1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   void test_klass_is_value(Register klass, Register temp_reg, Label& is_value);
 101 
 102   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 103   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 104   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 105   void test_value_is_not_buffered(Register value, Register temp_reg, Label& not_buffered);
 106 
 107   // Check klass/oops is flat value type array (oop->_klass->_layout_helper & vt_bit)
 108   void test_flat_array_klass(Register klass, Register temp_reg, Label& is_flat_array);
 109   void test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array);
 110 
 111   // Required platform-specific helpers for Label::patch_instructions.
 112   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 113   void pd_patch_instruction(address branch, address target) {
 114     unsigned char op = branch[0];
 115     assert(op == 0xE8 /* call */ ||
 116         op == 0xE9 /* jmp */ ||
 117         op == 0xEB /* short jmp */ ||
 118         (op & 0xF0) == 0x70 /* short jcc */ ||
 119         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 120         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 121         "Invalid opcode at patch point");
 122 
 123     if (op == 0xEB || (op & 0xF0) == 0x70) {
 124       // short offset operators (jmp and jcc)
 125       char* disp = (char*) &branch[1];
 126       int imm8 = target - (address) &disp[1];
 127       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 128       *disp = imm8;
 129     } else {
 130       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 131       int imm32 = target - (address) &disp[1];
 132       *disp = imm32;
 133     }
 134   }
 135 
 136   // The following 4 methods return the offset of the appropriate move instruction
 137 
 138   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 139   int load_unsigned_byte(Register dst, Address src);
 140   int load_unsigned_short(Register dst, Address src);
 141 
 142   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 143   int load_signed_byte(Register dst, Address src);
 144   int load_signed_short(Register dst, Address src);
 145 
 146   // Support for sign-extension (hi:lo = extend_sign(lo))
 147   void extend_sign(Register hi, Register lo);
 148 
 149   // Load and store values by size and signed-ness
 150   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 151   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 152 
 153   // Support for inc/dec with optimal instruction selection depending on value
 154 
 155   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 156   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 157 
 158   void decrementl(Address dst, int value = 1);
 159   void decrementl(Register reg, int value = 1);
 160 
 161   void decrementq(Register reg, int value = 1);
 162   void decrementq(Address dst, int value = 1);
 163 
 164   void incrementl(Address dst, int value = 1);
 165   void incrementl(Register reg, int value = 1);
 166 
 167   void incrementq(Register reg, int value = 1);
 168   void incrementq(Address dst, int value = 1);
 169 
 170   // special instructions for EVEX
 171   void setvectmask(Register dst, Register src);
 172   void restorevectmask();
 173 
 174   // Support optimal SSE move instructions.
 175   void movflt(XMMRegister dst, XMMRegister src) {
 176     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 177     else                       { movss (dst, src); return; }
 178   }
 179   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 180   void movflt(XMMRegister dst, AddressLiteral src);
 181   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 182 
 183   void movdbl(XMMRegister dst, XMMRegister src) {
 184     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 185     else                       { movsd (dst, src); return; }
 186   }
 187 
 188   void movdbl(XMMRegister dst, AddressLiteral src);
 189 
 190   void movdbl(XMMRegister dst, Address src) {
 191     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 192     else                         { movlpd(dst, src); return; }
 193   }
 194   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 195 
 196   void incrementl(AddressLiteral dst);
 197   void incrementl(ArrayAddress dst);
 198 
 199   void incrementq(AddressLiteral dst);
 200 
 201   // Alignment
 202   void align(int modulus);
 203   void align(int modulus, int target);
 204 
 205   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 206   void fat_nop();
 207 
 208   // Stack frame creation/removal
 209   void enter();
 210   void leave();
 211 
 212   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 213   // The pointer will be loaded into the thread register.
 214   void get_thread(Register thread);
 215 
 216 
 217   // Support for VM calls
 218   //
 219   // It is imperative that all calls into the VM are handled via the call_VM macros.
 220   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 221   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 222 
 223 
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                bool check_exceptions = true);
 227   void call_VM(Register oop_result,
 228                address entry_point,
 229                Register arg_1,
 230                bool check_exceptions = true);
 231   void call_VM(Register oop_result,
 232                address entry_point,
 233                Register arg_1, Register arg_2,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                address entry_point,
 237                Register arg_1, Register arg_2, Register arg_3,
 238                bool check_exceptions = true);
 239 
 240   // Overloadings with last_Java_sp
 241   void call_VM(Register oop_result,
 242                Register last_java_sp,
 243                address entry_point,
 244                int number_of_arguments = 0,
 245                bool check_exceptions = true);
 246   void call_VM(Register oop_result,
 247                Register last_java_sp,
 248                address entry_point,
 249                Register arg_1, bool
 250                check_exceptions = true);
 251   void call_VM(Register oop_result,
 252                Register last_java_sp,
 253                address entry_point,
 254                Register arg_1, Register arg_2,
 255                bool check_exceptions = true);
 256   void call_VM(Register oop_result,
 257                Register last_java_sp,
 258                address entry_point,
 259                Register arg_1, Register arg_2, Register arg_3,
 260                bool check_exceptions = true);
 261 
 262   void get_vm_result  (Register oop_result, Register thread);
 263   void get_vm_result_2(Register metadata_result, Register thread);
 264 
 265   // These always tightly bind to MacroAssembler::call_VM_base
 266   // bypassing the virtual implementation
 267   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 268   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 269   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 270   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 271   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 272 
 273   void call_VM_leaf0(address entry_point);
 274   void call_VM_leaf(address entry_point,
 275                     int number_of_arguments = 0);
 276   void call_VM_leaf(address entry_point,
 277                     Register arg_1);
 278   void call_VM_leaf(address entry_point,
 279                     Register arg_1, Register arg_2);
 280   void call_VM_leaf(address entry_point,
 281                     Register arg_1, Register arg_2, Register arg_3);
 282 
 283   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 284   // bypassing the virtual implementation
 285   void super_call_VM_leaf(address entry_point);
 286   void super_call_VM_leaf(address entry_point, Register arg_1);
 287   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 288   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 289   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 290 
 291   // last Java Frame (fills frame anchor)
 292   void set_last_Java_frame(Register thread,
 293                            Register last_java_sp,
 294                            Register last_java_fp,
 295                            address last_java_pc);
 296 
 297   // thread in the default location (r15_thread on 64bit)
 298   void set_last_Java_frame(Register last_java_sp,
 299                            Register last_java_fp,
 300                            address last_java_pc);
 301 
 302   void reset_last_Java_frame(Register thread, bool clear_fp);
 303 
 304   // thread in the default location (r15_thread on 64bit)
 305   void reset_last_Java_frame(bool clear_fp);
 306 
 307   // Stores
 308   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 309   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 310 
 311   void resolve_jobject(Register value, Register thread, Register tmp);
 312   void clear_jweak_tag(Register possibly_jweak);
 313 
 314 #if INCLUDE_ALL_GCS
 315 
 316   void g1_write_barrier_pre(Register obj,
 317                             Register pre_val,
 318                             Register thread,
 319                             Register tmp,
 320                             bool tosca_live,
 321                             bool expand_call);
 322 
 323   void g1_write_barrier_post(Register store_addr,
 324                              Register new_val,
 325                              Register thread,
 326                              Register tmp,
 327                              Register tmp2);
 328 
 329 #endif // INCLUDE_ALL_GCS
 330 
 331   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 332   void c2bool(Register x);
 333 
 334   // C++ bool manipulation
 335 
 336   void movbool(Register dst, Address src);
 337   void movbool(Address dst, bool boolconst);
 338   void movbool(Address dst, Register src);
 339   void testbool(Register dst);
 340 
 341   void resolve_oop_handle(Register result);
 342   void load_mirror(Register mirror, Register method);
 343 
 344   // oop manipulations
 345   void load_klass(Register dst, Register src);
 346   void store_klass(Register dst, Register src);
 347 
 348   void load_heap_oop(Register dst, Address src);
 349   void load_heap_oop_not_null(Register dst, Address src);
 350   void store_heap_oop(Address dst, Register src);
 351   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 352 
 353   // Used for storing NULL. All other oop constants should be
 354   // stored using routines that take a jobject.
 355   void store_heap_oop_null(Address dst);
 356 
 357   void load_prototype_header(Register dst, Register src);
 358 
 359 #ifdef _LP64
 360   void store_klass_gap(Register dst, Register src);
 361 
 362   // This dummy is to prevent a call to store_heap_oop from
 363   // converting a zero (like NULL) into a Register by giving
 364   // the compiler two choices it can't resolve
 365 
 366   void store_heap_oop(Address dst, void* dummy);
 367 
 368   void encode_heap_oop(Register r);
 369   void decode_heap_oop(Register r);
 370   void encode_heap_oop_not_null(Register r);
 371   void decode_heap_oop_not_null(Register r);
 372   void encode_heap_oop_not_null(Register dst, Register src);
 373   void decode_heap_oop_not_null(Register dst, Register src);
 374 
 375   void set_narrow_oop(Register dst, jobject obj);
 376   void set_narrow_oop(Address dst, jobject obj);
 377   void cmp_narrow_oop(Register dst, jobject obj);
 378   void cmp_narrow_oop(Address dst, jobject obj);
 379 
 380   void encode_klass_not_null(Register r);
 381   void decode_klass_not_null(Register r);
 382   void encode_klass_not_null(Register dst, Register src);
 383   void decode_klass_not_null(Register dst, Register src);
 384   void set_narrow_klass(Register dst, Klass* k);
 385   void set_narrow_klass(Address dst, Klass* k);
 386   void cmp_narrow_klass(Register dst, Klass* k);
 387   void cmp_narrow_klass(Address dst, Klass* k);
 388 
 389   // Returns the byte size of the instructions generated by decode_klass_not_null()
 390   // when compressed klass pointers are being used.
 391   static int instr_size_for_decode_klass_not_null();
 392 
 393   // if heap base register is used - reinit it with the correct value
 394   void reinit_heapbase();
 395 
 396   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 397 
 398 #endif // _LP64
 399 
 400   // Int division/remainder for Java
 401   // (as idivl, but checks for special case as described in JVM spec.)
 402   // returns idivl instruction offset for implicit exception handling
 403   int corrected_idivl(Register reg);
 404 
 405   // Long division/remainder for Java
 406   // (as idivq, but checks for special case as described in JVM spec.)
 407   // returns idivq instruction offset for implicit exception handling
 408   int corrected_idivq(Register reg);
 409 
 410   void int3();
 411 
 412   // Long operation macros for a 32bit cpu
 413   // Long negation for Java
 414   void lneg(Register hi, Register lo);
 415 
 416   // Long multiplication for Java
 417   // (destroys contents of eax, ebx, ecx and edx)
 418   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 419 
 420   // Long shifts for Java
 421   // (semantics as described in JVM spec.)
 422   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 423   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 424 
 425   // Long compare for Java
 426   // (semantics as described in JVM spec.)
 427   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 428 
 429 
 430   // misc
 431 
 432   // Sign extension
 433   void sign_extend_short(Register reg);
 434   void sign_extend_byte(Register reg);
 435 
 436   // Division by power of 2, rounding towards 0
 437   void division_with_shift(Register reg, int shift_value);
 438 
 439   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 440   //
 441   // CF (corresponds to C0) if x < y
 442   // PF (corresponds to C2) if unordered
 443   // ZF (corresponds to C3) if x = y
 444   //
 445   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 446   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 447   void fcmp(Register tmp);
 448   // Variant of the above which allows y to be further down the stack
 449   // and which only pops x and y if specified. If pop_right is
 450   // specified then pop_left must also be specified.
 451   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 452 
 453   // Floating-point comparison for Java
 454   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 455   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 456   // (semantics as described in JVM spec.)
 457   void fcmp2int(Register dst, bool unordered_is_less);
 458   // Variant of the above which allows y to be further down the stack
 459   // and which only pops x and y if specified. If pop_right is
 460   // specified then pop_left must also be specified.
 461   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 462 
 463   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 464   // tmp is a temporary register, if none is available use noreg
 465   void fremr(Register tmp);
 466 
 467   // dst = c = a * b + c
 468   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 469   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 470 
 471   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 472   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 473   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 474   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 475 
 476 
 477   // same as fcmp2int, but using SSE2
 478   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 479   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 480 
 481   // branch to L if FPU flag C2 is set/not set
 482   // tmp is a temporary register, if none is available use noreg
 483   void jC2 (Register tmp, Label& L);
 484   void jnC2(Register tmp, Label& L);
 485 
 486   // Pop ST (ffree & fincstp combined)
 487   void fpop();
 488 
 489   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 490   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 491   void load_float(Address src);
 492 
 493   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 494   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 495   void store_float(Address dst);
 496 
 497   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 498   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 499   void load_double(Address src);
 500 
 501   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 502   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 503   void store_double(Address dst);
 504 
 505   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 506   void push_fTOS();
 507 
 508   // pops double TOS element from CPU stack and pushes on FPU stack
 509   void pop_fTOS();
 510 
 511   void empty_FPU_stack();
 512 
 513   void push_IU_state();
 514   void pop_IU_state();
 515 
 516   void push_FPU_state();
 517   void pop_FPU_state();
 518 
 519   void push_CPU_state();
 520   void pop_CPU_state();
 521 
 522   // Round up to a power of two
 523   void round_to(Register reg, int modulus);
 524 
 525   // Callee saved registers handling
 526   void push_callee_saved_registers();
 527   void pop_callee_saved_registers();
 528 
 529   // allocation
 530   void eden_allocate(
 531     Register obj,                      // result: pointer to object after successful allocation
 532     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 533     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 534     Register t1,                       // temp register
 535     Label&   slow_case                 // continuation point if fast allocation fails
 536   );
 537   void tlab_allocate(
 538     Register obj,                      // result: pointer to object after successful allocation
 539     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 540     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 541     Register t1,                       // temp register
 542     Register t2,                       // temp register
 543     Label&   slow_case                 // continuation point if fast allocation fails
 544   );
 545   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 546 
 547   void incr_allocated_bytes(Register thread,
 548                             Register var_size_in_bytes, int con_size_in_bytes,
 549                             Register t1 = noreg);
 550 
 551   // interface method calling
 552   void lookup_interface_method(Register recv_klass,
 553                                Register intf_klass,
 554                                RegisterOrConstant itable_index,
 555                                Register method_result,
 556                                Register scan_temp,
 557                                Label& no_such_interface,
 558                                bool return_method = true);
 559 
 560   // virtual method calling
 561   void lookup_virtual_method(Register recv_klass,
 562                              RegisterOrConstant vtable_index,
 563                              Register method_result);
 564 
 565   // Test sub_klass against super_klass, with fast and slow paths.
 566 
 567   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 568   // One of the three labels can be NULL, meaning take the fall-through.
 569   // If super_check_offset is -1, the value is loaded up from super_klass.
 570   // No registers are killed, except temp_reg.
 571   void check_klass_subtype_fast_path(Register sub_klass,
 572                                      Register super_klass,
 573                                      Register temp_reg,
 574                                      Label* L_success,
 575                                      Label* L_failure,
 576                                      Label* L_slow_path,
 577                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 578 
 579   // The rest of the type check; must be wired to a corresponding fast path.
 580   // It does not repeat the fast path logic, so don't use it standalone.
 581   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 582   // Updates the sub's secondary super cache as necessary.
 583   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 584   void check_klass_subtype_slow_path(Register sub_klass,
 585                                      Register super_klass,
 586                                      Register temp_reg,
 587                                      Register temp2_reg,
 588                                      Label* L_success,
 589                                      Label* L_failure,
 590                                      bool set_cond_codes = false);
 591 
 592   // Simplified, combined version, good for typical uses.
 593   // Falls through on failure.
 594   void check_klass_subtype(Register sub_klass,
 595                            Register super_klass,
 596                            Register temp_reg,
 597                            Label& L_success);
 598 
 599   // method handles (JSR 292)
 600   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 601 
 602   //----
 603   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 604 
 605   // Debugging
 606 
 607   // only if +VerifyOops
 608   // TODO: Make these macros with file and line like sparc version!
 609   void verify_oop(Register reg, const char* s = "broken oop");
 610   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 611 
 612   // TODO: verify method and klass metadata (compare against vptr?)
 613   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 614   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 615 
 616 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 617 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 618 
 619   // only if +VerifyFPU
 620   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 621 
 622   // Verify or restore cpu control state after JNI call
 623   void restore_cpu_control_state_after_jni();
 624 
 625   // prints msg, dumps registers and stops execution
 626   void stop(const char* msg);
 627 
 628   // prints msg and continues
 629   void warn(const char* msg);
 630 
 631   // dumps registers and other state
 632   void print_state();
 633 
 634   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 635   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 636   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 637   static void print_state64(int64_t pc, int64_t regs[]);
 638 
 639   void os_breakpoint();
 640 
 641   void untested()                                { stop("untested"); }
 642 
 643   void unimplemented(const char* what = "");
 644 
 645   void should_not_reach_here()                   { stop("should not reach here"); }
 646 
 647   void print_CPU_state();
 648 
 649   // Stack overflow checking
 650   void bang_stack_with_offset(int offset) {
 651     // stack grows down, caller passes positive offset
 652     assert(offset > 0, "must bang with negative offset");
 653     movl(Address(rsp, (-offset)), rax);
 654   }
 655 
 656   // Writes to stack successive pages until offset reached to check for
 657   // stack overflow + shadow pages.  Also, clobbers tmp
 658   void bang_stack_size(Register size, Register tmp);
 659 
 660   // Check for reserved stack access in method being exited (for JIT)
 661   void reserved_stack_check();
 662 
 663   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 664                                                 Register tmp,
 665                                                 int offset);
 666 
 667   // Support for serializing memory accesses between threads
 668   void serialize_memory(Register thread, Register tmp);
 669 
 670   // If thread_reg is != noreg the code assumes the register passed contains
 671   // the thread (required on 64 bit).
 672   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 673 
 674   void verify_tlab();
 675 
 676   // Biased locking support
 677   // lock_reg and obj_reg must be loaded up with the appropriate values.
 678   // swap_reg must be rax, and is killed.
 679   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 680   // be killed; if not supplied, push/pop will be used internally to
 681   // allocate a temporary (inefficient, avoid if possible).
 682   // Optional slow case is for implementations (interpreter and C1) which branch to
 683   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 684   // Returns offset of first potentially-faulting instruction for null
 685   // check info (currently consumed only by C1). If
 686   // swap_reg_contains_mark is true then returns -1 as it is assumed
 687   // the calling code has already passed any potential faults.
 688   int biased_locking_enter(Register lock_reg, Register obj_reg,
 689                            Register swap_reg, Register tmp_reg,
 690                            bool swap_reg_contains_mark,
 691                            Label& done, Label* slow_case = NULL,
 692                            BiasedLockingCounters* counters = NULL);
 693   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 694 #ifdef COMPILER2
 695   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 696   // See full desription in macroAssembler_x86.cpp.
 697   void fast_lock(Register obj, Register box, Register tmp,
 698                  Register scr, Register cx1, Register cx2,
 699                  BiasedLockingCounters* counters,
 700                  RTMLockingCounters* rtm_counters,
 701                  RTMLockingCounters* stack_rtm_counters,
 702                  Metadata* method_data,
 703                  bool use_rtm, bool profile_rtm);
 704   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 705 #if INCLUDE_RTM_OPT
 706   void rtm_counters_update(Register abort_status, Register rtm_counters);
 707   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 708   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 709                                    RTMLockingCounters* rtm_counters,
 710                                    Metadata* method_data);
 711   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 712                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 713   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 714   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 715   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 716                          Register retry_on_abort_count,
 717                          RTMLockingCounters* stack_rtm_counters,
 718                          Metadata* method_data, bool profile_rtm,
 719                          Label& DONE_LABEL, Label& IsInflated);
 720   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 721                             Register scr, Register retry_on_busy_count,
 722                             Register retry_on_abort_count,
 723                             RTMLockingCounters* rtm_counters,
 724                             Metadata* method_data, bool profile_rtm,
 725                             Label& DONE_LABEL);
 726 #endif
 727 #endif
 728 
 729   Condition negate_condition(Condition cond);
 730 
 731   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 732   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 733   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 734   // here in MacroAssembler. The major exception to this rule is call
 735 
 736   // Arithmetics
 737 
 738 
 739   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 740   void addptr(Address dst, Register src);
 741 
 742   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 743   void addptr(Register dst, int32_t src);
 744   void addptr(Register dst, Register src);
 745   void addptr(Register dst, RegisterOrConstant src) {
 746     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 747     else                   addptr(dst,       src.as_register());
 748   }
 749 
 750   void andptr(Register dst, int32_t src);
 751   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 752 
 753   void cmp8(AddressLiteral src1, int imm);
 754 
 755   // renamed to drag out the casting of address to int32_t/intptr_t
 756   void cmp32(Register src1, int32_t imm);
 757 
 758   void cmp32(AddressLiteral src1, int32_t imm);
 759   // compare reg - mem, or reg - &mem
 760   void cmp32(Register src1, AddressLiteral src2);
 761 
 762   void cmp32(Register src1, Address src2);
 763 
 764 #ifndef _LP64
 765   void cmpklass(Address dst, Metadata* obj);
 766   void cmpklass(Register dst, Metadata* obj);
 767   void cmpoop(Address dst, jobject obj);
 768 #endif // _LP64
 769 
 770   void cmpoop(Register src1, Register src2);
 771   void cmpoop(Register src1, Address src2);
 772   void cmpoop(Register dst, jobject obj);
 773 
 774   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 775   void cmpptr(Address src1, AddressLiteral src2);
 776 
 777   void cmpptr(Register src1, AddressLiteral src2);
 778 
 779   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 780   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 781   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 782 
 783   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 784   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 785 
 786   // cmp64 to avoild hiding cmpq
 787   void cmp64(Register src1, AddressLiteral src);
 788 
 789   void cmpxchgptr(Register reg, Address adr);
 790 
 791   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 792 
 793 
 794   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 795   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 796 
 797 
 798   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 799 
 800   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 801 
 802   void shlptr(Register dst, int32_t shift);
 803   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 804 
 805   void shrptr(Register dst, int32_t shift);
 806   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 807 
 808   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 809   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 810 
 811   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 812 
 813   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 814   void subptr(Register dst, int32_t src);
 815   // Force generation of a 4 byte immediate value even if it fits into 8bit
 816   void subptr_imm32(Register dst, int32_t src);
 817   void subptr(Register dst, Register src);
 818   void subptr(Register dst, RegisterOrConstant src) {
 819     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 820     else                   subptr(dst,       src.as_register());
 821   }
 822 
 823   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 824   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 825 
 826   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 827   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 828 
 829   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 830 
 831 
 832 
 833   // Helper functions for statistics gathering.
 834   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 835   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 836   // Unconditional atomic increment.
 837   void atomic_incl(Address counter_addr);
 838   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 839 #ifdef _LP64
 840   void atomic_incq(Address counter_addr);
 841   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 842 #endif
 843   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 844   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 845 
 846   void lea(Register dst, AddressLiteral adr);
 847   void lea(Address dst, AddressLiteral adr);
 848   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 849 
 850   void leal32(Register dst, Address src) { leal(dst, src); }
 851 
 852   // Import other testl() methods from the parent class or else
 853   // they will be hidden by the following overriding declaration.
 854   using Assembler::testl;
 855   void testl(Register dst, AddressLiteral src);
 856 
 857   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 858   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 859   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 860   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 861 
 862   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 863   void testptr(Register src1, Register src2);
 864 
 865   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 866   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 867 
 868   // Calls
 869 
 870   void call(Label& L, relocInfo::relocType rtype);
 871   void call(Register entry);
 872 
 873   // NOTE: this call transfers to the effective address of entry NOT
 874   // the address contained by entry. This is because this is more natural
 875   // for jumps/calls.
 876   void call(AddressLiteral entry);
 877 
 878   // Emit the CompiledIC call idiom
 879   void ic_call(address entry, jint method_index = 0);
 880 
 881   // Jumps
 882 
 883   // NOTE: these jumps tranfer to the effective address of dst NOT
 884   // the address contained by dst. This is because this is more natural
 885   // for jumps/calls.
 886   void jump(AddressLiteral dst);
 887   void jump_cc(Condition cc, AddressLiteral dst);
 888 
 889   // 32bit can do a case table jump in one instruction but we no longer allow the base
 890   // to be installed in the Address class. This jump will tranfers to the address
 891   // contained in the location described by entry (not the address of entry)
 892   void jump(ArrayAddress entry);
 893 
 894   // Floating
 895 
 896   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 897   void andpd(XMMRegister dst, AddressLiteral src);
 898   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 899 
 900   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 901   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 902   void andps(XMMRegister dst, AddressLiteral src);
 903 
 904   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 905   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 906   void comiss(XMMRegister dst, AddressLiteral src);
 907 
 908   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 909   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 910   void comisd(XMMRegister dst, AddressLiteral src);
 911 
 912   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 913   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 914 
 915   void fldcw(Address src) { Assembler::fldcw(src); }
 916   void fldcw(AddressLiteral src);
 917 
 918   void fld_s(int index)   { Assembler::fld_s(index); }
 919   void fld_s(Address src) { Assembler::fld_s(src); }
 920   void fld_s(AddressLiteral src);
 921 
 922   void fld_d(Address src) { Assembler::fld_d(src); }
 923   void fld_d(AddressLiteral src);
 924 
 925   void fld_x(Address src) { Assembler::fld_x(src); }
 926   void fld_x(AddressLiteral src);
 927 
 928   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 929   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 930 
 931   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 932   void ldmxcsr(AddressLiteral src);
 933 
 934 #ifdef _LP64
 935  private:
 936   void sha256_AVX2_one_round_compute(
 937     Register  reg_old_h,
 938     Register  reg_a,
 939     Register  reg_b,
 940     Register  reg_c,
 941     Register  reg_d,
 942     Register  reg_e,
 943     Register  reg_f,
 944     Register  reg_g,
 945     Register  reg_h,
 946     int iter);
 947   void sha256_AVX2_four_rounds_compute_first(int start);
 948   void sha256_AVX2_four_rounds_compute_last(int start);
 949   void sha256_AVX2_one_round_and_sched(
 950         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 951         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 952         XMMRegister xmm_2,     /* ymm6 */
 953         XMMRegister xmm_3,     /* ymm7 */
 954         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 955         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 956         Register    reg_c,      /* edi */
 957         Register    reg_d,      /* esi */
 958         Register    reg_e,      /* r8d */
 959         Register    reg_f,      /* r9d */
 960         Register    reg_g,      /* r10d */
 961         Register    reg_h,      /* r11d */
 962         int iter);
 963 
 964   void addm(int disp, Register r1, Register r2);
 965 
 966  public:
 967   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 968                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 969                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 970                    bool multi_block, XMMRegister shuf_mask);
 971 #endif
 972 
 973 #ifdef _LP64
 974  private:
 975   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 976                                      Register e, Register f, Register g, Register h, int iteration);
 977 
 978   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 979                                           Register a, Register b, Register c, Register d, Register e, Register f,
 980                                           Register g, Register h, int iteration);
 981 
 982   void addmq(int disp, Register r1, Register r2);
 983  public:
 984   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 985                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 986                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 987                    XMMRegister shuf_mask);
 988 #endif
 989 
 990   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 991                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 992                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 993                  bool multi_block);
 994 
 995 #ifdef _LP64
 996   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 997                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 998                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 999                    bool multi_block, XMMRegister shuf_mask);
1000 #else
1001   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1002                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1003                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1004                    bool multi_block);
1005 #endif
1006 
1007   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1008                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1009                 Register rax, Register rcx, Register rdx, Register tmp);
1010 
1011 #ifdef _LP64
1012   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1013                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1014                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1015 
1016   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1017                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1018                   Register rax, Register rcx, Register rdx, Register r11);
1019 
1020   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1021                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1022                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1023 
1024   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1025                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1026                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1027                 Register tmp3, Register tmp4);
1028 
1029   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1030                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1031                 Register rax, Register rcx, Register rdx, Register tmp1,
1032                 Register tmp2, Register tmp3, Register tmp4);
1033   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1034                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1035                 Register rax, Register rcx, Register rdx, Register tmp1,
1036                 Register tmp2, Register tmp3, Register tmp4);
1037 #else
1038   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1039                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1040                 Register rax, Register rcx, Register rdx, Register tmp1);
1041 
1042   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1043                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1044                 Register rax, Register rcx, Register rdx, Register tmp);
1045 
1046   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1047                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1048                 Register rdx, Register tmp);
1049 
1050   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1051                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1052                 Register rax, Register rbx, Register rdx);
1053 
1054   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1055                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1056                 Register rax, Register rcx, Register rdx, Register tmp);
1057 
1058   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1059                         Register edx, Register ebx, Register esi, Register edi,
1060                         Register ebp, Register esp);
1061 
1062   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1063                          Register esi, Register edi, Register ebp, Register esp);
1064 
1065   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1066                         Register edx, Register ebx, Register esi, Register edi,
1067                         Register ebp, Register esp);
1068 
1069   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1070                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1071                 Register rax, Register rcx, Register rdx, Register tmp);
1072 #endif
1073 
1074   void increase_precision();
1075   void restore_precision();
1076 
1077 private:
1078 
1079   // these are private because users should be doing movflt/movdbl
1080 
1081   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1082   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1083   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1084   void movss(XMMRegister dst, AddressLiteral src);
1085 
1086   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1087   void movlpd(XMMRegister dst, AddressLiteral src);
1088 
1089 public:
1090 
1091   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1092   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1093   void addsd(XMMRegister dst, AddressLiteral src);
1094 
1095   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1096   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1097   void addss(XMMRegister dst, AddressLiteral src);
1098 
1099   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1100   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1101   void addpd(XMMRegister dst, AddressLiteral src);
1102 
1103   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1104   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1105   void divsd(XMMRegister dst, AddressLiteral src);
1106 
1107   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1108   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1109   void divss(XMMRegister dst, AddressLiteral src);
1110 
1111   // Move Unaligned Double Quadword
1112   void movdqu(Address     dst, XMMRegister src);
1113   void movdqu(XMMRegister dst, Address src);
1114   void movdqu(XMMRegister dst, XMMRegister src);
1115   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1116   // AVX Unaligned forms
1117   void vmovdqu(Address     dst, XMMRegister src);
1118   void vmovdqu(XMMRegister dst, Address src);
1119   void vmovdqu(XMMRegister dst, XMMRegister src);
1120   void vmovdqu(XMMRegister dst, AddressLiteral src);
1121 
1122   // Move Aligned Double Quadword
1123   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1124   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1125   void movdqa(XMMRegister dst, AddressLiteral src);
1126 
1127   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1128   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1129   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1130   void movsd(XMMRegister dst, AddressLiteral src);
1131 
1132   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1133   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1134   void mulpd(XMMRegister dst, AddressLiteral src);
1135 
1136   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1137   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1138   void mulsd(XMMRegister dst, AddressLiteral src);
1139 
1140   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1141   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1142   void mulss(XMMRegister dst, AddressLiteral src);
1143 
1144   // Carry-Less Multiplication Quadword
1145   void pclmulldq(XMMRegister dst, XMMRegister src) {
1146     // 0x00 - multiply lower 64 bits [0:63]
1147     Assembler::pclmulqdq(dst, src, 0x00);
1148   }
1149   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1150     // 0x11 - multiply upper 64 bits [64:127]
1151     Assembler::pclmulqdq(dst, src, 0x11);
1152   }
1153 
1154   void pcmpeqb(XMMRegister dst, XMMRegister src);
1155   void pcmpeqw(XMMRegister dst, XMMRegister src);
1156 
1157   void pcmpestri(XMMRegister dst, Address src, int imm8);
1158   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1159 
1160   void pmovzxbw(XMMRegister dst, XMMRegister src);
1161   void pmovzxbw(XMMRegister dst, Address src);
1162 
1163   void pmovmskb(Register dst, XMMRegister src);
1164 
1165   void ptest(XMMRegister dst, XMMRegister src);
1166 
1167   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1168   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1169   void sqrtsd(XMMRegister dst, AddressLiteral src);
1170 
1171   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1172   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1173   void sqrtss(XMMRegister dst, AddressLiteral src);
1174 
1175   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1176   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1177   void subsd(XMMRegister dst, AddressLiteral src);
1178 
1179   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1180   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1181   void subss(XMMRegister dst, AddressLiteral src);
1182 
1183   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1184   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1185   void ucomiss(XMMRegister dst, AddressLiteral src);
1186 
1187   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1188   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1189   void ucomisd(XMMRegister dst, AddressLiteral src);
1190 
1191   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1192   void xorpd(XMMRegister dst, XMMRegister src);
1193   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1194   void xorpd(XMMRegister dst, AddressLiteral src);
1195 
1196   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1197   void xorps(XMMRegister dst, XMMRegister src);
1198   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1199   void xorps(XMMRegister dst, AddressLiteral src);
1200 
1201   // Shuffle Bytes
1202   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1203   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1204   void pshufb(XMMRegister dst, AddressLiteral src);
1205   // AVX 3-operands instructions
1206 
1207   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1208   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1209   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1210 
1211   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1212   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1213   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1214 
1215   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1216   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1217 
1218   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1219   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1220 
1221   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1222   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1223 
1224   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1225   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1226   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1227 
1228   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1229 
1230   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1231   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1232 
1233   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1234   void vpmovmskb(Register dst, XMMRegister src);
1235 
1236   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1237   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1238 
1239   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1240   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1241 
1242   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1243   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1244 
1245   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1246   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1247 
1248   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1249   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1250 
1251   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1252   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1253 
1254   void vptest(XMMRegister dst, XMMRegister src);
1255 
1256   void punpcklbw(XMMRegister dst, XMMRegister src);
1257   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1258 
1259   void pshufd(XMMRegister dst, Address src, int mode);
1260   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1261 
1262   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1263   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1264 
1265   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1266   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1267   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1268 
1269   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1270   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1271   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1272 
1273   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1274   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1275   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1276 
1277   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1278   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1279   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1280 
1281   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1282   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1283   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1284 
1285   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1286   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1287   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1288 
1289   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1290   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1291   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1292 
1293   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1294   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1295   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1296 
1297   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1298   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1299 
1300   // AVX Vector instructions
1301 
1302   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1303   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1304   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1305 
1306   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1307   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1308   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1309 
1310   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1311     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1312       Assembler::vpxor(dst, nds, src, vector_len);
1313     else
1314       Assembler::vxorpd(dst, nds, src, vector_len);
1315   }
1316   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1317     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1318       Assembler::vpxor(dst, nds, src, vector_len);
1319     else
1320       Assembler::vxorpd(dst, nds, src, vector_len);
1321   }
1322 
1323   // Simple version for AVX2 256bit vectors
1324   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1325   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1326 
1327   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1328     if (UseAVX > 2) {
1329       Assembler::vinserti32x4(dst, dst, src, imm8);
1330     } else if (UseAVX > 1) {
1331       // vinserti128 is available only in AVX2
1332       Assembler::vinserti128(dst, nds, src, imm8);
1333     } else {
1334       Assembler::vinsertf128(dst, nds, src, imm8);
1335     }
1336   }
1337 
1338   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1339     if (UseAVX > 2) {
1340       Assembler::vinserti32x4(dst, dst, src, imm8);
1341     } else if (UseAVX > 1) {
1342       // vinserti128 is available only in AVX2
1343       Assembler::vinserti128(dst, nds, src, imm8);
1344     } else {
1345       Assembler::vinsertf128(dst, nds, src, imm8);
1346     }
1347   }
1348 
1349   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1350     if (UseAVX > 2) {
1351       Assembler::vextracti32x4(dst, src, imm8);
1352     } else if (UseAVX > 1) {
1353       // vextracti128 is available only in AVX2
1354       Assembler::vextracti128(dst, src, imm8);
1355     } else {
1356       Assembler::vextractf128(dst, src, imm8);
1357     }
1358   }
1359 
1360   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1361     if (UseAVX > 2) {
1362       Assembler::vextracti32x4(dst, src, imm8);
1363     } else if (UseAVX > 1) {
1364       // vextracti128 is available only in AVX2
1365       Assembler::vextracti128(dst, src, imm8);
1366     } else {
1367       Assembler::vextractf128(dst, src, imm8);
1368     }
1369   }
1370 
1371   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1372   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1373     vinserti128(dst, dst, src, 1);
1374   }
1375   void vinserti128_high(XMMRegister dst, Address src) {
1376     vinserti128(dst, dst, src, 1);
1377   }
1378   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1379     vextracti128(dst, src, 1);
1380   }
1381   void vextracti128_high(Address dst, XMMRegister src) {
1382     vextracti128(dst, src, 1);
1383   }
1384 
1385   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1386     if (UseAVX > 2) {
1387       Assembler::vinsertf32x4(dst, dst, src, 1);
1388     } else {
1389       Assembler::vinsertf128(dst, dst, src, 1);
1390     }
1391   }
1392 
1393   void vinsertf128_high(XMMRegister dst, Address src) {
1394     if (UseAVX > 2) {
1395       Assembler::vinsertf32x4(dst, dst, src, 1);
1396     } else {
1397       Assembler::vinsertf128(dst, dst, src, 1);
1398     }
1399   }
1400 
1401   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1402     if (UseAVX > 2) {
1403       Assembler::vextractf32x4(dst, src, 1);
1404     } else {
1405       Assembler::vextractf128(dst, src, 1);
1406     }
1407   }
1408 
1409   void vextractf128_high(Address dst, XMMRegister src) {
1410     if (UseAVX > 2) {
1411       Assembler::vextractf32x4(dst, src, 1);
1412     } else {
1413       Assembler::vextractf128(dst, src, 1);
1414     }
1415   }
1416 
1417   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1418   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1419     Assembler::vinserti64x4(dst, dst, src, 1);
1420   }
1421   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1422     Assembler::vinsertf64x4(dst, dst, src, 1);
1423   }
1424   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1425     Assembler::vextracti64x4(dst, src, 1);
1426   }
1427   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1428     Assembler::vextractf64x4(dst, src, 1);
1429   }
1430   void vextractf64x4_high(Address dst, XMMRegister src) {
1431     Assembler::vextractf64x4(dst, src, 1);
1432   }
1433   void vinsertf64x4_high(XMMRegister dst, Address src) {
1434     Assembler::vinsertf64x4(dst, dst, src, 1);
1435   }
1436 
1437   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1438   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1439     vinserti128(dst, dst, src, 0);
1440   }
1441   void vinserti128_low(XMMRegister dst, Address src) {
1442     vinserti128(dst, dst, src, 0);
1443   }
1444   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1445     vextracti128(dst, src, 0);
1446   }
1447   void vextracti128_low(Address dst, XMMRegister src) {
1448     vextracti128(dst, src, 0);
1449   }
1450 
1451   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1452     if (UseAVX > 2) {
1453       Assembler::vinsertf32x4(dst, dst, src, 0);
1454     } else {
1455       Assembler::vinsertf128(dst, dst, src, 0);
1456     }
1457   }
1458 
1459   void vinsertf128_low(XMMRegister dst, Address src) {
1460     if (UseAVX > 2) {
1461       Assembler::vinsertf32x4(dst, dst, src, 0);
1462     } else {
1463       Assembler::vinsertf128(dst, dst, src, 0);
1464     }
1465   }
1466 
1467   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1468     if (UseAVX > 2) {
1469       Assembler::vextractf32x4(dst, src, 0);
1470     } else {
1471       Assembler::vextractf128(dst, src, 0);
1472     }
1473   }
1474 
1475   void vextractf128_low(Address dst, XMMRegister src) {
1476     if (UseAVX > 2) {
1477       Assembler::vextractf32x4(dst, src, 0);
1478     } else {
1479       Assembler::vextractf128(dst, src, 0);
1480     }
1481   }
1482 
1483   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1484   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1485     Assembler::vinserti64x4(dst, dst, src, 0);
1486   }
1487   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1488     Assembler::vinsertf64x4(dst, dst, src, 0);
1489   }
1490   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1491     Assembler::vextracti64x4(dst, src, 0);
1492   }
1493   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1494     Assembler::vextractf64x4(dst, src, 0);
1495   }
1496   void vextractf64x4_low(Address dst, XMMRegister src) {
1497     Assembler::vextractf64x4(dst, src, 0);
1498   }
1499   void vinsertf64x4_low(XMMRegister dst, Address src) {
1500     Assembler::vinsertf64x4(dst, dst, src, 0);
1501   }
1502 
1503   // Carry-Less Multiplication Quadword
1504   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1505     // 0x00 - multiply lower 64 bits [0:63]
1506     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1507   }
1508   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1509     // 0x11 - multiply upper 64 bits [64:127]
1510     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1511   }
1512 
1513   // Data
1514 
1515   void cmov32( Condition cc, Register dst, Address  src);
1516   void cmov32( Condition cc, Register dst, Register src);
1517 
1518   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1519 
1520   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1521   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1522 
1523   void movoop(Register dst, jobject obj);
1524   void movoop(Address dst, jobject obj);
1525 
1526   void mov_metadata(Register dst, Metadata* obj);
1527   void mov_metadata(Address dst, Metadata* obj);
1528 
1529   void movptr(ArrayAddress dst, Register src);
1530   // can this do an lea?
1531   void movptr(Register dst, ArrayAddress src);
1532 
1533   void movptr(Register dst, Address src);
1534 
1535 #ifdef _LP64
1536   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1537 #else
1538   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1539 #endif
1540 
1541   void movptr(Register dst, intptr_t src);
1542   void movptr(Register dst, Register src);
1543   void movptr(Address dst, intptr_t src);
1544 
1545   void movptr(Address dst, Register src);
1546 
1547   void movptr(Register dst, RegisterOrConstant src) {
1548     if (src.is_constant()) movptr(dst, src.as_constant());
1549     else                   movptr(dst, src.as_register());
1550   }
1551 
1552 #ifdef _LP64
1553   // Generally the next two are only used for moving NULL
1554   // Although there are situations in initializing the mark word where
1555   // they could be used. They are dangerous.
1556 
1557   // They only exist on LP64 so that int32_t and intptr_t are not the same
1558   // and we have ambiguous declarations.
1559 
1560   void movptr(Address dst, int32_t imm32);
1561   void movptr(Register dst, int32_t imm32);
1562 #endif // _LP64
1563 
1564   // to avoid hiding movl
1565   void mov32(AddressLiteral dst, Register src);
1566   void mov32(Register dst, AddressLiteral src);
1567 
1568   // to avoid hiding movb
1569   void movbyte(ArrayAddress dst, int src);
1570 
1571   // Import other mov() methods from the parent class or else
1572   // they will be hidden by the following overriding declaration.
1573   using Assembler::movdl;
1574   using Assembler::movq;
1575   void movdl(XMMRegister dst, AddressLiteral src);
1576   void movq(XMMRegister dst, AddressLiteral src);
1577 
1578   // Can push value or effective address
1579   void pushptr(AddressLiteral src);
1580 
1581   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1582   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1583 
1584   void pushoop(jobject obj);
1585   void pushklass(Metadata* obj);
1586 
1587   // sign extend as need a l to ptr sized element
1588   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1589   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1590 
1591   // C2 compiled method's prolog code.
1592   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1593 
1594   // clear memory of size 'cnt' qwords, starting at 'base';
1595   // if 'is_large' is set, do not try to produce short loop
1596   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1597 
1598 #ifdef COMPILER2
1599   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1600                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1601 
1602   // IndexOf strings.
1603   // Small strings are loaded through stack if they cross page boundary.
1604   void string_indexof(Register str1, Register str2,
1605                       Register cnt1, Register cnt2,
1606                       int int_cnt2,  Register result,
1607                       XMMRegister vec, Register tmp,
1608                       int ae);
1609 
1610   // IndexOf for constant substrings with size >= 8 elements
1611   // which don't need to be loaded through stack.
1612   void string_indexofC8(Register str1, Register str2,
1613                       Register cnt1, Register cnt2,
1614                       int int_cnt2,  Register result,
1615                       XMMRegister vec, Register tmp,
1616                       int ae);
1617 
1618     // Smallest code: we don't need to load through stack,
1619     // check string tail.
1620 
1621   // helper function for string_compare
1622   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1623                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1624                           Address::ScaleFactor scale2, Register index, int ae);
1625   // Compare strings.
1626   void string_compare(Register str1, Register str2,
1627                       Register cnt1, Register cnt2, Register result,
1628                       XMMRegister vec1, int ae);
1629 
1630   // Search for Non-ASCII character (Negative byte value) in a byte array,
1631   // return true if it has any and false otherwise.
1632   void has_negatives(Register ary1, Register len,
1633                      Register result, Register tmp1,
1634                      XMMRegister vec1, XMMRegister vec2);
1635 
1636   // Compare char[] or byte[] arrays.
1637   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1638                      Register limit, Register result, Register chr,
1639                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1640 
1641 #endif
1642 
1643   // Fill primitive arrays
1644   void generate_fill(BasicType t, bool aligned,
1645                      Register to, Register value, Register count,
1646                      Register rtmp, XMMRegister xtmp);
1647 
1648   void encode_iso_array(Register src, Register dst, Register len,
1649                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1650                         XMMRegister tmp4, Register tmp5, Register result);
1651 
1652 #ifdef _LP64
1653   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1654   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1655                              Register y, Register y_idx, Register z,
1656                              Register carry, Register product,
1657                              Register idx, Register kdx);
1658   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1659                               Register yz_idx, Register idx,
1660                               Register carry, Register product, int offset);
1661   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1662                                     Register carry, Register carry2,
1663                                     Register idx, Register jdx,
1664                                     Register yz_idx1, Register yz_idx2,
1665                                     Register tmp, Register tmp3, Register tmp4);
1666   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1667                                Register yz_idx, Register idx, Register jdx,
1668                                Register carry, Register product,
1669                                Register carry2);
1670   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1671                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1672   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1673                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1674   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1675                             Register tmp2);
1676   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1677                        Register rdxReg, Register raxReg);
1678   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1679   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1680                        Register tmp3, Register tmp4);
1681   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1682                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1683 
1684   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1685                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1686                Register raxReg);
1687   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1688                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1689                Register raxReg);
1690   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1691                            Register result, Register tmp1, Register tmp2,
1692                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1693 #endif
1694 
1695   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1696   void update_byte_crc32(Register crc, Register val, Register table);
1697   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1698   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1699   // Note on a naming convention:
1700   // Prefix w = register only used on a Westmere+ architecture
1701   // Prefix n = register only used on a Nehalem architecture
1702 #ifdef _LP64
1703   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1704                        Register tmp1, Register tmp2, Register tmp3);
1705 #else
1706   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1707                        Register tmp1, Register tmp2, Register tmp3,
1708                        XMMRegister xtmp1, XMMRegister xtmp2);
1709 #endif
1710   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1711                         Register in_out,
1712                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1713                         XMMRegister w_xtmp2,
1714                         Register tmp1,
1715                         Register n_tmp2, Register n_tmp3);
1716   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1717                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1718                        Register tmp1, Register tmp2,
1719                        Register n_tmp3);
1720   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1721                          Register in_out1, Register in_out2, Register in_out3,
1722                          Register tmp1, Register tmp2, Register tmp3,
1723                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1724                          Register tmp4, Register tmp5,
1725                          Register n_tmp6);
1726   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1727                             Register tmp1, Register tmp2, Register tmp3,
1728                             Register tmp4, Register tmp5, Register tmp6,
1729                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1730                             bool is_pclmulqdq_supported);
1731   // Fold 128-bit data chunk
1732   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1733   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1734   // Fold 8-bit data
1735   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1736   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1737 
1738   // Compress char[] array to byte[].
1739   void char_array_compress(Register src, Register dst, Register len,
1740                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1741                            XMMRegister tmp4, Register tmp5, Register result);
1742 
1743   // Inflate byte[] array to char[].
1744   void byte_array_inflate(Register src, Register dst, Register len,
1745                           XMMRegister tmp1, Register tmp2);
1746 
1747 };
1748 
1749 /**
1750  * class SkipIfEqual:
1751  *
1752  * Instantiating this class will result in assembly code being output that will
1753  * jump around any code emitted between the creation of the instance and it's
1754  * automatic destruction at the end of a scope block, depending on the value of
1755  * the flag passed to the constructor, which will be checked at run-time.
1756  */
1757 class SkipIfEqual {
1758  private:
1759   MacroAssembler* _masm;
1760   Label _label;
1761 
1762  public:
1763    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1764    ~SkipIfEqual();
1765 };
1766 
1767 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP