1 /* 2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "code/codeCache.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/disassembler.hpp" 32 #include "gc/shared/barrierSetNMethod.hpp" 33 #include "gc/shared/collectedHeap.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "interpreter/interpreterRuntime.hpp" 36 #include "interpreter/linkResolver.hpp" 37 #include "interpreter/templateTable.hpp" 38 #include "logging/log.hpp" 39 #include "memory/oopFactory.hpp" 40 #include "memory/resourceArea.hpp" 41 #include "memory/universe.hpp" 42 #include "oops/constantPool.hpp" 43 #include "oops/cpCache.inline.hpp" 44 #include "oops/instanceKlass.hpp" 45 #include "oops/methodData.hpp" 46 #include "oops/objArrayKlass.hpp" 47 #include "oops/objArrayOop.inline.hpp" 48 #include "oops/oop.inline.hpp" 49 #include "oops/symbol.hpp" 50 #include "oops/valueKlass.hpp" 51 #include "oops/valueArrayKlass.hpp" 52 #include "oops/valueArrayOop.hpp" 53 #include "oops/valueArrayOop.inline.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/nativeLookup.hpp" 56 #include "runtime/atomic.hpp" 57 #include "runtime/biasedLocking.hpp" 58 #include "runtime/compilationPolicy.hpp" 59 #include "runtime/deoptimization.hpp" 60 #include "runtime/fieldDescriptor.inline.hpp" 61 #include "runtime/frame.inline.hpp" 62 #include "runtime/handles.inline.hpp" 63 #include "runtime/icache.hpp" 64 #include "runtime/interfaceSupport.inline.hpp" 65 #include "runtime/java.hpp" 66 #include "runtime/javaCalls.hpp" 67 #include "runtime/jfieldIDWorkaround.hpp" 68 #include "runtime/osThread.hpp" 69 #include "runtime/sharedRuntime.hpp" 70 #include "runtime/stubRoutines.hpp" 71 #include "runtime/synchronizer.hpp" 72 #include "runtime/threadCritical.hpp" 73 #include "utilities/align.hpp" 74 #include "utilities/copy.hpp" 75 #include "utilities/events.hpp" 76 #include "utilities/globalDefinitions.hpp" 77 #ifdef COMPILER2 78 #include "opto/runtime.hpp" 79 #endif 80 81 class UnlockFlagSaver { 82 private: 83 JavaThread* _thread; 84 bool _do_not_unlock; 85 public: 86 UnlockFlagSaver(JavaThread* t) { 87 _thread = t; 88 _do_not_unlock = t->do_not_unlock_if_synchronized(); 89 t->set_do_not_unlock_if_synchronized(false); 90 } 91 ~UnlockFlagSaver() { 92 _thread->set_do_not_unlock_if_synchronized(_do_not_unlock); 93 } 94 }; 95 96 // Helper class to access current interpreter state 97 class LastFrameAccessor : public StackObj { 98 frame _last_frame; 99 public: 100 LastFrameAccessor(JavaThread* thread) { 101 assert(thread == Thread::current(), "sanity"); 102 _last_frame = thread->last_frame(); 103 } 104 bool is_interpreted_frame() const { return _last_frame.is_interpreted_frame(); } 105 Method* method() const { return _last_frame.interpreter_frame_method(); } 106 address bcp() const { return _last_frame.interpreter_frame_bcp(); } 107 int bci() const { return _last_frame.interpreter_frame_bci(); } 108 address mdp() const { return _last_frame.interpreter_frame_mdp(); } 109 110 void set_bcp(address bcp) { _last_frame.interpreter_frame_set_bcp(bcp); } 111 void set_mdp(address dp) { _last_frame.interpreter_frame_set_mdp(dp); } 112 113 // pass method to avoid calling unsafe bcp_to_method (partial fix 4926272) 114 Bytecodes::Code code() const { return Bytecodes::code_at(method(), bcp()); } 115 116 Bytecode bytecode() const { return Bytecode(method(), bcp()); } 117 int get_index_u1(Bytecodes::Code bc) const { return bytecode().get_index_u1(bc); } 118 int get_index_u2(Bytecodes::Code bc) const { return bytecode().get_index_u2(bc); } 119 int get_index_u2_cpcache(Bytecodes::Code bc) const 120 { return bytecode().get_index_u2_cpcache(bc); } 121 int get_index_u4(Bytecodes::Code bc) const { return bytecode().get_index_u4(bc); } 122 int number_of_dimensions() const { return bcp()[3]; } 123 ConstantPoolCacheEntry* cache_entry_at(int i) const 124 { return method()->constants()->cache()->entry_at(i); } 125 ConstantPoolCacheEntry* cache_entry() const { return cache_entry_at(Bytes::get_native_u2(bcp() + 1)); } 126 127 oop callee_receiver(Symbol* signature) { 128 return _last_frame.interpreter_callee_receiver(signature); 129 } 130 BasicObjectLock* monitor_begin() const { 131 return _last_frame.interpreter_frame_monitor_begin(); 132 } 133 BasicObjectLock* monitor_end() const { 134 return _last_frame.interpreter_frame_monitor_end(); 135 } 136 BasicObjectLock* next_monitor(BasicObjectLock* current) const { 137 return _last_frame.next_monitor_in_interpreter_frame(current); 138 } 139 140 frame& get_frame() { return _last_frame; } 141 }; 142 143 //------------------------------------------------------------------------------------------------------------------------ 144 // State accessors 145 146 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) { 147 LastFrameAccessor last_frame(thread); 148 last_frame.set_bcp(bcp); 149 if (ProfileInterpreter) { 150 // ProfileTraps uses MDOs independently of ProfileInterpreter. 151 // That is why we must check both ProfileInterpreter and mdo != NULL. 152 MethodData* mdo = last_frame.method()->method_data(); 153 if (mdo != NULL) { 154 NEEDS_CLEANUP; 155 last_frame.set_mdp(mdo->bci_to_dp(last_frame.bci())); 156 } 157 } 158 } 159 160 //------------------------------------------------------------------------------------------------------------------------ 161 // Constants 162 163 164 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide)) 165 // access constant pool 166 LastFrameAccessor last_frame(thread); 167 ConstantPool* pool = last_frame.method()->constants(); 168 int index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc); 169 constantTag tag = pool->tag_at(index); 170 171 assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call"); 172 Klass* klass = pool->klass_at(index, CHECK); 173 oop java_class = klass->java_mirror(); 174 thread->set_vm_result(java_class); 175 IRT_END 176 177 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) { 178 assert(bytecode == Bytecodes::_ldc || 179 bytecode == Bytecodes::_ldc_w || 180 bytecode == Bytecodes::_ldc2_w || 181 bytecode == Bytecodes::_fast_aldc || 182 bytecode == Bytecodes::_fast_aldc_w, "wrong bc"); 183 ResourceMark rm(thread); 184 const bool is_fast_aldc = (bytecode == Bytecodes::_fast_aldc || 185 bytecode == Bytecodes::_fast_aldc_w); 186 LastFrameAccessor last_frame(thread); 187 methodHandle m (thread, last_frame.method()); 188 Bytecode_loadconstant ldc(m, last_frame.bci()); 189 190 // Double-check the size. (Condy can have any type.) 191 BasicType type = ldc.result_type(); 192 switch (type2size[type]) { 193 case 2: guarantee(bytecode == Bytecodes::_ldc2_w, ""); break; 194 case 1: guarantee(bytecode != Bytecodes::_ldc2_w, ""); break; 195 default: ShouldNotReachHere(); 196 } 197 198 // Resolve the constant. This does not do unboxing. 199 // But it does replace Universe::the_null_sentinel by null. 200 oop result = ldc.resolve_constant(CHECK); 201 assert(result != NULL || is_fast_aldc, "null result only valid for fast_aldc"); 202 203 #ifdef ASSERT 204 { 205 // The bytecode wrappers aren't GC-safe so construct a new one 206 Bytecode_loadconstant ldc2(m, last_frame.bci()); 207 int rindex = ldc2.cache_index(); 208 if (rindex < 0) 209 rindex = m->constants()->cp_to_object_index(ldc2.pool_index()); 210 if (rindex >= 0) { 211 oop coop = m->constants()->resolved_references()->obj_at(rindex); 212 oop roop = (result == NULL ? Universe::the_null_sentinel() : result); 213 assert(oopDesc::equals(roop, coop), "expected result for assembly code"); 214 } 215 } 216 #endif 217 thread->set_vm_result(result); 218 if (!is_fast_aldc) { 219 // Tell the interpreter how to unbox the primitive. 220 guarantee(java_lang_boxing_object::is_instance(result, type), ""); 221 int offset = java_lang_boxing_object::value_offset_in_bytes(type); 222 intptr_t flags = ((as_TosState(type) << ConstantPoolCacheEntry::tos_state_shift) 223 | (offset & ConstantPoolCacheEntry::field_index_mask)); 224 thread->set_vm_result_2((Metadata*)flags); 225 } 226 } 227 IRT_END 228 229 230 //------------------------------------------------------------------------------------------------------------------------ 231 // Allocation 232 233 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index)) 234 Klass* k = pool->klass_at(index, CHECK); 235 InstanceKlass* klass = InstanceKlass::cast(k); 236 237 // Make sure we are not instantiating an abstract klass 238 klass->check_valid_for_instantiation(true, CHECK); 239 240 // Make sure klass is initialized 241 klass->initialize(CHECK); 242 243 // At this point the class may not be fully initialized 244 // because of recursive initialization. If it is fully 245 // initialized & has_finalized is not set, we rewrite 246 // it into its fast version (Note: no locking is needed 247 // here since this is an atomic byte write and can be 248 // done more than once). 249 // 250 // Note: In case of classes with has_finalized we don't 251 // rewrite since that saves us an extra check in 252 // the fast version which then would call the 253 // slow version anyway (and do a call back into 254 // Java). 