact[index];
2488     }
2489     return _value._fingerprint[index];
2490   }
2491   int length() {
2492     if (_length < 0) return -_length;
2493     return _length;
2494   }
2495 
2496   bool is_compact() {
2497     return _length <= 0;
2498   }
2499 
2500   unsigned int compute_hash() {
2501     int hash = 0;
2502     for (int i = 0; i < length(); i++) {
2503       int v = value(i);
2504       hash = (hash << 8) ^ v ^ (hash >> 5);
2505     }
2506     return (unsigned int)hash;
2507   }
2508 
2509   const char* as_string() {
2510     stringStream st;
2511     st.print("0x");
2512     for (int i = 0; i < length(); i++) {
2513       st.print("%08x", value(i));
2514     }
2515     return st.as_string();
2516   }
2517 
2518   bool equals(AdapterFingerPrint* other) {
2519     if (other->_length != _length) {
2520       return false;
2521     }
2522     if (_length < 0) {
2523       assert(_compact_int_count == 3, "else change next line");
2524       return _value._compact[0] == other->_value._compact[0] &&
2525              _value._compact[1] == other->_value._compact[1] &&
2526              _value._compact[2] == other->_value._compact[2];
2527     } else {
2528       for (int i = 0; i < _length; i++) {
2529         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2530           return false;
2531         }
2532       }
2533     }
2534     return true;
2535   }
2536 };
2537 
2538 
2539 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2540 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2541   friend class AdapterHandlerTableIterator;
2542 
2543  private:
2544 
2545 #ifndef PRODUCT
2546   static int _lookups; // number of calls to lookup
2547   static int _buckets; // number of buckets checked
2548   static int _equals;  // number of buckets checked with matching hash
2549   static int _hits;    // number of successful lookups
2550   static int _compact; // number of equals calls with compact signature
2551 #endif
2552 
2553   AdapterHandlerEntry* bucket(int i) {
2554     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2555   }
2556 
2557  public:
2558   AdapterHandlerTable()
2559     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2560 
2561   // Create a new entry suitable for insertion in the table
2562   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry,
2563                                  address c2i_value_entry, address c2i_value_ro_entry,
2564                                  address c2i_unverified_entry, address c2i_unverified_value_entry, address c2i_no_clinit_check_entry) {
2565     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2566     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry,
2567                 c2i_unverified_entry, c2i_unverified_value_entry, c2i_no_clinit_check_entry);
2568     if (DumpSharedSpaces) {
2569       ((CDSAdapterHandlerEntry*)entry)->init();
2570     }
2571     return entry;
2572   }
2573 
2574   // Insert an entry into the table
2575   void add(AdapterHandlerEntry* entry) {
2576     int index = hash_to_index(entry->hash());
2577     add_entry(index, entry);
2578   }
2579 
2580   void free_entry(AdapterHandlerEntry* entry) {
2581     entry->deallocate();
2582     BasicHashtable<mtCode>::free_entry(entry);
2583   }
2584 
2585   // Find a entry with the same fingerprint if it exists
2586   AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2587     NOT_PRODUCT(_lookups++);
2588     AdapterFingerPrint fp(sig, has_ro_adapter);
2589     unsigned int hash = fp.compute_hash();
2590     int index = hash_to_index(hash);
2591     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2592       NOT_PRODUCT(_buckets++);
2593       if (e->hash() == hash) {
2594         NOT_PRODUCT(_equals++);
2595         if (fp.equals(e->fingerprint())) {
2596 #ifndef PRODUCT
2597           if (fp.is_compact()) _compact++;
2598           _hits++;
2599 #endif
2600           return e;
2601         }
2602       }
2603     }
2604     return NULL;
2605   }
2606 
2607 #ifndef PRODUCT
2608   void print_statistics() {
2609     ResourceMark rm;
2610     int longest = 0;
2611     int empty = 0;
2612     int total = 0;
2613     int nonempty = 0;
2614     for (int index = 0; index < table_size(); index++) {
2615       int count = 0;
2616       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2617         count++;
2618       }
2619       if (count != 0) nonempty++;
2620       if (count == 0) empty++;
2621       if (count > longest) longest = count;
2622       total += count;
2623     }
2624     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2625                   empty, longest, total, total / (double)nonempty);
2626     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2627                   _lookups, _buckets, _equals, _hits, _compact);
2628   }
2629 #endif
2630 };
2631 
2632 
2633 #ifndef PRODUCT
2634 
2635 int AdapterHandlerTable::_lookups;
2636 int AdapterHandlerTable::_buckets;
2637 int AdapterHandlerTable::_equals;
2638 int AdapterHandlerTable::_hits;
2639 int AdapterHandlerTable::_compact;
2640 
2641 #endif
2642 
2643 class AdapterHandlerTableIterator : public StackObj {
2644  private:
2645   AdapterHandlerTable* _table;
2646   int _index;
2647   AdapterHandlerEntry* _current;
2648 
2649   void scan() {
2650     while (_index < _table->table_size()) {
2651       AdapterHandlerEntry* a = _table->bucket(_index);
2652       _index++;
2653       if (a != NULL) {
2654         _current = a;
2655         return;
2656       }
2657     }
2658   }
2659 
2660  public:
2661   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2662     scan();
2663   }
2664   bool has_next() {
2665     return _current != NULL;
2666   }
2667   AdapterHandlerEntry* next() {
2668     if (_current != NULL) {
2669       AdapterHandlerEntry* result = _current;
2670       _current = _current->next();
2671       if (_current == NULL) scan();
2672       return result;
2673     } else {
2674       return NULL;
2675     }
2676   }
2677 };
2678 
2679 
2680 // ---------------------------------------------------------------------------
2681 // Implementation of AdapterHandlerLibrary
2682 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2683 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2684 const int AdapterHandlerLibrary_size = 16*K;
2685 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2686 
2687 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2688   // Should be called only when AdapterHandlerLibrary_lock is active.
