1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   void test_klass_is_value(Register klass, Register temp_reg, Label& is_value);
 101 
 102   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 103   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 104   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 105   void test_value_is_not_buffered(Register value, Register temp_reg, Label& not_buffered);
 106 
 107   // Check klass/oops is flat value type array (oop->_klass->_layout_helper & vt_bit)
 108   void test_flat_array_klass(Register klass, Register temp_reg, Label& is_flat_array);
 109   void test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array);
 110 
 111   // Required platform-specific helpers for Label::patch_instructions.
 112   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 113   void pd_patch_instruction(address branch, address target) {
 114     unsigned char op = branch[0];
 115     assert(op == 0xE8 /* call */ ||
 116         op == 0xE9 /* jmp */ ||
 117         op == 0xEB /* short jmp */ ||
 118         (op & 0xF0) == 0x70 /* short jcc */ ||
 119         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 120         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 121         "Invalid opcode at patch point");
 122 
 123     if (op == 0xEB || (op & 0xF0) == 0x70) {
 124       // short offset operators (jmp and jcc)
 125       char* disp = (char*) &branch[1];
 126       int imm8 = target - (address) &disp[1];
 127       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 128       *disp = imm8;
 129     } else {
 130       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 131       int imm32 = target - (address) &disp[1];
 132       *disp = imm32;
 133     }
 134   }
 135 
 136   // The following 4 methods return the offset of the appropriate move instruction
 137 
 138   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 139   int load_unsigned_byte(Register dst, Address src);
 140   int load_unsigned_short(Register dst, Address src);
 141 
 142   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 143   int load_signed_byte(Register dst, Address src);
 144   int load_signed_short(Register dst, Address src);
 145 
 146   // Support for sign-extension (hi:lo = extend_sign(lo))
 147   void extend_sign(Register hi, Register lo);
 148 
 149   // Load and store values by size and signed-ness
 150   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 151   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 152 
 153   // Support for inc/dec with optimal instruction selection depending on value
 154 
 155   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 156   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 157 
 158   void decrementl(Address dst, int value = 1);
 159   void decrementl(Register reg, int value = 1);
 160 
 161   void decrementq(Register reg, int value = 1);
 162   void decrementq(Address dst, int value = 1);
 163 
 164   void incrementl(Address dst, int value = 1);
 165   void incrementl(Register reg, int value = 1);
 166 
 167   void incrementq(Register reg, int value = 1);
 168   void incrementq(Address dst, int value = 1);
 169 
 170   // special instructions for EVEX
 171   void setvectmask(Register dst, Register src);
 172   void restorevectmask();
 173 
 174   // Support optimal SSE move instructions.
 175   void movflt(XMMRegister dst, XMMRegister src) {
 176     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 177     else                       { movss (dst, src); return; }
 178   }
 179   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 180   void movflt(XMMRegister dst, AddressLiteral src);
 181   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 182 
 183   void movdbl(XMMRegister dst, XMMRegister src) {
 184     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 185     else                       { movsd (dst, src); return; }
 186   }
 187 
 188   void movdbl(XMMRegister dst, AddressLiteral src);
 189 
 190   void movdbl(XMMRegister dst, Address src) {
 191     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 192     else                         { movlpd(dst, src); return; }
 193   }
 194   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 195 
 196   void incrementl(AddressLiteral dst);
 197   void incrementl(ArrayAddress dst);
 198 
 199   void incrementq(AddressLiteral dst);
 200 
 201   // Alignment
 202   void align(int modulus);
 203   void align(int modulus, int target);
 204 
 205   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 206   void fat_nop();
 207 
 208   // Stack frame creation/removal
 209   void enter();
 210   void leave();
 211 
 212   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 213   // The pointer will be loaded into the thread register.
 214   void get_thread(Register thread);
 215 
 216 
 217   // Support for VM calls
 218   //
 219   // It is imperative that all calls into the VM are handled via the call_VM macros.
 220   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 221   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 222 
 223 
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                bool check_exceptions = true);
 227   void call_VM(Register oop_result,
 228                address entry_point,
 229                Register arg_1,
 230                bool check_exceptions = true);
 231   void call_VM(Register oop_result,
 232                address entry_point,
 233                Register arg_1, Register arg_2,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                address entry_point,
 237                Register arg_1, Register arg_2, Register arg_3,
 238                bool check_exceptions = true);
 239 
 240   // Overloadings with last_Java_sp
 241   void call_VM(Register oop_result,
 242                Register last_java_sp,
 243                address entry_point,
 244                int number_of_arguments = 0,
 245                bool check_exceptions = true);
 246   void call_VM(Register oop_result,
 247                Register last_java_sp,
 248                address entry_point,
 249                Register arg_1, bool
 250                check_exceptions = true);
 251   void call_VM(Register oop_result,
 252                Register last_java_sp,
 253                address entry_point,
 254                Register arg_1, Register arg_2,
 255                bool check_exceptions = true);
 256   void call_VM(Register oop_result,
 257                Register last_java_sp,
 258                address entry_point,
 259                Register arg_1, Register arg_2, Register arg_3,
 260                bool check_exceptions = true);
 261 
 262   void get_vm_result  (Register oop_result, Register thread);
 263   void get_vm_result_2(Register metadata_result, Register thread);
 264 
 265   // These always tightly bind to MacroAssembler::call_VM_base
 266   // bypassing the virtual implementation
 267   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 268   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 269   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 270   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 271   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 272 
 273   void call_VM_leaf0(address entry_point);
 274   void call_VM_leaf(address entry_point,
 275                     int number_of_arguments = 0);
 276   void call_VM_leaf(address entry_point,
 277                     Register arg_1);
 278   void call_VM_leaf(address entry_point,
 279                     Register arg_1, Register arg_2);
 280   void call_VM_leaf(address entry_point,
 281                     Register arg_1, Register arg_2, Register arg_3);
 282 
 283   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 284   // bypassing the virtual implementation
 285   void super_call_VM_leaf(address entry_point);
 286   void super_call_VM_leaf(address entry_point, Register arg_1);
 287   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 288   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 289   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 290 
 291   // last Java Frame (fills frame anchor)
 292   void set_last_Java_frame(Register thread,
 293                            Register last_java_sp,
 294                            Register last_java_fp,
 295                            address last_java_pc);
 296 
 297   // thread in the default location (r15_thread on 64bit)
 298   void set_last_Java_frame(Register last_java_sp,
 299                            Register last_java_fp,
 300                            address last_java_pc);
 301 
 302   void reset_last_Java_frame(Register thread, bool clear_fp);
 303 
 304   // thread in the default location (r15_thread on 64bit)
 305   void reset_last_Java_frame(bool clear_fp);
 306 
 307   // Stores
 308   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 309   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 310 
 311   void resolve_jobject(Register value, Register thread, Register tmp);
 312   void clear_jweak_tag(Register possibly_jweak);
 313 
 314 #if INCLUDE_ALL_GCS
 315 
 316   void g1_write_barrier_pre(Register obj,
 317                             Register pre_val,
 318                             Register thread,
 319                             Register tmp,
 320                             bool tosca_live,
 321                             bool expand_call);
 322 
 323   void g1_write_barrier_post(Register store_addr,
 324                              Register new_val,
 325                              Register thread,
 326                              Register tmp,
 327                              Register tmp2);
 328 
 329 #endif // INCLUDE_ALL_GCS
 330 
 331   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 332   void c2bool(Register x);
 333 
 334   // C++ bool manipulation
 335 
 336   void movbool(Register dst, Address src);
 337   void movbool(Address dst, bool boolconst);
 338   void movbool(Address dst, Register src);
 339   void testbool(Register dst);
 340 
 341   void resolve_oop_handle(Register result);
 342   void load_mirror(Register mirror, Register method);
 343 
 344   // oop manipulations
 345   void load_klass(Register dst, Register src);
 346   void store_klass(Register dst, Register src);
 347 
 348   void load_heap_oop(Register dst, Address src);
 349   void load_heap_oop_not_null(Register dst, Address src);
 350   void store_heap_oop(Address dst, Register src);
 351   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 352 
 353   // Used for storing NULL. All other oop constants should be
 354   // stored using routines that take a jobject.
 355   void store_heap_oop_null(Address dst);
 356 
 357   void load_prototype_header(Register dst, Register src);
 358 
 359 #ifdef _LP64
 360   void store_klass_gap(Register dst, Register src);
 361 
 362   // This dummy is to prevent a call to store_heap_oop from
 363   // converting a zero (like NULL) into a Register by giving
 364   // the compiler two choices it can't resolve
 365 
 366   void store_heap_oop(Address dst, void* dummy);
 367 
 368   void encode_heap_oop(Register r);
 369   void decode_heap_oop(Register r);
 370   void encode_heap_oop_not_null(Register r);
 371   void decode_heap_oop_not_null(Register r);
 372   void encode_heap_oop_not_null(Register dst, Register src);
 373   void decode_heap_oop_not_null(Register dst, Register src);
 374 
 375   void set_narrow_oop(Register dst, jobject obj);
 376   void set_narrow_oop(Address dst, jobject obj);
 377   void cmp_narrow_oop(Register dst, jobject obj);
 378   void cmp_narrow_oop(Address dst, jobject obj);
 379 
 380   void encode_klass_not_null(Register r);
 381   void decode_klass_not_null(Register r);
 382   void encode_klass_not_null(Register dst, Register src);
 383   void decode_klass_not_null(Register dst, Register src);
 384   void set_narrow_klass(Register dst, Klass* k);
 385   void set_narrow_klass(Address dst, Klass* k);
 386   void cmp_narrow_klass(Register dst, Klass* k);
 387   void cmp_narrow_klass(Address dst, Klass* k);
 388 
 389   // Returns the byte size of the instructions generated by decode_klass_not_null()
 390   // when compressed klass pointers are being used.
 391   static int instr_size_for_decode_klass_not_null();
 392 
 393   // if heap base register is used - reinit it with the correct value
 394   void reinit_heapbase();
 395 
 396   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 397 
 398 #endif // _LP64
 399 
 400   // Int division/remainder for Java
 401   // (as idivl, but checks for special case as described in JVM spec.)
 402   // returns idivl instruction offset for implicit exception handling
 403   int corrected_idivl(Register reg);
 404 
 405   // Long division/remainder for Java
 406   // (as idivq, but checks for special case as described in JVM spec.)
 407   // returns idivq instruction offset for implicit exception handling
 408   int corrected_idivq(Register reg);
 409 
 410   void int3();
 411 
 412   // Long operation macros for a 32bit cpu
 413   // Long negation for Java
 414   void lneg(Register hi, Register lo);
 415 
 416   // Long multiplication for Java
 417   // (destroys contents of eax, ebx, ecx and edx)
 418   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 419 
 420   // Long shifts for Java
 421   // (semantics as described in JVM spec.)
 422   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 423   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 424 
 425   // Long compare for Java
 426   // (semantics as described in JVM spec.)
 427   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 428 
 429 
 430   // misc
 431 
 432   // Sign extension
 433   void sign_extend_short(Register reg);
 434   void sign_extend_byte(Register reg);
 435 
 436   // Division by power of 2, rounding towards 0
 437   void division_with_shift(Register reg, int shift_value);
 438 
 439   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 440   //
 441   // CF (corresponds to C0) if x < y
 442   // PF (corresponds to C2) if unordered
 443   // ZF (corresponds to C3) if x = y
 444   //
 445   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 446   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 447   void fcmp(Register tmp);
 448   // Variant of the above which allows y to be further down the stack
 449   // and which only pops x and y if specified. If pop_right is
 450   // specified then pop_left must also be specified.
 451   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 452 
 453   // Floating-point comparison for Java
 454   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 455   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 456   // (semantics as described in JVM spec.)
 457   void fcmp2int(Register dst, bool unordered_is_less);
 458   // Variant of the above which allows y to be further down the stack
 459   // and which only pops x and y if specified. If pop_right is
 460   // specified then pop_left must also be specified.
 461   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 462 
 463   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 464   // tmp is a temporary register, if none is available use noreg
 465   void fremr(Register tmp);
 466 
 467   // dst = c = a * b + c
 468   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 469   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 470 
 471   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 472   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 473   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 474   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 475 
 476 
 477   // same as fcmp2int, but using SSE2
 478   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 479   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 480 
 481   // branch to L if FPU flag C2 is set/not set
 482   // tmp is a temporary register, if none is available use noreg
 483   void jC2 (Register tmp, Label& L);
 484   void jnC2(Register tmp, Label& L);
 485 
 486   // Pop ST (ffree & fincstp combined)
 487   void fpop();
 488 
 489   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 490   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 491   void load_float(Address src);
 492 
 493   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 494   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 495   void store_float(Address dst);
 496 
 497   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 498   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 499   void load_double(Address src);
 500 
 501   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 502   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 503   void store_double(Address dst);
 504 
 505   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 506   void push_fTOS();
 507 
 508   // pops double TOS element from CPU stack and pushes on FPU stack
 509   void pop_fTOS();
 510 
 511   void empty_FPU_stack();
 512 
 513   void push_IU_state();
 514   void pop_IU_state();
 515 
 516   void push_FPU_state();
 517   void pop_FPU_state();
 518 
 519   void push_CPU_state();
 520   void pop_CPU_state();
 521 
 522   // Round up to a power of two
 523   void round_to(Register reg, int modulus);
 524 
 525   // Callee saved registers handling
 526   void push_callee_saved_registers();
 527   void pop_callee_saved_registers();
 528 
 529   // allocation
 530   void eden_allocate(
 531     Register obj,                      // result: pointer to object after successful allocation
 532     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 533     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 534     Register t1,                       // temp register
 535     Label&   slow_case                 // continuation point if fast allocation fails
 536   );
 537   void tlab_allocate(
 538     Register obj,                      // result: pointer to object after successful allocation
 539     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 540     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 541     Register t1,                       // temp register
 542     Register t2,                       // temp register
 543     Label&   slow_case                 // continuation point if fast allocation fails
 544   );
 545   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 546   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 547 
 548   void incr_allocated_bytes(Register thread,
 549                             Register var_size_in_bytes, int con_size_in_bytes,
 550                             Register t1 = noreg);
 551 
 552   // interface method calling
 553   void lookup_interface_method(Register recv_klass,
 554                                Register intf_klass,
 555                                RegisterOrConstant itable_index,
 556                                Register method_result,
 557                                Register scan_temp,
 558                                Label& no_such_interface,
 559                                bool return_method = true);
 560 
 561   // virtual method calling
 562   void lookup_virtual_method(Register recv_klass,
 563                              RegisterOrConstant vtable_index,
 564                              Register method_result);
 565 
 566   // Test sub_klass against super_klass, with fast and slow paths.
 567 
 568   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 569   // One of the three labels can be NULL, meaning take the fall-through.
 570   // If super_check_offset is -1, the value is loaded up from super_klass.
 571   // No registers are killed, except temp_reg.
 572   void check_klass_subtype_fast_path(Register sub_klass,
 573                                      Register super_klass,
 574                                      Register temp_reg,
 575                                      Label* L_success,
 576                                      Label* L_failure,
 577                                      Label* L_slow_path,
 578                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 579 
 580   // The rest of the type check; must be wired to a corresponding fast path.
 581   // It does not repeat the fast path logic, so don't use it standalone.
 582   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 583   // Updates the sub's secondary super cache as necessary.
 584   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 585   void check_klass_subtype_slow_path(Register sub_klass,
 586                                      Register super_klass,
 587                                      Register temp_reg,
 588                                      Register temp2_reg,
 589                                      Label* L_success,
 590                                      Label* L_failure,
 591                                      bool set_cond_codes = false);
 592 
 593   // Simplified, combined version, good for typical uses.
 594   // Falls through on failure.
 595   void check_klass_subtype(Register sub_klass,
 596                            Register super_klass,
 597                            Register temp_reg,
 598                            Label& L_success);
 599 
 600   // method handles (JSR 292)
 601   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 602 
 603   //----
 604   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 605 
 606   // Debugging
 607 
 608   // only if +VerifyOops
 609   // TODO: Make these macros with file and line like sparc version!
 610   void verify_oop(Register reg, const char* s = "broken oop");
 611   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 612 
 613   // TODO: verify method and klass metadata (compare against vptr?)
 614   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 615   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 616 
 617 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 618 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 619 
 620   // only if +VerifyFPU
 621   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 622 
 623   // Verify or restore cpu control state after JNI call
 624   void restore_cpu_control_state_after_jni();
 625 
 626   // prints msg, dumps registers and stops execution
 627   void stop(const char* msg);
 628 
 629   // prints msg and continues
 630   void warn(const char* msg);
 631 
 632   // dumps registers and other state
 633   void print_state();
 634 
 635   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 636   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 637   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 638   static void print_state64(int64_t pc, int64_t regs[]);
 639 
 640   void os_breakpoint();
 641 
 642   void untested()                                { stop("untested"); }
 643 
 644   void unimplemented(const char* what = "");
 645 
 646   void should_not_reach_here()                   { stop("should not reach here"); }
 647 
 648   void print_CPU_state();
 649 
 650   // Stack overflow checking
 651   void bang_stack_with_offset(int offset) {
 652     // stack grows down, caller passes positive offset
 653     assert(offset > 0, "must bang with negative offset");
 654     movl(Address(rsp, (-offset)), rax);
 655   }
 656 
 657   // Writes to stack successive pages until offset reached to check for
 658   // stack overflow + shadow pages.  Also, clobbers tmp
 659   void bang_stack_size(Register size, Register tmp);
 660 
 661   // Check for reserved stack access in method being exited (for JIT)
 662   void reserved_stack_check();
 663 
 664   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 665                                                 Register tmp,
 666                                                 int offset);
 667 
 668   // Support for serializing memory accesses between threads
 669   void serialize_memory(Register thread, Register tmp);
 670 
 671 #ifdef _LP64
 672   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 673 #else
 674   void safepoint_poll(Label& slow_path);
 675 #endif
 676 
 677   void verify_tlab();
 678 
 679   // Biased locking support
 680   // lock_reg and obj_reg must be loaded up with the appropriate values.
 681   // swap_reg must be rax, and is killed.
 682   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 683   // be killed; if not supplied, push/pop will be used internally to
 684   // allocate a temporary (inefficient, avoid if possible).
 685   // Optional slow case is for implementations (interpreter and C1) which branch to
 686   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 687   // Returns offset of first potentially-faulting instruction for null
 688   // check info (currently consumed only by C1). If
 689   // swap_reg_contains_mark is true then returns -1 as it is assumed
 690   // the calling code has already passed any potential faults.
 691   int biased_locking_enter(Register lock_reg, Register obj_reg,
 692                            Register swap_reg, Register tmp_reg,
 693                            bool swap_reg_contains_mark,
 694                            Label& done, Label* slow_case = NULL,
 695                            BiasedLockingCounters* counters = NULL);
 696   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 697 #ifdef COMPILER2
 698   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 699   // See full desription in macroAssembler_x86.cpp.
 700   void fast_lock(Register obj, Register box, Register tmp,
 701                  Register scr, Register cx1, Register cx2,
 702                  BiasedLockingCounters* counters,
 703                  RTMLockingCounters* rtm_counters,
 704                  RTMLockingCounters* stack_rtm_counters,
 705                  Metadata* method_data,
 706                  bool use_rtm, bool profile_rtm);
 707   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 708 #if INCLUDE_RTM_OPT
 709   void rtm_counters_update(Register abort_status, Register rtm_counters);
 710   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 711   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 712                                    RTMLockingCounters* rtm_counters,
 713                                    Metadata* method_data);
 714   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 715                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 716   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 717   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 718   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 719                          Register retry_on_abort_count,
 720                          RTMLockingCounters* stack_rtm_counters,
 721                          Metadata* method_data, bool profile_rtm,
 722                          Label& DONE_LABEL, Label& IsInflated);
 723   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 724                             Register scr, Register retry_on_busy_count,
 725                             Register retry_on_abort_count,
 726                             RTMLockingCounters* rtm_counters,
 727                             Metadata* method_data, bool profile_rtm,
 728                             Label& DONE_LABEL);
 729 #endif
 730 #endif
 731 
 732   Condition negate_condition(Condition cond);
 733 
 734   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 735   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 736   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 737   // here in MacroAssembler. The major exception to this rule is call
 738 
 739   // Arithmetics
 740 
 741 
 742   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 743   void addptr(Address dst, Register src);
 744 
 745   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 746   void addptr(Register dst, int32_t src);
 747   void addptr(Register dst, Register src);
 748   void addptr(Register dst, RegisterOrConstant src) {
 749     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 750     else                   addptr(dst,       src.as_register());
 751   }
 752 
 753   void andptr(Register dst, int32_t src);
 754   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 755 
 756   void cmp8(AddressLiteral src1, int imm);
 757 
 758   // renamed to drag out the casting of address to int32_t/intptr_t
 759   void cmp32(Register src1, int32_t imm);
 760 
 761   void cmp32(AddressLiteral src1, int32_t imm);
 762   // compare reg - mem, or reg - &mem
 763   void cmp32(Register src1, AddressLiteral src2);
 764 
 765   void cmp32(Register src1, Address src2);
 766 
 767 #ifndef _LP64
 768   void cmpklass(Address dst, Metadata* obj);
 769   void cmpklass(Register dst, Metadata* obj);
 770   void cmpoop(Address dst, jobject obj);
 771 #endif // _LP64
 772 
 773   void cmpoop(Register src1, Register src2);
 774   void cmpoop(Register src1, Address src2);
 775   void cmpoop(Register dst, jobject obj);
 776 
 777   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 778   void cmpptr(Address src1, AddressLiteral src2);
 779 
 780   void cmpptr(Register src1, AddressLiteral src2);
 781 
 782   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 783   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 784   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 785 
 786   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 787   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 788 
 789   // cmp64 to avoild hiding cmpq
 790   void cmp64(Register src1, AddressLiteral src);
 791 
 792   void cmpxchgptr(Register reg, Address adr);
 793 
 794   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 795 
 796 
 797   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 798   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 799 
 800 
 801   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 802 
 803   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 804 
 805   void shlptr(Register dst, int32_t shift);
 806   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 807 
 808   void shrptr(Register dst, int32_t shift);
 809   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 810 
 811   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 812   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 813 
 814   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 815 
 816   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 817   void subptr(Register dst, int32_t src);
 818   // Force generation of a 4 byte immediate value even if it fits into 8bit
 819   void subptr_imm32(Register dst, int32_t src);
 820   void subptr(Register dst, Register src);
 821   void subptr(Register dst, RegisterOrConstant src) {
 822     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 823     else                   subptr(dst,       src.as_register());
 824   }
 825 
 826   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 827   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 828 
 829   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 830   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 831 
 832   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 833 
 834 
 835 
 836   // Helper functions for statistics gathering.
 837   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 838   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 839   // Unconditional atomic increment.
 840   void atomic_incl(Address counter_addr);
 841   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 842 #ifdef _LP64
 843   void atomic_incq(Address counter_addr);
 844   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 845 #endif
 846   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 847   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 848 
 849   void lea(Register dst, AddressLiteral adr);
 850   void lea(Address dst, AddressLiteral adr);
 851   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 852 
 853   void leal32(Register dst, Address src) { leal(dst, src); }
 854 
 855   // Import other testl() methods from the parent class or else
 856   // they will be hidden by the following overriding declaration.
 857   using Assembler::testl;
 858   void testl(Register dst, AddressLiteral src);
 859 
 860   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 861   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 862   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 863   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 864 
 865   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 866   void testptr(Register src1, Register src2);
 867 
 868   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 869   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 870 
 871   // Calls
 872 
 873   void call(Label& L, relocInfo::relocType rtype);
 874   void call(Register entry);
 875 
 876   // NOTE: this call transfers to the effective address of entry NOT
 877   // the address contained by entry. This is because this is more natural
 878   // for jumps/calls.
 879   void call(AddressLiteral entry);
 880 
 881   // Emit the CompiledIC call idiom
 882   void ic_call(address entry, jint method_index = 0);
 883 
 884   // Jumps
 885 
 886   // NOTE: these jumps tranfer to the effective address of dst NOT
 887   // the address contained by dst. This is because this is more natural
 888   // for jumps/calls.
 889   void jump(AddressLiteral dst);
 890   void jump_cc(Condition cc, AddressLiteral dst);
 891 
 892   // 32bit can do a case table jump in one instruction but we no longer allow the base
 893   // to be installed in the Address class. This jump will tranfers to the address
 894   // contained in the location described by entry (not the address of entry)
 895   void jump(ArrayAddress entry);
 896 
 897   // Floating
 898 
 899   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 900   void andpd(XMMRegister dst, AddressLiteral src);
 901   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 902 
 903   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 904   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 905   void andps(XMMRegister dst, AddressLiteral src);
 906 
 907   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 908   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 909   void comiss(XMMRegister dst, AddressLiteral src);
 910 
 911   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 912   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 913   void comisd(XMMRegister dst, AddressLiteral src);
 914 
 915   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 916   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 917 
 918   void fldcw(Address src) { Assembler::fldcw(src); }
 919   void fldcw(AddressLiteral src);
 920 
 921   void fld_s(int index)   { Assembler::fld_s(index); }
 922   void fld_s(Address src) { Assembler::fld_s(src); }
 923   void fld_s(AddressLiteral src);
 924 
 925   void fld_d(Address src) { Assembler::fld_d(src); }
 926   void fld_d(AddressLiteral src);
 927 
 928   void fld_x(Address src) { Assembler::fld_x(src); }
 929   void fld_x(AddressLiteral src);
 930 
 931   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 932   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 933 
 934   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 935   void ldmxcsr(AddressLiteral src);
 936 
 937 #ifdef _LP64
 938  private:
 939   void sha256_AVX2_one_round_compute(
 940     Register  reg_old_h,
 941     Register  reg_a,
 942     Register  reg_b,
 943     Register  reg_c,
 944     Register  reg_d,
 945     Register  reg_e,
 946     Register  reg_f,
 947     Register  reg_g,
 948     Register  reg_h,
 949     int iter);
 950   void sha256_AVX2_four_rounds_compute_first(int start);
 951   void sha256_AVX2_four_rounds_compute_last(int start);
 952   void sha256_AVX2_one_round_and_sched(
 953         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 954         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 955         XMMRegister xmm_2,     /* ymm6 */
 956         XMMRegister xmm_3,     /* ymm7 */
 957         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 958         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 959         Register    reg_c,      /* edi */
 960         Register    reg_d,      /* esi */
 961         Register    reg_e,      /* r8d */
 962         Register    reg_f,      /* r9d */
 963         Register    reg_g,      /* r10d */
 964         Register    reg_h,      /* r11d */
 965         int iter);
 966 
 967   void addm(int disp, Register r1, Register r2);
 968 
 969  public:
 970   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 971                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 972                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 973                    bool multi_block, XMMRegister shuf_mask);
 974 #endif
 975 
 976 #ifdef _LP64
 977  private:
 978   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 979                                      Register e, Register f, Register g, Register h, int iteration);
 980 
 981   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 982                                           Register a, Register b, Register c, Register d, Register e, Register f,
 983                                           Register g, Register h, int iteration);
 984 
 985   void addmq(int disp, Register r1, Register r2);
 986  public:
 987   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 988                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 989                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 990                    XMMRegister shuf_mask);
 991 #endif
 992 
 993   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 994                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 995                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 996                  bool multi_block);
 997 
 998 #ifdef _LP64
 999   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1000                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1001                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1002                    bool multi_block, XMMRegister shuf_mask);
1003 #else
1004   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1005                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1006                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1007                    bool multi_block);
1008 #endif
1009 
1010   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1011                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1012                 Register rax, Register rcx, Register rdx, Register tmp);
1013 
1014 #ifdef _LP64
1015   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1016                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1017                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1018 
1019   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1020                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1021                   Register rax, Register rcx, Register rdx, Register r11);
1022 
1023   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1024                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1025                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1026 
1027   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1028                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1029                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1030                 Register tmp3, Register tmp4);
1031 
1032   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1033                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1034                 Register rax, Register rcx, Register rdx, Register tmp1,
1035                 Register tmp2, Register tmp3, Register tmp4);
1036   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1037                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1038                 Register rax, Register rcx, Register rdx, Register tmp1,
1039                 Register tmp2, Register tmp3, Register tmp4);
1040 #else
1041   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1042                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1043                 Register rax, Register rcx, Register rdx, Register tmp1);
1044 
1045   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1046                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1047                 Register rax, Register rcx, Register rdx, Register tmp);
1048 
1049   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1050                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1051                 Register rdx, Register tmp);
1052 
1053   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1054                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1055                 Register rax, Register rbx, Register rdx);
1056 
1057   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1058                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1059                 Register rax, Register rcx, Register rdx, Register tmp);
1060 
1061   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1062                         Register edx, Register ebx, Register esi, Register edi,
1063                         Register ebp, Register esp);
1064 
1065   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1066                          Register esi, Register edi, Register ebp, Register esp);
1067 
1068   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1069                         Register edx, Register ebx, Register esi, Register edi,
1070                         Register ebp, Register esp);
1071 
1072   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1073                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1074                 Register rax, Register rcx, Register rdx, Register tmp);
1075 #endif
1076 
1077   void increase_precision();
1078   void restore_precision();
1079 
1080 private:
1081 
1082   // these are private because users should be doing movflt/movdbl
1083 
1084   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1085   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1086   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1087   void movss(XMMRegister dst, AddressLiteral src);
1088 
1089   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1090   void movlpd(XMMRegister dst, AddressLiteral src);
1091 
1092 public:
1093 
1094   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1095   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1096   void addsd(XMMRegister dst, AddressLiteral src);
1097 
1098   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1099   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1100   void addss(XMMRegister dst, AddressLiteral src);
1101 
1102   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1103   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1104   void addpd(XMMRegister dst, AddressLiteral src);
1105 
1106   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1107   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1108   void divsd(XMMRegister dst, AddressLiteral src);
1109 
1110   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1111   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1112   void divss(XMMRegister dst, AddressLiteral src);
1113 
1114   // Move Unaligned Double Quadword
1115   void movdqu(Address     dst, XMMRegister src);
1116   void movdqu(XMMRegister dst, Address src);
1117   void movdqu(XMMRegister dst, XMMRegister src);
1118   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1119   // AVX Unaligned forms
1120   void vmovdqu(Address     dst, XMMRegister src);
1121   void vmovdqu(XMMRegister dst, Address src);
1122   void vmovdqu(XMMRegister dst, XMMRegister src);
1123   void vmovdqu(XMMRegister dst, AddressLiteral src);
1124 
1125   // Move Aligned Double Quadword
1126   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1127   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1128   void movdqa(XMMRegister dst, AddressLiteral src);
1129 
1130   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1131   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1132   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1133   void movsd(XMMRegister dst, AddressLiteral src);
1134 
1135   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1136   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1137   void mulpd(XMMRegister dst, AddressLiteral src);
1138 
1139   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1140   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1141   void mulsd(XMMRegister dst, AddressLiteral src);
1142 
1143   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1144   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1145   void mulss(XMMRegister dst, AddressLiteral src);
1146 
1147   // Carry-Less Multiplication Quadword
1148   void pclmulldq(XMMRegister dst, XMMRegister src) {
1149     // 0x00 - multiply lower 64 bits [0:63]
1150     Assembler::pclmulqdq(dst, src, 0x00);
1151   }
1152   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1153     // 0x11 - multiply upper 64 bits [64:127]
1154     Assembler::pclmulqdq(dst, src, 0x11);
1155   }
1156 
1157   void pcmpeqb(XMMRegister dst, XMMRegister src);
1158   void pcmpeqw(XMMRegister dst, XMMRegister src);
1159 
1160   void pcmpestri(XMMRegister dst, Address src, int imm8);
1161   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1162 
1163   void pmovzxbw(XMMRegister dst, XMMRegister src);
1164   void pmovzxbw(XMMRegister dst, Address src);
1165 
1166   void pmovmskb(Register dst, XMMRegister src);
1167 
1168   void ptest(XMMRegister dst, XMMRegister src);
1169 
1170   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1171   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1172   void sqrtsd(XMMRegister dst, AddressLiteral src);
1173 
1174   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1175   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1176   void sqrtss(XMMRegister dst, AddressLiteral src);
1177 
1178   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1179   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1180   void subsd(XMMRegister dst, AddressLiteral src);
1181 
1182   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1183   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1184   void subss(XMMRegister dst, AddressLiteral src);
1185 
1186   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1187   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1188   void ucomiss(XMMRegister dst, AddressLiteral src);
1189 
1190   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1191   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1192   void ucomisd(XMMRegister dst, AddressLiteral src);
1193 
1194   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1195   void xorpd(XMMRegister dst, XMMRegister src);
1196   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1197   void xorpd(XMMRegister dst, AddressLiteral src);
1198 
1199   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1200   void xorps(XMMRegister dst, XMMRegister src);
1201   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1202   void xorps(XMMRegister dst, AddressLiteral src);
1203 
1204   // Shuffle Bytes
1205   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1206   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1207   void pshufb(XMMRegister dst, AddressLiteral src);
1208   // AVX 3-operands instructions
1209 
1210   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1211   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1212   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1213 
1214   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1215   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1216   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1217 
1218   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1219   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1220 
1221   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1222   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1223 
1224   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1225   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1226 
1227   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1228   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1229   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1230 
1231   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1232 
1233   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1234   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1235 
1236   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1237   void vpmovmskb(Register dst, XMMRegister src);
1238 
1239   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1240   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1241 
1242   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1243   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1244 
1245   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1246   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1247 
1248   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1249   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1250 
1251   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1252   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1253 
1254   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1255   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1256 
1257   void vptest(XMMRegister dst, XMMRegister src);
1258 
1259   void punpcklbw(XMMRegister dst, XMMRegister src);
1260   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1261 
1262   void pshufd(XMMRegister dst, Address src, int mode);
1263   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1264 
1265   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1266   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1267 
1268   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1269   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1270   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1271 
1272   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1273   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1274   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1275 
1276   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1277   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1278   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1279 
1280   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1281   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1282   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1283 
1284   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1285   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1286   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1287 
1288   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1289   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1290   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1291 
1292   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1293   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1294   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1295 
1296   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1297   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1298   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1299 
1300   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1301   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1302 
1303   // AVX Vector instructions
1304 
1305   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1306   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1307   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1308 
1309   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1310   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1311   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1312 
1313   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1314     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1315       Assembler::vpxor(dst, nds, src, vector_len);
1316     else
1317       Assembler::vxorpd(dst, nds, src, vector_len);
1318   }
1319   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1320     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1321       Assembler::vpxor(dst, nds, src, vector_len);
1322     else
1323       Assembler::vxorpd(dst, nds, src, vector_len);
1324   }
1325 
1326   // Simple version for AVX2 256bit vectors
1327   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1328   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1329 
1330   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1331     if (UseAVX > 2) {
1332       Assembler::vinserti32x4(dst, dst, src, imm8);
1333     } else if (UseAVX > 1) {
1334       // vinserti128 is available only in AVX2
1335       Assembler::vinserti128(dst, nds, src, imm8);
1336     } else {
1337       Assembler::vinsertf128(dst, nds, src, imm8);
1338     }
1339   }
1340 
1341   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1342     if (UseAVX > 2) {
1343       Assembler::vinserti32x4(dst, dst, src, imm8);
1344     } else if (UseAVX > 1) {
1345       // vinserti128 is available only in AVX2
1346       Assembler::vinserti128(dst, nds, src, imm8);
1347     } else {
1348       Assembler::vinsertf128(dst, nds, src, imm8);
1349     }
1350   }
1351 
1352   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1353     if (UseAVX > 2) {
1354       Assembler::vextracti32x4(dst, src, imm8);
1355     } else if (UseAVX > 1) {
1356       // vextracti128 is available only in AVX2
1357       Assembler::vextracti128(dst, src, imm8);
1358     } else {
1359       Assembler::vextractf128(dst, src, imm8);
1360     }
1361   }
1362 
1363   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1364     if (UseAVX > 2) {
1365       Assembler::vextracti32x4(dst, src, imm8);
1366     } else if (UseAVX > 1) {
1367       // vextracti128 is available only in AVX2
1368       Assembler::vextracti128(dst, src, imm8);
1369     } else {
1370       Assembler::vextractf128(dst, src, imm8);
1371     }
1372   }
1373 
1374   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1375   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1376     vinserti128(dst, dst, src, 1);
1377   }
1378   void vinserti128_high(XMMRegister dst, Address src) {
1379     vinserti128(dst, dst, src, 1);
1380   }
1381   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1382     vextracti128(dst, src, 1);
1383   }
1384   void vextracti128_high(Address dst, XMMRegister src) {
1385     vextracti128(dst, src, 1);
1386   }
1387 
1388   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1389     if (UseAVX > 2) {
1390       Assembler::vinsertf32x4(dst, dst, src, 1);
1391     } else {
1392       Assembler::vinsertf128(dst, dst, src, 1);
1393     }
1394   }
1395 
1396   void vinsertf128_high(XMMRegister dst, Address src) {
1397     if (UseAVX > 2) {
1398       Assembler::vinsertf32x4(dst, dst, src, 1);
1399     } else {
1400       Assembler::vinsertf128(dst, dst, src, 1);
1401     }
1402   }
1403 
1404   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1405     if (UseAVX > 2) {
1406       Assembler::vextractf32x4(dst, src, 1);
1407     } else {
1408       Assembler::vextractf128(dst, src, 1);
1409     }
1410   }
1411 
1412   void vextractf128_high(Address dst, XMMRegister src) {
1413     if (UseAVX > 2) {
1414       Assembler::vextractf32x4(dst, src, 1);
1415     } else {
1416       Assembler::vextractf128(dst, src, 1);
1417     }
1418   }
1419 
1420   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1421   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1422     Assembler::vinserti64x4(dst, dst, src, 1);
1423   }
1424   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1425     Assembler::vinsertf64x4(dst, dst, src, 1);
1426   }
1427   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1428     Assembler::vextracti64x4(dst, src, 1);
1429   }
1430   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1431     Assembler::vextractf64x4(dst, src, 1);
1432   }
1433   void vextractf64x4_high(Address dst, XMMRegister src) {
1434     Assembler::vextractf64x4(dst, src, 1);
1435   }
1436   void vinsertf64x4_high(XMMRegister dst, Address src) {
1437     Assembler::vinsertf64x4(dst, dst, src, 1);
1438   }
1439 
1440   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1441   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1442     vinserti128(dst, dst, src, 0);
1443   }
1444   void vinserti128_low(XMMRegister dst, Address src) {
1445     vinserti128(dst, dst, src, 0);
1446   }
1447   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1448     vextracti128(dst, src, 0);
1449   }
1450   void vextracti128_low(Address dst, XMMRegister src) {
1451     vextracti128(dst, src, 0);
1452   }
1453 
1454   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1455     if (UseAVX > 2) {
1456       Assembler::vinsertf32x4(dst, dst, src, 0);
1457     } else {
1458       Assembler::vinsertf128(dst, dst, src, 0);
1459     }
1460   }
1461 
1462   void vinsertf128_low(XMMRegister dst, Address src) {
1463     if (UseAVX > 2) {
1464       Assembler::vinsertf32x4(dst, dst, src, 0);
1465     } else {
1466       Assembler::vinsertf128(dst, dst, src, 0);
1467     }
1468   }
1469 
1470   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1471     if (UseAVX > 2) {
1472       Assembler::vextractf32x4(dst, src, 0);
1473     } else {
1474       Assembler::vextractf128(dst, src, 0);
1475     }
1476   }
1477 
1478   void vextractf128_low(Address dst, XMMRegister src) {
1479     if (UseAVX > 2) {
1480       Assembler::vextractf32x4(dst, src, 0);
1481     } else {
1482       Assembler::vextractf128(dst, src, 0);
1483     }
1484   }
1485 
1486   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1487   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1488     Assembler::vinserti64x4(dst, dst, src, 0);
1489   }
1490   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1491     Assembler::vinsertf64x4(dst, dst, src, 0);
1492   }
1493   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1494     Assembler::vextracti64x4(dst, src, 0);
1495   }
1496   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1497     Assembler::vextractf64x4(dst, src, 0);
1498   }
1499   void vextractf64x4_low(Address dst, XMMRegister src) {
1500     Assembler::vextractf64x4(dst, src, 0);
1501   }
1502   void vinsertf64x4_low(XMMRegister dst, Address src) {
1503     Assembler::vinsertf64x4(dst, dst, src, 0);
1504   }
1505 
1506   // Carry-Less Multiplication Quadword
1507   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1508     // 0x00 - multiply lower 64 bits [0:63]
1509     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1510   }
1511   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1512     // 0x11 - multiply upper 64 bits [64:127]
1513     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1514   }
1515 
1516   // Data
1517 
1518   void cmov32( Condition cc, Register dst, Address  src);
1519   void cmov32( Condition cc, Register dst, Register src);
1520 
1521   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1522 
1523   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1524   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1525 
1526   void movoop(Register dst, jobject obj);
1527   void movoop(Address dst, jobject obj);
1528 
1529   void mov_metadata(Register dst, Metadata* obj);
1530   void mov_metadata(Address dst, Metadata* obj);
1531 
1532   void movptr(ArrayAddress dst, Register src);
1533   // can this do an lea?
1534   void movptr(Register dst, ArrayAddress src);
1535 
1536   void movptr(Register dst, Address src);
1537 
1538 #ifdef _LP64
1539   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1540 #else
1541   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1542 #endif
1543 
1544   void movptr(Register dst, intptr_t src);
1545   void movptr(Register dst, Register src);
1546   void movptr(Address dst, intptr_t src);
1547 
1548   void movptr(Address dst, Register src);
1549 
1550   void movptr(Register dst, RegisterOrConstant src) {
1551     if (src.is_constant()) movptr(dst, src.as_constant());
1552     else                   movptr(dst, src.as_register());
1553   }
1554 
1555 #ifdef _LP64
1556   // Generally the next two are only used for moving NULL
1557   // Although there are situations in initializing the mark word where
1558   // they could be used. They are dangerous.
1559 
1560   // They only exist on LP64 so that int32_t and intptr_t are not the same
1561   // and we have ambiguous declarations.
1562 
1563   void movptr(Address dst, int32_t imm32);
1564   void movptr(Register dst, int32_t imm32);
1565 #endif // _LP64
1566 
1567   // to avoid hiding movl
1568   void mov32(AddressLiteral dst, Register src);
1569   void mov32(Register dst, AddressLiteral src);
1570 
1571   // to avoid hiding movb
1572   void movbyte(ArrayAddress dst, int src);
1573 
1574   // Import other mov() methods from the parent class or else
1575   // they will be hidden by the following overriding declaration.
1576   using Assembler::movdl;
1577   using Assembler::movq;
1578   void movdl(XMMRegister dst, AddressLiteral src);
1579   void movq(XMMRegister dst, AddressLiteral src);
1580 
1581   // Can push value or effective address
1582   void pushptr(AddressLiteral src);
1583 
1584   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1585   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1586 
1587   void pushoop(jobject obj);
1588   void pushklass(Metadata* obj);
1589 
1590   // sign extend as need a l to ptr sized element
1591   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1592   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1593 
1594   // C2 compiled method's prolog code.
1595   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1596 
1597   // clear memory of size 'cnt' qwords, starting at 'base';
1598   // if 'is_large' is set, do not try to produce short loop
1599   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1600 
1601 #ifdef COMPILER2
1602   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1603                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1604 
1605   // IndexOf strings.
1606   // Small strings are loaded through stack if they cross page boundary.
1607   void string_indexof(Register str1, Register str2,
1608                       Register cnt1, Register cnt2,
1609                       int int_cnt2,  Register result,
1610                       XMMRegister vec, Register tmp,
1611                       int ae);
1612 
1613   // IndexOf for constant substrings with size >= 8 elements
1614   // which don't need to be loaded through stack.
1615   void string_indexofC8(Register str1, Register str2,
1616                       Register cnt1, Register cnt2,
1617                       int int_cnt2,  Register result,
1618                       XMMRegister vec, Register tmp,
1619                       int ae);
1620 
1621     // Smallest code: we don't need to load through stack,
1622     // check string tail.
1623 
1624   // helper function for string_compare
1625   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1626                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1627                           Address::ScaleFactor scale2, Register index, int ae);
1628   // Compare strings.
1629   void string_compare(Register str1, Register str2,
1630                       Register cnt1, Register cnt2, Register result,
1631                       XMMRegister vec1, int ae);
1632 
1633   // Search for Non-ASCII character (Negative byte value) in a byte array,
1634   // return true if it has any and false otherwise.
1635   void has_negatives(Register ary1, Register len,
1636                      Register result, Register tmp1,
1637                      XMMRegister vec1, XMMRegister vec2);
1638 
1639   // Compare char[] or byte[] arrays.
1640   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1641                      Register limit, Register result, Register chr,
1642                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1643 
1644 #endif
1645 
1646   // Fill primitive arrays
1647   void generate_fill(BasicType t, bool aligned,
1648                      Register to, Register value, Register count,
1649                      Register rtmp, XMMRegister xtmp);
1650 
1651   void encode_iso_array(Register src, Register dst, Register len,
1652                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1653                         XMMRegister tmp4, Register tmp5, Register result);
1654 
1655 #ifdef _LP64
1656   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1657   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1658                              Register y, Register y_idx, Register z,
1659                              Register carry, Register product,
1660                              Register idx, Register kdx);
1661   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1662                               Register yz_idx, Register idx,
1663                               Register carry, Register product, int offset);
1664   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1665                                     Register carry, Register carry2,
1666                                     Register idx, Register jdx,
1667                                     Register yz_idx1, Register yz_idx2,
1668                                     Register tmp, Register tmp3, Register tmp4);
1669   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1670                                Register yz_idx, Register idx, Register jdx,
1671                                Register carry, Register product,
1672                                Register carry2);
1673   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1674                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1675   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1676                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1677   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1678                             Register tmp2);
1679   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1680                        Register rdxReg, Register raxReg);
1681   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1682   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1683                        Register tmp3, Register tmp4);
1684   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1685                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1686 
1687   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1688                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1689                Register raxReg);
1690   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1691                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1692                Register raxReg);
1693   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1694                            Register result, Register tmp1, Register tmp2,
1695                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1696 #endif
1697 
1698   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1699   void update_byte_crc32(Register crc, Register val, Register table);
1700   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1701   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1702   // Note on a naming convention:
1703   // Prefix w = register only used on a Westmere+ architecture
1704   // Prefix n = register only used on a Nehalem architecture
1705 #ifdef _LP64
1706   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1707                        Register tmp1, Register tmp2, Register tmp3);
1708 #else
1709   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1710                        Register tmp1, Register tmp2, Register tmp3,
1711                        XMMRegister xtmp1, XMMRegister xtmp2);
1712 #endif
1713   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1714                         Register in_out,
1715                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1716                         XMMRegister w_xtmp2,
1717                         Register tmp1,
1718                         Register n_tmp2, Register n_tmp3);
1719   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1720                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1721                        Register tmp1, Register tmp2,
1722                        Register n_tmp3);
1723   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1724                          Register in_out1, Register in_out2, Register in_out3,
1725                          Register tmp1, Register tmp2, Register tmp3,
1726                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1727                          Register tmp4, Register tmp5,
1728                          Register n_tmp6);
1729   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1730                             Register tmp1, Register tmp2, Register tmp3,
1731                             Register tmp4, Register tmp5, Register tmp6,
1732                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1733                             bool is_pclmulqdq_supported);
1734   // Fold 128-bit data chunk
1735   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1736   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1737   // Fold 8-bit data
1738   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1739   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1740 
1741   // Compress char[] array to byte[].
1742   void char_array_compress(Register src, Register dst, Register len,
1743                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1744                            XMMRegister tmp4, Register tmp5, Register result);
1745 
1746   // Inflate byte[] array to char[].
1747   void byte_array_inflate(Register src, Register dst, Register len,
1748                           XMMRegister tmp1, Register tmp2);
1749 
1750 };
1751 
1752 /**
1753  * class SkipIfEqual:
1754  *
1755  * Instantiating this class will result in assembly code being output that will
1756  * jump around any code emitted between the creation of the instance and it's
1757  * automatic destruction at the end of a scope block, depending on the value of
1758  * the flag passed to the constructor, which will be checked at run-time.
1759  */
1760 class SkipIfEqual {
1761  private:
1762   MacroAssembler* _masm;
1763   Label _label;
1764 
1765  public:
1766    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1767    ~SkipIfEqual();
1768 };
1769 
1770 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP