1 /*
   2  * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/collectedHeap.inline.hpp"
  28 #include "gc/shared/gcLocker.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "logging/log.hpp"
  31 #include "memory/metadataFactory.hpp"
  32 #include "oops/access.hpp"
  33 #include "oops/compressedOops.inline.hpp"
  34 #include "oops/fieldStreams.hpp"
  35 #include "oops/instanceKlass.inline.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/valueKlass.inline.hpp"
  40 #include "oops/valueArrayKlass.hpp"
  41 #include "runtime/fieldDescriptor.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/safepointVerifiers.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/thread.inline.hpp"
  47 #include "utilities/copy.hpp"
  48 
  49   // Constructor
  50 ValueKlass::ValueKlass(const ClassFileParser& parser)
  51     : InstanceKlass(parser, InstanceKlass::_misc_kind_value_type, InstanceKlass::ID) {
  52   _adr_valueklass_fixed_block = valueklass_static_block();
  53   // Addresses used for value type calling convention
  54   *((Array<SigEntry>**)adr_extended_sig()) = NULL;
  55   *((Array<VMRegPair>**)adr_return_regs()) = NULL;
  56   *((address*)adr_pack_handler()) = NULL;
  57   *((address*)adr_pack_handler_jobject()) = NULL;
  58   *((address*)adr_unpack_handler()) = NULL;
  59   assert(pack_handler() == NULL, "pack handler not null");
  60   *((int*)adr_default_value_offset()) = 0;
  61   *((Klass**)adr_value_array_klass()) = NULL;
  62   set_prototype_header(markWord::always_locked_prototype());
  63 }
  64 
  65 oop ValueKlass::default_value() {
  66   oop val = java_mirror()->obj_field_acquire(default_value_offset());
  67   assert(oopDesc::is_oop(val), "Sanity check");
  68   assert(val->is_value(), "Sanity check");
  69   assert(val->klass() == this, "sanity check");
  70   return val;
  71 }
  72 
  73 int ValueKlass::first_field_offset_old() {
  74 #ifdef ASSERT
  75   int first_offset = INT_MAX;
  76   for (AllFieldStream fs(this); !fs.done(); fs.next()) {
  77     if (fs.offset() < first_offset) first_offset= fs.offset();
  78   }
  79 #endif
  80   int base_offset = instanceOopDesc::base_offset_in_bytes();
  81   // The first field of value types is aligned on a long boundary
  82   base_offset = align_up(base_offset, BytesPerLong);
  83   assert(base_offset == first_offset, "inconsistent offsets");
  84   return base_offset;
  85 }
  86 
  87 int ValueKlass::raw_value_byte_size() {
  88   int heapOopAlignedSize = nonstatic_field_size() << LogBytesPerHeapOop;
  89   // If bigger than 64 bits or needs oop alignment, then use jlong aligned
  90   // which for values should be jlong aligned, asserts in raw_field_copy otherwise
  91   if (heapOopAlignedSize >= longSize || contains_oops()) {
  92     return heapOopAlignedSize;
  93   }
  94   // Small primitives...
  95   // If a few small basic type fields, return the actual size, i.e.
  96   // 1 byte = 1
  97   // 2 byte = 2
  98   // 3 byte = 4, because pow2 needed for element stores
  99   int first_offset = first_field_offset();
 100   int last_offset  = 0; // find the last offset, add basic type size
 101   int last_tsz     = 0;
 102   for (AllFieldStream fs(this); !fs.done(); fs.next()) {
 103     if (fs.access_flags().is_static()) {
 104       continue;
 105     } else if (fs.offset() > last_offset) {
 106       BasicType type = char2type(fs.signature()->char_at(0));
 107       if (is_java_primitive(type)) {
 108         last_tsz = type2aelembytes(type);
 109       } else if (type == T_VALUETYPE) {
 110         // Not just primitives. Layout aligns embedded value, so use jlong aligned it is
 111         return heapOopAlignedSize;
 112       } else {
 113         guarantee(0, "Unknown type %d", type);
 114       }
 115       assert(last_tsz != 0, "Invariant");
 116       last_offset = fs.offset();
 117     }
 118   }
 119   // Assumes VT with no fields are meaningless and illegal
 120   last_offset += last_tsz;
 121   assert(last_offset > first_offset && last_tsz, "Invariant");
 122   return 1 << upper_log2(last_offset - first_offset);
 123 }
 124 
 125 instanceOop ValueKlass::allocate_instance(TRAPS) {
 126   int size = size_helper();  // Query before forming handle.
 127 
 128   instanceOop oop = (instanceOop)Universe::heap()->obj_allocate(this, size, CHECK_NULL);
 129   assert(oop->mark().is_always_locked(), "Unlocked value type");
 130   return oop;
 131 }
 132 
 133 instanceOop ValueKlass::allocate_instance_buffer(TRAPS) {
 134   int size = size_helper();  // Query before forming handle.
 135 
 136   instanceOop oop = (instanceOop)Universe::heap()->obj_buffer_allocate(this, size, CHECK_NULL);
 137   assert(oop->mark().is_always_locked(), "Unlocked value type");
 138   return oop;
 139 }
 140 
 141 bool ValueKlass::is_atomic() {
 142   return (nonstatic_field_size() * heapOopSize) <= longSize;
 143 }
 144 
 145 int ValueKlass::nonstatic_oop_count() {
 146   int oops = 0;
 147   int map_count = nonstatic_oop_map_count();
 148   OopMapBlock* block = start_of_nonstatic_oop_maps();
 149   OopMapBlock* end = block + map_count;
 150   while (block != end) {
 151     oops += block->count();
 152     block++;
 153   }
 154   return oops;
 155 }
 156 
 157 oop ValueKlass::read_flattened_field(oop obj, int offset, TRAPS) {
 158   oop res = NULL;
 159   this->initialize(CHECK_NULL); // will throw an exception if in error state
 160   if (is_empty_value()) {
 161     res = (instanceOop)default_value();
 162   } else {
 163     Handle obj_h(THREAD, obj);
 164     res = allocate_instance_buffer(CHECK_NULL);
 165     value_copy_payload_to_new_oop(((char*)(oopDesc*)obj_h()) + offset, res);
 166   }
 167   assert(res != NULL, "Must be set in one of two paths above");
 168   return res;
 169 }
 170 
 171 void ValueKlass::write_flattened_field(oop obj, int offset, oop value, TRAPS) {
 172   if (value == NULL) {
 173     THROW(vmSymbols::java_lang_NullPointerException());
 174   }
 175   if (!is_empty_value()) {
 176     value_copy_oop_to_payload(value, ((char*)(oopDesc*)obj) + offset);
 177   }
 178 }
 179 
 180 // Arrays of...
 181 
 182 bool ValueKlass::flatten_array() {
 183   if (!ValueArrayFlatten) {
 184     return false;
 185   }
 186 
 187   int elem_bytes = raw_value_byte_size();
 188   // Too big
 189   if ((ValueArrayElemMaxFlatSize >= 0) && (elem_bytes > ValueArrayElemMaxFlatSize)) {
 190     return false;
 191   }
 192   // Too many embedded oops
 193   if ((ValueArrayElemMaxFlatOops >= 0) && (nonstatic_oop_count() > ValueArrayElemMaxFlatOops)) {
 194     return false;
 195   }
 196 
 197   return true;
 198 }
 199 
 200 
 201 Klass* ValueKlass::array_klass_impl(ArrayStorageProperties storage_props, bool or_null, int n, TRAPS) {
 202   if (storage_props.is_null_free()) {
 203     return value_array_klass(storage_props, or_null, n, THREAD);
 204   } else {
 205     return InstanceKlass::array_klass_impl(storage_props, or_null, n, THREAD);
 206   }
 207 }
 208 
 209 Klass* ValueKlass::array_klass_impl(ArrayStorageProperties storage_props, bool or_null, TRAPS) {
 210   return array_klass_impl(storage_props, or_null, 1, THREAD);
 211 }
 212 
 213 Klass* ValueKlass::value_array_klass(ArrayStorageProperties storage_props, bool or_null, int rank, TRAPS) {
 214   Klass* vak = acquire_value_array_klass();
 215   if (vak == NULL) {
 216     if (or_null) return NULL;
 217     ResourceMark rm;
 218     {
 219       // Atomic creation of array_klasses
 220       MutexLocker ma(MultiArray_lock, THREAD);
 221       if (get_value_array_klass() == NULL) {
 222         vak = allocate_value_array_klass(CHECK_NULL);
 223         OrderAccess::release_store((Klass**)adr_value_array_klass(), vak);
 224       }
 225     }
 226   }
 227   if (!vak->is_valueArray_klass()) {
 228     storage_props.clear_flattened();
 229   }
 230   if (or_null) {
 231     return vak->array_klass_or_null(storage_props, rank);
 232   }
 233   return vak->array_klass(storage_props, rank, THREAD);
 234 }
 235 
 236 Klass* ValueKlass::allocate_value_array_klass(TRAPS) {
 237   if (flatten_array() && (is_atomic() || (!ValueArrayAtomicAccess))) {
 238     return ValueArrayKlass::allocate_klass(ArrayStorageProperties::flattened_and_null_free, this, THREAD);
 239   }
 240   return ObjArrayKlass::allocate_objArray_klass(ArrayStorageProperties::null_free, 1, this, THREAD);
 241 }
 242 
 243 void ValueKlass::array_klasses_do(void f(Klass* k)) {
 244   InstanceKlass::array_klasses_do(f);
 245   if (get_value_array_klass() != NULL)
 246     ArrayKlass::cast(get_value_array_klass())->array_klasses_do(f);
 247 }
 248 
 249 // Value type arguments are not passed by reference, instead each
 250 // field of the value type is passed as an argument. This helper
 251 // function collects the fields of the value types (including embedded
 252 // value type's fields) in a list. Included with the field's type is
 253 // the offset of each field in the value type: i2c and c2i adapters
 254 // need that to load or store fields. Finally, the list of fields is
 255 // sorted in order of increasing offsets: the adapters and the
 256 // compiled code need to agree upon the order of fields.
 257 //
 258 // The list of basic types that is returned starts with a T_VALUETYPE
 259 // and ends with an extra T_VOID. T_VALUETYPE/T_VOID pairs are used as
 260 // delimiters. Every entry between the two is a field of the value
 261 // type. If there's an embedded value type in the list, it also starts
 262 // with a T_VALUETYPE and ends with a T_VOID. This is so we can
 263 // generate a unique fingerprint for the method's adapters and we can
 264 // generate the list of basic types from the interpreter point of view
 265 // (value types passed as reference: iterate on the list until a
 266 // T_VALUETYPE, drop everything until and including the closing
 267 // T_VOID) or the compiler point of view (each field of the value
 268 // types is an argument: drop all T_VALUETYPE/T_VOID from the list).
 269 int ValueKlass::collect_fields(GrowableArray<SigEntry>* sig, int base_off) {
 270   int count = 0;
 271   SigEntry::add_entry(sig, T_VALUETYPE, base_off);
 272   for (AllFieldStream fs(this); !fs.done(); fs.next()) {
 273     if (fs.access_flags().is_static()) continue;
 274     int offset = base_off + fs.offset() - (base_off > 0 ? first_field_offset() : 0);
 275     if (fs.is_flattened()) {
 276       // Resolve klass of flattened value type field and recursively collect fields
 277       Klass* vk = get_value_field_klass(fs.index());
 278       count += ValueKlass::cast(vk)->collect_fields(sig, offset);
 279     } else {
 280       BasicType bt = FieldType::basic_type(fs.signature());
 281       if (bt == T_VALUETYPE) {
 282         bt = T_OBJECT;
 283       }
 284       SigEntry::add_entry(sig, bt, offset);
 285       count += type2size[bt];
 286     }
 287   }
 288   int offset = base_off + size_helper()*HeapWordSize - (base_off > 0 ? first_field_offset() : 0);
 289   SigEntry::add_entry(sig, T_VOID, offset);
 290   if (base_off == 0) {
 291     sig->sort(SigEntry::compare);
 292   }
 293   assert(sig->at(0)._bt == T_VALUETYPE && sig->at(sig->length()-1)._bt == T_VOID, "broken structure");
 294   return count;
 295 }
 296 
 297 void ValueKlass::initialize_calling_convention(TRAPS) {
 298   // Because the pack and unpack handler addresses need to be loadable from generated code,
 299   // they are stored at a fixed offset in the klass metadata. Since value type klasses do
 300   // not have a vtable, the vtable offset is used to store these addresses.
 301   if (is_scalarizable() && (ValueTypeReturnedAsFields || ValueTypePassFieldsAsArgs)) {
 302     ResourceMark rm;
 303     GrowableArray<SigEntry> sig_vk;
 304     int nb_fields = collect_fields(&sig_vk);
 305     Array<SigEntry>* extended_sig = MetadataFactory::new_array<SigEntry>(class_loader_data(), sig_vk.length(), CHECK);
 306     *((Array<SigEntry>**)adr_extended_sig()) = extended_sig;
 307     for (int i = 0; i < sig_vk.length(); i++) {
 308       extended_sig->at_put(i, sig_vk.at(i));
 309     }
 310 
 311     if (ValueTypeReturnedAsFields) {
 312       nb_fields++;
 313       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, nb_fields);
 314       sig_bt[0] = T_METADATA;
 315       SigEntry::fill_sig_bt(&sig_vk, sig_bt+1);
 316       VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, nb_fields);
 317       int total = SharedRuntime::java_return_convention(sig_bt, regs, nb_fields);
 318 
 319       if (total > 0) {
 320         Array<VMRegPair>* return_regs = MetadataFactory::new_array<VMRegPair>(class_loader_data(), nb_fields, CHECK);
 321         *((Array<VMRegPair>**)adr_return_regs()) = return_regs;
 322         for (int i = 0; i < nb_fields; i++) {
 323           return_regs->at_put(i, regs[i]);
 324         }
 325 
 326         BufferedValueTypeBlob* buffered_blob = SharedRuntime::generate_buffered_value_type_adapter(this);
 327         *((address*)adr_pack_handler()) = buffered_blob->pack_fields();
 328         *((address*)adr_pack_handler_jobject()) = buffered_blob->pack_fields_jobject();
 329         *((address*)adr_unpack_handler()) = buffered_blob->unpack_fields();
 330         assert(CodeCache::find_blob(pack_handler()) == buffered_blob, "lost track of blob");
 331       }
 332     }
 333   }
 334 }
 335 
 336 void ValueKlass::deallocate_contents(ClassLoaderData* loader_data) {
 337   if (extended_sig() != NULL) {
 338     MetadataFactory::free_array<SigEntry>(loader_data, extended_sig());
 339   }
 340   if (return_regs() != NULL) {
 341     MetadataFactory::free_array<VMRegPair>(loader_data, return_regs());
 342   }
 343   cleanup_blobs();
 344   InstanceKlass::deallocate_contents(loader_data);
 345 }
 346 
 347 void ValueKlass::cleanup(ValueKlass* ik) {
 348   ik->cleanup_blobs();
 349 }
 350 
 351 void ValueKlass::cleanup_blobs() {
 352   if (pack_handler() != NULL) {
 353     CodeBlob* buffered_blob = CodeCache::find_blob(pack_handler());
 354     assert(buffered_blob->is_buffered_value_type_blob(), "bad blob type");
 355     BufferBlob::free((BufferBlob*)buffered_blob);
 356     *((address*)adr_pack_handler()) = NULL;
 357     *((address*)adr_pack_handler_jobject()) = NULL;
 358     *((address*)adr_unpack_handler()) = NULL;
 359   }
 360 }
 361 
 362 // Can this value type be scalarized?
 363 bool ValueKlass::is_scalarizable() const {
 364   return ScalarizeValueTypes;
 365 }
 366 
 367 // Can this value type be returned as multiple values?
 368 bool ValueKlass::can_be_returned_as_fields() const {
 369   return return_regs() != NULL;
 370 }
 371 
 372 // Create handles for all oop fields returned in registers that are going to be live across a safepoint
 373 void ValueKlass::save_oop_fields(const RegisterMap& reg_map, GrowableArray<Handle>& handles) const {
 374   Thread* thread = Thread::current();
 375   const Array<SigEntry>* sig_vk = extended_sig();
 376   const Array<VMRegPair>* regs = return_regs();
 377   int j = 1;
 378 
 379   for (int i = 0; i < sig_vk->length(); i++) {
 380     BasicType bt = sig_vk->at(i)._bt;
 381     if (bt == T_OBJECT || bt == T_ARRAY) {
 382       VMRegPair pair = regs->at(j);
 383       address loc = reg_map.location(pair.first());
 384       oop v = *(oop*)loc;
 385       assert(v == NULL || oopDesc::is_oop(v), "not an oop?");
 386       assert(Universe::heap()->is_in_or_null(v), "must be heap pointer");
 387       handles.push(Handle(thread, v));
 388     }
 389     if (bt == T_VALUETYPE) {
 390       continue;
 391     }
 392     if (bt == T_VOID &&
 393         sig_vk->at(i-1)._bt != T_LONG &&
 394         sig_vk->at(i-1)._bt != T_DOUBLE) {
 395       continue;
 396     }
 397     j++;
 398   }
 399   assert(j == regs->length(), "missed a field?");
 400 }
 401 
 402 // Update oop fields in registers from handles after a safepoint
 403 void ValueKlass::restore_oop_results(RegisterMap& reg_map, GrowableArray<Handle>& handles) const {
 404   assert(ValueTypeReturnedAsFields, "inconsistent");
 405   const Array<SigEntry>* sig_vk = extended_sig();
 406   const Array<VMRegPair>* regs = return_regs();
 407   assert(regs != NULL, "inconsistent");
 408 
 409   int j = 1;
 410   for (int i = 0, k = 0; i < sig_vk->length(); i++) {
 411     BasicType bt = sig_vk->at(i)._bt;
 412     if (bt == T_OBJECT || bt == T_ARRAY) {
 413       VMRegPair pair = regs->at(j);
 414       address loc = reg_map.location(pair.first());
 415       *(oop*)loc = handles.at(k++)();
 416     }
 417     if (bt == T_VALUETYPE) {
 418       continue;
 419     }
 420     if (bt == T_VOID &&
 421         sig_vk->at(i-1)._bt != T_LONG &&
 422         sig_vk->at(i-1)._bt != T_DOUBLE) {
 423       continue;
 424     }
 425     j++;
 426   }
 427   assert(j == regs->length(), "missed a field?");
 428 }
 429 
 430 // Fields are in registers. Create an instance of the value type and
 431 // initialize it with the values of the fields.
 432 oop ValueKlass::realloc_result(const RegisterMap& reg_map, const GrowableArray<Handle>& handles, TRAPS) {
 433   oop new_vt = allocate_instance(CHECK_NULL);
 434   const Array<SigEntry>* sig_vk = extended_sig();
 435   const Array<VMRegPair>* regs = return_regs();
 436 
 437   int j = 1;
 438   int k = 0;
 439   for (int i = 0; i < sig_vk->length(); i++) {
 440     BasicType bt = sig_vk->at(i)._bt;
 441     if (bt == T_VALUETYPE) {
 442       continue;
 443     }
 444     if (bt == T_VOID) {
 445       if (sig_vk->at(i-1)._bt == T_LONG ||
 446           sig_vk->at(i-1)._bt == T_DOUBLE) {
 447         j++;
 448       }
 449       continue;
 450     }
 451     int off = sig_vk->at(i)._offset;
 452     assert(off > 0, "offset in object should be positive");
 453     VMRegPair pair = regs->at(j);
 454     address loc = reg_map.location(pair.first());
 455     switch(bt) {
 456     case T_BOOLEAN: {
 457       new_vt->bool_field_put(off, *(jboolean*)loc);
 458       break;
 459     }
 460     case T_CHAR: {
 461       new_vt->char_field_put(off, *(jchar*)loc);
 462       break;
 463     }
 464     case T_BYTE: {
 465       new_vt->byte_field_put(off, *(jbyte*)loc);
 466       break;
 467     }
 468     case T_SHORT: {
 469       new_vt->short_field_put(off, *(jshort*)loc);
 470       break;
 471     }
 472     case T_INT: {
 473       new_vt->int_field_put(off, *(jint*)loc);
 474       break;
 475     }
 476     case T_LONG: {
 477 #ifdef _LP64
 478       new_vt->double_field_put(off,  *(jdouble*)loc);
 479 #else
 480       Unimplemented();
 481 #endif
 482       break;
 483     }
 484     case T_OBJECT:
 485     case T_ARRAY: {
 486       Handle handle = handles.at(k++);
 487       new_vt->obj_field_put(off, handle());
 488       break;
 489     }
 490     case T_FLOAT: {
 491       new_vt->float_field_put(off,  *(jfloat*)loc);
 492       break;
 493     }
 494     case T_DOUBLE: {
 495       new_vt->double_field_put(off, *(jdouble*)loc);
 496       break;
 497     }
 498     default:
 499       ShouldNotReachHere();
 500     }
 501     *(intptr_t*)loc = 0xDEAD;
 502     j++;
 503   }
 504   assert(j == regs->length(), "missed a field?");
 505   assert(k == handles.length(), "missed an oop?");
 506   return new_vt;
 507 }
 508 
 509 // Check the return register for a ValueKlass oop
 510 ValueKlass* ValueKlass::returned_value_klass(const RegisterMap& map) {
 511   BasicType bt = T_METADATA;
 512   VMRegPair pair;
 513   int nb = SharedRuntime::java_return_convention(&bt, &pair, 1);
 514   assert(nb == 1, "broken");
 515 
 516   address loc = map.location(pair.first());
 517   intptr_t ptr = *(intptr_t*)loc;
 518   if (is_set_nth_bit(ptr, 0)) {
 519     // Oop is tagged, must be a ValueKlass oop
 520     clear_nth_bit(ptr, 0);
 521     assert(Metaspace::contains((void*)ptr), "should be klass");
 522     ValueKlass* vk = (ValueKlass*)ptr;
 523     assert(vk->can_be_returned_as_fields(), "must be able to return as fields");
 524     return vk;
 525   }
 526 #ifdef ASSERT
 527   // Oop is not tagged, must be a valid oop
 528   if (VerifyOops) {
 529     oopDesc::verify(oop((HeapWord*)ptr));
 530   }
 531 #endif
 532   return NULL;
 533 }
 534 
 535 void ValueKlass::verify_on(outputStream* st) {
 536   InstanceKlass::verify_on(st);
 537   guarantee(prototype_header().is_always_locked(), "Prototype header is not always locked");
 538 }
 539 
 540 void ValueKlass::oop_verify_on(oop obj, outputStream* st) {
 541   InstanceKlass::oop_verify_on(obj, st);
 542   guarantee(obj->mark().is_always_locked(), "Header is not always locked");
 543 }