255 // If we have a breakpoint, then we don't rewrite 256 // because the _breakpoint bytecode would be lost. 257 oop obj = klass->allocate_instance(CHECK); 258 thread->set_vm_result(obj); 259 IRT_END 260 261 void copy_primitive_argument(intptr_t* addr, Handle instance, int offset, BasicType type) { 262 switch (type) { 263 case T_BOOLEAN: 264 instance()->bool_field_put(offset, (jboolean)*((int*)addr)); 265 break; 266 case T_CHAR: 267 instance()->char_field_put(offset, (jchar) *((int*)addr)); 268 break; 269 case T_FLOAT: 270 instance()->float_field_put(offset, (jfloat)*((float*)addr)); 271 break; 272 case T_DOUBLE: 273 instance()->double_field_put(offset, (jdouble)*((double*)addr)); 274 break; 275 case T_BYTE: 276 instance()->byte_field_put(offset, (jbyte)*((int*)addr)); 277 break; 278 case T_SHORT: 279 instance()->short_field_put(offset, (jshort)*((int*)addr)); 280 break; 281 case T_INT: 282 instance()->int_field_put(offset, (jint)*((int*)addr)); 283 break; 284 case T_LONG: 285 instance()->long_field_put(offset, (jlong)*((long long*)addr)); 286 break; 287 case T_OBJECT: 288 case T_ARRAY: 289 case T_VALUETYPE: 290 fatal("Should not be handled with this method"); 291 break; 292 default: 293 fatal("Unsupported BasicType"); 294 } 295 } 296 297 IRT_ENTRY(void, InterpreterRuntime::defaultvalue(JavaThread* thread, ConstantPool* pool, int index)) 298 // Getting the ValueKlass 299 Klass* k = pool->klass_at(index, CHECK); 300 assert(k->is_value(), "defaultvalue argument must be the value type class"); 301 ValueKlass* vklass = ValueKlass::cast(k); 302 303 vklass->initialize(THREAD); 304 oop res = vklass->default_value(); 305 thread->set_vm_result(res); 306 IRT_END 307 308 IRT_ENTRY(int, InterpreterRuntime::withfield(JavaThread* thread, ConstantPoolCache* cp_cache)) 309 LastFrameAccessor last_frame(thread); 310 // Getting the ValueKlass 311 int index = ConstantPool::decode_cpcache_index(last_frame.get_index_u2_cpcache(Bytecodes::_withfield)); 312 ConstantPoolCacheEntry* cp_entry = cp_cache->entry_at(index); 313 assert(cp_entry->is_resolved(Bytecodes::_withfield), "Should have been resolved"); 314 Klass* klass = cp_entry->f1_as_klass(); 315 assert(klass->is_value(), "withfield only applies to value types"); 316 ValueKlass* vklass = ValueKlass::cast(klass); 317 318 // Getting Field information 319 int offset = cp_entry->f2_as_index(); 320 int field_index = cp_entry->field_index(); 321 int field_offset = cp_entry->f2_as_offset(); 322 Symbol* field_signature = vklass->field_signature(field_index); 323 ResourceMark rm(THREAD); 324 const char* signature = (const char *) field_signature->as_utf8(); 325 BasicType field_type = char2type(signature[0]); 326 327 // Getting old value 328 frame& f = last_frame.get_frame(); 329 jint tos_idx = f.interpreter_frame_expression_stack_size() - 1; 330 int vt_offset = type2size[field_type]; 331 oop old_value = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx - vt_offset); 332 assert(old_value != NULL && oopDesc::is_oop(old_value) && old_value->is_value(),"Verifying receiver"); 333 Handle old_value_h(THREAD, old_value); 334 335 // Creating new value by copying the one passed in argument 336 instanceOop new_value = vklass->allocate_instance( 337 CHECK_((type2size[field_type]) * AbstractInterpreter::stackElementSize)); 338 Handle new_value_h = Handle(THREAD, new_value); 339 int first_offset = vklass->first_field_offset(); 340 vklass->value_store(vklass->data_for_oop(old_value_h()), 341 vklass->data_for_oop(new_value_h()), true, false); 342 343 // Updating the field specified in arguments 344 if (field_type == T_ARRAY || field_type == T_OBJECT) { 345 oop aoop = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx); 346 assert(aoop == NULL || oopDesc::is_oop(aoop),"argument must be a reference type"); 347 new_value_h()->obj_field_put(field_offset, aoop); 348 } else if (field_type == T_VALUETYPE) { 349 if (cp_entry->is_flattened()) { 350 oop vt_oop = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx); 351 if (vt_oop == NULL) { 352 THROW_(vmSymbols::java_lang_NullPointerException(), 353 (type2size[field_type] * AbstractInterpreter::stackElementSize)); 354 } 355 assert(vt_oop != NULL && oopDesc::is_oop(vt_oop) && vt_oop->is_value(),"argument must be a value type"); 356 Klass* field_k = vklass->get_value_field_klass(field_index); 357 ValueKlass* field_vk = ValueKlass::cast(field_k); 358 assert(field_vk == vt_oop->klass(), "Must match"); 359 field_vk->value_store(field_vk->data_for_oop(vt_oop), 360 ((char*)(oopDesc*)new_value_h()) + field_offset, false, false); 361 } else { // not flattened 362 oop voop = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx); 363 if (voop == NULL && cp_entry->is_flattenable()) { 364 THROW_(vmSymbols::java_lang_NullPointerException(), 365 (type2size[field_type] * AbstractInterpreter::stackElementSize)); 366 } 367 assert(voop == NULL || oopDesc::is_oop(voop),"checking argument"); 368 new_value_h()->obj_field_put(field_offset, voop); 369 } 370 } else { // not T_OBJECT nor T_ARRAY nor T_VALUETYPE 371 intptr_t* addr = f.interpreter_frame_expression_stack_at(tos_idx); 372 copy_primitive_argument(addr, new_value_h, field_offset, field_type); 373 } 374 375 // returning result 376 thread->set_vm_result(new_value_h()); 377 return (type2size[field_type] + type2size[T_OBJECT]) * AbstractInterpreter::stackElementSize; 378 IRT_END 379 380 IRT_ENTRY(void, InterpreterRuntime::uninitialized_static_value_field(JavaThread* thread, oopDesc* mirror, int index)) 381 instanceHandle mirror_h(THREAD, (instanceOop)mirror); 382 InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(mirror)); 383 int offset = klass->field_offset(index); 384 Klass* field_k = klass->get_value_field_klass_or_null(index); 385 assert(field_k != NULL, "Must have been initialized"); 386 ValueKlass* field_vklass = ValueKlass::cast(field_k); 387 instanceOop res = (instanceOop)field_vklass->default_value(); 388 thread->set_vm_result(res); 389 IRT_END 390 391 IRT_ENTRY(void, InterpreterRuntime::uninitialized_instance_value_field(JavaThread* thread, oopDesc* obj, int index)) 392 instanceHandle obj_h(THREAD, (instanceOop)obj); 393 InstanceKlass* klass = InstanceKlass::cast(obj_h()->klass()); 394 Klass* field_k = klass->get_value_field_klass_or_null(index); 395 assert(field_k != NULL, "Must have been initialized"); 396 ValueKlass* field_vklass = ValueKlass::cast(field_k); 397 assert(field_vklass->is_initialized(), "Must have been initialized at this point"); 398 instanceOop res = (instanceOop)field_vklass->default_value(); 399 thread->set_vm_result(res); 400 IRT_END 401 402 IRT_ENTRY(void, InterpreterRuntime::write_flattened_value(JavaThread* thread, oopDesc* value, int offset, oopDesc* rcv)) 403 assert(oopDesc::is_oop(value), "Sanity check"); 404 assert(oopDesc::is_oop(rcv), "Sanity check"); 405 assert(value->is_value(), "Sanity check"); 406 407 ValueKlass* vklass = ValueKlass::cast(value->klass()); 408 vklass->value_store(vklass->data_for_oop(value), ((char*)(oopDesc*)rcv) + offset, true, true); 409 IRT_END 410 411 IRT_ENTRY(void, InterpreterRuntime::read_flattened_field(JavaThread* thread, oopDesc* obj, int index, Klass* field_holder)) 412 Handle obj_h(THREAD, obj); 413 414 assert(oopDesc::is_oop(obj), "Sanity check"); 415 416 assert(field_holder->is_instance_klass(), "Sanity check"); 417 InstanceKlass* klass = InstanceKlass::cast(field_holder); 418 419 assert(klass->field_is_flattened(index), "Sanity check"); 420 421 ValueKlass* field_vklass = ValueKlass::cast(klass->get_value_field_klass(index)); 422 assert(field_vklass->is_initialized(), "Must be initialized at this point"); 423 424 // allocate instance 425 instanceOop res = field_vklass->allocate_instance(CHECK); 426 // copy value 427 field_vklass->value_store(((char*)(oopDesc*)obj_h()) + klass->field_offset(index), 428 field_vklass->data_for_oop(res), true, true); 429 thread->set_vm_result(res); 430 IRT_END 431 432 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size)) 433 oop obj = oopFactory::new_typeArray(type, size, CHECK); 434 thread->set_vm_result(obj); 435 IRT_END 436 437 438 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size)) 439 Klass* klass = pool->klass_at(index, CHECK); 440 bool is_qtype_desc = pool->tag_at(index).is_Qdescriptor_klass(); 441 arrayOop obj; 442 if ((!klass->is_array_klass()) && is_qtype_desc) { // Logically creates elements, ensure klass init 443 klass->initialize(CHECK); 444 obj = oopFactory::new_valueArray(klass, size, CHECK); 445 } else { 446 obj = oopFactory::new_objArray(klass, size, CHECK); 447 } 448 thread->set_vm_result(obj); 449 IRT_END 450 451 IRT_ENTRY(void, InterpreterRuntime::value_array_load(JavaThread* thread, arrayOopDesc* array, int index)) 452 Klass* klass = array->klass(); 453 assert(klass->is_valueArray_klass(), "expected value array oop"); 454 455 ValueArrayKlass* vaklass = ValueArrayKlass::cast(klass); 456 ValueKlass* vklass = vaklass->element_klass(); 457 arrayHandle ah(THREAD, array); 458 instanceOop value_holder = vklass->allocate_instance(CHECK); 