1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 #include "runtime/signature.hpp"
  32 
  33 class ciValueKlass;
  34 
  35 // MacroAssembler extends Assembler by frequently used macros.
  36 //
  37 // Instructions for which a 'better' code sequence exists depending
  38 // on arguments should also go in here.
  39 
  40 class MacroAssembler: public Assembler {
  41   friend class LIR_Assembler;
  42   friend class Runtime1;      // as_Address()
  43 
  44  public:
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50 
  51   virtual void call_VM_leaf_base(
  52     address entry_point,               // the entry point
  53     int     number_of_arguments        // the number of arguments to pop after the call
  54   );
  55 
  56  protected:
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   Address as_Address(AddressLiteral adr);
  91   Address as_Address(ArrayAddress adr);
  92 
  93   // Support for NULL-checks
  94   //
  95   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  96   // If the accessed location is M[reg + offset] and the offset is known, provide the
  97   // offset. No explicit code generation is needed if the offset is within a certain
  98   // range (0 <= offset <= page_size).
  99 
 100   void null_check(Register reg, int offset = -1);
 101   static bool needs_explicit_null_check(intptr_t offset);
 102   static bool uses_implicit_null_check(void* address);
 103 
 104   void test_klass_is_value(Register klass, Register temp_reg, Label& is_value);
 105 
 106   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 107   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 108   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 109 
 110   // Check oops array storage properties, i.e. flattened and/or null-free
 111   void test_flattened_array_oop(Register oop, Register temp_reg, Label&is_flattened_array);
 112   void test_non_flattened_array_oop(Register oop, Register temp_reg, Label&is_non_flattened_array);
 113   void test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array);
 114   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array);
 115 
 116   // Required platform-specific helpers for Label::patch_instructions.
 117   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 118   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 119     unsigned char op = branch[0];
 120     assert(op == 0xE8 /* call */ ||
 121         op == 0xE9 /* jmp */ ||
 122         op == 0xEB /* short jmp */ ||
 123         (op & 0xF0) == 0x70 /* short jcc */ ||
 124         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 125         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 126         "Invalid opcode at patch point");
 127 
 128     if (op == 0xEB || (op & 0xF0) == 0x70) {
 129       // short offset operators (jmp and jcc)
 130       char* disp = (char*) &branch[1];
 131       int imm8 = target - (address) &disp[1];
 132       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 133                 file == NULL ? "<NULL>" : file, line);
 134       *disp = imm8;
 135     } else {
 136       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 137       int imm32 = target - (address) &disp[1];
 138       *disp = imm32;
 139     }
 140   }
 141 
 142   // The following 4 methods return the offset of the appropriate move instruction
 143 
 144   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 145   int load_unsigned_byte(Register dst, Address src);
 146   int load_unsigned_short(Register dst, Address src);
 147 
 148   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 149   int load_signed_byte(Register dst, Address src);
 150   int load_signed_short(Register dst, Address src);
 151 
 152   // Support for sign-extension (hi:lo = extend_sign(lo))
 153   void extend_sign(Register hi, Register lo);
 154 
 155   // Load and store values by size and signed-ness
 156   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 157   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 158 
 159   // Support for inc/dec with optimal instruction selection depending on value
 160 
 161   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 162   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 163 
 164   void decrementl(Address dst, int value = 1);
 165   void decrementl(Register reg, int value = 1);
 166 
 167   void decrementq(Register reg, int value = 1);
 168   void decrementq(Address dst, int value = 1);
 169 
 170   void incrementl(Address dst, int value = 1);
 171   void incrementl(Register reg, int value = 1);
 172 
 173   void incrementq(Register reg, int value = 1);
 174   void incrementq(Address dst, int value = 1);
 175 
 176 #ifdef COMPILER2
 177   // special instructions for EVEX
 178   void setvectmask(Register dst, Register src);
 179   void restorevectmask();
 180 #endif
 181 
 182   // Support optimal SSE move instructions.
 183   void movflt(XMMRegister dst, XMMRegister src) {
 184     if (dst-> encoding() == src->encoding()) return;
 185     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 186     else                       { movss (dst, src); return; }
 187   }
 188   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 189   void movflt(XMMRegister dst, AddressLiteral src);
 190   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 191 
 192   void movdbl(XMMRegister dst, XMMRegister src) {
 193     if (dst-> encoding() == src->encoding()) return;
 194     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 195     else                       { movsd (dst, src); return; }
 196   }
 197 
 198   void movdbl(XMMRegister dst, AddressLiteral src);
 199 
 200   void movdbl(XMMRegister dst, Address src) {
 201     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 202     else                         { movlpd(dst, src); return; }
 203   }
 204   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 205 
 206   void incrementl(AddressLiteral dst);
 207   void incrementl(ArrayAddress dst);
 208 
 209   void incrementq(AddressLiteral dst);
 210 
 211   // Alignment
 212   void align(int modulus);
 213   void align(int modulus, int target);
 214 
 215   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 216   void fat_nop();
 217 
 218   // Stack frame creation/removal
 219   void enter();
 220   void leave();
 221 
 222   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 223   // The pointer will be loaded into the thread register.
 224   void get_thread(Register thread);
 225 
 226 
 227   // Support for VM calls
 228   //
 229   // It is imperative that all calls into the VM are handled via the call_VM macros.
 230   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 231   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 232 
 233 
 234   void call_VM(Register oop_result,
 235                address entry_point,
 236                bool check_exceptions = true);
 237   void call_VM(Register oop_result,
 238                address entry_point,
 239                Register arg_1,
 240                bool check_exceptions = true);
 241   void call_VM(Register oop_result,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                address entry_point,
 247                Register arg_1, Register arg_2, Register arg_3,
 248                bool check_exceptions = true);
 249 
 250   // Overloadings with last_Java_sp
 251   void call_VM(Register oop_result,
 252                Register last_java_sp,
 253                address entry_point,
 254                int number_of_arguments = 0,
 255                bool check_exceptions = true);
 256   void call_VM(Register oop_result,
 257                Register last_java_sp,
 258                address entry_point,
 259                Register arg_1, bool
 260                check_exceptions = true);
 261   void call_VM(Register oop_result,
 262                Register last_java_sp,
 263                address entry_point,
 264                Register arg_1, Register arg_2,
 265                bool check_exceptions = true);
 266   void call_VM(Register oop_result,
 267                Register last_java_sp,
 268                address entry_point,
 269                Register arg_1, Register arg_2, Register arg_3,
 270                bool check_exceptions = true);
 271 
 272   void get_vm_result  (Register oop_result, Register thread);
 273   void get_vm_result_2(Register metadata_result, Register thread);
 274 
 275   // These always tightly bind to MacroAssembler::call_VM_base
 276   // bypassing the virtual implementation
 277   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 278   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 279   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 280   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 281   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 282 
 283   void call_VM_leaf0(address entry_point);
 284   void call_VM_leaf(address entry_point,
 285                     int number_of_arguments = 0);
 286   void call_VM_leaf(address entry_point,
 287                     Register arg_1);
 288   void call_VM_leaf(address entry_point,
 289                     Register arg_1, Register arg_2);
 290   void call_VM_leaf(address entry_point,
 291                     Register arg_1, Register arg_2, Register arg_3);
 292 
 293   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 294   // bypassing the virtual implementation
 295   void super_call_VM_leaf(address entry_point);
 296   void super_call_VM_leaf(address entry_point, Register arg_1);
 297   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 298   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 299   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 300 
 301   // last Java Frame (fills frame anchor)
 302   void set_last_Java_frame(Register thread,
 303                            Register last_java_sp,
 304                            Register last_java_fp,
 305                            address last_java_pc);
 306 
 307   // thread in the default location (r15_thread on 64bit)
 308   void set_last_Java_frame(Register last_java_sp,
 309                            Register last_java_fp,
 310                            address last_java_pc);
 311 
 312   void reset_last_Java_frame(Register thread, bool clear_fp);
 313 
 314   // thread in the default location (r15_thread on 64bit)
 315   void reset_last_Java_frame(bool clear_fp);
 316 
 317   // jobjects
 318   void clear_jweak_tag(Register possibly_jweak);
 319   void resolve_jobject(Register value, Register thread, Register tmp);
 320 
 321   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 322   void c2bool(Register x);
 323 
 324   // C++ bool manipulation
 325 
 326   void movbool(Register dst, Address src);
 327   void movbool(Address dst, bool boolconst);
 328   void movbool(Address dst, Register src);
 329   void testbool(Register dst);
 330 
 331   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 332   void resolve_weak_handle(Register result, Register tmp);
 333   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 334   void load_method_holder_cld(Register rresult, Register rmethod);
 335 
 336   void load_method_holder(Register holder, Register method);
 337 
 338   // oop manipulations
 339   void load_metadata(Register dst, Register src);
 340   void load_storage_props(Register dst, Register src);
 341   void load_klass(Register dst, Register src);
 342   void store_klass(Register dst, Register src);
 343 
 344   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 345                       Register tmp1, Register thread_tmp);
 346   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 347                        Register tmp1, Register tmp2, Register tmp3 = noreg);
 348 
 349   // Resolves obj access. Result is placed in the same register.
 350   // All other registers are preserved.
 351   void resolve(DecoratorSet decorators, Register obj);
 352 
 353   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 354                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 355   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 356                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 357   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 358                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 359 
 360   // Used for storing NULL. All other oop constants should be
 361   // stored using routines that take a jobject.
 362   void store_heap_oop_null(Address dst);
 363 
 364   void load_prototype_header(Register dst, Register src);
 365 
 366 #ifdef _LP64
 367   void store_klass_gap(Register dst, Register src);
 368 
 369   // This dummy is to prevent a call to store_heap_oop from
 370   // converting a zero (like NULL) into a Register by giving
 371   // the compiler two choices it can't resolve
 372 
 373   void store_heap_oop(Address dst, void* dummy);
 374 
 375   void encode_heap_oop(Register r);
 376   void decode_heap_oop(Register r);
 377   void encode_heap_oop_not_null(Register r);
 378   void decode_heap_oop_not_null(Register r);
 379   void encode_heap_oop_not_null(Register dst, Register src);
 380   void decode_heap_oop_not_null(Register dst, Register src);
 381 
 382   void set_narrow_oop(Register dst, jobject obj);
 383   void set_narrow_oop(Address dst, jobject obj);
 384   void cmp_narrow_oop(Register dst, jobject obj);
 385   void cmp_narrow_oop(Address dst, jobject obj);
 386 
 387   void encode_klass_not_null(Register r);
 388   void decode_klass_not_null(Register r);
 389   void encode_klass_not_null(Register dst, Register src);
 390   void decode_klass_not_null(Register dst, Register src);
 391   void set_narrow_klass(Register dst, Klass* k);
 392   void set_narrow_klass(Address dst, Klass* k);
 393   void cmp_narrow_klass(Register dst, Klass* k);
 394   void cmp_narrow_klass(Address dst, Klass* k);
 395 
 396   // Returns the byte size of the instructions generated by decode_klass_not_null()
 397   // when compressed klass pointers are being used.
 398   static int instr_size_for_decode_klass_not_null();
 399 
 400   // if heap base register is used - reinit it with the correct value
 401   void reinit_heapbase();
 402 
 403   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 404 
 405 #endif // _LP64
 406 
 407   // Int division/remainder for Java
 408   // (as idivl, but checks for special case as described in JVM spec.)
 409   // returns idivl instruction offset for implicit exception handling
 410   int corrected_idivl(Register reg);
 411 
 412   // Long division/remainder for Java
 413   // (as idivq, but checks for special case as described in JVM spec.)
 414   // returns idivq instruction offset for implicit exception handling
 415   int corrected_idivq(Register reg);
 416 
 417   void int3();
 418 
 419   // Long operation macros for a 32bit cpu
 420   // Long negation for Java
 421   void lneg(Register hi, Register lo);
 422 
 423   // Long multiplication for Java
 424   // (destroys contents of eax, ebx, ecx and edx)
 425   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 426 
 427   // Long shifts for Java
 428   // (semantics as described in JVM spec.)
 429   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 430   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 431 
 432   // Long compare for Java
 433   // (semantics as described in JVM spec.)
 434   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 435 
 436 
 437   // misc
 438 
 439   // Sign extension
 440   void sign_extend_short(Register reg);
 441   void sign_extend_byte(Register reg);
 442 
 443   // Division by power of 2, rounding towards 0
 444   void division_with_shift(Register reg, int shift_value);
 445 
 446   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 447   //
 448   // CF (corresponds to C0) if x < y
 449   // PF (corresponds to C2) if unordered
 450   // ZF (corresponds to C3) if x = y
 451   //
 452   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 453   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 454   void fcmp(Register tmp);
 455   // Variant of the above which allows y to be further down the stack
 456   // and which only pops x and y if specified. If pop_right is
 457   // specified then pop_left must also be specified.
 458   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 459 
 460   // Floating-point comparison for Java
 461   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 462   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 463   // (semantics as described in JVM spec.)
 464   void fcmp2int(Register dst, bool unordered_is_less);
 465   // Variant of the above which allows y to be further down the stack
 466   // and which only pops x and y if specified. If pop_right is
 467   // specified then pop_left must also be specified.
 468   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 469 
 470   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 471   // tmp is a temporary register, if none is available use noreg
 472   void fremr(Register tmp);
 473 
 474   // dst = c = a * b + c
 475   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 476   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 477 
 478   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 479   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 480   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 481   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 482 
 483 
 484   // same as fcmp2int, but using SSE2
 485   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 486   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 487 
 488   // branch to L if FPU flag C2 is set/not set
 489   // tmp is a temporary register, if none is available use noreg
 490   void jC2 (Register tmp, Label& L);
 491   void jnC2(Register tmp, Label& L);
 492 
 493   // Pop ST (ffree & fincstp combined)
 494   void fpop();
 495 
 496   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 497   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 498   void load_float(Address src);
 499 
 500   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 501   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 502   void store_float(Address dst);
 503 
 504   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 505   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 506   void load_double(Address src);
 507 
 508   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 509   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 510   void store_double(Address dst);
 511 
 512   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 513   void push_fTOS();
 514 
 515   // pops double TOS element from CPU stack and pushes on FPU stack
 516   void pop_fTOS();
 517 
 518   void empty_FPU_stack();
 519 
 520   void push_IU_state();
 521   void pop_IU_state();
 522 
 523   void push_FPU_state();
 524   void pop_FPU_state();
 525 
 526   void push_CPU_state();
 527   void pop_CPU_state();
 528 
 529   // Round up to a power of two
 530   void round_to(Register reg, int modulus);
 531 
 532   // Callee saved registers handling
 533   void push_callee_saved_registers();
 534   void pop_callee_saved_registers();
 535 
 536   // allocation
 537   void eden_allocate(
 538     Register thread,                   // Current thread
 539     Register obj,                      // result: pointer to object after successful allocation
 540     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 541     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 542     Register t1,                       // temp register
 543     Label&   slow_case                 // continuation point if fast allocation fails
 544   );
 545   void tlab_allocate(
 546     Register thread,                   // Current thread
 547     Register obj,                      // result: pointer to object after successful allocation
 548     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 549     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 550     Register t1,                       // temp register
 551     Register t2,                       // temp register
 552     Label&   slow_case                 // continuation point if fast allocation fails
 553   );
 554   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 555 
 556   // interface method calling
 557   void lookup_interface_method(Register recv_klass,
 558                                Register intf_klass,
 559                                RegisterOrConstant itable_index,
 560                                Register method_result,
 561                                Register scan_temp,
 562                                Label& no_such_interface,
 563                                bool return_method = true);
 564 
 565   // virtual method calling
 566   void lookup_virtual_method(Register recv_klass,
 567                              RegisterOrConstant vtable_index,
 568                              Register method_result);
 569 
 570   // Test sub_klass against super_klass, with fast and slow paths.
 571 
 572   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 573   // One of the three labels can be NULL, meaning take the fall-through.
 574   // If super_check_offset is -1, the value is loaded up from super_klass.
 575   // No registers are killed, except temp_reg.
 576   void check_klass_subtype_fast_path(Register sub_klass,
 577                                      Register super_klass,
 578                                      Register temp_reg,
 579                                      Label* L_success,
 580                                      Label* L_failure,
 581                                      Label* L_slow_path,
 582                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 583 
 584   // The rest of the type check; must be wired to a corresponding fast path.
 585   // It does not repeat the fast path logic, so don't use it standalone.
 586   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 587   // Updates the sub's secondary super cache as necessary.
 588   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 589   void check_klass_subtype_slow_path(Register sub_klass,
 590                                      Register super_klass,
 591                                      Register temp_reg,
 592                                      Register temp2_reg,
 593                                      Label* L_success,
 594                                      Label* L_failure,
 595                                      bool set_cond_codes = false);
 596 
 597   // Simplified, combined version, good for typical uses.
 598   // Falls through on failure.
 599   void check_klass_subtype(Register sub_klass,
 600                            Register super_klass,
 601                            Register temp_reg,
 602                            Label& L_success);
 603 
 604   void clinit_barrier(Register klass,
 605                       Register thread,
 606                       Label* L_fast_path = NULL,
 607                       Label* L_slow_path = NULL);
 608 
 609   // method handles (JSR 292)
 610   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 611 
 612   //----
 613   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 614 
 615   // Debugging
 616 
 617   // only if +VerifyOops
 618   // TODO: Make these macros with file and line like sparc version!
 619   void verify_oop(Register reg, const char* s = "broken oop");
 620   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 621 
 622   // TODO: verify method and klass metadata (compare against vptr?)
 623   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 624   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 625 
 626 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 627 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 628 
 629   // only if +VerifyFPU
 630   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 631 
 632   // Verify or restore cpu control state after JNI call
 633   void restore_cpu_control_state_after_jni();
 634 
 635   // prints msg, dumps registers and stops execution
 636   void stop(const char* msg);
 637 
 638   // prints msg and continues
 639   void warn(const char* msg);
 640 
 641   // dumps registers and other state
 642   void print_state();
 643 
 644   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 645   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 646   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 647   static void print_state64(int64_t pc, int64_t regs[]);
 648 
 649   void os_breakpoint();
 650 
 651   void untested()                                { stop("untested"); }
 652 
 653   void unimplemented(const char* what = "");
 654 
 655   void should_not_reach_here()                   { stop("should not reach here"); }
 656 
 657   void print_CPU_state();
 658 
 659   // Stack overflow checking
 660   void bang_stack_with_offset(int offset) {
 661     // stack grows down, caller passes positive offset
 662     assert(offset > 0, "must bang with negative offset");
 663     movl(Address(rsp, (-offset)), rax);
 664   }
 665 
 666   // Writes to stack successive pages until offset reached to check for
 667   // stack overflow + shadow pages.  Also, clobbers tmp
 668   void bang_stack_size(Register size, Register tmp);
 669 
 670   // Check for reserved stack access in method being exited (for JIT)
 671   void reserved_stack_check();
 672 
 673   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 674                                                 Register tmp,
 675                                                 int offset);
 676 
 677   // If thread_reg is != noreg the code assumes the register passed contains
 678   // the thread (required on 64 bit).
 679   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 680 
 681   void verify_tlab();
 682 
 683   // Biased locking support
 684   // lock_reg and obj_reg must be loaded up with the appropriate values.
 685   // swap_reg must be rax, and is killed.
 686   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 687   // be killed; if not supplied, push/pop will be used internally to
 688   // allocate a temporary (inefficient, avoid if possible).
 689   // Optional slow case is for implementations (interpreter and C1) which branch to
 690   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 691   // Returns offset of first potentially-faulting instruction for null
 692   // check info (currently consumed only by C1). If
 693   // swap_reg_contains_mark is true then returns -1 as it is assumed
 694   // the calling code has already passed any potential faults.
 695   int biased_locking_enter(Register lock_reg, Register obj_reg,
 696                            Register swap_reg, Register tmp_reg,
 697                            bool swap_reg_contains_mark,
 698                            Label& done, Label* slow_case = NULL,
 699                            BiasedLockingCounters* counters = NULL);
 700   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 701 #ifdef COMPILER2
 702   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 703   // See full desription in macroAssembler_x86.cpp.
 704   void fast_lock(Register obj, Register box, Register tmp,
 705                  Register scr, Register cx1, Register cx2,
 706                  BiasedLockingCounters* counters,
 707                  RTMLockingCounters* rtm_counters,
 708                  RTMLockingCounters* stack_rtm_counters,
 709                  Metadata* method_data,
 710                  bool use_rtm, bool profile_rtm);
 711   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 712 #if INCLUDE_RTM_OPT
 713   void rtm_counters_update(Register abort_status, Register rtm_counters);
 714   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 715   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 716                                    RTMLockingCounters* rtm_counters,
 717                                    Metadata* method_data);
 718   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 719                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 720   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 721   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 722   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 723                          Register retry_on_abort_count,
 724                          RTMLockingCounters* stack_rtm_counters,
 725                          Metadata* method_data, bool profile_rtm,
 726                          Label& DONE_LABEL, Label& IsInflated);
 727   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 728                             Register scr, Register retry_on_busy_count,
 729                             Register retry_on_abort_count,
 730                             RTMLockingCounters* rtm_counters,
 731                             Metadata* method_data, bool profile_rtm,
 732                             Label& DONE_LABEL);
 733 #endif
 734 #endif
 735 
 736   Condition negate_condition(Condition cond);
 737 
 738   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 739   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 740   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 741   // here in MacroAssembler. The major exception to this rule is call
 742 
 743   // Arithmetics
 744 
 745 
 746   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 747   void addptr(Address dst, Register src);
 748 
 749   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 750   void addptr(Register dst, int32_t src);
 751   void addptr(Register dst, Register src);
 752   void addptr(Register dst, RegisterOrConstant src) {
 753     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 754     else                   addptr(dst,       src.as_register());
 755   }
 756 
 757   void andptr(Register dst, int32_t src);
 758   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 759 
 760   void cmp8(AddressLiteral src1, int imm);
 761 
 762   // renamed to drag out the casting of address to int32_t/intptr_t
 763   void cmp32(Register src1, int32_t imm);
 764 
 765   void cmp32(AddressLiteral src1, int32_t imm);
 766   // compare reg - mem, or reg - &mem
 767   void cmp32(Register src1, AddressLiteral src2);
 768 
 769   void cmp32(Register src1, Address src2);
 770 
 771 #ifndef _LP64
 772   void cmpklass(Address dst, Metadata* obj);
 773   void cmpklass(Register dst, Metadata* obj);
 774   void cmpoop(Address dst, jobject obj);
 775   void cmpoop_raw(Address dst, jobject obj);
 776 #endif // _LP64
 777 
 778   void cmpoop(Register src1, Register src2);
 779   void cmpoop(Register src1, Address src2);
 780   void cmpoop(Register dst, jobject obj);
 781   void cmpoop_raw(Register dst, jobject obj);
 782 
 783   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 784   void cmpptr(Address src1, AddressLiteral src2);
 785 
 786   void cmpptr(Register src1, AddressLiteral src2);
 787 
 788   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 789   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 790   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 791 
 792   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 793   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 794 
 795   // cmp64 to avoild hiding cmpq
 796   void cmp64(Register src1, AddressLiteral src);
 797 
 798   void cmpxchgptr(Register reg, Address adr);
 799 
 800   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 801 
 802 
 803   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 804   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 805 
 806 
 807   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 808 
 809   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 810 
 811   void shlptr(Register dst, int32_t shift);
 812   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 813 
 814   void shrptr(Register dst, int32_t shift);
 815   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 816 
 817   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 818   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 819 
 820   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 821 
 822   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 823   void subptr(Register dst, int32_t src);
 824   // Force generation of a 4 byte immediate value even if it fits into 8bit
 825   void subptr_imm32(Register dst, int32_t src);
 826   void subptr(Register dst, Register src);
 827   void subptr(Register dst, RegisterOrConstant src) {
 828     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 829     else                   subptr(dst,       src.as_register());
 830   }
 831 
 832   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 833   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 834 
 835   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 836   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 837 
 838   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 839 
 840 
 841 
 842   // Helper functions for statistics gathering.
 843   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 844   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 845   // Unconditional atomic increment.
 846   void atomic_incl(Address counter_addr);
 847   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 848 #ifdef _LP64
 849   void atomic_incq(Address counter_addr);
 850   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 851 #endif
 852   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 853   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 854 
 855   void lea(Register dst, AddressLiteral adr);
 856   void lea(Address dst, AddressLiteral adr);
 857   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 858 
 859   void leal32(Register dst, Address src) { leal(dst, src); }
 860 
 861   // Import other testl() methods from the parent class or else
 862   // they will be hidden by the following overriding declaration.
 863   using Assembler::testl;
 864   void testl(Register dst, AddressLiteral src);
 865 
 866   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 867   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 868   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 869   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 870 
 871   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 872   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 873   void testptr(Register src1, Register src2);
 874 
 875   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 876   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 877 
 878   // Calls
 879 
 880   void call(Label& L, relocInfo::relocType rtype);
 881   void call(Register entry);
 882 
 883   // NOTE: this call transfers to the effective address of entry NOT
 884   // the address contained by entry. This is because this is more natural
 885   // for jumps/calls.
 886   void call(AddressLiteral entry);
 887 
 888   // Emit the CompiledIC call idiom
 889   void ic_call(address entry, jint method_index = 0);
 890 
 891   // Jumps
 892 
 893   // NOTE: these jumps tranfer to the effective address of dst NOT
 894   // the address contained by dst. This is because this is more natural
 895   // for jumps/calls.
 896   void jump(AddressLiteral dst);
 897   void jump_cc(Condition cc, AddressLiteral dst);
 898 
 899   // 32bit can do a case table jump in one instruction but we no longer allow the base
 900   // to be installed in the Address class. This jump will tranfers to the address
 901   // contained in the location described by entry (not the address of entry)
 902   void jump(ArrayAddress entry);
 903 
 904   // Floating
 905 
 906   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 907   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 908   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 909 
 910   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 911   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 912   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 913 
 914   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 915   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 916   void comiss(XMMRegister dst, AddressLiteral src);
 917 
 918   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 919   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 920   void comisd(XMMRegister dst, AddressLiteral src);
 921 
 922   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 923   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 924 
 925   void fldcw(Address src) { Assembler::fldcw(src); }
 926   void fldcw(AddressLiteral src);
 927 
 928   void fld_s(int index)   { Assembler::fld_s(index); }
 929   void fld_s(Address src) { Assembler::fld_s(src); }
 930   void fld_s(AddressLiteral src);
 931 
 932   void fld_d(Address src) { Assembler::fld_d(src); }
 933   void fld_d(AddressLiteral src);
 934 
 935   void fld_x(Address src) { Assembler::fld_x(src); }
 936   void fld_x(AddressLiteral src);
 937 
 938   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 939   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 940 
 941   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 942   void ldmxcsr(AddressLiteral src);
 943 
 944 #ifdef _LP64
 945  private:
 946   void sha256_AVX2_one_round_compute(
 947     Register  reg_old_h,
 948     Register  reg_a,
 949     Register  reg_b,
 950     Register  reg_c,
 951     Register  reg_d,
 952     Register  reg_e,
 953     Register  reg_f,
 954     Register  reg_g,
 955     Register  reg_h,
 956     int iter);
 957   void sha256_AVX2_four_rounds_compute_first(int start);
 958   void sha256_AVX2_four_rounds_compute_last(int start);
 959   void sha256_AVX2_one_round_and_sched(
 960         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 961         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 962         XMMRegister xmm_2,     /* ymm6 */
 963         XMMRegister xmm_3,     /* ymm7 */
 964         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 965         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 966         Register    reg_c,      /* edi */
 967         Register    reg_d,      /* esi */
 968         Register    reg_e,      /* r8d */
 969         Register    reg_f,      /* r9d */
 970         Register    reg_g,      /* r10d */
 971         Register    reg_h,      /* r11d */
 972         int iter);
 973 
 974   void addm(int disp, Register r1, Register r2);
 975   void gfmul(XMMRegister tmp0, XMMRegister t);
 976   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 977                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 978   void generateHtbl_one_block(Register htbl);
 979   void generateHtbl_eight_blocks(Register htbl);
 980  public:
 981   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 982                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 983                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 984                    bool multi_block, XMMRegister shuf_mask);
 985   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
 986 #endif
 987 
 988 #ifdef _LP64
 989  private:
 990   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 991                                      Register e, Register f, Register g, Register h, int iteration);
 992 
 993   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 994                                           Register a, Register b, Register c, Register d, Register e, Register f,
 995                                           Register g, Register h, int iteration);
 996 
 997   void addmq(int disp, Register r1, Register r2);
 998  public:
 999   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1000                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1001                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1002                    XMMRegister shuf_mask);
1003 private:
1004   void roundEnc(XMMRegister key, int rnum);
1005   void lastroundEnc(XMMRegister key, int rnum);
1006   void roundDec(XMMRegister key, int rnum);
1007   void lastroundDec(XMMRegister key, int rnum);
1008   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
1009 
1010 public:
1011   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
1012   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
1013   void aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter,
1014                       Register len_reg, Register used, Register used_addr, Register saved_encCounter_start);
1015 
1016 #endif
1017 
1018   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1019                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1020                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1021                  bool multi_block);
1022 
1023 #ifdef _LP64
1024   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1025                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1026                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1027                    bool multi_block, XMMRegister shuf_mask);
1028 #else
1029   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1030                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1031                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1032                    bool multi_block);
1033 #endif
1034 
1035   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1036                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1037                 Register rax, Register rcx, Register rdx, Register tmp);
1038 
1039 #ifdef _LP64
1040   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1041                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1042                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1043 
1044   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1045                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1046                   Register rax, Register rcx, Register rdx, Register r11);
1047 
1048   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1049                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1050                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1051 
1052   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1053                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1054                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1055                 Register tmp3, Register tmp4);
1056 
1057   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1058                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1059                 Register rax, Register rcx, Register rdx, Register tmp1,
1060                 Register tmp2, Register tmp3, Register tmp4);
1061   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1062                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1063                 Register rax, Register rcx, Register rdx, Register tmp1,
1064                 Register tmp2, Register tmp3, Register tmp4);
1065 #else
1066   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1067                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1068                 Register rax, Register rcx, Register rdx, Register tmp1);
1069 
1070   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1071                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1072                 Register rax, Register rcx, Register rdx, Register tmp);
1073 
1074   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1075                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1076                 Register rdx, Register tmp);
1077 
1078   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1079                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1080                 Register rax, Register rbx, Register rdx);
1081 
1082   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1083                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1084                 Register rax, Register rcx, Register rdx, Register tmp);
1085 
1086   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1087                         Register edx, Register ebx, Register esi, Register edi,
1088                         Register ebp, Register esp);
1089 
1090   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1091                          Register esi, Register edi, Register ebp, Register esp);
1092 
1093   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1094                         Register edx, Register ebx, Register esi, Register edi,
1095                         Register ebp, Register esp);
1096 
1097   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1098                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1099                 Register rax, Register rcx, Register rdx, Register tmp);
1100 #endif
1101 
1102   void increase_precision();
1103   void restore_precision();
1104 
1105 private:
1106 
1107   // these are private because users should be doing movflt/movdbl
1108 
1109   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1110   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1111   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1112   void movss(XMMRegister dst, AddressLiteral src);
1113 
1114   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1115   void movlpd(XMMRegister dst, AddressLiteral src);
1116 
1117 public:
1118 
1119   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1120   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1121   void addsd(XMMRegister dst, AddressLiteral src);
1122 
1123   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1124   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1125   void addss(XMMRegister dst, AddressLiteral src);
1126 
1127   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1128   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1129   void addpd(XMMRegister dst, AddressLiteral src);
1130 
1131   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1132   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1133   void divsd(XMMRegister dst, AddressLiteral src);
1134 
1135   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1136   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1137   void divss(XMMRegister dst, AddressLiteral src);
1138 
1139   // Move Unaligned Double Quadword
1140   void movdqu(Address     dst, XMMRegister src);
1141   void movdqu(XMMRegister dst, Address src);
1142   void movdqu(XMMRegister dst, XMMRegister src);
1143   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1144   // AVX Unaligned forms
1145   void vmovdqu(Address     dst, XMMRegister src);
1146   void vmovdqu(XMMRegister dst, Address src);
1147   void vmovdqu(XMMRegister dst, XMMRegister src);
1148   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1149   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1150   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1151   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1152   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1153 
1154   // Move Aligned Double Quadword
1155   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1156   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1157   void movdqa(XMMRegister dst, AddressLiteral src);
1158 
1159   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1160   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1161   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1162   void movsd(XMMRegister dst, AddressLiteral src);
1163 
1164   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1165   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1166   void mulpd(XMMRegister dst, AddressLiteral src);
1167 
1168   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1169   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1170   void mulsd(XMMRegister dst, AddressLiteral src);
1171 
1172   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1173   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1174   void mulss(XMMRegister dst, AddressLiteral src);
1175 
1176   // Carry-Less Multiplication Quadword
1177   void pclmulldq(XMMRegister dst, XMMRegister src) {
1178     // 0x00 - multiply lower 64 bits [0:63]
1179     Assembler::pclmulqdq(dst, src, 0x00);
1180   }
1181   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1182     // 0x11 - multiply upper 64 bits [64:127]
1183     Assembler::pclmulqdq(dst, src, 0x11);
1184   }
1185 
1186   void pcmpeqb(XMMRegister dst, XMMRegister src);
1187   void pcmpeqw(XMMRegister dst, XMMRegister src);
1188 
1189   void pcmpestri(XMMRegister dst, Address src, int imm8);
1190   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1191 
1192   void pmovzxbw(XMMRegister dst, XMMRegister src);
1193   void pmovzxbw(XMMRegister dst, Address src);
1194 
1195   void pmovmskb(Register dst, XMMRegister src);
1196 
1197   void ptest(XMMRegister dst, XMMRegister src);
1198 
1199   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1200   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1201   void sqrtsd(XMMRegister dst, AddressLiteral src);
1202 
1203   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
1204   void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
1205   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);
1206 
1207   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1208   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1209   void sqrtss(XMMRegister dst, AddressLiteral src);
1210 
1211   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1212   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1213   void subsd(XMMRegister dst, AddressLiteral src);
1214 
1215   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1216   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1217   void subss(XMMRegister dst, AddressLiteral src);
1218 
1219   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1220   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1221   void ucomiss(XMMRegister dst, AddressLiteral src);
1222 
1223   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1224   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1225   void ucomisd(XMMRegister dst, AddressLiteral src);
1226 
1227   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1228   void xorpd(XMMRegister dst, XMMRegister src);
1229   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1230   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1231 
1232   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1233   void xorps(XMMRegister dst, XMMRegister src);
1234   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1235   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1236 
1237   // Shuffle Bytes
1238   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1239   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1240   void pshufb(XMMRegister dst, AddressLiteral src);
1241   // AVX 3-operands instructions
1242 
1243   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1244   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1245   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1246 
1247   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1248   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1249   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1250 
1251   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1252   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1253 
1254   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1255   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1256 
1257   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1258   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1259 
1260   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1261   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1262   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);
1263 
1264   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1265   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1266   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1267 
1268   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1269   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1270 
1271   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1272 
1273   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1274 
1275   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1276   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1277 
1278   void vpmovmskb(Register dst, XMMRegister src);
1279 
1280   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1281   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1282 
1283   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1284   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1285 
1286   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1287   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1288 
1289   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1290   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1291 
1292   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1293   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1294 
1295   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1296   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1297 
1298   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1299   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1300 
1301   void vptest(XMMRegister dst, XMMRegister src);
1302 
1303   void punpcklbw(XMMRegister dst, XMMRegister src);
1304   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1305 
1306   void pshufd(XMMRegister dst, Address src, int mode);
1307   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1308 
1309   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1310   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1311 
1312   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1313   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1314   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1315 
1316   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1317   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1318   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1319 
1320   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1321   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1322   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1323 
1324   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1325   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1326   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1327 
1328   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1329   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1330   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1331 
1332   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1333   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1334   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1335 
1336   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1337   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1338   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1339 
1340   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1341   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1342   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1343 
1344   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1345   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1346 
1347   // AVX Vector instructions
1348 
1349   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1350   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1351   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1352 
1353   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1354   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1355   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1356 
1357   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1358     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1359       Assembler::vpxor(dst, nds, src, vector_len);
1360     else
1361       Assembler::vxorpd(dst, nds, src, vector_len);
1362   }
1363   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1364     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1365       Assembler::vpxor(dst, nds, src, vector_len);
1366     else
1367       Assembler::vxorpd(dst, nds, src, vector_len);
1368   }
1369   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1370 
1371   // Simple version for AVX2 256bit vectors
1372   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1373   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1374 
1375   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1376     if (UseAVX > 2) {
1377       Assembler::vinserti32x4(dst, dst, src, imm8);
1378     } else if (UseAVX > 1) {
1379       // vinserti128 is available only in AVX2
1380       Assembler::vinserti128(dst, nds, src, imm8);
1381     } else {
1382       Assembler::vinsertf128(dst, nds, src, imm8);
1383     }
1384   }
1385 
1386   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1387     if (UseAVX > 2) {
1388       Assembler::vinserti32x4(dst, dst, src, imm8);
1389     } else if (UseAVX > 1) {
1390       // vinserti128 is available only in AVX2
1391       Assembler::vinserti128(dst, nds, src, imm8);
1392     } else {
1393       Assembler::vinsertf128(dst, nds, src, imm8);
1394     }
1395   }
1396 
1397   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1398     if (UseAVX > 2) {
1399       Assembler::vextracti32x4(dst, src, imm8);
1400     } else if (UseAVX > 1) {
1401       // vextracti128 is available only in AVX2
1402       Assembler::vextracti128(dst, src, imm8);
1403     } else {
1404       Assembler::vextractf128(dst, src, imm8);
1405     }
1406   }
1407 
1408   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1409     if (UseAVX > 2) {
1410       Assembler::vextracti32x4(dst, src, imm8);
1411     } else if (UseAVX > 1) {
1412       // vextracti128 is available only in AVX2
1413       Assembler::vextracti128(dst, src, imm8);
1414     } else {
1415       Assembler::vextractf128(dst, src, imm8);
1416     }
1417   }
1418 
1419   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1420   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1421     vinserti128(dst, dst, src, 1);
1422   }
1423   void vinserti128_high(XMMRegister dst, Address src) {
1424     vinserti128(dst, dst, src, 1);
1425   }
1426   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1427     vextracti128(dst, src, 1);
1428   }
1429   void vextracti128_high(Address dst, XMMRegister src) {
1430     vextracti128(dst, src, 1);
1431   }
1432 
1433   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1434     if (UseAVX > 2) {
1435       Assembler::vinsertf32x4(dst, dst, src, 1);
1436     } else {
1437       Assembler::vinsertf128(dst, dst, src, 1);
1438     }
1439   }
1440 
1441   void vinsertf128_high(XMMRegister dst, Address src) {
1442     if (UseAVX > 2) {
1443       Assembler::vinsertf32x4(dst, dst, src, 1);
1444     } else {
1445       Assembler::vinsertf128(dst, dst, src, 1);
1446     }
1447   }
1448 
1449   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1450     if (UseAVX > 2) {
1451       Assembler::vextractf32x4(dst, src, 1);
1452     } else {
1453       Assembler::vextractf128(dst, src, 1);
1454     }
1455   }
1456 
1457   void vextractf128_high(Address dst, XMMRegister src) {
1458     if (UseAVX > 2) {
1459       Assembler::vextractf32x4(dst, src, 1);
1460     } else {
1461       Assembler::vextractf128(dst, src, 1);
1462     }
1463   }
1464 
1465   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1466   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1467     Assembler::vinserti64x4(dst, dst, src, 1);
1468   }
1469   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1470     Assembler::vinsertf64x4(dst, dst, src, 1);
1471   }
1472   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1473     Assembler::vextracti64x4(dst, src, 1);
1474   }
1475   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1476     Assembler::vextractf64x4(dst, src, 1);
1477   }
1478   void vextractf64x4_high(Address dst, XMMRegister src) {
1479     Assembler::vextractf64x4(dst, src, 1);
1480   }
1481   void vinsertf64x4_high(XMMRegister dst, Address src) {
1482     Assembler::vinsertf64x4(dst, dst, src, 1);
1483   }
1484 
1485   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1486   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1487     vinserti128(dst, dst, src, 0);
1488   }
1489   void vinserti128_low(XMMRegister dst, Address src) {
1490     vinserti128(dst, dst, src, 0);
1491   }
1492   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1493     vextracti128(dst, src, 0);
1494   }
1495   void vextracti128_low(Address dst, XMMRegister src) {
1496     vextracti128(dst, src, 0);
1497   }
1498 
1499   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1500     if (UseAVX > 2) {
1501       Assembler::vinsertf32x4(dst, dst, src, 0);
1502     } else {
1503       Assembler::vinsertf128(dst, dst, src, 0);
1504     }
1505   }
1506 
1507   void vinsertf128_low(XMMRegister dst, Address src) {
1508     if (UseAVX > 2) {
1509       Assembler::vinsertf32x4(dst, dst, src, 0);
1510     } else {
1511       Assembler::vinsertf128(dst, dst, src, 0);
1512     }
1513   }
1514 
1515   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1516     if (UseAVX > 2) {
1517       Assembler::vextractf32x4(dst, src, 0);
1518     } else {
1519       Assembler::vextractf128(dst, src, 0);
1520     }
1521   }
1522 
1523   void vextractf128_low(Address dst, XMMRegister src) {
1524     if (UseAVX > 2) {
1525       Assembler::vextractf32x4(dst, src, 0);
1526     } else {
1527       Assembler::vextractf128(dst, src, 0);
1528     }
1529   }
1530 
1531   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1532   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1533     Assembler::vinserti64x4(dst, dst, src, 0);
1534   }
1535   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1536     Assembler::vinsertf64x4(dst, dst, src, 0);
1537   }
1538   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1539     Assembler::vextracti64x4(dst, src, 0);
1540   }
1541   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1542     Assembler::vextractf64x4(dst, src, 0);
1543   }
1544   void vextractf64x4_low(Address dst, XMMRegister src) {
1545     Assembler::vextractf64x4(dst, src, 0);
1546   }
1547   void vinsertf64x4_low(XMMRegister dst, Address src) {
1548     Assembler::vinsertf64x4(dst, dst, src, 0);
1549   }
1550 
1551   // Carry-Less Multiplication Quadword
1552   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1553     // 0x00 - multiply lower 64 bits [0:63]
1554     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1555   }
1556   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1557     // 0x11 - multiply upper 64 bits [64:127]
1558     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1559   }
1560   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1561     // 0x10 - multiply nds[0:63] and src[64:127]
1562     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1563   }
1564   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1565     //0x01 - multiply nds[64:127] and src[0:63]
1566     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1567   }
1568 
1569   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1570     // 0x00 - multiply lower 64 bits [0:63]
1571     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1572   }
1573   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1574     // 0x11 - multiply upper 64 bits [64:127]
1575     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1576   }
1577 
1578   // Data
1579 
1580   void cmov32( Condition cc, Register dst, Address  src);
1581   void cmov32( Condition cc, Register dst, Register src);
1582 
1583   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1584 
1585   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1586   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1587 
1588   void movoop(Register dst, jobject obj);
1589   void movoop(Address dst, jobject obj);
1590 
1591   void mov_metadata(Register dst, Metadata* obj);
1592   void mov_metadata(Address dst, Metadata* obj);
1593 
1594   void movptr(ArrayAddress dst, Register src);
1595   // can this do an lea?
1596   void movptr(Register dst, ArrayAddress src);
1597 
1598   void movptr(Register dst, Address src);
1599 
1600 #ifdef _LP64
1601   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1602 #else
1603   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1604 #endif
1605 
1606   void movptr(Register dst, intptr_t src);
1607   void movptr(Register dst, Register src);
1608   void movptr(Address dst, intptr_t src);
1609 
1610   void movptr(Address dst, Register src);
1611 
1612   void movptr(Register dst, RegisterOrConstant src) {
1613     if (src.is_constant()) movptr(dst, src.as_constant());
1614     else                   movptr(dst, src.as_register());
1615   }
1616 
1617 #ifdef _LP64
1618   // Generally the next two are only used for moving NULL
1619   // Although there are situations in initializing the mark word where
1620   // they could be used. They are dangerous.
1621 
1622   // They only exist on LP64 so that int32_t and intptr_t are not the same
1623   // and we have ambiguous declarations.
1624 
1625   void movptr(Address dst, int32_t imm32);
1626   void movptr(Register dst, int32_t imm32);
1627 #endif // _LP64
1628 
1629   // to avoid hiding movl
1630   void mov32(AddressLiteral dst, Register src);
1631   void mov32(Register dst, AddressLiteral src);
1632 
1633   // to avoid hiding movb
1634   void movbyte(ArrayAddress dst, int src);
1635 
1636   // Import other mov() methods from the parent class or else
1637   // they will be hidden by the following overriding declaration.
1638   using Assembler::movdl;
1639   using Assembler::movq;
1640   void movdl(XMMRegister dst, AddressLiteral src);
1641   void movq(XMMRegister dst, AddressLiteral src);
1642 
1643   // Can push value or effective address
1644   void pushptr(AddressLiteral src);
1645 
1646   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1647   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1648 
1649   void pushoop(jobject obj);
1650   void pushklass(Metadata* obj);
1651 
1652   // sign extend as need a l to ptr sized element
1653   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1654   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1655 
1656 #ifdef COMPILER2
1657   // Generic instructions support for use in .ad files C2 code generation
1658   void vabsnegd(int opcode, XMMRegister dst, Register scr);
1659   void vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1660   void vabsnegf(int opcode, XMMRegister dst, Register scr);
1661   void vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1662   void vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len);
1663   void vextendbw(bool sign, XMMRegister dst, XMMRegister src);
1664   void vshiftd(int opcode, XMMRegister dst, XMMRegister src);
1665   void vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1666   void vshiftw(int opcode, XMMRegister dst, XMMRegister src);
1667   void vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1668   void vshiftq(int opcode, XMMRegister dst, XMMRegister src);
1669   void vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1670 #endif
1671 
1672   // C2 compiled method's prolog code.
1673   void verified_entry(Compile* C, int sp_inc = 0);
1674 
1675   enum RegState {
1676     reg_readonly,
1677     reg_writable,
1678     reg_written
1679   };
1680 
1681   int store_value_type_fields_to_buf(ciValueKlass* vk, bool from_interpreter = true);
1682 
1683   // Unpack all value type arguments passed as oops
1684   void unpack_value_args(Compile* C, bool receiver_only);
1685   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[], int ret_off, int extra_stack_offset);
1686   bool unpack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, VMReg from, VMRegPair* regs_to, int& to_index,
1687                            RegState reg_state[], int ret_off, int extra_stack_offset);
1688   bool pack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1689                          VMReg to, VMRegPair* regs_from, int regs_from_count, int& from_index, RegState reg_state[],
1690                          int ret_off, int extra_stack_offset);
1691   void restore_stack(Compile* C);
1692 
1693   int shuffle_value_args(bool is_packing, bool receiver_only, int extra_stack_offset,
1694                          BasicType* sig_bt, const GrowableArray<SigEntry>* sig_cc,
1695                          int args_passed, int args_on_stack, VMRegPair* regs,
1696                          int args_passed_to, int args_on_stack_to, VMRegPair* regs_to);
1697   bool shuffle_value_args_spill(bool is_packing,  const GrowableArray<SigEntry>* sig_cc, int sig_cc_index,
1698                                 VMRegPair* regs_from, int from_index, int regs_from_count,
1699                                 RegState* reg_state, int sp_inc, int extra_stack_offset);
1700   VMReg spill_reg_for(VMReg reg);
1701 
1702   // clear memory of size 'cnt' qwords, starting at 'base';
1703   // if 'is_large' is set, do not try to produce short loop
1704   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only);
1705 
1706   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1707   void xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp);
1708 
1709 #ifdef COMPILER2
1710   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1711                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1712 
1713   // IndexOf strings.
1714   // Small strings are loaded through stack if they cross page boundary.
1715   void string_indexof(Register str1, Register str2,
1716                       Register cnt1, Register cnt2,
1717                       int int_cnt2,  Register result,
1718                       XMMRegister vec, Register tmp,
1719                       int ae);
1720 
1721   // IndexOf for constant substrings with size >= 8 elements
1722   // which don't need to be loaded through stack.
1723   void string_indexofC8(Register str1, Register str2,
1724                       Register cnt1, Register cnt2,
1725                       int int_cnt2,  Register result,
1726                       XMMRegister vec, Register tmp,
1727                       int ae);
1728 
1729     // Smallest code: we don't need to load through stack,
1730     // check string tail.
1731 
1732   // helper function for string_compare
1733   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1734                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1735                           Address::ScaleFactor scale2, Register index, int ae);
1736   // Compare strings.
1737   void string_compare(Register str1, Register str2,
1738                       Register cnt1, Register cnt2, Register result,
1739                       XMMRegister vec1, int ae);
1740 
1741   // Search for Non-ASCII character (Negative byte value) in a byte array,
1742   // return true if it has any and false otherwise.
1743   void has_negatives(Register ary1, Register len,
1744                      Register result, Register tmp1,
1745                      XMMRegister vec1, XMMRegister vec2);
1746 
1747   // Compare char[] or byte[] arrays.
1748   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1749                      Register limit, Register result, Register chr,
1750                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1751 
1752 #endif
1753 
1754   // Fill primitive arrays
1755   void generate_fill(BasicType t, bool aligned,
1756                      Register to, Register value, Register count,
1757                      Register rtmp, XMMRegister xtmp);
1758 
1759   void encode_iso_array(Register src, Register dst, Register len,
1760                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1761                         XMMRegister tmp4, Register tmp5, Register result);
1762 
1763 #ifdef _LP64
1764   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1765   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1766                              Register y, Register y_idx, Register z,
1767                              Register carry, Register product,
1768                              Register idx, Register kdx);
1769   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1770                               Register yz_idx, Register idx,
1771                               Register carry, Register product, int offset);
1772   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1773                                     Register carry, Register carry2,
1774                                     Register idx, Register jdx,
1775                                     Register yz_idx1, Register yz_idx2,
1776                                     Register tmp, Register tmp3, Register tmp4);
1777   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1778                                Register yz_idx, Register idx, Register jdx,
1779                                Register carry, Register product,
1780                                Register carry2);
1781   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1782                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1783   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1784                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1785   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1786                             Register tmp2);
1787   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1788                        Register rdxReg, Register raxReg);
1789   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1790   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1791                        Register tmp3, Register tmp4);
1792   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1793                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1794 
1795   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1796                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1797                Register raxReg);
1798   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1799                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1800                Register raxReg);
1801   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1802                            Register result, Register tmp1, Register tmp2,
1803                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1804 #endif
1805 
1806   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1807   void update_byte_crc32(Register crc, Register val, Register table);
1808   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1809   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1810   // Note on a naming convention:
1811   // Prefix w = register only used on a Westmere+ architecture
1812   // Prefix n = register only used on a Nehalem architecture
1813 #ifdef _LP64
1814   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1815                        Register tmp1, Register tmp2, Register tmp3);
1816 #else
1817   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1818                        Register tmp1, Register tmp2, Register tmp3,
1819                        XMMRegister xtmp1, XMMRegister xtmp2);
1820 #endif
1821   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1822                         Register in_out,
1823                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1824                         XMMRegister w_xtmp2,
1825                         Register tmp1,
1826                         Register n_tmp2, Register n_tmp3);
1827   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1828                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1829                        Register tmp1, Register tmp2,
1830                        Register n_tmp3);
1831   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1832                          Register in_out1, Register in_out2, Register in_out3,
1833                          Register tmp1, Register tmp2, Register tmp3,
1834                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1835                          Register tmp4, Register tmp5,
1836                          Register n_tmp6);
1837   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1838                             Register tmp1, Register tmp2, Register tmp3,
1839                             Register tmp4, Register tmp5, Register tmp6,
1840                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1841                             bool is_pclmulqdq_supported);
1842   // Fold 128-bit data chunk
1843   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1844   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1845   // Fold 8-bit data
1846   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1847   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1848   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1849 
1850   // Compress char[] array to byte[].
1851   void char_array_compress(Register src, Register dst, Register len,
1852                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1853                            XMMRegister tmp4, Register tmp5, Register result);
1854 
1855   // Inflate byte[] array to char[].
1856   void byte_array_inflate(Register src, Register dst, Register len,
1857                           XMMRegister tmp1, Register tmp2);
1858 
1859 #ifdef _LP64
1860   void cache_wb(Address line);
1861   void cache_wbsync(bool is_pre);
1862 #endif // _LP64
1863 
1864   #include "asm/macroAssembler_common.hpp"
1865 
1866 };
1867 
1868 /**
1869  * class SkipIfEqual:
1870  *
1871  * Instantiating this class will result in assembly code being output that will
1872  * jump around any code emitted between the creation of the instance and it's
1873  * automatic destruction at the end of a scope block, depending on the value of
1874  * the flag passed to the constructor, which will be checked at run-time.
1875  */
1876 class SkipIfEqual {
1877  private:
1878   MacroAssembler* _masm;
1879   Label _label;
1880 
1881  public:
1882    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1883    ~SkipIfEqual();
1884 };
1885 
1886 #endif // CPU_X86_MACROASSEMBLER_X86_HPP