1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 101   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 102   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 103   void test_value_is_not_buffered(Register value, Register temp_reg, Label& not_buffered);
 104 
 105   // Required platform-specific helpers for Label::patch_instructions.
 106   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 107   void pd_patch_instruction(address branch, address target) {
 108     unsigned char op = branch[0];
 109     assert(op == 0xE8 /* call */ ||
 110         op == 0xE9 /* jmp */ ||
 111         op == 0xEB /* short jmp */ ||
 112         (op & 0xF0) == 0x70 /* short jcc */ ||
 113         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 114         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 115         "Invalid opcode at patch point");
 116 
 117     if (op == 0xEB || (op & 0xF0) == 0x70) {
 118       // short offset operators (jmp and jcc)
 119       char* disp = (char*) &branch[1];
 120       int imm8 = target - (address) &disp[1];
 121       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 122       *disp = imm8;
 123     } else {
 124       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 125       int imm32 = target - (address) &disp[1];
 126       *disp = imm32;
 127     }
 128   }
 129 
 130   // The following 4 methods return the offset of the appropriate move instruction
 131 
 132   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 133   int load_unsigned_byte(Register dst, Address src);
 134   int load_unsigned_short(Register dst, Address src);
 135 
 136   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 137   int load_signed_byte(Register dst, Address src);
 138   int load_signed_short(Register dst, Address src);
 139 
 140   // Support for sign-extension (hi:lo = extend_sign(lo))
 141   void extend_sign(Register hi, Register lo);
 142 
 143   // Load and store values by size and signed-ness
 144   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 145   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 146 
 147   // Support for inc/dec with optimal instruction selection depending on value
 148 
 149   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 150   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 151 
 152   void decrementl(Address dst, int value = 1);
 153   void decrementl(Register reg, int value = 1);
 154 
 155   void decrementq(Register reg, int value = 1);
 156   void decrementq(Address dst, int value = 1);
 157 
 158   void incrementl(Address dst, int value = 1);
 159   void incrementl(Register reg, int value = 1);
 160 
 161   void incrementq(Register reg, int value = 1);
 162   void incrementq(Address dst, int value = 1);
 163 
 164   // special instructions for EVEX
 165   void setvectmask(Register dst, Register src);
 166   void restorevectmask();
 167 
 168   // Support optimal SSE move instructions.
 169   void movflt(XMMRegister dst, XMMRegister src) {
 170     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 171     else                       { movss (dst, src); return; }
 172   }
 173   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 174   void movflt(XMMRegister dst, AddressLiteral src);
 175   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 176 
 177   void movdbl(XMMRegister dst, XMMRegister src) {
 178     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 179     else                       { movsd (dst, src); return; }
 180   }
 181 
 182   void movdbl(XMMRegister dst, AddressLiteral src);
 183 
 184   void movdbl(XMMRegister dst, Address src) {
 185     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 186     else                         { movlpd(dst, src); return; }
 187   }
 188   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 189 
 190   void incrementl(AddressLiteral dst);
 191   void incrementl(ArrayAddress dst);
 192 
 193   void incrementq(AddressLiteral dst);
 194 
 195   // Alignment
 196   void align(int modulus);
 197   void align(int modulus, int target);
 198 
 199   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 200   void fat_nop();
 201 
 202   // Stack frame creation/removal
 203   void enter();
 204   void leave();
 205 
 206   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 207   // The pointer will be loaded into the thread register.
 208   void get_thread(Register thread);
 209 
 210 
 211   // Support for VM calls
 212   //
 213   // It is imperative that all calls into the VM are handled via the call_VM macros.
 214   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 215   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 216 
 217 
 218   void call_VM(Register oop_result,
 219                address entry_point,
 220                bool check_exceptions = true);
 221   void call_VM(Register oop_result,
 222                address entry_point,
 223                Register arg_1,
 224                bool check_exceptions = true);
 225   void call_VM(Register oop_result,
 226                address entry_point,
 227                Register arg_1, Register arg_2,
 228                bool check_exceptions = true);
 229   void call_VM(Register oop_result,
 230                address entry_point,
 231                Register arg_1, Register arg_2, Register arg_3,
 232                bool check_exceptions = true);
 233 
 234   // Overloadings with last_Java_sp
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                int number_of_arguments = 0,
 239                bool check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, bool
 244                check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2,
 249                bool check_exceptions = true);
 250   void call_VM(Register oop_result,
 251                Register last_java_sp,
 252                address entry_point,
 253                Register arg_1, Register arg_2, Register arg_3,
 254                bool check_exceptions = true);
 255 
 256   void get_vm_result  (Register oop_result, Register thread);
 257   void get_vm_result_2(Register metadata_result, Register thread);
 258 
 259   // These always tightly bind to MacroAssembler::call_VM_base
 260   // bypassing the virtual implementation
 261   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 262   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 263   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 264   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 265   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 266 
 267   void call_VM_leaf0(address entry_point);
 268   void call_VM_leaf(address entry_point,
 269                     int number_of_arguments = 0);
 270   void call_VM_leaf(address entry_point,
 271                     Register arg_1);
 272   void call_VM_leaf(address entry_point,
 273                     Register arg_1, Register arg_2);
 274   void call_VM_leaf(address entry_point,
 275                     Register arg_1, Register arg_2, Register arg_3);
 276 
 277   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 278   // bypassing the virtual implementation
 279   void super_call_VM_leaf(address entry_point);
 280   void super_call_VM_leaf(address entry_point, Register arg_1);
 281   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 282   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 283   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 284 
 285   // last Java Frame (fills frame anchor)
 286   void set_last_Java_frame(Register thread,
 287                            Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   // thread in the default location (r15_thread on 64bit)
 292   void set_last_Java_frame(Register last_java_sp,
 293                            Register last_java_fp,
 294                            address last_java_pc);
 295 
 296   void reset_last_Java_frame(Register thread, bool clear_fp);
 297 
 298   // thread in the default location (r15_thread on 64bit)
 299   void reset_last_Java_frame(bool clear_fp);
 300 
 301   // Stores
 302   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 303   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 304 
 305   void resolve_jobject(Register value, Register thread, Register tmp);
 306   void clear_jweak_tag(Register possibly_jweak);
 307 
 308 #if INCLUDE_ALL_GCS
 309 
 310   void g1_write_barrier_pre(Register obj,
 311                             Register pre_val,
 312                             Register thread,
 313                             Register tmp,
 314                             bool tosca_live,
 315                             bool expand_call);
 316 
 317   void g1_write_barrier_post(Register store_addr,
 318                              Register new_val,
 319                              Register thread,
 320                              Register tmp,
 321                              Register tmp2);
 322 
 323 #endif // INCLUDE_ALL_GCS
 324 
 325   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 326   void c2bool(Register x);
 327 
 328   // C++ bool manipulation
 329 
 330   void movbool(Register dst, Address src);
 331   void movbool(Address dst, bool boolconst);
 332   void movbool(Address dst, Register src);
 333   void testbool(Register dst);
 334 
 335   void resolve_oop_handle(Register result);
 336   void load_mirror(Register mirror, Register method);
 337 
 338   // oop manipulations
 339   void load_klass(Register dst, Register src);
 340   void store_klass(Register dst, Register src);
 341 
 342   void load_heap_oop(Register dst, Address src);
 343   void load_heap_oop_not_null(Register dst, Address src);
 344   void store_heap_oop(Address dst, Register src);
 345   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 346 
 347   // Used for storing NULL. All other oop constants should be
 348   // stored using routines that take a jobject.
 349   void store_heap_oop_null(Address dst);
 350 
 351   void load_prototype_header(Register dst, Register src);
 352 
 353 #ifdef _LP64
 354   void store_klass_gap(Register dst, Register src);
 355 
 356   // This dummy is to prevent a call to store_heap_oop from
 357   // converting a zero (like NULL) into a Register by giving
 358   // the compiler two choices it can't resolve
 359 
 360   void store_heap_oop(Address dst, void* dummy);
 361 
 362   void encode_heap_oop(Register r);
 363   void decode_heap_oop(Register r);
 364   void encode_heap_oop_not_null(Register r);
 365   void decode_heap_oop_not_null(Register r);
 366   void encode_heap_oop_not_null(Register dst, Register src);
 367   void decode_heap_oop_not_null(Register dst, Register src);
 368 
 369   void set_narrow_oop(Register dst, jobject obj);
 370   void set_narrow_oop(Address dst, jobject obj);
 371   void cmp_narrow_oop(Register dst, jobject obj);
 372   void cmp_narrow_oop(Address dst, jobject obj);
 373 
 374   void encode_klass_not_null(Register r);
 375   void decode_klass_not_null(Register r);
 376   void encode_klass_not_null(Register dst, Register src);
 377   void decode_klass_not_null(Register dst, Register src);
 378   void set_narrow_klass(Register dst, Klass* k);
 379   void set_narrow_klass(Address dst, Klass* k);
 380   void cmp_narrow_klass(Register dst, Klass* k);
 381   void cmp_narrow_klass(Address dst, Klass* k);
 382 
 383   // Returns the byte size of the instructions generated by decode_klass_not_null()
 384   // when compressed klass pointers are being used.
 385   static int instr_size_for_decode_klass_not_null();
 386 
 387   // if heap base register is used - reinit it with the correct value
 388   void reinit_heapbase();
 389 
 390   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 391 
 392 #endif // _LP64
 393 
 394   // Int division/remainder for Java
 395   // (as idivl, but checks for special case as described in JVM spec.)
 396   // returns idivl instruction offset for implicit exception handling
 397   int corrected_idivl(Register reg);
 398 
 399   // Long division/remainder for Java
 400   // (as idivq, but checks for special case as described in JVM spec.)
 401   // returns idivq instruction offset for implicit exception handling
 402   int corrected_idivq(Register reg);
 403 
 404   void int3();
 405 
 406   // Long operation macros for a 32bit cpu
 407   // Long negation for Java
 408   void lneg(Register hi, Register lo);
 409 
 410   // Long multiplication for Java
 411   // (destroys contents of eax, ebx, ecx and edx)
 412   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 413 
 414   // Long shifts for Java
 415   // (semantics as described in JVM spec.)
 416   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 417   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 418 
 419   // Long compare for Java
 420   // (semantics as described in JVM spec.)
 421   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 422 
 423 
 424   // misc
 425 
 426   // Sign extension
 427   void sign_extend_short(Register reg);
 428   void sign_extend_byte(Register reg);
 429 
 430   // Division by power of 2, rounding towards 0
 431   void division_with_shift(Register reg, int shift_value);
 432 
 433   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 434   //
 435   // CF (corresponds to C0) if x < y
 436   // PF (corresponds to C2) if unordered
 437   // ZF (corresponds to C3) if x = y
 438   //
 439   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 440   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 441   void fcmp(Register tmp);
 442   // Variant of the above which allows y to be further down the stack
 443   // and which only pops x and y if specified. If pop_right is
 444   // specified then pop_left must also be specified.
 445   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 446 
 447   // Floating-point comparison for Java
 448   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 449   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 450   // (semantics as described in JVM spec.)
 451   void fcmp2int(Register dst, bool unordered_is_less);
 452   // Variant of the above which allows y to be further down the stack
 453   // and which only pops x and y if specified. If pop_right is
 454   // specified then pop_left must also be specified.