2689   if (_buffer == NULL) // Initialize lazily
2690       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2691   return _buffer;
2692 }
2693 
2694 extern "C" void unexpected_adapter_call() {
2695   ShouldNotCallThis();
2696 }
2697 
2698 void AdapterHandlerLibrary::initialize() {
2699   if (_adapters != NULL) return;
2700   _adapters = new AdapterHandlerTable();
2701 
2702   // Create a special handler for abstract methods.  Abstract methods
2703   // are never compiled so an i2c entry is somewhat meaningless, but
2704   // throw AbstractMethodError just in case.
2705   // Pass wrong_method_abstract for the c2i transitions to return
2706   // AbstractMethodError for invalid invocations.
2707   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2708   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2709                                                               StubRoutines::throw_AbstractMethodError_entry(),
2710                                                               wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2711                                                               wrong_method_abstract, wrong_method_abstract);
2712 }
2713 
2714 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2715                                                       address i2c_entry,
2716                                                       address c2i_entry,
2717                                                       address c2i_value_entry,
2718                                                       address c2i_value_ro_entry,
2719                                                       address c2i_unverified_entry,
2720                                                       address c2i_unverified_value_entry,
2721                                                       address c2i_no_clinit_check_entry) {
2722   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry, c2i_unverified_entry,
2723                               c2i_unverified_value_entry, c2i_no_clinit_check_entry);
2724 }
2725 
2726 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2727   AdapterHandlerEntry* entry = get_adapter0(method);
2728   if (method->is_shared()) {
2729     // See comments around Method::link_method()
2730     MutexLocker mu(AdapterHandlerLibrary_lock);
2731     if (method->adapter() == NULL) {
2732       method->update_adapter_trampoline(entry);
2733     }
2734     address trampoline = method->from_compiled_entry();
2735     if (*(int*)trampoline == 0) {
2736       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2737       MacroAssembler _masm(&buffer);
2738       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2739       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2740 
2741       if (PrintInterpreter) {
2742         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2743       }
2744     }
2745   }
2746 
2747   return entry;
2748 }
2749 
2750 CompiledEntrySignature::CompiledEntrySignature(Method* method) :
2751   _method(method), _num_value_args(0), _has_value_recv(false),
2752   _sig_cc(NULL), _sig_cc_ro(NULL), _regs(NULL), _regs_cc(NULL), _regs_cc_ro(NULL),
2753   _args_on_stack(0), _args_on_stack_cc(0), _args_on_stack_cc_ro(0),
2754   _c1_needs_stack_repair(false), _c2_needs_stack_repair(false), _has_scalarized_args(false) {
2755   _has_reserved_entries = false;
2756   _sig = new GrowableArray<SigEntry>(method->size_of_parameters());
2757 
2758 }
2759 
2760 int CompiledEntrySignature::compute_scalarized_cc(GrowableArray<SigEntry>*& sig_cc, VMRegPair*& regs_cc, bool scalar_receiver) {
2761   InstanceKlass* holder = _method->method_holder();
2762   sig_cc = new GrowableArray<SigEntry>(_method->size_of_parameters());
2763   if (!_method->is_static()) {
2764     if (holder->is_value() && scalar_receiver && ValueKlass::cast(holder)->is_scalarizable()) {
2765       sig_cc->appendAll(ValueKlass::cast(holder)->extended_sig());
2766     } else {
2767       SigEntry::add_entry(sig_cc, T_OBJECT);
2768     }
2769   }
2770   Thread* THREAD = Thread::current();
2771   for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2772     if (ss.type() == T_VALUETYPE) {
2773       ValueKlass* vk = ss.as_value_klass(holder);
2774       if (vk->is_scalarizable()) {
2775         sig_cc->appendAll(vk->extended_sig());
2776       } else {
2777         SigEntry::add_entry(sig_cc, T_OBJECT);
2778       }
2779     } else {
2780       SigEntry::add_entry(sig_cc, ss.type());
2781     }
2782   }
2783   regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc->length() + 2);
2784   return SharedRuntime::java_calling_convention(sig_cc, regs_cc);
2785 }
2786 
2787 int CompiledEntrySignature::insert_reserved_entry(int ret_off) {
2788   // Find index in signature that belongs to return address slot
2789   BasicType bt = T_ILLEGAL;
2790   int i = 0;
2791   for (uint off = 0; i < _sig_cc->length(); ++i) {
2792     if (SigEntry::skip_value_delimiters(_sig_cc, i)) {
2793       VMReg first = _regs_cc[off++].first();
2794       if (first->is_valid() && first->is_stack()) {
2795         // Select a type for the reserved entry that will end up on the stack
2796         bt = _sig_cc->at(i)._bt;
2797         if (((int)first->reg2stack() + VMRegImpl::slots_per_word) == ret_off) {
2798           break; // Index of the return address found
2799         }
2800       }
2801     }
2802   }
2803   // Insert reserved entry and re-compute calling convention
2804   SigEntry::insert_reserved_entry(_sig_cc, i, bt);
2805   return SharedRuntime::java_calling_convention(_sig_cc, _regs_cc);
2806 }
2807 
2808 // See if we can save space by sharing the same entry for VVEP and VVEP(RO),
2809 // or the same entry for VEP and VVEP(RO).
2810 CodeOffsets::Entries CompiledEntrySignature::c1_value_ro_entry_type() const {
2811   if (!has_scalarized_args()) {
2812     // VEP/VVEP/VVEP(RO) all share the same entry. There's no packing.
2813     return CodeOffsets::Verified_Entry;
2814   }
2815   if (_method->is_static()) {
2816     // Static methods don't need VVEP(RO)
2817     return CodeOffsets::Verified_Entry;
2818   }
2819 
2820   if (has_value_recv()) {
2821     if (num_value_args() == 1) {
2822       // Share same entry for VVEP and VVEP(RO).
2823       // This is quite common: we have an instance method in a ValueKlass that has
2824       // no value args other than <this>.
2825       return CodeOffsets::Verified_Value_Entry;
2826     } else {
2827       assert(num_value_args() > 1, "must be");
2828       // No sharing:
2829       //   VVEP(RO) -- <this> is passed as object
2830       //   VEP      -- <this> is passed as fields
2831       return CodeOffsets::Verified_Value_Entry_RO;
2832     }
2833   }
2834 
2835   // Either a static method, or <this> is not a value type
2836   if (args_on_stack_cc() != args_on_stack_cc_ro() || _has_reserved_entries) {
2837     // No sharing:
2838     // Some arguments are passed on the stack, and we have inserted reserved entries
2839     // into the VEP, but we never insert reserved entries into the VVEP(RO).
2840     return CodeOffsets::Verified_Value_Entry_RO;
2841   } else {
2842     // Share same entry for VEP and VVEP(RO).
2843     return CodeOffsets::Verified_Entry;
2844   }
2845 }
2846 
2847 
2848 void CompiledEntrySignature::compute_calling_conventions() {
2849   // Get the (non-scalarized) signature and check for value type arguments
2850   if (!_method->is_static()) {
2851     if (_method->method_holder()->is_value() && ValueKlass::cast(_method->method_holder())->is_scalarizable()) {
2852       _has_value_recv = true;
2853       _num_value_args++;
2854     }
2855     SigEntry::add_entry(_sig, T_OBJECT);
2856   }
2857   for (SignatureStream ss(_method->signature()); !ss.at_return_type(); ss.next()) {
2858     BasicType bt = ss.type();
2859     if (bt == T_VALUETYPE) {
2860       if (ss.as_value_klass(_method->method_holder())->is_scalarizable()) {
2861         _num_value_args++;
2862       }
2863       bt = T_OBJECT;
2864     }
2865     SigEntry::add_entry(_sig, bt);
2866   }
2867   if (_method->is_abstract() && !(ValueTypePassFieldsAsArgs && has_value_arg())) {
2868     return;
2869   }
2870 
2871   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2872   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
2873   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
2874 
2875   // Now compute the scalarized calling convention if there are value types in the signature
2876   _sig_cc = _sig;
2877   _sig_cc_ro = _sig;
2878   _regs_cc = _regs;
2879   _regs_cc_ro = _regs;
2880   _args_on_stack_cc = _args_on_stack;
2881   _args_on_stack_cc_ro = _args_on_stack;
2882 
2883   if (ValueTypePassFieldsAsArgs && has_value_arg() && !_method->is_native()) {
2884     _args_on_stack_cc = compute_scalarized_cc(_sig_cc, _regs_cc, /* scalar_receiver = */ true);
2885 
2886     _sig_cc_ro = _sig_cc;
2887     _regs_cc_ro = _regs_cc;
2888     _args_on_stack_cc_ro = _args_on_stack_cc;
2889     if (_has_value_recv || _args_on_stack_cc > _args_on_stack) {
2890       // For interface calls, we need another entry point / adapter to unpack the receiver
2891       _args_on_stack_cc_ro = compute_scalarized_cc(_sig_cc_ro, _regs_cc_ro, /* scalar_receiver = */ false);
2892     }
2893 
2894     // Compute the stack extension that is required to convert between the calling conventions.
2895     // The stack slots at these offsets are occupied by the return address with the unscalarized
2896     // calling convention. Don't use them for arguments with the scalarized calling convention.
2897     int ret_off    = _args_on_stack_cc - _args_on_stack;
2898     int ret_off_ro = _args_on_stack_cc - _args_on_stack_cc_ro;
2899     assert(ret_off_ro <= 0 || ret_off > 0, "receiver unpacking requires more stack space than expected");
2900 
2901     if (ret_off > 0) {
2902       // Make sure the stack of the scalarized calling convention with the reserved
2903       // entries (2 slots each) remains 16-byte (4 slots) aligned after stack extension.
2904       int alignment = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
2905       if (ret_off_ro != ret_off && ret_off_ro >= 0) {
2906         ret_off    += 4; // Account for two reserved entries (4 slots)
2907         ret_off_ro += 4;
2908         ret_off     = align_up(ret_off, alignment);
2909         ret_off_ro  = align_up(ret_off_ro, alignment);
2910         // TODO can we avoid wasting a stack slot here?
2911         //assert(ret_off != ret_off_ro, "fail");
2912         if (ret_off > ret_off_ro) {
2913           swap(ret_off, ret_off_ro); // Sort by offset
2914         }
2915         _args_on_stack_cc = insert_reserved_entry(ret_off);
2916         _args_on_stack_cc = insert_reserved_entry(ret_off_ro);
2917       } else {
2918         ret_off += 2; // Account for one reserved entry (2 slots)
2919         ret_off = align_up(ret_off, alignment);
2920         _args_on_stack_cc = insert_reserved_entry(ret_off);
2921       }
2922 
2923       _has_reserved_entries = true;
2924     }
2925 
2926     // Upper bound on stack arguments to avoid hitting the argument limit and
2927     // bailing out of compilation ("unsupported incoming calling sequence").
2928     // TODO we need a reasonable limit (flag?) here
2929     if (_args_on_stack_cc > 50) {
2930       // Don't scalarize value type arguments
2931       _sig_cc = _sig;
2932       _sig_cc_ro = _sig;
2933       _regs_cc = _regs;
2934       _regs_cc_ro = _regs;
2935       _args_on_stack_cc = _args_on_stack;
2936       _args_on_stack_cc_ro = _args_on_stack;
2937     } else {
2938       _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
2939       _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
2940       _has_scalarized_args = true;
2941     }
2942   }
2943 }
2944 
2945 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2946   // Use customized signature handler.  Need to lock around updates to
2947   // the AdapterHandlerTable (it is not safe for concurrent readers
2948   // and a single writer: this could be fixed if it becomes a
2949   // problem).
