1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1Allocator.hpp"
  30 #include "gc_implementation/g1/g1MMUTracker.hpp"
  31 #include "memory/collectorPolicy.hpp"
  32 
  33 // A G1CollectorPolicy makes policy decisions that determine the
  34 // characteristics of the collector.  Examples include:
  35 //   * choice of collection set.
  36 //   * when to collect.
  37 
  38 class HeapRegion;
  39 class CollectionSetChooser;
  40 class G1GCPhaseTimes;
  41 
  42 // TraceYoungGenTime collects data on _both_ young and mixed evacuation pauses
  43 // (the latter may contain non-young regions - i.e. regions that are
  44 // technically in old) while TraceOldGenTime collects data about full GCs.
  45 class TraceYoungGenTimeData : public CHeapObj<mtGC> {
  46  private:
  47   unsigned  _young_pause_num;
  48   unsigned  _mixed_pause_num;
  49 
  50   NumberSeq _all_stop_world_times_ms;
  51   NumberSeq _all_yield_times_ms;
  52 
  53   NumberSeq _total;
  54   NumberSeq _other;
  55   NumberSeq _root_region_scan_wait;
  56   NumberSeq _parallel;
  57   NumberSeq _ext_root_scan;
  58   NumberSeq _satb_filtering;
  59   NumberSeq _update_rs;
  60   NumberSeq _scan_rs;
  61   NumberSeq _obj_copy;
  62   NumberSeq _termination;
  63   NumberSeq _parallel_other;
  64   NumberSeq _clear_ct;
  65   NumberSeq _expand_heap;
  66 
  67   void print_summary(const char* str, const NumberSeq* seq) const;
  68   void print_summary_sd(const char* str, const NumberSeq* seq) const;
  69 
  70 public:
  71    TraceYoungGenTimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  72   void record_start_collection(double time_to_stop_the_world_ms);
  73   void record_yield_time(double yield_time_ms);
  74   void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
  75   void increment_young_collection_count();
  76   void increment_mixed_collection_count();
  77   void print() const;
  78 };
  79 
  80 class TraceOldGenTimeData : public CHeapObj<mtGC> {
  81  private:
  82   NumberSeq _all_full_gc_times;
  83 
  84  public:
  85   void record_full_collection(double full_gc_time_ms);
  86   void print() const;
  87 };
  88 
  89 // There are three command line options related to the young gen size:
  90 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
  91 // just a short form for NewSize==MaxNewSize). G1 will use its internal
  92 // heuristics to calculate the actual young gen size, so these options
  93 // basically only limit the range within which G1 can pick a young gen
  94 // size. Also, these are general options taking byte sizes. G1 will
  95 // internally work with a number of regions instead. So, some rounding
  96 // will occur.
  97 //
  98 // If nothing related to the the young gen size is set on the command
  99 // line we should allow the young gen to be between G1NewSizePercent
 100 // and G1MaxNewSizePercent of the heap size. This means that every time
 101 // the heap size changes, the limits for the young gen size will be
 102 // recalculated.
 103 //
 104 // If only -XX:NewSize is set we should use the specified value as the
 105 // minimum size for young gen. Still using G1MaxNewSizePercent of the
 106 // heap as maximum.
 107 //
 108 // If only -XX:MaxNewSize is set we should use the specified value as the
 109 // maximum size for young gen. Still using G1NewSizePercent of the heap
 110 // as minimum.
 111 //
 112 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
 113 // No updates when the heap size changes. There is a special case when
 114 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
 115 // different heuristic for calculating the collection set when we do mixed
 116 // collection.
 117 //
 118 // If only -XX:NewRatio is set we should use the specified ratio of the heap
 119 // as both min and max. This will be interpreted as "fixed" just like the
 120 // NewSize==MaxNewSize case above. But we will update the min and max
 121 // every time the heap size changes.