459 void* src = ((valueArrayOop)ah())->value_at_addr(index, vaklass->layout_helper()); 460 vklass->value_store(src, vklass->data_for_oop(value_holder), 461 vaklass->element_byte_size(), true, false); 462 thread->set_vm_result(value_holder); 463 IRT_END 464 465 IRT_ENTRY(void, InterpreterRuntime::value_array_store(JavaThread* thread, void* val, arrayOopDesc* array, int index)) 466 assert(val != NULL, "can't store null into flat array"); 467 Klass* klass = array->klass(); 468 assert(klass->is_valueArray_klass(), "expected value array"); 469 assert(ArrayKlass::cast(klass)->element_klass() == ((oop)val)->klass(), "Store type incorrect"); 470 471 valueArrayOop varray = (valueArrayOop)array; 472 ValueArrayKlass* vaklass = ValueArrayKlass::cast(klass); 473 ValueKlass* vklass = vaklass->element_klass(); 474 const int lh = vaklass->layout_helper(); 475 vklass->value_store(vklass->data_for_oop((oop)val), varray->value_at_addr(index, lh), 476 vaklass->element_byte_size(), true, false); 477 IRT_END 478 479 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address)) 480 // We may want to pass in more arguments - could make this slightly faster 481 LastFrameAccessor last_frame(thread); 482 ConstantPool* constants = last_frame.method()->constants(); 483 int i = last_frame.get_index_u2(Bytecodes::_multianewarray); 484 Klass* klass = constants->klass_at(i, CHECK); 485 bool is_qtype = constants->tag_at(i).is_Qdescriptor_klass(); 486 int nof_dims = last_frame.number_of_dimensions(); 487 assert(klass->is_klass(), "not a class"); 488 assert(nof_dims >= 1, "multianewarray rank must be nonzero"); 489 490 if (is_qtype) { // Logically creates elements, ensure klass init 491 klass->initialize(CHECK); 492 } 493 494 // We must create an array of jints to pass to multi_allocate. 495 ResourceMark rm(thread); 496 const int small_dims = 10; 497 jint dim_array[small_dims]; 498 jint *dims = &dim_array[0]; 499 if (nof_dims > small_dims) { 500 dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims); 501 } 502 for (int index = 0; index < nof_dims; index++) { 503 // offset from first_size_address is addressed as local[index] 504 int n = Interpreter::local_offset_in_bytes(index)/jintSize; 505 dims[index] = first_size_address[n]; 506 } 507 oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK); 508 thread->set_vm_result(obj); 509 IRT_END 510 511 512 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 513 assert(oopDesc::is_oop(obj), "must be a valid oop"); 514 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 515 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 516 IRT_END 517 518 519 // Quicken instance-of and check-cast bytecodes 520 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread)) 521 // Force resolving; quicken the bytecode 522 LastFrameAccessor last_frame(thread); 523 int which = last_frame.get_index_u2(Bytecodes::_checkcast); 524 ConstantPool* cpool = last_frame.method()->constants(); 525 // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded 526 // program we might have seen an unquick'd bytecode in the interpreter but have another 527 // thread quicken the bytecode before we get here. 528 // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" ); 529 Klass* klass = cpool->klass_at(which, CHECK); 530 thread->set_vm_result_2(klass); 531 IRT_END 532 533 534 //------------------------------------------------------------------------------------------------------------------------ 535 // Exceptions 536 537 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason, 538 const methodHandle& trap_method, int trap_bci, TRAPS) { 539 if (trap_method.not_null()) { 540 MethodData* trap_mdo = trap_method->method_data(); 541 if (trap_mdo == NULL) { 542 Method::build_interpreter_method_data(trap_method, THREAD); 543 if (HAS_PENDING_EXCEPTION) { 544 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), 545 "we expect only an OOM error here"); 546 CLEAR_PENDING_EXCEPTION; 547 } 548 trap_mdo = trap_method->method_data(); 549 // and fall through... 550 } 551 if (trap_mdo != NULL) { 552 // Update per-method count of trap events. The interpreter 553 // is updating the MDO to simulate the effect of compiler traps. 554 Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason); 555 } 556 } 557 } 558 559 // Assume the compiler is (or will be) interested in this event. 560 // If necessary, create an MDO to hold the information, and record it. 561 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) { 562 assert(ProfileTraps, "call me only if profiling"); 563 LastFrameAccessor last_frame(thread); 564 methodHandle trap_method(thread, last_frame.method()); 565 int trap_bci = trap_method->bci_from(last_frame.bcp()); 566 note_trap_inner(thread, reason, trap_method, trap_bci, THREAD); 567 } 568 569 #ifdef CC_INTERP 570 // As legacy note_trap, but we have more arguments. 571 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci)) 572 methodHandle trap_method(method); 573 note_trap_inner(thread, reason, trap_method, trap_bci, THREAD); 574 IRT_END 575 576 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper 577 // for each exception. 578 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci) 579 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); } 580 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci) 581 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); } 582 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci) 583 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); } 584 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci) 585 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); } 586 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci) 587 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); } 588 #endif // CC_INTERP 589 590 591 static Handle get_preinitialized_exception(Klass* k, TRAPS) { 592 // get klass 593 InstanceKlass* klass = InstanceKlass::cast(k); 594 assert(klass->is_initialized(), 595 "this klass should have been initialized during VM initialization"); 596 // create instance - do not call constructor since we may have no 597 // (java) stack space left (should assert constructor is empty) 598 Handle exception; 599 oop exception_oop = klass->allocate_instance(CHECK_(exception)); 600 exception = Handle(THREAD, exception_oop); 601 if (StackTraceInThrowable) { 602 java_lang_Throwable::fill_in_stack_trace(exception); 603 } 604 return exception; 605 } 606 607 // Special handling for stack overflow: since we don't have any (java) stack 608 // space left we use the pre-allocated & pre-initialized StackOverflowError 609 // klass to create an stack overflow error instance. We do not call its 610 // constructor for the same reason (it is empty, anyway). 611 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread)) 612 Handle exception = get_preinitialized_exception( 613 SystemDictionary::StackOverflowError_klass(), 614 CHECK); 615 // Increment counter for hs_err file reporting 616 Atomic::inc(&Exceptions::_stack_overflow_errors); 617 THROW_HANDLE(exception); 618 IRT_END 619 620 IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread)) 621 Handle exception = get_preinitialized_exception( 622 SystemDictionary::StackOverflowError_klass(), 623 CHECK); 624 java_lang_Throwable::set_message(exception(), 625 Universe::delayed_stack_overflow_error_message()); 626 // Increment counter for hs_err file reporting 627 Atomic::inc(&Exceptions::_stack_overflow_errors); 628 THROW_HANDLE(exception); 629 IRT_END 630 631 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message)) 632 // lookup exception klass 633 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 634 if (ProfileTraps) { 635 if (s == vmSymbols::java_lang_ArithmeticException()) { 636 note_trap(thread, Deoptimization::Reason_div0_check, CHECK); 637 } else if (s == vmSymbols::java_lang_NullPointerException()) { 638 note_trap(thread, Deoptimization::Reason_null_check, CHECK); 639 } 640 } 641 // create exception 642 Handle exception = Exceptions::new_exception(thread, s, message); 643 thread->set_vm_result(exception()); 644 IRT_END 645 646 647 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj)) 648 // Produce the error message first because note_trap can safepoint 649 ResourceMark rm(thread); 650 const char* klass_name = obj->klass()->external_name(); 651 // lookup exception klass 652 TempNewSymbol s = SymbolTable::new_symbol(name, CHECK); 653 if (ProfileTraps) { 654 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 655 } 656 // create exception, with klass name as detail message 657 Handle exception = Exceptions::new_exception(thread, s, klass_name); 658 thread->set_vm_result(exception()); 659 IRT_END 660 661 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, arrayOopDesc* a, jint index)) 662 // Produce the error message first because note_trap can safepoint 663 ResourceMark rm(thread); 664 stringStream ss; 665 ss.print("Index %d out of bounds for length %d", index, a->length()); 666 667 if (ProfileTraps) { 668 note_trap(thread, Deoptimization::Reason_range_check, CHECK); 669 } 670 671 THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string()); 672 IRT_END 673 674 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException( 675 JavaThread* thread, oopDesc* obj)) 676 677 // Produce the error message first because note_trap can safepoint 678 ResourceMark rm(thread); 679 char* message = SharedRuntime::generate_class_cast_message( 680 thread, obj->klass()); 681 682 if (ProfileTraps) { 683 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 684 } 685 686 // create exception 687 THROW_MSG(vmSymbols::java_lang_ClassCastException(), message); 688 IRT_END 689 690 // exception_handler_for_exception(...) returns the continuation address, 691 // the exception oop (via TLS) and sets the bci/bcp for the continuation. 692 // The exception oop is returned to make sure it is preserved over GC (it 693 // is only on the stack if the exception was thrown explicitly via athrow). 694 // During this operation, the expression stack contains the values for the 695 // bci where the exception happened. If the exception was propagated back 696 // from a call, the expression stack contains the values for the bci at the 697 // invoke w/o arguments (i.e., as if one were inside the call). 698 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception)) 699 700 LastFrameAccessor last_frame(thread); 701 Handle h_exception(thread, exception); 702 methodHandle h_method (thread, last_frame.method()); 703 constantPoolHandle h_constants(thread, h_method->constants()); 704 bool should_repeat; 705 int handler_bci; 706 int current_bci = last_frame.bci(); 707 708 if (thread->frames_to_pop_failed_realloc() > 0) { 709 // Allocation of scalar replaced object used in this frame 710 // failed. Unconditionally pop the frame. 711 thread->dec_frames_to_pop_failed_realloc(); 712 thread->set_vm_result(h_exception()); 713 // If the method is synchronized we already unlocked the monitor 714 // during deoptimization so the interpreter needs to skip it when 715 // the frame is popped. 716 thread->set_do_not_unlock_if_synchronized(true); 717 #ifdef CC_INTERP 718 return (address) -1; 719 #else 720 return Interpreter::remove_activation_entry(); 721 #endif 722 } 723 724 // Need to do this check first since when _do_not_unlock_if_synchronized 725 // is set, we don't want to trigger any classloading which may make calls 726 // into java, or surprisingly find a matching exception handler for bci 0 727 // since at this moment the method hasn't been "officially" entered yet. 728 if (thread->do_not_unlock_if_synchronized()) { 729 ResourceMark rm; 730 assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized"); 731 thread->set_vm_result(exception); 732 #ifdef CC_INTERP 733 return (address) -1; 734 #else 735 return Interpreter::remove_activation_entry(); 736 #endif 737 } 738 739 do { 740 should_repeat = false; 741 742 // assertions 743 #ifdef ASSERT 744 assert(h_exception.not_null(), "NULL exceptions should be handled by athrow"); 745 // Check that exception is a subclass of Throwable, otherwise we have a VerifyError 746 if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) { 747 if (ExitVMOnVerifyError) vm_exit(-1); 748 ShouldNotReachHere(); 749 } 750 #endif 751 752 // tracing 753 if (log_is_enabled(Info, exceptions)) { 754 ResourceMark rm(thread); 755 stringStream tempst; 756 tempst.print("interpreter method <%s>\n" 757 " at bci %d for thread " INTPTR_FORMAT " (%s)", 758 h_method->print_value_string(), current_bci, p2i(thread), thread->name()); 759 Exceptions::log_exception(h_exception, tempst); 760 } 761 // Don't go paging in something which won't be used. 762 // else if (extable->length() == 0) { 763 // // disabled for now - interpreter is not using shortcut yet 764 // // (shortcut is not to call runtime if we have no exception handlers) 765 // // warning("performance bug: should not call runtime if method has no exception handlers"); 766 // } 767 // for AbortVMOnException flag 768 Exceptions::debug_check_abort(h_exception); 769 770 // exception handler lookup 771 Klass* klass = h_exception->klass(); 772 handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD); 773 if (HAS_PENDING_EXCEPTION) { 774 // We threw an exception while trying to find the exception handler. 775 // Transfer the new exception to the exception handle which will 776 // be set into thread local storage, and do another lookup for an 777 // exception handler for this exception, this time starting at the 778 // BCI of the exception handler which caused the exception to be 779 // thrown (bug 4307310). 780 h_exception = Handle(THREAD, PENDING_EXCEPTION); 781 CLEAR_PENDING_EXCEPTION; 782 if (handler_bci >= 0) { 783 current_bci = handler_bci; 784 should_repeat = true; 785 } 786 } 787 } while (should_repeat == true); 788 789 #if INCLUDE_JVMCI 790 if (EnableJVMCI && h_method->method_data() != NULL) { 791 ResourceMark rm(thread); 792 ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL); 793 if (pdata != NULL && pdata->is_BitData()) { 794 BitData* bit_data = (BitData*) pdata; 795 bit_data->set_exception_seen(); 796 } 797 } 798 #endif 799 800 // notify JVMTI of an exception throw; JVMTI will detect if this is a first 801 // time throw or a stack unwinding throw and accordingly notify the debugger 802 if (JvmtiExport::can_post_on_exceptions()) { 803 JvmtiExport::post_exception_throw(thread, h_method(), last_frame.bcp(), h_exception()); 804 } 805 806 #ifdef CC_INTERP 807 address continuation = (address)(intptr_t) handler_bci; 808 #else 809 address continuation = NULL; 810 #endif 811 address handler_pc = NULL; 812 if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) { 813 // Forward exception to callee (leaving bci/bcp untouched) because (a) no 814 // handler in this method, or (b) after a stack overflow there is not yet 815 // enough stack space available to reprotect the stack. 816 #ifndef CC_INTERP 817 continuation = Interpreter::remove_activation_entry(); 818 #endif 819 #if COMPILER2_OR_JVMCI 820 // Count this for compilation purposes 821 h_method->interpreter_throwout_increment(THREAD); 822 #endif 823 } else { 824 // handler in this method => change bci/bcp to handler bci/bcp and continue there 825 handler_pc = h_method->code_base() + handler_bci; 826 #ifndef CC_INTERP 827 set_bcp_and_mdp(handler_pc, thread); 828 continuation = Interpreter::dispatch_table(vtos)[*handler_pc]; 829 #endif 830 } 831 // notify debugger of an exception catch 832 // (this is good for exceptions caught in native methods as well) 833 if (JvmtiExport::can_post_on_exceptions()) { 834 JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL)); 835 } 836 837 thread->set_vm_result(h_exception()); 838 return continuation; 839 IRT_END 840 841 842 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread)) 843 assert(thread->has_pending_exception(), "must only ne called if there's an exception pending"); 844 // nothing to do - eventually we should remove this code entirely (see comments @ call sites) 845 IRT_END 846 847 848 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread)) 849 THROW(vmSymbols::java_lang_AbstractMethodError()); 850 IRT_END 851 852 // This method is called from the "abstract_entry" of the interpreter. 853 // At that point, the arguments have already been removed from the stack 854 // and therefore we don't have the receiver object at our fingertips. (Though, 855 // on some platforms the receiver still resides in a register...). Thus, 856 // we have no choice but print an error message not containing the receiver 857 // type. 858 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* thread, 859 Method* missingMethod)) 860 ResourceMark rm(thread); 861 assert(missingMethod != NULL, "sanity"); 862 methodHandle m(thread, missingMethod); 863 LinkResolver::throw_abstract_method_error(m, THREAD); 864 IRT_END 865 866 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* thread, 867 Klass* recvKlass, 868 Method* missingMethod)) 869 ResourceMark rm(thread); 870 methodHandle mh = methodHandle(thread, missingMethod); 871 LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD); 872 IRT_END 873 874 875 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 876 THROW(vmSymbols::java_lang_IncompatibleClassChangeError()); 877 IRT_END 878 879 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* thread, 880 Klass* recvKlass, 881 Klass* interfaceKlass)) 882 ResourceMark rm(thread); 883 char buf[1000]; 884 buf[0] = '\0'; 885 jio_snprintf(buf, sizeof(buf), 886 "Class %s does not implement the requested interface %s", 887 recvKlass ? recvKlass->external_name() : "NULL", 888 interfaceKlass ? interfaceKlass->external_name() : "NULL"); 889 THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf); 890 IRT_END 891 892 //------------------------------------------------------------------------------------------------------------------------ 893 // Fields 894 // 895 896 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) { 897 Thread* THREAD = thread; 898 // resolve field 899 fieldDescriptor info; 900 LastFrameAccessor last_frame(thread); 901 constantPoolHandle pool(thread, last_frame.method()->constants()); 902 methodHandle m(thread, last_frame.method()); 903 bool is_put = (bytecode == Bytecodes::_putfield || bytecode == Bytecodes::_nofast_putfield || 904 bytecode == Bytecodes::_putstatic || bytecode == Bytecodes::_withfield); 905 bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic); 906 bool is_value = bytecode == Bytecodes::_withfield; 907 908 { 909 JvmtiHideSingleStepping jhss(thread); 910 LinkResolver::resolve_field_access(info, pool, last_frame.get_index_u2_cpcache(bytecode), 911 m, bytecode, CHECK); 912 } // end JvmtiHideSingleStepping 913 914 // check if link resolution caused cpCache to be updated 915 ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry(); 916 if (cp_cache_entry->is_resolved(bytecode)) return; 917 918 // compute auxiliary field attributes 919 TosState state = as_TosState(info.field_type()); 920 921 // Resolution of put instructions on final fields is delayed. That is required so that 922 // exceptions are thrown at the correct place (when the instruction is actually invoked). 923 // If we do not resolve an instruction in the current pass, leaving the put_code 924 // set to zero will cause the next put instruction to the same field to reresolve. 925 926 // Resolution of put instructions to final instance fields with invalid updates (i.e., 927 // to final instance fields with updates originating from a method different than <init>) 928 // is inhibited. A putfield instruction targeting an instance final field must throw 929 // an IllegalAccessError if the instruction is not in an instance 930 // initializer method <init>. If resolution were not inhibited, a putfield 931 // in an initializer method could be resolved in the initializer. Subsequent 932 // putfield instructions to the same field would then use cached information. 933 // As a result, those instructions would not pass through the VM. That is, 934 // checks in resolve_field_access() would not be executed for those instructions 935 // and the required IllegalAccessError would not be thrown. 936 // 937 // Also, we need to delay resolving getstatic and putstatic instructions until the 938 // class is initialized. This is required so that access to the static 939 // field will call the initialization function every time until the class 940 // is completely initialized ala. in 2.17.5 in JVM Specification. 941 InstanceKlass* klass = info.field_holder(); 942 bool uninitialized_static = is_static && !klass->is_initialized(); 943 bool has_initialized_final_update = info.field_holder()->major_version() >= 53 && 944 info.has_initialized_final_update(); 945 assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final"); 946 947 Bytecodes::Code get_code = (Bytecodes::Code)0; 948 Bytecodes::Code put_code = (Bytecodes::Code)0; 949 if (!uninitialized_static) { 950 if (is_static) { 951 get_code = Bytecodes::_getstatic; 952 } else { 953 get_code = Bytecodes::_getfield; 954 } 955 if (is_put && is_value) { 956 put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_withfield); 957 } else if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) { 958 put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield); 959 } 960 } 961 962 cp_cache_entry->set_field( 963 get_code, 964 put_code, 965 info.field_holder(), 966 info.index(), 967 info.offset(), 968 state, 969 info.access_flags().is_final(), 970 info.access_flags().is_volatile(), 971 info.is_flattened(), 972 info.is_flattenable(), 973 pool->pool_holder() 974 ); 975 } 976 977 978 //------------------------------------------------------------------------------------------------------------------------ 979 // Synchronization 980 // 981 // The interpreter's synchronization code is factored out so that it can 982 // be shared by method invocation and synchronized blocks. 983 //%note synchronization_3 984 985 //%note monitor_1 986 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) 987 #ifdef ASSERT 988 thread->last_frame().interpreter_frame_verify_monitor(elem); 989 #endif 990 if (PrintBiasedLockingStatistics) { 991 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 992 } 993 Handle h_obj(thread, elem->obj()); 994 assert(Universe::heap()->is_in_reserved_or_null(h_obj()), 995 "must be NULL or an object"); 996 if (UseBiasedLocking) { 997 // Retry fast entry if bias is revoked to avoid unnecessary inflation 998 ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); 999 } else { 1000 ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); 1001 } 1002 assert(Universe::heap()->is_in_reserved_or_null(elem->obj()), 1003 "must be NULL or an object"); 1004 #ifdef ASSERT 1005 thread->last_frame().interpreter_frame_verify_monitor(elem); 1006 #endif 1007 IRT_END 1008 1009 1010 //%note monitor_1 1011 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem)) 1012 #ifdef ASSERT 1013 thread->last_frame().interpreter_frame_verify_monitor(elem); 1014 #endif 1015 Handle h_obj(thread, elem->obj()); 1016 assert(Universe::heap()->is_in_reserved_or_null(h_obj()), 1017 "must be NULL or an object"); 1018 if (elem == NULL || h_obj()->is_unlocked()) { 1019 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 1020 } 1021 ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread); 1022 // Free entry. This must be done here, since a pending exception might be installed on 1023 // exit. If it is not cleared, the exception handling code will try to unlock the monitor again. 1024 elem->set_obj(NULL); 1025 #ifdef ASSERT 1026 thread->last_frame().interpreter_frame_verify_monitor(elem); 1027 #endif 1028 IRT_END 1029 1030 1031 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread)) 1032 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 1033 IRT_END 1034 1035 1036 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread)) 1037 // Returns an illegal exception to install into the current thread. The 1038 // pending_exception flag is cleared so normal exception handling does not 1039 // trigger. Any current installed exception will be overwritten. This 1040 // method will be called during an exception unwind. 1041 1042 assert(!HAS_PENDING_EXCEPTION, "no pending exception"); 1043 Handle exception(thread, thread->vm_result()); 1044 assert(exception() != NULL, "vm result should be set"); 1045 thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures) 1046 if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) { 1047 exception = get_preinitialized_exception( 1048 SystemDictionary::IllegalMonitorStateException_klass(), 1049 CATCH); 1050 } 1051 thread->set_vm_result(exception()); 1052 IRT_END 1053 1054 1055 //------------------------------------------------------------------------------------------------------------------------ 1056 // Invokes 1057 1058 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp)) 1059 return method->orig_bytecode_at(method->bci_from(bcp)); 1060 IRT_END 1061 1062 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code)) 1063 method->set_orig_bytecode_at(method->bci_from(bcp), new_code); 1064 IRT_END 1065 1066 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp)) 1067 JvmtiExport::post_raw_breakpoint(thread, method, bcp); 1068 IRT_END 1069 1070 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) { 1071 Thread* THREAD = thread; 1072 LastFrameAccessor last_frame(thread); 1073 // extract receiver from the outgoing argument list if necessary 1074 Handle receiver(thread, NULL); 1075 if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface || 1076 bytecode == Bytecodes::_invokespecial) { 1077 ResourceMark rm(thread); 1078 methodHandle m (thread, last_frame.method()); 1079 Bytecode_invoke call(m, last_frame.bci()); 1080 Symbol* signature = call.signature(); 1081 receiver = Handle(thread, last_frame.callee_receiver(signature)); 1082 1083 assert(Universe::heap()->is_in_reserved_or_null(receiver()), "sanity check"); 1084 assert(receiver.is_null() || 1085 !Universe::heap()->is_in_reserved(receiver->klass()), 1086 "sanity check"); 1087 } 1088 1089 // resolve method 1090 CallInfo info; 1091 constantPoolHandle pool(thread, last_frame.method()->constants()); 1092 1093 { 1094 JvmtiHideSingleStepping jhss(thread); 1095 LinkResolver::resolve_invoke(info, receiver, pool, 1096 last_frame.get_index_u2_cpcache(bytecode), bytecode, 1097 CHECK); 1098 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1099 int retry_count = 0; 1100 while (info.resolved_method()->is_old()) { 1101 // It is very unlikely that method is redefined more than 100 times 1102 // in the middle of resolve. If it is looping here more than 100 times 1103 // means then there could be a bug here. 1104 guarantee((retry_count++ < 100), 1105 "Could not resolve to latest version of redefined method"); 1106 // method is redefined in the middle of resolve so re-try. 1107 LinkResolver::resolve_invoke(info, receiver, pool, 1108 last_frame.get_index_u2_cpcache(bytecode), bytecode, 1109 CHECK); 1110 } 1111 } 1112 } // end JvmtiHideSingleStepping 1113 1114 // check if link resolution caused cpCache to be updated 1115 ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry(); 1116 if (cp_cache_entry->is_resolved(bytecode)) return; 1117 1118 #ifdef ASSERT 1119 if (bytecode == Bytecodes::_invokeinterface) { 1120 if (info.resolved_method()->method_holder() == 1121 SystemDictionary::Object_klass()) { 1122 // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec 1123 // (see also CallInfo::set_interface for details) 1124 assert(info.call_kind() == CallInfo::vtable_call || 1125 info.call_kind() == CallInfo::direct_call, ""); 1126 methodHandle rm = info.resolved_method(); 1127 assert(rm->is_final() || info.has_vtable_index(), 1128 "should have been set already"); 1129 } else if (!info.resolved_method()->has_itable_index()) { 1130 // Resolved something like CharSequence.toString. Use vtable not itable. 1131 assert(info.call_kind() != CallInfo::itable_call, ""); 1132 } else { 1133 // Setup itable entry 1134 assert(info.call_kind() == CallInfo::itable_call, ""); 1135 int index = info.resolved_method()->itable_index(); 1136 assert(info.itable_index() == index, ""); 1137 } 1138 } else if (bytecode == Bytecodes::_invokespecial) { 1139 assert(info.call_kind() == CallInfo::direct_call, "must be direct call"); 1140 } else { 1141 assert(info.call_kind() == CallInfo::direct_call || 1142 info.call_kind() == CallInfo::vtable_call, ""); 1143 } 1144 #endif 1145 1146 switch (info.call_kind()) { 1147 case CallInfo::direct_call: { 1148 // Get sender or sender's unsafe_anonymous_host, and only set cpCache entry to resolved if 1149 // it is not an interface. The receiver for invokespecial calls within interface 1150 // methods must be checked for every call. 1151 InstanceKlass* pool_holder = pool->pool_holder(); 1152 InstanceKlass* sender = pool_holder->is_unsafe_anonymous() ? 1153 pool_holder->unsafe_anonymous_host() : pool_holder; 1154 1155 cp_cache_entry->set_direct_call( 1156 bytecode, 1157 info.resolved_method(), 1158 sender->is_interface(), 1159 pool_holder); 1160 break; 1161 } 1162 case CallInfo::vtable_call: 1163 cp_cache_entry->set_vtable_call( 1164 bytecode, 1165 info.resolved_method(), 1166 info.vtable_index()); 1167 break; 1168 case CallInfo::itable_call: 1169 cp_cache_entry->set_itable_call( 1170 bytecode, 1171 info.resolved_klass(), 1172 info.resolved_method(), 1173 info.itable_index()); 1174 break; 1175 default: ShouldNotReachHere(); 1176 } 1177 } 1178 1179 1180 // First time execution: Resolve symbols, create a permanent MethodType object. 1181 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) { 1182 Thread* THREAD = thread; 1183 const Bytecodes::Code bytecode = Bytecodes::_invokehandle; 1184 LastFrameAccessor last_frame(thread); 1185 1186 // resolve method 1187 CallInfo info; 1188 constantPoolHandle pool(thread, last_frame.method()->constants()); 1189 { 1190 JvmtiHideSingleStepping jhss(thread); 1191 LinkResolver::resolve_invoke(info, Handle(), pool, 1192 last_frame.get_index_u2_cpcache(bytecode), bytecode, 1193 CHECK); 1194 } // end JvmtiHideSingleStepping 1195 1196 ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry(); 1197 cp_cache_entry->set_method_handle(pool, info); 1198 } 1199 1200 // First time execution: Resolve symbols, create a permanent CallSite object. 1201 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) { 1202 Thread* THREAD = thread; 1203 LastFrameAccessor last_frame(thread); 1204 const Bytecodes::Code bytecode = Bytecodes::_invokedynamic; 1205 1206 // resolve method 1207 CallInfo info; 1208 constantPoolHandle pool(thread, last_frame.method()->constants()); 1209 int index = last_frame.get_index_u4(bytecode); 1210 { 1211 JvmtiHideSingleStepping jhss(thread); 1212 LinkResolver::resolve_invoke(info, Handle(), pool, 1213 index, bytecode, CHECK); 1214 } // end JvmtiHideSingleStepping 1215 1216 ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index); 1217 cp_cache_entry->set_dynamic_call(pool, info); 1218 } 1219 1220 // This function is the interface to the assembly code. It returns the resolved 1221 // cpCache entry. This doesn't safepoint, but the helper routines safepoint. 1222 // This function will check for redefinition! 1223 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) { 1224 switch (bytecode) { 1225 case Bytecodes::_getstatic: 1226 case Bytecodes::_putstatic: 1227 case Bytecodes::_getfield: 1228 case Bytecodes::_putfield: 1229 case Bytecodes::_withfield: 1230 resolve_get_put(thread, bytecode); 1231 break; 1232 case Bytecodes::_invokevirtual: 1233 case Bytecodes::_invokespecial: 1234 case Bytecodes::_invokestatic: 1235 case Bytecodes::_invokeinterface: 1236 resolve_invoke(thread, bytecode); 1237 break; 1238 case Bytecodes::_invokehandle: 1239 resolve_invokehandle(thread); 1240 break; 1241 case Bytecodes::_invokedynamic: 1242 resolve_invokedynamic(thread); 1243 break; 1244 default: 1245 fatal("unexpected bytecode: %s", Bytecodes::name(bytecode)); 1246 break; 1247 } 1248 } 1249 IRT_END 1250 1251 //------------------------------------------------------------------------------------------------------------------------ 1252 // Miscellaneous 1253 1254 1255 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) { 1256 nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp); 1257 assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests"); 1258 if (branch_bcp != NULL && nm != NULL) { 1259 // This was a successful request for an OSR nmethod. Because 1260 // frequency_counter_overflow_inner ends with a safepoint check, 1261 // nm could have been unloaded so look it up again. It's unsafe 1262 // to examine nm directly since it might have been freed and used 1263 // for something else. 1264 LastFrameAccessor last_frame(thread); 1265 Method* method = last_frame.method(); 1266 int bci = method->bci_from(last_frame.bcp()); 1267 nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false); 1268 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 1269 if (nm != NULL && bs_nm != NULL) { 1270 // in case the transition passed a safepoint we need to barrier this again 1271 if (!bs_nm->nmethod_osr_entry_barrier(nm)) { 1272 nm = NULL; 1273 } 1274 } 1275 } 1276 if (nm != NULL && thread->is_interp_only_mode()) { 1277 // Normally we never get an nm if is_interp_only_mode() is true, because 1278 // policy()->event has a check for this and won't compile the method when 1279 // true. However, it's possible for is_interp_only_mode() to become true 1280 // during the compilation. We don't want to return the nm in that case 1281 // because we want to continue to execute interpreted. 1282 nm = NULL; 1283 } 1284 #ifndef PRODUCT 1285 if (TraceOnStackReplacement) { 1286 if (nm != NULL) { 1287 tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry())); 1288 nm->print(); 1289 } 1290 } 1291 #endif 1292 return nm; 1293 } 1294 1295 IRT_ENTRY(nmethod*, 1296 InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp)) 1297 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 1298 // flag, in case this method triggers classloading which will call into Java. 1299 UnlockFlagSaver fs(thread); 1300 1301 LastFrameAccessor last_frame(thread); 1302 assert(last_frame.is_interpreted_frame(), "must come from interpreter"); 1303 methodHandle method(thread, last_frame.method()); 1304 const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci; 1305 const int bci = branch_bcp != NULL ? method->bci_from(last_frame.bcp()) : InvocationEntryBci; 1306 1307 assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending"); 1308 nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread); 1309 assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions"); 1310 1311 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 1312 if (osr_nm != NULL && bs_nm != NULL) { 1313 if (!bs_nm->nmethod_osr_entry_barrier(osr_nm)) { 1314 osr_nm = NULL; 1315 } 1316 } 1317 1318 if (osr_nm != NULL) { 1319 // We may need to do on-stack replacement which requires that no 1320 // monitors in the activation are biased because their 1321 // BasicObjectLocks will need to migrate during OSR. Force 1322 // unbiasing of all monitors in the activation now (even though 1323 // the OSR nmethod might be invalidated) because we don't have a 1324 // safepoint opportunity later once the migration begins. 1325 if (UseBiasedLocking) { 1326 ResourceMark rm; 1327 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 1328 for( BasicObjectLock *kptr = last_frame.monitor_end(); 1329 kptr < last_frame.monitor_begin(); 1330 kptr = last_frame.next_monitor(kptr) ) { 1331 if( kptr->obj() != NULL ) { 1332 objects_to_revoke->append(Handle(THREAD, kptr->obj())); 1333 } 1334 } 1335 BiasedLocking::revoke(objects_to_revoke); 1336 } 1337 } 1338 return osr_nm; 1339 IRT_END 1340 1341 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp)) 1342 assert(ProfileInterpreter, "must be profiling interpreter"); 1343 int bci = method->bci_from(cur_bcp); 1344 MethodData* mdo = method->method_data(); 1345 if (mdo == NULL) return 0; 1346 return mdo->bci_to_di(bci); 1347 IRT_END 1348 1349 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread)) 1350 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 1351 // flag, in case this method triggers classloading which will call into Java. 1352 UnlockFlagSaver fs(thread); 1353 1354 assert(ProfileInterpreter, "must be profiling interpreter"); 1355 LastFrameAccessor last_frame(thread); 1356 assert(last_frame.is_interpreted_frame(), "must come from interpreter"); 1357 methodHandle method(thread, last_frame.method()); 1358 Method::build_interpreter_method_data(method, THREAD); 1359 if (HAS_PENDING_EXCEPTION) { 1360 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1361 CLEAR_PENDING_EXCEPTION; 1362 // and fall through... 1363 } 1364 IRT_END 1365 1366 1367 #ifdef ASSERT 1368 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp)) 1369 assert(ProfileInterpreter, "must be profiling interpreter"); 1370 1371 MethodData* mdo = method->method_data(); 1372 assert(mdo != NULL, "must not be null"); 1373 1374 int bci = method->bci_from(bcp); 1375 1376 address mdp2 = mdo->bci_to_dp(bci); 1377 if (mdp != mdp2) { 1378 ResourceMark rm; 1379 ResetNoHandleMark rnm; // In a LEAF entry. 1380 HandleMark hm; 1381 tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci); 1382 int current_di = mdo->dp_to_di(mdp); 1383 int expected_di = mdo->dp_to_di(mdp2); 1384 tty->print_cr(" actual di %d expected di %d", current_di, expected_di); 1385 int expected_approx_bci = mdo->data_at(expected_di)->bci(); 1386 int approx_bci = -1; 1387 if (current_di >= 0) { 1388 approx_bci = mdo->data_at(current_di)->bci(); 1389 } 1390 tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci); 1391 mdo->print_on(tty); 1392 method->print_codes(); 1393 } 1394 assert(mdp == mdp2, "wrong mdp"); 1395 IRT_END 1396 #endif // ASSERT 1397 1398 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci)) 1399 assert(ProfileInterpreter, "must be profiling interpreter"); 1400 ResourceMark rm(thread); 1401 HandleMark hm(thread); 1402 LastFrameAccessor last_frame(thread); 1403 assert(last_frame.is_interpreted_frame(), "must come from interpreter"); 1404 MethodData* h_mdo = last_frame.method()->method_data(); 1405 1406 // Grab a lock to ensure atomic access to setting the return bci and 1407 // the displacement. This can block and GC, invalidating all naked oops. 1408 MutexLocker ml(RetData_lock); 1409 1410 // ProfileData is essentially a wrapper around a derived oop, so we 1411 // need to take the lock before making any ProfileData structures. 1412 ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(last_frame.mdp())); 1413 guarantee(data != NULL, "profile data must be valid"); 1414 RetData* rdata = data->as_RetData(); 1415 address new_mdp = rdata->fixup_ret(return_bci, h_mdo); 1416 last_frame.set_mdp(new_mdp); 1417 IRT_END 1418 1419 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m)) 1420 MethodCounters* mcs = Method::build_method_counters(m, thread); 1421 if (HAS_PENDING_EXCEPTION) { 1422 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1423 CLEAR_PENDING_EXCEPTION; 1424 } 1425 return mcs; 1426 IRT_END 1427 1428 1429 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread)) 1430 // We used to need an explict preserve_arguments here for invoke bytecodes. However, 1431 // stack traversal automatically takes care of preserving arguments for invoke, so 1432 // this is no longer needed. 1433 1434 // IRT_END does an implicit safepoint check, hence we are guaranteed to block 1435 // if this is called during a safepoint 1436 1437 if (JvmtiExport::should_post_single_step()) { 1438 // We are called during regular safepoints and when the VM is 1439 // single stepping. If any thread is marked for single stepping, 1440 // then we may have JVMTI work to do. 1441 LastFrameAccessor last_frame(thread); 1442 JvmtiExport::at_single_stepping_point(thread, last_frame.method(), last_frame.bcp()); 1443 } 1444 IRT_END 1445 1446 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj, 1447 ConstantPoolCacheEntry *cp_entry)) 1448 1449 // check the access_flags for the field in the klass 1450 1451 InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass()); 1452 int index = cp_entry->field_index(); 1453 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return; 1454 1455 bool is_static = (obj == NULL); 1456 HandleMark hm(thread); 1457 1458 Handle h_obj; 1459 if (!is_static) { 1460 // non-static field accessors have an object, but we need a handle 1461 h_obj = Handle(thread, obj); 1462 } 1463 InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass()); 1464 jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static); 1465 LastFrameAccessor last_frame(thread); 1466 JvmtiExport::post_field_access(thread, last_frame.method(), last_frame.bcp(), cp_entry_f1, h_obj, fid); 1467 IRT_END 1468 1469 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread, 1470 oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value)) 1471 1472 Klass* k = cp_entry->f1_as_klass(); 1473 1474 // check the access_flags for the field in the klass 1475 InstanceKlass* ik = InstanceKlass::cast(k); 1476 int index = cp_entry->field_index(); 1477 // bail out if field modifications are not watched 1478 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return; 1479 1480 char sig_type = '\0'; 1481 1482 switch(cp_entry->flag_state()) { 1483 case btos: sig_type = 'B'; break; 1484 case ztos: sig_type = 'Z'; break; 1485 case ctos: sig_type = 'C'; break; 1486 case stos: sig_type = 'S'; break; 1487 case itos: sig_type = 'I'; break; 1488 case ftos: sig_type = 'F'; break; 1489 case atos: sig_type = 'L'; break; 1490 case ltos: sig_type = 'J'; break; 1491 case dtos: sig_type = 'D'; break; 1492 default: ShouldNotReachHere(); return; 1493 } 1494 1495 // Both Q-signatures and L-signatures are mapped to atos 1496 if (cp_entry->flag_state() == atos && ik->field_signature(index)->is_Q_signature()) { 1497 sig_type = 'Q'; 1498 } 1499 1500 bool is_static = (obj == NULL); 1501 1502 HandleMark hm(thread); 1503 jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static); 1504 jvalue fvalue; 1505 #ifdef _LP64 1506 fvalue = *value; 1507 #else 1508 // Long/double values are stored unaligned and also noncontiguously with 1509 // tagged stacks. We can't just do a simple assignment even in the non- 1510 // J/D cases because a C++ compiler is allowed to assume that a jvalue is 1511 // 8-byte aligned, and interpreter stack slots are only 4-byte aligned. 1512 // We assume that the two halves of longs/doubles are stored in interpreter 1513 // stack slots in platform-endian order. 1514 jlong_accessor u; 1515 jint* newval = (jint*)value; 1516 u.words[0] = newval[0]; 1517 u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag 1518 fvalue.j = u.long_value; 1519 #endif // _LP64 1520 1521 Handle h_obj; 1522 if (!is_static) { 1523 // non-static field accessors have an object, but we need a handle 1524 h_obj = Handle(thread, obj); 1525 } 1526 1527 LastFrameAccessor last_frame(thread); 1528 JvmtiExport::post_raw_field_modification(thread, last_frame.method(), last_frame.bcp(), ik, h_obj, 1529 fid, sig_type, &fvalue); 1530 IRT_END 1531 1532 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread)) 1533 LastFrameAccessor last_frame(thread); 1534 JvmtiExport::post_method_entry(thread, last_frame.method(), last_frame.get_frame()); 1535 IRT_END 1536 1537 1538 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread)) 1539 LastFrameAccessor last_frame(thread); 1540 JvmtiExport::post_method_exit(thread, last_frame.method(), last_frame.get_frame()); 1541 IRT_END 1542 1543 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc)) 1544 { 1545 return (Interpreter::contains(pc) ? 1 : 0); 1546 } 1547 IRT_END 1548 1549 1550 // Implementation of SignatureHandlerLibrary 1551 1552 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS 1553 // Dummy definition (else normalization method is defined in CPU 1554 // dependant code) 1555 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) { 1556 return fingerprint; 1557 } 1558 #endif 1559 1560 address SignatureHandlerLibrary::set_handler_blob() { 1561 BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size); 1562 if (handler_blob == NULL) { 1563 return NULL; 1564 } 1565 address handler = handler_blob->code_begin(); 1566 _handler_blob = handler_blob; 1567 _handler = handler; 1568 return handler; 1569 } 1570 1571 void SignatureHandlerLibrary::initialize() { 1572 if (_fingerprints != NULL) { 1573 return; 1574 } 1575 if (set_handler_blob() == NULL) { 1576 vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers"); 1577 } 1578 1579 BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer", 1580 SignatureHandlerLibrary::buffer_size); 1581 _buffer = bb->code_begin(); 1582 1583 _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true); 1584 _handlers = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true); 1585 } 1586 1587 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) { 1588 address handler = _handler; 1589 int insts_size = buffer->pure_insts_size(); 1590 if (handler + insts_size > _handler_blob->code_end()) { 1591 // get a new handler blob 1592 handler = set_handler_blob(); 1593 } 1594 if (handler != NULL) { 1595 memcpy(handler, buffer->insts_begin(), insts_size); 1596 pd_set_handler(handler); 1597 ICache::invalidate_range(handler, insts_size); 1598 _handler = handler + insts_size; 1599 } 1600 return handler; 1601 } 1602 1603 void SignatureHandlerLibrary::add(const methodHandle& method) { 1604 if (method->signature_handler() == NULL) { 1605 // use slow signature handler if we can't do better 1606 int handler_index = -1; 1607 // check if we can use customized (fast) signature handler 1608 if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) { 1609 // use customized signature handler 1610 MutexLocker mu(SignatureHandlerLibrary_lock); 1611 // make sure data structure is initialized 1612 initialize(); 1613 // lookup method signature's fingerprint 1614 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1615 // allow CPU dependant code to optimize the fingerprints for the fast handler 1616 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1617 handler_index = _fingerprints->find(fingerprint); 1618 // create handler if necessary 1619 if (handler_index < 0) { 1620 ResourceMark rm; 1621 ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer; 1622 CodeBuffer buffer((address)(_buffer + align_offset), 1623 SignatureHandlerLibrary::buffer_size - align_offset); 1624 InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint); 1625 // copy into code heap 1626 address handler = set_handler(&buffer); 1627 if (handler == NULL) { 1628 // use slow signature handler (without memorizing it in the fingerprints) 1629 } else { 1630 // debugging suppport 1631 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1632 ttyLocker ttyl; 1633 tty->cr(); 1634 tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)", 1635 _handlers->length(), 1636 (method->is_static() ? "static" : "receiver"), 1637 method->name_and_sig_as_C_string(), 1638 fingerprint, 1639 buffer.insts_size()); 1640 if (buffer.insts_size() > 0) { 1641 Disassembler::decode(handler, handler + buffer.insts_size()); 1642 } 1643 #ifndef PRODUCT 1644 address rh_begin = Interpreter::result_handler(method()->result_type()); 1645 if (CodeCache::contains(rh_begin)) { 1646 // else it might be special platform dependent values 1647 tty->print_cr(" --- associated result handler ---"); 1648 address rh_end = rh_begin; 1649 while (*(int*)rh_end != 0) { 1650 rh_end += sizeof(int); 1651 } 1652 Disassembler::decode(rh_begin, rh_end); 1653 } else { 1654 tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin)); 1655 } 1656 #endif 1657 } 1658 // add handler to library 1659 _fingerprints->append(fingerprint); 1660 _handlers->append(handler); 1661 // set handler index 1662 assert(_fingerprints->length() == _handlers->length(), "sanity check"); 1663 handler_index = _fingerprints->length() - 1; 1664 } 1665 } 1666 // Set handler under SignatureHandlerLibrary_lock 1667 if (handler_index < 0) { 1668 // use generic signature handler 1669 method->set_signature_handler(Interpreter::slow_signature_handler()); 1670 } else { 1671 // set handler 1672 method->set_signature_handler(_handlers->at(handler_index)); 1673 } 1674 } else { 1675 CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); 1676 // use generic signature handler 1677 method->set_signature_handler(Interpreter::slow_signature_handler()); 1678 } 1679 } 1680 #ifdef ASSERT 1681 int handler_index = -1; 1682 int fingerprint_index = -2; 1683 { 1684 // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized 1685 // in any way if accessed from multiple threads. To avoid races with another 1686 // thread which may change the arrays in the above, mutex protected block, we 1687 // have to protect this read access here with the same mutex as well! 1688 MutexLocker mu(SignatureHandlerLibrary_lock); 1689 if (_handlers != NULL) { 1690 handler_index = _handlers->find(method->signature_handler()); 1691 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1692 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1693 fingerprint_index = _fingerprints->find(fingerprint); 1694 } 1695 } 1696 assert(method->signature_handler() == Interpreter::slow_signature_handler() || 1697 handler_index == fingerprint_index, "sanity check"); 1698 #endif // ASSERT 1699 } 1700 1701 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) { 1702 int handler_index = -1; 1703 // use customized signature handler 1704 MutexLocker mu(SignatureHandlerLibrary_lock); 1705 // make sure data structure is initialized 1706 initialize(); 1707 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1708 handler_index = _fingerprints->find(fingerprint); 1709 // create handler if necessary 1710 if (handler_index < 0) { 1711 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1712 tty->cr(); 1713 tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT, 1714 _handlers->length(), 1715 p2i(handler), 1716 fingerprint); 1717 } 1718 _fingerprints->append(fingerprint); 1719 _handlers->append(handler); 1720 } else { 1721 if (PrintSignatureHandlers) { 1722 tty->cr(); 1723 tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")", 1724 _handlers->length(), 1725 fingerprint, 1726 p2i(_handlers->at(handler_index)), 1727 p2i(handler)); 1728 } 1729 } 1730 } 1731 1732 1733 BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL; 1734 address SignatureHandlerLibrary::_handler = NULL; 1735 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL; 1736 GrowableArray<address>* SignatureHandlerLibrary::_handlers = NULL; 1737 address SignatureHandlerLibrary::_buffer = NULL; 1738 1739 1740 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method)) 1741 methodHandle m(thread, method); 1742 assert(m->is_native(), "sanity check"); 1743 // lookup native function entry point if it doesn't exist 1744 bool in_base_library; 1745 if (!m->has_native_function()) { 1746 NativeLookup::lookup(m, in_base_library, CHECK); 1747 } 1748 // make sure signature handler is installed 1749 SignatureHandlerLibrary::add(m); 1750 // The interpreter entry point checks the signature handler first, 1751 // before trying to fetch the native entry point and klass mirror. 1752 // We must set the signature handler last, so that multiple processors 1753 // preparing the same method will be sure to see non-null entry & mirror. 1754 IRT_END 1755 1756 #if defined(IA32) || defined(AMD64) || defined(ARM) 1757 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address)) 1758 if (src_address == dest_address) { 1759 return; 1760 } 1761 ResetNoHandleMark rnm; // In a LEAF entry. 1762 HandleMark hm; 1763 ResourceMark rm; 1764 LastFrameAccessor last_frame(thread); 1765 assert(last_frame.is_interpreted_frame(), ""); 1766 jint bci = last_frame.bci(); 1767 methodHandle mh(thread, last_frame.method()); 1768 Bytecode_invoke invoke(mh, bci); 1769 ArgumentSizeComputer asc(invoke.signature()); 1770 int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver 1771 Copy::conjoint_jbytes(src_address, dest_address, 1772 size_of_arguments * Interpreter::stackElementSize); 1773 IRT_END 1774 #endif 1775 1776 #if INCLUDE_JVMTI 1777 // This is a support of the JVMTI PopFrame interface. 1778 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument 1779 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters. 1780 // The member_name argument is a saved reference (in local#0) to the member_name. 1781 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle. 1782 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated. 1783 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name, 1784 Method* method, address bcp)) 1785 Bytecodes::Code code = Bytecodes::code_at(method, bcp); 1786 if (code != Bytecodes::_invokestatic) { 1787 return; 1788 } 1789 ConstantPool* cpool = method->constants(); 1790 int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG; 1791 Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index)); 1792 Symbol* mname = cpool->name_ref_at(cp_index); 1793 1794 if (MethodHandles::has_member_arg(cname, mname)) { 1795 oop member_name_oop = (oop) member_name; 1796 if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) { 1797 // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated. 1798 member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop); 1799 } 1800 thread->set_vm_result(member_name_oop); 1801 } else { 1802 thread->set_vm_result(NULL); 1803 } 1804 IRT_END 1805 #endif // INCLUDE_JVMTI 1806 1807 #ifndef PRODUCT 1808 // This must be a IRT_LEAF function because the interpreter must save registers on x86 to 1809 // call this, which changes rsp and makes the interpreter's expression stack not walkable. 1810 // The generated code still uses call_VM because that will set up the frame pointer for 1811 // bcp and method. 1812 IRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) 1813 LastFrameAccessor last_frame(thread); 1814 assert(last_frame.is_interpreted_frame(), "must be an interpreted frame"); 1815 methodHandle mh(thread, last_frame.method()); 1816 BytecodeTracer::trace(mh, last_frame.bcp(), tos, tos2); 1817 return preserve_this_value; 1818 IRT_END 1819 #endif // !PRODUCT