2950 
2951   ResourceMark rm;
2952 
2953   NOT_PRODUCT(int insts_size = 0);
2954   AdapterBlob* new_adapter = NULL;
2955   AdapterHandlerEntry* entry = NULL;
2956   AdapterFingerPrint* fingerprint = NULL;
2957 
2958   {
2959     MutexLocker mu(AdapterHandlerLibrary_lock);
2960     // make sure data structure is initialized
2961     initialize();
2962 
2963     CompiledEntrySignature ces(method());
2964     {
2965        MutexUnlocker mul(AdapterHandlerLibrary_lock);
2966        ces.compute_calling_conventions();
2967     }
2968     GrowableArray<SigEntry>& sig       = ces.sig();
2969     GrowableArray<SigEntry>& sig_cc    = ces.sig_cc();
2970     GrowableArray<SigEntry>& sig_cc_ro = ces.sig_cc_ro();
2971     VMRegPair* regs         = ces.regs();
2972     VMRegPair* regs_cc      = ces.regs_cc();
2973     VMRegPair* regs_cc_ro   = ces.regs_cc_ro();
2974 
2975     if (ces.has_scalarized_args()) {
2976       method->set_has_scalarized_args(true);
2977       method->set_c1_needs_stack_repair(ces.c1_needs_stack_repair());
2978       method->set_c2_needs_stack_repair(ces.c2_needs_stack_repair());
2979     }
2980 
2981     if (method->is_abstract()) {
2982       if (ces.has_scalarized_args()) {
2983         // Save a C heap allocated version of the signature for abstract methods with scalarized value type arguments
2984         address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2985         entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2986                                                  StubRoutines::throw_AbstractMethodError_entry(),
2987                                                  wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2988                                                  wrong_method_abstract, wrong_method_abstract);
2989         GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc_ro.length(), true);
2990         heap_sig->appendAll(&sig_cc_ro);
2991         entry->set_sig_cc(heap_sig);
2992         return entry;
2993       } else {
2994         return _abstract_method_handler;
2995       }
2996     }
2997 
2998     // Lookup method signature's fingerprint
2999     entry = _adapters->lookup(&sig_cc, regs_cc != regs_cc_ro);
3000 
3001 #ifdef ASSERT
3002     AdapterHandlerEntry* shared_entry = NULL;
3003     // Start adapter sharing verification only after the VM is booted.
3004     if (VerifyAdapterSharing && (entry != NULL)) {
3005       shared_entry = entry;
3006       entry = NULL;
3007     }
3008 #endif
3009 
3010     if (entry != NULL) {
3011       return entry;
3012     }
3013 
3014     // Make a C heap allocated version of the fingerprint to store in the adapter
3015     fingerprint = new AdapterFingerPrint(&sig_cc, regs_cc != regs_cc_ro);
3016 
3017     // StubRoutines::code2() is initialized after this function can be called. As a result,
3018     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
3019     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
3020     // stub that ensure that an I2C stub is called from an interpreter frame.
3021     bool contains_all_checks = StubRoutines::code2() != NULL;
3022 
3023     // Create I2C & C2I handlers
3024     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3025     if (buf != NULL) {
3026       CodeBuffer buffer(buf);
3027       short buffer_locs[20];
3028       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
3029                                              sizeof(buffer_locs)/sizeof(relocInfo));
3030 
3031       MacroAssembler _masm(&buffer);
3032       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
3033                                                      ces.args_on_stack(),
3034                                                      &sig,
3035                                                      regs,
3036                                                      &sig_cc,
3037                                                      regs_cc,
3038                                                      &sig_cc_ro,
3039                                                      regs_cc_ro,
3040                                                      fingerprint,
3041                                                      new_adapter);
3042 
3043       if (ces.has_scalarized_args()) {
3044         // Save a C heap allocated version of the scalarized signature and store it in the adapter
3045         GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc.length(), true);
3046         heap_sig->appendAll(&sig_cc);
3047         entry->set_sig_cc(heap_sig);
3048       }
3049 
3050 #ifdef ASSERT
3051       if (VerifyAdapterSharing) {
3052         if (shared_entry != NULL) {
3053           if (!shared_entry->compare_code(buf->code_begin(), buffer.insts_size())) {
3054             method->print();
3055           }
3056           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
3057           // Release the one just created and return the original
3058           _adapters->free_entry(entry);
3059           return shared_entry;
3060         } else  {
3061           entry->save_code(buf->code_begin(), buffer.insts_size());
3062         }
3063       }
3064 #endif
3065 
3066       NOT_PRODUCT(insts_size = buffer.insts_size());
3067     }
3068     if (new_adapter == NULL) {
3069       // CodeCache is full, disable compilation
3070       // Ought to log this but compile log is only per compile thread
3071       // and we're some non descript Java thread.
3072       return NULL; // Out of CodeCache space
3073     }
3074     entry->relocate(new_adapter->content_begin());
3075 #ifndef PRODUCT
3076     // debugging suppport
3077     if (PrintAdapterHandlers || PrintStubCode) {
3078       ttyLocker ttyl;
3079       entry->print_adapter_on(tty);
3080       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
3081                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
3082                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
3083       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
3084       if (Verbose || PrintStubCode) {
3085         address first_pc = entry->base_address();
3086         if (first_pc != NULL) {
3087           Disassembler::decode(first_pc, first_pc + insts_size);
3088           tty->cr();
3089         }
3090       }
3091     }
3092 #endif
3093     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
3094     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
3095     if (contains_all_checks || !VerifyAdapterCalls) {
3096       _adapters->add(entry);
3097     }
3098   }
3099   // Outside of the lock
3100   if (new_adapter != NULL) {
3101     char blob_id[256];
3102     jio_snprintf(blob_id,
3103                  sizeof(blob_id),
3104                  "%s(%s)@" PTR_FORMAT,
3105                  new_adapter->name(),
3106                  fingerprint->as_string(),
3107                  new_adapter->content_begin());
3108     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
3109 
3110     if (JvmtiExport::should_post_dynamic_code_generated()) {
3111       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
3112     }
3113   }
3114   return entry;
3115 }
3116 
3117 address AdapterHandlerEntry::base_address() {
3118   address base = _i2c_entry;
3119   if (base == NULL)  base = _c2i_entry;
3120   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
3121   assert(base <= _c2i_value_entry || _c2i_value_entry == NULL, "");
3122   assert(base <= _c2i_value_ro_entry || _c2i_value_ro_entry == NULL, "");
3123   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
3124   assert(base <= _c2i_unverified_value_entry || _c2i_unverified_value_entry == NULL, "");
3125   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
3126   return base;
3127 }
3128 
3129 void AdapterHandlerEntry::relocate(address new_base) {
3130   address old_base = base_address();
3131   assert(old_base != NULL, "");
3132   ptrdiff_t delta = new_base - old_base;
3133   if (_i2c_entry != NULL)
3134     _i2c_entry += delta;
3135   if (_c2i_entry != NULL)
3136     _c2i_entry += delta;
3137   if (_c2i_value_entry != NULL)
3138     _c2i_value_entry += delta;
3139   if (_c2i_value_ro_entry != NULL)
3140     _c2i_value_ro_entry += delta;
3141   if (_c2i_unverified_entry != NULL)
3142     _c2i_unverified_entry += delta;
3143   if (_c2i_unverified_value_entry != NULL)
3144     _c2i_unverified_value_entry += delta;
3145   if (_c2i_no_clinit_check_entry != NULL)
3146     _c2i_no_clinit_check_entry += delta;
3147   assert(base_address() == new_base, "");
3148 }
3149 
3150 
3151 void AdapterHandlerEntry::deallocate() {
3152   delete _fingerprint;
3153   if (_sig_cc != NULL) {
3154     delete _sig_cc;
3155   }
3156 #ifdef ASSERT
3157   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3158 #endif
3159 }
3160 
3161 
3162 #ifdef ASSERT
3163 // Capture the code before relocation so that it can be compared
3164 // against other versions.  If the code is captured after relocation
3165 // then relative instructions won't be equivalent.
3166 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3167   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3168   _saved_code_length = length;
3169   memcpy(_saved_code, buffer, length);
3170 }
3171 
3172 
3173 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
3174   if (length != _saved_code_length) {
3175     return false;
3176   }
3177 
3178   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
3179 }
3180 #endif
3181 
3182 
3183 /**
3184  * Create a native wrapper for this native method.  The wrapper converts the
3185  * Java-compiled calling convention to the native convention, handles
3186  * arguments, and transitions to native.  On return from the native we transition
3187  * back to java blocking if a safepoint is in progress.
3188  */
3189 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3190   ResourceMark rm;
3191   nmethod* nm = NULL;
3192   address critical_entry = NULL;
3193 
3194   assert(method->is_native(), "must be native");
3195   assert(method->is_method_handle_intrinsic() ||
3196          method->has_native_function(), "must have something valid to call!");
3197 
3198   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
3199     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
3200     critical_entry = NativeLookup::lookup_critical_entry(method);
3201   }
3202 
3203   {
3204     // Perform the work while holding the lock, but perform any printing outside the lock
3205     MutexLocker mu(AdapterHandlerLibrary_lock);
3206     // See if somebody beat us to it
3207     if (method->code() != NULL) {
3208       return;
3209     }
3210 
3211     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3212     assert(compile_id > 0, "Must generate native wrapper");
3213 
3214 
3215     ResourceMark rm;
3216     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3217     if (buf != NULL) {
3218       CodeBuffer buffer(buf);
3219       double locs_buf[20];
3220       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3221       MacroAssembler _masm(&buffer);
3222 
3223       // Fill in the signature array, for the calling-convention call.
3224       const int total_args_passed = method->size_of_parameters();
3225 
3226       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3227       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3228       int i=0;
3229       if (!method->is_static())  // Pass in receiver first
3230         sig_bt[i++] = T_OBJECT;
3231       SignatureStream ss(method->signature());
3232       for (; !ss.at_return_type(); ss.next()) {
3233         BasicType bt = ss.type();
3234         sig_bt[i++] = bt;  // Collect remaining bits of signature
3235         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
3236           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3237       }
3238       assert(i == total_args_passed, "");
3239       BasicType ret_type = ss.type();
3240 
3241       // Now get the compiled-Java layout as input (or output) arguments.
3242       // NOTE: Stubs for compiled entry points of method handle intrinsics
3243       // are just trampolines so the argument registers must be outgoing ones.
3244       const bool is_outgoing = method->is_method_handle_intrinsic();
3245       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
3246 
3247       // Generate the compiled-to-native wrapper code
3248       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
3249 
3250       if (nm != NULL) {
3251         method->set_code(method, nm);
3252 
3253         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3254         if (directive->PrintAssemblyOption) {
3255           nm->print_code();
3256         }
3257         DirectivesStack::release(directive);
3258       }
3259     }
3260   } // Unlock AdapterHandlerLibrary_lock
3261 
3262 
3263   // Install the generated code.
3264   if (nm != NULL) {
3265     const char *msg = method->is_static() ? "(static)" : "";
3266     CompileTask::print_ul(nm, msg);
3267     if (PrintCompilation) {
3268       ttyLocker ttyl;
3269       CompileTask::print(tty, nm, msg);
3270     }
3271     nm->post_compiled_method_load_event();
3272   }
3273 }
3274 
3275 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3276   assert(thread == JavaThread::current(), "must be");
3277   // The code is about to enter a JNI lazy critical native method and
3278   // _needs_gc is true, so if this thread is already in a critical
3279   // section then just return, otherwise this thread should block
3280   // until needs_gc has been cleared.
3281   if (thread->in_critical()) {
3282     return;
3283   }
3284   // Lock and unlock a critical section to give the system a chance to block
3285   GCLocker::lock_critical(thread);
3286   GCLocker::unlock_critical(thread);
3287 JRT_END
3288 
3289 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
3290   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3291   assert(obj != NULL, "Should not be null");
3292   oop o(obj);
3293   o = Universe::heap()->pin_object(thread, o);
3294   assert(o != NULL, "Should not be null");
3295   return o;
3296 JRT_END
3297 
3298 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
3299   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3300   assert(obj != NULL, "Should not be null");
3301   oop o(obj);
3302   Universe::heap()->unpin_object(thread, o);
3303 JRT_END
3304 
3305 // -------------------------------------------------------------------------
3306 // Java-Java calling convention
3307 // (what you use when Java calls Java)
3308 
3309 //------------------------------name_for_receiver----------------------------------
3310 // For a given signature, return the VMReg for parameter 0.
3311 VMReg SharedRuntime::name_for_receiver() {
3312   VMRegPair regs;
3313   BasicType sig_bt = T_OBJECT;
3314   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3315   // Return argument 0 register.  In the LP64 build pointers
3316   // take 2 registers, but the VM wants only the 'main' name.
3317   return regs.first();
3318 }
3319 
3320 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3321   // This method is returning a data structure allocating as a
3322   // ResourceObject, so do not put any ResourceMarks in here.
3323   char *s = sig->as_C_string();
3324   int len = (int)strlen(s);
3325   s++; len--;                   // Skip opening paren
3326 
3327   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3328   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3329   int cnt = 0;
3330   if (has_receiver) {
3331     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3332   }
3333 
3334   while (*s != ')') {          // Find closing right paren
3335     switch (*s++) {            // Switch on signature character
3336     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3337     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3338     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3339     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3340     case 'I': sig_bt[cnt++] = T_INT;     break;
3341     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3342     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3343     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3344     case 'V': sig_bt[cnt++] = T_VOID;    break;
3345     case 'L':                   // Oop
3346       while (*s++ != ';');   // Skip signature
3347       sig_bt[cnt++] = T_OBJECT;
3348       break;
3349     case 'Q':                // Value type
3350       while (*s++ != ';');   // Skip signature
3351       sig_bt[cnt++] = T_VALUETYPE;
3352       break;
3353     case '[': {                 // Array
3354       do {                      // Skip optional size
3355         while (*s >= '0' && *s <= '9') s++;
3356       } while (*s++ == '[');   // Nested arrays?
3357       // Skip element type
3358       if (s[-1] == 'L' || s[-1] == 'Q')
3359         while (*s++ != ';'); // Skip signature
3360       sig_bt[cnt++] = T_ARRAY;
3361       break;
3362     }
3363     default : ShouldNotReachHere();
3364     }
3365   }
3366 
3367   if (has_appendix) {
3368     sig_bt[cnt++] = T_OBJECT;
3369   }
3370 
3371   assert(cnt < 256, "grow table size");
3372 
3373   int comp_args_on_stack;
3374   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3375 
3376   // the calling convention doesn't count out_preserve_stack_slots so
3377   // we must add that in to get "true" stack offsets.
3378 
3379   if (comp_args_on_stack) {
3380     for (int i = 0; i < cnt; i++) {
3381       VMReg reg1 = regs[i].first();
3382       if (reg1->is_stack()) {
3383         // Yuck
3384         reg1 = reg1->bias(out_preserve_stack_slots());
3385       }
3386       VMReg reg2 = regs[i].second();
3387       if (reg2->is_stack()) {
3388         // Yuck
3389         reg2 = reg2->bias(out_preserve_stack_slots());
3390       }
3391       regs[i].set_pair(reg2, reg1);
3392     }
3393   }
3394 
3395   // results
3396   *arg_size = cnt;
3397   return regs;
3398 }
3399 
3400 // OSR Migration Code
3401 //
3402 // This code is used convert interpreter frames into compiled frames.  It is
3403 // called from very start of a compiled OSR nmethod.  A temp array is
3404 // allocated to hold the interesting bits of the interpreter frame.  All
3405 // active locks are inflated to allow them to move.  The displaced headers and
3406 // active interpreter locals are copied into the temp buffer.  Then we return
3407 // back to the compiled code.  The compiled code then pops the current
3408 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3409 // copies the interpreter locals and displaced headers where it wants.
3410 // Finally it calls back to free the temp buffer.
3411 //
3412 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3413 
3414 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3415 
3416   //
3417   // This code is dependent on the memory layout of the interpreter local
3418   // array and the monitors. On all of our platforms the layout is identical
3419   // so this code is shared. If some platform lays the their arrays out
3420   // differently then this code could move to platform specific code or
3421   // the code here could be modified to copy items one at a time using
3422   // frame accessor methods and be platform independent.
3423 
3424   frame fr = thread->last_frame();
3425   assert(fr.is_interpreted_frame(), "");
3426   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3427 
3428   // Figure out how many monitors are active.
3429   int active_monitor_count = 0;
3430   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3431        kptr < fr.interpreter_frame_monitor_begin();
3432        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3433     if (kptr->obj() != NULL) active_monitor_count++;
3434   }
3435 
3436   // QQQ we could place number of active monitors in the array so that compiled code
3437   // could double check it.
3438 
3439   Method* moop = fr.interpreter_frame_method();
3440   int max_locals = moop->max_locals();
3441   // Allocate temp buffer, 1 word per local & 2 per active monitor
3442   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3443   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3444 
3445   // Copy the locals.  Order is preserved so that loading of longs works.
3446   // Since there's no GC I can copy the oops blindly.