 455   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 456 
 457   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 458   // tmp is a temporary register, if none is available use noreg
 459   void fremr(Register tmp);
 460 
 461   // dst = c = a * b + c
 462   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 463   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 464 
 465   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 466   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 467   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 468   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 469 
 470 
 471   // same as fcmp2int, but using SSE2
 472   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 473   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 474 
 475   // branch to L if FPU flag C2 is set/not set
 476   // tmp is a temporary register, if none is available use noreg
 477   void jC2 (Register tmp, Label& L);
 478   void jnC2(Register tmp, Label& L);
 479 
 480   // Pop ST (ffree & fincstp combined)
 481   void fpop();
 482 
 483   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 484   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 485   void load_float(Address src);
 486 
 487   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 488   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 489   void store_float(Address dst);
 490 
 491   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 492   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 493   void load_double(Address src);
 494 
 495   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 496   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 497   void store_double(Address dst);
 498 
 499   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 500   void push_fTOS();
 501 
 502   // pops double TOS element from CPU stack and pushes on FPU stack
 503   void pop_fTOS();
 504 
 505   void empty_FPU_stack();
 506 
 507   void push_IU_state();
 508   void pop_IU_state();
 509 
 510   void push_FPU_state();
 511   void pop_FPU_state();
 512 
 513   void push_CPU_state();
 514   void pop_CPU_state();
 515 
 516   // Round up to a power of two
 517   void round_to(Register reg, int modulus);
 518 
 519   // Callee saved registers handling
 520   void push_callee_saved_registers();
 521   void pop_callee_saved_registers();
 522 
 523   // allocation
 524   void eden_allocate(
 525     Register obj,                      // result: pointer to object after successful allocation
 526     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 527     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 528     Register t1,                       // temp register
 529     Label&   slow_case                 // continuation point if fast allocation fails
 530   );
 531   void tlab_allocate(
 532     Register obj,                      // result: pointer to object after successful allocation
 533     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 534     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 535     Register t1,                       // temp register
 536     Register t2,                       // temp register
 537     Label&   slow_case                 // continuation point if fast allocation fails
 538   );
 539   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 540   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 541 
 542   void incr_allocated_bytes(Register thread,
 543                             Register var_size_in_bytes, int con_size_in_bytes,
 544                             Register t1 = noreg);
 545 
 546   // interface method calling
 547   void lookup_interface_method(Register recv_klass,
 548                                Register intf_klass,
 549                                RegisterOrConstant itable_index,
 550                                Register method_result,
 551                                Register scan_temp,
 552                                Label& no_such_interface,
 553                                bool return_method = true);
 554 
 555   // virtual method calling
 556   void lookup_virtual_method(Register recv_klass,
 557                              RegisterOrConstant vtable_index,
 558                              Register method_result);
 559 
 560   // Test sub_klass against super_klass, with fast and slow paths.
 561 
 562   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 563   // One of the three labels can be NULL, meaning take the fall-through.
 564   // If super_check_offset is -1, the value is loaded up from super_klass.
 565   // No registers are killed, except temp_reg.
 566   void check_klass_subtype_fast_path(Register sub_klass,
 567                                      Register super_klass,
 568                                      Register temp_reg,
 569                                      Label* L_success,
 570                                      Label* L_failure,
 571                                      Label* L_slow_path,
 572                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 573 
 574   // The rest of the type check; must be wired to a corresponding fast path.
 575   // It does not repeat the fast path logic, so don't use it standalone.
 576   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 577   // Updates the sub's secondary super cache as necessary.
 578   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 579   void check_klass_subtype_slow_path(Register sub_klass,
 580                                      Register super_klass,
 581                                      Register temp_reg,
 582                                      Register temp2_reg,
 583                                      Label* L_success,
 584                                      Label* L_failure,
 585                                      bool set_cond_codes = false);
 586 
 587   // Simplified, combined version, good for typical uses.
 588   // Falls through on failure.
 589   void check_klass_subtype(Register sub_klass,
 590                            Register super_klass,
 591                            Register temp_reg,
 592                            Label& L_success);
 593 
 594   // method handles (JSR 292)
 595   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 596 
 597   //----
 598   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 599 
 600   // Debugging
 601 
 602   // only if +VerifyOops
 603   // TODO: Make these macros with file and line like sparc version!
 604   void verify_oop(Register reg, const char* s = "broken oop");
 605   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 606 
 607   // TODO: verify method and klass metadata (compare against vptr?)
 608   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 609   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 610 
 611 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 612 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 613 
 614   // only if +VerifyFPU
 615   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 616 
 617   // Verify or restore cpu control state after JNI call
 618   void restore_cpu_control_state_after_jni();
 619 
 620   // prints msg, dumps registers and stops execution
 621   void stop(const char* msg);
 622 
 623   // prints msg and continues
 624   void warn(const char* msg);
 625 
 626   // dumps registers and other state
 627   void print_state();
 628 
 629   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 630   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 631   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 632   static void print_state64(int64_t pc, int64_t regs[]);
 633 
 634   void os_breakpoint();
 635 
 636   void untested()                                { stop("untested"); }
 637 
 638   void unimplemented(const char* what = "");
 639 
 640   void should_not_reach_here()                   { stop("should not reach here"); }
 641 
 642   void print_CPU_state();
 643 
 644   // Stack overflow checking
 645   void bang_stack_with_offset(int offset) {
 646     // stack grows down, caller passes positive offset
 647     assert(offset > 0, "must bang with negative offset");
 648     movl(Address(rsp, (-offset)), rax);
 649   }
 650 
 651   // Writes to stack successive pages until offset reached to check for
 652   // stack overflow + shadow pages.  Also, clobbers tmp
 653   void bang_stack_size(Register size, Register tmp);
 654 
 655   // Check for reserved stack access in method being exited (for JIT)
 656   void reserved_stack_check();
 657 
 658   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 659                                                 Register tmp,
 660                                                 int offset);
 661 
 662   // Support for serializing memory accesses between threads
 663   void serialize_memory(Register thread, Register tmp);
 664 
 665 #ifdef _LP64
 666   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 667 #else
 668   void safepoint_poll(Label& slow_path);
 669 #endif
 670 
 671   void verify_tlab();
 672 
 673   // Biased locking support
 674   // lock_reg and obj_reg must be loaded up with the appropriate values.
 675   // swap_reg must be rax, and is killed.
 676   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 677   // be killed; if not supplied, push/pop will be used internally to
 678   // allocate a temporary (inefficient, avoid if possible).
 679   // Optional slow case is for implementations (interpreter and C1) which branch to
 680   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 681   // Returns offset of first potentially-faulting instruction for null
 682   // check info (currently consumed only by C1). If
 683   // swap_reg_contains_mark is true then returns -1 as it is assumed
 684   // the calling code has already passed any potential faults.