 122 //
 123 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
 124 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
 125 class G1YoungGenSizer : public CHeapObj<mtGC> {
 126 private:
 127   enum SizerKind {
 128     SizerDefaults,
 129     SizerNewSizeOnly,
 130     SizerMaxNewSizeOnly,
 131     SizerMaxAndNewSize,
 132     SizerNewRatio
 133   };
 134   SizerKind _sizer_kind;
 135   uint _min_desired_young_length;
 136   uint _max_desired_young_length;
 137   bool _adaptive_size;
 138   uint calculate_default_min_length(uint new_number_of_heap_regions);
 139   uint calculate_default_max_length(uint new_number_of_heap_regions);
 140 
 141   // Update the given values for minimum and maximum young gen length in regions
 142   // given the number of heap regions depending on the kind of sizing algorithm.
 143   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
 144 
 145 public:
 146   G1YoungGenSizer();
 147   // Calculate the maximum length of the young gen given the number of regions
 148   // depending on the sizing algorithm.
 149   uint max_young_length(uint number_of_heap_regions);
 150 
 151   void heap_size_changed(uint new_number_of_heap_regions);
 152   uint min_desired_young_length() {
 153     return _min_desired_young_length;
 154   }
 155   uint max_desired_young_length() {
 156     return _max_desired_young_length;
 157   }
 158   bool adaptive_young_list_length() {
 159     return _adaptive_size;
 160   }
 161 };
 162 
 163 class G1CollectorPolicy: public CollectorPolicy {
 164 private:
 165   // either equal to the number of parallel threads, if ParallelGCThreads
 166   // has been set, or 1 otherwise
 167   int _parallel_gc_threads;
 168 
 169   // The number of GC threads currently active.
 170   uintx _no_of_gc_threads;
 171 
 172   enum SomePrivateConstants {
 173     NumPrevPausesForHeuristics = 10
 174   };
 175 
 176   G1MMUTracker* _mmu_tracker;
 177 
 178   void initialize_alignments();
 179   void initialize_flags();
 180 
 181   CollectionSetChooser* _collectionSetChooser;
 182 
 183   double _full_collection_start_sec;
 184   uint   _cur_collection_pause_used_regions_at_start;
 185 
 186   // These exclude marking times.
 187   TruncatedSeq* _recent_gc_times_ms;
 188 
 189   TruncatedSeq* _concurrent_mark_remark_times_ms;
 190   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 191 
 192   TraceYoungGenTimeData _trace_young_gen_time_data;
 193   TraceOldGenTimeData   _trace_old_gen_time_data;
 194 
 195   double _stop_world_start;
 196 
 197   // indicates whether we are in young or mixed GC mode
 198   bool _gcs_are_young;
 199 
 200   uint _young_list_target_length;
 201   uint _young_list_fixed_length;
 202 
 203   // The max number of regions we can extend the eden by while the GC
 204   // locker is active. This should be >= _young_list_target_length;
 205   uint _young_list_max_length;
 206 
 207   bool _last_gc_was_young;
 208 
 209   bool _during_marking;
 210   bool _in_marking_window;
 211   bool _in_marking_window_im;
 212 
 213   SurvRateGroup* _short_lived_surv_rate_group;
 214   SurvRateGroup* _survivor_surv_rate_group;
 215   // add here any more surv rate groups
 216 
 217   double _gc_overhead_perc;
 218 
 219   double _reserve_factor;
 220   uint   _reserve_regions;
 221 
 222   bool during_marking() {
 223     return _during_marking;
 224   }
 225 
 226   enum PredictionConstants {
 227     TruncatedSeqLength = 10
 228   };
 229 
 230   TruncatedSeq* _alloc_rate_ms_seq;
 231   double        _prev_collection_pause_end_ms;
 232 
 233   TruncatedSeq* _rs_length_diff_seq;
 234   TruncatedSeq* _cost_per_card_ms_seq;
 235   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 236   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 237   TruncatedSeq* _cost_per_entry_ms_seq;
 238   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 239   TruncatedSeq* _cost_per_byte_ms_seq;
 240   TruncatedSeq* _constant_other_time_ms_seq;
 241   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 242   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 243 
 244   TruncatedSeq* _pending_cards_seq;
 245   TruncatedSeq* _rs_lengths_seq;
 246 
 247   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 248 
 249   G1YoungGenSizer* _young_gen_sizer;
 250 
 251   uint _eden_cset_region_length;
 252   uint _survivor_cset_region_length;
 253   uint _old_cset_region_length;
 254 
 255   void init_cset_region_lengths(uint eden_cset_region_length,
 256                                 uint survivor_cset_region_length);
 257 
 258   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
 259   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
 260   uint old_cset_region_length()      { return _old_cset_region_length;      }
 261 
 262   uint _free_regions_at_end_of_collection;
 263 
 264   size_t _recorded_rs_lengths;
 265   size_t _max_rs_lengths;
 266   double _sigma;
 267 
 268   size_t _rs_lengths_prediction;
 269 
 270   double sigma() { return _sigma; }
 271 
 272   // A function that prevents us putting too much stock in small sample
 273   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 274   // of samples.  5 or more samples yields one; fewer scales linearly from
 275   // 2.0 at 1 sample to 1.0 at 5.
 276   double confidence_factor(int samples) {
 277     if (samples > 4) return 1.0;
 278     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 279   }
 280 
 281   double get_new_neg_prediction(TruncatedSeq* seq) {
 282     return seq->davg() - sigma() * seq->dsd();
 283   }
 284 
 285 #ifndef PRODUCT
 286   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 287 #endif // PRODUCT
 288 
 289   void adjust_concurrent_refinement(double update_rs_time,
 290                                     double update_rs_processed_buffers,
 291                                     double goal_ms);
 292 
 293   uintx no_of_gc_threads() { return _no_of_gc_threads; }
 294   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
 295 
 296   double _pause_time_target_ms;
 297 
 298   size_t _pending_cards;
 299 
 300 public:
 301   // Accessors
 302 
 303   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 304     hr->set_eden();
 305     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 306     hr->set_young_index_in_cset(young_index_in_cset);
 307   }
 308 
 309   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 310     assert(hr->is_survivor(), "pre-condition");
 311     hr->install_surv_rate_group(_survivor_surv_rate_group);
 312     hr->set_young_index_in_cset(young_index_in_cset);
 313   }
 314 
 315 #ifndef PRODUCT
 316   bool verify_young_ages();
 317 #endif // PRODUCT
 318 
 319   double get_new_prediction(TruncatedSeq* seq) {
 320     return MAX2(seq->davg() + sigma() * seq->dsd(),
 321                 seq->davg() * confidence_factor(seq->num()));
 322   }
 323 
 324   void record_max_rs_lengths(size_t rs_lengths) {
 325     _max_rs_lengths = rs_lengths;
 326   }
 327 
 328   size_t predict_rs_length_diff() {
 329     return (size_t) get_new_prediction(_rs_length_diff_seq);
 330   }
 331 
 332   double predict_alloc_rate_ms() {
 333     return get_new_prediction(_alloc_rate_ms_seq);
 334   }
 335 
 336   double predict_cost_per_card_ms() {
 337     return get_new_prediction(_cost_per_card_ms_seq);
 338   }
 339 
 340   double predict_rs_update_time_ms(size_t pending_cards) {
 341     return (double) pending_cards * predict_cost_per_card_ms();
 342   }
 343 
 344   double predict_young_cards_per_entry_ratio() {
 345     return get_new_prediction(_young_cards_per_entry_ratio_seq);
 346   }
 347 
 348   double predict_mixed_cards_per_entry_ratio() {
 349     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
 350       return predict_young_cards_per_entry_ratio();
 351     } else {
 352       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
 353     }
 354   }
 355 
 356   size_t predict_young_card_num(size_t rs_length) {
 357     return (size_t) ((double) rs_length *
 358                      predict_young_cards_per_entry_ratio());
 359   }
 360 
 361   size_t predict_non_young_card_num(size_t rs_length) {
 362     return (size_t) ((double) rs_length *
 363                      predict_mixed_cards_per_entry_ratio());
 364   }
 365 
 366   double predict_rs_scan_time_ms(size_t card_num) {
 367     if (gcs_are_young()) {
 368       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 369     } else {
 370       return predict_mixed_rs_scan_time_ms(card_num);
 371     }
 372   }
 373 
 374   double predict_mixed_rs_scan_time_ms(size_t card_num) {
 375     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
 376       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 377     } else {
 378       return (double) (card_num *
 379                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
 380     }
 381   }
 382 
 383   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 384     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
 385       return (1.1 * (double) bytes_to_copy) *
 386               get_new_prediction(_cost_per_byte_ms_seq);
 387     } else {
 388       return (double) bytes_to_copy *
 389              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 390     }
