1 /*
   2  * Copyright 2009 Google Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 /**
  29  * This is a near duplicate of {@link TimSort}, modified for use with
  30  * arrays of objects that implement {@link Comparable}, instead of using
  31  * explicit comparators.
  32  *
  33  * <p>If you are using an optimizing VM, you may find that ComparableTimSort
  34  * offers no performance benefit over TimSort in conjunction with a
  35  * comparator that simply returns {@code ((Comparable)first).compareTo(Second)}.
  36  * If this is the case, you are better off deleting ComparableTimSort to
  37  * eliminate the code duplication.  (See Arrays.java for details.)
  38  *
  39  * @author Josh Bloch
  40  */
  41 class ComparableTimSort {
  42     /**
  43      * This is the minimum sized sequence that will be merged.  Shorter
  44      * sequences will be lengthened by calling binarySort.  If the entire
  45      * array is less than this length, no merges will be performed.
  46      *
  47      * This constant should be a power of two.  It was 64 in Tim Peter's C
  48      * implementation, but 32 was empirically determined to work better in
  49      * this implementation.  In the unlikely event that you set this constant
  50      * to be a number that's not a power of two, you'll need to change the
  51      * {@link #minRunLength} computation.
  52      *
  53      * If you decrease this constant, you must change the stackLen
  54      * computation in the TimSort constructor, or you risk an
  55      * ArrayOutOfBounds exception.  See listsort.txt for a discussion
  56      * of the minimum stack length required as a function of the length
  57      * of the array being sorted and the minimum merge sequence length.
  58      */
  59     private static final int MIN_MERGE = 32;
  60 
  61     /**
  62      * The array being sorted.
  63      */
  64     private final Object[] a;
  65 
  66     /**
  67      * When we get into galloping mode, we stay there until both runs win less
  68      * often than MIN_GALLOP consecutive times.
  69      */
  70     private static final int  MIN_GALLOP = 7;
  71 
  72     /**
  73      * This controls when we get *into* galloping mode.  It is initialized
  74      * to MIN_GALLOP.  The mergeLo and mergeHi methods nudge it higher for
  75      * random data, and lower for highly structured data.
  76      */
  77     private int minGallop = MIN_GALLOP;
  78 
  79     /**
  80      * Maximum initial size of tmp array, which is used for merging.  The array
  81      * can grow to accommodate demand.
  82      *
  83      * Unlike Tim's original C version, we do not allocate this much storage
  84      * when sorting smaller arrays.  This change was required for performance.
  85      */
  86     private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
  87 
  88     /**
  89      * Temp storage for merges.
  90      */
  91     private Object[] tmp;
  92 
  93     /**
  94      * A stack of pending runs yet to be merged.  Run i starts at
  95      * address base[i] and extends for len[i] elements.  It's always
  96      * true (so long as the indices are in bounds) that:
  97      *
  98      *     runBase[i] + runLen[i] == runBase[i + 1]
  99      *
 100      * so we could cut the storage for this, but it's a minor amount,
 101      * and keeping all the info explicit simplifies the code.
 102      */
 103     private int stackSize = 0;  // Number of pending runs on stack
 104     private final int[] runBase;
 105     private final int[] runLen;
 106 
 107     /**
 108      * Creates a TimSort instance to maintain the state of an ongoing sort.
 109      *
 110      * @param a the array to be sorted
 111      */
 112     private ComparableTimSort(Object[] a) {
 113         this.a = a;
 114 
 115         // Allocate temp storage (which may be increased later if necessary)
 116         int len = a.length;
 117         Object[] newArray = new Object[len < 2 * INITIAL_TMP_STORAGE_LENGTH ?
 118                                        len >>> 1 : INITIAL_TMP_STORAGE_LENGTH];
 119         tmp = newArray;
 120 
 121         /*
 122          * Allocate runs-to-be-merged stack (which cannot be expanded).  The
 123          * stack length requirements are described in listsort.txt.  The C
 124          * version always uses the same stack length (85), but this was
 125          * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
 126          * 100 elements) in Java.  Therefore, we use smaller (but sufficiently
 127          * large) stack lengths for smaller arrays.  The "magic numbers" in the
 128          * computation below must be changed if MIN_MERGE is decreased.  See
 129          * the MIN_MERGE declaration above for more information.