3447   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3448   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3449                        (HeapWord*)&buf[0],
3450                        max_locals);
3451 
3452   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3453   int i = max_locals;
3454   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3455        kptr2 < fr.interpreter_frame_monitor_begin();
3456        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3457     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3458       BasicLock *lock = kptr2->lock();
3459       // Inflate so the displaced header becomes position-independent
3460       if (lock->displaced_header().is_unlocked())
3461         ObjectSynchronizer::inflate_helper(kptr2->obj());
3462       // Now the displaced header is free to move
3463       buf[i++] = (intptr_t)lock->displaced_header().value();
3464       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3465     }
3466   }
3467   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3468 
3469   return buf;
3470 JRT_END
3471 
3472 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3473   FREE_C_HEAP_ARRAY(intptr_t, buf);
3474 JRT_END
3475 
3476 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3477   AdapterHandlerTableIterator iter(_adapters);
3478   while (iter.has_next()) {
3479     AdapterHandlerEntry* a = iter.next();
3480     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3481   }
3482   return false;
3483 }
3484 
3485 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3486   AdapterHandlerTableIterator iter(_adapters);
3487   while (iter.has_next()) {
3488     AdapterHandlerEntry* a = iter.next();
3489     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3490       st->print("Adapter for signature: ");
3491       a->print_adapter_on(tty);
3492       return;
3493     }
3494   }
3495   assert(false, "Should have found handler");
3496 }
3497 
3498 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3499   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3500   if (get_i2c_entry() != NULL) {
3501     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3502   }
3503   if (get_c2i_entry() != NULL) {
3504     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3505   }
3506   if (get_c2i_entry() != NULL) {
3507     st->print(" c2iVE: " INTPTR_FORMAT, p2i(get_c2i_value_entry()));
3508   }
3509   if (get_c2i_entry() != NULL) {
3510     st->print(" c2iVROE: " INTPTR_FORMAT, p2i(get_c2i_value_ro_entry()));
3511   }
3512   if (get_c2i_unverified_entry() != NULL) {
3513     st->print(" c2iUE: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3514   }
3515   if (get_c2i_unverified_entry() != NULL) {
3516     st->print(" c2iUVE: " INTPTR_FORMAT, p2i(get_c2i_unverified_value_entry()));
3517   }
3518   if (get_c2i_no_clinit_check_entry() != NULL) {
3519     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3520   }
3521   st->cr();
3522 }
3523 
3524 #if INCLUDE_CDS
3525 
3526 void CDSAdapterHandlerEntry::init() {
3527   assert(DumpSharedSpaces, "used during dump time only");
3528   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3529   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3530 };
3531 
3532 #endif // INCLUDE_CDS
3533 
3534 
3535 #ifndef PRODUCT
3536 
3537 void AdapterHandlerLibrary::print_statistics() {
3538   _adapters->print_statistics();
3539 }
3540 
3541 #endif /* PRODUCT */
3542 
3543 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3544   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3545   if (thread->stack_reserved_zone_disabled()) {
3546   thread->enable_stack_reserved_zone();
3547   }
3548   thread->set_reserved_stack_activation(thread->stack_base());
3549 JRT_END
3550 
3551 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3552   ResourceMark rm(thread);
3553   frame activation;
3554   CompiledMethod* nm = NULL;
3555   int count = 1;
3556 
3557   assert(fr.is_java_frame(), "Must start on Java frame");
3558 
3559   while (true) {
3560     Method* method = NULL;
3561     bool found = false;
3562     if (fr.is_interpreted_frame()) {
3563       method = fr.interpreter_frame_method();
3564       if (method != NULL && method->has_reserved_stack_access()) {
3565         found = true;
3566       }
3567     } else {
3568       CodeBlob* cb = fr.cb();
3569       if (cb != NULL && cb->is_compiled()) {
3570         nm = cb->as_compiled_method();
3571         method = nm->method();
3572         // scope_desc_near() must be used, instead of scope_desc_at() because on
3573         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3574         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3575           method = sd->method();
3576           if (method != NULL && method->has_reserved_stack_access()) {
3577             found = true;
3578       }
3579     }
3580       }
3581     }
3582     if (found) {
3583       activation = fr;
3584       warning("Potentially dangerous stack overflow in "
3585               "ReservedStackAccess annotated method %s [%d]",
3586               method->name_and_sig_as_C_string(), count++);
3587       EventReservedStackActivation event;
3588       if (event.should_commit()) {
3589         event.set_method(method);
3590         event.commit();
3591       }
3592     }
3593     if (fr.is_first_java_frame()) {
3594       break;
3595     } else {
3596       fr = fr.java_sender();
3597     }
3598   }
3599   return activation;
3600 }
3601 
3602 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3603   // After any safepoint, just before going back to compiled code,
3604   // we inform the GC that we will be doing initializing writes to
3605   // this object in the future without emitting card-marks, so
3606   // GC may take any compensating steps.
3607 
3608   oop new_obj = thread->vm_result();
3609   if (new_obj == NULL) return;
3610 
3611   BarrierSet *bs = BarrierSet::barrier_set();
3612   bs->on_slowpath_allocation_exit(thread, new_obj);
3613 }
3614 
3615 // We are at a compiled code to interpreter call. We need backing
3616 // buffers for all value type arguments. Allocate an object array to
3617 // hold them (convenient because once we're done with it we don't have
3618 // to worry about freeing it).
3619 oop SharedRuntime::allocate_value_types_impl(JavaThread* thread, methodHandle callee, bool allocate_receiver, TRAPS) {
3620   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3621   ResourceMark rm;
3622 
3623   int nb_slots = 0;
3624   InstanceKlass* holder = callee->method_holder();
3625   allocate_receiver &= !callee->is_static() && holder->is_value();
3626   if (allocate_receiver) {
3627     nb_slots++;
3628   }
3629   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3630     if (ss.type() == T_VALUETYPE) {
3631       nb_slots++;
3632     }
3633   }
3634   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL);
3635   objArrayHandle array(THREAD, array_oop);
3636   int i = 0;
3637   if (allocate_receiver) {
3638     ValueKlass* vk = ValueKlass::cast(holder);
3639     oop res = vk->allocate_instance(CHECK_NULL);
3640     array->obj_at_put(i, res);
3641     i++;
3642   }
3643   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3644     if (ss.type() == T_VALUETYPE) {
3645       ValueKlass* vk = ss.as_value_klass(holder);
3646       oop res = vk->allocate_instance(CHECK_NULL);
3647       array->obj_at_put(i, res);
3648       i++;
3649     }
3650   }
3651   return array();
3652 }
3653 
3654 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method, bool allocate_receiver))
3655   methodHandle callee(callee_method);
3656   oop array = SharedRuntime::allocate_value_types_impl(thread, callee, allocate_receiver, CHECK);
3657   thread->set_vm_result(array);
3658   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3659 JRT_END
3660 
3661 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3662 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3663 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3664 {
3665   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3666   assert(oopDesc::is_oop(array), "should be oop");
3667   for (int i = 0; i < array->length(); ++i) {
3668     instanceOop valueOop = (instanceOop)array->obj_at(i);
3669     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3670     if (vk->contains_oops()) {
3671       const address dst_oop_addr = ((address) (void*) valueOop);
3672       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3673       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3674       while (map != end) {
3675         address doop_address = dst_oop_addr + map->offset();
3676         barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())->
3677           write_ref_array((HeapWord*) doop_address, map->count());
3678         map++;
3679       }
3680     }
3681   }
3682 }
3683 JRT_END
3684 
3685 // We're returning from an interpreted method: load each field into a
3686 // register following the calling convention
3687 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3688 {
3689   assert(res->klass()->is_value(), "only value types here");
3690   ResourceMark rm;
3691   RegisterMap reg_map(thread);
3692   frame stubFrame = thread->last_frame();
3693   frame callerFrame = stubFrame.sender(&reg_map);
3694   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3695 
3696   ValueKlass* vk = ValueKlass::cast(res->klass());
3697 
3698   const Array<SigEntry>* sig_vk = vk->extended_sig();
3699   const Array<VMRegPair>* regs = vk->return_regs();
3700 
3701   if (regs == NULL) {
3702     // The fields of the value klass don't fit in registers, bail out
3703     return;
3704   }
3705 
3706   int j = 1;
3707   for (int i = 0; i < sig_vk->length(); i++) {
3708     BasicType bt = sig_vk->at(i)._bt;
3709     if (bt == T_VALUETYPE) {
3710       continue;
3711     }
3712     if (bt == T_VOID) {
3713       if (sig_vk->at(i-1)._bt == T_LONG ||
3714           sig_vk->at(i-1)._bt == T_DOUBLE) {
3715         j++;
3716       }
3717       continue;
3718     }
3719     int off = sig_vk->at(i)._offset;
3720     assert(off > 0, "offset in object should be positive");
3721     VMRegPair pair = regs->at(j);
3722     address loc = reg_map.location(pair.first());
3723     switch(bt) {
3724     case T_BOOLEAN:
3725       *(jboolean*)loc = res->bool_field(off);
3726       break;
3727     case T_CHAR:
3728       *(jchar*)loc = res->char_field(off);
3729       break;
3730     case T_BYTE:
3731       *(jbyte*)loc = res->byte_field(off);
3732       break;
3733     case T_SHORT:
3734       *(jshort*)loc = res->short_field(off);
3735       break;
3736     case T_INT: {
3737       *(jint*)loc = res->int_field(off);
3738       break;
3739     }
3740     case T_LONG:
3741 #ifdef _LP64
3742       *(intptr_t*)loc = res->long_field(off);
3743 #else
3744       Unimplemented();
3745 #endif
3746       break;
3747     case T_OBJECT:
3748     case T_ARRAY: {
3749       *(oop*)loc = res->obj_field(off);
3750       break;
3751     }
3752     case T_FLOAT:
3753       *(jfloat*)loc = res->float_field(off);
3754       break;
3755     case T_DOUBLE:
3756       *(jdouble*)loc = res->double_field(off);
3757       break;
3758     default:
3759       ShouldNotReachHere();
3760     }
3761     j++;
3762   }
3763   assert(j == regs->length(), "missed a field?");
3764 
3765 #ifdef ASSERT
3766   VMRegPair pair = regs->at(0);
3767   address loc = reg_map.location(pair.first());
3768   assert(*(oopDesc**)loc == res, "overwritten object");
3769 #endif
3770 
3771   thread->set_vm_result(res);
3772 }
3773 JRT_END
3774 
3775 // We've returned to an interpreted method, the interpreter needs a
3776 // reference to a value type instance. Allocate it and initialize it
3777 // from field's values in registers.
3778 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3779 {
3780   ResourceMark rm;
3781   RegisterMap reg_map(thread);
3782   frame stubFrame = thread->last_frame();
3783   frame callerFrame = stubFrame.sender(&reg_map);
3784 
3785 #ifdef ASSERT
3786   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3787 #endif
3788 
3789   if (!is_set_nth_bit(res, 0)) {
3790     // We're not returning with value type fields in registers (the
3791     // calling convention didn't allow it for this value klass)
3792     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3793     thread->set_vm_result((oopDesc*)res);
3794     assert(verif_vk == NULL, "broken calling convention");
3795     return;
3796   }
3797 
3798   clear_nth_bit(res, 0);
3799   ValueKlass* vk = (ValueKlass*)res;
3800   assert(verif_vk == vk, "broken calling convention");
3801   assert(Metaspace::contains((void*)res), "should be klass");
3802 
3803   // Allocate handles for every oop field so they are safe in case of
3804   // a safepoint when allocating
3805   GrowableArray<Handle> handles;
3806   vk->save_oop_fields(reg_map, handles);
3807 
3808   // It's unsafe to safepoint until we are here
3809   JRT_BLOCK;
3810   {
3811     Thread* THREAD = thread;
3812     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3813     thread->set_vm_result(vt);
3814   }
3815   JRT_BLOCK_END;
3816 }
3817 JRT_END
3818