1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OOPS_OOP_INLINE_HPP
  26 #define SHARE_OOPS_OOP_INLINE_HPP
  27 
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "oops/access.inline.hpp"
  30 #include "oops/arrayKlass.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/compressedOops.inline.hpp"
  33 #include "oops/klass.inline.hpp"
  34 #include "oops/markOop.inline.hpp"
  35 #include "oops/oop.hpp"
  36 #include "runtime/atomic.hpp"
  37 #include "runtime/orderAccess.hpp"
  38 #include "runtime/os.hpp"
  39 #include "utilities/align.hpp"
  40 #include "utilities/macros.hpp"
  41 
  42 // Implementation of all inlined member functions defined in oop.hpp
  43 // We need a separate file to avoid circular references
  44 
  45 markOop  oopDesc::mark()      const {
  46   return HeapAccess<MO_VOLATILE>::load_at(as_oop(), mark_offset_in_bytes());
  47 }
  48 
  49 markOop  oopDesc::mark_raw()  const {
  50   return _mark;
  51 }
  52 
  53 markOop* oopDesc::mark_addr_raw() const {
  54   return (markOop*) &_mark;
  55 }
  56 
  57 void oopDesc::set_mark(volatile markOop m) {
  58   HeapAccess<MO_VOLATILE>::store_at(as_oop(), mark_offset_in_bytes(), m);
  59 }
  60 
  61 void oopDesc::set_mark_raw(volatile markOop m) {
  62   _mark = m;
  63 }
  64 
  65 void oopDesc::set_mark_raw(HeapWord* mem, markOop m) {
  66   *(markOop*)(((char*)mem) + mark_offset_in_bytes()) = m;
  67 }
  68 
  69 void oopDesc::release_set_mark(markOop m) {
  70   HeapAccess<MO_RELEASE>::store_at(as_oop(), mark_offset_in_bytes(), m);
  71 }
  72 
  73 markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
  74   return HeapAccess<>::atomic_cmpxchg_at(new_mark, as_oop(), mark_offset_in_bytes(), old_mark);
  75 }
  76 
  77 markOop oopDesc::cas_set_mark_raw(markOop new_mark, markOop old_mark, atomic_memory_order order) {
  78   return Atomic::cmpxchg(new_mark, &_mark, old_mark, order);
  79 }
  80 
  81 void oopDesc::init_mark() {
  82   set_mark(markOopDesc::prototype_for_object(this));
  83 }
  84 
  85 void oopDesc::init_mark_raw() {
  86   set_mark_raw(markOopDesc::prototype_for_object(this));
  87 }
  88 
  89 narrowKlass oopDesc::compressed_klass_mask() { return ((narrowKlass) 1 << narrow_storage_props_shift) - 1; }
  90 uintptr_t   oopDesc::klass_mask()   { return ((uintptr_t) 1 << wide_storage_props_shift) - 1; }
  91 
  92 narrowKlass oopDesc::compressed_klass_masked(narrowKlass raw) { return raw & compressed_klass_mask(); }
  93 Klass*      oopDesc::klass_masked(uintptr_t raw)     { return reinterpret_cast<Klass*>(raw & klass_mask()); }
  94 
  95 
  96 Klass* oopDesc::klass() const {
  97   if (UseCompressedClassPointers) {
  98     return Klass::decode_klass_not_null(compressed_klass_masked(_metadata._compressed_klass));
  99   } else {
 100     return klass_masked(_metadata._wide_storage_props);
 101   }
 102 }
 103 
 104 Klass* oopDesc::klass_or_null() const volatile {
 105   if (UseCompressedClassPointers) {
 106     return Klass::decode_klass(compressed_klass_masked(_metadata._compressed_klass));
 107   } else {
 108     return klass_masked(_metadata._wide_storage_props);
 109   }
 110 }
 111 
 112 Klass* oopDesc::klass_or_null_acquire() const volatile {
 113   if (UseCompressedClassPointers) {
 114     // Workaround for non-const load_acquire parameter.
 115     const volatile narrowKlass* addr = &_metadata._compressed_klass;
 116     volatile narrowKlass* xaddr = const_cast<volatile narrowKlass*>(addr);
 117     return Klass::decode_klass(compressed_klass_masked(OrderAccess::load_acquire(xaddr)));
 118   } else {
 119     return klass_masked(OrderAccess::load_acquire(&_metadata._wide_storage_props));
 120   }
 121 }
 122 
 123 Klass** oopDesc::klass_addr(HeapWord* mem) {
 124   // Only used internally and with CMS and will not work with
 125   // UseCompressedOops
 126   assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
 127   ByteSize offset = byte_offset_of(oopDesc, _metadata._klass);
 128   return (Klass**) (((char*)mem) + in_bytes(offset));
 129 }
 130 
 131 uintptr_t* oopDesc::wide_metadata_addr(HeapWord* mem) {
 132   assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
 133   ByteSize offset = byte_offset_of(oopDesc, _metadata._wide_storage_props);
 134   return (uintptr_t*) (((char*)mem) + in_bytes(offset));
 135 }
 136 
 137 narrowKlass* oopDesc::compressed_klass_addr(HeapWord* mem) {
 138   assert(UseCompressedClassPointers, "only called by compressed klass pointers");
 139   ByteSize offset = byte_offset_of(oopDesc, _metadata._compressed_klass);
 140   return (narrowKlass*) (((char*)mem) + in_bytes(offset));
 141 }
 142 
 143 Klass** oopDesc::klass_addr() {
 144   return klass_addr((HeapWord*)this);
 145 }
 146 
 147 narrowKlass* oopDesc::compressed_klass_addr() {
 148   return compressed_klass_addr((HeapWord*)this);
 149 }
 150 
 151 #define CHECK_SET_KLASS(k)                                                \
 152   do {                                                                    \
 153     assert(Universe::is_bootstrapping() || k != NULL, "NULL Klass");      \
 154     assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass"); \
 155     assert(((reinterpret_cast<uintptr_t>(k) & (~ oopDesc::klass_mask())) == 0), \
 156       "No room for storage props "); \
 157   } while (0)
 158 
 159 void oopDesc::set_klass(Klass* k) {
 160   CHECK_SET_KLASS(k);
 161   if (UseCompressedClassPointers) {
 162     *compressed_klass_addr() = Klass::encode_klass_not_null(k);
 163   } else {
 164     *klass_addr() = k;
 165   }
 166 }
 167 
 168 void oopDesc::release_set_klass(HeapWord* mem, Klass* klass) {
 169   CHECK_SET_KLASS(klass);
 170   if (UseCompressedClassPointers) {
 171     OrderAccess::release_store(compressed_klass_addr(mem),
 172                                Klass::encode_klass_not_null(klass));
 173   } else {
 174     OrderAccess::release_store(klass_addr(mem), klass);
 175   }
 176   assert(((oopDesc*)mem)->klass() == klass, "failed oopDesc::klass() encode/decode");
 177 }
 178 
 179 void oopDesc::set_metadata(ArrayStorageProperties storage_props, Klass* klass) {
 180   CHECK_SET_KLASS(klass);
 181   if (UseCompressedClassPointers) {
 182     *compressed_klass_addr() = (Klass::encode_klass_not_null(klass) | storage_props.encode<narrowKlass>(narrow_storage_props_shift));
 183   } else {
 184     *wide_metadata_addr((HeapWord*)this) = (reinterpret_cast<uintptr_t>(klass) | storage_props.encode<uintptr_t>(wide_storage_props_shift));
 185   }
 186 }
 187 
 188 void oopDesc::release_set_metadata(HeapWord* mem, ArrayStorageProperties storage_props, Klass* klass) {
 189   CHECK_SET_KLASS(klass);
 190   if (UseCompressedClassPointers) {
 191     OrderAccess::release_store(oopDesc::compressed_klass_addr(mem),
 192                                Klass::encode_klass_not_null(klass) | storage_props.encode<narrowKlass>(narrow_storage_props_shift));
 193   } else {
 194     OrderAccess::release_store(oopDesc::wide_metadata_addr(mem),
 195                                (reinterpret_cast<uintptr_t>(klass) | storage_props.encode<uintptr_t>(wide_storage_props_shift)));
 196   }
 197 }
 198 #undef CHECK_SET_KLASS
 199 
 200 
 201 ArrayStorageProperties oopDesc::array_storage_properties() const {
 202   if (UseCompressedClassPointers) {
 203     return ArrayStorageProperties(_metadata._narrow_storage_props >> narrow_storage_props_shift);
 204   } else {
 205     return ArrayStorageProperties(_metadata._wide_storage_props >> wide_storage_props_shift);
 206   }
 207 }
 208 
 209 
 210 int oopDesc::klass_gap() const {
 211   return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
 212 }
 213 
 214 void oopDesc::set_klass_gap(HeapWord* mem, int v) {
 215   if (UseCompressedClassPointers) {
 216     *(int*)(((char*)mem) + klass_gap_offset_in_bytes()) = v;
 217   }
 218 }
 219 
 220 void oopDesc::set_klass_gap(int v) {
 221   set_klass_gap((HeapWord*)this, v);
 222 }
 223 
 224 void oopDesc::set_klass_to_list_ptr(oop k) {
 225   // This is only to be used during GC, for from-space objects, so no
 226   // barrier is needed.
 227   if (UseCompressedClassPointers) {
 228     _metadata._compressed_klass = (narrowKlass)CompressedOops::encode(k);  // may be null (parnew overflow handling)
 229   } else {
 230     _metadata._klass = (Klass*)(address)k;
 231   }
 232 }
 233 
 234 oop oopDesc::list_ptr_from_klass() {
 235   // This is only to be used during GC, for from-space objects.
 236   if (UseCompressedClassPointers) {
 237     return CompressedOops::decode((narrowOop)_metadata._compressed_klass);
 238   } else {
 239     // Special case for GC
 240     return (oop)(address)_metadata._klass;
 241   }
 242 }
 243 
 244 bool oopDesc::is_a(Klass* k) const {
 245   return klass()->is_subtype_of(k);
 246 }
 247 
 248 int oopDesc::size()  {
 249   return size_given_klass(klass());
 250 }
 251 
 252 int oopDesc::size_given_klass(Klass* klass)  {
 253   int lh = klass->layout_helper();
 254   int s;
 255 
 256   // lh is now a value computed at class initialization that may hint
 257   // at the size.  For instances, this is positive and equal to the
 258   // size.  For arrays, this is negative and provides log2 of the
 259   // array element size.  For other oops, it is zero and thus requires
 260   // a virtual call.
 261   //
 262   // We go to all this trouble because the size computation is at the
 263   // heart of phase 2 of mark-compaction, and called for every object,
 264   // alive or dead.  So the speed here is equal in importance to the
 265   // speed of allocation.
 266 
 267   if (lh > Klass::_lh_neutral_value) {
 268     if (!Klass::layout_helper_needs_slow_path(lh)) {
 269       s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
 270     } else {
 271       s = klass->oop_size(this);
 272     }
 273   } else if (lh <= Klass::_lh_neutral_value) {
 274     // The most common case is instances; fall through if so.
 275     if (lh < Klass::_lh_neutral_value) {
 276       // Second most common case is arrays.  We have to fetch the
 277       // length of the array, shift (multiply) it appropriately,
 278       // up to wordSize, add the header, and align to object size.
 279       size_t size_in_bytes;
 280       size_t array_length = (size_t) ((arrayOop)this)->length();
 281       size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
 282       size_in_bytes += Klass::layout_helper_header_size(lh);
 283 
 284       // This code could be simplified, but by keeping array_header_in_bytes
 285       // in units of bytes and doing it this way we can round up just once,
 286       // skipping the intermediate round to HeapWordSize.
 287       s = (int)(align_up(size_in_bytes, MinObjAlignmentInBytes) / HeapWordSize);
 288 
 289       // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
 290       // of an "old copy" of an object array in the young gen so it indicates
 291       // the grey portion of an already copied array. This will cause the first
 292       // disjunct below to fail if the two comparands are computed across such
 293       // a concurrent change.
 294       // ParNew also runs with promotion labs (which look like int
 295       // filler arrays) which are subject to changing their declared size
 296       // when finally retiring a PLAB; this also can cause the first disjunct
 297       // to fail for another worker thread that is concurrently walking the block
 298       // offset table. Both these invariant failures are benign for their
 299       // current uses; we relax the assertion checking to cover these two cases below:
 300       //     is_objArray() && is_forwarded()   // covers first scenario above
 301       //  || is_typeArray()                    // covers second scenario above
 302       // If and when UseParallelGC uses the same obj array oop stealing/chunking
 303       // technique, we will need to suitably modify the assertion.
 304       assert((s == klass->oop_size(this)) ||
 305              (Universe::heap()->is_gc_active() &&
 306               ((is_typeArray() && UseConcMarkSweepGC) ||
 307                (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
 308              "wrong array object size");
 309     } else {
 310       // Must be zero, so bite the bullet and take the virtual call.
 311       s = klass->oop_size(this);
 312     }
 313   }
 314 
 315   assert(s > 0, "Oop size must be greater than zero, not %d", s);
 316   assert(is_object_aligned(s), "Oop size is not properly aligned: %d", s);
 317   return s;
 318 }
 319 
 320 bool oopDesc::is_instance()  const { return klass()->is_instance_klass();  }
 321 bool oopDesc::is_array()     const { return klass()->is_array_klass();     }
 322 bool oopDesc::is_objArray()  const { return klass()->is_objArray_klass();  }
 323 bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); }
 324 bool oopDesc::is_value()     const { return klass()->is_value(); }
 325 bool oopDesc::is_valueArray()  const { return klass()->is_valueArray_klass(); }
 326 
 327 void*    oopDesc::field_addr_raw(int offset)     const { return reinterpret_cast<void*>(cast_from_oop<intptr_t>(as_oop()) + offset); }
 328 void*    oopDesc::field_addr(int offset)         const { return Access<>::resolve(as_oop())->field_addr_raw(offset); }
 329 
 330 template <class T>
 331 T*       oopDesc::obj_field_addr_raw(int offset) const { return (T*) field_addr_raw(offset); }
 332 
 333 template <typename T>
 334 size_t   oopDesc::field_offset(T* p) const { return pointer_delta((void*)p, (void*)this, 1); }
 335 
 336 template <DecoratorSet decorators>
 337 inline oop  oopDesc::obj_field_access(int offset) const             { return HeapAccess<decorators>::oop_load_at(as_oop(), offset); }
 338 inline oop  oopDesc::obj_field(int offset) const                    { return HeapAccess<>::oop_load_at(as_oop(), offset);  }
 339 
 340 inline void oopDesc::obj_field_put(int offset, oop value)           { HeapAccess<>::oop_store_at(as_oop(), offset, value); }
 341 
 342 inline jbyte oopDesc::byte_field(int offset) const                  { return HeapAccess<>::load_at(as_oop(), offset);  }
 343 inline void  oopDesc::byte_field_put(int offset, jbyte value)       { HeapAccess<>::store_at(as_oop(), offset, value); }
 344 
 345 inline jchar oopDesc::char_field(int offset) const                  { return HeapAccess<>::load_at(as_oop(), offset);  }
 346 inline void  oopDesc::char_field_put(int offset, jchar value)       { HeapAccess<>::store_at(as_oop(), offset, value); }
 347 
 348 inline jboolean oopDesc::bool_field(int offset) const               { return HeapAccess<>::load_at(as_oop(), offset);                }
 349 inline void     oopDesc::bool_field_put(int offset, jboolean value) { HeapAccess<>::store_at(as_oop(), offset, jboolean(value & 1)); }
 350 
 351 inline jshort oopDesc::short_field(int offset) const                { return HeapAccess<>::load_at(as_oop(), offset);  }
 352 inline void   oopDesc::short_field_put(int offset, jshort value)    { HeapAccess<>::store_at(as_oop(), offset, value); }
 353 
 354 inline jint oopDesc::int_field(int offset) const                    { return HeapAccess<>::load_at(as_oop(), offset);  }
 355 inline jint oopDesc::int_field_raw(int offset) const                { return RawAccess<>::load_at(as_oop(), offset);   }
 356 inline void oopDesc::int_field_put(int offset, jint value)          { HeapAccess<>::store_at(as_oop(), offset, value); }
 357 
 358 inline jlong oopDesc::long_field(int offset) const                  { return HeapAccess<>::load_at(as_oop(), offset);  }
 359 inline void  oopDesc::long_field_put(int offset, jlong value)       { HeapAccess<>::store_at(as_oop(), offset, value); }
 360 
 361 inline jfloat oopDesc::float_field(int offset) const                { return HeapAccess<>::load_at(as_oop(), offset);  }
 362 inline void   oopDesc::float_field_put(int offset, jfloat value)    { HeapAccess<>::store_at(as_oop(), offset, value); }
 363 
 364 inline jdouble oopDesc::double_field(int offset) const              { return HeapAccess<>::load_at(as_oop(), offset);  }
 365 inline void    oopDesc::double_field_put(int offset, jdouble value) { HeapAccess<>::store_at(as_oop(), offset, value); }
 366 
 367 bool oopDesc::is_locked() const {
 368   return mark()->is_locked();
 369 }
 370 
 371 bool oopDesc::is_unlocked() const {
 372   return mark()->is_unlocked();
 373 }
 374 
 375 bool oopDesc::has_bias_pattern() const {
 376   return mark()->has_bias_pattern();
 377 }
 378 
 379 
 380 bool oopDesc::has_bias_pattern_raw() const {
 381   return mark_raw()->has_bias_pattern();
 382 }
 383 
 384 // Used only for markSweep, scavenging
 385 bool oopDesc::is_gc_marked() const {
 386   return mark_raw()->is_marked();
 387 }
 388 
 389 // Used by scavengers
 390 bool oopDesc::is_forwarded() const {
 391   // The extra heap check is needed since the obj might be locked, in which case the
 392   // mark would point to a stack location and have the sentinel bit cleared
 393   return mark_raw()->is_marked();
 394 }
 395 
 396 // Used by scavengers
 397 void oopDesc::forward_to(oop p) {
 398   assert(check_obj_alignment(p),
 399          "forwarding to something not aligned");
 400   assert(Universe::heap()->is_in_reserved(p),
 401          "forwarding to something not in heap");
 402   assert(!is_archived_object(oop(this)) &&
 403          !is_archived_object(p),
 404          "forwarding archive object");
 405   markOop m = markOopDesc::encode_pointer_as_mark(p);
 406   assert(m->decode_pointer() == p, "encoding must be reversable");
 407   set_mark_raw(m);
 408 }
 409 
 410 // Used by parallel scavengers
 411 bool oopDesc::cas_forward_to(oop p, markOop compare, atomic_memory_order order) {
 412   assert(check_obj_alignment(p),
 413          "forwarding to something not aligned");
 414   assert(Universe::heap()->is_in_reserved(p),
 415          "forwarding to something not in heap");
 416   markOop m = markOopDesc::encode_pointer_as_mark(p);
 417   assert(m->decode_pointer() == p, "encoding must be reversable");
 418   return cas_set_mark_raw(m, compare, order) == compare;
 419 }
 420 
 421 oop oopDesc::forward_to_atomic(oop p, markOop compare, atomic_memory_order order) {
 422   // CMS forwards some non-heap value into the mark oop to reserve oops during
 423   // promotion, so the next two asserts do not hold.
 424   assert(UseConcMarkSweepGC || check_obj_alignment(p),
 425          "forwarding to something not aligned");
 426   assert(UseConcMarkSweepGC || Universe::heap()->is_in_reserved(p),
 427          "forwarding to something not in heap");
 428   markOop m = markOopDesc::encode_pointer_as_mark(p);
 429   assert(m->decode_pointer() == p, "encoding must be reversable");
 430   markOop old_mark = cas_set_mark_raw(m, compare, order);
 431   if (old_mark == compare) {
 432     return NULL;
 433   } else {
 434     return (oop)old_mark->decode_pointer();
 435   }
 436 }
 437 
 438 // Note that the forwardee is not the same thing as the displaced_mark.
 439 // The forwardee is used when copying during scavenge and mark-sweep.
 440 // It does need to clear the low two locking- and GC-related bits.
 441 oop oopDesc::forwardee() const {
 442   return (oop) mark_raw()->decode_pointer();
 443 }
 444 
 445 // Note that the forwardee is not the same thing as the displaced_mark.
 446 // The forwardee is used when copying during scavenge and mark-sweep.
 447 // It does need to clear the low two locking- and GC-related bits.
 448 oop oopDesc::forwardee_acquire() const {
 449   markOop m = OrderAccess::load_acquire(&_mark);
 450   return (oop) m->decode_pointer();
 451 }
 452 
 453 // The following method needs to be MT safe.
 454 uint oopDesc::age() const {
 455   assert(!is_forwarded(), "Attempt to read age from forwarded mark");
 456   if (has_displaced_mark_raw()) {
 457     return displaced_mark_raw()->age();
 458   } else {
 459     return mark_raw()->age();
 460   }
 461 }
 462 
 463 void oopDesc::incr_age() {
 464   assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
 465   if (has_displaced_mark_raw()) {
 466     set_displaced_mark_raw(displaced_mark_raw()->incr_age());
 467   } else {
 468     set_mark_raw(mark_raw()->incr_age());
 469   }
 470 }
 471 
 472 template <typename OopClosureType>
 473 void oopDesc::oop_iterate(OopClosureType* cl) {
 474   OopIteratorClosureDispatch::oop_oop_iterate(cl, this, klass());
 475 }
 476 
 477 template <typename OopClosureType>
 478 void oopDesc::oop_iterate(OopClosureType* cl, MemRegion mr) {
 479   OopIteratorClosureDispatch::oop_oop_iterate(cl, this, klass(), mr);
 480 }
 481 
 482 template <typename OopClosureType>
 483 int oopDesc::oop_iterate_size(OopClosureType* cl) {
 484   Klass* k = klass();
 485   int size = size_given_klass(k);
 486   OopIteratorClosureDispatch::oop_oop_iterate(cl, this, k);
 487   return size;
 488 }
 489 
 490 template <typename OopClosureType>
 491 int oopDesc::oop_iterate_size(OopClosureType* cl, MemRegion mr) {
 492   Klass* k = klass();
 493   int size = size_given_klass(k);
 494   OopIteratorClosureDispatch::oop_oop_iterate(cl, this, k, mr);
 495   return size;
 496 }
 497 
 498 template <typename OopClosureType>
 499 void oopDesc::oop_iterate_backwards(OopClosureType* cl) {
 500   OopIteratorClosureDispatch::oop_oop_iterate_backwards(cl, this, klass());
 501 }
 502 
 503 bool oopDesc::is_instanceof_or_null(oop obj, Klass* klass) {
 504   return obj == NULL || obj->klass()->is_subtype_of(klass);
 505 }
 506 
 507 intptr_t oopDesc::identity_hash() {
 508   // Fast case; if the object is unlocked and the hash value is set, no locking is needed
 509   // Note: The mark must be read into local variable to avoid concurrent updates.
 510   markOop mrk = mark();
 511   if (mrk->is_unlocked() && !mrk->has_no_hash()) {
 512     return mrk->hash();
 513   } else if (mrk->is_marked()) {
 514     return mrk->hash();
 515   } else {
 516     return slow_identity_hash();
 517   }
 518 }
 519 
 520 bool oopDesc::has_displaced_mark_raw() const {
 521   return mark_raw()->has_displaced_mark_helper();
 522 }
 523 
 524 markOop oopDesc::displaced_mark_raw() const {
 525   return mark_raw()->displaced_mark_helper();
 526 }
 527 
 528 void oopDesc::set_displaced_mark_raw(markOop m) {
 529   mark_raw()->set_displaced_mark_helper(m);
 530 }
 531 
 532 #endif // SHARE_OOPS_OOP_INLINE_HPP