 685   int biased_locking_enter(Register lock_reg, Register obj_reg,
 686                            Register swap_reg, Register tmp_reg,
 687                            bool swap_reg_contains_mark,
 688                            Label& done, Label* slow_case = NULL,
 689                            BiasedLockingCounters* counters = NULL);
 690   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 691 #ifdef COMPILER2
 692   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 693   // See full desription in macroAssembler_x86.cpp.
 694   void fast_lock(Register obj, Register box, Register tmp,
 695                  Register scr, Register cx1, Register cx2,
 696                  BiasedLockingCounters* counters,
 697                  RTMLockingCounters* rtm_counters,
 698                  RTMLockingCounters* stack_rtm_counters,
 699                  Metadata* method_data,
 700                  bool use_rtm, bool profile_rtm);
 701   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 702 #if INCLUDE_RTM_OPT
 703   void rtm_counters_update(Register abort_status, Register rtm_counters);
 704   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 705   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 706                                    RTMLockingCounters* rtm_counters,
 707                                    Metadata* method_data);
 708   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 709                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 710   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 711   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 712   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 713                          Register retry_on_abort_count,
 714                          RTMLockingCounters* stack_rtm_counters,
 715                          Metadata* method_data, bool profile_rtm,
 716                          Label& DONE_LABEL, Label& IsInflated);
 717   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 718                             Register scr, Register retry_on_busy_count,
 719                             Register retry_on_abort_count,
 720                             RTMLockingCounters* rtm_counters,
 721                             Metadata* method_data, bool profile_rtm,
 722                             Label& DONE_LABEL);
 723 #endif
 724 #endif
 725 
 726   Condition negate_condition(Condition cond);
 727 
 728   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 729   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 730   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 731   // here in MacroAssembler. The major exception to this rule is call
 732 
 733   // Arithmetics
 734 
 735 
 736   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 737   void addptr(Address dst, Register src);
 738 
 739   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 740   void addptr(Register dst, int32_t src);
 741   void addptr(Register dst, Register src);
 742   void addptr(Register dst, RegisterOrConstant src) {
 743     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 744     else                   addptr(dst,       src.as_register());
 745   }
 746 
 747   void andptr(Register dst, int32_t src);
 748   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 749 
 750   void cmp8(AddressLiteral src1, int imm);
 751 
 752   // renamed to drag out the casting of address to int32_t/intptr_t
 753   void cmp32(Register src1, int32_t imm);
 754 
 755   void cmp32(AddressLiteral src1, int32_t imm);
 756   // compare reg - mem, or reg - &mem
 757   void cmp32(Register src1, AddressLiteral src2);
 758 
 759   void cmp32(Register src1, Address src2);
 760 
 761 #ifndef _LP64
 762   void cmpklass(Address dst, Metadata* obj);
 763   void cmpklass(Register dst, Metadata* obj);
 764   void cmpoop(Address dst, jobject obj);
 765 #endif // _LP64
 766 
 767   void cmpoop(Register src1, Register src2);
 768   void cmpoop(Register src1, Address src2);
 769   void cmpoop(Register dst, jobject obj);
 770 
 771   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 772   void cmpptr(Address src1, AddressLiteral src2);
 773 
 774   void cmpptr(Register src1, AddressLiteral src2);
 775 
 776   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 777   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 778   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 779 
 780   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 781   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 782 
 783   // cmp64 to avoild hiding cmpq
 784   void cmp64(Register src1, AddressLiteral src);
 785 
 786   void cmpxchgptr(Register reg, Address adr);
 787 
 788   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 789 
 790 
 791   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 792   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 793 
 794 
 795   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 796 
 797   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 798 
 799   void shlptr(Register dst, int32_t shift);
 800   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 801 
 802   void shrptr(Register dst, int32_t shift);
 803   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 804 
 805   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 806   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 807 
 808   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 809 
 810   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 811   void subptr(Register dst, int32_t src);
 812   // Force generation of a 4 byte immediate value even if it fits into 8bit
 813   void subptr_imm32(Register dst, int32_t src);
 814   void subptr(Register dst, Register src);
 815   void subptr(Register dst, RegisterOrConstant src) {
 816     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 817     else                   subptr(dst,       src.as_register());
 818   }
 819 
 820   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 821   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 822 
 823   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 824   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 825 
 826   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 827 
 828 
 829 
 830   // Helper functions for statistics gathering.
 831   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 832   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 833   // Unconditional atomic increment.
 834   void atomic_incl(Address counter_addr);
 835   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 836 #ifdef _LP64
 837   void atomic_incq(Address counter_addr);
 838   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 839 #endif
 840   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 841   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 842 
 843   void lea(Register dst, AddressLiteral adr);
 844   void lea(Address dst, AddressLiteral adr);
 845   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 846 
 847   void leal32(Register dst, Address src) { leal(dst, src); }
 848 
 849   // Import other testl() methods from the parent class or else
 850   // they will be hidden by the following overriding declaration.
 851   using Assembler::testl;
 852   void testl(Register dst, AddressLiteral src);
 853 
 854   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 855   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 856   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 857   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 858 
 859   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 860   void testptr(Register src1, Register src2);
 861 
 862   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 863   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 864 
 865   // Calls
 866 
 867   void call(Label& L, relocInfo::relocType rtype);
 868   void call(Register entry);
 869 
 870   // NOTE: this call transfers to the effective address of entry NOT
 871   // the address contained by entry. This is because this is more natural
 872   // for jumps/calls.
 873   void call(AddressLiteral entry);
 874 
 875   // Emit the CompiledIC call idiom
 876   void ic_call(address entry, jint method_index = 0);
 877 
 878   // Jumps
 879 
 880   // NOTE: these jumps tranfer to the effective address of dst NOT
 881   // the address contained by dst. This is because this is more natural
 882   // for jumps/calls.
 883   void jump(AddressLiteral dst);
 884   void jump_cc(Condition cc, AddressLiteral dst);
 885 
 886   // 32bit can do a case table jump in one instruction but we no longer allow the base
 887   // to be installed in the Address class. This jump will tranfers to the address
 888   // contained in the location described by entry (not the address of entry)
 889   void jump(ArrayAddress entry);
 890 
 891   // Floating
 892 
 893   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 894   void andpd(XMMRegister dst, AddressLiteral src);
 895   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 896 
 897   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 898   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 899   void andps(XMMRegister dst, AddressLiteral src);
 900 
 901   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 902   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 903   void comiss(XMMRegister dst, AddressLiteral src);
 904 
 905   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 906   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 907   void comisd(XMMRegister dst, AddressLiteral src);
 908 
 909   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 910   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 911 
 912   void fldcw(Address src) { Assembler::fldcw(src); }
 913   void fldcw(AddressLiteral src);
 914 
 915   void fld_s(int index)   { Assembler::fld_s(index); }
 916   void fld_s(Address src) { Assembler::fld_s(src); }
 917   void fld_s(AddressLiteral src);
 918 
 919   void fld_d(Address src) { Assembler::fld_d(src); }
 920   void fld_d(AddressLiteral src);
 921 
 922   void fld_x(Address src) { Assembler::fld_x(src); }
 923   void fld_x(AddressLiteral src);
 924 
 925   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 926   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 927 
 928   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 929   void ldmxcsr(AddressLiteral src);
 930 
 931 #ifdef _LP64
 932  private:
 933   void sha256_AVX2_one_round_compute(
 934     Register  reg_old_h,
 935     Register  reg_a,
 936     Register  reg_b,
 937     Register  reg_c,
 938     Register  reg_d,
 939     Register  reg_e,
 940     Register  reg_f,
 941     Register  reg_g,
 942     Register  reg_h,
 943     int iter);
 944   void sha256_AVX2_four_rounds_compute_first(int start);
 945   void sha256_AVX2_four_rounds_compute_last(int start);
 946   void sha256_AVX2_one_round_and_sched(
 947         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 948         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 949         XMMRegister xmm_2,     /* ymm6 */
 950         XMMRegister xmm_3,     /* ymm7 */
 951         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 952         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 953         Register    reg_c,      /* edi */
 954         Register    reg_d,      /* esi */
 955         Register    reg_e,      /* r8d */
 956         Register    reg_f,      /* r9d */
 957         Register    reg_g,      /* r10d */
 958         Register    reg_h,      /* r11d */
 959         int iter);
 960 
 961   void addm(int disp, Register r1, Register r2);
 962 
 963  public:
 964   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 965                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 966                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 967                    bool multi_block, XMMRegister shuf_mask);
 968 #endif
 969 
 970 #ifdef _LP64
 971  private:
 972   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 973                                      Register e, Register f, Register g, Register h, int iteration);
 974 
 975   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 976                                           Register a, Register b, Register c, Register d, Register e, Register f,
 977                                           Register g, Register h, int iteration);
 978 
 979   void addmq(int disp, Register r1, Register r2);
 980  public:
 981   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 982                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 983                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 984                    XMMRegister shuf_mask);
 985 #endif
 986 
 987   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 988                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 989                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 990                  bool multi_block);
 991 
 992 #ifdef _LP64
 993   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 994                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 995                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 996                    bool multi_block, XMMRegister shuf_mask);
 997 #else
 998   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 999                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1000                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1001                    bool multi_block);
1002 #endif
1003 
1004   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1005                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1006                 Register rax, Register rcx, Register rdx, Register tmp);
1007 
1008 #ifdef _LP64
1009   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1010                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1011                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1012 
1013   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1014                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1015                   Register rax, Register rcx, Register rdx, Register r11);
1016 
1017   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1018                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1019                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1020 
1021   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1022                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1023                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1024                 Register tmp3, Register tmp4);
1025 
1026   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1027                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1028                 Register rax, Register rcx, Register rdx, Register tmp1,
1029                 Register tmp2, Register tmp3, Register tmp4);
1030   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1031                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1032                 Register rax, Register rcx, Register rdx, Register tmp1,
1033                 Register tmp2, Register tmp3, Register tmp4);
1034 #else
1035   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1036                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1037                 Register rax, Register rcx, Register rdx, Register tmp1);
1038 
1039   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1040                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1041                 Register rax, Register rcx, Register rdx, Register tmp);
1042 
1043   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1044                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1045                 Register rdx, Register tmp);
1046 
1047   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1048                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1049                 Register rax, Register rbx, Register rdx);
1050 
1051   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1052                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1053                 Register rax, Register rcx, Register rdx, Register tmp);
1054 
1055   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1056                         Register edx, Register ebx, Register esi, Register edi,
1057                         Register ebp, Register esp);
1058 
1059   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1060                          Register esi, Register edi, Register ebp, Register esp);
1061 
1062   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1063                         Register edx, Register ebx, Register esi, Register edi,
1064                         Register ebp, Register esp);
1065 
1066   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1067                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1068                 Register rax, Register rcx, Register rdx, Register tmp);
1069 #endif
1070 
1071   void increase_precision();
1072   void restore_precision();
1073 
1074 private:
1075 
1076   // these are private because users should be doing movflt/movdbl
1077 
1078   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1079   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1080   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1081   void movss(XMMRegister dst, AddressLiteral src);
1082 
1083   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1084   void movlpd(XMMRegister dst, AddressLiteral src);
1085 
1086 public:
1087 
1088   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1089   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1090   void addsd(XMMRegister dst, AddressLiteral src);
1091 
1092   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1093   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1094   void addss(XMMRegister dst, AddressLiteral src);
1095 
1096   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1097   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1098   void addpd(XMMRegister dst, AddressLiteral src);
1099 
1100   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1101   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1102   void divsd(XMMRegister dst, AddressLiteral src);
1103 
1104   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1105   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1106   void divss(XMMRegister dst, AddressLiteral src);
1107 
1108   // Move Unaligned Double Quadword
1109   void movdqu(Address     dst, XMMRegister src);
1110   void movdqu(XMMRegister dst, Address src);
1111   void movdqu(XMMRegister dst, XMMRegister src);
1112   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1113   // AVX Unaligned forms
1114   void vmovdqu(Address     dst, XMMRegister src);
1115   void vmovdqu(XMMRegister dst, Address src);
1116   void vmovdqu(XMMRegister dst, XMMRegister src);
1117   void vmovdqu(XMMRegister dst, AddressLiteral src);
1118 
1119   // Move Aligned Double Quadword
1120   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1121   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1122   void movdqa(XMMRegister dst, AddressLiteral src);
1123 
1124   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1125   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1126   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1127   void movsd(XMMRegister dst, AddressLiteral src);
1128 
1129   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1130   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1131   void mulpd(XMMRegister dst, AddressLiteral src);
1132 
1133   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1134   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1135   void mulsd(XMMRegister dst, AddressLiteral src);
1136 
1137   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1138   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1139   void mulss(XMMRegister dst, AddressLiteral src);
1140 
1141   // Carry-Less Multiplication Quadword
1142   void pclmulldq(XMMRegister dst, XMMRegister src) {
1143     // 0x00 - multiply lower 64 bits [0:63]
1144     Assembler::pclmulqdq(dst, src, 0x00);
1145   }
1146   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1147     // 0x11 - multiply upper 64 bits [64:127]
1148     Assembler::pclmulqdq(dst, src, 0x11);
1149   }
1150 
1151   void pcmpeqb(XMMRegister dst, XMMRegister src);
1152   void pcmpeqw(XMMRegister dst, XMMRegister src);
1153 
1154   void pcmpestri(XMMRegister dst, Address src, int imm8);
1155   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1156 
1157   void pmovzxbw(XMMRegister dst, XMMRegister src);
1158   void pmovzxbw(XMMRegister dst, Address src);
1159 
1160   void pmovmskb(Register dst, XMMRegister src);
1161 
1162   void ptest(XMMRegister dst, XMMRegister src);
1163 
1164   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1165   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1166   void sqrtsd(XMMRegister dst, AddressLiteral src);
1167 
1168   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1169   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1170   void sqrtss(XMMRegister dst, AddressLiteral src);
1171 
1172   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1173   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1174   void subsd(XMMRegister dst, AddressLiteral src);
1175 
1176   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1177   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1178   void subss(XMMRegister dst, AddressLiteral src);
1179 
1180   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1181   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1182   void ucomiss(XMMRegister dst, AddressLiteral src);
1183 
1184   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1185   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1186   void ucomisd(XMMRegister dst, AddressLiteral src);
1187 
1188   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1189   void xorpd(XMMRegister dst, XMMRegister src);
1190   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1191   void xorpd(XMMRegister dst, AddressLiteral src);
1192 
1193   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1194   void xorps(XMMRegister dst, XMMRegister src);
1195   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1196   void xorps(XMMRegister dst, AddressLiteral src);
1197 
1198   // Shuffle Bytes
1199   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1200   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1201   void pshufb(XMMRegister dst, AddressLiteral src);
1202   // AVX 3-operands instructions
1203 
1204   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1205   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1206   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1207 
1208   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1209   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1210   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1211 
1212   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1213   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1214 
1215   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1216   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1217 
1218   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1219   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1220 
1221   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1222   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1223   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1224 
1225   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1226 
1227   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1228   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1229 
1230   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1231   void vpmovmskb(Register dst, XMMRegister src);
1232 
1233   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1234   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1235 
1236   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1237   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1238 
1239   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1240   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1241 
1242   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1243   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1244 
1245   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1246   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1247 
1248   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1249   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1250 
1251   void vptest(XMMRegister dst, XMMRegister src);
1252 
1253   void punpcklbw(XMMRegister dst, XMMRegister src);
1254   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1255 
1256   void pshufd(XMMRegister dst, Address src, int mode);
1257   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1258 
1259   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1260   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1261 
1262   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1263   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1264   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1265 
1266   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1267   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1268   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1269 
1270   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1271   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1272   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1273 
1274   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1275   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1276   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1277 
1278   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1279   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1280   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1281 
1282   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1283   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1284   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1285 
1286   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1287   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1288   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1289 
1290   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1291   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1292   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1293 
1294   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1295   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1296 
1297   // AVX Vector instructions
1298 
1299   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1300   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1301   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1302 
1303   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1304   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1305   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1306 
1307   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1308     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1309       Assembler::vpxor(dst, nds, src, vector_len);
1310     else
1311       Assembler::vxorpd(dst, nds, src, vector_len);
1312   }
1313   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1314     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1315       Assembler::vpxor(dst, nds, src, vector_len);
1316     else
1317       Assembler::vxorpd(dst, nds, src, vector_len);
1318   }
1319 
1320   // Simple version for AVX2 256bit vectors
1321   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1322   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1323 
1324   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1325     if (UseAVX > 2) {
1326       Assembler::vinserti32x4(dst, dst, src, imm8);
1327     } else if (UseAVX > 1) {
1328       // vinserti128 is available only in AVX2
1329       Assembler::vinserti128(dst, nds, src, imm8);
1330     } else {
1331       Assembler::vinsertf128(dst, nds, src, imm8);
1332     }
1333   }
1334 
1335   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1336     if (UseAVX > 2) {
1337       Assembler::vinserti32x4(dst, dst, src, imm8);
1338     } else if (UseAVX > 1) {
1339       // vinserti128 is available only in AVX2
1340       Assembler::vinserti128(dst, nds, src, imm8);
1341     } else {
1342       Assembler::vinsertf128(dst, nds, src, imm8);
1343     }
1344   }
1345 
1346   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1347     if (UseAVX > 2) {
1348       Assembler::vextracti32x4(dst, src, imm8);
1349     } else if (UseAVX > 1) {
1350       // vextracti128 is available only in AVX2
1351       Assembler::vextracti128(dst, src, imm8);
1352     } else {
1353       Assembler::vextractf128(dst, src, imm8);
1354     }
1355   }
1356 
1357   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1358     if (UseAVX > 2) {
1359       Assembler::vextracti32x4(dst, src, imm8);
1360     } else if (UseAVX > 1) {
1361       // vextracti128 is available only in AVX2
1362       Assembler::vextracti128(dst, src, imm8);
1363     } else {
1364       Assembler::vextractf128(dst, src, imm8);
1365     }
1366   }
1367 
1368   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1369   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1370     vinserti128(dst, dst, src, 1);
1371   }
1372   void vinserti128_high(XMMRegister dst, Address src) {
1373     vinserti128(dst, dst, src, 1);
1374   }
1375   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1376     vextracti128(dst, src, 1);
1377   }
1378   void vextracti128_high(Address dst, XMMRegister src) {
1379     vextracti128(dst, src, 1);
1380   }
1381 
1382   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1383     if (UseAVX > 2) {
1384       Assembler::vinsertf32x4(dst, dst, src, 1);
1385     } else {
1386       Assembler::vinsertf128(dst, dst, src, 1);
1387     }
1388   }
1389 
1390   void vinsertf128_high(XMMRegister dst, Address src) {
1391     if (UseAVX > 2) {
1392       Assembler::vinsertf32x4(dst, dst, src, 1);
1393     } else {
1394       Assembler::vinsertf128(dst, dst, src, 1);
1395     }
1396   }
1397 
1398   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1399     if (UseAVX > 2) {
1400       Assembler::vextractf32x4(dst, src, 1);
1401     } else {
1402       Assembler::vextractf128(dst, src, 1);
1403     }
1404   }
1405 
1406   void vextractf128_high(Address dst, XMMRegister src) {
1407     if (UseAVX > 2) {
1408       Assembler::vextractf32x4(dst, src, 1);
1409     } else {
1410       Assembler::vextractf128(dst, src, 1);
1411     }
1412   }
1413 
1414   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1415   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1416     Assembler::vinserti64x4(dst, dst, src, 1);
1417   }
1418   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1419     Assembler::vinsertf64x4(dst, dst, src, 1);
1420   }
1421   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1422     Assembler::vextracti64x4(dst, src, 1);
1423   }
1424   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1425     Assembler::vextractf64x4(dst, src, 1);
1426   }
1427   void vextractf64x4_high(Address dst, XMMRegister src) {
1428     Assembler::vextractf64x4(dst, src, 1);
1429   }
1430   void vinsertf64x4_high(XMMRegister dst, Address src) {
1431     Assembler::vinsertf64x4(dst, dst, src, 1);
1432   }
1433 
1434   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1435   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1436     vinserti128(dst, dst, src, 0);
1437   }
1438   void vinserti128_low(XMMRegister dst, Address src) {
1439     vinserti128(dst, dst, src, 0);
1440   }
1441   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1442     vextracti128(dst, src, 0);
1443   }
1444   void vextracti128_low(Address dst, XMMRegister src) {
1445     vextracti128(dst, src, 0);
1446   }
1447 
1448   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1449     if (UseAVX > 2) {
1450       Assembler::vinsertf32x4(dst, dst, src, 0);
1451     } else {
1452       Assembler::vinsertf128(dst, dst, src, 0);
1453     }
1454   }
1455 
1456   void vinsertf128_low(XMMRegister dst, Address src) {
1457     if (UseAVX > 2) {
1458       Assembler::vinsertf32x4(dst, dst, src, 0);
1459     } else {
1460       Assembler::vinsertf128(dst, dst, src, 0);
1461     }
1462   }
1463 
1464   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1465     if (UseAVX > 2) {
1466       Assembler::vextractf32x4(dst, src, 0);
1467     } else {
1468       Assembler::vextractf128(dst, src, 0);
1469     }
1470   }
1471 
1472   void vextractf128_low(Address dst, XMMRegister src) {
1473     if (UseAVX > 2) {
1474       Assembler::vextractf32x4(dst, src, 0);
1475     } else {
1476       Assembler::vextractf128(dst, src, 0);
1477     }
1478   }
1479 
1480   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1481   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1482     Assembler::vinserti64x4(dst, dst, src, 0);
1483   }
1484   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1485     Assembler::vinsertf64x4(dst, dst, src, 0);
1486   }
1487   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1488     Assembler::vextracti64x4(dst, src, 0);
1489   }
1490   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1491     Assembler::vextractf64x4(dst, src, 0);
1492   }
1493   void vextractf64x4_low(Address dst, XMMRegister src) {
1494     Assembler::vextractf64x4(dst, src, 0);
1495   }
1496   void vinsertf64x4_low(XMMRegister dst, Address src) {
1497     Assembler::vinsertf64x4(dst, dst, src, 0);
1498   }
1499 
1500   // Carry-Less Multiplication Quadword
1501   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1502     // 0x00 - multiply lower 64 bits [0:63]
1503     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1504   }
1505   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1506     // 0x11 - multiply upper 64 bits [64:127]
1507     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1508   }
1509 
1510   // Data
1511 
1512   void cmov32( Condition cc, Register dst, Address  src);
1513   void cmov32( Condition cc, Register dst, Register src);
1514 
1515   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1516 
1517   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1518   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1519 
1520   void movoop(Register dst, jobject obj);
1521   void movoop(Address dst, jobject obj);
1522 
1523   void mov_metadata(Register dst, Metadata* obj);
1524   void mov_metadata(Address dst, Metadata* obj);
1525 
1526   void movptr(ArrayAddress dst, Register src);
1527   // can this do an lea?
1528   void movptr(Register dst, ArrayAddress src);
1529 
1530   void movptr(Register dst, Address src);
1531 
1532 #ifdef _LP64
1533   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1534 #else
1535   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1536 #endif
1537 
1538   void movptr(Register dst, intptr_t src);
1539   void movptr(Register dst, Register src);
1540   void movptr(Address dst, intptr_t src);
1541 
1542   void movptr(Address dst, Register src);
1543 
1544   void movptr(Register dst, RegisterOrConstant src) {
1545     if (src.is_constant()) movptr(dst, src.as_constant());
1546     else                   movptr(dst, src.as_register());
1547   }
1548 
1549 #ifdef _LP64
1550   // Generally the next two are only used for moving NULL
1551   // Although there are situations in initializing the mark word where
1552   // they could be used. They are dangerous.
1553 
1554   // They only exist on LP64 so that int32_t and intptr_t are not the same
1555   // and we have ambiguous declarations.
1556 
1557   void movptr(Address dst, int32_t imm32);
1558   void movptr(Register dst, int32_t imm32);
1559 #endif // _LP64
1560 
1561   // to avoid hiding movl
1562   void mov32(AddressLiteral dst, Register src);
1563   void mov32(Register dst, AddressLiteral src);
1564 
1565   // to avoid hiding movb
1566   void movbyte(ArrayAddress dst, int src);
1567 
1568   // Import other mov() methods from the parent class or else
1569   // they will be hidden by the following overriding declaration.
1570   using Assembler::movdl;
1571   using Assembler::movq;
1572   void movdl(XMMRegister dst, AddressLiteral src);
1573   void movq(XMMRegister dst, AddressLiteral src);
1574 
1575   // Can push value or effective address
1576   void pushptr(AddressLiteral src);
1577 
1578   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1579   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1580 
1581   void pushoop(jobject obj);
1582   void pushklass(Metadata* obj);
1583 
1584   // sign extend as need a l to ptr sized element
1585   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1586   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1587 
1588   // C2 compiled method's prolog code.
1589   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1590 
1591   // clear memory of size 'cnt' qwords, starting at 'base';
1592   // if 'is_large' is set, do not try to produce short loop
1593   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1594 
1595 #ifdef COMPILER2
1596   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1597                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1598 
1599   // IndexOf strings.
1600   // Small strings are loaded through stack if they cross page boundary.
1601   void string_indexof(Register str1, Register str2,
1602                       Register cnt1, Register cnt2,
1603                       int int_cnt2,  Register result,
1604                       XMMRegister vec, Register tmp,
1605                       int ae);
1606 
1607   // IndexOf for constant substrings with size >= 8 elements
1608   // which don't need to be loaded through stack.
1609   void string_indexofC8(Register str1, Register str2,
1610                       Register cnt1, Register cnt2,
1611                       int int_cnt2,  Register result,
1612                       XMMRegister vec, Register tmp,
1613                       int ae);
1614 
1615     // Smallest code: we don't need to load through stack,
1616     // check string tail.
1617 
1618   // helper function for string_compare
1619   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1620                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1621                           Address::ScaleFactor scale2, Register index, int ae);
1622   // Compare strings.
1623   void string_compare(Register str1, Register str2,
1624                       Register cnt1, Register cnt2, Register result,
1625                       XMMRegister vec1, int ae);
1626 
1627   // Search for Non-ASCII character (Negative byte value) in a byte array,
1628   // return true if it has any and false otherwise.
1629   void has_negatives(Register ary1, Register len,
1630                      Register result, Register tmp1,
1631                      XMMRegister vec1, XMMRegister vec2);
1632 
1633   // Compare char[] or byte[] arrays.
1634   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1635                      Register limit, Register result, Register chr,
1636                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1637 
1638 #endif
1639 
1640   // Fill primitive arrays
1641   void generate_fill(BasicType t, bool aligned,
1642                      Register to, Register value, Register count,
1643                      Register rtmp, XMMRegister xtmp);
1644 
1645   void encode_iso_array(Register src, Register dst, Register len,
1646                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1647                         XMMRegister tmp4, Register tmp5, Register result);
1648 
1649 #ifdef _LP64
1650   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1651   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1652                              Register y, Register y_idx, Register z,
1653                              Register carry, Register product,
1654                              Register idx, Register kdx);
1655   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1656                               Register yz_idx, Register idx,
1657                               Register carry, Register product, int offset);
1658   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1659                                     Register carry, Register carry2,
1660                                     Register idx, Register jdx,
1661                                     Register yz_idx1, Register yz_idx2,
1662                                     Register tmp, Register tmp3, Register tmp4);
1663   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1664                                Register yz_idx, Register idx, Register jdx,
1665                                Register carry, Register product,
1666                                Register carry2);
1667   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1668                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1669   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1670                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1671   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1672                             Register tmp2);
1673   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1674                        Register rdxReg, Register raxReg);
1675   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1676   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1677                        Register tmp3, Register tmp4);
1678   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1679                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1680 
1681   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1682                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1683                Register raxReg);
1684   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1685                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1686                Register raxReg);
1687   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1688                            Register result, Register tmp1, Register tmp2,
1689                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1690 #endif
1691 
1692   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1693   void update_byte_crc32(Register crc, Register val, Register table);
1694   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1695   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1696   // Note on a naming convention:
1697   // Prefix w = register only used on a Westmere+ architecture
1698   // Prefix n = register only used on a Nehalem architecture
1699 #ifdef _LP64
1700   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1701                        Register tmp1, Register tmp2, Register tmp3);
1702 #else
1703   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1704                        Register tmp1, Register tmp2, Register tmp3,
1705                        XMMRegister xtmp1, XMMRegister xtmp2);
1706 #endif
1707   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1708                         Register in_out,
1709                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1710                         XMMRegister w_xtmp2,
1711                         Register tmp1,
1712                         Register n_tmp2, Register n_tmp3);
1713   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1714                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1715                        Register tmp1, Register tmp2,
1716                        Register n_tmp3);
1717   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1718                          Register in_out1, Register in_out2, Register in_out3,
1719                          Register tmp1, Register tmp2, Register tmp3,
1720                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1721                          Register tmp4, Register tmp5,
1722                          Register n_tmp6);
1723   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1724                             Register tmp1, Register tmp2, Register tmp3,
1725                             Register tmp4, Register tmp5, Register tmp6,
1726                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1727                             bool is_pclmulqdq_supported);
1728   // Fold 128-bit data chunk
1729   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1730   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1731   // Fold 8-bit data
1732   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1733   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1734 
1735   // Compress char[] array to byte[].
1736   void char_array_compress(Register src, Register dst, Register len,
1737                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1738                            XMMRegister tmp4, Register tmp5, Register result);
1739 
1740   // Inflate byte[] array to char[].
1741   void byte_array_inflate(Register src, Register dst, Register len,
1742                           XMMRegister tmp1, Register tmp2);
1743 
1744 };
1745 
1746 /**
1747  * class SkipIfEqual:
1748  *
1749  * Instantiating this class will result in assembly code being output that will
1750  * jump around any code emitted between the creation of the instance and it's
1751  * automatic destruction at the end of a scope block, depending on the value of
1752  * the flag passed to the constructor, which will be checked at run-time.
1753  */
1754 class SkipIfEqual {
1755  private:
1756   MacroAssembler* _masm;
1757   Label _label;
1758 
1759  public:
1760    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1761    ~SkipIfEqual();
1762 };
1763 
1764 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP