1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 #include "runtime/signature.hpp"
  32 
  33 class ciValueKlass;
  34 
  35 // MacroAssembler extends Assembler by frequently used macros.
  36 //
  37 // Instructions for which a 'better' code sequence exists depending
  38 // on arguments should also go in here.
  39 
  40 class MacroAssembler: public Assembler {
  41   friend class LIR_Assembler;
  42   friend class Runtime1;      // as_Address()
  43 
  44  public:
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50 
  51   virtual void call_VM_leaf_base(
  52     address entry_point,               // the entry point
  53     int     number_of_arguments        // the number of arguments to pop after the call
  54   );
  55 
  56  protected:
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   Address as_Address(AddressLiteral adr);
  91   Address as_Address(ArrayAddress adr);
  92 
  93   // Support for NULL-checks
  94   //
  95   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  96   // If the accessed location is M[reg + offset] and the offset is known, provide the
  97   // offset. No explicit code generation is needed if the offset is within a certain
  98   // range (0 <= offset <= page_size).
  99 
 100   void null_check(Register reg, int offset = -1);
 101   static bool needs_explicit_null_check(intptr_t offset);
 102   static bool uses_implicit_null_check(void* address);
 103 
 104   void test_klass_is_value(Register klass, Register temp_reg, Label& is_value);
 105 
 106   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 107   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 108   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 109 
 110   // Check oops array storage properties, i.e. flattened and/or null-free
 111   void test_flattened_array_oop(Register oop, Register temp_reg, Label&is_flattened_array);
 112   void test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array);
 113 
 114   // Required platform-specific helpers for Label::patch_instructions.
 115   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 116   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 117     unsigned char op = branch[0];
 118     assert(op == 0xE8 /* call */ ||
 119         op == 0xE9 /* jmp */ ||
 120         op == 0xEB /* short jmp */ ||
 121         (op & 0xF0) == 0x70 /* short jcc */ ||
 122         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 123         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 124         "Invalid opcode at patch point");
 125 
 126     if (op == 0xEB || (op & 0xF0) == 0x70) {
 127       // short offset operators (jmp and jcc)
 128       char* disp = (char*) &branch[1];
 129       int imm8 = target - (address) &disp[1];
 130       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 131                 file == NULL ? "<NULL>" : file, line);
 132       *disp = imm8;
 133     } else {
 134       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 135       int imm32 = target - (address) &disp[1];
 136       *disp = imm32;
 137     }
 138   }
 139 
 140   // The following 4 methods return the offset of the appropriate move instruction
 141 
 142   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 143   int load_unsigned_byte(Register dst, Address src);
 144   int load_unsigned_short(Register dst, Address src);
 145 
 146   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 147   int load_signed_byte(Register dst, Address src);
 148   int load_signed_short(Register dst, Address src);
 149 
 150   // Support for sign-extension (hi:lo = extend_sign(lo))
 151   void extend_sign(Register hi, Register lo);
 152 
 153   // Load and store values by size and signed-ness
 154   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 155   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 156 
 157   // Support for inc/dec with optimal instruction selection depending on value
 158 
 159   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 160   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 161 
 162   void decrementl(Address dst, int value = 1);
 163   void decrementl(Register reg, int value = 1);
 164 
 165   void decrementq(Register reg, int value = 1);
 166   void decrementq(Address dst, int value = 1);
 167 
 168   void incrementl(Address dst, int value = 1);
 169   void incrementl(Register reg, int value = 1);
 170 
 171   void incrementq(Register reg, int value = 1);
 172   void incrementq(Address dst, int value = 1);
 173 
 174 #ifdef COMPILER2
 175   // special instructions for EVEX
 176   void setvectmask(Register dst, Register src);
 177   void restorevectmask();
 178 #endif
 179 
 180   // Support optimal SSE move instructions.
 181   void movflt(XMMRegister dst, XMMRegister src) {
 182     if (dst-> encoding() == src->encoding()) return;
 183     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 184     else                       { movss (dst, src); return; }
 185   }
 186   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 187   void movflt(XMMRegister dst, AddressLiteral src);
 188   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 189 
 190   void movdbl(XMMRegister dst, XMMRegister src) {
 191     if (dst-> encoding() == src->encoding()) return;
 192     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 193     else                       { movsd (dst, src); return; }
 194   }
 195 
 196   void movdbl(XMMRegister dst, AddressLiteral src);
 197 
 198   void movdbl(XMMRegister dst, Address src) {
 199     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 200     else                         { movlpd(dst, src); return; }
 201   }
 202   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 203 
 204   void incrementl(AddressLiteral dst);
 205   void incrementl(ArrayAddress dst);
 206 
 207   void incrementq(AddressLiteral dst);
 208 
 209   // Alignment
 210   void align(int modulus);
 211   void align(int modulus, int target);
 212 
 213   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 214   void fat_nop();
 215 
 216   // Stack frame creation/removal
 217   void enter();
 218   void leave();
 219 
 220   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 221   // The pointer will be loaded into the thread register.
 222   void get_thread(Register thread);
 223 
 224 
 225   // Support for VM calls
 226   //
 227   // It is imperative that all calls into the VM are handled via the call_VM macros.
 228   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 229   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 230 
 231 
 232   void call_VM(Register oop_result,
 233                address entry_point,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                address entry_point,
 237                Register arg_1,
 238                bool check_exceptions = true);
 239   void call_VM(Register oop_result,
 240                address entry_point,
 241                Register arg_1, Register arg_2,
 242                bool check_exceptions = true);
 243   void call_VM(Register oop_result,
 244                address entry_point,
 245                Register arg_1, Register arg_2, Register arg_3,
 246                bool check_exceptions = true);
 247 
 248   // Overloadings with last_Java_sp
 249   void call_VM(Register oop_result,
 250                Register last_java_sp,
 251                address entry_point,
 252                int number_of_arguments = 0,
 253                bool check_exceptions = true);
 254   void call_VM(Register oop_result,
 255                Register last_java_sp,
 256                address entry_point,
 257                Register arg_1, bool
 258                check_exceptions = true);
 259   void call_VM(Register oop_result,
 260                Register last_java_sp,
 261                address entry_point,
 262                Register arg_1, Register arg_2,
 263                bool check_exceptions = true);
 264   void call_VM(Register oop_result,
 265                Register last_java_sp,
 266                address entry_point,
 267                Register arg_1, Register arg_2, Register arg_3,
 268                bool check_exceptions = true);
 269 
 270   void get_vm_result  (Register oop_result, Register thread);
 271   void get_vm_result_2(Register metadata_result, Register thread);
 272 
 273   // These always tightly bind to MacroAssembler::call_VM_base
 274   // bypassing the virtual implementation
 275   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 276   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 277   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 278   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 279   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 280 
 281   void call_VM_leaf0(address entry_point);
 282   void call_VM_leaf(address entry_point,
 283                     int number_of_arguments = 0);
 284   void call_VM_leaf(address entry_point,
 285                     Register arg_1);
 286   void call_VM_leaf(address entry_point,
 287                     Register arg_1, Register arg_2);
 288   void call_VM_leaf(address entry_point,
 289                     Register arg_1, Register arg_2, Register arg_3);
 290 
 291   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 292   // bypassing the virtual implementation
 293   void super_call_VM_leaf(address entry_point);
 294   void super_call_VM_leaf(address entry_point, Register arg_1);
 295   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 296   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 297   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 298 
 299   // last Java Frame (fills frame anchor)
 300   void set_last_Java_frame(Register thread,
 301                            Register last_java_sp,
 302                            Register last_java_fp,
 303                            address last_java_pc);
 304 
 305   // thread in the default location (r15_thread on 64bit)
 306   void set_last_Java_frame(Register last_java_sp,
 307                            Register last_java_fp,
 308                            address last_java_pc);
 309 
 310   void reset_last_Java_frame(Register thread, bool clear_fp);
 311 
 312   // thread in the default location (r15_thread on 64bit)
 313   void reset_last_Java_frame(bool clear_fp);
 314 
 315   // jobjects
 316   void clear_jweak_tag(Register possibly_jweak);
 317   void resolve_jobject(Register value, Register thread, Register tmp);
 318 
 319   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 320   void c2bool(Register x);
 321 
 322   // C++ bool manipulation
 323 
 324   void movbool(Register dst, Address src);
 325   void movbool(Address dst, bool boolconst);
 326   void movbool(Address dst, Register src);
 327   void testbool(Register dst);
 328 
 329   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 330   void resolve_weak_handle(Register result, Register tmp);
 331   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 332   void load_method_holder_cld(Register rresult, Register rmethod);
 333 
 334   void load_method_holder(Register holder, Register method);
 335 
 336   // oop manipulations
 337   void load_metadata(Register dst, Register src);
 338   void load_storage_props(Register dst, Register src);
 339   void load_klass(Register dst, Register src);
 340   void store_klass(Register dst, Register src);
 341 
 342   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 343                       Register tmp1, Register thread_tmp);
 344   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 345                        Register tmp1, Register tmp2, Register tmp3 = noreg);
 346 
 347   // Resolves obj access. Result is placed in the same register.
 348   // All other registers are preserved.
 349   void resolve(DecoratorSet decorators, Register obj);
 350 
 351   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 352                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 353   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 354                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 355   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 356                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 357 
 358   // Used for storing NULL. All other oop constants should be
 359   // stored using routines that take a jobject.
 360   void store_heap_oop_null(Address dst);
 361 
 362   void load_prototype_header(Register dst, Register src);
 363 
 364 #ifdef _LP64
 365   void store_klass_gap(Register dst, Register src);
 366 
 367   // This dummy is to prevent a call to store_heap_oop from
 368   // converting a zero (like NULL) into a Register by giving
 369   // the compiler two choices it can't resolve
 370 
 371   void store_heap_oop(Address dst, void* dummy);
 372 
 373   void encode_heap_oop(Register r);
 374   void decode_heap_oop(Register r);
 375   void encode_heap_oop_not_null(Register r);
 376   void decode_heap_oop_not_null(Register r);
 377   void encode_heap_oop_not_null(Register dst, Register src);
 378   void decode_heap_oop_not_null(Register dst, Register src);
 379 
 380   void set_narrow_oop(Register dst, jobject obj);
 381   void set_narrow_oop(Address dst, jobject obj);
 382   void cmp_narrow_oop(Register dst, jobject obj);
 383   void cmp_narrow_oop(Address dst, jobject obj);
 384 
 385   void encode_klass_not_null(Register r);
 386   void decode_klass_not_null(Register r);
 387   void encode_klass_not_null(Register dst, Register src);
 388   void decode_klass_not_null(Register dst, Register src);
 389   void set_narrow_klass(Register dst, Klass* k);
 390   void set_narrow_klass(Address dst, Klass* k);
 391   void cmp_narrow_klass(Register dst, Klass* k);
 392   void cmp_narrow_klass(Address dst, Klass* k);
 393 
 394   // Returns the byte size of the instructions generated by decode_klass_not_null()
 395   // when compressed klass pointers are being used.
 396   static int instr_size_for_decode_klass_not_null();
 397 
 398   // if heap base register is used - reinit it with the correct value
 399   void reinit_heapbase();
 400 
 401   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 402 
 403 #endif // _LP64
 404 
 405   // Int division/remainder for Java
 406   // (as idivl, but checks for special case as described in JVM spec.)
 407   // returns idivl instruction offset for implicit exception handling
 408   int corrected_idivl(Register reg);
 409 
 410   // Long division/remainder for Java
 411   // (as idivq, but checks for special case as described in JVM spec.)
 412   // returns idivq instruction offset for implicit exception handling
 413   int corrected_idivq(Register reg);
 414 
 415   void int3();
 416 
 417   // Long operation macros for a 32bit cpu
 418   // Long negation for Java
 419   void lneg(Register hi, Register lo);
 420 
 421   // Long multiplication for Java
 422   // (destroys contents of eax, ebx, ecx and edx)
 423   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 424 
 425   // Long shifts for Java
 426   // (semantics as described in JVM spec.)
 427   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 428   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 429 
 430   // Long compare for Java
 431   // (semantics as described in JVM spec.)
 432   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 433 
 434 
 435   // misc
 436 
 437   // Sign extension
 438   void sign_extend_short(Register reg);
 439   void sign_extend_byte(Register reg);
 440 
 441   // Division by power of 2, rounding towards 0
 442   void division_with_shift(Register reg, int shift_value);
 443 
 444   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 445   //
 446   // CF (corresponds to C0) if x < y
 447   // PF (corresponds to C2) if unordered
 448   // ZF (corresponds to C3) if x = y
 449   //
 450   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 451   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 452   void fcmp(Register tmp);
 453   // Variant of the above which allows y to be further down the stack
 454   // and which only pops x and y if specified. If pop_right is
 455   // specified then pop_left must also be specified.
 456   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 457 
 458   // Floating-point comparison for Java
 459   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 460   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 461   // (semantics as described in JVM spec.)
 462   void fcmp2int(Register dst, bool unordered_is_less);
 463   // Variant of the above which allows y to be further down the stack
 464   // and which only pops x and y if specified. If pop_right is
 465   // specified then pop_left must also be specified.
 466   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 467 
 468   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 469   // tmp is a temporary register, if none is available use noreg
 470   void fremr(Register tmp);
 471 
 472   // dst = c = a * b + c
 473   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 474   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 475 
 476   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 477   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 478   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 479   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 480 
 481 
 482   // same as fcmp2int, but using SSE2
 483   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 484   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 485 
 486   // branch to L if FPU flag C2 is set/not set
 487   // tmp is a temporary register, if none is available use noreg
 488   void jC2 (Register tmp, Label& L);
 489   void jnC2(Register tmp, Label& L);
 490 
 491   // Pop ST (ffree & fincstp combined)
 492   void fpop();
 493 
 494   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 495   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 496   void load_float(Address src);
 497 
 498   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 499   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 500   void store_float(Address dst);
 501 
 502   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 503   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 504   void load_double(Address src);
 505 
 506   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 507   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 508   void store_double(Address dst);
 509 
 510   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 511   void push_fTOS();
 512 
 513   // pops double TOS element from CPU stack and pushes on FPU stack
 514   void pop_fTOS();
 515 
 516   void empty_FPU_stack();
 517 
 518   void push_IU_state();
 519   void pop_IU_state();
 520 
 521   void push_FPU_state();
 522   void pop_FPU_state();
 523 
 524   void push_CPU_state();
 525   void pop_CPU_state();
 526 
 527   // Round up to a power of two
 528   void round_to(Register reg, int modulus);
 529 
 530   // Callee saved registers handling
 531   void push_callee_saved_registers();
 532   void pop_callee_saved_registers();
 533 
 534   // allocation
 535   void eden_allocate(
 536     Register thread,                   // Current thread
 537     Register obj,                      // result: pointer to object after successful allocation
 538     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 539     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 540     Register t1,                       // temp register
 541     Label&   slow_case                 // continuation point if fast allocation fails
 542   );
 543   void tlab_allocate(
 544     Register thread,                   // Current thread
 545     Register obj,                      // result: pointer to object after successful allocation
 546     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 547     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 548     Register t1,                       // temp register
 549     Register t2,                       // temp register
 550     Label&   slow_case                 // continuation point if fast allocation fails
 551   );
 552   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 553 
 554   // interface method calling
 555   void lookup_interface_method(Register recv_klass,
 556                                Register intf_klass,
 557                                RegisterOrConstant itable_index,
 558                                Register method_result,
 559                                Register scan_temp,
 560                                Label& no_such_interface,
 561                                bool return_method = true);
 562 
 563   // virtual method calling
 564   void lookup_virtual_method(Register recv_klass,
 565                              RegisterOrConstant vtable_index,
 566                              Register method_result);
 567 
 568   // Test sub_klass against super_klass, with fast and slow paths.
 569 
 570   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 571   // One of the three labels can be NULL, meaning take the fall-through.
 572   // If super_check_offset is -1, the value is loaded up from super_klass.
 573   // No registers are killed, except temp_reg.
 574   void check_klass_subtype_fast_path(Register sub_klass,
 575                                      Register super_klass,
 576                                      Register temp_reg,
 577                                      Label* L_success,
 578                                      Label* L_failure,
 579                                      Label* L_slow_path,
 580                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 581 
 582   // The rest of the type check; must be wired to a corresponding fast path.
 583   // It does not repeat the fast path logic, so don't use it standalone.
 584   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 585   // Updates the sub's secondary super cache as necessary.
 586   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 587   void check_klass_subtype_slow_path(Register sub_klass,
 588                                      Register super_klass,
 589                                      Register temp_reg,
 590                                      Register temp2_reg,
 591                                      Label* L_success,
 592                                      Label* L_failure,
 593                                      bool set_cond_codes = false);
 594 
 595   // Simplified, combined version, good for typical uses.
 596   // Falls through on failure.
 597   void check_klass_subtype(Register sub_klass,
 598                            Register super_klass,
 599                            Register temp_reg,
 600                            Label& L_success);
 601 
 602   void clinit_barrier(Register klass,
 603                       Register thread,
 604                       Label* L_fast_path = NULL,
 605                       Label* L_slow_path = NULL);
 606 
 607   // method handles (JSR 292)
 608   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 609 
 610   //----
 611   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 612 
 613   // Debugging
 614 
 615   // only if +VerifyOops
 616   // TODO: Make these macros with file and line like sparc version!
 617   void verify_oop(Register reg, const char* s = "broken oop");
 618   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 619 
 620   // TODO: verify method and klass metadata (compare against vptr?)
 621   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 622   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 623 
 624 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 625 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 626 
 627   // only if +VerifyFPU
 628   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 629 
 630   // Verify or restore cpu control state after JNI call
 631   void restore_cpu_control_state_after_jni();
 632 
 633   // prints msg, dumps registers and stops execution
 634   void stop(const char* msg);
 635 
 636   // prints msg and continues
 637   void warn(const char* msg);
 638 
 639   // dumps registers and other state
 640   void print_state();
 641 
 642   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 643   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 644   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 645   static void print_state64(int64_t pc, int64_t regs[]);
 646 
 647   void os_breakpoint();
 648 
 649   void untested()                                { stop("untested"); }
 650 
 651   void unimplemented(const char* what = "");
 652 
 653   void should_not_reach_here()                   { stop("should not reach here"); }
 654 
 655   void print_CPU_state();
 656 
 657   // Stack overflow checking
 658   void bang_stack_with_offset(int offset) {
 659     // stack grows down, caller passes positive offset
 660     assert(offset > 0, "must bang with negative offset");
 661     movl(Address(rsp, (-offset)), rax);
 662   }
 663 
 664   // Writes to stack successive pages until offset reached to check for
 665   // stack overflow + shadow pages.  Also, clobbers tmp
 666   void bang_stack_size(Register size, Register tmp);
 667 
 668   // Check for reserved stack access in method being exited (for JIT)
 669   void reserved_stack_check();
 670 
 671   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 672                                                 Register tmp,
 673                                                 int offset);
 674 
 675   // If thread_reg is != noreg the code assumes the register passed contains
 676   // the thread (required on 64 bit).
 677   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 678 
 679   void verify_tlab();
 680 
 681   // Biased locking support
 682   // lock_reg and obj_reg must be loaded up with the appropriate values.
 683   // swap_reg must be rax, and is killed.
 684   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 685   // be killed; if not supplied, push/pop will be used internally to
 686   // allocate a temporary (inefficient, avoid if possible).
 687   // Optional slow case is for implementations (interpreter and C1) which branch to
 688   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 689   // Returns offset of first potentially-faulting instruction for null
 690   // check info (currently consumed only by C1). If
 691   // swap_reg_contains_mark is true then returns -1 as it is assumed
 692   // the calling code has already passed any potential faults.
 693   int biased_locking_enter(Register lock_reg, Register obj_reg,
 694                            Register swap_reg, Register tmp_reg,
 695                            bool swap_reg_contains_mark,
 696                            Label& done, Label* slow_case = NULL,
 697                            BiasedLockingCounters* counters = NULL);
 698   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 699 #ifdef COMPILER2
 700   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 701   // See full desription in macroAssembler_x86.cpp.
 702   void fast_lock(Register obj, Register box, Register tmp,
 703                  Register scr, Register cx1, Register cx2,
 704                  BiasedLockingCounters* counters,
 705                  RTMLockingCounters* rtm_counters,
 706                  RTMLockingCounters* stack_rtm_counters,
 707                  Metadata* method_data,
 708                  bool use_rtm, bool profile_rtm);
 709   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 710 #if INCLUDE_RTM_OPT
 711   void rtm_counters_update(Register abort_status, Register rtm_counters);
 712   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 713   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 714                                    RTMLockingCounters* rtm_counters,
 715                                    Metadata* method_data);
 716   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 717                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 718   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 719   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 720   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 721                          Register retry_on_abort_count,
 722                          RTMLockingCounters* stack_rtm_counters,
 723                          Metadata* method_data, bool profile_rtm,
 724                          Label& DONE_LABEL, Label& IsInflated);
 725   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 726                             Register scr, Register retry_on_busy_count,
 727                             Register retry_on_abort_count,
 728                             RTMLockingCounters* rtm_counters,
 729                             Metadata* method_data, bool profile_rtm,
 730                             Label& DONE_LABEL);
 731 #endif
 732 #endif
 733 
 734   Condition negate_condition(Condition cond);
 735 
 736   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 737   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 738   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 739   // here in MacroAssembler. The major exception to this rule is call
 740 
 741   // Arithmetics
 742 
 743 
 744   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 745   void addptr(Address dst, Register src);
 746 
 747   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 748   void addptr(Register dst, int32_t src);
 749   void addptr(Register dst, Register src);
 750   void addptr(Register dst, RegisterOrConstant src) {
 751     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 752     else                   addptr(dst,       src.as_register());
 753   }
 754 
 755   void andptr(Register dst, int32_t src);
 756   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 757 
 758   void cmp8(AddressLiteral src1, int imm);
 759 
 760   // renamed to drag out the casting of address to int32_t/intptr_t
 761   void cmp32(Register src1, int32_t imm);
 762 
 763   void cmp32(AddressLiteral src1, int32_t imm);
 764   // compare reg - mem, or reg - &mem
 765   void cmp32(Register src1, AddressLiteral src2);
 766 
 767   void cmp32(Register src1, Address src2);
 768 
 769 #ifndef _LP64
 770   void cmpklass(Address dst, Metadata* obj);
 771   void cmpklass(Register dst, Metadata* obj);
 772   void cmpoop(Address dst, jobject obj);
 773   void cmpoop_raw(Address dst, jobject obj);
 774 #endif // _LP64
 775 
 776   void cmpoop(Register src1, Register src2);
 777   void cmpoop(Register src1, Address src2);
 778   void cmpoop(Register dst, jobject obj);
 779   void cmpoop_raw(Register dst, jobject obj);
 780 
 781   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 782   void cmpptr(Address src1, AddressLiteral src2);
 783 
 784   void cmpptr(Register src1, AddressLiteral src2);
 785 
 786   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 787   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 788   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 789 
 790   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 791   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 792 
 793   // cmp64 to avoild hiding cmpq
 794   void cmp64(Register src1, AddressLiteral src);
 795 
 796   void cmpxchgptr(Register reg, Address adr);
 797 
 798   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 799 
 800 
 801   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 802   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 803 
 804 
 805   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 806 
 807   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 808 
 809   void shlptr(Register dst, int32_t shift);
 810   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 811 
 812   void shrptr(Register dst, int32_t shift);
 813   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 814 
 815   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 816   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 817 
 818   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 819 
 820   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 821   void subptr(Register dst, int32_t src);
 822   // Force generation of a 4 byte immediate value even if it fits into 8bit
 823   void subptr_imm32(Register dst, int32_t src);
 824   void subptr(Register dst, Register src);
 825   void subptr(Register dst, RegisterOrConstant src) {
 826     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 827     else                   subptr(dst,       src.as_register());
 828   }
 829 
 830   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 831   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 832 
 833   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 834   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 835 
 836   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 837 
 838 
 839 
 840   // Helper functions for statistics gathering.
 841   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 842   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 843   // Unconditional atomic increment.
 844   void atomic_incl(Address counter_addr);
 845   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 846 #ifdef _LP64
 847   void atomic_incq(Address counter_addr);
 848   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 849 #endif
 850   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 851   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 852 
 853   void lea(Register dst, AddressLiteral adr);
 854   void lea(Address dst, AddressLiteral adr);
 855   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 856 
 857   void leal32(Register dst, Address src) { leal(dst, src); }
 858 
 859   // Import other testl() methods from the parent class or else
 860   // they will be hidden by the following overriding declaration.
 861   using Assembler::testl;
 862   void testl(Register dst, AddressLiteral src);
 863 
 864   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 865   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 866   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 867   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 868 
 869   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 870   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 871   void testptr(Register src1, Register src2);
 872 
 873   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 874   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 875 
 876   // Calls
 877 
 878   void call(Label& L, relocInfo::relocType rtype);
 879   void call(Register entry);
 880 
 881   // NOTE: this call transfers to the effective address of entry NOT
 882   // the address contained by entry. This is because this is more natural
 883   // for jumps/calls.
 884   void call(AddressLiteral entry);
 885 
 886   // Emit the CompiledIC call idiom
 887   void ic_call(address entry, jint method_index = 0);
 888 
 889   // Jumps
 890 
 891   // NOTE: these jumps tranfer to the effective address of dst NOT
 892   // the address contained by dst. This is because this is more natural
 893   // for jumps/calls.
 894   void jump(AddressLiteral dst);
 895   void jump_cc(Condition cc, AddressLiteral dst);
 896 
 897   // 32bit can do a case table jump in one instruction but we no longer allow the base
 898   // to be installed in the Address class. This jump will tranfers to the address
 899   // contained in the location described by entry (not the address of entry)
 900   void jump(ArrayAddress entry);
 901 
 902   // Floating
 903 
 904   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 905   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 906   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 907 
 908   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 909   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 910   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 911 
 912   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 913   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 914   void comiss(XMMRegister dst, AddressLiteral src);
 915 
 916   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 917   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 918   void comisd(XMMRegister dst, AddressLiteral src);
 919 
 920   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 921   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 922 
 923   void fldcw(Address src) { Assembler::fldcw(src); }
 924   void fldcw(AddressLiteral src);
 925 
 926   void fld_s(int index)   { Assembler::fld_s(index); }
 927   void fld_s(Address src) { Assembler::fld_s(src); }
 928   void fld_s(AddressLiteral src);
 929 
 930   void fld_d(Address src) { Assembler::fld_d(src); }
 931   void fld_d(AddressLiteral src);
 932 
 933   void fld_x(Address src) { Assembler::fld_x(src); }
 934   void fld_x(AddressLiteral src);
 935 
 936   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 937   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 938 
 939   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 940   void ldmxcsr(AddressLiteral src);
 941 
 942 #ifdef _LP64
 943  private:
 944   void sha256_AVX2_one_round_compute(
 945     Register  reg_old_h,
 946     Register  reg_a,
 947     Register  reg_b,
 948     Register  reg_c,
 949     Register  reg_d,
 950     Register  reg_e,
 951     Register  reg_f,
 952     Register  reg_g,
 953     Register  reg_h,
 954     int iter);
 955   void sha256_AVX2_four_rounds_compute_first(int start);
 956   void sha256_AVX2_four_rounds_compute_last(int start);
 957   void sha256_AVX2_one_round_and_sched(
 958         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 959         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 960         XMMRegister xmm_2,     /* ymm6 */
 961         XMMRegister xmm_3,     /* ymm7 */
 962         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 963         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 964         Register    reg_c,      /* edi */
 965         Register    reg_d,      /* esi */
 966         Register    reg_e,      /* r8d */
 967         Register    reg_f,      /* r9d */
 968         Register    reg_g,      /* r10d */
 969         Register    reg_h,      /* r11d */
 970         int iter);
 971 
 972   void addm(int disp, Register r1, Register r2);
 973   void gfmul(XMMRegister tmp0, XMMRegister t);
 974   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 975                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 976   void generateHtbl_one_block(Register htbl);
 977   void generateHtbl_eight_blocks(Register htbl);
 978  public:
 979   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 980                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 981                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 982                    bool multi_block, XMMRegister shuf_mask);
 983   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
 984 #endif
 985 
 986 #ifdef _LP64
 987  private:
 988   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 989                                      Register e, Register f, Register g, Register h, int iteration);
 990 
 991   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 992                                           Register a, Register b, Register c, Register d, Register e, Register f,
 993                                           Register g, Register h, int iteration);
 994 
 995   void addmq(int disp, Register r1, Register r2);
 996  public:
 997   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 998                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 999                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1000                    XMMRegister shuf_mask);
1001 private:
1002   void roundEnc(XMMRegister key, int rnum);
1003   void lastroundEnc(XMMRegister key, int rnum);
1004   void roundDec(XMMRegister key, int rnum);
1005   void lastroundDec(XMMRegister key, int rnum);
1006   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
1007 
1008 public:
1009   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
1010   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
1011 
1012 #endif
1013 
1014   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1015                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1016                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1017                  bool multi_block);
1018 
1019 #ifdef _LP64
1020   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1021                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1022                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1023                    bool multi_block, XMMRegister shuf_mask);
1024 #else
1025   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1026                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1027                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1028                    bool multi_block);
1029 #endif
1030 
1031   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1032                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1033                 Register rax, Register rcx, Register rdx, Register tmp);
1034 
1035 #ifdef _LP64
1036   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1037                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1038                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1039 
1040   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1041                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1042                   Register rax, Register rcx, Register rdx, Register r11);
1043 
1044   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1045                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1046                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1047 
1048   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1049                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1050                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1051                 Register tmp3, Register tmp4);
1052 
1053   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1054                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1055                 Register rax, Register rcx, Register rdx, Register tmp1,
1056                 Register tmp2, Register tmp3, Register tmp4);
1057   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1058                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1059                 Register rax, Register rcx, Register rdx, Register tmp1,
1060                 Register tmp2, Register tmp3, Register tmp4);
1061 #else
1062   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1063                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1064                 Register rax, Register rcx, Register rdx, Register tmp1);
1065 
1066   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1067                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1068                 Register rax, Register rcx, Register rdx, Register tmp);
1069 
1070   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1071                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1072                 Register rdx, Register tmp);
1073 
1074   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1075                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1076                 Register rax, Register rbx, Register rdx);
1077 
1078   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1079                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1080                 Register rax, Register rcx, Register rdx, Register tmp);
1081 
1082   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1083                         Register edx, Register ebx, Register esi, Register edi,
1084                         Register ebp, Register esp);
1085 
1086   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1087                          Register esi, Register edi, Register ebp, Register esp);
1088 
1089   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1090                         Register edx, Register ebx, Register esi, Register edi,
1091                         Register ebp, Register esp);
1092 
1093   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1094                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1095                 Register rax, Register rcx, Register rdx, Register tmp);
1096 #endif
1097 
1098   void increase_precision();
1099   void restore_precision();
1100 
1101 private:
1102 
1103   // these are private because users should be doing movflt/movdbl
1104 
1105   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1106   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1107   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1108   void movss(XMMRegister dst, AddressLiteral src);
1109 
1110   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1111   void movlpd(XMMRegister dst, AddressLiteral src);
1112 
1113 public:
1114 
1115   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1116   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1117   void addsd(XMMRegister dst, AddressLiteral src);
1118 
1119   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1120   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1121   void addss(XMMRegister dst, AddressLiteral src);
1122 
1123   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1124   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1125   void addpd(XMMRegister dst, AddressLiteral src);
1126 
1127   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1128   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1129   void divsd(XMMRegister dst, AddressLiteral src);
1130 
1131   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1132   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1133   void divss(XMMRegister dst, AddressLiteral src);
1134 
1135   // Move Unaligned Double Quadword
1136   void movdqu(Address     dst, XMMRegister src);
1137   void movdqu(XMMRegister dst, Address src);
1138   void movdqu(XMMRegister dst, XMMRegister src);
1139   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1140   // AVX Unaligned forms
1141   void vmovdqu(Address     dst, XMMRegister src);
1142   void vmovdqu(XMMRegister dst, Address src);
1143   void vmovdqu(XMMRegister dst, XMMRegister src);
1144   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1145   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1146   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1147   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1148   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1149 
1150   // Move Aligned Double Quadword
1151   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1152   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1153   void movdqa(XMMRegister dst, AddressLiteral src);
1154 
1155   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1156   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1157   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1158   void movsd(XMMRegister dst, AddressLiteral src);
1159 
1160   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1161   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1162   void mulpd(XMMRegister dst, AddressLiteral src);
1163 
1164   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1165   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1166   void mulsd(XMMRegister dst, AddressLiteral src);
1167 
1168   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1169   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1170   void mulss(XMMRegister dst, AddressLiteral src);
1171 
1172   // Carry-Less Multiplication Quadword
1173   void pclmulldq(XMMRegister dst, XMMRegister src) {
1174     // 0x00 - multiply lower 64 bits [0:63]
1175     Assembler::pclmulqdq(dst, src, 0x00);
1176   }
1177   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1178     // 0x11 - multiply upper 64 bits [64:127]
1179     Assembler::pclmulqdq(dst, src, 0x11);
1180   }
1181 
1182   void pcmpeqb(XMMRegister dst, XMMRegister src);
1183   void pcmpeqw(XMMRegister dst, XMMRegister src);
1184 
1185   void pcmpestri(XMMRegister dst, Address src, int imm8);
1186   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1187 
1188   void pmovzxbw(XMMRegister dst, XMMRegister src);
1189   void pmovzxbw(XMMRegister dst, Address src);
1190 
1191   void pmovmskb(Register dst, XMMRegister src);
1192 
1193   void ptest(XMMRegister dst, XMMRegister src);
1194 
1195   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1196   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1197   void sqrtsd(XMMRegister dst, AddressLiteral src);
1198 
1199   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
1200   void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
1201   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);
1202 
1203   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1204   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1205   void sqrtss(XMMRegister dst, AddressLiteral src);
1206 
1207   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1208   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1209   void subsd(XMMRegister dst, AddressLiteral src);
1210 
1211   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1212   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1213   void subss(XMMRegister dst, AddressLiteral src);
1214 
1215   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1216   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1217   void ucomiss(XMMRegister dst, AddressLiteral src);
1218 
1219   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1220   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1221   void ucomisd(XMMRegister dst, AddressLiteral src);
1222 
1223   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1224   void xorpd(XMMRegister dst, XMMRegister src);
1225   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1226   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1227 
1228   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1229   void xorps(XMMRegister dst, XMMRegister src);
1230   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1231   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1232 
1233   // Shuffle Bytes
1234   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1235   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1236   void pshufb(XMMRegister dst, AddressLiteral src);
1237   // AVX 3-operands instructions
1238 
1239   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1240   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1241   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1242 
1243   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1244   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1245   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1246 
1247   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1248   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1249 
1250   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1251   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1252 
1253   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1254   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1255 
1256   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1257   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1258   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1259 
1260   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1261   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1262 
1263   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1264 
1265   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1266 
1267   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1268   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1269 
1270   void vpmovmskb(Register dst, XMMRegister src);
1271 
1272   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1273   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1274 
1275   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1276   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1277 
1278   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1279   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1280 
1281   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1282   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1283 
1284   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1285   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1286 
1287   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1288   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1289 
1290   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1291   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1292 
1293   void vptest(XMMRegister dst, XMMRegister src);
1294 
1295   void punpcklbw(XMMRegister dst, XMMRegister src);
1296   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1297 
1298   void pshufd(XMMRegister dst, Address src, int mode);
1299   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1300 
1301   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1302   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1303 
1304   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1305   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1306   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1307 
1308   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1309   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1310   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1311 
1312   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1313   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1314   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1315 
1316   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1317   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1318   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1319 
1320   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1321   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1322   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1323 
1324   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1325   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1326   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1327 
1328   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1329   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1330   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1331 
1332   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1333   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1334   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1335 
1336   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1337   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1338 
1339   // AVX Vector instructions
1340 
1341   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1342   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1343   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1344 
1345   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1346   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1347   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1348 
1349   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1350     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1351       Assembler::vpxor(dst, nds, src, vector_len);
1352     else
1353       Assembler::vxorpd(dst, nds, src, vector_len);
1354   }
1355   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1356     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1357       Assembler::vpxor(dst, nds, src, vector_len);
1358     else
1359       Assembler::vxorpd(dst, nds, src, vector_len);
1360   }
1361   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1362 
1363   // Simple version for AVX2 256bit vectors
1364   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1365   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1366 
1367   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1368     if (UseAVX > 2) {
1369       Assembler::vinserti32x4(dst, dst, src, imm8);
1370     } else if (UseAVX > 1) {
1371       // vinserti128 is available only in AVX2
1372       Assembler::vinserti128(dst, nds, src, imm8);
1373     } else {
1374       Assembler::vinsertf128(dst, nds, src, imm8);
1375     }
1376   }
1377 
1378   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1379     if (UseAVX > 2) {
1380       Assembler::vinserti32x4(dst, dst, src, imm8);
1381     } else if (UseAVX > 1) {
1382       // vinserti128 is available only in AVX2
1383       Assembler::vinserti128(dst, nds, src, imm8);
1384     } else {
1385       Assembler::vinsertf128(dst, nds, src, imm8);
1386     }
1387   }
1388 
1389   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1390     if (UseAVX > 2) {
1391       Assembler::vextracti32x4(dst, src, imm8);
1392     } else if (UseAVX > 1) {
1393       // vextracti128 is available only in AVX2
1394       Assembler::vextracti128(dst, src, imm8);
1395     } else {
1396       Assembler::vextractf128(dst, src, imm8);
1397     }
1398   }
1399 
1400   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1401     if (UseAVX > 2) {
1402       Assembler::vextracti32x4(dst, src, imm8);
1403     } else if (UseAVX > 1) {
1404       // vextracti128 is available only in AVX2
1405       Assembler::vextracti128(dst, src, imm8);
1406     } else {
1407       Assembler::vextractf128(dst, src, imm8);
1408     }
1409   }
1410 
1411   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1412   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1413     vinserti128(dst, dst, src, 1);
1414   }
1415   void vinserti128_high(XMMRegister dst, Address src) {
1416     vinserti128(dst, dst, src, 1);
1417   }
1418   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1419     vextracti128(dst, src, 1);
1420   }
1421   void vextracti128_high(Address dst, XMMRegister src) {
1422     vextracti128(dst, src, 1);
1423   }
1424 
1425   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1426     if (UseAVX > 2) {
1427       Assembler::vinsertf32x4(dst, dst, src, 1);
1428     } else {
1429       Assembler::vinsertf128(dst, dst, src, 1);
1430     }
1431   }
1432 
1433   void vinsertf128_high(XMMRegister dst, Address src) {
1434     if (UseAVX > 2) {
1435       Assembler::vinsertf32x4(dst, dst, src, 1);
1436     } else {
1437       Assembler::vinsertf128(dst, dst, src, 1);
1438     }
1439   }
1440 
1441   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1442     if (UseAVX > 2) {
1443       Assembler::vextractf32x4(dst, src, 1);
1444     } else {
1445       Assembler::vextractf128(dst, src, 1);
1446     }
1447   }
1448 
1449   void vextractf128_high(Address dst, XMMRegister src) {
1450     if (UseAVX > 2) {
1451       Assembler::vextractf32x4(dst, src, 1);
1452     } else {
1453       Assembler::vextractf128(dst, src, 1);
1454     }
1455   }
1456 
1457   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1458   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1459     Assembler::vinserti64x4(dst, dst, src, 1);
1460   }
1461   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1462     Assembler::vinsertf64x4(dst, dst, src, 1);
1463   }
1464   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1465     Assembler::vextracti64x4(dst, src, 1);
1466   }
1467   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1468     Assembler::vextractf64x4(dst, src, 1);
1469   }
1470   void vextractf64x4_high(Address dst, XMMRegister src) {
1471     Assembler::vextractf64x4(dst, src, 1);
1472   }
1473   void vinsertf64x4_high(XMMRegister dst, Address src) {
1474     Assembler::vinsertf64x4(dst, dst, src, 1);
1475   }
1476 
1477   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1478   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1479     vinserti128(dst, dst, src, 0);
1480   }
1481   void vinserti128_low(XMMRegister dst, Address src) {
1482     vinserti128(dst, dst, src, 0);
1483   }
1484   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1485     vextracti128(dst, src, 0);
1486   }
1487   void vextracti128_low(Address dst, XMMRegister src) {
1488     vextracti128(dst, src, 0);
1489   }
1490 
1491   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1492     if (UseAVX > 2) {
1493       Assembler::vinsertf32x4(dst, dst, src, 0);
1494     } else {
1495       Assembler::vinsertf128(dst, dst, src, 0);
1496     }
1497   }
1498 
1499   void vinsertf128_low(XMMRegister dst, Address src) {
1500     if (UseAVX > 2) {
1501       Assembler::vinsertf32x4(dst, dst, src, 0);
1502     } else {
1503       Assembler::vinsertf128(dst, dst, src, 0);
1504     }
1505   }
1506 
1507   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1508     if (UseAVX > 2) {
1509       Assembler::vextractf32x4(dst, src, 0);
1510     } else {
1511       Assembler::vextractf128(dst, src, 0);
1512     }
1513   }
1514 
1515   void vextractf128_low(Address dst, XMMRegister src) {
1516     if (UseAVX > 2) {
1517       Assembler::vextractf32x4(dst, src, 0);
1518     } else {
1519       Assembler::vextractf128(dst, src, 0);
1520     }
1521   }
1522 
1523   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1524   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1525     Assembler::vinserti64x4(dst, dst, src, 0);
1526   }
1527   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1528     Assembler::vinsertf64x4(dst, dst, src, 0);
1529   }
1530   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1531     Assembler::vextracti64x4(dst, src, 0);
1532   }
1533   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1534     Assembler::vextractf64x4(dst, src, 0);
1535   }
1536   void vextractf64x4_low(Address dst, XMMRegister src) {
1537     Assembler::vextractf64x4(dst, src, 0);
1538   }
1539   void vinsertf64x4_low(XMMRegister dst, Address src) {
1540     Assembler::vinsertf64x4(dst, dst, src, 0);
1541   }
1542 
1543   // Carry-Less Multiplication Quadword
1544   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1545     // 0x00 - multiply lower 64 bits [0:63]
1546     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1547   }
1548   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1549     // 0x11 - multiply upper 64 bits [64:127]
1550     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1551   }
1552   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1553     // 0x10 - multiply nds[0:63] and src[64:127]
1554     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1555   }
1556   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1557     //0x01 - multiply nds[64:127] and src[0:63]
1558     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1559   }
1560 
1561   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1562     // 0x00 - multiply lower 64 bits [0:63]
1563     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1564   }
1565   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1566     // 0x11 - multiply upper 64 bits [64:127]
1567     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1568   }
1569 
1570   // Data
1571 
1572   void cmov32( Condition cc, Register dst, Address  src);
1573   void cmov32( Condition cc, Register dst, Register src);
1574 
1575   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1576 
1577   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1578   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1579 
1580   void movoop(Register dst, jobject obj);
1581   void movoop(Address dst, jobject obj);
1582 
1583   void mov_metadata(Register dst, Metadata* obj);
1584   void mov_metadata(Address dst, Metadata* obj);
1585 
1586   void movptr(ArrayAddress dst, Register src);
1587   // can this do an lea?
1588   void movptr(Register dst, ArrayAddress src);
1589 
1590   void movptr(Register dst, Address src);
1591 
1592 #ifdef _LP64
1593   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1594 #else
1595   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1596 #endif
1597 
1598   void movptr(Register dst, intptr_t src);
1599   void movptr(Register dst, Register src);
1600   void movptr(Address dst, intptr_t src);
1601 
1602   void movptr(Address dst, Register src);
1603 
1604   void movptr(Register dst, RegisterOrConstant src) {
1605     if (src.is_constant()) movptr(dst, src.as_constant());
1606     else                   movptr(dst, src.as_register());
1607   }
1608 
1609 #ifdef _LP64
1610   // Generally the next two are only used for moving NULL
1611   // Although there are situations in initializing the mark word where
1612   // they could be used. They are dangerous.
1613 
1614   // They only exist on LP64 so that int32_t and intptr_t are not the same
1615   // and we have ambiguous declarations.
1616 
1617   void movptr(Address dst, int32_t imm32);
1618   void movptr(Register dst, int32_t imm32);
1619 #endif // _LP64
1620 
1621   // to avoid hiding movl
1622   void mov32(AddressLiteral dst, Register src);
1623   void mov32(Register dst, AddressLiteral src);
1624 
1625   // to avoid hiding movb
1626   void movbyte(ArrayAddress dst, int src);
1627 
1628   // Import other mov() methods from the parent class or else
1629   // they will be hidden by the following overriding declaration.
1630   using Assembler::movdl;
1631   using Assembler::movq;
1632   void movdl(XMMRegister dst, AddressLiteral src);
1633   void movq(XMMRegister dst, AddressLiteral src);
1634 
1635   // Can push value or effective address
1636   void pushptr(AddressLiteral src);
1637 
1638   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1639   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1640 
1641   void pushoop(jobject obj);
1642   void pushklass(Metadata* obj);
1643 
1644   // sign extend as need a l to ptr sized element
1645   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1646   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1647 
1648 #ifdef COMPILER2
1649   // Generic instructions support for use in .ad files C2 code generation
1650   void vabsnegd(int opcode, XMMRegister dst, Register scr);
1651   void vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1652   void vabsnegf(int opcode, XMMRegister dst, Register scr);
1653   void vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1654   void vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len);
1655   void vextendbw(bool sign, XMMRegister dst, XMMRegister src);
1656   void vshiftd(int opcode, XMMRegister dst, XMMRegister src);
1657   void vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1658   void vshiftw(int opcode, XMMRegister dst, XMMRegister src);
1659   void vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1660   void vshiftq(int opcode, XMMRegister dst, XMMRegister src);
1661   void vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1662 #endif
1663 
1664   // C2 compiled method's prolog code.
1665   void verified_entry(Compile* C, int sp_inc = 0);
1666 
1667   enum RegState {
1668     reg_readonly,
1669     reg_writable,
1670     reg_written
1671   };
1672 
1673   int store_value_type_fields_to_buf(ciValueKlass* vk, bool from_interpreter = true);
1674 
1675   // Unpack all value type arguments passed as oops
1676   void unpack_value_args(Compile* C, bool receiver_only);
1677   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[], int ret_off, int extra_stack_offset);
1678   bool unpack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, VMReg from, VMRegPair* regs_to, int& to_index,
1679                            RegState reg_state[], int ret_off, int extra_stack_offset);
1680   bool pack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1681                          VMReg to, VMRegPair* regs_from, int regs_from_count, int& from_index, RegState reg_state[],
1682                          int ret_off, int extra_stack_offset);
1683   void restore_stack(Compile* C);
1684 
1685   int shuffle_value_args(bool is_packing, bool receiver_only, int extra_stack_offset,
1686                          BasicType* sig_bt, const GrowableArray<SigEntry>* sig_cc,
1687                          int args_passed, int args_on_stack, VMRegPair* regs,
1688                          int args_passed_to, int args_on_stack_to, VMRegPair* regs_to);
1689   bool shuffle_value_args_spill(bool is_packing,  const GrowableArray<SigEntry>* sig_cc, int sig_cc_index,
1690                                 VMRegPair* regs_from, int from_index, int regs_from_count,
1691                                 RegState* reg_state, int sp_inc, int extra_stack_offset);
1692   VMReg spill_reg_for(VMReg reg);
1693 
1694   // clear memory of size 'cnt' qwords, starting at 'base';
1695   // if 'is_large' is set, do not try to produce short loop
1696   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only);
1697 
1698   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1699   void xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp);
1700 
1701 #ifdef COMPILER2
1702   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1703                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1704 
1705   // IndexOf strings.
1706   // Small strings are loaded through stack if they cross page boundary.
1707   void string_indexof(Register str1, Register str2,
1708                       Register cnt1, Register cnt2,
1709                       int int_cnt2,  Register result,
1710                       XMMRegister vec, Register tmp,
1711                       int ae);
1712 
1713   // IndexOf for constant substrings with size >= 8 elements
1714   // which don't need to be loaded through stack.
1715   void string_indexofC8(Register str1, Register str2,
1716                       Register cnt1, Register cnt2,
1717                       int int_cnt2,  Register result,
1718                       XMMRegister vec, Register tmp,
1719                       int ae);
1720 
1721     // Smallest code: we don't need to load through stack,
1722     // check string tail.
1723 
1724   // helper function for string_compare
1725   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1726                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1727                           Address::ScaleFactor scale2, Register index, int ae);
1728   // Compare strings.
1729   void string_compare(Register str1, Register str2,
1730                       Register cnt1, Register cnt2, Register result,
1731                       XMMRegister vec1, int ae);
1732 
1733   // Search for Non-ASCII character (Negative byte value) in a byte array,
1734   // return true if it has any and false otherwise.
1735   void has_negatives(Register ary1, Register len,
1736                      Register result, Register tmp1,
1737                      XMMRegister vec1, XMMRegister vec2);
1738 
1739   // Compare char[] or byte[] arrays.
1740   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1741                      Register limit, Register result, Register chr,
1742                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1743 
1744 #endif
1745 
1746   // Fill primitive arrays
1747   void generate_fill(BasicType t, bool aligned,
1748                      Register to, Register value, Register count,
1749                      Register rtmp, XMMRegister xtmp);
1750 
1751   void encode_iso_array(Register src, Register dst, Register len,
1752                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1753                         XMMRegister tmp4, Register tmp5, Register result);
1754 
1755 #ifdef _LP64
1756   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1757   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1758                              Register y, Register y_idx, Register z,
1759                              Register carry, Register product,
1760                              Register idx, Register kdx);
1761   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1762                               Register yz_idx, Register idx,
1763                               Register carry, Register product, int offset);
1764   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1765                                     Register carry, Register carry2,
1766                                     Register idx, Register jdx,
1767                                     Register yz_idx1, Register yz_idx2,
1768                                     Register tmp, Register tmp3, Register tmp4);
1769   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1770                                Register yz_idx, Register idx, Register jdx,
1771                                Register carry, Register product,
1772                                Register carry2);
1773   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1774                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1775   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1776                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1777   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1778                             Register tmp2);
1779   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1780                        Register rdxReg, Register raxReg);
1781   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1782   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1783                        Register tmp3, Register tmp4);
1784   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1785                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1786 
1787   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1788                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1789                Register raxReg);
1790   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1791                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1792                Register raxReg);
1793   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1794                            Register result, Register tmp1, Register tmp2,
1795                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1796 #endif
1797 
1798   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1799   void update_byte_crc32(Register crc, Register val, Register table);
1800   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1801   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1802   // Note on a naming convention:
1803   // Prefix w = register only used on a Westmere+ architecture
1804   // Prefix n = register only used on a Nehalem architecture
1805 #ifdef _LP64
1806   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1807                        Register tmp1, Register tmp2, Register tmp3);
1808 #else
1809   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1810                        Register tmp1, Register tmp2, Register tmp3,
1811                        XMMRegister xtmp1, XMMRegister xtmp2);
1812 #endif
1813   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1814                         Register in_out,
1815                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1816                         XMMRegister w_xtmp2,
1817                         Register tmp1,
1818                         Register n_tmp2, Register n_tmp3);
1819   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1820                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1821                        Register tmp1, Register tmp2,
1822                        Register n_tmp3);
1823   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1824                          Register in_out1, Register in_out2, Register in_out3,
1825                          Register tmp1, Register tmp2, Register tmp3,
1826                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1827                          Register tmp4, Register tmp5,
1828                          Register n_tmp6);
1829   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1830                             Register tmp1, Register tmp2, Register tmp3,
1831                             Register tmp4, Register tmp5, Register tmp6,
1832                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1833                             bool is_pclmulqdq_supported);
1834   // Fold 128-bit data chunk
1835   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1836   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1837   // Fold 8-bit data
1838   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1839   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1840   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1841 
1842   // Compress char[] array to byte[].
1843   void char_array_compress(Register src, Register dst, Register len,
1844                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1845                            XMMRegister tmp4, Register tmp5, Register result);
1846 
1847   // Inflate byte[] array to char[].
1848   void byte_array_inflate(Register src, Register dst, Register len,
1849                           XMMRegister tmp1, Register tmp2);
1850 
1851 #ifdef _LP64
1852   void cache_wb(Address line);
1853   void cache_wbsync(bool is_pre);
1854 #endif // _LP64
1855 
1856   #include "asm/macroAssembler_common.hpp"
1857 
1858 };
1859 
1860 /**
1861  * class SkipIfEqual:
1862  *
1863  * Instantiating this class will result in assembly code being output that will
1864  * jump around any code emitted between the creation of the instance and it's
1865  * automatic destruction at the end of a scope block, depending on the value of
1866  * the flag passed to the constructor, which will be checked at run-time.
1867  */
1868 class SkipIfEqual {
1869  private:
1870   MacroAssembler* _masm;
1871   Label _label;
1872 
1873  public:
1874    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1875    ~SkipIfEqual();
1876 };
1877 
1878 #endif // CPU_X86_MACROASSEMBLER_X86_HPP