1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 #include "runtime/signature.hpp"
  32 
  33 class ciValueKlass;
  34 
  35 // MacroAssembler extends Assembler by frequently used macros.
  36 //
  37 // Instructions for which a 'better' code sequence exists depending
  38 // on arguments should also go in here.
  39 
  40 class MacroAssembler: public Assembler {
  41   friend class LIR_Assembler;
  42   friend class Runtime1;      // as_Address()
  43 
  44  public:
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50 
  51   virtual void call_VM_leaf_base(
  52     address entry_point,               // the entry point
  53     int     number_of_arguments        // the number of arguments to pop after the call
  54   );
  55 
  56  protected:
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   Address as_Address(AddressLiteral adr);
  91   Address as_Address(ArrayAddress adr);
  92 
  93   // Support for NULL-checks
  94   //
  95   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  96   // If the accessed location is M[reg + offset] and the offset is known, provide the
  97   // offset. No explicit code generation is needed if the offset is within a certain
  98   // range (0 <= offset <= page_size).
  99 
 100   void null_check(Register reg, int offset = -1);
 101   static bool needs_explicit_null_check(intptr_t offset);
 102   static bool uses_implicit_null_check(void* address);
 103 
 104   // valueKlass queries, kills temp_reg
 105   void test_klass_is_value(Register klass, Register temp_reg, Label& is_value);
 106   void test_klass_is_empty_value(Register klass, Register temp_reg, Label& is_empty_value);
 107   // For field "index" within "klass", return value_klass ...
 108   void get_empty_value_oop(Register klass, Register temp_reg, Register obj);
 109 
 110   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 111   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 112   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 113 
 114   // Check oops array storage properties, i.e. flattened and/or null-free
 115   void test_flattened_array_oop(Register oop, Register temp_reg, Label&is_flattened_array);
 116   void test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array);
 117 
 118   // Required platform-specific helpers for Label::patch_instructions.
 119   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 120   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 121     unsigned char op = branch[0];
 122     assert(op == 0xE8 /* call */ ||
 123         op == 0xE9 /* jmp */ ||
 124         op == 0xEB /* short jmp */ ||
 125         (op & 0xF0) == 0x70 /* short jcc */ ||
 126         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 127         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 128         "Invalid opcode at patch point");
 129 
 130     if (op == 0xEB || (op & 0xF0) == 0x70) {
 131       // short offset operators (jmp and jcc)
 132       char* disp = (char*) &branch[1];
 133       int imm8 = target - (address) &disp[1];
 134       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 135                 file == NULL ? "<NULL>" : file, line);
 136       *disp = imm8;
 137     } else {
 138       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 139       int imm32 = target - (address) &disp[1];
 140       *disp = imm32;
 141     }
 142   }
 143 
 144   // The following 4 methods return the offset of the appropriate move instruction
 145 
 146   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 147   int load_unsigned_byte(Register dst, Address src);
 148   int load_unsigned_short(Register dst, Address src);
 149 
 150   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 151   int load_signed_byte(Register dst, Address src);
 152   int load_signed_short(Register dst, Address src);
 153 
 154   // Support for sign-extension (hi:lo = extend_sign(lo))
 155   void extend_sign(Register hi, Register lo);
 156 
 157   // Load and store values by size and signed-ness
 158   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 159   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 160 
 161   // Support for inc/dec with optimal instruction selection depending on value
 162 
 163   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 164   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 165 
 166   void decrementl(Address dst, int value = 1);
 167   void decrementl(Register reg, int value = 1);
 168 
 169   void decrementq(Register reg, int value = 1);
 170   void decrementq(Address dst, int value = 1);
 171 
 172   void incrementl(Address dst, int value = 1);
 173   void incrementl(Register reg, int value = 1);
 174 
 175   void incrementq(Register reg, int value = 1);
 176   void incrementq(Address dst, int value = 1);
 177 
 178 #ifdef COMPILER2
 179   // special instructions for EVEX
 180   void setvectmask(Register dst, Register src);
 181   void restorevectmask();
 182 #endif
 183 
 184   // Support optimal SSE move instructions.
 185   void movflt(XMMRegister dst, XMMRegister src) {
 186     if (dst-> encoding() == src->encoding()) return;
 187     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 188     else                       { movss (dst, src); return; }
 189   }
 190   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 191   void movflt(XMMRegister dst, AddressLiteral src);
 192   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 193 
 194   void movdbl(XMMRegister dst, XMMRegister src) {
 195     if (dst-> encoding() == src->encoding()) return;
 196     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 197     else                       { movsd (dst, src); return; }
 198   }
 199 
 200   void movdbl(XMMRegister dst, AddressLiteral src);
 201 
 202   void movdbl(XMMRegister dst, Address src) {
 203     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 204     else                         { movlpd(dst, src); return; }
 205   }
 206   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 207 
 208   void incrementl(AddressLiteral dst);
 209   void incrementl(ArrayAddress dst);
 210 
 211   void incrementq(AddressLiteral dst);
 212 
 213   // Alignment
 214   void align(int modulus);
 215   void align(int modulus, int target);
 216 
 217   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 218   void fat_nop();
 219 
 220   // Stack frame creation/removal
 221   void enter();
 222   void leave();
 223 
 224   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 225   // The pointer will be loaded into the thread register.
 226   void get_thread(Register thread);
 227 
 228 
 229   // Support for VM calls
 230   //
 231   // It is imperative that all calls into the VM are handled via the call_VM macros.
 232   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 233   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 234 
 235 
 236   void call_VM(Register oop_result,
 237                address entry_point,
 238                bool check_exceptions = true);
 239   void call_VM(Register oop_result,
 240                address entry_point,
 241                Register arg_1,
 242                bool check_exceptions = true);
 243   void call_VM(Register oop_result,
 244                address entry_point,
 245                Register arg_1, Register arg_2,
 246                bool check_exceptions = true);
 247   void call_VM(Register oop_result,
 248                address entry_point,
 249                Register arg_1, Register arg_2, Register arg_3,
 250                bool check_exceptions = true);
 251 
 252   // Overloadings with last_Java_sp
 253   void call_VM(Register oop_result,
 254                Register last_java_sp,
 255                address entry_point,
 256                int number_of_arguments = 0,
 257                bool check_exceptions = true);
 258   void call_VM(Register oop_result,
 259                Register last_java_sp,
 260                address entry_point,
 261                Register arg_1, bool
 262                check_exceptions = true);
 263   void call_VM(Register oop_result,
 264                Register last_java_sp,
 265                address entry_point,
 266                Register arg_1, Register arg_2,
 267                bool check_exceptions = true);
 268   void call_VM(Register oop_result,
 269                Register last_java_sp,
 270                address entry_point,
 271                Register arg_1, Register arg_2, Register arg_3,
 272                bool check_exceptions = true);
 273 
 274   void get_vm_result  (Register oop_result, Register thread);
 275   void get_vm_result_2(Register metadata_result, Register thread);
 276 
 277   // These always tightly bind to MacroAssembler::call_VM_base
 278   // bypassing the virtual implementation
 279   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 280   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 281   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 282   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 283   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 284 
 285   void call_VM_leaf0(address entry_point);
 286   void call_VM_leaf(address entry_point,
 287                     int number_of_arguments = 0);
 288   void call_VM_leaf(address entry_point,
 289                     Register arg_1);
 290   void call_VM_leaf(address entry_point,
 291                     Register arg_1, Register arg_2);
 292   void call_VM_leaf(address entry_point,
 293                     Register arg_1, Register arg_2, Register arg_3);
 294 
 295   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 296   // bypassing the virtual implementation
 297   void super_call_VM_leaf(address entry_point);
 298   void super_call_VM_leaf(address entry_point, Register arg_1);
 299   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 300   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 301   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 302 
 303   // last Java Frame (fills frame anchor)
 304   void set_last_Java_frame(Register thread,
 305                            Register last_java_sp,
 306                            Register last_java_fp,
 307                            address last_java_pc);
 308 
 309   // thread in the default location (r15_thread on 64bit)
 310   void set_last_Java_frame(Register last_java_sp,
 311                            Register last_java_fp,
 312                            address last_java_pc);
 313 
 314   void reset_last_Java_frame(Register thread, bool clear_fp);
 315 
 316   // thread in the default location (r15_thread on 64bit)
 317   void reset_last_Java_frame(bool clear_fp);
 318 
 319   // jobjects
 320   void clear_jweak_tag(Register possibly_jweak);
 321   void resolve_jobject(Register value, Register thread, Register tmp);
 322 
 323   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 324   void c2bool(Register x);
 325 
 326   // C++ bool manipulation
 327 
 328   void movbool(Register dst, Address src);
 329   void movbool(Address dst, bool boolconst);
 330   void movbool(Address dst, Register src);
 331   void testbool(Register dst);
 332 
 333   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 334   void resolve_weak_handle(Register result, Register tmp);
 335   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 336   void load_method_holder_cld(Register rresult, Register rmethod);
 337 
 338   void load_method_holder(Register holder, Register method);
 339 
 340   // oop manipulations
 341   void load_metadata(Register dst, Register src);
 342   void load_storage_props(Register dst, Register src);
 343   void load_klass(Register dst, Register src);
 344   void store_klass(Register dst, Register src);
 345 
 346   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 347                       Register tmp1, Register thread_tmp);
 348   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 349                        Register tmp1, Register tmp2, Register tmp3 = noreg);
 350 
 351   void access_value_copy(DecoratorSet decorators, Register src, Register dst, Register value_klass);
 352 
 353   // value type data payload offsets...
 354   void first_field_offset(Register value_klass, Register offset);
 355   void data_for_oop(Register oop, Register data, Register value_klass);
 356 
 357 
 358   // Resolves obj access. Result is placed in the same register.
 359   // All other registers are preserved.
 360   void resolve(DecoratorSet decorators, Register obj);
 361 
 362   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 363                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 364   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 365                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 366   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 367                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 368 
 369   // Used for storing NULL. All other oop constants should be
 370   // stored using routines that take a jobject.
 371   void store_heap_oop_null(Address dst);
 372 
 373   void load_prototype_header(Register dst, Register src);
 374 
 375 #ifdef _LP64
 376   void store_klass_gap(Register dst, Register src);
 377 
 378   // This dummy is to prevent a call to store_heap_oop from
 379   // converting a zero (like NULL) into a Register by giving
 380   // the compiler two choices it can't resolve
 381 
 382   void store_heap_oop(Address dst, void* dummy);
 383 
 384   void encode_heap_oop(Register r);
 385   void decode_heap_oop(Register r);
 386   void encode_heap_oop_not_null(Register r);
 387   void decode_heap_oop_not_null(Register r);
 388   void encode_heap_oop_not_null(Register dst, Register src);
 389   void decode_heap_oop_not_null(Register dst, Register src);
 390 
 391   void set_narrow_oop(Register dst, jobject obj);
 392   void set_narrow_oop(Address dst, jobject obj);
 393   void cmp_narrow_oop(Register dst, jobject obj);
 394   void cmp_narrow_oop(Address dst, jobject obj);
 395 
 396   void encode_klass_not_null(Register r);
 397   void decode_klass_not_null(Register r);
 398   void encode_klass_not_null(Register dst, Register src);
 399   void decode_klass_not_null(Register dst, Register src);
 400   void set_narrow_klass(Register dst, Klass* k);
 401   void set_narrow_klass(Address dst, Klass* k);
 402   void cmp_narrow_klass(Register dst, Klass* k);
 403   void cmp_narrow_klass(Address dst, Klass* k);
 404 
 405   // Returns the byte size of the instructions generated by decode_klass_not_null()
 406   // when compressed klass pointers are being used.
 407   static int instr_size_for_decode_klass_not_null();
 408 
 409   // if heap base register is used - reinit it with the correct value
 410   void reinit_heapbase();
 411 
 412   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 413 
 414 #endif // _LP64
 415 
 416   // Int division/remainder for Java
 417   // (as idivl, but checks for special case as described in JVM spec.)
 418   // returns idivl instruction offset for implicit exception handling
 419   int corrected_idivl(Register reg);
 420 
 421   // Long division/remainder for Java
 422   // (as idivq, but checks for special case as described in JVM spec.)
 423   // returns idivq instruction offset for implicit exception handling
 424   int corrected_idivq(Register reg);
 425 
 426   void int3();
 427 
 428   // Long operation macros for a 32bit cpu
 429   // Long negation for Java
 430   void lneg(Register hi, Register lo);
 431 
 432   // Long multiplication for Java
 433   // (destroys contents of eax, ebx, ecx and edx)
 434   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 435 
 436   // Long shifts for Java
 437   // (semantics as described in JVM spec.)
 438   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 439   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 440 
 441   // Long compare for Java
 442   // (semantics as described in JVM spec.)
 443   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 444 
 445 
 446   // misc
 447 
 448   // Sign extension
 449   void sign_extend_short(Register reg);
 450   void sign_extend_byte(Register reg);
 451 
 452   // Division by power of 2, rounding towards 0
 453   void division_with_shift(Register reg, int shift_value);
 454 
 455   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 456   //
 457   // CF (corresponds to C0) if x < y
 458   // PF (corresponds to C2) if unordered
 459   // ZF (corresponds to C3) if x = y
 460   //
 461   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 462   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 463   void fcmp(Register tmp);
 464   // Variant of the above which allows y to be further down the stack
 465   // and which only pops x and y if specified. If pop_right is
 466   // specified then pop_left must also be specified.
 467   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 468 
 469   // Floating-point comparison for Java
 470   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 471   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 472   // (semantics as described in JVM spec.)
 473   void fcmp2int(Register dst, bool unordered_is_less);
 474   // Variant of the above which allows y to be further down the stack
 475   // and which only pops x and y if specified. If pop_right is
 476   // specified then pop_left must also be specified.
 477   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 478 
 479   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 480   // tmp is a temporary register, if none is available use noreg
 481   void fremr(Register tmp);
 482 
 483   // dst = c = a * b + c
 484   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 485   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 486 
 487   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 488   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 489   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 490   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 491 
 492 
 493   // same as fcmp2int, but using SSE2
 494   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 495   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 496 
 497   // branch to L if FPU flag C2 is set/not set
 498   // tmp is a temporary register, if none is available use noreg
 499   void jC2 (Register tmp, Label& L);
 500   void jnC2(Register tmp, Label& L);
 501 
 502   // Pop ST (ffree & fincstp combined)
 503   void fpop();
 504 
 505   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 506   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 507   void load_float(Address src);
 508 
 509   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 510   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 511   void store_float(Address dst);
 512 
 513   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 514   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 515   void load_double(Address src);
 516 
 517   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 518   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 519   void store_double(Address dst);
 520 
 521   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 522   void push_fTOS();
 523 
 524   // pops double TOS element from CPU stack and pushes on FPU stack
 525   void pop_fTOS();
 526 
 527   void empty_FPU_stack();
 528 
 529   void push_IU_state();
 530   void pop_IU_state();
 531 
 532   void push_FPU_state();
 533   void pop_FPU_state();
 534 
 535   void push_CPU_state();
 536   void pop_CPU_state();
 537 
 538   // Round up to a power of two
 539   void round_to(Register reg, int modulus);
 540 
 541   // Callee saved registers handling
 542   void push_callee_saved_registers();
 543   void pop_callee_saved_registers();
 544 
 545   // allocation
 546 
 547   // Object / value buffer allocation...
 548   // Allocate instance of klass, assumes klass initialized by caller
 549   // new_obj prefers to be rax
 550   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
 551   virtual void allocate_instance(Register klass, Register new_obj,
 552                                  Register t1, Register t2,
 553                                  bool clear_fields, Label& alloc_failed);
 554 
 555   void eden_allocate(
 556     Register thread,                   // Current thread
 557     Register obj,                      // result: pointer to object after successful allocation
 558     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 559     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 560     Register t1,                       // temp register
 561     Label&   slow_case                 // continuation point if fast allocation fails
 562   );
 563   void tlab_allocate(
 564     Register thread,                   // Current thread
 565     Register obj,                      // result: pointer to object after successful allocation
 566     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 567     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 568     Register t1,                       // temp register
 569     Register t2,                       // temp register
 570     Label&   slow_case                 // continuation point if fast allocation fails
 571   );
 572   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 573 
 574   // For field "index" within "klass", return value_klass ...
 575   void get_value_field_klass(Register klass, Register index, Register value_klass);
 576 
 577   // interface method calling
 578   void lookup_interface_method(Register recv_klass,
 579                                Register intf_klass,
 580                                RegisterOrConstant itable_index,
 581                                Register method_result,
 582                                Register scan_temp,
 583                                Label& no_such_interface,
 584                                bool return_method = true);
 585 
 586   // virtual method calling
 587   void lookup_virtual_method(Register recv_klass,
 588                              RegisterOrConstant vtable_index,
 589                              Register method_result);
 590 
 591   // Test sub_klass against super_klass, with fast and slow paths.
 592 
 593   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 594   // One of the three labels can be NULL, meaning take the fall-through.
 595   // If super_check_offset is -1, the value is loaded up from super_klass.
 596   // No registers are killed, except temp_reg.
 597   void check_klass_subtype_fast_path(Register sub_klass,
 598                                      Register super_klass,
 599                                      Register temp_reg,
 600                                      Label* L_success,
 601                                      Label* L_failure,
 602                                      Label* L_slow_path,
 603                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 604 
 605   // The rest of the type check; must be wired to a corresponding fast path.
 606   // It does not repeat the fast path logic, so don't use it standalone.
 607   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 608   // Updates the sub's secondary super cache as necessary.
 609   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 610   void check_klass_subtype_slow_path(Register sub_klass,
 611                                      Register super_klass,
 612                                      Register temp_reg,
 613                                      Register temp2_reg,
 614                                      Label* L_success,
 615                                      Label* L_failure,
 616                                      bool set_cond_codes = false);
 617 
 618   // Simplified, combined version, good for typical uses.
 619   // Falls through on failure.
 620   void check_klass_subtype(Register sub_klass,
 621                            Register super_klass,
 622                            Register temp_reg,
 623                            Label& L_success);
 624 
 625   void clinit_barrier(Register klass,
 626                       Register thread,
 627                       Label* L_fast_path = NULL,
 628                       Label* L_slow_path = NULL);
 629 
 630   // method handles (JSR 292)
 631   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 632 
 633   //----
 634   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 635 
 636   // Debugging
 637 
 638   // only if +VerifyOops
 639   // TODO: Make these macros with file and line like sparc version!
 640   void verify_oop(Register reg, const char* s = "broken oop");
 641   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 642 
 643   // TODO: verify method and klass metadata (compare against vptr?)
 644   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 645   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 646 
 647 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 648 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 649 
 650   // only if +VerifyFPU
 651   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 652 
 653   // Verify or restore cpu control state after JNI call
 654   void restore_cpu_control_state_after_jni();
 655 
 656   // prints msg, dumps registers and stops execution
 657   void stop(const char* msg);
 658 
 659   // prints msg and continues
 660   void warn(const char* msg);
 661 
 662   // dumps registers and other state
 663   void print_state();
 664 
 665   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 666   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 667   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 668   static void print_state64(int64_t pc, int64_t regs[]);
 669 
 670   void os_breakpoint();
 671 
 672   void untested()                                { stop("untested"); }
 673 
 674   void unimplemented(const char* what = "");
 675 
 676   void should_not_reach_here()                   { stop("should not reach here"); }
 677 
 678   void print_CPU_state();
 679 
 680   // Stack overflow checking
 681   void bang_stack_with_offset(int offset) {
 682     // stack grows down, caller passes positive offset
 683     assert(offset > 0, "must bang with negative offset");
 684     movl(Address(rsp, (-offset)), rax);
 685   }
 686 
 687   // Writes to stack successive pages until offset reached to check for
 688   // stack overflow + shadow pages.  Also, clobbers tmp
 689   void bang_stack_size(Register size, Register tmp);
 690 
 691   // Check for reserved stack access in method being exited (for JIT)
 692   void reserved_stack_check();
 693 
 694   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 695                                                 Register tmp,
 696                                                 int offset);
 697 
 698   // If thread_reg is != noreg the code assumes the register passed contains
 699   // the thread (required on 64 bit).
 700   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 701 
 702   void verify_tlab();
 703 
 704   // Biased locking support
 705   // lock_reg and obj_reg must be loaded up with the appropriate values.
 706   // swap_reg must be rax, and is killed.
 707   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 708   // be killed; if not supplied, push/pop will be used internally to
 709   // allocate a temporary (inefficient, avoid if possible).
 710   // Optional slow case is for implementations (interpreter and C1) which branch to
 711   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 712   // Returns offset of first potentially-faulting instruction for null
 713   // check info (currently consumed only by C1). If
 714   // swap_reg_contains_mark is true then returns -1 as it is assumed
 715   // the calling code has already passed any potential faults.
 716   int biased_locking_enter(Register lock_reg, Register obj_reg,
 717                            Register swap_reg, Register tmp_reg,
 718                            bool swap_reg_contains_mark,
 719                            Label& done, Label* slow_case = NULL,
 720                            BiasedLockingCounters* counters = NULL);
 721   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 722 #ifdef COMPILER2
 723   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 724   // See full desription in macroAssembler_x86.cpp.
 725   void fast_lock(Register obj, Register box, Register tmp,
 726                  Register scr, Register cx1, Register cx2,
 727                  BiasedLockingCounters* counters,
 728                  RTMLockingCounters* rtm_counters,
 729                  RTMLockingCounters* stack_rtm_counters,
 730                  Metadata* method_data,
 731                  bool use_rtm, bool profile_rtm);
 732   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 733 #if INCLUDE_RTM_OPT
 734   void rtm_counters_update(Register abort_status, Register rtm_counters);
 735   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 736   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 737                                    RTMLockingCounters* rtm_counters,
 738                                    Metadata* method_data);
 739   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 740                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 741   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 742   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 743   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 744                          Register retry_on_abort_count,
 745                          RTMLockingCounters* stack_rtm_counters,
 746                          Metadata* method_data, bool profile_rtm,
 747                          Label& DONE_LABEL, Label& IsInflated);
 748   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 749                             Register scr, Register retry_on_busy_count,
 750                             Register retry_on_abort_count,
 751                             RTMLockingCounters* rtm_counters,
 752                             Metadata* method_data, bool profile_rtm,
 753                             Label& DONE_LABEL);
 754 #endif
 755 #endif
 756 
 757   Condition negate_condition(Condition cond);
 758 
 759   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 760   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 761   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 762   // here in MacroAssembler. The major exception to this rule is call
 763 
 764   // Arithmetics
 765 
 766 
 767   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 768   void addptr(Address dst, Register src);
 769 
 770   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 771   void addptr(Register dst, int32_t src);
 772   void addptr(Register dst, Register src);
 773   void addptr(Register dst, RegisterOrConstant src) {
 774     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 775     else                   addptr(dst,       src.as_register());
 776   }
 777 
 778   void andptr(Register dst, int32_t src);
 779   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 780 
 781   void cmp8(AddressLiteral src1, int imm);
 782 
 783   // renamed to drag out the casting of address to int32_t/intptr_t
 784   void cmp32(Register src1, int32_t imm);
 785 
 786   void cmp32(AddressLiteral src1, int32_t imm);
 787   // compare reg - mem, or reg - &mem
 788   void cmp32(Register src1, AddressLiteral src2);
 789 
 790   void cmp32(Register src1, Address src2);
 791 
 792 #ifndef _LP64
 793   void cmpklass(Address dst, Metadata* obj);
 794   void cmpklass(Register dst, Metadata* obj);
 795   void cmpoop(Address dst, jobject obj);
 796   void cmpoop_raw(Address dst, jobject obj);
 797 #endif // _LP64
 798 
 799   void cmpoop(Register src1, Register src2);
 800   void cmpoop(Register src1, Address src2);
 801   void cmpoop(Register dst, jobject obj);
 802   void cmpoop_raw(Register dst, jobject obj);
 803 
 804   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 805   void cmpptr(Address src1, AddressLiteral src2);
 806 
 807   void cmpptr(Register src1, AddressLiteral src2);
 808 
 809   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 810   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 811   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 812 
 813   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 814   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 815 
 816   // cmp64 to avoild hiding cmpq
 817   void cmp64(Register src1, AddressLiteral src);
 818 
 819   void cmpxchgptr(Register reg, Address adr);
 820 
 821   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 822 
 823 
 824   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 825   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 826 
 827 
 828   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 829 
 830   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 831 
 832   void shlptr(Register dst, int32_t shift);
 833   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 834 
 835   void shrptr(Register dst, int32_t shift);
 836   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 837 
 838   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 839   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 840 
 841   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 842 
 843   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 844   void subptr(Register dst, int32_t src);
 845   // Force generation of a 4 byte immediate value even if it fits into 8bit
 846   void subptr_imm32(Register dst, int32_t src);
 847   void subptr(Register dst, Register src);
 848   void subptr(Register dst, RegisterOrConstant src) {
 849     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 850     else                   subptr(dst,       src.as_register());
 851   }
 852 
 853   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 854   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 855 
 856   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 857   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 858 
 859   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 860 
 861 
 862 
 863   // Helper functions for statistics gathering.
 864   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 865   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 866   // Unconditional atomic increment.
 867   void atomic_incl(Address counter_addr);
 868   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 869 #ifdef _LP64
 870   void atomic_incq(Address counter_addr);
 871   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 872 #endif
 873   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 874   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 875 
 876   void lea(Register dst, AddressLiteral adr);
 877   void lea(Address dst, AddressLiteral adr);
 878   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 879 
 880   void leal32(Register dst, Address src) { leal(dst, src); }
 881 
 882   // Import other testl() methods from the parent class or else
 883   // they will be hidden by the following overriding declaration.
 884   using Assembler::testl;
 885   void testl(Register dst, AddressLiteral src);
 886 
 887   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 888   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 889   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 890   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 891 
 892   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 893   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 894   void testptr(Register src1, Register src2);
 895 
 896   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 897   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 898 
 899   // Calls
 900 
 901   void call(Label& L, relocInfo::relocType rtype);
 902   void call(Register entry);
 903 
 904   // NOTE: this call transfers to the effective address of entry NOT
 905   // the address contained by entry. This is because this is more natural
 906   // for jumps/calls.
 907   void call(AddressLiteral entry);
 908 
 909   // Emit the CompiledIC call idiom
 910   void ic_call(address entry, jint method_index = 0);
 911 
 912   // Jumps
 913 
 914   // NOTE: these jumps tranfer to the effective address of dst NOT
 915   // the address contained by dst. This is because this is more natural
 916   // for jumps/calls.
 917   void jump(AddressLiteral dst);
 918   void jump_cc(Condition cc, AddressLiteral dst);
 919 
 920   // 32bit can do a case table jump in one instruction but we no longer allow the base
 921   // to be installed in the Address class. This jump will tranfers to the address
 922   // contained in the location described by entry (not the address of entry)
 923   void jump(ArrayAddress entry);
 924 
 925   // Floating
 926 
 927   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 928   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 929   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 930 
 931   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 932   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 933   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 934 
 935   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 936   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 937   void comiss(XMMRegister dst, AddressLiteral src);
 938 
 939   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 940   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 941   void comisd(XMMRegister dst, AddressLiteral src);
 942 
 943   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 944   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 945 
 946   void fldcw(Address src) { Assembler::fldcw(src); }
 947   void fldcw(AddressLiteral src);
 948 
 949   void fld_s(int index)   { Assembler::fld_s(index); }
 950   void fld_s(Address src) { Assembler::fld_s(src); }
 951   void fld_s(AddressLiteral src);
 952 
 953   void fld_d(Address src) { Assembler::fld_d(src); }
 954   void fld_d(AddressLiteral src);
 955 
 956   void fld_x(Address src) { Assembler::fld_x(src); }
 957   void fld_x(AddressLiteral src);
 958 
 959   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 960   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 961 
 962   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 963   void ldmxcsr(AddressLiteral src);
 964 
 965 #ifdef _LP64
 966  private:
 967   void sha256_AVX2_one_round_compute(
 968     Register  reg_old_h,
 969     Register  reg_a,
 970     Register  reg_b,
 971     Register  reg_c,
 972     Register  reg_d,
 973     Register  reg_e,
 974     Register  reg_f,
 975     Register  reg_g,
 976     Register  reg_h,
 977     int iter);
 978   void sha256_AVX2_four_rounds_compute_first(int start);
 979   void sha256_AVX2_four_rounds_compute_last(int start);
 980   void sha256_AVX2_one_round_and_sched(
 981         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 982         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 983         XMMRegister xmm_2,     /* ymm6 */
 984         XMMRegister xmm_3,     /* ymm7 */
 985         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 986         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 987         Register    reg_c,      /* edi */
 988         Register    reg_d,      /* esi */
 989         Register    reg_e,      /* r8d */
 990         Register    reg_f,      /* r9d */
 991         Register    reg_g,      /* r10d */
 992         Register    reg_h,      /* r11d */
 993         int iter);
 994 
 995   void addm(int disp, Register r1, Register r2);
 996   void gfmul(XMMRegister tmp0, XMMRegister t);
 997   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 998                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 999   void generateHtbl_one_block(Register htbl);
1000   void generateHtbl_eight_blocks(Register htbl);
1001  public:
1002   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1003                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1004                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1005                    bool multi_block, XMMRegister shuf_mask);
1006   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
1007 #endif
1008 
1009 #ifdef _LP64
1010  private:
1011   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1012                                      Register e, Register f, Register g, Register h, int iteration);
1013 
1014   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1015                                           Register a, Register b, Register c, Register d, Register e, Register f,
1016                                           Register g, Register h, int iteration);
1017 
1018   void addmq(int disp, Register r1, Register r2);
1019  public:
1020   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1021                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1022                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1023                    XMMRegister shuf_mask);
1024 private:
1025   void roundEnc(XMMRegister key, int rnum);
1026   void lastroundEnc(XMMRegister key, int rnum);
1027   void roundDec(XMMRegister key, int rnum);
1028   void lastroundDec(XMMRegister key, int rnum);
1029   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
1030 
1031 public:
1032   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
1033   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
1034 
1035 #endif
1036 
1037   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1038                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1039                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1040                  bool multi_block);
1041 
1042 #ifdef _LP64
1043   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1044                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1045                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1046                    bool multi_block, XMMRegister shuf_mask);
1047 #else
1048   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1049                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1050                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1051                    bool multi_block);
1052 #endif
1053 
1054   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1055                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1056                 Register rax, Register rcx, Register rdx, Register tmp);
1057 
1058 #ifdef _LP64
1059   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1060                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1061                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1062 
1063   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1064                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1065                   Register rax, Register rcx, Register rdx, Register r11);
1066 
1067   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1068                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1069                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1070 
1071   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1072                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1073                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1074                 Register tmp3, Register tmp4);
1075 
1076   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1077                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1078                 Register rax, Register rcx, Register rdx, Register tmp1,
1079                 Register tmp2, Register tmp3, Register tmp4);
1080   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1081                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1082                 Register rax, Register rcx, Register rdx, Register tmp1,
1083                 Register tmp2, Register tmp3, Register tmp4);
1084 #else
1085   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1086                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1087                 Register rax, Register rcx, Register rdx, Register tmp1);
1088 
1089   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1090                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1091                 Register rax, Register rcx, Register rdx, Register tmp);
1092 
1093   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1094                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1095                 Register rdx, Register tmp);
1096 
1097   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1098                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1099                 Register rax, Register rbx, Register rdx);
1100 
1101   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1102                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1103                 Register rax, Register rcx, Register rdx, Register tmp);
1104 
1105   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1106                         Register edx, Register ebx, Register esi, Register edi,
1107                         Register ebp, Register esp);
1108 
1109   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1110                          Register esi, Register edi, Register ebp, Register esp);
1111 
1112   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1113                         Register edx, Register ebx, Register esi, Register edi,
1114                         Register ebp, Register esp);
1115 
1116   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1117                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1118                 Register rax, Register rcx, Register rdx, Register tmp);
1119 #endif
1120 
1121   void increase_precision();
1122   void restore_precision();
1123 
1124 private:
1125 
1126   // these are private because users should be doing movflt/movdbl
1127 
1128   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1129   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1130   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1131   void movss(XMMRegister dst, AddressLiteral src);
1132 
1133   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1134   void movlpd(XMMRegister dst, AddressLiteral src);
1135 
1136 public:
1137 
1138   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1139   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1140   void addsd(XMMRegister dst, AddressLiteral src);
1141 
1142   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1143   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1144   void addss(XMMRegister dst, AddressLiteral src);
1145 
1146   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1147   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1148   void addpd(XMMRegister dst, AddressLiteral src);
1149 
1150   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1151   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1152   void divsd(XMMRegister dst, AddressLiteral src);
1153 
1154   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1155   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1156   void divss(XMMRegister dst, AddressLiteral src);
1157 
1158   // Move Unaligned Double Quadword
1159   void movdqu(Address     dst, XMMRegister src);
1160   void movdqu(XMMRegister dst, Address src);
1161   void movdqu(XMMRegister dst, XMMRegister src);
1162   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1163   // AVX Unaligned forms
1164   void vmovdqu(Address     dst, XMMRegister src);
1165   void vmovdqu(XMMRegister dst, Address src);
1166   void vmovdqu(XMMRegister dst, XMMRegister src);
1167   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1168   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1169   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1170   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1171   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1172 
1173   // Move Aligned Double Quadword
1174   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1175   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1176   void movdqa(XMMRegister dst, AddressLiteral src);
1177 
1178   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1179   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1180   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1181   void movsd(XMMRegister dst, AddressLiteral src);
1182 
1183   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1184   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1185   void mulpd(XMMRegister dst, AddressLiteral src);
1186 
1187   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1188   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1189   void mulsd(XMMRegister dst, AddressLiteral src);
1190 
1191   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1192   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1193   void mulss(XMMRegister dst, AddressLiteral src);
1194 
1195   // Carry-Less Multiplication Quadword
1196   void pclmulldq(XMMRegister dst, XMMRegister src) {
1197     // 0x00 - multiply lower 64 bits [0:63]
1198     Assembler::pclmulqdq(dst, src, 0x00);
1199   }
1200   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1201     // 0x11 - multiply upper 64 bits [64:127]
1202     Assembler::pclmulqdq(dst, src, 0x11);
1203   }
1204 
1205   void pcmpeqb(XMMRegister dst, XMMRegister src);
1206   void pcmpeqw(XMMRegister dst, XMMRegister src);
1207 
1208   void pcmpestri(XMMRegister dst, Address src, int imm8);
1209   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1210 
1211   void pmovzxbw(XMMRegister dst, XMMRegister src);
1212   void pmovzxbw(XMMRegister dst, Address src);
1213 
1214   void pmovmskb(Register dst, XMMRegister src);
1215 
1216   void ptest(XMMRegister dst, XMMRegister src);
1217 
1218   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1219   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1220   void sqrtsd(XMMRegister dst, AddressLiteral src);
1221 
1222   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
1223   void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
1224   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);
1225 
1226   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1227   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1228   void sqrtss(XMMRegister dst, AddressLiteral src);
1229 
1230   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1231   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1232   void subsd(XMMRegister dst, AddressLiteral src);
1233 
1234   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1235   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1236   void subss(XMMRegister dst, AddressLiteral src);
1237 
1238   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1239   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1240   void ucomiss(XMMRegister dst, AddressLiteral src);
1241 
1242   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1243   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1244   void ucomisd(XMMRegister dst, AddressLiteral src);
1245 
1246   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1247   void xorpd(XMMRegister dst, XMMRegister src);
1248   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1249   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1250 
1251   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1252   void xorps(XMMRegister dst, XMMRegister src);
1253   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1254   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1255 
1256   // Shuffle Bytes
1257   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1258   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1259   void pshufb(XMMRegister dst, AddressLiteral src);
1260   // AVX 3-operands instructions
1261 
1262   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1263   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1264   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1265 
1266   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1267   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1268   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1269 
1270   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1271   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1272 
1273   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1274   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1275 
1276   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1277   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1278 
1279   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1280   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1281   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1282 
1283   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1284   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1285 
1286   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1287 
1288   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1289 
1290   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1291   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1292 
1293   void vpmovmskb(Register dst, XMMRegister src);
1294 
1295   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1296   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1297 
1298   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1299   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1300 
1301   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1302   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1303 
1304   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1305   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1306 
1307   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1308   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1309 
1310   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1311   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1312 
1313   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1314   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1315 
1316   void vptest(XMMRegister dst, XMMRegister src);
1317 
1318   void punpcklbw(XMMRegister dst, XMMRegister src);
1319   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1320 
1321   void pshufd(XMMRegister dst, Address src, int mode);
1322   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1323 
1324   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1325   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1326 
1327   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1328   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1329   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1330 
1331   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1332   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1333   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1334 
1335   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1336   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1337   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1338 
1339   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1340   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1341   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1342 
1343   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1344   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1345   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1346 
1347   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1348   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1349   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1350 
1351   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1352   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1353   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1354 
1355   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1356   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1357   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1358 
1359   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1360   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1361 
1362   // AVX Vector instructions
1363 
1364   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1365   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1366   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1367 
1368   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1369   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1370   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1371 
1372   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1373     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1374       Assembler::vpxor(dst, nds, src, vector_len);
1375     else
1376       Assembler::vxorpd(dst, nds, src, vector_len);
1377   }
1378   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1379     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1380       Assembler::vpxor(dst, nds, src, vector_len);
1381     else
1382       Assembler::vxorpd(dst, nds, src, vector_len);
1383   }
1384   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1385 
1386   // Simple version for AVX2 256bit vectors
1387   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1388   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1389 
1390   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1391     if (UseAVX > 2) {
1392       Assembler::vinserti32x4(dst, dst, src, imm8);
1393     } else if (UseAVX > 1) {
1394       // vinserti128 is available only in AVX2
1395       Assembler::vinserti128(dst, nds, src, imm8);
1396     } else {
1397       Assembler::vinsertf128(dst, nds, src, imm8);
1398     }
1399   }
1400 
1401   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1402     if (UseAVX > 2) {
1403       Assembler::vinserti32x4(dst, dst, src, imm8);
1404     } else if (UseAVX > 1) {
1405       // vinserti128 is available only in AVX2
1406       Assembler::vinserti128(dst, nds, src, imm8);
1407     } else {
1408       Assembler::vinsertf128(dst, nds, src, imm8);
1409     }
1410   }
1411 
1412   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1413     if (UseAVX > 2) {
1414       Assembler::vextracti32x4(dst, src, imm8);
1415     } else if (UseAVX > 1) {
1416       // vextracti128 is available only in AVX2
1417       Assembler::vextracti128(dst, src, imm8);
1418     } else {
1419       Assembler::vextractf128(dst, src, imm8);
1420     }
1421   }
1422 
1423   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1424     if (UseAVX > 2) {
1425       Assembler::vextracti32x4(dst, src, imm8);
1426     } else if (UseAVX > 1) {
1427       // vextracti128 is available only in AVX2
1428       Assembler::vextracti128(dst, src, imm8);
1429     } else {
1430       Assembler::vextractf128(dst, src, imm8);
1431     }
1432   }
1433 
1434   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1435   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1436     vinserti128(dst, dst, src, 1);
1437   }
1438   void vinserti128_high(XMMRegister dst, Address src) {
1439     vinserti128(dst, dst, src, 1);
1440   }
1441   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1442     vextracti128(dst, src, 1);
1443   }
1444   void vextracti128_high(Address dst, XMMRegister src) {
1445     vextracti128(dst, src, 1);
1446   }
1447 
1448   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1449     if (UseAVX > 2) {
1450       Assembler::vinsertf32x4(dst, dst, src, 1);
1451     } else {
1452       Assembler::vinsertf128(dst, dst, src, 1);
1453     }
1454   }
1455 
1456   void vinsertf128_high(XMMRegister dst, Address src) {
1457     if (UseAVX > 2) {
1458       Assembler::vinsertf32x4(dst, dst, src, 1);
1459     } else {
1460       Assembler::vinsertf128(dst, dst, src, 1);
1461     }
1462   }
1463 
1464   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1465     if (UseAVX > 2) {
1466       Assembler::vextractf32x4(dst, src, 1);
1467     } else {
1468       Assembler::vextractf128(dst, src, 1);
1469     }
1470   }
1471 
1472   void vextractf128_high(Address dst, XMMRegister src) {
1473     if (UseAVX > 2) {
1474       Assembler::vextractf32x4(dst, src, 1);
1475     } else {
1476       Assembler::vextractf128(dst, src, 1);
1477     }
1478   }
1479 
1480   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1481   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1482     Assembler::vinserti64x4(dst, dst, src, 1);
1483   }
1484   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1485     Assembler::vinsertf64x4(dst, dst, src, 1);
1486   }
1487   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1488     Assembler::vextracti64x4(dst, src, 1);
1489   }
1490   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1491     Assembler::vextractf64x4(dst, src, 1);
1492   }
1493   void vextractf64x4_high(Address dst, XMMRegister src) {
1494     Assembler::vextractf64x4(dst, src, 1);
1495   }
1496   void vinsertf64x4_high(XMMRegister dst, Address src) {
1497     Assembler::vinsertf64x4(dst, dst, src, 1);
1498   }
1499 
1500   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1501   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1502     vinserti128(dst, dst, src, 0);
1503   }
1504   void vinserti128_low(XMMRegister dst, Address src) {
1505     vinserti128(dst, dst, src, 0);
1506   }
1507   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1508     vextracti128(dst, src, 0);
1509   }
1510   void vextracti128_low(Address dst, XMMRegister src) {
1511     vextracti128(dst, src, 0);
1512   }
1513 
1514   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1515     if (UseAVX > 2) {
1516       Assembler::vinsertf32x4(dst, dst, src, 0);
1517     } else {
1518       Assembler::vinsertf128(dst, dst, src, 0);
1519     }
1520   }
1521 
1522   void vinsertf128_low(XMMRegister dst, Address src) {
1523     if (UseAVX > 2) {
1524       Assembler::vinsertf32x4(dst, dst, src, 0);
1525     } else {
1526       Assembler::vinsertf128(dst, dst, src, 0);
1527     }
1528   }
1529 
1530   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1531     if (UseAVX > 2) {
1532       Assembler::vextractf32x4(dst, src, 0);
1533     } else {
1534       Assembler::vextractf128(dst, src, 0);
1535     }
1536   }
1537 
1538   void vextractf128_low(Address dst, XMMRegister src) {
1539     if (UseAVX > 2) {
1540       Assembler::vextractf32x4(dst, src, 0);
1541     } else {
1542       Assembler::vextractf128(dst, src, 0);
1543     }
1544   }
1545 
1546   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1547   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1548     Assembler::vinserti64x4(dst, dst, src, 0);
1549   }
1550   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1551     Assembler::vinsertf64x4(dst, dst, src, 0);
1552   }
1553   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1554     Assembler::vextracti64x4(dst, src, 0);
1555   }
1556   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1557     Assembler::vextractf64x4(dst, src, 0);
1558   }
1559   void vextractf64x4_low(Address dst, XMMRegister src) {
1560     Assembler::vextractf64x4(dst, src, 0);
1561   }
1562   void vinsertf64x4_low(XMMRegister dst, Address src) {
1563     Assembler::vinsertf64x4(dst, dst, src, 0);
1564   }
1565 
1566   // Carry-Less Multiplication Quadword
1567   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1568     // 0x00 - multiply lower 64 bits [0:63]
1569     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1570   }
1571   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1572     // 0x11 - multiply upper 64 bits [64:127]
1573     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1574   }
1575   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1576     // 0x10 - multiply nds[0:63] and src[64:127]
1577     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1578   }
1579   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1580     //0x01 - multiply nds[64:127] and src[0:63]
1581     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1582   }
1583 
1584   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1585     // 0x00 - multiply lower 64 bits [0:63]
1586     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1587   }
1588   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1589     // 0x11 - multiply upper 64 bits [64:127]
1590     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1591   }
1592 
1593   // Data
1594 
1595   void cmov32( Condition cc, Register dst, Address  src);
1596   void cmov32( Condition cc, Register dst, Register src);
1597 
1598   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1599 
1600   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1601   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1602 
1603   void movoop(Register dst, jobject obj);
1604   void movoop(Address dst, jobject obj);
1605 
1606   void mov_metadata(Register dst, Metadata* obj);
1607   void mov_metadata(Address dst, Metadata* obj);
1608 
1609   void movptr(ArrayAddress dst, Register src);
1610   // can this do an lea?
1611   void movptr(Register dst, ArrayAddress src);
1612 
1613   void movptr(Register dst, Address src);
1614 
1615 #ifdef _LP64
1616   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1617 #else
1618   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1619 #endif
1620 
1621   void movptr(Register dst, intptr_t src);
1622   void movptr(Register dst, Register src);
1623   void movptr(Address dst, intptr_t src);
1624 
1625   void movptr(Address dst, Register src);
1626 
1627   void movptr(Register dst, RegisterOrConstant src) {
1628     if (src.is_constant()) movptr(dst, src.as_constant());
1629     else                   movptr(dst, src.as_register());
1630   }
1631 
1632 #ifdef _LP64
1633   // Generally the next two are only used for moving NULL
1634   // Although there are situations in initializing the mark word where
1635   // they could be used. They are dangerous.
1636 
1637   // They only exist on LP64 so that int32_t and intptr_t are not the same
1638   // and we have ambiguous declarations.
1639 
1640   void movptr(Address dst, int32_t imm32);
1641   void movptr(Register dst, int32_t imm32);
1642 #endif // _LP64
1643 
1644   // to avoid hiding movl
1645   void mov32(AddressLiteral dst, Register src);
1646   void mov32(Register dst, AddressLiteral src);
1647 
1648   // to avoid hiding movb
1649   void movbyte(ArrayAddress dst, int src);
1650 
1651   // Import other mov() methods from the parent class or else
1652   // they will be hidden by the following overriding declaration.
1653   using Assembler::movdl;
1654   using Assembler::movq;
1655   void movdl(XMMRegister dst, AddressLiteral src);
1656   void movq(XMMRegister dst, AddressLiteral src);
1657 
1658   // Can push value or effective address
1659   void pushptr(AddressLiteral src);
1660 
1661   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1662   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1663 
1664   void pushoop(jobject obj);
1665   void pushklass(Metadata* obj);
1666 
1667   // sign extend as need a l to ptr sized element
1668   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1669   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1670 
1671 #ifdef COMPILER2
1672   // Generic instructions support for use in .ad files C2 code generation
1673   void vabsnegd(int opcode, XMMRegister dst, Register scr);
1674   void vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1675   void vabsnegf(int opcode, XMMRegister dst, Register scr);
1676   void vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1677   void vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len);
1678   void vextendbw(bool sign, XMMRegister dst, XMMRegister src);
1679   void vshiftd(int opcode, XMMRegister dst, XMMRegister src);
1680   void vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1681   void vshiftw(int opcode, XMMRegister dst, XMMRegister src);
1682   void vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1683   void vshiftq(int opcode, XMMRegister dst, XMMRegister src);
1684   void vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1685 #endif
1686 
1687   // C2 compiled method's prolog code.
1688   void verified_entry(Compile* C, int sp_inc = 0);
1689 
1690   enum RegState {
1691     reg_readonly,
1692     reg_writable,
1693     reg_written
1694   };
1695 
1696   int store_value_type_fields_to_buf(ciValueKlass* vk, bool from_interpreter = true);
1697 
1698   // Unpack all value type arguments passed as oops
1699   void unpack_value_args(Compile* C, bool receiver_only);
1700   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[], int ret_off, int extra_stack_offset);
1701   bool unpack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, VMReg from, VMRegPair* regs_to, int& to_index,
1702                            RegState reg_state[], int ret_off, int extra_stack_offset);
1703   bool pack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1704                          VMReg to, VMRegPair* regs_from, int regs_from_count, int& from_index, RegState reg_state[],
1705                          int ret_off, int extra_stack_offset);
1706   void restore_stack(Compile* C);
1707 
1708   int shuffle_value_args(bool is_packing, bool receiver_only, int extra_stack_offset,
1709                          BasicType* sig_bt, const GrowableArray<SigEntry>* sig_cc,
1710                          int args_passed, int args_on_stack, VMRegPair* regs,
1711                          int args_passed_to, int args_on_stack_to, VMRegPair* regs_to);
1712   bool shuffle_value_args_spill(bool is_packing,  const GrowableArray<SigEntry>* sig_cc, int sig_cc_index,
1713                                 VMRegPair* regs_from, int from_index, int regs_from_count,
1714                                 RegState* reg_state, int sp_inc, int extra_stack_offset);
1715   VMReg spill_reg_for(VMReg reg);
1716 
1717   // clear memory of size 'cnt' qwords, starting at 'base';
1718   // if 'is_large' is set, do not try to produce short loop
1719   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only);
1720 
1721   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1722   void xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp);
1723 
1724 #ifdef COMPILER2
1725   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1726                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1727 
1728   // IndexOf strings.
1729   // Small strings are loaded through stack if they cross page boundary.
1730   void string_indexof(Register str1, Register str2,
1731                       Register cnt1, Register cnt2,
1732                       int int_cnt2,  Register result,
1733                       XMMRegister vec, Register tmp,
1734                       int ae);
1735 
1736   // IndexOf for constant substrings with size >= 8 elements
1737   // which don't need to be loaded through stack.
1738   void string_indexofC8(Register str1, Register str2,
1739                       Register cnt1, Register cnt2,
1740                       int int_cnt2,  Register result,
1741                       XMMRegister vec, Register tmp,
1742                       int ae);
1743 
1744     // Smallest code: we don't need to load through stack,
1745     // check string tail.
1746 
1747   // helper function for string_compare
1748   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1749                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1750                           Address::ScaleFactor scale2, Register index, int ae);
1751   // Compare strings.
1752   void string_compare(Register str1, Register str2,
1753                       Register cnt1, Register cnt2, Register result,
1754                       XMMRegister vec1, int ae);
1755 
1756   // Search for Non-ASCII character (Negative byte value) in a byte array,
1757   // return true if it has any and false otherwise.
1758   void has_negatives(Register ary1, Register len,
1759                      Register result, Register tmp1,
1760                      XMMRegister vec1, XMMRegister vec2);
1761 
1762   // Compare char[] or byte[] arrays.
1763   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1764                      Register limit, Register result, Register chr,
1765                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1766 
1767 #endif
1768 
1769   // Fill primitive arrays
1770   void generate_fill(BasicType t, bool aligned,
1771                      Register to, Register value, Register count,
1772                      Register rtmp, XMMRegister xtmp);
1773 
1774   void encode_iso_array(Register src, Register dst, Register len,
1775                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1776                         XMMRegister tmp4, Register tmp5, Register result);
1777 
1778 #ifdef _LP64
1779   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1780   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1781                              Register y, Register y_idx, Register z,
1782                              Register carry, Register product,
1783                              Register idx, Register kdx);
1784   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1785                               Register yz_idx, Register idx,
1786                               Register carry, Register product, int offset);
1787   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1788                                     Register carry, Register carry2,
1789                                     Register idx, Register jdx,
1790                                     Register yz_idx1, Register yz_idx2,
1791                                     Register tmp, Register tmp3, Register tmp4);
1792   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1793                                Register yz_idx, Register idx, Register jdx,
1794                                Register carry, Register product,
1795                                Register carry2);
1796   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1797                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1798   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1799                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1800   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1801                             Register tmp2);
1802   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1803                        Register rdxReg, Register raxReg);
1804   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1805   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1806                        Register tmp3, Register tmp4);
1807   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1808                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1809 
1810   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1811                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1812                Register raxReg);
1813   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1814                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1815                Register raxReg);
1816   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1817                            Register result, Register tmp1, Register tmp2,
1818                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1819 #endif
1820 
1821   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1822   void update_byte_crc32(Register crc, Register val, Register table);
1823   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1824   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1825   // Note on a naming convention:
1826   // Prefix w = register only used on a Westmere+ architecture
1827   // Prefix n = register only used on a Nehalem architecture
1828 #ifdef _LP64
1829   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1830                        Register tmp1, Register tmp2, Register tmp3);
1831 #else
1832   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1833                        Register tmp1, Register tmp2, Register tmp3,
1834                        XMMRegister xtmp1, XMMRegister xtmp2);
1835 #endif
1836   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1837                         Register in_out,
1838                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1839                         XMMRegister w_xtmp2,
1840                         Register tmp1,
1841                         Register n_tmp2, Register n_tmp3);
1842   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1843                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1844                        Register tmp1, Register tmp2,
1845                        Register n_tmp3);
1846   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1847                          Register in_out1, Register in_out2, Register in_out3,
1848                          Register tmp1, Register tmp2, Register tmp3,
1849                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1850                          Register tmp4, Register tmp5,
1851                          Register n_tmp6);
1852   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1853                             Register tmp1, Register tmp2, Register tmp3,
1854                             Register tmp4, Register tmp5, Register tmp6,
1855                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1856                             bool is_pclmulqdq_supported);
1857   // Fold 128-bit data chunk
1858   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1859   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1860   // Fold 8-bit data
1861   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1862   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1863   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1864 
1865   // Compress char[] array to byte[].
1866   void char_array_compress(Register src, Register dst, Register len,
1867                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1868                            XMMRegister tmp4, Register tmp5, Register result);
1869 
1870   // Inflate byte[] array to char[].
1871   void byte_array_inflate(Register src, Register dst, Register len,
1872                           XMMRegister tmp1, Register tmp2);
1873 
1874 #ifdef _LP64
1875   void cache_wb(Address line);
1876   void cache_wbsync(bool is_pre);
1877 #endif // _LP64
1878 
1879   #include "asm/macroAssembler_common.hpp"
1880 
1881 };
1882 
1883 /**
1884  * class SkipIfEqual:
1885  *
1886  * Instantiating this class will result in assembly code being output that will
1887  * jump around any code emitted between the creation of the instance and it's
1888  * automatic destruction at the end of a scope block, depending on the value of
1889  * the flag passed to the constructor, which will be checked at run-time.
1890  */
1891 class SkipIfEqual {
1892  private:
1893   MacroAssembler* _masm;
1894   Label _label;
1895 
1896  public:
1897    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1898    ~SkipIfEqual();
1899 };
1900 
1901 #endif // CPU_X86_MACROASSEMBLER_X86_HPP