 130          */
 131         int stackLen = (len <    120  ?  5 :
 132                         len <   1542  ? 10 :
 133                         len < 119151  ? 19 : 40);
 134         runBase = new int[stackLen];
 135         runLen = new int[stackLen];
 136     }
 137 
 138     /*
 139      * The next two methods (which are package private and static) constitute
 140      * the entire API of this class.  Each of these methods obeys the contract
 141      * of the public method with the same signature in java.util.Arrays.
 142      */
 143 
 144     static void sort(Object[] a) {
 145           sort(a, 0, a.length);
 146     }
 147 
 148     static void sort(Object[] a, int lo, int hi) {
 149         rangeCheck(a.length, lo, hi);
 150         int nRemaining  = hi - lo;
 151         if (nRemaining < 2)
 152             return;  // Arrays of size 0 and 1 are always sorted
 153 
 154         // If array is small, do a "mini-TimSort" with no merges
 155         if (nRemaining < MIN_MERGE) {
 156             int initRunLen = countRunAndMakeAscending(a, lo, hi);
 157             binarySort(a, lo, hi, lo + initRunLen);
 158             return;
 159         }
 160 
 161         /**
 162          * March over the array once, left to right, finding natural runs,
 163          * extending short natural runs to minRun elements, and merging runs
 164          * to maintain stack invariant.
 165          */
 166         ComparableTimSort ts = new ComparableTimSort(a);
 167         int minRun = minRunLength(nRemaining);
 168         do {
 169             // Identify next run
 170             int runLen = countRunAndMakeAscending(a, lo, hi);
 171 
 172             // If run is short, extend to min(minRun, nRemaining)
 173             if (runLen < minRun) {
 174                 int force = nRemaining <= minRun ? nRemaining : minRun;
 175                 binarySort(a, lo, lo + force, lo + runLen);
 176                 runLen = force;
 177             }
 178 
 179             // Push run onto pending-run stack, and maybe merge
 180             ts.pushRun(lo, runLen);
 181             ts.mergeCollapse();
 182 
 183             // Advance to find next run
 184             lo += runLen;
 185             nRemaining -= runLen;
 186         } while (nRemaining != 0);
 187 
 188         // Merge all remaining runs to complete sort
 189         assert lo == hi;
 190         ts.mergeForceCollapse();
 191         assert ts.stackSize == 1;
 192     }
 193 
 194     /**
 195      * Sorts the specified portion of the specified array using a binary
 196      * insertion sort.  This is the best method for sorting small numbers
 197      * of elements.  It requires O(n log n) compares, but O(n^2) data
 198      * movement (worst case).
 199      *
 200      * If the initial part of the specified range is already sorted,
 201      * this method can take advantage of it: the method assumes that the
 202      * elements from index {@code lo}, inclusive, to {@code start},
 203      * exclusive are already sorted.
 204      *
 205      * @param a the array in which a range is to be sorted
 206      * @param lo the index of the first element in the range to be sorted
 207      * @param hi the index after the last element in the range to be sorted
 208      * @param start the index of the first element in the range that is
 209      *        not already known to be sorted ({@code lo <= start <= hi})
 210      */
 211     @SuppressWarnings({"fallthrough", "rawtypes", "unchecked"})
 212     private static void binarySort(Object[] a, int lo, int hi, int start) {
 213         assert lo <= start && start <= hi;
 214         if (start == lo)
 215             start++;
 216         for ( ; start < hi; start++) {
 217             Comparable pivot = (Comparable) a[start];
 218 
 219             // Set left (and right) to the index where a[start] (pivot) belongs
 220             int left = lo;
 221             int right = start;
 222             assert left <= right;
 223             /*
 224              * Invariants:
 225              *   pivot >= all in [lo, left).
 226              *   pivot <  all in [right, start).
 227              */
 228             while (left < right) {
 229                 int mid = (left + right) >>> 1;
 230                 if (pivot.compareTo(a[mid]) < 0)
 231                     right = mid;
 232                 else
 233                     left = mid + 1;
 234             }
 235             assert left == right;
 236 
 237             /*
 238              * The invariants still hold: pivot >= all in [lo, left) and
 239              * pivot < all in [left, start), so pivot belongs at left.  Note
 240              * that if there are elements equal to pivot, left points to the
 241              * first slot after them -- that's why this sort is stable.
 242              * Slide elements over to make room for pivot.
 243              */
 244             int n = start - left;  // The number of elements to move
 245             // Switch is just an optimization for arraycopy in default case
 246             switch (n) {
 247                 case 2:  a[left + 2] = a[left + 1];
 248                 case 1:  a[left + 1] = a[left];
 249                          break;
 250                 default: System.arraycopy(a, left, a, left + 1, n);
 251             }
 252             a[left] = pivot;
 253         }
 254     }
 255 
 256     /**
 257      * Returns the length of the run beginning at the specified position in
 258      * the specified array and reverses the run if it is descending (ensuring
 259      * that the run will always be ascending when the method returns).
 260      *
 261      * A run is the longest ascending sequence with:
 262      *
 263      *    a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
 264      *
 265      * or the longest descending sequence with:
 266      *
 267      *    a[lo] >  a[lo + 1] >  a[lo + 2] >  ...
 268      *
 269      * For its intended use in a stable mergesort, the strictness of the
 270      * definition of "descending" is needed so that the call can safely
 271      * reverse a descending sequence without violating stability.
 272      *
 273      * @param a the array in which a run is to be counted and possibly reversed
 274      * @param lo index of the first element in the run
 275      * @param hi index after the last element that may be contained in the run.
 276               It is required that {@code lo < hi}.
 277      * @return  the length of the run beginning at the specified position in
 278      *          the specified array
 279      */
 280     @SuppressWarnings({"unchecked", "rawtypes"})
 281     private static int countRunAndMakeAscending(Object[] a, int lo, int hi) {
 282         assert lo < hi;
 283         int runHi = lo + 1;
 284         if (runHi == hi)
 285             return 1;
 286 
 287         // Find end of run, and reverse range if descending
 288         if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending
 289             while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0)
 290                 runHi++;
 291             reverseRange(a, lo, runHi);
 292         } else {                              // Ascending
 293             while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0)
 294                 runHi++;
 295         }
 296 
 297         return runHi - lo;
 298     }
 299 
 300     /**
 301      * Reverse the specified range of the specified array.
 302      *
 303      * @param a the array in which a range is to be reversed
 304      * @param lo the index of the first element in the range to be reversed
 305      * @param hi the index after the last element in the range to be reversed
 306      */
 307     private static void reverseRange(Object[] a, int lo, int hi) {
 308         hi--;
 309         while (lo < hi) {
 310             Object t = a[lo];
 311             a[lo++] = a[hi];
 312             a[hi--] = t;
 313         }
 314     }
 315 
 316     /**
 317      * Returns the minimum acceptable run length for an array of the specified
 318      * length. Natural runs shorter than this will be extended with
 319      * {@link #binarySort}.
 320      *
 321      * Roughly speaking, the computation is:
 322      *
 323      *  If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
 324      *  Else if n is an exact power of 2, return MIN_MERGE/2.
 325      *  Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
 326      *   is close to, but strictly less than, an exact power of 2.
 327      *
 328      * For the rationale, see listsort.txt.
 329      *
 330      * @param n the length of the array to be sorted
 331      * @return the length of the minimum run to be merged
 332      */
 333     private static int minRunLength(int n) {
 334         assert n >= 0;
 335         int r = 0;      // Becomes 1 if any 1 bits are shifted off
 336         while (n >= MIN_MERGE) {
 337             r |= (n & 1);
 338             n >>= 1;
 339         }
 340         return n + r;
 341     }
 342 
 343     /**
 344      * Pushes the specified run onto the pending-run stack.
 345      *
 346      * @param runBase index of the first element in the run
 347      * @param runLen  the number of elements in the run
 348      */
 349     private void pushRun(int runBase, int runLen) {
 350         this.runBase[stackSize] = runBase;
 351         this.runLen[stackSize] = runLen;
 352         stackSize++;
 353     }
 354 
 355     /**
 356      * Examines the stack of runs waiting to be merged and merges adjacent runs
 357      * until the stack invariants are reestablished:
 358      *
 359      *     1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
 360      *     2. runLen[i - 2] > runLen[i - 1]
 361      *
 362      * This method is called each time a new run is pushed onto the stack,
 363      * so the invariants are guaranteed to hold for i < stackSize upon
 364      * entry to the method.
 365      */
 366     private void mergeCollapse() {
 367         while (stackSize > 1) {
 368             int n = stackSize - 2;
 369             if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
 370                 if (runLen[n - 1] < runLen[n + 1])
 371                     n--;
 372                 mergeAt(n);
 373             } else if (runLen[n] <= runLen[n + 1]) {
 374                 mergeAt(n);
 375             } else {
 376                 break; // Invariant is established
 377             }
 378         }
 379     }
 380 
 381     /**
 382      * Merges all runs on the stack until only one remains.  This method is
 383      * called once, to complete the sort.
 384      */
 385     private void mergeForceCollapse() {
 386         while (stackSize > 1) {
 387             int n = stackSize - 2;
 388             if (n > 0 && runLen[n - 1] < runLen[n + 1])
 389                 n--;
 390             mergeAt(n);
 391         }
 392     }
 393 
 394     /**
 395      * Merges the two runs at stack indices i and i+1.  Run i must be
 396      * the penultimate or antepenultimate run on the stack.  In other words,
 397      * i must be equal to stackSize-2 or stackSize-3.
 398      *
 399      * @param i stack index of the first of the two runs to merge
 400      */
 401     @SuppressWarnings("unchecked")
 402     private void mergeAt(int i) {
 403         assert stackSize >= 2;
 404         assert i >= 0;
 405         assert i == stackSize - 2 || i == stackSize - 3;
 406 
 407         int base1 = runBase[i];
 408         int len1 = runLen[i];
 409         int base2 = runBase[i + 1];
 410         int len2 = runLen[i + 1];
 411         assert len1 > 0 && len2 > 0;
 412         assert base1 + len1 == base2;
 413 
 414         /*
 415          * Record the length of the combined runs; if i is the 3rd-last
 416          * run now, also slide over the last run (which isn't involved
 417          * in this merge).  The current run (i+1) goes away in any case.
 418          */
 419         runLen[i] = len1 + len2;
 420         if (i == stackSize - 3) {
 421             runBase[i + 1] = runBase[i + 2];
 422             runLen[i + 1] = runLen[i + 2];
 423         }
 424         stackSize--;
 425 
 426         /*
 427          * Find where the first element of run2 goes in run1. Prior elements
 428          * in run1 can be ignored (because they're already in place).
 429          */
 430         int k = gallopRight((Comparable<Object>) a[base2], a, base1, len1, 0);
 431         assert k >= 0;
 432         base1 += k;
 433         len1 -= k;
 434         if (len1 == 0)
 435             return;
 436 
 437         /*
 438          * Find where the last element of run1 goes in run2. Subsequent elements
 439          * in run2 can be ignored (because they're already in place).
 440          */
 441         len2 = gallopLeft((Comparable<Object>) a[base1 + len1 - 1], a,
 442                 base2, len2, len2 - 1);
 443         assert len2 >= 0;
 444         if (len2 == 0)
 445             return;
 446 
 447         // Merge remaining runs, using tmp array with min(len1, len2) elements
 448         if (len1 <= len2)
 449             mergeLo(base1, len1, base2, len2);
 450         else
 451             mergeHi(base1, len1, base2, len2);
 452     }
 453 
 454     /**
 455      * Locates the position at which to insert the specified key into the
 456      * specified sorted range; if the range contains an element equal to key,
 457      * returns the index of the leftmost equal element.
 458      *
 459      * @param key the key whose insertion point to search for
 460      * @param a the array in which to search
 461      * @param base the index of the first element in the range
 462      * @param len the length of the range; must be > 0
 463      * @param hint the index at which to begin the search, 0 <= hint < n.
 464      *     The closer hint is to the result, the faster this method will run.
 465      * @return the int k,  0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
 466      *    pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
 467      *    In other words, key belongs at index b + k; or in other words,
 468      *    the first k elements of a should precede key, and the last n - k
 469      *    should follow it.
 470      */
 471     private static int gallopLeft(Comparable<Object> key, Object[] a,
 472             int base, int len, int hint) {
 473         assert len > 0 && hint >= 0 && hint < len;
 474 
 475         int lastOfs = 0;
 476         int ofs = 1;
 477         if (key.compareTo(a[base + hint]) > 0) {
 478             // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
 479             int maxOfs = len - hint;
 480             while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) > 0) {
 481                 lastOfs = ofs;
 482                 ofs = (ofs << 1) + 1;
 483                 if (ofs <= 0)   // int overflow
 484                     ofs = maxOfs;
 485             }
 486             if (ofs > maxOfs)
 487                 ofs = maxOfs;
 488 
 489             // Make offsets relative to base
 490             lastOfs += hint;
 491             ofs += hint;
 492         } else { // key <= a[base + hint]
 493             // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
 494             final int maxOfs = hint + 1;
 495             while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) <= 0) {
 496                 lastOfs = ofs;
 497                 ofs = (ofs << 1) + 1;
 498                 if (ofs <= 0)   // int overflow
 499                     ofs = maxOfs;
 500             }
 501             if (ofs > maxOfs)
 502                 ofs = maxOfs;
 503 
 504             // Make offsets relative to base
 505             int tmp = lastOfs;
 506             lastOfs = hint - ofs;
 507             ofs = hint - tmp;
 508         }
 509         assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
 510 
 511         /*
 512          * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
 513          * to the right of lastOfs but no farther right than ofs.  Do a binary
 514          * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
 515          */
 516         lastOfs++;
 517         while (lastOfs < ofs) {
 518             int m = lastOfs + ((ofs - lastOfs) >>> 1);
 519 
 520             if (key.compareTo(a[base + m]) > 0)
 521                 lastOfs = m + 1;  // a[base + m] < key
 522             else
 523                 ofs = m;          // key <= a[base + m]
 524         }
 525         assert lastOfs == ofs;    // so a[base + ofs - 1] < key <= a[base + ofs]
 526         return ofs;
 527     }
 528 
 529     /**
 530      * Like gallopLeft, except that if the range contains an element equal to
 531      * key, gallopRight returns the index after the rightmost equal element.
 532      *
 533      * @param key the key whose insertion point to search for
 534      * @param a the array in which to search
 535      * @param base the index of the first element in the range
 536      * @param len the length of the range; must be > 0
 537      * @param hint the index at which to begin the search, 0 <= hint < n.
 538      *     The closer hint is to the result, the faster this method will run.
 539      * @return the int k,  0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
 540      */
 541     private static int gallopRight(Comparable<Object> key, Object[] a,
 542             int base, int len, int hint) {
 543         assert len > 0 && hint >= 0 && hint < len;
 544 
 545         int ofs = 1;
 546         int lastOfs = 0;
 547         if (key.compareTo(a[base + hint]) < 0) {
 548             // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
 549             int maxOfs = hint + 1;
 550             while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) < 0) {
 551                 lastOfs = ofs;
 552                 ofs = (ofs << 1) + 1;
 553                 if (ofs <= 0)   // int overflow
 554                     ofs = maxOfs;
 555             }
 556             if (ofs > maxOfs)
 557                 ofs = maxOfs;
 558 
 559             // Make offsets relative to b
 560             int tmp = lastOfs;
 561             lastOfs = hint - ofs;
 562             ofs = hint - tmp;
 563         } else { // a[b + hint] <= key
 564             // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
 565             int maxOfs = len - hint;
 566             while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) >= 0) {
 567                 lastOfs = ofs;
 568                 ofs = (ofs << 1) + 1;
 569                 if (ofs <= 0)   // int overflow
 570                     ofs = maxOfs;
 571             }
 572             if (ofs > maxOfs)
 573                 ofs = maxOfs;
 574 
 575             // Make offsets relative to b
 576             lastOfs += hint;
 577             ofs += hint;
 578         }
 579         assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
 580 
 581         /*
 582          * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
 583          * the right of lastOfs but no farther right than ofs.  Do a binary
 584          * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
 585          */
 586         lastOfs++;
 587         while (lastOfs < ofs) {
 588             int m = lastOfs + ((ofs - lastOfs) >>> 1);
 589 
 590             if (key.compareTo(a[base + m]) < 0)
 591                 ofs = m;          // key < a[b + m]
 592             else
 593                 lastOfs = m + 1;  // a[b + m] <= key
 594         }
 595         assert lastOfs == ofs;    // so a[b + ofs - 1] <= key < a[b + ofs]
 596         return ofs;
 597     }
 598 
 599     /**
 600      * Merges two adjacent runs in place, in a stable fashion.  The first
 601      * element of the first run must be greater than the first element of the
 602      * second run (a[base1] > a[base2]), and the last element of the first run
 603      * (a[base1 + len1-1]) must be greater than all elements of the second run.
 604      *
 605      * For performance, this method should be called only when len1 <= len2;
 606      * its twin, mergeHi should be called if len1 >= len2.  (Either method
 607      * may be called if len1 == len2.)
 608      *
 609      * @param base1 index of first element in first run to be merged
 610      * @param len1  length of first run to be merged (must be > 0)
 611      * @param base2 index of first element in second run to be merged
 612      *        (must be aBase + aLen)
 613      * @param len2  length of second run to be merged (must be > 0)
 614      */
 615     @SuppressWarnings({"unchecked", "rawtypes"})
 616     private void mergeLo(int base1, int len1, int base2, int len2) {
 617         assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
 618 
 619         // Copy first run into temp array
 620         Object[] a = this.a; // For performance
 621         Object[] tmp = ensureCapacity(len1);
 622         System.arraycopy(a, base1, tmp, 0, len1);
 623 
 624         int cursor1 = 0;       // Indexes into tmp array
 625         int cursor2 = base2;   // Indexes int a
 626         int dest = base1;      // Indexes int a
 627 
 628         // Move first element of second run and deal with degenerate cases
 629         a[dest++] = a[cursor2++];
 630         if (--len2 == 0) {
 631             System.arraycopy(tmp, cursor1, a, dest, len1);
 632             return;
 633         }
 634         if (len1 == 1) {
 635             System.arraycopy(a, cursor2, a, dest, len2);
 636             a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
 637             return;
 638         }
 639 
 640         int minGallop = this.minGallop;  // Use local variable for performance
 641     outer:
 642         while (true) {
 643             int count1 = 0; // Number of times in a row that first run won
 644             int count2 = 0; // Number of times in a row that second run won
 645 
 646             /*
 647              * Do the straightforward thing until (if ever) one run starts
 648              * winning consistently.
 649              */
 650             do {
 651                 assert len1 > 1 && len2 > 0;
 652                 if (((Comparable) a[cursor2]).compareTo(tmp[cursor1]) < 0) {
 653                     a[dest++] = a[cursor2++];
 654                     count2++;
 655                     count1 = 0;
 656                     if (--len2 == 0)
 657                         break outer;
 658                 } else {
 659                     a[dest++] = tmp[cursor1++];
 660                     count1++;
 661                     count2 = 0;
 662                     if (--len1 == 1)
 663                         break outer;
 664                 }
 665             } while ((count1 | count2) < minGallop);
 666 
 667             /*
 668              * One run is winning so consistently that galloping may be a
 669              * huge win. So try that, and continue galloping until (if ever)
 670              * neither run appears to be winning consistently anymore.
 671              */
 672             do {
 673                 assert len1 > 1 && len2 > 0;
 674                 count1 = gallopRight((Comparable) a[cursor2], tmp, cursor1, len1, 0);
 675                 if (count1 != 0) {
 676                     System.arraycopy(tmp, cursor1, a, dest, count1);
 677                     dest += count1;
 678                     cursor1 += count1;
 679                     len1 -= count1;
 680                     if (len1 <= 1)  // len1 == 1 || len1 == 0
 681                         break outer;
 682                 }
 683                 a[dest++] = a[cursor2++];
 684                 if (--len2 == 0)
 685                     break outer;
 686 
 687                 count2 = gallopLeft((Comparable) tmp[cursor1], a, cursor2, len2, 0);
 688                 if (count2 != 0) {
 689                     System.arraycopy(a, cursor2, a, dest, count2);
 690                     dest += count2;
 691                     cursor2 += count2;
 692                     len2 -= count2;
 693                     if (len2 == 0)
 694                         break outer;
 695                 }
 696                 a[dest++] = tmp[cursor1++];
 697                 if (--len1 == 1)
 698                     break outer;
 699                 minGallop--;
 700             } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
 701             if (minGallop < 0)
 702                 minGallop = 0;
 703             minGallop += 2;  // Penalize for leaving gallop mode
 704         }  // End of "outer" loop
 705         this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
 706 
 707         if (len1 == 1) {
 708             assert len2 > 0;
 709             System.arraycopy(a, cursor2, a, dest, len2);
 710             a[dest + len2] = tmp[cursor1]; //  Last elt of run 1 to end of merge
 711         } else if (len1 == 0) {
 712             throw new IllegalArgumentException(
 713                 "Comparison method violates its general contract!");
 714         } else {
 715             assert len2 == 0;
 716             assert len1 > 1;
 717             System.arraycopy(tmp, cursor1, a, dest, len1);
 718         }
 719     }
 720 
 721     /**
 722      * Like mergeLo, except that this method should be called only if
 723      * len1 >= len2; mergeLo should be called if len1 <= len2.  (Either method
 724      * may be called if len1 == len2.)
 725      *
 726      * @param base1 index of first element in first run to be merged
 727      * @param len1  length of first run to be merged (must be > 0)
 728      * @param base2 index of first element in second run to be merged
 729      *        (must be aBase + aLen)
 730      * @param len2  length of second run to be merged (must be > 0)
 731      */
 732     @SuppressWarnings({"unchecked", "rawtypes"})
 733     private void mergeHi(int base1, int len1, int base2, int len2) {
 734         assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
 735 
 736         // Copy second run into temp array
 737         Object[] a = this.a; // For performance
 738         Object[] tmp = ensureCapacity(len2);
 739         System.arraycopy(a, base2, tmp, 0, len2);
 740 
 741         int cursor1 = base1 + len1 - 1;  // Indexes into a
 742         int cursor2 = len2 - 1;          // Indexes into tmp array
 743         int dest = base2 + len2 - 1;     // Indexes into a
 744 
 745         // Move last element of first run and deal with degenerate cases
 746         a[dest--] = a[cursor1--];
 747         if (--len1 == 0) {
 748             System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2);
 749             return;
 750         }
 751         if (len2 == 1) {
 752             dest -= len1;
 753             cursor1 -= len1;
 754             System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
 755             a[dest] = tmp[cursor2];
 756             return;
 757         }
 758 
 759         int minGallop = this.minGallop;  // Use local variable for performance
 760     outer:
 761         while (true) {
 762             int count1 = 0; // Number of times in a row that first run won
 763             int count2 = 0; // Number of times in a row that second run won
 764 
 765             /*
 766              * Do the straightforward thing until (if ever) one run
 767              * appears to win consistently.
 768              */
 769             do {
 770                 assert len1 > 0 && len2 > 1;
 771                 if (((Comparable) tmp[cursor2]).compareTo(a[cursor1]) < 0) {
 772                     a[dest--] = a[cursor1--];
 773                     count1++;
 774                     count2 = 0;
 775                     if (--len1 == 0)
 776                         break outer;
 777                 } else {
 778                     a[dest--] = tmp[cursor2--];
 779                     count2++;
 780                     count1 = 0;
 781                     if (--len2 == 1)
 782                         break outer;
 783                 }
 784             } while ((count1 | count2) < minGallop);
 785 
 786             /*
 787              * One run is winning so consistently that galloping may be a
 788              * huge win. So try that, and continue galloping until (if ever)
 789              * neither run appears to be winning consistently anymore.
 790              */
 791             do {
 792                 assert len1 > 0 && len2 > 1;
 793                 count1 = len1 - gallopRight((Comparable) tmp[cursor2], a, base1, len1, len1 - 1);
 794                 if (count1 != 0) {
 795                     dest -= count1;
 796                     cursor1 -= count1;
 797                     len1 -= count1;
 798                     System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
 799                     if (len1 == 0)
 800                         break outer;
 801                 }
 802                 a[dest--] = tmp[cursor2--];
 803                 if (--len2 == 1)
 804                     break outer;
 805 
 806                 count2 = len2 - gallopLeft((Comparable) a[cursor1], tmp, 0, len2, len2 - 1);
 807                 if (count2 != 0) {
 808                     dest -= count2;
 809                     cursor2 -= count2;
 810                     len2 -= count2;
 811                     System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
 812                     if (len2 <= 1)
 813                         break outer; // len2 == 1 || len2 == 0
 814                 }
 815                 a[dest--] = a[cursor1--];
 816                 if (--len1 == 0)
 817                     break outer;
 818                 minGallop--;
 819             } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
 820             if (minGallop < 0)
 821                 minGallop = 0;
 822             minGallop += 2;  // Penalize for leaving gallop mode
 823         }  // End of "outer" loop
 824         this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
 825 
 826         if (len2 == 1) {
 827             assert len1 > 0;
 828             dest -= len1;
 829             cursor1 -= len1;
 830             System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
 831             a[dest] = tmp[cursor2];  // Move first elt of run2 to front of merge
 832         } else if (len2 == 0) {
 833             throw new IllegalArgumentException(
 834                 "Comparison method violates its general contract!");
 835         } else {
 836             assert len1 == 0;
 837             assert len2 > 0;
 838             System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2);
 839         }
 840     }
 841 
 842     /**
 843      * Ensures that the external array tmp has at least the specified
 844      * number of elements, increasing its size if necessary.  The size
 845      * increases exponentially to ensure amortized linear time complexity.
 846      *
 847      * @param minCapacity the minimum required capacity of the tmp array
 848      * @return tmp, whether or not it grew
 849      */
 850     private Object[]  ensureCapacity(int minCapacity) {
 851         if (tmp.length < minCapacity) {
 852             // Compute smallest power of 2 > minCapacity
 853             int newSize = minCapacity;
 854             newSize |= newSize >> 1;
 855             newSize |= newSize >> 2;
 856             newSize |= newSize >> 4;
 857             newSize |= newSize >> 8;
 858             newSize |= newSize >> 16;
 859             newSize++;
 860 
 861             if (newSize < 0) // Not bloody likely!
 862                 newSize = minCapacity;
 863             else
 864                 newSize = Math.min(newSize, a.length >>> 1);
 865 
 866             Object[] newArray = new Object[newSize];
 867             tmp = newArray;
 868         }
 869         return tmp;
 870     }
 871 
 872     /**
 873      * Checks that fromIndex and toIndex are in range, and throws an
 874      * appropriate exception if they aren't.
 875      *
 876      * @param arrayLen the length of the array
 877      * @param fromIndex the index of the first element of the range
 878      * @param toIndex the index after the last element of the range
 879      * @throws IllegalArgumentException if fromIndex > toIndex
 880      * @throws ArrayIndexOutOfBoundsException if fromIndex < 0
 881      *         or toIndex > arrayLen
 882      */
 883     private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {
 884         if (fromIndex > toIndex)
 885             throw new IllegalArgumentException("fromIndex(" + fromIndex +
 886                        ") > toIndex(" + toIndex+")");
 887         if (fromIndex < 0)
 888             throw new ArrayIndexOutOfBoundsException(fromIndex);
 889         if (toIndex > arrayLen)
 890             throw new ArrayIndexOutOfBoundsException(toIndex);
 891     }
 892 }