 391   }
 392 
 393   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 394     if (_in_marking_window && !_in_marking_window_im) {
 395       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 396     } else {
 397       return (double) bytes_to_copy *
 398               get_new_prediction(_cost_per_byte_ms_seq);
 399     }
 400   }
 401 
 402   double predict_constant_other_time_ms() {
 403     return get_new_prediction(_constant_other_time_ms_seq);
 404   }
 405 
 406   double predict_young_other_time_ms(size_t young_num) {
 407     return (double) young_num *
 408            get_new_prediction(_young_other_cost_per_region_ms_seq);
 409   }
 410 
 411   double predict_non_young_other_time_ms(size_t non_young_num) {
 412     return (double) non_young_num *
 413            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 414   }
 415 
 416   double predict_base_elapsed_time_ms(size_t pending_cards);
 417   double predict_base_elapsed_time_ms(size_t pending_cards,
 418                                       size_t scanned_cards);
 419   size_t predict_bytes_to_copy(HeapRegion* hr);
 420   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
 421 
 422   void set_recorded_rs_lengths(size_t rs_lengths);
 423 
 424   uint cset_region_length()       { return young_cset_region_length() +
 425                                            old_cset_region_length(); }
 426   uint young_cset_region_length() { return eden_cset_region_length() +
 427                                            survivor_cset_region_length(); }
 428 
 429   double predict_survivor_regions_evac_time();
 430 
 431   void cset_regions_freed() {
 432     bool propagate = _last_gc_was_young && !_in_marking_window;
 433     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 434     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 435     // also call it on any more surv rate groups
 436   }
 437 
 438   G1MMUTracker* mmu_tracker() {
 439     return _mmu_tracker;
 440   }
 441 
 442   double max_pause_time_ms() {
 443     return _mmu_tracker->max_gc_time() * 1000.0;
 444   }
 445 
 446   double predict_remark_time_ms() {
 447     return get_new_prediction(_concurrent_mark_remark_times_ms);
 448   }
 449 
 450   double predict_cleanup_time_ms() {
 451     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 452   }
 453 
 454   // Returns an estimate of the survival rate of the region at yg-age
 455   // "yg_age".
 456   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 457     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 458     if (seq->num() == 0)
 459       gclog_or_tty->print("BARF! age is %d", age);
 460     guarantee( seq->num() > 0, "invariant" );
 461     double pred = get_new_prediction(seq);
 462     if (pred > 1.0)
 463       pred = 1.0;
 464     return pred;
 465   }
 466 
 467   double predict_yg_surv_rate(int age) {
 468     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 469   }
 470 
 471   double accum_yg_surv_rate_pred(int age) {
 472     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 473   }
 474 
 475 private:
 476   // Statistics kept per GC stoppage, pause or full.
 477   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 478 
 479   // Add a new GC of the given duration and end time to the record.
 480   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 481 
 482   // The head of the list (via "next_in_collection_set()") representing the
 483   // current collection set. Set from the incrementally built collection
 484   // set at the start of the pause.
 485   HeapRegion* _collection_set;
 486 
 487   // The number of bytes in the collection set before the pause. Set from
 488   // the incrementally built collection set at the start of an evacuation
 489   // pause, and incremented in finalize_cset() when adding old regions
 490   // (if any) to the collection set.
 491   size_t _collection_set_bytes_used_before;
 492 
 493   // The number of bytes copied during the GC.
 494   size_t _bytes_copied_during_gc;
 495 
 496   // The associated information that is maintained while the incremental
 497   // collection set is being built with young regions. Used to populate
 498   // the recorded info for the evacuation pause.
 499 
 500   enum CSetBuildType {
 501     Active,             // We are actively building the collection set
 502     Inactive            // We are not actively building the collection set
 503   };
 504 
 505   CSetBuildType _inc_cset_build_state;
 506 
 507   // The head of the incrementally built collection set.
 508   HeapRegion* _inc_cset_head;
 509 
 510   // The tail of the incrementally built collection set.
 511   HeapRegion* _inc_cset_tail;
 512 
 513   // The number of bytes in the incrementally built collection set.
 514   // Used to set _collection_set_bytes_used_before at the start of
 515   // an evacuation pause.
 516   size_t _inc_cset_bytes_used_before;
 517 
 518   // Used to record the highest end of heap region in collection set
 519   HeapWord* _inc_cset_max_finger;
 520 
 521   // The RSet lengths recorded for regions in the CSet. It is updated
 522   // by the thread that adds a new region to the CSet. We assume that
 523   // only one thread can be allocating a new CSet region (currently,
 524   // it does so after taking the Heap_lock) hence no need to
 525   // synchronize updates to this field.
 526   size_t _inc_cset_recorded_rs_lengths;
 527 
 528   // A concurrent refinement thread periodically samples the young
 529   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
 530   // the RSets grow. Instead of having to synchronize updates to that
 531   // field we accumulate them in this field and add it to
 532   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
 533   ssize_t _inc_cset_recorded_rs_lengths_diffs;
 534 
 535   // The predicted elapsed time it will take to collect the regions in
 536   // the CSet. This is updated by the thread that adds a new region to
 537   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 538   // MT-safety assumptions.
 539   double _inc_cset_predicted_elapsed_time_ms;
 540 
 541   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 542   double _inc_cset_predicted_elapsed_time_ms_diffs;
 543 
 544   // Stash a pointer to the g1 heap.
 545   G1CollectedHeap* _g1;
 546 
 547   G1GCPhaseTimes* _phase_times;
 548 
 549   // The ratio of gc time to elapsed time, computed over recent pauses.
 550   double _recent_avg_pause_time_ratio;
 551 
 552   double recent_avg_pause_time_ratio() {
 553     return _recent_avg_pause_time_ratio;
 554   }
 555 
 556   // At the end of a pause we check the heap occupancy and we decide
 557   // whether we will start a marking cycle during the next pause. If
 558   // we decide that we want to do that, we will set this parameter to
 559   // true. So, this parameter will stay true between the end of a
 560   // pause and the beginning of a subsequent pause (not necessarily
 561   // the next one, see the comments on the next field) when we decide
 562   // that we will indeed start a marking cycle and do the initial-mark
 563   // work.
 564   volatile bool _initiate_conc_mark_if_possible;
 565 
 566   // If initiate_conc_mark_if_possible() is set at the beginning of a
 567   // pause, it is a suggestion that the pause should start a marking
 568   // cycle by doing the initial-mark work. However, it is possible
 569   // that the concurrent marking thread is still finishing up the
 570   // previous marking cycle (e.g., clearing the next marking
 571   // bitmap). If that is the case we cannot start a new cycle and
 572   // we'll have to wait for the concurrent marking thread to finish
 573   // what it is doing. In this case we will postpone the marking cycle
 574   // initiation decision for the next pause. When we eventually decide
 575   // to start a cycle, we will set _during_initial_mark_pause which
 576   // will stay true until the end of the initial-mark pause and it's
 577   // the condition that indicates that a pause is doing the
 578   // initial-mark work.
 579   volatile bool _during_initial_mark_pause;
 580 
 581   bool _last_young_gc;
 582 
 583   // This set of variables tracks the collector efficiency, in order to
 584   // determine whether we should initiate a new marking.
 585   double _cur_mark_stop_world_time_ms;
 586   double _mark_remark_start_sec;
 587   double _mark_cleanup_start_sec;
 588 
 589   // Update the young list target length either by setting it to the
 590   // desired fixed value or by calculating it using G1's pause
 591   // prediction model. If no rs_lengths parameter is passed, predict
 592   // the RS lengths using the prediction model, otherwise use the
 593   // given rs_lengths as the prediction.
 594   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 595 
 596   // Calculate and return the minimum desired young list target
 597   // length. This is the minimum desired young list length according
 598   // to the user's inputs.
 599   uint calculate_young_list_desired_min_length(uint base_min_length);
 600 
 601   // Calculate and return the maximum desired young list target
 602   // length. This is the maximum desired young list length according
 603   // to the user's inputs.
 604   uint calculate_young_list_desired_max_length();
 605 
 606   // Calculate and return the maximum young list target length that
 607   // can fit into the pause time goal. The parameters are: rs_lengths
 608   // represent the prediction of how large the young RSet lengths will
 609   // be, base_min_length is the already existing number of regions in
 610   // the young list, min_length and max_length are the desired min and
 611   // max young list length according to the user's inputs.
 612   uint calculate_young_list_target_length(size_t rs_lengths,
 613                                           uint base_min_length,
 614                                           uint desired_min_length,
 615                                           uint desired_max_length);
 616 
 617   // Calculate and return chunk size (in number of regions) for parallel
 618   // concurrent mark cleanup.
 619   uint calculate_parallel_work_chunk_size(uint n_workers, uint n_regions);
 620 
 621   // Check whether a given young length (young_length) fits into the
 622   // given target pause time and whether the prediction for the amount
 623   // of objects to be copied for the given length will fit into the
 624   // given free space (expressed by base_free_regions).  It is used by
 625   // calculate_young_list_target_length().
 626   bool predict_will_fit(uint young_length, double base_time_ms,
 627                         uint base_free_regions, double target_pause_time_ms);
 628 
 629   // Calculate the minimum number of old regions we'll add to the CSet
 630   // during a mixed GC.
 631   uint calc_min_old_cset_length();
 632 
 633   // Calculate the maximum number of old regions we'll add to the CSet
 634   // during a mixed GC.
 635   uint calc_max_old_cset_length();
 636 
 637   // Returns the given amount of uncollected reclaimable space
 638   // as a percentage of the current heap capacity.
 639   double reclaimable_bytes_perc(size_t reclaimable_bytes);
 640 
 641 public:
 642 
 643   G1CollectorPolicy();
 644 
 645   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 646 
 647   virtual CollectorPolicy::Name kind() {
 648     return CollectorPolicy::G1CollectorPolicyKind;
 649   }
 650 
 651   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 652 
 653   // Check the current value of the young list RSet lengths and
 654   // compare it against the last prediction. If the current value is
 655   // higher, recalculate the young list target length prediction.
 656   void revise_young_list_target_length_if_necessary();
 657 
 658   // This should be called after the heap is resized.
 659   void record_new_heap_size(uint new_number_of_regions);
 660 
 661   void init();
 662 
 663   // Create jstat counters for the policy.
 664   virtual void initialize_gc_policy_counters();
 665 
 666   virtual HeapWord* mem_allocate_work(size_t size,
 667                                       bool is_tlab,
 668                                       bool* gc_overhead_limit_was_exceeded);
 669 
 670   // This method controls how a collector handles one or more
 671   // of its generations being fully allocated.
 672   virtual HeapWord* satisfy_failed_allocation(size_t size,
 673                                               bool is_tlab);
 674 
 675   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 676 
 677   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 678 
 679   // Record the start and end of an evacuation pause.
 680   void record_collection_pause_start(double start_time_sec);
 681   void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);
 682 
 683   // Record the start and end of a full collection.
 684   void record_full_collection_start();
 685   void record_full_collection_end();
 686 
 687   // Must currently be called while the world is stopped.
 688   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
 689 
 690   // Record start and end of remark.
 691   void record_concurrent_mark_remark_start();
 692   void record_concurrent_mark_remark_end();
 693 
 694   // Record start, end, and completion of cleanup.
 695   void record_concurrent_mark_cleanup_start();
 696   void record_concurrent_mark_cleanup_end(uint n_workers);
 697   void record_concurrent_mark_cleanup_completed();
 698 
 699   // Records the information about the heap size for reporting in
 700   // print_detailed_heap_transition
 701   void record_heap_size_info_at_start(bool full);
 702 
 703   // Print heap sizing transition (with less and more detail).
 704   void print_heap_transition();
 705   void print_detailed_heap_transition(bool full = false);
 706 
 707   void record_stop_world_start();
 708   void record_concurrent_pause();
 709 
 710   // Record how much space we copied during a GC. This is typically
 711   // called when a GC alloc region is being retired.
 712   void record_bytes_copied_during_gc(size_t bytes) {
 713     _bytes_copied_during_gc += bytes;
 714   }
 715 
 716   // The amount of space we copied during a GC.
 717   size_t bytes_copied_during_gc() {
 718     return _bytes_copied_during_gc;
 719   }
 720 
 721   // Determine whether there are candidate regions so that the
 722   // next GC should be mixed. The two action strings are used
 723   // in the ergo output when the method returns true or false.
 724   bool next_gc_should_be_mixed(const char* true_action_str,
 725                                const char* false_action_str);
 726 
 727   // Choose a new collection set.  Marks the chosen regions as being
 728   // "in_collection_set", and links them together.  The head and number of
 729   // the collection set are available via access methods.
 730   void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);
 731 
 732   // The head of the list (via "next_in_collection_set()") representing the
 733   // current collection set.
 734   HeapRegion* collection_set() { return _collection_set; }
 735 
 736   void clear_collection_set() { _collection_set = NULL; }
 737 
 738   // Add old region "hr" to the CSet.
 739   void add_old_region_to_cset(HeapRegion* hr);
 740 
 741   // Incremental CSet Support
 742 
 743   // The head of the incrementally built collection set.
 744   HeapRegion* inc_cset_head() { return _inc_cset_head; }
 745 
 746   // The tail of the incrementally built collection set.
 747   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
 748 
 749   // Initialize incremental collection set info.
 750   void start_incremental_cset_building();
 751 
 752   // Perform any final calculations on the incremental CSet fields
 753   // before we can use them.
 754   void finalize_incremental_cset_building();
 755 
 756   void clear_incremental_cset() {
 757     _inc_cset_head = NULL;
 758     _inc_cset_tail = NULL;
 759   }
 760 
 761   // Stop adding regions to the incremental collection set
 762   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
 763 
 764   // Add information about hr to the aggregated information for the
 765   // incrementally built collection set.
 766   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
 767 
 768   // Update information about hr in the aggregated information for
 769   // the incrementally built collection set.
 770   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 771 
 772 private:
 773   // Update the incremental cset information when adding a region
 774   // (should not be called directly).
 775   void add_region_to_incremental_cset_common(HeapRegion* hr);
 776 
 777 public:
 778   // Add hr to the LHS of the incremental collection set.
 779   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 780 
 781   // Add hr to the RHS of the incremental collection set.
 782   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 783 
 784 #ifndef PRODUCT
 785   void print_collection_set(HeapRegion* list_head, outputStream* st);
 786 #endif // !PRODUCT
 787 
 788   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
 789   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
 790   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
 791 
 792   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
 793   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
 794   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
 795 
 796   // This sets the initiate_conc_mark_if_possible() flag to start a
 797   // new cycle, as long as we are not already in one. It's best if it
 798   // is called during a safepoint when the test whether a cycle is in
 799   // progress or not is stable.
 800   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 801 
 802   // This is called at the very beginning of an evacuation pause (it
 803   // has to be the first thing that the pause does). If
 804   // initiate_conc_mark_if_possible() is true, and the concurrent
 805   // marking thread has completed its work during the previous cycle,
 806   // it will set during_initial_mark_pause() to so that the pause does
 807   // the initial-mark work and start a marking cycle.
 808   void decide_on_conc_mark_initiation();
 809 
 810   // If an expansion would be appropriate, because recent GC overhead had
 811   // exceeded the desired limit, return an amount to expand by.
 812   virtual size_t expansion_amount();
 813 
 814   // Print tracing information.
 815   void print_tracing_info() const;
 816 
 817   // Print stats on young survival ratio
 818   void print_yg_surv_rate_info() const;
 819 
 820   void finished_recalculating_age_indexes(bool is_survivors) {
 821     if (is_survivors) {
 822       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 823     } else {
 824       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 825     }
 826     // do that for any other surv rate groups
 827   }
 828 
 829   size_t young_list_target_length() const { return _young_list_target_length; }
 830 
 831   bool is_young_list_full();
 832 
 833   bool can_expand_young_list();
 834 
 835   uint young_list_max_length() {
 836     return _young_list_max_length;
 837   }
 838 
 839   bool gcs_are_young() {
 840     return _gcs_are_young;
 841   }
 842   void set_gcs_are_young(bool gcs_are_young) {
 843     _gcs_are_young = gcs_are_young;
 844   }
 845 
 846   bool adaptive_young_list_length() {
 847     return _young_gen_sizer->adaptive_young_list_length();
 848   }
 849 
 850 private:
 851   //
 852   // Survivor regions policy.
 853   //
 854 
 855   // Current tenuring threshold, set to 0 if the collector reaches the
 856   // maximum amount of survivors regions.
 857   uint _tenuring_threshold;
 858 
 859   // The limit on the number of regions allocated for survivors.
 860   uint _max_survivor_regions;
 861 
 862   // For reporting purposes.
 863   // The value of _heap_bytes_before_gc is also used to calculate
 864   // the cost of copying.
 865 
 866   size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
 867   size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
 868   size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
 869   size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC
 870 
 871   size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
 872   size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
 873 
 874   // The amount of survivor regions after a collection.
 875   uint _recorded_survivor_regions;
 876   // List of survivor regions.
 877   HeapRegion* _recorded_survivor_head;
 878   HeapRegion* _recorded_survivor_tail;
 879 
 880   ageTable _survivors_age_table;
 881 
 882 public:
 883   uint tenuring_threshold() const { return _tenuring_threshold; }
 884 
 885   static const uint REGIONS_UNLIMITED = (uint) -1;
 886 
 887   uint max_regions(InCSetState dest) {
 888     switch (dest.value()) {
 889       case InCSetState::Young:
 890         return _max_survivor_regions;
 891       case InCSetState::Old:
 892         return REGIONS_UNLIMITED;
 893       default:
 894         assert(false, err_msg("Unknown dest state: " CSETSTATE_FORMAT, dest.value()));
 895         break;
 896     }
 897     // keep some compilers happy
 898     return 0;
 899   }
 900 
 901   void note_start_adding_survivor_regions() {
 902     _survivor_surv_rate_group->start_adding_regions();
 903   }
 904 
 905   void note_stop_adding_survivor_regions() {
 906     _survivor_surv_rate_group->stop_adding_regions();
 907   }
 908 
 909   void record_survivor_regions(uint regions,
 910                                HeapRegion* head,
 911                                HeapRegion* tail) {
 912     _recorded_survivor_regions = regions;
 913     _recorded_survivor_head    = head;
 914     _recorded_survivor_tail    = tail;
 915   }
 916 
 917   uint recorded_survivor_regions() {
 918     return _recorded_survivor_regions;
 919   }
 920 
 921   void record_thread_age_table(ageTable* age_table) {
 922     _survivors_age_table.merge_par(age_table);
 923   }
 924 
 925   void update_max_gc_locker_expansion();
 926 
 927   // Calculates survivor space parameters.
 928   void update_survivors_policy();
 929 
 930   virtual void post_heap_initialize();
 931 };
 932 
 933 // This should move to some place more general...
 934 
 935 // If we have "n" measurements, and we've kept track of their "sum" and the
 936 // "sum_of_squares" of the measurements, this returns the variance of the
 937 // sequence.
 938 inline double variance(int n, double sum_of_squares, double sum) {
 939   double n_d = (double)n;
 940   double avg = sum/n_d;
 941   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
 942 }
 943 
 944 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP