1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/interp_masm.hpp"
  30 #include "interpreter/templateTable.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 #include "utilities/macros.hpp"
  40 
  41 #define __ _masm->
  42 
  43 // Global Register Names
  44 static const Register rbcp     = LP64_ONLY(r13) NOT_LP64(rsi);
  45 static const Register rlocals  = LP64_ONLY(r14) NOT_LP64(rdi);
  46 
  47 // Platform-dependent initialization
  48 void TemplateTable::pd_initialize() {
  49   // No x86 specific initialization
  50 }
  51 
  52 // Address Computation: local variables
  53 static inline Address iaddress(int n) {
  54   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  55 }
  56 
  57 static inline Address laddress(int n) {
  58   return iaddress(n + 1);
  59 }
  60 
  61 #ifndef _LP64
  62 static inline Address haddress(int n) {
  63   return iaddress(n + 0);
  64 }
  65 #endif
  66 
  67 static inline Address faddress(int n) {
  68   return iaddress(n);
  69 }
  70 
  71 static inline Address daddress(int n) {
  72   return laddress(n);
  73 }
  74 
  75 static inline Address aaddress(int n) {
  76   return iaddress(n);
  77 }
  78 
  79 static inline Address iaddress(Register r) {
  80   return Address(rlocals, r, Address::times_ptr);
  81 }
  82 
  83 static inline Address laddress(Register r) {
  84   return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
  85 }
  86 
  87 #ifndef _LP64
  88 static inline Address haddress(Register r)       {
  89   return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  90 }
  91 #endif
  92 
  93 static inline Address faddress(Register r) {
  94   return iaddress(r);
  95 }
  96 
  97 static inline Address daddress(Register r) {
  98   return laddress(r);
  99 }
 100 
 101 static inline Address aaddress(Register r) {
 102   return iaddress(r);
 103 }
 104 
 105 
 106 // expression stack
 107 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
 108 // data beyond the rsp which is potentially unsafe in an MT environment;
 109 // an interrupt may overwrite that data.)
 110 static inline Address at_rsp   () {
 111   return Address(rsp, 0);
 112 }
 113 
 114 // At top of Java expression stack which may be different than esp().  It
 115 // isn't for category 1 objects.
 116 static inline Address at_tos   () {
 117   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
 118 }
 119 
 120 static inline Address at_tos_p1() {
 121   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 122 }
 123 
 124 static inline Address at_tos_p2() {
 125   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 126 }
 127 
 128 // Condition conversion
 129 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 130   switch (cc) {
 131   case TemplateTable::equal        : return Assembler::notEqual;
 132   case TemplateTable::not_equal    : return Assembler::equal;
 133   case TemplateTable::less         : return Assembler::greaterEqual;
 134   case TemplateTable::less_equal   : return Assembler::greater;
 135   case TemplateTable::greater      : return Assembler::lessEqual;
 136   case TemplateTable::greater_equal: return Assembler::less;
 137   }
 138   ShouldNotReachHere();
 139   return Assembler::zero;
 140 }
 141 
 142 
 143 
 144 // Miscelaneous helper routines
 145 // Store an oop (or NULL) at the address described by obj.
 146 // If val == noreg this means store a NULL
 147 
 148 
 149 static void do_oop_store(InterpreterMacroAssembler* _masm,
 150                          Address obj,
 151                          Register val,
 152                          BarrierSet::Name barrier,
 153                          bool precise) {
 154   assert(val == noreg || val == rax, "parameter is just for looks");
 155   switch (barrier) {
 156 #if INCLUDE_ALL_GCS
 157     case BarrierSet::G1SATBCTLogging:
 158       {
 159         // flatten object address if needed
 160         // We do it regardless of precise because we need the registers
 161         if (obj.index() == noreg && obj.disp() == 0) {
 162           if (obj.base() != rdx) {
 163             __ movptr(rdx, obj.base());
 164           }
 165         } else {
 166           __ lea(rdx, obj);
 167         }
 168 
 169         Register rtmp    = LP64_ONLY(r8)         NOT_LP64(rsi);
 170         Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 171 
 172         NOT_LP64(__ get_thread(rcx));
 173         NOT_LP64(__ save_bcp());
 174 
 175         __ g1_write_barrier_pre(rdx /* obj */,
 176                                 rbx /* pre_val */,
 177                                 rthread /* thread */,
 178                                 rtmp  /* tmp */,
 179                                 val != noreg /* tosca_live */,
 180                                 false /* expand_call */);
 181         if (val == noreg) {
 182           __ store_heap_oop_null(Address(rdx, 0));
 183         } else {
 184           // G1 barrier needs uncompressed oop for region cross check.
 185           Register new_val = val;
 186           if (UseCompressedOops) {
 187             new_val = rbx;
 188             __ movptr(new_val, val);
 189           }
 190           __ store_heap_oop(Address(rdx, 0), val);
 191           __ g1_write_barrier_post(rdx /* store_adr */,
 192                                    new_val /* new_val */,
 193                                    rthread /* thread */,
 194                                    rtmp /* tmp */,
 195                                    rbx /* tmp2 */);
 196         }
 197         NOT_LP64( __ restore_bcp());
 198       }
 199       break;
 200 #endif // INCLUDE_ALL_GCS
 201     case BarrierSet::CardTableForRS:
 202     case BarrierSet::CardTableExtension:
 203       {
 204         if (val == noreg) {
 205           __ store_heap_oop_null(obj);
 206         } else {
 207           __ store_heap_oop(obj, val);
 208           // flatten object address if needed
 209           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 210             __ store_check(obj.base());
 211           } else {
 212             __ lea(rdx, obj);
 213             __ store_check(rdx);
 214           }
 215         }
 216       }
 217       break;
 218     case BarrierSet::ModRef:
 219       if (val == noreg) {
 220         __ store_heap_oop_null(obj);
 221       } else {
 222         __ store_heap_oop(obj, val);
 223       }
 224       break;
 225     default      :
 226       ShouldNotReachHere();
 227 
 228   }
 229 }
 230 
 231 Address TemplateTable::at_bcp(int offset) {
 232   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 233   return Address(rbcp, offset);
 234 }
 235 
 236 
 237 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 238                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 239                                    int byte_no) {
 240   if (!RewriteBytecodes)  return;
 241   Label L_patch_done;
 242 
 243   switch (bc) {
 244   case Bytecodes::_fast_qputfield:
 245     __ jmp(L_patch_done); // don't patch yet
 246     break;
 247   case Bytecodes::_fast_aputfield:
 248   case Bytecodes::_fast_bputfield:
 249   case Bytecodes::_fast_zputfield:
 250   case Bytecodes::_fast_cputfield:
 251   case Bytecodes::_fast_dputfield:
 252   case Bytecodes::_fast_fputfield:
 253   case Bytecodes::_fast_iputfield:
 254   case Bytecodes::_fast_lputfield:
 255   case Bytecodes::_fast_sputfield:
 256     {
 257       // We skip bytecode quickening for putfield instructions when
 258       // the put_code written to the constant pool cache is zero.
 259       // This is required so that every execution of this instruction
 260       // calls out to InterpreterRuntime::resolve_get_put to do
 261       // additional, required work.
 262       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 263       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 264       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 265       __ movl(bc_reg, bc);
 266       __ cmpl(temp_reg, (int) 0);
 267       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 268     }
 269     break;
 270   default:
 271     assert(byte_no == -1, "sanity");
 272     // the pair bytecodes have already done the load.
 273     if (load_bc_into_bc_reg) {
 274       __ movl(bc_reg, bc);
 275     }
 276   }
 277 
 278   if (JvmtiExport::can_post_breakpoint()) {
 279     Label L_fast_patch;
 280     // if a breakpoint is present we can't rewrite the stream directly
 281     __ movzbl(temp_reg, at_bcp(0));
 282     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 283     __ jcc(Assembler::notEqual, L_fast_patch);
 284     __ get_method(temp_reg);
 285     // Let breakpoint table handling rewrite to quicker bytecode
 286     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
 287 #ifndef ASSERT
 288     __ jmpb(L_patch_done);
 289 #else
 290     __ jmp(L_patch_done);
 291 #endif
 292     __ bind(L_fast_patch);
 293   }
 294 
 295 #ifdef ASSERT
 296   Label L_okay;
 297   __ load_unsigned_byte(temp_reg, at_bcp(0));
 298   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 299   __ jcc(Assembler::equal, L_okay);
 300   __ cmpl(temp_reg, bc_reg);
 301   __ jcc(Assembler::equal, L_okay);
 302   __ stop("patching the wrong bytecode");
 303   __ bind(L_okay);
 304 #endif
 305 
 306   // patch bytecode
 307   __ movb(at_bcp(0), bc_reg);
 308   __ bind(L_patch_done);
 309 }
 310 // Individual instructions
 311 
 312 
 313 void TemplateTable::nop() {
 314   transition(vtos, vtos);
 315   // nothing to do
 316 }
 317 
 318 void TemplateTable::shouldnotreachhere() {
 319   transition(vtos, vtos);
 320   __ stop("shouldnotreachhere bytecode");
 321 }
 322 
 323 void TemplateTable::aconst_null() {
 324   transition(vtos, atos);
 325   __ xorl(rax, rax);
 326 }
 327 
 328 void TemplateTable::iconst(int value) {
 329   transition(vtos, itos);
 330   if (value == 0) {
 331     __ xorl(rax, rax);
 332   } else {
 333     __ movl(rax, value);
 334   }
 335 }
 336 
 337 void TemplateTable::lconst(int value) {
 338   transition(vtos, ltos);
 339   if (value == 0) {
 340     __ xorl(rax, rax);
 341   } else {
 342     __ movl(rax, value);
 343   }
 344 #ifndef _LP64
 345   assert(value >= 0, "check this code");
 346   __ xorptr(rdx, rdx);
 347 #endif
 348 }
 349 
 350 
 351 
 352 void TemplateTable::fconst(int value) {
 353   transition(vtos, ftos);
 354   if (UseSSE >= 1) {
 355     static float one = 1.0f, two = 2.0f;
 356     switch (value) {
 357     case 0:
 358       __ xorps(xmm0, xmm0);
 359       break;
 360     case 1:
 361       __ movflt(xmm0, ExternalAddress((address) &one));
 362       break;
 363     case 2:
 364       __ movflt(xmm0, ExternalAddress((address) &two));
 365       break;
 366     default:
 367       ShouldNotReachHere();
 368       break;
 369     }
 370   } else {
 371 #ifdef _LP64
 372     ShouldNotReachHere();
 373 #else
 374            if (value == 0) { __ fldz();
 375     } else if (value == 1) { __ fld1();
 376     } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 377     } else                 { ShouldNotReachHere();
 378     }
 379 #endif // _LP64
 380   }
 381 }
 382 
 383 void TemplateTable::dconst(int value) {
 384   transition(vtos, dtos);
 385   if (UseSSE >= 2) {
 386     static double one = 1.0;
 387     switch (value) {
 388     case 0:
 389       __ xorpd(xmm0, xmm0);
 390       break;
 391     case 1:
 392       __ movdbl(xmm0, ExternalAddress((address) &one));
 393       break;
 394     default:
 395       ShouldNotReachHere();
 396       break;
 397     }
 398   } else {
 399 #ifdef _LP64
 400     ShouldNotReachHere();
 401 #else
 402            if (value == 0) { __ fldz();
 403     } else if (value == 1) { __ fld1();
 404     } else                 { ShouldNotReachHere();
 405     }
 406 #endif
 407   }
 408 }
 409 
 410 void TemplateTable::bipush() {
 411   transition(vtos, itos);
 412   __ load_signed_byte(rax, at_bcp(1));
 413 }
 414 
 415 void TemplateTable::sipush() {
 416   transition(vtos, itos);
 417   __ load_unsigned_short(rax, at_bcp(1));
 418   __ bswapl(rax);
 419   __ sarl(rax, 16);
 420 }
 421 
 422 void TemplateTable::ldc(bool wide) {
 423   transition(vtos, vtos);
 424   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 425   Label call_ldc, notFloat, notClass, notInt, Done;
 426 
 427   if (wide) {
 428     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 429   } else {
 430     __ load_unsigned_byte(rbx, at_bcp(1));
 431   }
 432 
 433   __ get_cpool_and_tags(rcx, rax);
 434   const int base_offset = ConstantPool::header_size() * wordSize;
 435   const int tags_offset = Array<u1>::base_offset_in_bytes();
 436 
 437   // get type
 438   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 439 
 440   // unresolved class - get the resolved class
 441   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 442   __ jccb(Assembler::equal, call_ldc);
 443 
 444   // unresolved class in error state - call into runtime to throw the error
 445   // from the first resolution attempt
 446   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 447   __ jccb(Assembler::equal, call_ldc);
 448 
 449   // resolved class - need to call vm to get java mirror of the class
 450   __ cmpl(rdx, JVM_CONSTANT_Class);
 451   __ jcc(Assembler::notEqual, notClass);
 452 
 453   __ bind(call_ldc);
 454 
 455   __ movl(rarg, wide);
 456   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
 457 
 458   __ push(atos);
 459   __ jmp(Done);
 460 
 461   __ bind(notClass);
 462   __ cmpl(rdx, JVM_CONSTANT_Float);
 463   __ jccb(Assembler::notEqual, notFloat);
 464 
 465   // ftos
 466   __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
 467   __ push(ftos);
 468   __ jmp(Done);
 469 
 470   __ bind(notFloat);
 471   __ cmpl(rdx, JVM_CONSTANT_Integer);
 472   __ jccb(Assembler::notEqual, notInt);
 473 
 474   // itos
 475   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 476   __ push(itos);
 477   __ jmp(Done);
 478 
 479   // assume the tag is for condy; if not, the VM runtime will tell us
 480   __ bind(notInt);
 481   condy_helper(Done);
 482 
 483   __ bind(Done);
 484 }
 485 
 486 // Fast path for caching oop constants.
 487 void TemplateTable::fast_aldc(bool wide) {
 488   transition(vtos, atos);
 489 
 490   Register result = rax;
 491   Register tmp = rdx;
 492   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 493   int index_size = wide ? sizeof(u2) : sizeof(u1);
 494 
 495   Label resolved;
 496 
 497   // We are resolved if the resolved reference cache entry contains a
 498   // non-null object (String, MethodType, etc.)
 499   assert_different_registers(result, tmp);
 500   __ get_cache_index_at_bcp(tmp, 1, index_size);
 501   __ load_resolved_reference_at_index(result, tmp);
 502   __ testptr(result, result);
 503   __ jcc(Assembler::notZero, resolved);
 504 
 505   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 506 
 507   // first time invocation - must resolve first
 508   __ movl(rarg, (int)bytecode());
 509   __ call_VM(result, entry, rarg);
 510   __ bind(resolved);
 511 
 512   { // Check for the null sentinel.
 513     // If we just called the VM, that already did the mapping for us,
 514     // but it's harmless to retry.
 515     Label notNull;
 516     ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr());
 517     __ movptr(tmp, null_sentinel);
 518     __ cmpptr(tmp, result);
 519     __ jccb(Assembler::notEqual, notNull);
 520     __ xorptr(result, result);  // NULL object reference
 521     __ bind(notNull);
 522   }
 523 
 524   if (VerifyOops) {
 525     __ verify_oop(result);
 526   }
 527 }
 528 
 529 void TemplateTable::ldc2_w() {
 530   transition(vtos, vtos);
 531   Label notDouble, notLong, Done;
 532   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 533 
 534   __ get_cpool_and_tags(rcx, rax);
 535   const int base_offset = ConstantPool::header_size() * wordSize;
 536   const int tags_offset = Array<u1>::base_offset_in_bytes();
 537 
 538   // get type
 539   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 540   __ cmpl(rdx, JVM_CONSTANT_Double);
 541   __ jccb(Assembler::notEqual, notDouble);
 542 
 543   // dtos
 544   __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
 545   __ push(dtos);
 546 
 547   __ jmp(Done);
 548   __ bind(notDouble);
 549   __ cmpl(rdx, JVM_CONSTANT_Long);
 550   __ jccb(Assembler::notEqual, notLong);
 551 
 552   // ltos
 553   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 554   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 555   __ push(ltos);
 556   __ jmp(Done);
 557 
 558   __ bind(notLong);
 559   condy_helper(Done);
 560 
 561   __ bind(Done);
 562 }
 563 
 564 void TemplateTable::condy_helper(Label& Done) {
 565   const Register obj = rax;
 566   const Register off = rbx;
 567   const Register flags = rcx;
 568   const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 569   __ movl(rarg, (int)bytecode());
 570   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
 571 #ifndef _LP64
 572   // borrow rdi from locals
 573   __ get_thread(rdi);
 574   __ get_vm_result_2(flags, rdi);
 575   __ restore_locals();
 576 #else
 577   __ get_vm_result_2(flags, r15_thread);
 578 #endif
 579   // VMr = obj = base address to find primitive value to push
 580   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 581   __ movl(off, flags);
 582   __ andl(off, ConstantPoolCacheEntry::field_index_mask);
 583   const Address field(obj, off, Address::times_1, 0*wordSize);
 584 
 585   // What sort of thing are we loading?
 586   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
 587   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
 588 
 589   switch (bytecode()) {
 590   case Bytecodes::_ldc:
 591   case Bytecodes::_ldc_w:
 592     {
 593       // tos in (itos, ftos, stos, btos, ctos, ztos)
 594       Label notInt, notFloat, notShort, notByte, notChar, notBool;
 595       __ cmpl(flags, itos);
 596       __ jcc(Assembler::notEqual, notInt);
 597       // itos
 598       __ movl(rax, field);
 599       __ push(itos);
 600       __ jmp(Done);
 601 
 602       __ bind(notInt);
 603       __ cmpl(flags, ftos);
 604       __ jcc(Assembler::notEqual, notFloat);
 605       // ftos
 606       __ load_float(field);
 607       __ push(ftos);
 608       __ jmp(Done);
 609 
 610       __ bind(notFloat);
 611       __ cmpl(flags, stos);
 612       __ jcc(Assembler::notEqual, notShort);
 613       // stos
 614       __ load_signed_short(rax, field);
 615       __ push(stos);
 616       __ jmp(Done);
 617 
 618       __ bind(notShort);
 619       __ cmpl(flags, btos);
 620       __ jcc(Assembler::notEqual, notByte);
 621       // btos
 622       __ load_signed_byte(rax, field);
 623       __ push(btos);
 624       __ jmp(Done);
 625 
 626       __ bind(notByte);
 627       __ cmpl(flags, ctos);
 628       __ jcc(Assembler::notEqual, notChar);
 629       // ctos
 630       __ load_unsigned_short(rax, field);
 631       __ push(ctos);
 632       __ jmp(Done);
 633 
 634       __ bind(notChar);
 635       __ cmpl(flags, ztos);
 636       __ jcc(Assembler::notEqual, notBool);
 637       // ztos
 638       __ load_signed_byte(rax, field);
 639       __ push(ztos);
 640       __ jmp(Done);
 641 
 642       __ bind(notBool);
 643       break;
 644     }
 645 
 646   case Bytecodes::_ldc2_w:
 647     {
 648       Label notLong, notDouble;
 649       __ cmpl(flags, ltos);
 650       __ jcc(Assembler::notEqual, notLong);
 651       // ltos
 652       __ movptr(rax, field);
 653       NOT_LP64(__ movptr(rdx, field.plus_disp(4)));
 654       __ push(ltos);
 655       __ jmp(Done);
 656 
 657       __ bind(notLong);
 658       __ cmpl(flags, dtos);
 659       __ jcc(Assembler::notEqual, notDouble);
 660       // dtos
 661       __ load_double(field);
 662       __ push(dtos);
 663       __ jmp(Done);
 664 
 665       __ bind(notDouble);
 666       break;
 667     }
 668 
 669   default:
 670     ShouldNotReachHere();
 671   }
 672 
 673   __ stop("bad ldc/condy");
 674 }
 675 
 676 void TemplateTable::locals_index(Register reg, int offset) {
 677   __ load_unsigned_byte(reg, at_bcp(offset));
 678   __ negptr(reg);
 679 }
 680 
 681 void TemplateTable::iload() {
 682   iload_internal();
 683 }
 684 
 685 void TemplateTable::nofast_iload() {
 686   iload_internal(may_not_rewrite);
 687 }
 688 
 689 void TemplateTable::iload_internal(RewriteControl rc) {
 690   transition(vtos, itos);
 691   if (RewriteFrequentPairs && rc == may_rewrite) {
 692     Label rewrite, done;
 693     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 694     LP64_ONLY(assert(rbx != bc, "register damaged"));
 695 
 696     // get next byte
 697     __ load_unsigned_byte(rbx,
 698                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 699     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 700     // last two iloads in a pair.  Comparing against fast_iload means that
 701     // the next bytecode is neither an iload or a caload, and therefore
 702     // an iload pair.
 703     __ cmpl(rbx, Bytecodes::_iload);
 704     __ jcc(Assembler::equal, done);
 705 
 706     __ cmpl(rbx, Bytecodes::_fast_iload);
 707     __ movl(bc, Bytecodes::_fast_iload2);
 708 
 709     __ jccb(Assembler::equal, rewrite);
 710 
 711     // if _caload, rewrite to fast_icaload
 712     __ cmpl(rbx, Bytecodes::_caload);
 713     __ movl(bc, Bytecodes::_fast_icaload);
 714     __ jccb(Assembler::equal, rewrite);
 715 
 716     // rewrite so iload doesn't check again.
 717     __ movl(bc, Bytecodes::_fast_iload);
 718 
 719     // rewrite
 720     // bc: fast bytecode
 721     __ bind(rewrite);
 722     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 723     __ bind(done);
 724   }
 725 
 726   // Get the local value into tos
 727   locals_index(rbx);
 728   __ movl(rax, iaddress(rbx));
 729 }
 730 
 731 void TemplateTable::fast_iload2() {
 732   transition(vtos, itos);
 733   locals_index(rbx);
 734   __ movl(rax, iaddress(rbx));
 735   __ push(itos);
 736   locals_index(rbx, 3);
 737   __ movl(rax, iaddress(rbx));
 738 }
 739 
 740 void TemplateTable::fast_iload() {
 741   transition(vtos, itos);
 742   locals_index(rbx);
 743   __ movl(rax, iaddress(rbx));
 744 }
 745 
 746 void TemplateTable::lload() {
 747   transition(vtos, ltos);
 748   locals_index(rbx);
 749   __ movptr(rax, laddress(rbx));
 750   NOT_LP64(__ movl(rdx, haddress(rbx)));
 751 }
 752 
 753 void TemplateTable::fload() {
 754   transition(vtos, ftos);
 755   locals_index(rbx);
 756   __ load_float(faddress(rbx));
 757 }
 758 
 759 void TemplateTable::dload() {
 760   transition(vtos, dtos);
 761   locals_index(rbx);
 762   __ load_double(daddress(rbx));
 763 }
 764 
 765 void TemplateTable::aload() {
 766   transition(vtos, atos);
 767   locals_index(rbx);
 768   __ movptr(rax, aaddress(rbx));
 769 }
 770 
 771 void TemplateTable::locals_index_wide(Register reg) {
 772   __ load_unsigned_short(reg, at_bcp(2));
 773   __ bswapl(reg);
 774   __ shrl(reg, 16);
 775   __ negptr(reg);
 776 }
 777 
 778 void TemplateTable::wide_iload() {
 779   transition(vtos, itos);
 780   locals_index_wide(rbx);
 781   __ movl(rax, iaddress(rbx));
 782 }
 783 
 784 void TemplateTable::wide_lload() {
 785   transition(vtos, ltos);
 786   locals_index_wide(rbx);
 787   __ movptr(rax, laddress(rbx));
 788   NOT_LP64(__ movl(rdx, haddress(rbx)));
 789 }
 790 
 791 void TemplateTable::wide_fload() {
 792   transition(vtos, ftos);
 793   locals_index_wide(rbx);
 794   __ load_float(faddress(rbx));
 795 }
 796 
 797 void TemplateTable::wide_dload() {
 798   transition(vtos, dtos);
 799   locals_index_wide(rbx);
 800   __ load_double(daddress(rbx));
 801 }
 802 
 803 void TemplateTable::wide_aload() {
 804   transition(vtos, atos);
 805   locals_index_wide(rbx);
 806   __ movptr(rax, aaddress(rbx));
 807 }
 808 
 809 void TemplateTable::index_check(Register array, Register index) {
 810   // Pop ptr into array
 811   __ pop_ptr(array);
 812   index_check_without_pop(array, index);
 813 }
 814 
 815 void TemplateTable::index_check_without_pop(Register array, Register index) {
 816   // destroys rbx
 817   // check array
 818   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 819   // sign extend index for use by indexed load
 820   __ movl2ptr(index, index);
 821   // check index
 822   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 823   if (index != rbx) {
 824     // ??? convention: move aberrant index into rbx for exception message
 825     assert(rbx != array, "different registers");
 826     __ movl(rbx, index);
 827   }
 828   __ jump_cc(Assembler::aboveEqual,
 829              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 830 }
 831 
 832 
 833 void TemplateTable::iaload() {
 834   transition(itos, itos);
 835   // rax: index
 836   // rdx: array
 837   index_check(rdx, rax); // kills rbx
 838   __ movl(rax, Address(rdx, rax,
 839                        Address::times_4,
 840                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 841 }
 842 
 843 void TemplateTable::laload() {
 844   transition(itos, ltos);
 845   // rax: index
 846   // rdx: array
 847   index_check(rdx, rax); // kills rbx
 848   NOT_LP64(__ mov(rbx, rax));
 849   // rbx,: index
 850   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
 851   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
 852 }
 853 
 854 
 855 
 856 void TemplateTable::faload() {
 857   transition(itos, ftos);
 858   // rax: index
 859   // rdx: array
 860   index_check(rdx, rax); // kills rbx
 861   __ load_float(Address(rdx, rax,
 862                         Address::times_4,
 863                         arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 864 }
 865 
 866 void TemplateTable::daload() {
 867   transition(itos, dtos);
 868   // rax: index
 869   // rdx: array
 870   index_check(rdx, rax); // kills rbx
 871   __ load_double(Address(rdx, rax,
 872                          Address::times_8,
 873                          arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 874 }
 875 
 876 void TemplateTable::aaload() {
 877   transition(itos, atos);
 878 
 879   Register array = rcx;
 880   Register index = rax;
 881 
 882   index_check(array, index); // kills rbx
 883   if (EnableValhalla) {
 884     Label is_flat_array, done;
 885     __ test_flat_array_oop(array, rbx, is_flat_array);
 886     __ load_heap_oop(rax, Address(array, index,
 887                                      UseCompressedOops ? Address::times_4 : Address::times_ptr,
 888                                      arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 889     __ jmp(done);
 890     __ bind(is_flat_array);
 891     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_load), array, index);
 892     __ bind(done);
 893   } else {
 894     __ load_heap_oop(rax, Address(array, index,
 895                                      UseCompressedOops ? Address::times_4 : Address::times_ptr,
 896                                      arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 897   }
 898 }
 899 
 900 void TemplateTable::baload() {
 901   transition(itos, itos);
 902   // rax: index
 903   // rdx: array
 904   index_check(rdx, rax); // kills rbx
 905   __ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 906 }
 907 
 908 void TemplateTable::caload() {
 909   transition(itos, itos);
 910   // rax: index
 911   // rdx: array
 912   index_check(rdx, rax); // kills rbx
 913   __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 914 }
 915 
 916 // iload followed by caload frequent pair
 917 void TemplateTable::fast_icaload() {
 918   transition(vtos, itos);
 919   // load index out of locals
 920   locals_index(rbx);
 921   __ movl(rax, iaddress(rbx));
 922 
 923   // rax: index
 924   // rdx: array
 925   index_check(rdx, rax); // kills rbx
 926   __ load_unsigned_short(rax,
 927                          Address(rdx, rax,
 928                                  Address::times_2,
 929                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 930 }
 931 
 932 
 933 void TemplateTable::saload() {
 934   transition(itos, itos);
 935   // rax: index
 936   // rdx: array
 937   index_check(rdx, rax); // kills rbx
 938   __ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 939 }
 940 
 941 void TemplateTable::iload(int n) {
 942   transition(vtos, itos);
 943   __ movl(rax, iaddress(n));
 944 }
 945 
 946 void TemplateTable::lload(int n) {
 947   transition(vtos, ltos);
 948   __ movptr(rax, laddress(n));
 949   NOT_LP64(__ movptr(rdx, haddress(n)));
 950 }
 951 
 952 void TemplateTable::fload(int n) {
 953   transition(vtos, ftos);
 954   __ load_float(faddress(n));
 955 }
 956 
 957 void TemplateTable::dload(int n) {
 958   transition(vtos, dtos);
 959   __ load_double(daddress(n));
 960 }
 961 
 962 void TemplateTable::aload(int n) {
 963   transition(vtos, atos);
 964   __ movptr(rax, aaddress(n));
 965 }
 966 
 967 void TemplateTable::aload_0() {
 968   aload_0_internal();
 969 }
 970 
 971 void TemplateTable::nofast_aload_0() {
 972   aload_0_internal(may_not_rewrite);
 973 }
 974 
 975 void TemplateTable::aload_0_internal(RewriteControl rc) {
 976   transition(vtos, atos);
 977   // According to bytecode histograms, the pairs:
 978   //
 979   // _aload_0, _fast_igetfield
 980   // _aload_0, _fast_agetfield
 981   // _aload_0, _fast_fgetfield
 982   //
 983   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 984   // _aload_0 bytecode checks if the next bytecode is either
 985   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 986   // rewrites the current bytecode into a pair bytecode; otherwise it
 987   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 988   // the pair check anymore.
 989   //
 990   // Note: If the next bytecode is _getfield, the rewrite must be
 991   //       delayed, otherwise we may miss an opportunity for a pair.
 992   //
 993   // Also rewrite frequent pairs
 994   //   aload_0, aload_1
 995   //   aload_0, iload_1
 996   // These bytecodes with a small amount of code are most profitable
 997   // to rewrite
 998   if (RewriteFrequentPairs && rc == may_rewrite) {
 999     Label rewrite, done;
1000 
1001     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1002     LP64_ONLY(assert(rbx != bc, "register damaged"));
1003 
1004     // get next byte
1005     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
1006 
1007     // if _getfield then wait with rewrite
1008     __ cmpl(rbx, Bytecodes::_getfield);
1009     __ jcc(Assembler::equal, done);
1010 
1011     // if _igetfield then rewrite to _fast_iaccess_0
1012     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
1013     __ cmpl(rbx, Bytecodes::_fast_igetfield);
1014     __ movl(bc, Bytecodes::_fast_iaccess_0);
1015     __ jccb(Assembler::equal, rewrite);
1016 
1017     // if _agetfield then rewrite to _fast_aaccess_0
1018     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
1019     __ cmpl(rbx, Bytecodes::_fast_agetfield);
1020     __ movl(bc, Bytecodes::_fast_aaccess_0);
1021     __ jccb(Assembler::equal, rewrite);
1022 
1023     // if _fgetfield then rewrite to _fast_faccess_0
1024     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
1025     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
1026     __ movl(bc, Bytecodes::_fast_faccess_0);
1027     __ jccb(Assembler::equal, rewrite);
1028 
1029     // else rewrite to _fast_aload0
1030     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
1031     __ movl(bc, Bytecodes::_fast_aload_0);
1032 
1033     // rewrite
1034     // bc: fast bytecode
1035     __ bind(rewrite);
1036     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
1037 
1038     __ bind(done);
1039   }
1040 
1041   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
1042   aload(0);
1043 }
1044 
1045 void TemplateTable::istore() {
1046   transition(itos, vtos);
1047   locals_index(rbx);
1048   __ movl(iaddress(rbx), rax);
1049 }
1050 
1051 
1052 void TemplateTable::lstore() {
1053   transition(ltos, vtos);
1054   locals_index(rbx);
1055   __ movptr(laddress(rbx), rax);
1056   NOT_LP64(__ movptr(haddress(rbx), rdx));
1057 }
1058 
1059 void TemplateTable::fstore() {
1060   transition(ftos, vtos);
1061   locals_index(rbx);
1062   __ store_float(faddress(rbx));
1063 }
1064 
1065 void TemplateTable::dstore() {
1066   transition(dtos, vtos);
1067   locals_index(rbx);
1068   __ store_double(daddress(rbx));
1069 }
1070 
1071 void TemplateTable::astore() {
1072   transition(vtos, vtos);
1073   __ pop_ptr(rax);
1074   locals_index(rbx);
1075   __ movptr(aaddress(rbx), rax);
1076 }
1077 
1078 void TemplateTable::wide_istore() {
1079   transition(vtos, vtos);
1080   __ pop_i();
1081   locals_index_wide(rbx);
1082   __ movl(iaddress(rbx), rax);
1083 }
1084 
1085 void TemplateTable::wide_lstore() {
1086   transition(vtos, vtos);
1087   NOT_LP64(__ pop_l(rax, rdx));
1088   LP64_ONLY(__ pop_l());
1089   locals_index_wide(rbx);
1090   __ movptr(laddress(rbx), rax);
1091   NOT_LP64(__ movl(haddress(rbx), rdx));
1092 }
1093 
1094 void TemplateTable::wide_fstore() {
1095 #ifdef _LP64
1096   transition(vtos, vtos);
1097   __ pop_f(xmm0);
1098   locals_index_wide(rbx);
1099   __ movflt(faddress(rbx), xmm0);
1100 #else
1101   wide_istore();
1102 #endif
1103 }
1104 
1105 void TemplateTable::wide_dstore() {
1106 #ifdef _LP64
1107   transition(vtos, vtos);
1108   __ pop_d(xmm0);
1109   locals_index_wide(rbx);
1110   __ movdbl(daddress(rbx), xmm0);
1111 #else
1112   wide_lstore();
1113 #endif
1114 }
1115 
1116 void TemplateTable::wide_astore() {
1117   transition(vtos, vtos);
1118   __ pop_ptr(rax);
1119   locals_index_wide(rbx);
1120   __ movptr(aaddress(rbx), rax);
1121 }
1122 
1123 void TemplateTable::iastore() {
1124   transition(itos, vtos);
1125   __ pop_i(rbx);
1126   // rax: value
1127   // rbx: index
1128   // rdx: array
1129   index_check(rdx, rbx); // prefer index in rbx
1130   __ movl(Address(rdx, rbx,
1131                   Address::times_4,
1132                   arrayOopDesc::base_offset_in_bytes(T_INT)),
1133           rax);
1134 }
1135 
1136 void TemplateTable::lastore() {
1137   transition(ltos, vtos);
1138   __ pop_i(rbx);
1139   // rax,: low(value)
1140   // rcx: array
1141   // rdx: high(value)
1142   index_check(rcx, rbx);  // prefer index in rbx,
1143   // rbx,: index
1144   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
1145   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
1146 }
1147 
1148 
1149 void TemplateTable::fastore() {
1150   transition(ftos, vtos);
1151   __ pop_i(rbx);
1152   // value is in UseSSE >= 1 ? xmm0 : ST(0)
1153   // rbx:  index
1154   // rdx:  array
1155   index_check(rdx, rbx); // prefer index in rbx
1156   __ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
1157 }
1158 
1159 void TemplateTable::dastore() {
1160   transition(dtos, vtos);
1161   __ pop_i(rbx);
1162   // value is in UseSSE >= 2 ? xmm0 : ST(0)
1163   // rbx:  index
1164   // rdx:  array
1165   index_check(rdx, rbx); // prefer index in rbx
1166   __ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
1167 }
1168 
1169 void TemplateTable::aastore() {
1170   Label is_null, is_flat_array, ok_is_subtype, done;
1171   transition(vtos, vtos);
1172   // stack: ..., array, index, value
1173   __ movptr(rax, at_tos());    // value
1174   __ movl(rcx, at_tos_p1()); // index
1175   __ movptr(rdx, at_tos_p2()); // array
1176 
1177   Address element_address(rdx, rcx,
1178                           UseCompressedOops? Address::times_4 : Address::times_ptr,
1179                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1180 
1181   index_check_without_pop(rdx, rcx);     // kills rbx
1182 
1183   __ testptr(rax, rax);
1184   __ jcc(Assembler::zero, is_null);
1185 
1186   // Move array class to rdi
1187   __ load_klass(rdi, rdx);
1188   if (EnableValhalla) {
1189     __ test_flat_array_klass(rdi, rbx, is_flat_array);
1190   }
1191 
1192   // Move subklass into rbx
1193   __ load_klass(rbx, rax);
1194   // Move superklass into rax
1195   __ movptr(rax, Address(rdi,
1196                          ObjArrayKlass::element_klass_offset()));
1197   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
1198   __ lea(rdx, element_address);
1199 
1200   // Generate subtype check.  Blows rcx, rdi
1201   // Superklass in rax.  Subklass in rbx.
1202   __ gen_subtype_check(rbx, ok_is_subtype);
1203 
1204   // Come here on failure
1205   // object is at TOS
1206   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1207 
1208   // Come here on success
1209   __ bind(ok_is_subtype);
1210 
1211   // Get the value we will store
1212   __ movptr(rax, at_tos());
1213   if (ValueTypesBufferMaxMemory > 0) {
1214     Label is_on_heap;
1215     __ test_value_is_not_buffered(rax, rbx, is_on_heap);
1216     __ push(rdx); // save precomputed element address, and convert buffer oop to heap oop
1217     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_heap_copy), rax);
1218     __ pop(rdx);
1219     __ bind(is_on_heap);
1220   }
1221   // Now store using the appropriate barrier
1222   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
1223   __ jmp(done);
1224 
1225   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1226   __ bind(is_null);
1227   __ profile_null_seen(rbx);
1228   if (EnableValhalla) {
1229     Label is_null_into_value_array_npe, store_null;
1230 
1231     __ load_klass(rdi, rdx);
1232     // No way to store null in flat array
1233     __ test_flat_array_klass(rdi, rbx, is_null_into_value_array_npe);
1234 
1235     // Use case for storing values in objArray where element_klass is specifically
1236     // a value type because they could not be flattened "for reasons",
1237     // these need to have the same semantics as flat arrays, i.e. NPE
1238     __ movptr(rdi, Address(rdi, ObjArrayKlass::element_klass_offset()));
1239     __ test_klass_is_value(rdi, rdi, is_null_into_value_array_npe);
1240     __ jmp(store_null);
1241 
1242     __ bind(is_null_into_value_array_npe);
1243     __ jump(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1244 
1245     __ bind(store_null);
1246   }
1247   // Store a NULL
1248   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1249   __ jmp(done);
1250 
1251   if (EnableValhalla) {
1252     Label is_type_ok;
1253     __ bind(is_flat_array); // Store non-null value to flat
1254 
1255     // Simplistic type check...
1256 
1257     // Profile the not-null value's klass.
1258     __ load_klass(rbx, rax);
1259     __ profile_typecheck(rcx, rbx, rax); // blows rcx, and rax
1260     // Move superklass into rax
1261     __ movptr(rax, Address(rdi, ArrayKlass::element_klass_offset()));
1262     __ cmpptr(rax, rbx); // flat value array needs exact type match
1263     __ jccb(Assembler::equal, is_type_ok);
1264 
1265     __ profile_typecheck_failed(rcx);
1266     __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1267 
1268     __ bind(is_type_ok);
1269     __ movptr(rax, at_tos());  // value
1270     __ movl(rcx, at_tos_p1()); // index
1271     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_store), rax, rdx, rcx);
1272   }
1273   // Pop stack arguments
1274   __ bind(done);
1275   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1276 }
1277 
1278 void TemplateTable::bastore() {
1279   transition(itos, vtos);
1280   __ pop_i(rbx);
1281   // rax: value
1282   // rbx: index
1283   // rdx: array
1284   index_check(rdx, rbx); // prefer index in rbx
1285   // Need to check whether array is boolean or byte
1286   // since both types share the bastore bytecode.
1287   __ load_klass(rcx, rdx);
1288   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1289   int diffbit = Klass::layout_helper_boolean_diffbit();
1290   __ testl(rcx, diffbit);
1291   Label L_skip;
1292   __ jccb(Assembler::zero, L_skip);
1293   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1294   __ bind(L_skip);
1295   __ movb(Address(rdx, rbx,
1296                   Address::times_1,
1297                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1298           rax);
1299 }
1300 
1301 void TemplateTable::castore() {
1302   transition(itos, vtos);
1303   __ pop_i(rbx);
1304   // rax: value
1305   // rbx: index
1306   // rdx: array
1307   index_check(rdx, rbx);  // prefer index in rbx
1308   __ movw(Address(rdx, rbx,
1309                   Address::times_2,
1310                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1311           rax);
1312 }
1313 
1314 
1315 void TemplateTable::sastore() {
1316   castore();
1317 }
1318 
1319 void TemplateTable::istore(int n) {
1320   transition(itos, vtos);
1321   __ movl(iaddress(n), rax);
1322 }
1323 
1324 void TemplateTable::lstore(int n) {
1325   transition(ltos, vtos);
1326   __ movptr(laddress(n), rax);
1327   NOT_LP64(__ movptr(haddress(n), rdx));
1328 }
1329 
1330 void TemplateTable::fstore(int n) {
1331   transition(ftos, vtos);
1332   __ store_float(faddress(n));
1333 }
1334 
1335 void TemplateTable::dstore(int n) {
1336   transition(dtos, vtos);
1337   __ store_double(daddress(n));
1338 }
1339 
1340 
1341 void TemplateTable::astore(int n) {
1342   transition(vtos, vtos);
1343   __ pop_ptr(rax);
1344   __ movptr(aaddress(n), rax);
1345 }
1346 
1347 void TemplateTable::pop() {
1348   transition(vtos, vtos);
1349   __ addptr(rsp, Interpreter::stackElementSize);
1350 }
1351 
1352 void TemplateTable::pop2() {
1353   transition(vtos, vtos);
1354   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1355 }
1356 
1357 
1358 void TemplateTable::dup() {
1359   transition(vtos, vtos);
1360   __ load_ptr(0, rax);
1361   __ push_ptr(rax);
1362   // stack: ..., a, a
1363 }
1364 
1365 void TemplateTable::dup_x1() {
1366   transition(vtos, vtos);
1367   // stack: ..., a, b
1368   __ load_ptr( 0, rax);  // load b
1369   __ load_ptr( 1, rcx);  // load a
1370   __ store_ptr(1, rax);  // store b
1371   __ store_ptr(0, rcx);  // store a
1372   __ push_ptr(rax);      // push b
1373   // stack: ..., b, a, b
1374 }
1375 
1376 void TemplateTable::dup_x2() {
1377   transition(vtos, vtos);
1378   // stack: ..., a, b, c
1379   __ load_ptr( 0, rax);  // load c
1380   __ load_ptr( 2, rcx);  // load a
1381   __ store_ptr(2, rax);  // store c in a
1382   __ push_ptr(rax);      // push c
1383   // stack: ..., c, b, c, c
1384   __ load_ptr( 2, rax);  // load b
1385   __ store_ptr(2, rcx);  // store a in b
1386   // stack: ..., c, a, c, c
1387   __ store_ptr(1, rax);  // store b in c
1388   // stack: ..., c, a, b, c
1389 }
1390 
1391 void TemplateTable::dup2() {
1392   transition(vtos, vtos);
1393   // stack: ..., a, b
1394   __ load_ptr(1, rax);  // load a
1395   __ push_ptr(rax);     // push a
1396   __ load_ptr(1, rax);  // load b
1397   __ push_ptr(rax);     // push b
1398   // stack: ..., a, b, a, b
1399 }
1400 
1401 
1402 void TemplateTable::dup2_x1() {
1403   transition(vtos, vtos);
1404   // stack: ..., a, b, c
1405   __ load_ptr( 0, rcx);  // load c
1406   __ load_ptr( 1, rax);  // load b
1407   __ push_ptr(rax);      // push b
1408   __ push_ptr(rcx);      // push c
1409   // stack: ..., a, b, c, b, c
1410   __ store_ptr(3, rcx);  // store c in b
1411   // stack: ..., a, c, c, b, c
1412   __ load_ptr( 4, rcx);  // load a
1413   __ store_ptr(2, rcx);  // store a in 2nd c
1414   // stack: ..., a, c, a, b, c
1415   __ store_ptr(4, rax);  // store b in a
1416   // stack: ..., b, c, a, b, c
1417 }
1418 
1419 void TemplateTable::dup2_x2() {
1420   transition(vtos, vtos);
1421   // stack: ..., a, b, c, d
1422   __ load_ptr( 0, rcx);  // load d
1423   __ load_ptr( 1, rax);  // load c
1424   __ push_ptr(rax);      // push c
1425   __ push_ptr(rcx);      // push d
1426   // stack: ..., a, b, c, d, c, d
1427   __ load_ptr( 4, rax);  // load b
1428   __ store_ptr(2, rax);  // store b in d
1429   __ store_ptr(4, rcx);  // store d in b
1430   // stack: ..., a, d, c, b, c, d
1431   __ load_ptr( 5, rcx);  // load a
1432   __ load_ptr( 3, rax);  // load c
1433   __ store_ptr(3, rcx);  // store a in c
1434   __ store_ptr(5, rax);  // store c in a
1435   // stack: ..., c, d, a, b, c, d
1436 }
1437 
1438 void TemplateTable::swap() {
1439   transition(vtos, vtos);
1440   // stack: ..., a, b
1441   __ load_ptr( 1, rcx);  // load a
1442   __ load_ptr( 0, rax);  // load b
1443   __ store_ptr(0, rcx);  // store a in b
1444   __ store_ptr(1, rax);  // store b in a
1445   // stack: ..., b, a
1446 }
1447 
1448 void TemplateTable::iop2(Operation op) {
1449   transition(itos, itos);
1450   switch (op) {
1451   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1452   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1453   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1454   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1455   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1456   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1457   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1458   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1459   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1460   default   : ShouldNotReachHere();
1461   }
1462 }
1463 
1464 void TemplateTable::lop2(Operation op) {
1465   transition(ltos, ltos);
1466 #ifdef _LP64
1467   switch (op) {
1468   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1469   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1470   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1471   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1472   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1473   default   : ShouldNotReachHere();
1474   }
1475 #else
1476   __ pop_l(rbx, rcx);
1477   switch (op) {
1478     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1479     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1480                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1481     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1482     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1483     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1484     default   : ShouldNotReachHere();
1485   }
1486 #endif
1487 }
1488 
1489 void TemplateTable::idiv() {
1490   transition(itos, itos);
1491   __ movl(rcx, rax);
1492   __ pop_i(rax);
1493   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1494   //       they are not equal, one could do a normal division (no correction
1495   //       needed), which may speed up this implementation for the common case.
1496   //       (see also JVM spec., p.243 & p.271)
1497   __ corrected_idivl(rcx);
1498 }
1499 
1500 void TemplateTable::irem() {
1501   transition(itos, itos);
1502   __ movl(rcx, rax);
1503   __ pop_i(rax);
1504   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1505   //       they are not equal, one could do a normal division (no correction
1506   //       needed), which may speed up this implementation for the common case.
1507   //       (see also JVM spec., p.243 & p.271)
1508   __ corrected_idivl(rcx);
1509   __ movl(rax, rdx);
1510 }
1511 
1512 void TemplateTable::lmul() {
1513   transition(ltos, ltos);
1514 #ifdef _LP64
1515   __ pop_l(rdx);
1516   __ imulq(rax, rdx);
1517 #else
1518   __ pop_l(rbx, rcx);
1519   __ push(rcx); __ push(rbx);
1520   __ push(rdx); __ push(rax);
1521   __ lmul(2 * wordSize, 0);
1522   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1523 #endif
1524 }
1525 
1526 void TemplateTable::ldiv() {
1527   transition(ltos, ltos);
1528 #ifdef _LP64
1529   __ mov(rcx, rax);
1530   __ pop_l(rax);
1531   // generate explicit div0 check
1532   __ testq(rcx, rcx);
1533   __ jump_cc(Assembler::zero,
1534              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1535   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1536   //       they are not equal, one could do a normal division (no correction
1537   //       needed), which may speed up this implementation for the common case.
1538   //       (see also JVM spec., p.243 & p.271)
1539   __ corrected_idivq(rcx); // kills rbx
1540 #else
1541   __ pop_l(rbx, rcx);
1542   __ push(rcx); __ push(rbx);
1543   __ push(rdx); __ push(rax);
1544   // check if y = 0
1545   __ orl(rax, rdx);
1546   __ jump_cc(Assembler::zero,
1547              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1548   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1549   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1550 #endif
1551 }
1552 
1553 void TemplateTable::lrem() {
1554   transition(ltos, ltos);
1555 #ifdef _LP64
1556   __ mov(rcx, rax);
1557   __ pop_l(rax);
1558   __ testq(rcx, rcx);
1559   __ jump_cc(Assembler::zero,
1560              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1561   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1562   //       they are not equal, one could do a normal division (no correction
1563   //       needed), which may speed up this implementation for the common case.
1564   //       (see also JVM spec., p.243 & p.271)
1565   __ corrected_idivq(rcx); // kills rbx
1566   __ mov(rax, rdx);
1567 #else
1568   __ pop_l(rbx, rcx);
1569   __ push(rcx); __ push(rbx);
1570   __ push(rdx); __ push(rax);
1571   // check if y = 0
1572   __ orl(rax, rdx);
1573   __ jump_cc(Assembler::zero,
1574              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1575   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1576   __ addptr(rsp, 4 * wordSize);
1577 #endif
1578 }
1579 
1580 void TemplateTable::lshl() {
1581   transition(itos, ltos);
1582   __ movl(rcx, rax);                             // get shift count
1583   #ifdef _LP64
1584   __ pop_l(rax);                                 // get shift value
1585   __ shlq(rax);
1586 #else
1587   __ pop_l(rax, rdx);                            // get shift value
1588   __ lshl(rdx, rax);
1589 #endif
1590 }
1591 
1592 void TemplateTable::lshr() {
1593 #ifdef _LP64
1594   transition(itos, ltos);
1595   __ movl(rcx, rax);                             // get shift count
1596   __ pop_l(rax);                                 // get shift value
1597   __ sarq(rax);
1598 #else
1599   transition(itos, ltos);
1600   __ mov(rcx, rax);                              // get shift count
1601   __ pop_l(rax, rdx);                            // get shift value
1602   __ lshr(rdx, rax, true);
1603 #endif
1604 }
1605 
1606 void TemplateTable::lushr() {
1607   transition(itos, ltos);
1608 #ifdef _LP64
1609   __ movl(rcx, rax);                             // get shift count
1610   __ pop_l(rax);                                 // get shift value
1611   __ shrq(rax);
1612 #else
1613   __ mov(rcx, rax);                              // get shift count
1614   __ pop_l(rax, rdx);                            // get shift value
1615   __ lshr(rdx, rax);
1616 #endif
1617 }
1618 
1619 void TemplateTable::fop2(Operation op) {
1620   transition(ftos, ftos);
1621 
1622   if (UseSSE >= 1) {
1623     switch (op) {
1624     case add:
1625       __ addss(xmm0, at_rsp());
1626       __ addptr(rsp, Interpreter::stackElementSize);
1627       break;
1628     case sub:
1629       __ movflt(xmm1, xmm0);
1630       __ pop_f(xmm0);
1631       __ subss(xmm0, xmm1);
1632       break;
1633     case mul:
1634       __ mulss(xmm0, at_rsp());
1635       __ addptr(rsp, Interpreter::stackElementSize);
1636       break;
1637     case div:
1638       __ movflt(xmm1, xmm0);
1639       __ pop_f(xmm0);
1640       __ divss(xmm0, xmm1);
1641       break;
1642     case rem:
1643       // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1644       // modulo operation. The frem method calls the function
1645       // double fmod(double x, double y) in math.h. The documentation of fmod states:
1646       // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1647       // (signalling or quiet) is returned.
1648       //
1649       // On x86_32 platforms the FPU is used to perform the modulo operation. The
1650       // reason is that on 32-bit Windows the sign of modulo operations diverges from
1651       // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
1652       // The fprem instruction used on x86_32 is functionally equivalent to
1653       // SharedRuntime::frem in that it returns a NaN.
1654 #ifdef _LP64
1655       __ movflt(xmm1, xmm0);
1656       __ pop_f(xmm0);
1657       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1658 #else
1659       __ push_f(xmm0);
1660       __ pop_f();
1661       __ fld_s(at_rsp());
1662       __ fremr(rax);
1663       __ f2ieee();
1664       __ pop(rax);  // pop second operand off the stack
1665       __ push_f();
1666       __ pop_f(xmm0);
1667 #endif
1668       break;
1669     default:
1670       ShouldNotReachHere();
1671       break;
1672     }
1673   } else {
1674 #ifdef _LP64
1675     ShouldNotReachHere();
1676 #else
1677     switch (op) {
1678     case add: __ fadd_s (at_rsp());                break;
1679     case sub: __ fsubr_s(at_rsp());                break;
1680     case mul: __ fmul_s (at_rsp());                break;
1681     case div: __ fdivr_s(at_rsp());                break;
1682     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1683     default : ShouldNotReachHere();
1684     }
1685     __ f2ieee();
1686     __ pop(rax);  // pop second operand off the stack
1687 #endif // _LP64
1688   }
1689 }
1690 
1691 void TemplateTable::dop2(Operation op) {
1692   transition(dtos, dtos);
1693   if (UseSSE >= 2) {
1694     switch (op) {
1695     case add:
1696       __ addsd(xmm0, at_rsp());
1697       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1698       break;
1699     case sub:
1700       __ movdbl(xmm1, xmm0);
1701       __ pop_d(xmm0);
1702       __ subsd(xmm0, xmm1);
1703       break;
1704     case mul:
1705       __ mulsd(xmm0, at_rsp());
1706       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1707       break;
1708     case div:
1709       __ movdbl(xmm1, xmm0);
1710       __ pop_d(xmm0);
1711       __ divsd(xmm0, xmm1);
1712       break;
1713     case rem:
1714       // Similar to fop2(), the modulo operation is performed using the
1715       // SharedRuntime::drem method (on x86_64 platforms) or using the
1716       // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
1717 #ifdef _LP64
1718       __ movdbl(xmm1, xmm0);
1719       __ pop_d(xmm0);
1720       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1721 #else
1722       __ push_d(xmm0);
1723       __ pop_d();
1724       __ fld_d(at_rsp());
1725       __ fremr(rax);
1726       __ d2ieee();
1727       __ pop(rax);
1728       __ pop(rdx);
1729       __ push_d();
1730       __ pop_d(xmm0);
1731 #endif
1732       break;
1733     default:
1734       ShouldNotReachHere();
1735       break;
1736     }
1737   } else {
1738 #ifdef _LP64
1739     ShouldNotReachHere();
1740 #else
1741     switch (op) {
1742     case add: __ fadd_d (at_rsp());                break;
1743     case sub: __ fsubr_d(at_rsp());                break;
1744     case mul: {
1745       Label L_strict;
1746       Label L_join;
1747       const Address access_flags      (rcx, Method::access_flags_offset());
1748       __ get_method(rcx);
1749       __ movl(rcx, access_flags);
1750       __ testl(rcx, JVM_ACC_STRICT);
1751       __ jccb(Assembler::notZero, L_strict);
1752       __ fmul_d (at_rsp());
1753       __ jmpb(L_join);
1754       __ bind(L_strict);
1755       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1756       __ fmulp();
1757       __ fmul_d (at_rsp());
1758       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1759       __ fmulp();
1760       __ bind(L_join);
1761       break;
1762     }
1763     case div: {
1764       Label L_strict;
1765       Label L_join;
1766       const Address access_flags      (rcx, Method::access_flags_offset());
1767       __ get_method(rcx);
1768       __ movl(rcx, access_flags);
1769       __ testl(rcx, JVM_ACC_STRICT);
1770       __ jccb(Assembler::notZero, L_strict);
1771       __ fdivr_d(at_rsp());
1772       __ jmp(L_join);
1773       __ bind(L_strict);
1774       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1775       __ fmul_d (at_rsp());
1776       __ fdivrp();
1777       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1778       __ fmulp();
1779       __ bind(L_join);
1780       break;
1781     }
1782     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1783     default : ShouldNotReachHere();
1784     }
1785     __ d2ieee();
1786     // Pop double precision number from rsp.
1787     __ pop(rax);
1788     __ pop(rdx);
1789 #endif
1790   }
1791 }
1792 
1793 void TemplateTable::ineg() {
1794   transition(itos, itos);
1795   __ negl(rax);
1796 }
1797 
1798 void TemplateTable::lneg() {
1799   transition(ltos, ltos);
1800   LP64_ONLY(__ negq(rax));
1801   NOT_LP64(__ lneg(rdx, rax));
1802 }
1803 
1804 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1805 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1806   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1807   // of 128-bits operands for SSE instructions.
1808   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1809   // Store the value to a 128-bits operand.
1810   operand[0] = lo;
1811   operand[1] = hi;
1812   return operand;
1813 }
1814 
1815 // Buffer for 128-bits masks used by SSE instructions.
1816 static jlong float_signflip_pool[2*2];
1817 static jlong double_signflip_pool[2*2];
1818 
1819 void TemplateTable::fneg() {
1820   transition(ftos, ftos);
1821   if (UseSSE >= 1) {
1822     static jlong *float_signflip  = double_quadword(&float_signflip_pool[1],  CONST64(0x8000000080000000),  CONST64(0x8000000080000000));
1823     __ xorps(xmm0, ExternalAddress((address) float_signflip));
1824   } else {
1825     LP64_ONLY(ShouldNotReachHere());
1826     NOT_LP64(__ fchs());
1827   }
1828 }
1829 
1830 void TemplateTable::dneg() {
1831   transition(dtos, dtos);
1832   if (UseSSE >= 2) {
1833     static jlong *double_signflip =
1834       double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1835     __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1836   } else {
1837 #ifdef _LP64
1838     ShouldNotReachHere();
1839 #else
1840     __ fchs();
1841 #endif
1842   }
1843 }
1844 
1845 void TemplateTable::iinc() {
1846   transition(vtos, vtos);
1847   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1848   locals_index(rbx);
1849   __ addl(iaddress(rbx), rdx);
1850 }
1851 
1852 void TemplateTable::wide_iinc() {
1853   transition(vtos, vtos);
1854   __ movl(rdx, at_bcp(4)); // get constant
1855   locals_index_wide(rbx);
1856   __ bswapl(rdx); // swap bytes & sign-extend constant
1857   __ sarl(rdx, 16);
1858   __ addl(iaddress(rbx), rdx);
1859   // Note: should probably use only one movl to get both
1860   //       the index and the constant -> fix this
1861 }
1862 
1863 void TemplateTable::convert() {
1864 #ifdef _LP64
1865   // Checking
1866 #ifdef ASSERT
1867   {
1868     TosState tos_in  = ilgl;
1869     TosState tos_out = ilgl;
1870     switch (bytecode()) {
1871     case Bytecodes::_i2l: // fall through
1872     case Bytecodes::_i2f: // fall through
1873     case Bytecodes::_i2d: // fall through
1874     case Bytecodes::_i2b: // fall through
1875     case Bytecodes::_i2c: // fall through
1876     case Bytecodes::_i2s: tos_in = itos; break;
1877     case Bytecodes::_l2i: // fall through
1878     case Bytecodes::_l2f: // fall through
1879     case Bytecodes::_l2d: tos_in = ltos; break;
1880     case Bytecodes::_f2i: // fall through
1881     case Bytecodes::_f2l: // fall through
1882     case Bytecodes::_f2d: tos_in = ftos; break;
1883     case Bytecodes::_d2i: // fall through
1884     case Bytecodes::_d2l: // fall through
1885     case Bytecodes::_d2f: tos_in = dtos; break;
1886     default             : ShouldNotReachHere();
1887     }
1888     switch (bytecode()) {
1889     case Bytecodes::_l2i: // fall through
1890     case Bytecodes::_f2i: // fall through
1891     case Bytecodes::_d2i: // fall through
1892     case Bytecodes::_i2b: // fall through
1893     case Bytecodes::_i2c: // fall through
1894     case Bytecodes::_i2s: tos_out = itos; break;
1895     case Bytecodes::_i2l: // fall through
1896     case Bytecodes::_f2l: // fall through
1897     case Bytecodes::_d2l: tos_out = ltos; break;
1898     case Bytecodes::_i2f: // fall through
1899     case Bytecodes::_l2f: // fall through
1900     case Bytecodes::_d2f: tos_out = ftos; break;
1901     case Bytecodes::_i2d: // fall through
1902     case Bytecodes::_l2d: // fall through
1903     case Bytecodes::_f2d: tos_out = dtos; break;
1904     default             : ShouldNotReachHere();
1905     }
1906     transition(tos_in, tos_out);
1907   }
1908 #endif // ASSERT
1909 
1910   static const int64_t is_nan = 0x8000000000000000L;
1911 
1912   // Conversion
1913   switch (bytecode()) {
1914   case Bytecodes::_i2l:
1915     __ movslq(rax, rax);
1916     break;
1917   case Bytecodes::_i2f:
1918     __ cvtsi2ssl(xmm0, rax);
1919     break;
1920   case Bytecodes::_i2d:
1921     __ cvtsi2sdl(xmm0, rax);
1922     break;
1923   case Bytecodes::_i2b:
1924     __ movsbl(rax, rax);
1925     break;
1926   case Bytecodes::_i2c:
1927     __ movzwl(rax, rax);
1928     break;
1929   case Bytecodes::_i2s:
1930     __ movswl(rax, rax);
1931     break;
1932   case Bytecodes::_l2i:
1933     __ movl(rax, rax);
1934     break;
1935   case Bytecodes::_l2f:
1936     __ cvtsi2ssq(xmm0, rax);
1937     break;
1938   case Bytecodes::_l2d:
1939     __ cvtsi2sdq(xmm0, rax);
1940     break;
1941   case Bytecodes::_f2i:
1942   {
1943     Label L;
1944     __ cvttss2sil(rax, xmm0);
1945     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1946     __ jcc(Assembler::notEqual, L);
1947     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1948     __ bind(L);
1949   }
1950     break;
1951   case Bytecodes::_f2l:
1952   {
1953     Label L;
1954     __ cvttss2siq(rax, xmm0);
1955     // NaN or overflow/underflow?
1956     __ cmp64(rax, ExternalAddress((address) &is_nan));
1957     __ jcc(Assembler::notEqual, L);
1958     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1959     __ bind(L);
1960   }
1961     break;
1962   case Bytecodes::_f2d:
1963     __ cvtss2sd(xmm0, xmm0);
1964     break;
1965   case Bytecodes::_d2i:
1966   {
1967     Label L;
1968     __ cvttsd2sil(rax, xmm0);
1969     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1970     __ jcc(Assembler::notEqual, L);
1971     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1972     __ bind(L);
1973   }
1974     break;
1975   case Bytecodes::_d2l:
1976   {
1977     Label L;
1978     __ cvttsd2siq(rax, xmm0);
1979     // NaN or overflow/underflow?
1980     __ cmp64(rax, ExternalAddress((address) &is_nan));
1981     __ jcc(Assembler::notEqual, L);
1982     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1983     __ bind(L);
1984   }
1985     break;
1986   case Bytecodes::_d2f:
1987     __ cvtsd2ss(xmm0, xmm0);
1988     break;
1989   default:
1990     ShouldNotReachHere();
1991   }
1992 #else
1993   // Checking
1994 #ifdef ASSERT
1995   { TosState tos_in  = ilgl;
1996     TosState tos_out = ilgl;
1997     switch (bytecode()) {
1998       case Bytecodes::_i2l: // fall through
1999       case Bytecodes::_i2f: // fall through
2000       case Bytecodes::_i2d: // fall through
2001       case Bytecodes::_i2b: // fall through
2002       case Bytecodes::_i2c: // fall through
2003       case Bytecodes::_i2s: tos_in = itos; break;
2004       case Bytecodes::_l2i: // fall through
2005       case Bytecodes::_l2f: // fall through
2006       case Bytecodes::_l2d: tos_in = ltos; break;
2007       case Bytecodes::_f2i: // fall through
2008       case Bytecodes::_f2l: // fall through
2009       case Bytecodes::_f2d: tos_in = ftos; break;
2010       case Bytecodes::_d2i: // fall through
2011       case Bytecodes::_d2l: // fall through
2012       case Bytecodes::_d2f: tos_in = dtos; break;
2013       default             : ShouldNotReachHere();
2014     }
2015     switch (bytecode()) {
2016       case Bytecodes::_l2i: // fall through
2017       case Bytecodes::_f2i: // fall through
2018       case Bytecodes::_d2i: // fall through
2019       case Bytecodes::_i2b: // fall through
2020       case Bytecodes::_i2c: // fall through
2021       case Bytecodes::_i2s: tos_out = itos; break;
2022       case Bytecodes::_i2l: // fall through
2023       case Bytecodes::_f2l: // fall through
2024       case Bytecodes::_d2l: tos_out = ltos; break;
2025       case Bytecodes::_i2f: // fall through
2026       case Bytecodes::_l2f: // fall through
2027       case Bytecodes::_d2f: tos_out = ftos; break;
2028       case Bytecodes::_i2d: // fall through
2029       case Bytecodes::_l2d: // fall through
2030       case Bytecodes::_f2d: tos_out = dtos; break;
2031       default             : ShouldNotReachHere();
2032     }
2033     transition(tos_in, tos_out);
2034   }
2035 #endif // ASSERT
2036 
2037   // Conversion
2038   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
2039   switch (bytecode()) {
2040     case Bytecodes::_i2l:
2041       __ extend_sign(rdx, rax);
2042       break;
2043     case Bytecodes::_i2f:
2044       if (UseSSE >= 1) {
2045         __ cvtsi2ssl(xmm0, rax);
2046       } else {
2047         __ push(rax);          // store int on tos
2048         __ fild_s(at_rsp());   // load int to ST0
2049         __ f2ieee();           // truncate to float size
2050         __ pop(rcx);           // adjust rsp
2051       }
2052       break;
2053     case Bytecodes::_i2d:
2054       if (UseSSE >= 2) {
2055         __ cvtsi2sdl(xmm0, rax);
2056       } else {
2057       __ push(rax);          // add one slot for d2ieee()
2058       __ push(rax);          // store int on tos
2059       __ fild_s(at_rsp());   // load int to ST0
2060       __ d2ieee();           // truncate to double size
2061       __ pop(rcx);           // adjust rsp
2062       __ pop(rcx);
2063       }
2064       break;
2065     case Bytecodes::_i2b:
2066       __ shll(rax, 24);      // truncate upper 24 bits
2067       __ sarl(rax, 24);      // and sign-extend byte
2068       LP64_ONLY(__ movsbl(rax, rax));
2069       break;
2070     case Bytecodes::_i2c:
2071       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
2072       LP64_ONLY(__ movzwl(rax, rax));
2073       break;
2074     case Bytecodes::_i2s:
2075       __ shll(rax, 16);      // truncate upper 16 bits
2076       __ sarl(rax, 16);      // and sign-extend short
2077       LP64_ONLY(__ movswl(rax, rax));
2078       break;
2079     case Bytecodes::_l2i:
2080       /* nothing to do */
2081       break;
2082     case Bytecodes::_l2f:
2083       // On 64-bit platforms, the cvtsi2ssq instruction is used to convert
2084       // 64-bit long values to floats. On 32-bit platforms it is not possible
2085       // to use that instruction with 64-bit operands, therefore the FPU is
2086       // used to perform the conversion.
2087       __ push(rdx);          // store long on tos
2088       __ push(rax);
2089       __ fild_d(at_rsp());   // load long to ST0
2090       __ f2ieee();           // truncate to float size
2091       __ pop(rcx);           // adjust rsp
2092       __ pop(rcx);
2093       if (UseSSE >= 1) {
2094         __ push_f();
2095         __ pop_f(xmm0);
2096       }
2097       break;
2098     case Bytecodes::_l2d:
2099       // On 32-bit platforms the FPU is used for conversion because on
2100       // 32-bit platforms it is not not possible to use the cvtsi2sdq
2101       // instruction with 64-bit operands.
2102       __ push(rdx);          // store long on tos
2103       __ push(rax);
2104       __ fild_d(at_rsp());   // load long to ST0
2105       __ d2ieee();           // truncate to double size
2106       __ pop(rcx);           // adjust rsp
2107       __ pop(rcx);
2108       if (UseSSE >= 2) {
2109         __ push_d();
2110         __ pop_d(xmm0);
2111       }
2112       break;
2113     case Bytecodes::_f2i:
2114       // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
2115       // as it returns 0 for any NaN.
2116       if (UseSSE >= 1) {
2117         __ push_f(xmm0);
2118       } else {
2119         __ push(rcx);          // reserve space for argument
2120         __ fstp_s(at_rsp());   // pass float argument on stack
2121       }
2122       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
2123       break;
2124     case Bytecodes::_f2l:
2125       // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
2126       // as it returns 0 for any NaN.
2127       if (UseSSE >= 1) {
2128        __ push_f(xmm0);
2129       } else {
2130         __ push(rcx);          // reserve space for argument
2131         __ fstp_s(at_rsp());   // pass float argument on stack
2132       }
2133       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
2134       break;
2135     case Bytecodes::_f2d:
2136       if (UseSSE < 1) {
2137         /* nothing to do */
2138       } else if (UseSSE == 1) {
2139         __ push_f(xmm0);
2140         __ pop_f();
2141       } else { // UseSSE >= 2
2142         __ cvtss2sd(xmm0, xmm0);
2143       }
2144       break;
2145     case Bytecodes::_d2i:
2146       if (UseSSE >= 2) {
2147         __ push_d(xmm0);
2148       } else {
2149         __ push(rcx);          // reserve space for argument
2150         __ push(rcx);
2151         __ fstp_d(at_rsp());   // pass double argument on stack
2152       }
2153       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
2154       break;
2155     case Bytecodes::_d2l:
2156       if (UseSSE >= 2) {
2157         __ push_d(xmm0);
2158       } else {
2159         __ push(rcx);          // reserve space for argument
2160         __ push(rcx);
2161         __ fstp_d(at_rsp());   // pass double argument on stack
2162       }
2163       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
2164       break;
2165     case Bytecodes::_d2f:
2166       if (UseSSE <= 1) {
2167         __ push(rcx);          // reserve space for f2ieee()
2168         __ f2ieee();           // truncate to float size
2169         __ pop(rcx);           // adjust rsp
2170         if (UseSSE == 1) {
2171           // The cvtsd2ss instruction is not available if UseSSE==1, therefore
2172           // the conversion is performed using the FPU in this case.
2173           __ push_f();
2174           __ pop_f(xmm0);
2175         }
2176       } else { // UseSSE >= 2
2177         __ cvtsd2ss(xmm0, xmm0);
2178       }
2179       break;
2180     default             :
2181       ShouldNotReachHere();
2182   }
2183 #endif
2184 }
2185 
2186 void TemplateTable::lcmp() {
2187   transition(ltos, itos);
2188 #ifdef _LP64
2189   Label done;
2190   __ pop_l(rdx);
2191   __ cmpq(rdx, rax);
2192   __ movl(rax, -1);
2193   __ jccb(Assembler::less, done);
2194   __ setb(Assembler::notEqual, rax);
2195   __ movzbl(rax, rax);
2196   __ bind(done);
2197 #else
2198 
2199   // y = rdx:rax
2200   __ pop_l(rbx, rcx);             // get x = rcx:rbx
2201   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
2202   __ mov(rax, rcx);
2203 #endif
2204 }
2205 
2206 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2207   if ((is_float && UseSSE >= 1) ||
2208       (!is_float && UseSSE >= 2)) {
2209     Label done;
2210     if (is_float) {
2211       // XXX get rid of pop here, use ... reg, mem32
2212       __ pop_f(xmm1);
2213       __ ucomiss(xmm1, xmm0);
2214     } else {
2215       // XXX get rid of pop here, use ... reg, mem64
2216       __ pop_d(xmm1);
2217       __ ucomisd(xmm1, xmm0);
2218     }
2219     if (unordered_result < 0) {
2220       __ movl(rax, -1);
2221       __ jccb(Assembler::parity, done);
2222       __ jccb(Assembler::below, done);
2223       __ setb(Assembler::notEqual, rdx);
2224       __ movzbl(rax, rdx);
2225     } else {
2226       __ movl(rax, 1);
2227       __ jccb(Assembler::parity, done);
2228       __ jccb(Assembler::above, done);
2229       __ movl(rax, 0);
2230       __ jccb(Assembler::equal, done);
2231       __ decrementl(rax);
2232     }
2233     __ bind(done);
2234   } else {
2235 #ifdef _LP64
2236     ShouldNotReachHere();
2237 #else
2238     if (is_float) {
2239       __ fld_s(at_rsp());
2240     } else {
2241       __ fld_d(at_rsp());
2242       __ pop(rdx);
2243     }
2244     __ pop(rcx);
2245     __ fcmp2int(rax, unordered_result < 0);
2246 #endif // _LP64
2247   }
2248 }
2249 
2250 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2251   if (ValueTypesThreadLocalRecycling) {
2252     Label no_vt_recycling, no_fixing_required;
2253     const Register thread1 = NOT_LP64(rbx) LP64_ONLY(r15_thread);
2254     NOT_LP64(__ get_thread(thread1));
2255     __ movptr(rbx, Address(thread1, in_bytes(JavaThread::vt_alloc_ptr_offset())));
2256     __ testptr(rbx, rbx);
2257     __ jcc(Assembler::zero, no_vt_recycling);
2258     __ movptr(rcx, Address(rbp, frame::interpreter_frame_vt_alloc_ptr_offset * wordSize));
2259     __ testptr(rcx, rcx);
2260     __ jcc(Assembler::notZero, no_fixing_required);
2261     // vt_alloc_ptr in JavaThread is non-null but frame vt_alloc_ptr is null
2262     // which means frame vt_alloc_ptr needs to be initialized
2263     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::fix_frame_vt_alloc_ptr));
2264     __ movptr(rcx, Address(rbp, frame::interpreter_frame_vt_alloc_ptr_offset * wordSize));
2265     __ bind(no_fixing_required);
2266     __ testptr(rcx, rbx);
2267     __ jcc(Assembler::equal, no_vt_recycling);
2268     __ andptr(rcx, VTBufferChunk::chunk_mask());
2269     __ movl(rcx, Address(rcx, VTBufferChunk::index_offset()));
2270     __ andptr(rbx, VTBufferChunk::chunk_mask());
2271     __ movl(rbx, Address(rbx, VTBufferChunk::index_offset()));
2272     __ subl(rbx, rcx);
2273     __ get_method(rcx);
2274     __ movl(rcx, Address(rcx, Method::max_vt_buffer_offset()));
2275     __ cmpl(rbx, rcx);
2276     __ jcc(Assembler::lessEqual, no_vt_recycling);
2277     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::recycle_buffered_values));
2278     __ bind(no_vt_recycling);
2279   }
2280 
2281   __ get_method(rcx); // rcx holds method
2282   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
2283                                      // holds bumped taken count
2284 
2285   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2286                              InvocationCounter::counter_offset();
2287   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2288                               InvocationCounter::counter_offset();
2289 
2290   // Load up edx with the branch displacement
2291   if (is_wide) {
2292     __ movl(rdx, at_bcp(1));
2293   } else {
2294     __ load_signed_short(rdx, at_bcp(1));
2295   }
2296   __ bswapl(rdx);
2297 
2298   if (!is_wide) {
2299     __ sarl(rdx, 16);
2300   }
2301   LP64_ONLY(__ movl2ptr(rdx, rdx));
2302 
2303   // Handle all the JSR stuff here, then exit.
2304   // It's much shorter and cleaner than intermingling with the non-JSR
2305   // normal-branch stuff occurring below.
2306   if (is_jsr) {
2307     // Pre-load the next target bytecode into rbx
2308     __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
2309 
2310     // compute return address as bci in rax
2311     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
2312                         in_bytes(ConstMethod::codes_offset())));
2313     __ subptr(rax, Address(rcx, Method::const_offset()));
2314     // Adjust the bcp in r13 by the displacement in rdx
2315     __ addptr(rbcp, rdx);
2316     // jsr returns atos that is not an oop
2317     __ push_i(rax);
2318     __ dispatch_only(vtos, true);
2319     return;
2320   }
2321 
2322   // Normal (non-jsr) branch handling
2323 
2324   // Adjust the bcp in r13 by the displacement in rdx
2325   __ addptr(rbcp, rdx);
2326 
2327   assert(UseLoopCounter || !UseOnStackReplacement,
2328          "on-stack-replacement requires loop counters");
2329   Label backedge_counter_overflow;
2330   Label profile_method;
2331   Label dispatch;
2332   if (UseLoopCounter) {
2333     // increment backedge counter for backward branches
2334     // rax: MDO
2335     // rbx: MDO bumped taken-count
2336     // rcx: method
2337     // rdx: target offset
2338     // r13: target bcp
2339     // r14: locals pointer
2340     __ testl(rdx, rdx);             // check if forward or backward branch
2341     __ jcc(Assembler::positive, dispatch); // count only if backward branch
2342 
2343     // check if MethodCounters exists
2344     Label has_counters;
2345     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2346     __ testptr(rax, rax);
2347     __ jcc(Assembler::notZero, has_counters);
2348     __ push(rdx);
2349     __ push(rcx);
2350     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
2351                rcx);
2352     __ pop(rcx);
2353     __ pop(rdx);
2354     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2355     __ testptr(rax, rax);
2356     __ jcc(Assembler::zero, dispatch);
2357     __ bind(has_counters);
2358 
2359     if (TieredCompilation) {
2360       Label no_mdo;
2361       int increment = InvocationCounter::count_increment;
2362       if (ProfileInterpreter) {
2363         // Are we profiling?
2364         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
2365         __ testptr(rbx, rbx);
2366         __ jccb(Assembler::zero, no_mdo);
2367         // Increment the MDO backedge counter
2368         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
2369                                            in_bytes(InvocationCounter::counter_offset()));
2370         const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
2371         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
2372                                    rax, false, Assembler::zero, &backedge_counter_overflow);
2373         __ jmp(dispatch);
2374       }
2375       __ bind(no_mdo);
2376       // Increment backedge counter in MethodCounters*
2377       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2378       const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
2379       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
2380                                  rax, false, Assembler::zero, &backedge_counter_overflow);
2381     } else { // not TieredCompilation
2382       // increment counter
2383       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2384       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
2385       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
2386       __ movl(Address(rcx, be_offset), rax);        // store counter
2387 
2388       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
2389 
2390       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
2391       __ addl(rax, Address(rcx, be_offset));        // add both counters
2392 
2393       if (ProfileInterpreter) {
2394         // Test to see if we should create a method data oop
2395         __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
2396         __ jcc(Assembler::less, dispatch);
2397 
2398         // if no method data exists, go to profile method
2399         __ test_method_data_pointer(rax, profile_method);
2400 
2401         if (UseOnStackReplacement) {
2402           // check for overflow against rbx which is the MDO taken count
2403           __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2404           __ jcc(Assembler::below, dispatch);
2405 
2406           // When ProfileInterpreter is on, the backedge_count comes
2407           // from the MethodData*, which value does not get reset on
2408           // the call to frequency_counter_overflow().  To avoid
2409           // excessive calls to the overflow routine while the method is
2410           // being compiled, add a second test to make sure the overflow
2411           // function is called only once every overflow_frequency.
2412           const int overflow_frequency = 1024;
2413           __ andl(rbx, overflow_frequency - 1);
2414           __ jcc(Assembler::zero, backedge_counter_overflow);
2415 
2416         }
2417       } else {
2418         if (UseOnStackReplacement) {
2419           // check for overflow against rax, which is the sum of the
2420           // counters
2421           __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2422           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
2423 
2424         }
2425       }
2426     }
2427     __ bind(dispatch);
2428   }
2429 
2430   // Pre-load the next target bytecode into rbx
2431   __ load_unsigned_byte(rbx, Address(rbcp, 0));
2432 
2433   // continue with the bytecode @ target
2434   // rax: return bci for jsr's, unused otherwise
2435   // rbx: target bytecode
2436   // r13: target bcp
2437   __ dispatch_only(vtos, true);
2438 
2439   if (UseLoopCounter) {
2440     if (ProfileInterpreter) {
2441       // Out-of-line code to allocate method data oop.
2442       __ bind(profile_method);
2443       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2444       __ set_method_data_pointer_for_bcp();
2445       __ jmp(dispatch);
2446     }
2447 
2448     if (UseOnStackReplacement) {
2449       // invocation counter overflow
2450       __ bind(backedge_counter_overflow);
2451       __ negptr(rdx);
2452       __ addptr(rdx, rbcp); // branch bcp
2453       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
2454       __ call_VM(noreg,
2455                  CAST_FROM_FN_PTR(address,
2456                                   InterpreterRuntime::frequency_counter_overflow),
2457                  rdx);
2458 
2459       // rax: osr nmethod (osr ok) or NULL (osr not possible)
2460       // rdx: scratch
2461       // r14: locals pointer
2462       // r13: bcp
2463       __ testptr(rax, rax);                        // test result
2464       __ jcc(Assembler::zero, dispatch);         // no osr if null
2465       // nmethod may have been invalidated (VM may block upon call_VM return)
2466       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
2467       __ jcc(Assembler::notEqual, dispatch);
2468 
2469       // We have the address of an on stack replacement routine in rax.
2470       // In preparation of invoking it, first we must migrate the locals
2471       // and monitors from off the interpreter frame on the stack.
2472       // Ensure to save the osr nmethod over the migration call,
2473       // it will be preserved in rbx.
2474       __ mov(rbx, rax);
2475 
2476       NOT_LP64(__ get_thread(rcx));
2477 
2478       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2479 
2480       // rax is OSR buffer, move it to expected parameter location
2481       LP64_ONLY(__ mov(j_rarg0, rax));
2482       NOT_LP64(__ mov(rcx, rax));
2483       // We use j_rarg definitions here so that registers don't conflict as parameter
2484       // registers change across platforms as we are in the midst of a calling
2485       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
2486 
2487       const Register retaddr   = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
2488       const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
2489 
2490       // pop the interpreter frame
2491       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
2492       __ leave();                                // remove frame anchor
2493       __ pop(retaddr);                           // get return address
2494       __ mov(rsp, sender_sp);                   // set sp to sender sp
2495       // Ensure compiled code always sees stack at proper alignment
2496       __ andptr(rsp, -(StackAlignmentInBytes));
2497 
2498       // unlike x86 we need no specialized return from compiled code
2499       // to the interpreter or the call stub.
2500 
2501       // push the return address
2502       __ push(retaddr);
2503 
2504       // and begin the OSR nmethod
2505       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
2506     }
2507   }
2508 }
2509 
2510 void TemplateTable::if_0cmp(Condition cc) {
2511   transition(itos, vtos);
2512   // assume branch is more often taken than not (loops use backward branches)
2513   Label not_taken;
2514   __ testl(rax, rax);
2515   __ jcc(j_not(cc), not_taken);
2516   branch(false, false);
2517   __ bind(not_taken);
2518   __ profile_not_taken_branch(rax);
2519 }
2520 
2521 void TemplateTable::if_icmp(Condition cc) {
2522   transition(itos, vtos);
2523   // assume branch is more often taken than not (loops use backward branches)
2524   Label not_taken;
2525   __ pop_i(rdx);
2526   __ cmpl(rdx, rax);
2527   __ jcc(j_not(cc), not_taken);
2528   branch(false, false);
2529   __ bind(not_taken);
2530   __ profile_not_taken_branch(rax);
2531 }
2532 
2533 void TemplateTable::if_nullcmp(Condition cc) {
2534   transition(atos, vtos);
2535   // assume branch is more often taken than not (loops use backward branches)
2536   Label not_taken;
2537   __ testptr(rax, rax);
2538   __ jcc(j_not(cc), not_taken);
2539   branch(false, false);
2540   __ bind(not_taken);
2541   __ profile_not_taken_branch(rax);
2542 }
2543 
2544 void TemplateTable::if_acmp(Condition cc) {
2545   transition(atos, vtos);
2546   // assume branch is more often taken than not (loops use backward branches)
2547   Label not_taken;
2548   __ pop_ptr(rdx);
2549   __ cmpoop(rdx, rax);
2550   __ jcc(j_not(cc), not_taken);
2551   branch(false, false);
2552   __ bind(not_taken);
2553   __ profile_not_taken_branch(rax);
2554 }
2555 
2556 void TemplateTable::ret() {
2557   transition(vtos, vtos);
2558   locals_index(rbx);
2559   LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
2560   NOT_LP64(__ movptr(rbx, iaddress(rbx)));
2561   __ profile_ret(rbx, rcx);
2562   __ get_method(rax);
2563   __ movptr(rbcp, Address(rax, Method::const_offset()));
2564   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2565                       ConstMethod::codes_offset()));
2566   __ dispatch_next(vtos, 0, true);
2567 }
2568 
2569 void TemplateTable::wide_ret() {
2570   transition(vtos, vtos);
2571   locals_index_wide(rbx);
2572   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2573   __ profile_ret(rbx, rcx);
2574   __ get_method(rax);
2575   __ movptr(rbcp, Address(rax, Method::const_offset()));
2576   __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2577   __ dispatch_next(vtos, 0, true);
2578 }
2579 
2580 void TemplateTable::tableswitch() {
2581   Label default_case, continue_execution;
2582   transition(itos, vtos);
2583 
2584   // align r13/rsi
2585   __ lea(rbx, at_bcp(BytesPerInt));
2586   __ andptr(rbx, -BytesPerInt);
2587   // load lo & hi
2588   __ movl(rcx, Address(rbx, BytesPerInt));
2589   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2590   __ bswapl(rcx);
2591   __ bswapl(rdx);
2592   // check against lo & hi
2593   __ cmpl(rax, rcx);
2594   __ jcc(Assembler::less, default_case);
2595   __ cmpl(rax, rdx);
2596   __ jcc(Assembler::greater, default_case);
2597   // lookup dispatch offset
2598   __ subl(rax, rcx);
2599   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2600   __ profile_switch_case(rax, rbx, rcx);
2601   // continue execution
2602   __ bind(continue_execution);
2603   __ bswapl(rdx);
2604   LP64_ONLY(__ movl2ptr(rdx, rdx));
2605   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2606   __ addptr(rbcp, rdx);
2607   __ dispatch_only(vtos, true);
2608   // handle default
2609   __ bind(default_case);
2610   __ profile_switch_default(rax);
2611   __ movl(rdx, Address(rbx, 0));
2612   __ jmp(continue_execution);
2613 }
2614 
2615 void TemplateTable::lookupswitch() {
2616   transition(itos, itos);
2617   __ stop("lookupswitch bytecode should have been rewritten");
2618 }
2619 
2620 void TemplateTable::fast_linearswitch() {
2621   transition(itos, vtos);
2622   Label loop_entry, loop, found, continue_execution;
2623   // bswap rax so we can avoid bswapping the table entries
2624   __ bswapl(rax);
2625   // align r13
2626   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2627                                     // this instruction (change offsets
2628                                     // below)
2629   __ andptr(rbx, -BytesPerInt);
2630   // set counter
2631   __ movl(rcx, Address(rbx, BytesPerInt));
2632   __ bswapl(rcx);
2633   __ jmpb(loop_entry);
2634   // table search
2635   __ bind(loop);
2636   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2637   __ jcc(Assembler::equal, found);
2638   __ bind(loop_entry);
2639   __ decrementl(rcx);
2640   __ jcc(Assembler::greaterEqual, loop);
2641   // default case
2642   __ profile_switch_default(rax);
2643   __ movl(rdx, Address(rbx, 0));
2644   __ jmp(continue_execution);
2645   // entry found -> get offset
2646   __ bind(found);
2647   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2648   __ profile_switch_case(rcx, rax, rbx);
2649   // continue execution
2650   __ bind(continue_execution);
2651   __ bswapl(rdx);
2652   __ movl2ptr(rdx, rdx);
2653   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2654   __ addptr(rbcp, rdx);
2655   __ dispatch_only(vtos, true);
2656 }
2657 
2658 void TemplateTable::fast_binaryswitch() {
2659   transition(itos, vtos);
2660   // Implementation using the following core algorithm:
2661   //
2662   // int binary_search(int key, LookupswitchPair* array, int n) {
2663   //   // Binary search according to "Methodik des Programmierens" by
2664   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2665   //   int i = 0;
2666   //   int j = n;
2667   //   while (i+1 < j) {
2668   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2669   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2670   //     // where a stands for the array and assuming that the (inexisting)
2671   //     // element a[n] is infinitely big.
2672   //     int h = (i + j) >> 1;
2673   //     // i < h < j
2674   //     if (key < array[h].fast_match()) {
2675   //       j = h;
2676   //     } else {
2677   //       i = h;
2678   //     }
2679   //   }
2680   //   // R: a[i] <= key < a[i+1] or Q
2681   //   // (i.e., if key is within array, i is the correct index)
2682   //   return i;
2683   // }
2684 
2685   // Register allocation
2686   const Register key   = rax; // already set (tosca)
2687   const Register array = rbx;
2688   const Register i     = rcx;
2689   const Register j     = rdx;
2690   const Register h     = rdi;
2691   const Register temp  = rsi;
2692 
2693   // Find array start
2694   NOT_LP64(__ save_bcp());
2695 
2696   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2697                                           // get rid of this
2698                                           // instruction (change
2699                                           // offsets below)
2700   __ andptr(array, -BytesPerInt);
2701 
2702   // Initialize i & j
2703   __ xorl(i, i);                            // i = 0;
2704   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2705 
2706   // Convert j into native byteordering
2707   __ bswapl(j);
2708 
2709   // And start
2710   Label entry;
2711   __ jmp(entry);
2712 
2713   // binary search loop
2714   {
2715     Label loop;
2716     __ bind(loop);
2717     // int h = (i + j) >> 1;
2718     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2719     __ sarl(h, 1);                               // h = (i + j) >> 1;
2720     // if (key < array[h].fast_match()) {
2721     //   j = h;
2722     // } else {
2723     //   i = h;
2724     // }
2725     // Convert array[h].match to native byte-ordering before compare
2726     __ movl(temp, Address(array, h, Address::times_8));
2727     __ bswapl(temp);
2728     __ cmpl(key, temp);
2729     // j = h if (key <  array[h].fast_match())
2730     __ cmov32(Assembler::less, j, h);
2731     // i = h if (key >= array[h].fast_match())
2732     __ cmov32(Assembler::greaterEqual, i, h);
2733     // while (i+1 < j)
2734     __ bind(entry);
2735     __ leal(h, Address(i, 1)); // i+1
2736     __ cmpl(h, j);             // i+1 < j
2737     __ jcc(Assembler::less, loop);
2738   }
2739 
2740   // end of binary search, result index is i (must check again!)
2741   Label default_case;
2742   // Convert array[i].match to native byte-ordering before compare
2743   __ movl(temp, Address(array, i, Address::times_8));
2744   __ bswapl(temp);
2745   __ cmpl(key, temp);
2746   __ jcc(Assembler::notEqual, default_case);
2747 
2748   // entry found -> j = offset
2749   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2750   __ profile_switch_case(i, key, array);
2751   __ bswapl(j);
2752   LP64_ONLY(__ movslq(j, j));
2753 
2754   NOT_LP64(__ restore_bcp());
2755   NOT_LP64(__ restore_locals());                           // restore rdi
2756 
2757   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2758   __ addptr(rbcp, j);
2759   __ dispatch_only(vtos, true);
2760 
2761   // default case -> j = default offset
2762   __ bind(default_case);
2763   __ profile_switch_default(i);
2764   __ movl(j, Address(array, -2 * BytesPerInt));
2765   __ bswapl(j);
2766   LP64_ONLY(__ movslq(j, j));
2767 
2768   NOT_LP64(__ restore_bcp());
2769   NOT_LP64(__ restore_locals());
2770 
2771   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2772   __ addptr(rbcp, j);
2773   __ dispatch_only(vtos, true);
2774 }
2775 
2776 void TemplateTable::_return(TosState state) {
2777   transition(state, state);
2778 
2779   assert(_desc->calls_vm(),
2780          "inconsistent calls_vm information"); // call in remove_activation
2781 
2782   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2783     assert(state == vtos, "only valid state");
2784     Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
2785     __ movptr(robj, aaddress(0));
2786     __ load_klass(rdi, robj);
2787     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2788     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2789     Label skip_register_finalizer;
2790     __ jcc(Assembler::zero, skip_register_finalizer);
2791 
2792     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2793 
2794     __ bind(skip_register_finalizer);
2795   }
2796 
2797 #ifdef _LP64
2798   if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
2799     Label no_safepoint;
2800     NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2801     __ testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
2802     __ jcc(Assembler::zero, no_safepoint);
2803     __ push(state);
2804     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2805                                     InterpreterRuntime::at_safepoint));
2806     __ pop(state);
2807     __ bind(no_safepoint);
2808   }
2809 #endif
2810 
2811   if (state == atos) {
2812     if (ValueTypesBufferMaxMemory > 0) {
2813       Label notBuffered;
2814 
2815       __ test_value_is_not_buffered(rax, rbx, notBuffered);
2816       const Register thread1 = NOT_LP64(rcx) LP64_ONLY(r15_thread);
2817       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::return_value), rax);
2818       NOT_LP64(__ get_thread(thread1));
2819       __ get_vm_result(rax, thread1);
2820       __ bind(notBuffered);
2821     }
2822   }
2823 
2824   // Narrow result if state is itos but result type is smaller.
2825   // Need to narrow in the return bytecode rather than in generate_return_entry
2826   // since compiled code callers expect the result to already be narrowed.
2827   if (state == itos) {
2828     __ narrow(rax);
2829   }
2830 
2831 #ifdef ASSERT
2832   if (EnableValhalla) {
2833     if (state == atos) {
2834       const Register thread1 = NOT_LP64(rcx) LP64_ONLY(r15_thread);
2835       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::check_areturn), rax);
2836       NOT_LP64(__ get_thread(thread1));
2837       __ get_vm_result(rax, thread1);
2838     }
2839   }
2840 #endif // ASSERT
2841 
2842   __ remove_activation(state, rbcp, true, true, true, /*state == qtos*/ false && ValueTypeReturnedAsFields);
2843 
2844   __ jmp(rbcp);
2845 }
2846 
2847 // ----------------------------------------------------------------------------
2848 // Volatile variables demand their effects be made known to all CPU's
2849 // in order.  Store buffers on most chips allow reads & writes to
2850 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2851 // without some kind of memory barrier (i.e., it's not sufficient that
2852 // the interpreter does not reorder volatile references, the hardware
2853 // also must not reorder them).
2854 //
2855 // According to the new Java Memory Model (JMM):
2856 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2857 //     writes act as aquire & release, so:
2858 // (2) A read cannot let unrelated NON-volatile memory refs that
2859 //     happen after the read float up to before the read.  It's OK for
2860 //     non-volatile memory refs that happen before the volatile read to
2861 //     float down below it.
2862 // (3) Similar a volatile write cannot let unrelated NON-volatile
2863 //     memory refs that happen BEFORE the write float down to after the
2864 //     write.  It's OK for non-volatile memory refs that happen after the
2865 //     volatile write to float up before it.
2866 //
2867 // We only put in barriers around volatile refs (they are expensive),
2868 // not _between_ memory refs (that would require us to track the
2869 // flavor of the previous memory refs).  Requirements (2) and (3)
2870 // require some barriers before volatile stores and after volatile
2871 // loads.  These nearly cover requirement (1) but miss the
2872 // volatile-store-volatile-load case.  This final case is placed after
2873 // volatile-stores although it could just as well go before
2874 // volatile-loads.
2875 
2876 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2877   // Helper function to insert a is-volatile test and memory barrier
2878   if(!os::is_MP()) return;    // Not needed on single CPU
2879   __ membar(order_constraint);
2880 }
2881 
2882 void TemplateTable::resolve_cache_and_index(int byte_no,
2883                                             Register Rcache,
2884                                             Register index,
2885                                             size_t index_size) {
2886   const Register temp = rbx;
2887   assert_different_registers(Rcache, index, temp);
2888 
2889   Label resolved;
2890 
2891   Bytecodes::Code code = bytecode();
2892   switch (code) {
2893   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2894   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2895   default: break;
2896   }
2897 
2898   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2899   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2900   __ cmpl(temp, code);  // have we resolved this bytecode?
2901   __ jcc(Assembler::equal, resolved);
2902 
2903   // resolve first time through
2904   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2905   __ movl(temp, code);
2906   __ call_VM(noreg, entry, temp);
2907   // Update registers with resolved info
2908   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2909   __ bind(resolved);
2910 }
2911 
2912 // The cache and index registers must be set before call
2913 void TemplateTable::load_field_cp_cache_entry(Register obj,
2914                                               Register cache,
2915                                               Register index,
2916                                               Register off,
2917                                               Register flags,
2918                                               bool is_static = false) {
2919   assert_different_registers(cache, index, flags, off);
2920 
2921   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2922   // Field offset
2923   __ movptr(off, Address(cache, index, Address::times_ptr,
2924                          in_bytes(cp_base_offset +
2925                                   ConstantPoolCacheEntry::f2_offset())));
2926   // Flags
2927   __ movl(flags, Address(cache, index, Address::times_ptr,
2928                          in_bytes(cp_base_offset +
2929                                   ConstantPoolCacheEntry::flags_offset())));
2930 
2931   // klass overwrite register
2932   if (is_static) {
2933     __ movptr(obj, Address(cache, index, Address::times_ptr,
2934                            in_bytes(cp_base_offset +
2935                                     ConstantPoolCacheEntry::f1_offset())));
2936     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2937     __ movptr(obj, Address(obj, mirror_offset));
2938     __ resolve_oop_handle(obj);
2939   }
2940 }
2941 
2942 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2943                                                Register method,
2944                                                Register itable_index,
2945                                                Register flags,
2946                                                bool is_invokevirtual,
2947                                                bool is_invokevfinal, /*unused*/
2948                                                bool is_invokedynamic) {
2949   // setup registers
2950   const Register cache = rcx;
2951   const Register index = rdx;
2952   assert_different_registers(method, flags);
2953   assert_different_registers(method, cache, index);
2954   assert_different_registers(itable_index, flags);
2955   assert_different_registers(itable_index, cache, index);
2956   // determine constant pool cache field offsets
2957   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2958   const int method_offset = in_bytes(
2959     ConstantPoolCache::base_offset() +
2960       ((byte_no == f2_byte)
2961        ? ConstantPoolCacheEntry::f2_offset()
2962        : ConstantPoolCacheEntry::f1_offset()));
2963   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2964                                     ConstantPoolCacheEntry::flags_offset());
2965   // access constant pool cache fields
2966   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2967                                     ConstantPoolCacheEntry::f2_offset());
2968 
2969   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2970   resolve_cache_and_index(byte_no, cache, index, index_size);
2971     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2972 
2973   if (itable_index != noreg) {
2974     // pick up itable or appendix index from f2 also:
2975     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2976   }
2977   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2978 }
2979 
2980 // The registers cache and index expected to be set before call.
2981 // Correct values of the cache and index registers are preserved.
2982 void TemplateTable::jvmti_post_field_access(Register cache,
2983                                             Register index,
2984                                             bool is_static,
2985                                             bool has_tos) {
2986   if (JvmtiExport::can_post_field_access()) {
2987     // Check to see if a field access watch has been set before we take
2988     // the time to call into the VM.
2989     Label L1;
2990     assert_different_registers(cache, index, rax);
2991     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2992     __ testl(rax,rax);
2993     __ jcc(Assembler::zero, L1);
2994 
2995     // cache entry pointer
2996     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2997     __ shll(index, LogBytesPerWord);
2998     __ addptr(cache, index);
2999     if (is_static) {
3000       __ xorptr(rax, rax);      // NULL object reference
3001     } else {
3002       __ pop(atos);         // Get the object
3003       __ verify_oop(rax);
3004       __ push(atos);        // Restore stack state
3005     }
3006     // rax,:   object pointer or NULL
3007     // cache: cache entry pointer
3008     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
3009                rax, cache);
3010     __ get_cache_and_index_at_bcp(cache, index, 1);
3011     __ bind(L1);
3012   }
3013 }
3014 
3015 void TemplateTable::pop_and_check_object(Register r) {
3016   __ pop_ptr(r);
3017   __ null_check(r);  // for field access must check obj.
3018   __ verify_oop(r);
3019 }
3020 
3021 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3022   transition(vtos, vtos);
3023 
3024   const Register cache = rcx;
3025   const Register index = rdx;
3026   const Register obj   = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3027   const Register off   = rbx;
3028   const Register flags = rax;
3029   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
3030   const Register flags2 = rdx;
3031 
3032   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
3033   jvmti_post_field_access(cache, index, is_static, false);
3034   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
3035 
3036   const Address field(obj, off, Address::times_1, 0*wordSize);
3037   NOT_LP64(const Address hi(obj, off, Address::times_1, 1*wordSize));
3038 
3039   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notValueType, notDouble;
3040 
3041   if (!is_static) {
3042     __ movptr(rcx, Address(cache, index, Address::times_ptr,
3043                            in_bytes(ConstantPoolCache::base_offset() +
3044                                     ConstantPoolCacheEntry::f1_offset())));
3045   }
3046 
3047   __ movl(flags2, flags);
3048 
3049   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3050   // Make sure we don't need to mask edx after the above shift
3051   assert(btos == 0, "change code, btos != 0");
3052 
3053   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
3054 
3055   __ jcc(Assembler::notZero, notByte);
3056   // btos
3057   if (!is_static) pop_and_check_object(obj);
3058   __ load_signed_byte(rax, field);
3059   __ push(btos);
3060   // Rewrite bytecode to be faster
3061   if (!is_static && rc == may_rewrite) {
3062     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
3063   }
3064   __ jmp(Done);
3065 
3066   __ bind(notByte);
3067 
3068   __ cmpl(flags, ztos);
3069   __ jcc(Assembler::notEqual, notBool);
3070    if (!is_static) pop_and_check_object(obj);
3071   // ztos (same code as btos)
3072   __ load_signed_byte(rax, field);
3073   __ push(ztos);
3074   // Rewrite bytecode to be faster
3075   if (!is_static && rc == may_rewrite) {
3076     // use btos rewriting, no truncating to t/f bit is needed for getfield.
3077     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
3078   }
3079   __ jmp(Done);
3080 
3081   __ bind(notBool);
3082   __ cmpl(flags, atos);
3083   __ jcc(Assembler::notEqual, notObj);
3084   // atos
3085   if (!EnableValhalla) {
3086     if (!is_static) pop_and_check_object(obj);
3087     __ load_heap_oop(rax, field);
3088     __ push(atos);
3089     if (!is_static && rc == may_rewrite) {
3090       patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
3091     }
3092     __ jmp(Done);
3093   } else {
3094     if (is_static) {
3095       __ load_heap_oop(rax, field);
3096       Label isFlattenable, uninitialized;
3097       // Issue below if the static field has not been initialized yet
3098       __ test_field_is_flattenable(flags2, rscratch1, isFlattenable);
3099       // Not flattenable case
3100       __ push(atos);
3101       __ jmp(Done);
3102       // Flattenable case, must not return null even if uninitialized
3103       __ bind(isFlattenable);
3104       __ testptr(rax, rax);
3105       __ jcc(Assembler::zero, uninitialized);
3106       __ push(atos);
3107       __ jmp(Done);
3108       __ bind(uninitialized);
3109       __ andl(flags2, ConstantPoolCacheEntry::field_index_mask);
3110       __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_static_value_field),
3111                  obj, flags2);
3112       __ verify_oop(rax);
3113       __ push(atos);
3114       __ jmp(Done);
3115     } else {
3116       Label isFlattened, nonnull, isFlattenable;
3117       __ test_field_is_flattenable(flags2, rscratch1, isFlattenable);
3118       // Non-flattenable field case, also covers the object case
3119       pop_and_check_object(obj);
3120       __ load_heap_oop(rax, field);
3121       __ push(atos);
3122       if (rc == may_rewrite) {
3123         patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
3124       }
3125       __ jmp(Done);
3126       __ bind(isFlattenable);
3127       __ test_field_is_flattened(flags2, rscratch1, isFlattened);
3128       // Non-flattened field case
3129       pop_and_check_object(obj);
3130       __ load_heap_oop(rax, field);
3131       __ testptr(rax, rax);
3132       __ jcc(Assembler::notZero, nonnull);
3133       __ andl(flags2, ConstantPoolCacheEntry::field_index_mask);
3134       __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_instance_value_field),
3135                  obj, flags2);
3136       __ verify_oop(rax);
3137       __ bind(nonnull);
3138       __ push(atos);
3139       __ jmp(Done);
3140       __ bind(isFlattened);
3141       __ andl(flags2, ConstantPoolCacheEntry::field_index_mask);
3142       pop_and_check_object(rbx);
3143       call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::qgetfield),
3144               rbx, flags2, rcx);
3145       __ verify_oop(rax);
3146       __ push(atos);
3147       __ jmp(Done);
3148     }
3149   }
3150 
3151   __ bind(notObj);
3152 
3153   if (!is_static) pop_and_check_object(obj);
3154 
3155   __ cmpl(flags, itos);
3156   __ jcc(Assembler::notEqual, notInt);
3157   // itos
3158   __ movl(rax, field);
3159   __ push(itos);
3160   // Rewrite bytecode to be faster
3161   if (!is_static && rc == may_rewrite) {
3162     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
3163   }
3164   __ jmp(Done);
3165 
3166   __ bind(notInt);
3167   __ cmpl(flags, ctos);
3168   __ jcc(Assembler::notEqual, notChar);
3169   // ctos
3170   __ load_unsigned_short(rax, field);
3171   __ push(ctos);
3172   // Rewrite bytecode to be faster
3173   if (!is_static && rc == may_rewrite) {
3174     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
3175   }
3176   __ jmp(Done);
3177 
3178   __ bind(notChar);
3179   __ cmpl(flags, stos);
3180   __ jcc(Assembler::notEqual, notShort);
3181   // stos
3182   __ load_signed_short(rax, field);
3183   __ push(stos);
3184   // Rewrite bytecode to be faster
3185   if (!is_static && rc == may_rewrite) {
3186     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
3187   }
3188   __ jmp(Done);
3189 
3190   __ bind(notShort);
3191   __ cmpl(flags, ltos);
3192   __ jcc(Assembler::notEqual, notLong);
3193   // ltos
3194 
3195 #ifndef _LP64
3196   // Generate code as if volatile.  There just aren't enough registers to
3197   // save that information and this code is faster than the test.
3198   __ fild_d(field);                // Must load atomically
3199   __ subptr(rsp,2*wordSize);    // Make space for store
3200   __ fistp_d(Address(rsp,0));
3201   __ pop(rax);
3202   __ pop(rdx);
3203 #else
3204   __ movq(rax, field);
3205 #endif
3206 
3207   __ push(ltos);
3208   // Rewrite bytecode to be faster
3209   LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
3210   __ jmp(Done);
3211 
3212   __ bind(notLong);
3213   __ cmpl(flags, ftos);
3214   __ jcc(Assembler::notEqual, notFloat);
3215   // ftos
3216 
3217   __ load_float(field);
3218   __ push(ftos);
3219   // Rewrite bytecode to be faster
3220   if (!is_static && rc == may_rewrite) {
3221     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
3222   }
3223   __ jmp(Done);
3224 
3225   __ bind(notFloat);
3226 #ifdef ASSERT
3227   __ cmpl(flags, dtos);
3228   __ jcc(Assembler::notEqual, notDouble);
3229 #endif
3230   // dtos
3231   __ load_double(field);
3232   __ push(dtos);
3233   // Rewrite bytecode to be faster
3234   if (!is_static && rc == may_rewrite) {
3235     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
3236   }
3237 #ifdef ASSERT
3238   __ jmp(Done);
3239 
3240 
3241   __ bind(notDouble);
3242   __ stop("Bad state");
3243 #endif
3244 
3245   __ bind(Done);
3246   // [jk] not needed currently
3247   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
3248   //                                              Assembler::LoadStore));
3249 }
3250 
3251 void TemplateTable::getfield(int byte_no) {
3252   getfield_or_static(byte_no, false);
3253 }
3254 
3255 void TemplateTable::nofast_getfield(int byte_no) {
3256   getfield_or_static(byte_no, false, may_not_rewrite);
3257 }
3258 
3259 void TemplateTable::getstatic(int byte_no) {
3260   getfield_or_static(byte_no, true);
3261 }
3262 
3263 void TemplateTable::withfield() {
3264   transition(vtos, atos);
3265 
3266   Register cache = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
3267   Register index = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
3268 
3269   resolve_cache_and_index(f2_byte, cache, index, sizeof(u2));
3270 
3271   call_VM(rbx, CAST_FROM_FN_PTR(address, InterpreterRuntime::withfield), cache);
3272   // new value type is returned in rbx
3273   // stack adjustement is returned in rax
3274   __ verify_oop(rbx);
3275   __ addptr(rsp, rax);
3276   __ movptr(rax, rbx);
3277 }
3278 
3279 // The registers cache and index expected to be set before call.
3280 // The function may destroy various registers, just not the cache and index registers.
3281 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
3282 
3283   const Register robj = LP64_ONLY(c_rarg2)   NOT_LP64(rax);
3284   const Register RBX  = LP64_ONLY(c_rarg1)   NOT_LP64(rbx);
3285   const Register RCX  = LP64_ONLY(c_rarg3)   NOT_LP64(rcx);
3286   const Register RDX  = LP64_ONLY(rscratch1) NOT_LP64(rdx);
3287 
3288   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3289 
3290   if (JvmtiExport::can_post_field_modification()) {
3291     // Check to see if a field modification watch has been set before
3292     // we take the time to call into the VM.
3293     Label L1;
3294     assert_different_registers(cache, index, rax);
3295     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3296     __ testl(rax, rax);
3297     __ jcc(Assembler::zero, L1);
3298 
3299     __ get_cache_and_index_at_bcp(robj, RDX, 1);
3300 
3301 
3302     if (is_static) {
3303       // Life is simple.  Null out the object pointer.
3304       __ xorl(RBX, RBX);
3305 
3306     } else {
3307       // Life is harder. The stack holds the value on top, followed by
3308       // the object.  We don't know the size of the value, though; it
3309       // could be one or two words depending on its type. As a result,
3310       // we must find the type to determine where the object is.
3311 #ifndef _LP64
3312       Label two_word, valsize_known;
3313 #endif
3314       __ movl(RCX, Address(robj, RDX,
3315                            Address::times_ptr,
3316                            in_bytes(cp_base_offset +
3317                                      ConstantPoolCacheEntry::flags_offset())));
3318       NOT_LP64(__ mov(rbx, rsp));
3319       __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift);
3320 
3321       // Make sure we don't need to mask rcx after the above shift
3322       ConstantPoolCacheEntry::verify_tos_state_shift();
3323 #ifdef _LP64
3324       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
3325       __ cmpl(c_rarg3, ltos);
3326       __ cmovptr(Assembler::equal,
3327                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
3328       __ cmpl(c_rarg3, dtos);
3329       __ cmovptr(Assembler::equal,
3330                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
3331 #else
3332       __ cmpl(rcx, ltos);
3333       __ jccb(Assembler::equal, two_word);
3334       __ cmpl(rcx, dtos);
3335       __ jccb(Assembler::equal, two_word);
3336       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
3337       __ jmpb(valsize_known);
3338 
3339       __ bind(two_word);
3340       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
3341 
3342       __ bind(valsize_known);
3343       // setup object pointer
3344       __ movptr(rbx, Address(rbx, 0));
3345 #endif
3346     }
3347     // cache entry pointer
3348     __ addptr(robj, in_bytes(cp_base_offset));
3349     __ shll(RDX, LogBytesPerWord);
3350     __ addptr(robj, RDX);
3351     // object (tos)
3352     __ mov(RCX, rsp);
3353     // c_rarg1: object pointer set up above (NULL if static)
3354     // c_rarg2: cache entry pointer
3355     // c_rarg3: jvalue object on the stack
3356     __ call_VM(noreg,
3357                CAST_FROM_FN_PTR(address,
3358                                 InterpreterRuntime::post_field_modification),
3359                RBX, robj, RCX);
3360     __ get_cache_and_index_at_bcp(cache, index, 1);
3361     __ bind(L1);
3362   }
3363 }
3364 
3365 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3366   transition(vtos, vtos);
3367 
3368   const Register cache = rcx;
3369   const Register index = rdx;
3370   const Register obj   = rcx;
3371   const Register off   = rbx;
3372   const Register flags = rax;
3373   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3374   const Register flags2 = rdx;
3375 
3376   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
3377   jvmti_post_field_mod(cache, index, is_static);
3378   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
3379 
3380   // [jk] not needed currently
3381   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3382   //                                              Assembler::StoreStore));
3383 
3384   Label notVolatile, Done;
3385 
3386   __ movl(flags2, flags);
3387 
3388   // field addresses
3389   const Address field(obj, off, Address::times_1, 0*wordSize);
3390   NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
3391 
3392   Label notByte, notBool, notInt, notShort, notChar,
3393         notLong, notFloat, notObj, notValueType, notDouble;
3394 
3395   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3396 
3397   assert(btos == 0, "change code, btos != 0");
3398   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
3399   __ jcc(Assembler::notZero, notByte);
3400 
3401   // btos
3402   {
3403     __ pop(btos);
3404     if (!is_static) pop_and_check_object(obj);
3405     __ movb(field, rax);
3406     if (!is_static && rc == may_rewrite) {
3407       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
3408     }
3409     __ jmp(Done);
3410   }
3411 
3412   __ bind(notByte);
3413   __ cmpl(flags, ztos);
3414   __ jcc(Assembler::notEqual, notBool);
3415 
3416   // ztos
3417   {
3418     __ pop(ztos);
3419     if (!is_static) pop_and_check_object(obj);
3420     __ andl(rax, 0x1);
3421     __ movb(field, rax);
3422     if (!is_static && rc == may_rewrite) {
3423       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
3424     }
3425     __ jmp(Done);
3426   }
3427 
3428   __ bind(notBool);
3429   __ cmpl(flags, atos);
3430   __ jcc(Assembler::notEqual, notObj);
3431 
3432   // atos
3433   {
3434     if (!EnableValhalla) {
3435       __ pop(atos);
3436       if (!is_static) pop_and_check_object(obj);
3437       // Store into the field
3438       do_oop_store(_masm, field, rax, _bs->kind(), false);
3439       if (!is_static && rc == may_rewrite) {
3440         patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3441       }
3442       __ jmp(Done);
3443     } else {
3444       __ pop(atos);
3445       if (is_static) {
3446         Label notFlattenable, notBuffered;
3447         __ test_field_is_not_flattenable(flags2, rscratch1, notFlattenable);
3448         __ null_check(rax);
3449         __ bind(notFlattenable);
3450         if (ValueTypesBufferMaxMemory > 0) {
3451           __ test_value_is_not_buffered(rax, rscratch1, notBuffered);
3452           call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_heap_copy),
3453                   rax, off, obj);
3454           __ jmp(Done);
3455           __ bind(notBuffered);
3456         }
3457         do_oop_store(_masm, field, rax, _bs->kind(), false);
3458         __ jmp(Done);
3459       } else {
3460         Label isFlattenable, isFlattened, notBuffered, notBuffered2;
3461         __ test_field_is_flattenable(flags2, rscratch1, isFlattenable);
3462         // Not flattenable case, covers not flattenable values and objects
3463         pop_and_check_object(obj);
3464         // Store into the field
3465         if (ValueTypesBufferMaxMemory > 0) {
3466           __ test_value_is_not_buffered(rax, rscratch1, notBuffered);
3467           call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_heap_copy),
3468                   rax, off, obj);
3469           __ jmp(Done);
3470           __ bind(notBuffered);
3471         }
3472         do_oop_store(_masm, field, rax, _bs->kind(), false);
3473         if (rc == may_rewrite) {
3474           patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3475         }
3476         __ jmp(Done);
3477         // Implementation of the flattenable semantic
3478         __ bind(isFlattenable);
3479         __ null_check(rax);
3480         __ test_field_is_flattened(flags2, rscratch1, isFlattened);
3481         // Not flattened case
3482         if (ValueTypesBufferMaxMemory > 0) {
3483           __ test_value_is_not_buffered(rax, rscratch1, notBuffered2);
3484           pop_and_check_object(obj);
3485           call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_heap_copy),
3486                   rax, off, obj);
3487           __ jmp(Done);
3488           __ bind(notBuffered2);
3489         }
3490         pop_and_check_object(obj);
3491         // Store into the field
3492         do_oop_store(_masm, field, rax, _bs->kind(), false);
3493         __ jmp(Done);
3494         __ bind(isFlattened);
3495         pop_and_check_object(rbx);
3496         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::qputfield),
3497                 rbx, rax, rcx);
3498         __ jmp(notVolatile); // value types are never volatile
3499       }
3500     }
3501   }
3502 
3503   __ bind(notObj);
3504   __ cmpl(flags, itos);
3505   __ jcc(Assembler::notEqual, notInt);
3506 
3507   // itos
3508   {
3509     __ pop(itos);
3510     if (!is_static) pop_and_check_object(obj);
3511     __ movl(field, rax);
3512     if (!is_static && rc == may_rewrite) {
3513       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3514     }
3515     __ jmp(Done);
3516   }
3517 
3518   __ bind(notInt);
3519   __ cmpl(flags, ctos);
3520   __ jcc(Assembler::notEqual, notChar);
3521 
3522   // ctos
3523   {
3524     __ pop(ctos);
3525     if (!is_static) pop_and_check_object(obj);
3526     __ movw(field, rax);
3527     if (!is_static && rc == may_rewrite) {
3528       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3529     }
3530     __ jmp(Done);
3531   }
3532 
3533   __ bind(notChar);
3534   __ cmpl(flags, stos);
3535   __ jcc(Assembler::notEqual, notShort);
3536 
3537   // stos
3538   {
3539     __ pop(stos);
3540     if (!is_static) pop_and_check_object(obj);
3541     __ movw(field, rax);
3542     if (!is_static && rc == may_rewrite) {
3543       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3544     }
3545     __ jmp(Done);
3546   }
3547 
3548   __ bind(notShort);
3549   __ cmpl(flags, ltos);
3550   __ jcc(Assembler::notEqual, notLong);
3551 
3552   // ltos
3553 #ifdef _LP64
3554   {
3555     __ pop(ltos);
3556     if (!is_static) pop_and_check_object(obj);
3557     __ movq(field, rax);
3558     if (!is_static && rc == may_rewrite) {
3559       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3560     }
3561     __ jmp(Done);
3562   }
3563 #else
3564   {
3565     Label notVolatileLong;
3566     __ testl(rdx, rdx);
3567     __ jcc(Assembler::zero, notVolatileLong);
3568 
3569     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
3570     if (!is_static) pop_and_check_object(obj);
3571 
3572     // Replace with real volatile test
3573     __ push(rdx);
3574     __ push(rax);                 // Must update atomically with FIST
3575     __ fild_d(Address(rsp,0));    // So load into FPU register
3576     __ fistp_d(field);            // and put into memory atomically
3577     __ addptr(rsp, 2*wordSize);
3578     // volatile_barrier();
3579     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3580                                                  Assembler::StoreStore));
3581     // Don't rewrite volatile version
3582     __ jmp(notVolatile);
3583 
3584     __ bind(notVolatileLong);
3585 
3586     __ pop(ltos);  // overwrites rdx
3587     if (!is_static) pop_and_check_object(obj);
3588     __ movptr(hi, rdx);
3589     __ movptr(field, rax);
3590     // Don't rewrite to _fast_lputfield for potential volatile case.
3591     __ jmp(notVolatile);
3592   }
3593 #endif // _LP64
3594 
3595   __ bind(notLong);
3596   __ cmpl(flags, ftos);
3597   __ jcc(Assembler::notEqual, notFloat);
3598 
3599   // ftos
3600   {
3601     __ pop(ftos);
3602     if (!is_static) pop_and_check_object(obj);
3603     __ store_float(field);
3604     if (!is_static && rc == may_rewrite) {
3605       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3606     }
3607     __ jmp(Done);
3608   }
3609 
3610   __ bind(notFloat);
3611 #ifdef ASSERT
3612   __ cmpl(flags, dtos);
3613   __ jcc(Assembler::notEqual, notDouble);
3614 #endif
3615 
3616   // dtos
3617   {
3618     __ pop(dtos);
3619     if (!is_static) pop_and_check_object(obj);
3620     __ store_double(field);
3621     if (!is_static && rc == may_rewrite) {
3622       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3623     }
3624   }
3625 
3626 #ifdef ASSERT
3627   __ jmp(Done);
3628 
3629   __ bind(notDouble);
3630   __ stop("Bad state");
3631 #endif
3632 
3633   __ bind(Done);
3634 
3635   __ shrl(flags2, ConstantPoolCacheEntry::is_volatile_shift);
3636   __ andl(flags2, 0x1);
3637 
3638   // Check for volatile store
3639   __ testl(flags2, flags2);
3640   __ jcc(Assembler::zero, notVolatile);
3641   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3642                                                Assembler::StoreStore));
3643   __ bind(notVolatile);
3644 }
3645 
3646 void TemplateTable::putfield(int byte_no) {
3647   putfield_or_static(byte_no, false);
3648 }
3649 
3650 void TemplateTable::nofast_putfield(int byte_no) {
3651   putfield_or_static(byte_no, false, may_not_rewrite);
3652 }
3653 
3654 void TemplateTable::putstatic(int byte_no) {
3655   putfield_or_static(byte_no, true);
3656 }
3657 
3658 void TemplateTable::jvmti_post_fast_field_mod() {
3659 
3660   const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3661 
3662   if (JvmtiExport::can_post_field_modification()) {
3663     // Check to see if a field modification watch has been set before
3664     // we take the time to call into the VM.
3665     Label L2;
3666     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3667     __ testl(scratch, scratch);
3668     __ jcc(Assembler::zero, L2);
3669     __ pop_ptr(rbx);                  // copy the object pointer from tos
3670     __ verify_oop(rbx);
3671     __ push_ptr(rbx);                 // put the object pointer back on tos
3672     // Save tos values before call_VM() clobbers them. Since we have
3673     // to do it for every data type, we use the saved values as the
3674     // jvalue object.
3675     switch (bytecode()) {          // load values into the jvalue object
3676     case Bytecodes::_fast_qputfield: //fall through
3677     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3678     case Bytecodes::_fast_bputfield: // fall through
3679     case Bytecodes::_fast_zputfield: // fall through
3680     case Bytecodes::_fast_sputfield: // fall through
3681     case Bytecodes::_fast_cputfield: // fall through
3682     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3683     case Bytecodes::_fast_dputfield: __ push(dtos); break;
3684     case Bytecodes::_fast_fputfield: __ push(ftos); break;
3685     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3686 
3687     default:
3688       ShouldNotReachHere();
3689     }
3690     __ mov(scratch, rsp);             // points to jvalue on the stack
3691     // access constant pool cache entry
3692     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1));
3693     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1));
3694     __ verify_oop(rbx);
3695     // rbx: object pointer copied above
3696     // c_rarg2: cache entry pointer
3697     // c_rarg3: jvalue object on the stack
3698     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
3699     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
3700 
3701     switch (bytecode()) {             // restore tos values
3702     case Bytecodes::_fast_qputfield: // fall through
3703     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3704     case Bytecodes::_fast_bputfield: // fall through
3705     case Bytecodes::_fast_zputfield: // fall through
3706     case Bytecodes::_fast_sputfield: // fall through
3707     case Bytecodes::_fast_cputfield: // fall through
3708     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3709     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3710     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3711     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3712     default: break;
3713     }
3714     __ bind(L2);
3715   }
3716 }
3717 
3718 void TemplateTable::fast_storefield(TosState state) {
3719   transition(state, vtos);
3720 
3721   ByteSize base = ConstantPoolCache::base_offset();
3722 
3723   jvmti_post_fast_field_mod();
3724 
3725   // access constant pool cache
3726   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3727 
3728   // test for volatile with rdx but rdx is tos register for lputfield.
3729   __ movl(rdx, Address(rcx, rbx, Address::times_ptr,
3730                        in_bytes(base +
3731                                 ConstantPoolCacheEntry::flags_offset())));
3732 
3733   // replace index with field offset from cache entry
3734   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3735                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
3736 
3737   // [jk] not needed currently
3738   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3739   //                                              Assembler::StoreStore));
3740 
3741   Label notVolatile;
3742   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3743   __ andl(rdx, 0x1);
3744 
3745   // Get object from stack
3746   pop_and_check_object(rcx);
3747 
3748   // field address
3749   const Address field(rcx, rbx, Address::times_1);
3750 
3751   // access field
3752   switch (bytecode()) {
3753   case Bytecodes::_fast_qputfield:
3754     __ stop("should not be rewritten yet");
3755     break;
3756   case Bytecodes::_fast_aputfield:
3757     do_oop_store(_masm, field, rax, _bs->kind(), false);
3758     break;
3759   case Bytecodes::_fast_lputfield:
3760 #ifdef _LP64
3761   __ movq(field, rax);
3762 #else
3763   __ stop("should not be rewritten");
3764 #endif
3765     break;
3766   case Bytecodes::_fast_iputfield:
3767     __ movl(field, rax);
3768     break;
3769   case Bytecodes::_fast_zputfield:
3770     __ andl(rax, 0x1);  // boolean is true if LSB is 1
3771     // fall through to bputfield
3772   case Bytecodes::_fast_bputfield:
3773     __ movb(field, rax);
3774     break;
3775   case Bytecodes::_fast_sputfield:
3776     // fall through
3777   case Bytecodes::_fast_cputfield:
3778     __ movw(field, rax);
3779     break;
3780   case Bytecodes::_fast_fputfield:
3781     __ store_float(field);
3782     break;
3783   case Bytecodes::_fast_dputfield:
3784     __ store_double(field);
3785     break;
3786   default:
3787     ShouldNotReachHere();
3788   }
3789 
3790   // Check for volatile store
3791   __ testl(rdx, rdx);
3792   __ jcc(Assembler::zero, notVolatile);
3793   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3794                                                Assembler::StoreStore));
3795   __ bind(notVolatile);
3796 }
3797 
3798 void TemplateTable::fast_accessfield(TosState state) {
3799   transition(atos, state);
3800 
3801   // Do the JVMTI work here to avoid disturbing the register state below
3802   if (JvmtiExport::can_post_field_access()) {
3803     // Check to see if a field access watch has been set before we
3804     // take the time to call into the VM.
3805     Label L1;
3806     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3807     __ testl(rcx, rcx);
3808     __ jcc(Assembler::zero, L1);
3809     // access constant pool cache entry
3810     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1));
3811     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1));
3812     __ verify_oop(rax);
3813     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
3814     LP64_ONLY(__ mov(c_rarg1, rax));
3815     // c_rarg1: object pointer copied above
3816     // c_rarg2: cache entry pointer
3817     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
3818     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
3819     __ pop_ptr(rax); // restore object pointer
3820     __ bind(L1);
3821   }
3822 
3823   // access constant pool cache
3824   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3825   // replace index with field offset from cache entry
3826   // [jk] not needed currently
3827   // if (os::is_MP()) {
3828   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
3829   //                        in_bytes(ConstantPoolCache::base_offset() +
3830   //                                 ConstantPoolCacheEntry::flags_offset())));
3831   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3832   //   __ andl(rdx, 0x1);
3833   // }
3834   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3835                          in_bytes(ConstantPoolCache::base_offset() +
3836                                   ConstantPoolCacheEntry::f2_offset())));
3837 
3838   // rax: object
3839   __ verify_oop(rax);
3840   __ null_check(rax);
3841   Address field(rax, rbx, Address::times_1);
3842 
3843   // access field
3844   switch (bytecode()) {
3845   case Bytecodes::_fast_qgetfield:
3846     __ stop("should not be rewritten yet");
3847     break;
3848   case Bytecodes::_fast_agetfield:
3849     __ load_heap_oop(rax, field);
3850     __ verify_oop(rax);
3851     break;
3852   case Bytecodes::_fast_lgetfield:
3853 #ifdef _LP64
3854   __ movq(rax, field);
3855 #else
3856   __ stop("should not be rewritten");
3857 #endif
3858     break;
3859   case Bytecodes::_fast_igetfield:
3860     __ movl(rax, field);
3861     break;
3862   case Bytecodes::_fast_bgetfield:
3863     __ movsbl(rax, field);
3864     break;
3865   case Bytecodes::_fast_sgetfield:
3866     __ load_signed_short(rax, field);
3867     break;
3868   case Bytecodes::_fast_cgetfield:
3869     __ load_unsigned_short(rax, field);
3870     break;
3871   case Bytecodes::_fast_fgetfield:
3872     __ load_float(field);
3873     break;
3874   case Bytecodes::_fast_dgetfield:
3875     __ load_double(field);
3876     break;
3877   default:
3878     ShouldNotReachHere();
3879   }
3880   // [jk] not needed currently
3881   // if (os::is_MP()) {
3882   //   Label notVolatile;
3883   //   __ testl(rdx, rdx);
3884   //   __ jcc(Assembler::zero, notVolatile);
3885   //   __ membar(Assembler::LoadLoad);
3886   //   __ bind(notVolatile);
3887   //};
3888 }
3889 
3890 void TemplateTable::fast_xaccess(TosState state) {
3891   transition(vtos, state);
3892 
3893   // get receiver
3894   __ movptr(rax, aaddress(0));
3895   // access constant pool cache
3896   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
3897   __ movptr(rbx,
3898             Address(rcx, rdx, Address::times_ptr,
3899                     in_bytes(ConstantPoolCache::base_offset() +
3900                              ConstantPoolCacheEntry::f2_offset())));
3901   // make sure exception is reported in correct bcp range (getfield is
3902   // next instruction)
3903   __ increment(rbcp);
3904   __ null_check(rax);
3905   const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3906   switch (state) {
3907   case itos:
3908     __ movl(rax, field);
3909     break;
3910   case atos:
3911     __ load_heap_oop(rax, field);
3912     __ verify_oop(rax);
3913     break;
3914   case ftos:
3915     __ load_float(field);
3916     break;
3917   default:
3918     ShouldNotReachHere();
3919   }
3920 
3921   // [jk] not needed currently
3922   // if (os::is_MP()) {
3923   //   Label notVolatile;
3924   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
3925   //                        in_bytes(ConstantPoolCache::base_offset() +
3926   //                                 ConstantPoolCacheEntry::flags_offset())));
3927   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3928   //   __ testl(rdx, 0x1);
3929   //   __ jcc(Assembler::zero, notVolatile);
3930   //   __ membar(Assembler::LoadLoad);
3931   //   __ bind(notVolatile);
3932   // }
3933 
3934   __ decrement(rbcp);
3935 }
3936 
3937 //-----------------------------------------------------------------------------
3938 // Calls
3939 
3940 void TemplateTable::count_calls(Register method, Register temp) {
3941   // implemented elsewhere
3942   ShouldNotReachHere();
3943 }
3944 
3945 void TemplateTable::prepare_invoke(int byte_no,
3946                                    Register method,  // linked method (or i-klass)
3947                                    Register index,   // itable index, MethodType, etc.
3948                                    Register recv,    // if caller wants to see it
3949                                    Register flags    // if caller wants to test it
3950                                    ) {
3951   // determine flags
3952   const Bytecodes::Code code = bytecode();
3953   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3954   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3955   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3956   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3957   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3958   const bool load_receiver       = (recv  != noreg);
3959   const bool save_flags          = (flags != noreg);
3960   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3961   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
3962   assert(flags == noreg || flags == rdx, "");
3963   assert(recv  == noreg || recv  == rcx, "");
3964 
3965   // setup registers & access constant pool cache
3966   if (recv  == noreg)  recv  = rcx;
3967   if (flags == noreg)  flags = rdx;
3968   assert_different_registers(method, index, recv, flags);
3969 
3970   // save 'interpreter return address'
3971   __ save_bcp();
3972 
3973   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3974 
3975   // maybe push appendix to arguments (just before return address)
3976   if (is_invokedynamic || is_invokehandle) {
3977     Label L_no_push;
3978     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
3979     __ jcc(Assembler::zero, L_no_push);
3980     // Push the appendix as a trailing parameter.
3981     // This must be done before we get the receiver,
3982     // since the parameter_size includes it.
3983     __ push(rbx);
3984     __ mov(rbx, index);
3985     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
3986     __ load_resolved_reference_at_index(index, rbx);
3987     __ pop(rbx);
3988     __ push(index);  // push appendix (MethodType, CallSite, etc.)
3989     __ bind(L_no_push);
3990   }
3991 
3992   // load receiver if needed (after appendix is pushed so parameter size is correct)
3993   // Note: no return address pushed yet
3994   if (load_receiver) {
3995     __ movl(recv, flags);
3996     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3997     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3998     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3999     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
4000     __ movptr(recv, recv_addr);
4001     __ verify_oop(recv);
4002   }
4003 
4004   if (save_flags) {
4005     __ movl(rbcp, flags);
4006   }
4007 
4008   // compute return type
4009   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
4010   // Make sure we don't need to mask flags after the above shift
4011   ConstantPoolCacheEntry::verify_tos_state_shift();
4012   // load return address
4013   {
4014     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
4015     ExternalAddress table(table_addr);
4016     LP64_ONLY(__ lea(rscratch1, table));
4017     LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr)));
4018     NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))));
4019   }
4020 
4021   // push return address
4022   __ push(flags);
4023 
4024   // Restore flags value from the constant pool cache, and restore rsi
4025   // for later null checks.  r13 is the bytecode pointer
4026   if (save_flags) {
4027     __ movl(flags, rbcp);
4028     __ restore_bcp();
4029   }
4030 }
4031 
4032 void TemplateTable::invokevirtual_helper(Register index,
4033                                          Register recv,
4034                                          Register flags) {
4035   // Uses temporary registers rax, rdx
4036   assert_different_registers(index, recv, rax, rdx);
4037   assert(index == rbx, "");
4038   assert(recv  == rcx, "");
4039 
4040   // Test for an invoke of a final method
4041   Label notFinal;
4042   __ movl(rax, flags);
4043   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
4044   __ jcc(Assembler::zero, notFinal);
4045 
4046   const Register method = index;  // method must be rbx
4047   assert(method == rbx,
4048          "Method* must be rbx for interpreter calling convention");
4049 
4050   // do the call - the index is actually the method to call
4051   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
4052 
4053   // It's final, need a null check here!
4054   __ null_check(recv);
4055 
4056   // profile this call
4057   __ profile_final_call(rax);
4058   __ profile_arguments_type(rax, method, rbcp, true);
4059 
4060   __ jump_from_interpreted(method, rax);
4061 
4062   __ bind(notFinal);
4063 
4064   // get receiver klass
4065   __ null_check(recv, oopDesc::klass_offset_in_bytes());
4066   __ load_klass(rax, recv);
4067 
4068   // profile this call
4069   __ profile_virtual_call(rax, rlocals, rdx);
4070   // get target Method* & entry point
4071   __ lookup_virtual_method(rax, index, method);
4072   __ profile_called_method(method, rdx, rbcp);
4073 
4074   __ profile_arguments_type(rdx, method, rbcp, true);
4075   __ jump_from_interpreted(method, rdx);
4076 }
4077 
4078 void TemplateTable::invokevirtual(int byte_no) {
4079   transition(vtos, vtos);
4080   assert(byte_no == f2_byte, "use this argument");
4081   prepare_invoke(byte_no,
4082                  rbx,    // method or vtable index
4083                  noreg,  // unused itable index
4084                  rcx, rdx); // recv, flags
4085 
4086   // rbx: index
4087   // rcx: receiver
4088   // rdx: flags
4089 
4090   invokevirtual_helper(rbx, rcx, rdx);
4091 }
4092 
4093 void TemplateTable::invokespecial(int byte_no) {
4094   transition(vtos, vtos);
4095   assert(byte_no == f1_byte, "use this argument");
4096   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
4097                  rcx);  // get receiver also for null check
4098   __ verify_oop(rcx);
4099   __ null_check(rcx);
4100   // do the call
4101   __ profile_call(rax);
4102   __ profile_arguments_type(rax, rbx, rbcp, false);
4103   __ jump_from_interpreted(rbx, rax);
4104 }
4105 
4106 void TemplateTable::invokestatic(int byte_no) {
4107   transition(vtos, vtos);
4108   assert(byte_no == f1_byte, "use this argument");
4109   prepare_invoke(byte_no, rbx);  // get f1 Method*
4110   // do the call
4111   __ profile_call(rax);
4112   __ profile_arguments_type(rax, rbx, rbcp, false);
4113   __ jump_from_interpreted(rbx, rax);
4114 }
4115 
4116 
4117 void TemplateTable::fast_invokevfinal(int byte_no) {
4118   transition(vtos, vtos);
4119   assert(byte_no == f2_byte, "use this argument");
4120   __ stop("fast_invokevfinal not used on x86");
4121 }
4122 
4123 
4124 void TemplateTable::invokeinterface(int byte_no) {
4125   transition(vtos, vtos);
4126   assert(byte_no == f1_byte, "use this argument");
4127   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 Method*
4128                  rcx, rdx); // recv, flags
4129 
4130   // rax: reference klass (from f1)
4131   // rbx: method (from f2)
4132   // rcx: receiver
4133   // rdx: flags
4134 
4135   // Special case of invokeinterface called for virtual method of
4136   // java.lang.Object.  See cpCacheOop.cpp for details.
4137   // This code isn't produced by javac, but could be produced by
4138   // another compliant java compiler.
4139   Label notMethod;
4140   __ movl(rlocals, rdx);
4141   __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
4142 
4143   __ jcc(Assembler::zero, notMethod);
4144 
4145   invokevirtual_helper(rbx, rcx, rdx);
4146   __ bind(notMethod);
4147 
4148   // Get receiver klass into rdx - also a null check
4149   __ restore_locals();  // restore r14
4150   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
4151   __ load_klass(rdx, rcx);
4152 
4153   Label no_such_interface, no_such_method;
4154 
4155   // Receiver subtype check against REFC.
4156   // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
4157   __ lookup_interface_method(// inputs: rec. class, interface, itable index
4158                              rdx, rax, noreg,
4159                              // outputs: scan temp. reg, scan temp. reg
4160                              rbcp, rlocals,
4161                              no_such_interface,
4162                              /*return_method=*/false);
4163 
4164   // profile this call
4165   __ restore_bcp(); // rbcp was destroyed by receiver type check
4166   __ profile_virtual_call(rdx, rbcp, rlocals);
4167 
4168   // Get declaring interface class from method, and itable index
4169   __ movptr(rax, Address(rbx, Method::const_offset()));
4170   __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
4171   __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
4172   __ movl(rbx, Address(rbx, Method::itable_index_offset()));
4173   __ subl(rbx, Method::itable_index_max);
4174   __ negl(rbx);
4175 
4176   __ lookup_interface_method(// inputs: rec. class, interface, itable index
4177                              rdx, rax, rbx,
4178                              // outputs: method, scan temp. reg
4179                              rbx, rbcp,
4180                              no_such_interface);
4181 
4182   // rbx: Method* to call
4183   // rcx: receiver
4184   // Check for abstract method error
4185   // Note: This should be done more efficiently via a throw_abstract_method_error
4186   //       interpreter entry point and a conditional jump to it in case of a null
4187   //       method.
4188   __ testptr(rbx, rbx);
4189   __ jcc(Assembler::zero, no_such_method);
4190 
4191   __ profile_called_method(rbx, rbcp, rdx);
4192   __ profile_arguments_type(rdx, rbx, rbcp, true);
4193 
4194   // do the call
4195   // rcx: receiver
4196   // rbx,: Method*
4197   __ jump_from_interpreted(rbx, rdx);
4198   __ should_not_reach_here();
4199 
4200   // exception handling code follows...
4201   // note: must restore interpreter registers to canonical
4202   //       state for exception handling to work correctly!
4203 
4204   __ bind(no_such_method);
4205   // throw exception
4206   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
4207   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
4208   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
4209   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
4210   // the call_VM checks for exception, so we should never return here.
4211   __ should_not_reach_here();
4212 
4213   __ bind(no_such_interface);
4214   // throw exception
4215   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
4216   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
4217   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
4218   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4219                    InterpreterRuntime::throw_IncompatibleClassChangeError));
4220   // the call_VM checks for exception, so we should never return here.
4221   __ should_not_reach_here();
4222 }
4223 
4224 void TemplateTable::invokehandle(int byte_no) {
4225   transition(vtos, vtos);
4226   assert(byte_no == f1_byte, "use this argument");
4227   const Register rbx_method = rbx;
4228   const Register rax_mtype  = rax;
4229   const Register rcx_recv   = rcx;
4230   const Register rdx_flags  = rdx;
4231 
4232   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
4233   __ verify_method_ptr(rbx_method);
4234   __ verify_oop(rcx_recv);
4235   __ null_check(rcx_recv);
4236 
4237   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
4238   // rbx: MH.invokeExact_MT method (from f2)
4239 
4240   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
4241 
4242   // FIXME: profile the LambdaForm also
4243   __ profile_final_call(rax);
4244   __ profile_arguments_type(rdx, rbx_method, rbcp, true);
4245 
4246   __ jump_from_interpreted(rbx_method, rdx);
4247 }
4248 
4249 void TemplateTable::invokedynamic(int byte_no) {
4250   transition(vtos, vtos);
4251   assert(byte_no == f1_byte, "use this argument");
4252 
4253   const Register rbx_method   = rbx;
4254   const Register rax_callsite = rax;
4255 
4256   prepare_invoke(byte_no, rbx_method, rax_callsite);
4257 
4258   // rax: CallSite object (from cpool->resolved_references[f1])
4259   // rbx: MH.linkToCallSite method (from f2)
4260 
4261   // Note:  rax_callsite is already pushed by prepare_invoke
4262 
4263   // %%% should make a type profile for any invokedynamic that takes a ref argument
4264   // profile this call
4265   __ profile_call(rbcp);
4266   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
4267 
4268   __ verify_oop(rax_callsite);
4269 
4270   __ jump_from_interpreted(rbx_method, rdx);
4271 }
4272 
4273 //-----------------------------------------------------------------------------
4274 // Allocation
4275 
4276 void TemplateTable::_new() {
4277   transition(vtos, atos);
4278   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
4279   Label slow_case;
4280   Label slow_case_no_pop;
4281   Label done;
4282   Label initialize_header;
4283   Label initialize_object;  // including clearing the fields
4284 
4285   __ get_cpool_and_tags(rcx, rax);
4286 
4287   // Make sure the class we're about to instantiate has been resolved.
4288   // This is done before loading InstanceKlass to be consistent with the order
4289   // how Constant Pool is updated (see ConstantPool::klass_at_put)
4290   const int tags_offset = Array<u1>::base_offset_in_bytes();
4291   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
4292   __ jcc(Assembler::notEqual, slow_case_no_pop);
4293 
4294   // get InstanceKlass
4295   __ load_resolved_klass_at_index(rcx, rdx, rcx);
4296   __ push(rcx);  // save the contexts of klass for initializing the header
4297 
4298   // make sure klass is initialized & doesn't have finalizer
4299   // make sure klass is fully initialized
4300   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4301   __ jcc(Assembler::notEqual, slow_case);
4302 
4303   // get instance_size in InstanceKlass (scaled to a count of bytes)
4304   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
4305   // test to see if it has a finalizer or is malformed in some way
4306   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
4307   __ jcc(Assembler::notZero, slow_case);
4308 
4309   // Allocate the instance:
4310   //  If TLAB is enabled:
4311   //    Try to allocate in the TLAB.
4312   //    If fails, go to the slow path.
4313   //  Else If inline contiguous allocations are enabled:
4314   //    Try to allocate in eden.
4315   //    If fails due to heap end, go to slow path.
4316   //
4317   //  If TLAB is enabled OR inline contiguous is enabled:
4318   //    Initialize the allocation.
4319   //    Exit.
4320   //
4321   //  Go to slow path.
4322 
4323   const bool allow_shared_alloc =
4324     Universe::heap()->supports_inline_contig_alloc();
4325 
4326   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
4327 #ifndef _LP64
4328   if (UseTLAB || allow_shared_alloc) {
4329     __ get_thread(thread);
4330   }
4331 #endif // _LP64
4332 
4333   if (UseTLAB) {
4334     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
4335     __ lea(rbx, Address(rax, rdx, Address::times_1));
4336     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
4337     __ jcc(Assembler::above, slow_case);
4338     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
4339     if (ZeroTLAB) {
4340       // the fields have been already cleared
4341       __ jmp(initialize_header);
4342     } else {
4343       // initialize both the header and fields
4344       __ jmp(initialize_object);
4345     }
4346   } else {
4347     // Allocation in the shared Eden, if allowed.
4348     //
4349     // rdx: instance size in bytes
4350     if (allow_shared_alloc) {
4351       ExternalAddress heap_top((address)Universe::heap()->top_addr());
4352       ExternalAddress heap_end((address)Universe::heap()->end_addr());
4353 
4354       Label retry;
4355       __ bind(retry);
4356       __ movptr(rax, heap_top);
4357       __ lea(rbx, Address(rax, rdx, Address::times_1));
4358       __ cmpptr(rbx, heap_end);
4359       __ jcc(Assembler::above, slow_case);
4360 
4361       // Compare rax, with the top addr, and if still equal, store the new
4362       // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
4363       // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
4364       //
4365       // rax,: object begin
4366       // rbx,: object end
4367       // rdx: instance size in bytes
4368       __ locked_cmpxchgptr(rbx, heap_top);
4369 
4370       // if someone beat us on the allocation, try again, otherwise continue
4371       __ jcc(Assembler::notEqual, retry);
4372 
4373       __ incr_allocated_bytes(thread, rdx, 0);
4374     }
4375   }
4376 
4377   // If UseTLAB or allow_shared_alloc are true, the object is created above and
4378   // there is an initialize need. Otherwise, skip and go to the slow path.
4379   if (UseTLAB || allow_shared_alloc) {
4380     // The object is initialized before the header.  If the object size is
4381     // zero, go directly to the header initialization.
4382     __ bind(initialize_object);
4383     __ decrement(rdx, sizeof(oopDesc));
4384     __ jcc(Assembler::zero, initialize_header);
4385 
4386     // Initialize topmost object field, divide rdx by 8, check if odd and
4387     // test if zero.
4388     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
4389     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
4390 
4391     // rdx must have been multiple of 8
4392 #ifdef ASSERT
4393     // make sure rdx was multiple of 8
4394     Label L;
4395     // Ignore partial flag stall after shrl() since it is debug VM
4396     __ jccb(Assembler::carryClear, L);
4397     __ stop("object size is not multiple of 2 - adjust this code");
4398     __ bind(L);
4399     // rdx must be > 0, no extra check needed here
4400 #endif
4401 
4402     // initialize remaining object fields: rdx was a multiple of 8
4403     { Label loop;
4404     __ bind(loop);
4405     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
4406     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
4407     __ decrement(rdx);
4408     __ jcc(Assembler::notZero, loop);
4409     }
4410 
4411     // initialize object header only.
4412     __ bind(initialize_header);
4413     if (UseBiasedLocking) {
4414       __ pop(rcx);   // get saved klass back in the register.
4415       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
4416       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
4417     } else {
4418       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
4419                 (intptr_t)markOopDesc::prototype()); // header
4420       __ pop(rcx);   // get saved klass back in the register.
4421     }
4422 #ifdef _LP64
4423     __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
4424     __ store_klass_gap(rax, rsi);  // zero klass gap for compressed oops
4425 #endif
4426     __ store_klass(rax, rcx);  // klass
4427 
4428     {
4429       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
4430       // Trigger dtrace event for fastpath
4431       __ push(atos);
4432       __ call_VM_leaf(
4433            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
4434       __ pop(atos);
4435     }
4436 
4437     __ jmp(done);
4438   }
4439 
4440   // slow case
4441   __ bind(slow_case);
4442   __ pop(rcx);   // restore stack pointer to what it was when we came in.
4443   __ bind(slow_case_no_pop);
4444 
4445   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4446   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4447 
4448   __ get_constant_pool(rarg1);
4449   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4450   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
4451    __ verify_oop(rax);
4452 
4453   // continue
4454   __ bind(done);
4455 }
4456 
4457 void TemplateTable::defaultvalue() {
4458   transition(vtos, atos);
4459 
4460   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4461   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4462 
4463   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4464   __ get_constant_pool(rarg1);
4465 
4466   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::defaultvalue),
4467       rarg1, rarg2);
4468   __ verify_oop(rax);
4469 }
4470 
4471 void TemplateTable::newarray() {
4472   transition(itos, atos);
4473   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4474   __ load_unsigned_byte(rarg1, at_bcp(1));
4475   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
4476           rarg1, rax);
4477 }
4478 
4479 void TemplateTable::anewarray() {
4480   transition(itos, atos);
4481 
4482   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4483   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4484 
4485   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4486   __ get_constant_pool(rarg1);
4487   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
4488           rarg1, rarg2, rax);
4489 }
4490 
4491 void TemplateTable::arraylength() {
4492   transition(atos, itos);
4493   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
4494   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
4495 }
4496 
4497 void TemplateTable::checkcast() {
4498   transition(atos, atos);
4499   Label done, is_null, ok_is_subtype, quicked, resolved;
4500   __ testptr(rax, rax); // object is in rax
4501   __ jcc(Assembler::zero, is_null);
4502 
4503   // Get cpool & tags index
4504   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4505   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4506   // See if bytecode has already been quicked
4507   __ cmpb(Address(rdx, rbx,
4508                   Address::times_1,
4509                   Array<u1>::base_offset_in_bytes()),
4510           JVM_CONSTANT_Class);
4511   __ jcc(Assembler::equal, quicked);
4512   __ push(atos); // save receiver for result, and for GC
4513   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4514 
4515   // vm_result_2 has metadata result
4516 #ifndef _LP64
4517   // borrow rdi from locals
4518   __ get_thread(rdi);
4519   __ get_vm_result_2(rax, rdi);
4520   __ restore_locals();
4521 #else
4522   __ get_vm_result_2(rax, r15_thread);
4523 #endif
4524 
4525   __ pop_ptr(rdx); // restore receiver
4526   __ jmpb(resolved);
4527 
4528   // Get superklass in rax and subklass in rbx
4529   __ bind(quicked);
4530   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
4531   __ load_resolved_klass_at_index(rcx, rbx, rax);
4532 
4533   __ bind(resolved);
4534   __ load_klass(rbx, rdx);
4535 
4536   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
4537   // Superklass in rax.  Subklass in rbx.
4538   __ gen_subtype_check(rbx, ok_is_subtype);
4539 
4540   // Come here on failure
4541   __ push_ptr(rdx);
4542   // object is at TOS
4543   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
4544 
4545   // Come here on success
4546   __ bind(ok_is_subtype);
4547   __ mov(rax, rdx); // Restore object in rdx
4548 
4549   // Collect counts on whether this check-cast sees NULLs a lot or not.
4550   if (ProfileInterpreter) {
4551     __ jmp(done);
4552     __ bind(is_null);
4553     __ profile_null_seen(rcx);
4554   } else {
4555     __ bind(is_null);   // same as 'done'
4556   }
4557   __ bind(done);
4558 }
4559 
4560 void TemplateTable::instanceof() {
4561   transition(atos, itos);
4562   Label done, is_null, ok_is_subtype, quicked, resolved;
4563   __ testptr(rax, rax);
4564   __ jcc(Assembler::zero, is_null);
4565 
4566   // Get cpool & tags index
4567   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4568   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4569   // See if bytecode has already been quicked
4570   __ cmpb(Address(rdx, rbx,
4571                   Address::times_1,
4572                   Array<u1>::base_offset_in_bytes()),
4573           JVM_CONSTANT_Class);
4574   __ jcc(Assembler::equal, quicked);
4575 
4576   __ push(atos); // save receiver for result, and for GC
4577   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4578   // vm_result_2 has metadata result
4579 
4580 #ifndef _LP64
4581   // borrow rdi from locals
4582   __ get_thread(rdi);
4583   __ get_vm_result_2(rax, rdi);
4584   __ restore_locals();
4585 #else
4586   __ get_vm_result_2(rax, r15_thread);
4587 #endif
4588 
4589   __ pop_ptr(rdx); // restore receiver
4590   __ verify_oop(rdx);
4591   __ load_klass(rdx, rdx);
4592   __ jmpb(resolved);
4593 
4594   // Get superklass in rax and subklass in rdx
4595   __ bind(quicked);
4596   __ load_klass(rdx, rax);
4597   __ load_resolved_klass_at_index(rcx, rbx, rax);
4598 
4599   __ bind(resolved);
4600 
4601   // Generate subtype check.  Blows rcx, rdi
4602   // Superklass in rax.  Subklass in rdx.
4603   __ gen_subtype_check(rdx, ok_is_subtype);
4604 
4605   // Come here on failure
4606   __ xorl(rax, rax);
4607   __ jmpb(done);
4608   // Come here on success
4609   __ bind(ok_is_subtype);
4610   __ movl(rax, 1);
4611 
4612   // Collect counts on whether this test sees NULLs a lot or not.
4613   if (ProfileInterpreter) {
4614     __ jmp(done);
4615     __ bind(is_null);
4616     __ profile_null_seen(rcx);
4617   } else {
4618     __ bind(is_null);   // same as 'done'
4619   }
4620   __ bind(done);
4621   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
4622   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
4623 }
4624 
4625 //----------------------------------------------------------------------------------------------------
4626 // Breakpoints
4627 void TemplateTable::_breakpoint() {
4628   // Note: We get here even if we are single stepping..
4629   // jbug insists on setting breakpoints at every bytecode
4630   // even if we are in single step mode.
4631 
4632   transition(vtos, vtos);
4633 
4634   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4635 
4636   // get the unpatched byte code
4637   __ get_method(rarg);
4638   __ call_VM(noreg,
4639              CAST_FROM_FN_PTR(address,
4640                               InterpreterRuntime::get_original_bytecode_at),
4641              rarg, rbcp);
4642   __ mov(rbx, rax);  // why?
4643 
4644   // post the breakpoint event
4645   __ get_method(rarg);
4646   __ call_VM(noreg,
4647              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4648              rarg, rbcp);
4649 
4650   // complete the execution of original bytecode
4651   __ dispatch_only_normal(vtos);
4652 }
4653 
4654 //-----------------------------------------------------------------------------
4655 // Exceptions
4656 
4657 void TemplateTable::athrow() {
4658   transition(atos, vtos);
4659   __ null_check(rax);
4660   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
4661 }
4662 
4663 //-----------------------------------------------------------------------------
4664 // Synchronization
4665 //
4666 // Note: monitorenter & exit are symmetric routines; which is reflected
4667 //       in the assembly code structure as well
4668 //
4669 // Stack layout:
4670 //
4671 // [expressions  ] <--- rsp               = expression stack top
4672 // ..
4673 // [expressions  ]
4674 // [monitor entry] <--- monitor block top = expression stack bot
4675 // ..
4676 // [monitor entry]
4677 // [frame data   ] <--- monitor block bot
4678 // ...
4679 // [saved rbp    ] <--- rbp
4680 void TemplateTable::monitorenter() {
4681   transition(atos, vtos);
4682 
4683   // check for NULL object
4684   __ null_check(rax);
4685 
4686   const Address monitor_block_top(
4687         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4688   const Address monitor_block_bot(
4689         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4690   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4691 
4692   Label allocated;
4693 
4694   Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
4695   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4696   Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4697 
4698   // initialize entry pointer
4699   __ xorl(rmon, rmon); // points to free slot or NULL
4700 
4701   // find a free slot in the monitor block (result in rmon)
4702   {
4703     Label entry, loop, exit;
4704     __ movptr(rtop, monitor_block_top); // points to current entry,
4705                                         // starting with top-most entry
4706     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4707                                         // of monitor block
4708     __ jmpb(entry);
4709 
4710     __ bind(loop);
4711     // check if current entry is used
4712     __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
4713     // if not used then remember entry in rmon
4714     __ cmovptr(Assembler::equal, rmon, rtop);   // cmov => cmovptr
4715     // check if current entry is for same object
4716     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4717     // if same object then stop searching
4718     __ jccb(Assembler::equal, exit);
4719     // otherwise advance to next entry
4720     __ addptr(rtop, entry_size);
4721     __ bind(entry);
4722     // check if bottom reached
4723     __ cmpptr(rtop, rbot);
4724     // if not at bottom then check this entry
4725     __ jcc(Assembler::notEqual, loop);
4726     __ bind(exit);
4727   }
4728 
4729   __ testptr(rmon, rmon); // check if a slot has been found
4730   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4731 
4732   // allocate one if there's no free slot
4733   {
4734     Label entry, loop;
4735     // 1. compute new pointers          // rsp: old expression stack top
4736     __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4737     __ subptr(rsp, entry_size);         // move expression stack top
4738     __ subptr(rmon, entry_size);        // move expression stack bottom
4739     __ mov(rtop, rsp);                  // set start value for copy loop
4740     __ movptr(monitor_block_bot, rmon); // set new monitor block bottom
4741     __ jmp(entry);
4742     // 2. move expression stack contents
4743     __ bind(loop);
4744     __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4745                                                 // word from old location
4746     __ movptr(Address(rtop, 0), rbot);          // and store it at new location
4747     __ addptr(rtop, wordSize);                  // advance to next word
4748     __ bind(entry);
4749     __ cmpptr(rtop, rmon);                      // check if bottom reached
4750     __ jcc(Assembler::notEqual, loop);          // if not at bottom then
4751                                                 // copy next word
4752   }
4753 
4754   // call run-time routine
4755   // rmon: points to monitor entry
4756   __ bind(allocated);
4757 
4758   // Increment bcp to point to the next bytecode, so exception
4759   // handling for async. exceptions work correctly.
4760   // The object has already been poped from the stack, so the
4761   // expression stack looks correct.
4762   __ increment(rbcp);
4763 
4764   // store object
4765   __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax);
4766   __ lock_object(rmon);
4767 
4768   // check to make sure this monitor doesn't cause stack overflow after locking
4769   __ save_bcp();  // in case of exception
4770   __ generate_stack_overflow_check(0);
4771 
4772   // The bcp has already been incremented. Just need to dispatch to
4773   // next instruction.
4774   __ dispatch_next(vtos);
4775 }
4776 
4777 void TemplateTable::monitorexit() {
4778   transition(atos, vtos);
4779 
4780   // check for NULL object
4781   __ null_check(rax);
4782 
4783   const Address monitor_block_top(
4784         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4785   const Address monitor_block_bot(
4786         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4787   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4788 
4789   Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4790   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4791 
4792   Label found;
4793 
4794   // find matching slot
4795   {
4796     Label entry, loop;
4797     __ movptr(rtop, monitor_block_top); // points to current entry,
4798                                         // starting with top-most entry
4799     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4800                                         // of monitor block
4801     __ jmpb(entry);
4802 
4803     __ bind(loop);
4804     // check if current entry is for same object
4805     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4806     // if same object then stop searching
4807     __ jcc(Assembler::equal, found);
4808     // otherwise advance to next entry
4809     __ addptr(rtop, entry_size);
4810     __ bind(entry);
4811     // check if bottom reached
4812     __ cmpptr(rtop, rbot);
4813     // if not at bottom then check this entry
4814     __ jcc(Assembler::notEqual, loop);
4815   }
4816 
4817   // error handling. Unlocking was not block-structured
4818   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4819                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4820   __ should_not_reach_here();
4821 
4822   // call run-time routine
4823   __ bind(found);
4824   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4825   __ unlock_object(rtop);
4826   __ pop_ptr(rax); // discard object
4827 }
4828 
4829 // Wide instructions
4830 void TemplateTable::wide() {
4831   transition(vtos, vtos);
4832   __ load_unsigned_byte(rbx, at_bcp(1));
4833   ExternalAddress wtable((address)Interpreter::_wentry_point);
4834   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
4835   // Note: the rbcp increment step is part of the individual wide bytecode implementations
4836 }
4837 
4838 // Multi arrays
4839 void TemplateTable::multianewarray() {
4840   transition(vtos, atos);
4841 
4842   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4843   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4844   // last dim is on top of stack; we want address of first one:
4845   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4846   // the latter wordSize to point to the beginning of the array.
4847   __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4848   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
4849   __ load_unsigned_byte(rbx, at_bcp(3));
4850   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
4851 }