1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardGeneration.inline.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.inline.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/strongRootsScope.hpp"
  57 #include "memory/tenuredGeneration.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/globals_extension.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/orderAccess.inline.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "services/memoryService.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/stack.inline.hpp"
  69 #include "utilities/taskqueue.inline.hpp"
  70 
  71 // statics
  72 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  73 bool CMSCollector::_full_gc_requested = false;
  74 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  75 
  76 //////////////////////////////////////////////////////////////////
  77 // In support of CMS/VM thread synchronization
  78 //////////////////////////////////////////////////////////////////
  79 // We split use of the CGC_lock into 2 "levels".
  80 // The low-level locking is of the usual CGC_lock monitor. We introduce
  81 // a higher level "token" (hereafter "CMS token") built on top of the
  82 // low level monitor (hereafter "CGC lock").
  83 // The token-passing protocol gives priority to the VM thread. The
  84 // CMS-lock doesn't provide any fairness guarantees, but clients
  85 // should ensure that it is only held for very short, bounded
  86 // durations.
  87 //
  88 // When either of the CMS thread or the VM thread is involved in
  89 // collection operations during which it does not want the other
  90 // thread to interfere, it obtains the CMS token.
  91 //
  92 // If either thread tries to get the token while the other has
  93 // it, that thread waits. However, if the VM thread and CMS thread
  94 // both want the token, then the VM thread gets priority while the
  95 // CMS thread waits. This ensures, for instance, that the "concurrent"
  96 // phases of the CMS thread's work do not block out the VM thread
  97 // for long periods of time as the CMS thread continues to hog
  98 // the token. (See bug 4616232).
  99 //
 100 // The baton-passing functions are, however, controlled by the
 101 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 102 // and here the low-level CMS lock, not the high level token,
 103 // ensures mutual exclusion.
 104 //
 105 // Two important conditions that we have to satisfy:
 106 // 1. if a thread does a low-level wait on the CMS lock, then it
 107 //    relinquishes the CMS token if it were holding that token
 108 //    when it acquired the low-level CMS lock.
 109 // 2. any low-level notifications on the low-level lock
 110 //    should only be sent when a thread has relinquished the token.
 111 //
 112 // In the absence of either property, we'd have potential deadlock.
 113 //
 114 // We protect each of the CMS (concurrent and sequential) phases
 115 // with the CMS _token_, not the CMS _lock_.
 116 //
 117 // The only code protected by CMS lock is the token acquisition code
 118 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 119 // baton-passing code.
 120 //
 121 // Unfortunately, i couldn't come up with a good abstraction to factor and
 122 // hide the naked CGC_lock manipulation in the baton-passing code
 123 // further below. That's something we should try to do. Also, the proof
 124 // of correctness of this 2-level locking scheme is far from obvious,
 125 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 126 // that there may be a theoretical possibility of delay/starvation in the
 127 // low-level lock/wait/notify scheme used for the baton-passing because of
 128 // potential interference with the priority scheme embodied in the
 129 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 130 // invocation further below and marked with "XXX 20011219YSR".
 131 // Indeed, as we note elsewhere, this may become yet more slippery
 132 // in the presence of multiple CMS and/or multiple VM threads. XXX
 133 
 134 class CMSTokenSync: public StackObj {
 135  private:
 136   bool _is_cms_thread;
 137  public:
 138   CMSTokenSync(bool is_cms_thread):
 139     _is_cms_thread(is_cms_thread) {
 140     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 141            "Incorrect argument to constructor");
 142     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 143   }
 144 
 145   ~CMSTokenSync() {
 146     assert(_is_cms_thread ?
 147              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 148              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 149           "Incorrect state");
 150     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 151   }
 152 };
 153 
 154 // Convenience class that does a CMSTokenSync, and then acquires
 155 // upto three locks.
 156 class CMSTokenSyncWithLocks: public CMSTokenSync {
 157  private:
 158   // Note: locks are acquired in textual declaration order
 159   // and released in the opposite order
 160   MutexLockerEx _locker1, _locker2, _locker3;
 161  public:
 162   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 163                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 164     CMSTokenSync(is_cms_thread),
 165     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 166     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 167     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 168   { }
 169 };
 170 
 171 
 172 //////////////////////////////////////////////////////////////////
 173 //  Concurrent Mark-Sweep Generation /////////////////////////////
 174 //////////////////////////////////////////////////////////////////
 175 
 176 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 177 
 178 // This struct contains per-thread things necessary to support parallel
 179 // young-gen collection.
 180 class CMSParGCThreadState: public CHeapObj<mtGC> {
 181  public:
 182   CFLS_LAB lab;
 183   PromotionInfo promo;
 184 
 185   // Constructor.
 186   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 187     promo.setSpace(cfls);
 188   }
 189 };
 190 
 191 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 192      ReservedSpace rs, size_t initial_byte_size, int level,
 193      CardTableRS* ct, bool use_adaptive_freelists,
 194      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 195   CardGeneration(rs, initial_byte_size, level, ct),
 196   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 197   _did_compact(false)
 198 {
 199   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 200   HeapWord* end    = (HeapWord*) _virtual_space.high();
 201 
 202   _direct_allocated_words = 0;
 203   NOT_PRODUCT(
 204     _numObjectsPromoted = 0;
 205     _numWordsPromoted = 0;
 206     _numObjectsAllocated = 0;
 207     _numWordsAllocated = 0;
 208   )
 209 
 210   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 211                                            use_adaptive_freelists,
 212                                            dictionaryChoice);
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 230   for (uint i = 0; i < ParallelGCThreads; i++) {
 231     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232   }
 233 
 234   _incremental_collection_failed = false;
 235   // The "dilatation_factor" is the expansion that can occur on
 236   // account of the fact that the minimum object size in the CMS
 237   // generation may be larger than that in, say, a contiguous young
 238   //  generation.
 239   // Ideally, in the calculation below, we'd compute the dilatation
 240   // factor as: MinChunkSize/(promoting_gen's min object size)
 241   // Since we do not have such a general query interface for the
 242   // promoting generation, we'll instead just use the minimum
 243   // object size (which today is a header's worth of space);
 244   // note that all arithmetic is in units of HeapWords.
 245   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 246   assert(_dilatation_factor >= 1.0, "from previous assert");
 247 }
 248 
 249 
 250 // The field "_initiating_occupancy" represents the occupancy percentage
 251 // at which we trigger a new collection cycle.  Unless explicitly specified
 252 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 253 // is calculated by:
 254 //
 255 //   Let "f" be MinHeapFreeRatio in
 256 //
 257 //    _initiating_occupancy = 100-f +
 258 //                           f * (CMSTriggerRatio/100)
 259 //   where CMSTriggerRatio is the argument "tr" below.
 260 //
 261 // That is, if we assume the heap is at its desired maximum occupancy at the
 262 // end of a collection, we let CMSTriggerRatio of the (purported) free
 263 // space be allocated before initiating a new collection cycle.
 264 //
 265 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 266   assert(io <= 100 && tr <= 100, "Check the arguments");
 267   if (io >= 0) {
 268     _initiating_occupancy = (double)io / 100.0;
 269   } else {
 270     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 271                              (double)(tr * MinHeapFreeRatio) / 100.0)
 272                             / 100.0;
 273   }
 274 }
 275 
 276 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 277   assert(collector() != NULL, "no collector");
 278   collector()->ref_processor_init();
 279 }
 280 
 281 void CMSCollector::ref_processor_init() {
 282   if (_ref_processor == NULL) {
 283     // Allocate and initialize a reference processor
 284     _ref_processor =
 285       new ReferenceProcessor(_span,                               // span
 286                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 287                              (int) ParallelGCThreads,             // mt processing degree
 288                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 289                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 290                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 291                              &_is_alive_closure);                 // closure for liveness info
 292     // Initialize the _ref_processor field of CMSGen
 293     _cmsGen->set_ref_processor(_ref_processor);
 294 
 295   }
 296 }
 297 
 298 AdaptiveSizePolicy* CMSCollector::size_policy() {
 299   GenCollectedHeap* gch = GenCollectedHeap::heap();
 300   return gch->gen_policy()->size_policy();
 301 }
 302 
 303 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 304 
 305   const char* gen_name = "old";
 306   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 307 
 308   // Generation Counters - generation 1, 1 subspace
 309   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 310       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 311 
 312   _space_counters = new GSpaceCounters(gen_name, 0,
 313                                        _virtual_space.reserved_size(),
 314                                        this, _gen_counters);
 315 }
 316 
 317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 318   _cms_gen(cms_gen)
 319 {
 320   assert(alpha <= 100, "bad value");
 321   _saved_alpha = alpha;
 322 
 323   // Initialize the alphas to the bootstrap value of 100.
 324   _gc0_alpha = _cms_alpha = 100;
 325 
 326   _cms_begin_time.update();
 327   _cms_end_time.update();
 328 
 329   _gc0_duration = 0.0;
 330   _gc0_period = 0.0;
 331   _gc0_promoted = 0;
 332 
 333   _cms_duration = 0.0;
 334   _cms_period = 0.0;
 335   _cms_allocated = 0;
 336 
 337   _cms_used_at_gc0_begin = 0;
 338   _cms_used_at_gc0_end = 0;
 339   _allow_duty_cycle_reduction = false;
 340   _valid_bits = 0;
 341 }
 342 
 343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 344   // TBD: CR 6909490
 345   return 1.0;
 346 }
 347 
 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 349 }
 350 
 351 // If promotion failure handling is on use
 352 // the padded average size of the promotion for each
 353 // young generation collection.
 354 double CMSStats::time_until_cms_gen_full() const {
 355   size_t cms_free = _cms_gen->cmsSpace()->free();
 356   GenCollectedHeap* gch = GenCollectedHeap::heap();
 357   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 358                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 359   if (cms_free > expected_promotion) {
 360     // Start a cms collection if there isn't enough space to promote
 361     // for the next minor collection.  Use the padded average as
 362     // a safety factor.
 363     cms_free -= expected_promotion;
 364 
 365     // Adjust by the safety factor.
 366     double cms_free_dbl = (double)cms_free;
 367     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 368     // Apply a further correction factor which tries to adjust
 369     // for recent occurance of concurrent mode failures.
 370     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 371     cms_free_dbl = cms_free_dbl * cms_adjustment;
 372 
 373     if (PrintGCDetails && Verbose) {
 374       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 375         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 376         cms_free, expected_promotion);
 377       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 378         cms_free_dbl, cms_consumption_rate() + 1.0);
 379     }
 380     // Add 1 in case the consumption rate goes to zero.
 381     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 382   }
 383   return 0.0;
 384 }
 385 
 386 // Compare the duration of the cms collection to the
 387 // time remaining before the cms generation is empty.
 388 // Note that the time from the start of the cms collection
 389 // to the start of the cms sweep (less than the total
 390 // duration of the cms collection) can be used.  This
 391 // has been tried and some applications experienced
 392 // promotion failures early in execution.  This was
 393 // possibly because the averages were not accurate
 394 // enough at the beginning.
 395 double CMSStats::time_until_cms_start() const {
 396   // We add "gc0_period" to the "work" calculation
 397   // below because this query is done (mostly) at the
 398   // end of a scavenge, so we need to conservatively
 399   // account for that much possible delay
 400   // in the query so as to avoid concurrent mode failures
 401   // due to starting the collection just a wee bit too
 402   // late.
 403   double work = cms_duration() + gc0_period();
 404   double deadline = time_until_cms_gen_full();
 405   // If a concurrent mode failure occurred recently, we want to be
 406   // more conservative and halve our expected time_until_cms_gen_full()
 407   if (work > deadline) {
 408     if (Verbose && PrintGCDetails) {
 409       gclog_or_tty->print(
 410         " CMSCollector: collect because of anticipated promotion "
 411         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 412         gc0_period(), time_until_cms_gen_full());
 413     }
 414     return 0.0;
 415   }
 416   return work - deadline;
 417 }
 418 
 419 #ifndef PRODUCT
 420 void CMSStats::print_on(outputStream *st) const {
 421   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 422   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 423                gc0_duration(), gc0_period(), gc0_promoted());
 424   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 425             cms_duration(), cms_period(), cms_allocated());
 426   st->print(",cms_since_beg=%g,cms_since_end=%g",
 427             cms_time_since_begin(), cms_time_since_end());
 428   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 429             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 430 
 431   if (valid()) {
 432     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 433               promotion_rate(), cms_allocation_rate());
 434     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 435               cms_consumption_rate(), time_until_cms_gen_full());
 436   }
 437   st->print(" ");
 438 }
 439 #endif // #ifndef PRODUCT
 440 
 441 CMSCollector::CollectorState CMSCollector::_collectorState =
 442                              CMSCollector::Idling;
 443 bool CMSCollector::_foregroundGCIsActive = false;
 444 bool CMSCollector::_foregroundGCShouldWait = false;
 445 
 446 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 447                            CardTableRS*                   ct,
 448                            ConcurrentMarkSweepPolicy*     cp):
 449   _cmsGen(cmsGen),
 450   _ct(ct),
 451   _ref_processor(NULL),    // will be set later
 452   _conc_workers(NULL),     // may be set later
 453   _abort_preclean(false),
 454   _start_sampling(false),
 455   _between_prologue_and_epilogue(false),
 456   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 457   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 458                  -1 /* lock-free */, "No_lock" /* dummy */),
 459   _modUnionClosurePar(&_modUnionTable),
 460   // Adjust my span to cover old (cms) gen
 461   _span(cmsGen->reserved()),
 462   // Construct the is_alive_closure with _span & markBitMap
 463   _is_alive_closure(_span, &_markBitMap),
 464   _restart_addr(NULL),
 465   _overflow_list(NULL),
 466   _stats(cmsGen),
 467   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 468                              //verify that this lock should be acquired with safepoint check.
 469                              Monitor::_safepoint_check_sometimes)),
 470   _eden_chunk_array(NULL),     // may be set in ctor body
 471   _eden_chunk_capacity(0),     // -- ditto --
 472   _eden_chunk_index(0),        // -- ditto --
 473   _survivor_plab_array(NULL),  // -- ditto --
 474   _survivor_chunk_array(NULL), // -- ditto --
 475   _survivor_chunk_capacity(0), // -- ditto --
 476   _survivor_chunk_index(0),    // -- ditto --
 477   _ser_pmc_preclean_ovflw(0),
 478   _ser_kac_preclean_ovflw(0),
 479   _ser_pmc_remark_ovflw(0),
 480   _par_pmc_remark_ovflw(0),
 481   _ser_kac_ovflw(0),
 482   _par_kac_ovflw(0),
 483 #ifndef PRODUCT
 484   _num_par_pushes(0),
 485 #endif
 486   _collection_count_start(0),
 487   _verifying(false),
 488   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 489   _completed_initialization(false),
 490   _collector_policy(cp),
 491   _should_unload_classes(CMSClassUnloadingEnabled),
 492   _concurrent_cycles_since_last_unload(0),
 493   _roots_scanning_options(GenCollectedHeap::SO_None),
 494   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 495   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 497   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 498   _cms_start_registered(false)
 499 {
 500   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 501     ExplicitGCInvokesConcurrent = true;
 502   }
 503   // Now expand the span and allocate the collection support structures
 504   // (MUT, marking bit map etc.) to cover both generations subject to
 505   // collection.
 506 
 507   // For use by dirty card to oop closures.
 508   _cmsGen->cmsSpace()->set_collector(this);
 509 
 510   // Allocate MUT and marking bit map
 511   {
 512     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 513     if (!_markBitMap.allocate(_span)) {
 514       warning("Failed to allocate CMS Bit Map");
 515       return;
 516     }
 517     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 518   }
 519   {
 520     _modUnionTable.allocate(_span);
 521     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 522   }
 523 
 524   if (!_markStack.allocate(MarkStackSize)) {
 525     warning("Failed to allocate CMS Marking Stack");
 526     return;
 527   }
 528 
 529   // Support for multi-threaded concurrent phases
 530   if (CMSConcurrentMTEnabled) {
 531     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 532       // just for now
 533       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 534     }
 535     if (ConcGCThreads > 1) {
 536       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 537                                  ConcGCThreads, true);
 538       if (_conc_workers == NULL) {
 539         warning("GC/CMS: _conc_workers allocation failure: "
 540               "forcing -CMSConcurrentMTEnabled");
 541         CMSConcurrentMTEnabled = false;
 542       } else {
 543         _conc_workers->initialize_workers();
 544       }
 545     } else {
 546       CMSConcurrentMTEnabled = false;
 547     }
 548   }
 549   if (!CMSConcurrentMTEnabled) {
 550     ConcGCThreads = 0;
 551   } else {
 552     // Turn off CMSCleanOnEnter optimization temporarily for
 553     // the MT case where it's not fixed yet; see 6178663.
 554     CMSCleanOnEnter = false;
 555   }
 556   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 557          "Inconsistency");
 558 
 559   // Parallel task queues; these are shared for the
 560   // concurrent and stop-world phases of CMS, but
 561   // are not shared with parallel scavenge (ParNew).
 562   {
 563     uint i;
 564     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 565 
 566     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 567          || ParallelRefProcEnabled)
 568         && num_queues > 0) {
 569       _task_queues = new OopTaskQueueSet(num_queues);
 570       if (_task_queues == NULL) {
 571         warning("task_queues allocation failure.");
 572         return;
 573       }
 574       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 575       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 576       for (i = 0; i < num_queues; i++) {
 577         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 578         if (q == NULL) {
 579           warning("work_queue allocation failure.");
 580           return;
 581         }
 582         _task_queues->register_queue(i, q);
 583       }
 584       for (i = 0; i < num_queues; i++) {
 585         _task_queues->queue(i)->initialize();
 586         _hash_seed[i] = 17;  // copied from ParNew
 587       }
 588     }
 589   }
 590 
 591   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 592 
 593   // Clip CMSBootstrapOccupancy between 0 and 100.
 594   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 595 
 596   // Now tell CMS generations the identity of their collector
 597   ConcurrentMarkSweepGeneration::set_collector(this);
 598 
 599   // Create & start a CMS thread for this CMS collector
 600   _cmsThread = ConcurrentMarkSweepThread::start(this);
 601   assert(cmsThread() != NULL, "CMS Thread should have been created");
 602   assert(cmsThread()->collector() == this,
 603          "CMS Thread should refer to this gen");
 604   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 605 
 606   // Support for parallelizing young gen rescan
 607   GenCollectedHeap* gch = GenCollectedHeap::heap();
 608   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 609   _young_gen = (ParNewGeneration*)gch->young_gen();
 610   if (gch->supports_inline_contig_alloc()) {
 611     _top_addr = gch->top_addr();
 612     _end_addr = gch->end_addr();
 613     assert(_young_gen != NULL, "no _young_gen");
 614     _eden_chunk_index = 0;
 615     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 616     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 617   }
 618 
 619   // Support for parallelizing survivor space rescan
 620   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 621     const size_t max_plab_samples =
 622       ((DefNewGeneration*)_young_gen)->max_survivor_size() / YoungPLABSize;
 623 
 624     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 625     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 626     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 627     _survivor_chunk_capacity = 2*max_plab_samples;
 628     for (uint i = 0; i < ParallelGCThreads; i++) {
 629       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 630       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 631       assert(cur->end() == 0, "Should be 0");
 632       assert(cur->array() == vec, "Should be vec");
 633       assert(cur->capacity() == max_plab_samples, "Error");
 634     }
 635   }
 636 
 637   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 638   _gc_counters = new CollectorCounters("CMS", 1);
 639   _completed_initialization = true;
 640   _inter_sweep_timer.start();  // start of time
 641 }
 642 
 643 const char* ConcurrentMarkSweepGeneration::name() const {
 644   return "concurrent mark-sweep generation";
 645 }
 646 void ConcurrentMarkSweepGeneration::update_counters() {
 647   if (UsePerfData) {
 648     _space_counters->update_all();
 649     _gen_counters->update_all();
 650   }
 651 }
 652 
 653 // this is an optimized version of update_counters(). it takes the
 654 // used value as a parameter rather than computing it.
 655 //
 656 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 657   if (UsePerfData) {
 658     _space_counters->update_used(used);
 659     _space_counters->update_capacity();
 660     _gen_counters->update_all();
 661   }
 662 }
 663 
 664 void ConcurrentMarkSweepGeneration::print() const {
 665   Generation::print();
 666   cmsSpace()->print();
 667 }
 668 
 669 #ifndef PRODUCT
 670 void ConcurrentMarkSweepGeneration::print_statistics() {
 671   cmsSpace()->printFLCensus(0);
 672 }
 673 #endif
 674 
 675 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 676   GenCollectedHeap* gch = GenCollectedHeap::heap();
 677   if (PrintGCDetails) {
 678     if (Verbose) {
 679       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 680         level(), short_name(), s, used(), capacity());
 681     } else {
 682       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 683         level(), short_name(), s, used() / K, capacity() / K);
 684     }
 685   }
 686   if (Verbose) {
 687     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 688               gch->used(), gch->capacity());
 689   } else {
 690     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 691               gch->used() / K, gch->capacity() / K);
 692   }
 693 }
 694 
 695 size_t
 696 ConcurrentMarkSweepGeneration::contiguous_available() const {
 697   // dld proposes an improvement in precision here. If the committed
 698   // part of the space ends in a free block we should add that to
 699   // uncommitted size in the calculation below. Will make this
 700   // change later, staying with the approximation below for the
 701   // time being. -- ysr.
 702   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 703 }
 704 
 705 size_t
 706 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 707   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 708 }
 709 
 710 size_t ConcurrentMarkSweepGeneration::max_available() const {
 711   return free() + _virtual_space.uncommitted_size();
 712 }
 713 
 714 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 715   size_t available = max_available();
 716   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 717   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 718   if (Verbose && PrintGCDetails) {
 719     gclog_or_tty->print_cr(
 720       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 721       "max_promo("SIZE_FORMAT")",
 722       res? "":" not", available, res? ">=":"<",
 723       av_promo, max_promotion_in_bytes);
 724   }
 725   return res;
 726 }
 727 
 728 // At a promotion failure dump information on block layout in heap
 729 // (cms old generation).
 730 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 731   if (CMSDumpAtPromotionFailure) {
 732     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 733   }
 734 }
 735 
 736 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 737   // Clear the promotion information.  These pointers can be adjusted
 738   // along with all the other pointers into the heap but
 739   // compaction is expected to be a rare event with
 740   // a heap using cms so don't do it without seeing the need.
 741   for (uint i = 0; i < ParallelGCThreads; i++) {
 742     _par_gc_thread_states[i]->promo.reset();
 743   }
 744 }
 745 
 746 void ConcurrentMarkSweepGeneration::compute_new_size() {
 747   assert_locked_or_safepoint(Heap_lock);
 748 
 749   // If incremental collection failed, we just want to expand
 750   // to the limit.
 751   if (incremental_collection_failed()) {
 752     clear_incremental_collection_failed();
 753     grow_to_reserved();
 754     return;
 755   }
 756 
 757   // The heap has been compacted but not reset yet.
 758   // Any metric such as free() or used() will be incorrect.
 759 
 760   CardGeneration::compute_new_size();
 761 
 762   // Reset again after a possible resizing
 763   if (did_compact()) {
 764     cmsSpace()->reset_after_compaction();
 765   }
 766 }
 767 
 768 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 769   assert_locked_or_safepoint(Heap_lock);
 770 
 771   // If incremental collection failed, we just want to expand
 772   // to the limit.
 773   if (incremental_collection_failed()) {
 774     clear_incremental_collection_failed();
 775     grow_to_reserved();
 776     return;
 777   }
 778 
 779   double free_percentage = ((double) free()) / capacity();
 780   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 781   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 782 
 783   // compute expansion delta needed for reaching desired free percentage
 784   if (free_percentage < desired_free_percentage) {
 785     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 786     assert(desired_capacity >= capacity(), "invalid expansion size");
 787     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 788     if (PrintGCDetails && Verbose) {
 789       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 790       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 791       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 792       gclog_or_tty->print_cr("  Desired free fraction %f",
 793         desired_free_percentage);
 794       gclog_or_tty->print_cr("  Maximum free fraction %f",
 795         maximum_free_percentage);
 796       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 797       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 798         desired_capacity/1000);
 799       int prev_level = level() - 1;
 800       if (prev_level >= 0) {
 801         size_t prev_size = 0;
 802         GenCollectedHeap* gch = GenCollectedHeap::heap();
 803         Generation* prev_gen = gch->young_gen();
 804         prev_size = prev_gen->capacity();
 805           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 806                                  prev_size/1000);
 807       }
 808       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 809         unsafe_max_alloc_nogc()/1000);
 810       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 811         contiguous_available()/1000);
 812       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 813         expand_bytes);
 814     }
 815     // safe if expansion fails
 816     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 817     if (PrintGCDetails && Verbose) {
 818       gclog_or_tty->print_cr("  Expanded free fraction %f",
 819         ((double) free()) / capacity());
 820     }
 821   } else {
 822     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 823     assert(desired_capacity <= capacity(), "invalid expansion size");
 824     size_t shrink_bytes = capacity() - desired_capacity;
 825     // Don't shrink unless the delta is greater than the minimum shrink we want
 826     if (shrink_bytes >= MinHeapDeltaBytes) {
 827       shrink_free_list_by(shrink_bytes);
 828     }
 829   }
 830 }
 831 
 832 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 833   return cmsSpace()->freelistLock();
 834 }
 835 
 836 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 837                                                   bool   tlab) {
 838   CMSSynchronousYieldRequest yr;
 839   MutexLockerEx x(freelistLock(),
 840                   Mutex::_no_safepoint_check_flag);
 841   return have_lock_and_allocate(size, tlab);
 842 }
 843 
 844 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 845                                                   bool   tlab /* ignored */) {
 846   assert_lock_strong(freelistLock());
 847   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 848   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 849   // Allocate the object live (grey) if the background collector has
 850   // started marking. This is necessary because the marker may
 851   // have passed this address and consequently this object will
 852   // not otherwise be greyed and would be incorrectly swept up.
 853   // Note that if this object contains references, the writing
 854   // of those references will dirty the card containing this object
 855   // allowing the object to be blackened (and its references scanned)
 856   // either during a preclean phase or at the final checkpoint.
 857   if (res != NULL) {
 858     // We may block here with an uninitialized object with
 859     // its mark-bit or P-bits not yet set. Such objects need
 860     // to be safely navigable by block_start().
 861     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 862     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 863     collector()->direct_allocated(res, adjustedSize);
 864     _direct_allocated_words += adjustedSize;
 865     // allocation counters
 866     NOT_PRODUCT(
 867       _numObjectsAllocated++;
 868       _numWordsAllocated += (int)adjustedSize;
 869     )
 870   }
 871   return res;
 872 }
 873 
 874 // In the case of direct allocation by mutators in a generation that
 875 // is being concurrently collected, the object must be allocated
 876 // live (grey) if the background collector has started marking.
 877 // This is necessary because the marker may
 878 // have passed this address and consequently this object will
 879 // not otherwise be greyed and would be incorrectly swept up.
 880 // Note that if this object contains references, the writing
 881 // of those references will dirty the card containing this object
 882 // allowing the object to be blackened (and its references scanned)
 883 // either during a preclean phase or at the final checkpoint.
 884 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 885   assert(_markBitMap.covers(start, size), "Out of bounds");
 886   if (_collectorState >= Marking) {
 887     MutexLockerEx y(_markBitMap.lock(),
 888                     Mutex::_no_safepoint_check_flag);
 889     // [see comments preceding SweepClosure::do_blk() below for details]
 890     //
 891     // Can the P-bits be deleted now?  JJJ
 892     //
 893     // 1. need to mark the object as live so it isn't collected
 894     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 895     // 3. need to mark the end of the object so marking, precleaning or sweeping
 896     //    can skip over uninitialized or unparsable objects. An allocated
 897     //    object is considered uninitialized for our purposes as long as
 898     //    its klass word is NULL.  All old gen objects are parsable
 899     //    as soon as they are initialized.)
 900     _markBitMap.mark(start);          // object is live
 901     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 902     _markBitMap.mark(start + size - 1);
 903                                       // mark end of object
 904   }
 905   // check that oop looks uninitialized
 906   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 907 }
 908 
 909 void CMSCollector::promoted(bool par, HeapWord* start,
 910                             bool is_obj_array, size_t obj_size) {
 911   assert(_markBitMap.covers(start), "Out of bounds");
 912   // See comment in direct_allocated() about when objects should
 913   // be allocated live.
 914   if (_collectorState >= Marking) {
 915     // we already hold the marking bit map lock, taken in
 916     // the prologue
 917     if (par) {
 918       _markBitMap.par_mark(start);
 919     } else {
 920       _markBitMap.mark(start);
 921     }
 922     // We don't need to mark the object as uninitialized (as
 923     // in direct_allocated above) because this is being done with the
 924     // world stopped and the object will be initialized by the
 925     // time the marking, precleaning or sweeping get to look at it.
 926     // But see the code for copying objects into the CMS generation,
 927     // where we need to ensure that concurrent readers of the
 928     // block offset table are able to safely navigate a block that
 929     // is in flux from being free to being allocated (and in
 930     // transition while being copied into) and subsequently
 931     // becoming a bona-fide object when the copy/promotion is complete.
 932     assert(SafepointSynchronize::is_at_safepoint(),
 933            "expect promotion only at safepoints");
 934 
 935     if (_collectorState < Sweeping) {
 936       // Mark the appropriate cards in the modUnionTable, so that
 937       // this object gets scanned before the sweep. If this is
 938       // not done, CMS generation references in the object might
 939       // not get marked.
 940       // For the case of arrays, which are otherwise precisely
 941       // marked, we need to dirty the entire array, not just its head.
 942       if (is_obj_array) {
 943         // The [par_]mark_range() method expects mr.end() below to
 944         // be aligned to the granularity of a bit's representation
 945         // in the heap. In the case of the MUT below, that's a
 946         // card size.
 947         MemRegion mr(start,
 948                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 949                         CardTableModRefBS::card_size /* bytes */));
 950         if (par) {
 951           _modUnionTable.par_mark_range(mr);
 952         } else {
 953           _modUnionTable.mark_range(mr);
 954         }
 955       } else {  // not an obj array; we can just mark the head
 956         if (par) {
 957           _modUnionTable.par_mark(start);
 958         } else {
 959           _modUnionTable.mark(start);
 960         }
 961       }
 962     }
 963   }
 964 }
 965 
 966 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 967   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 968   // allocate, copy and if necessary update promoinfo --
 969   // delegate to underlying space.
 970   assert_lock_strong(freelistLock());
 971 
 972 #ifndef PRODUCT
 973   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 974     return NULL;
 975   }
 976 #endif  // #ifndef PRODUCT
 977 
 978   oop res = _cmsSpace->promote(obj, obj_size);
 979   if (res == NULL) {
 980     // expand and retry
 981     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 982     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 983     // Since this is the old generation, we don't try to promote
 984     // into a more senior generation.
 985     res = _cmsSpace->promote(obj, obj_size);
 986   }
 987   if (res != NULL) {
 988     // See comment in allocate() about when objects should
 989     // be allocated live.
 990     assert(obj->is_oop(), "Will dereference klass pointer below");
 991     collector()->promoted(false,           // Not parallel
 992                           (HeapWord*)res, obj->is_objArray(), obj_size);
 993     // promotion counters
 994     NOT_PRODUCT(
 995       _numObjectsPromoted++;
 996       _numWordsPromoted +=
 997         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 998     )
 999   }
1000   return res;
1001 }
1002 
1003 
1004 // IMPORTANT: Notes on object size recognition in CMS.
1005 // ---------------------------------------------------
1006 // A block of storage in the CMS generation is always in
1007 // one of three states. A free block (FREE), an allocated
1008 // object (OBJECT) whose size() method reports the correct size,
1009 // and an intermediate state (TRANSIENT) in which its size cannot
1010 // be accurately determined.
1011 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1012 // -----------------------------------------------------
1013 // FREE:      klass_word & 1 == 1; mark_word holds block size
1014 //
1015 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1016 //            obj->size() computes correct size
1017 //
1018 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1019 //
1020 // STATE IDENTIFICATION: (64 bit+COOPS)
1021 // ------------------------------------
1022 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1023 //
1024 // OBJECT:    klass_word installed; klass_word != 0;
1025 //            obj->size() computes correct size
1026 //
1027 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1028 //
1029 //
1030 // STATE TRANSITION DIAGRAM
1031 //
1032 //        mut / parnew                     mut  /  parnew
1033 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1034 //  ^                                                                   |
1035 //  |------------------------ DEAD <------------------------------------|
1036 //         sweep                            mut
1037 //
1038 // While a block is in TRANSIENT state its size cannot be determined
1039 // so readers will either need to come back later or stall until
1040 // the size can be determined. Note that for the case of direct
1041 // allocation, P-bits, when available, may be used to determine the
1042 // size of an object that may not yet have been initialized.
1043 
1044 // Things to support parallel young-gen collection.
1045 oop
1046 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1047                                            oop old, markOop m,
1048                                            size_t word_sz) {
1049 #ifndef PRODUCT
1050   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1051     return NULL;
1052   }
1053 #endif  // #ifndef PRODUCT
1054 
1055   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1056   PromotionInfo* promoInfo = &ps->promo;
1057   // if we are tracking promotions, then first ensure space for
1058   // promotion (including spooling space for saving header if necessary).
1059   // then allocate and copy, then track promoted info if needed.
1060   // When tracking (see PromotionInfo::track()), the mark word may
1061   // be displaced and in this case restoration of the mark word
1062   // occurs in the (oop_since_save_marks_)iterate phase.
1063   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1064     // Out of space for allocating spooling buffers;
1065     // try expanding and allocating spooling buffers.
1066     if (!expand_and_ensure_spooling_space(promoInfo)) {
1067       return NULL;
1068     }
1069   }
1070   assert(promoInfo->has_spooling_space(), "Control point invariant");
1071   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1072   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1073   if (obj_ptr == NULL) {
1074      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1075      if (obj_ptr == NULL) {
1076        return NULL;
1077      }
1078   }
1079   oop obj = oop(obj_ptr);
1080   OrderAccess::storestore();
1081   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1082   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1083   // IMPORTANT: See note on object initialization for CMS above.
1084   // Otherwise, copy the object.  Here we must be careful to insert the
1085   // klass pointer last, since this marks the block as an allocated object.
1086   // Except with compressed oops it's the mark word.
1087   HeapWord* old_ptr = (HeapWord*)old;
1088   // Restore the mark word copied above.
1089   obj->set_mark(m);
1090   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1091   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1092   OrderAccess::storestore();
1093 
1094   if (UseCompressedClassPointers) {
1095     // Copy gap missed by (aligned) header size calculation below
1096     obj->set_klass_gap(old->klass_gap());
1097   }
1098   if (word_sz > (size_t)oopDesc::header_size()) {
1099     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1100                                  obj_ptr + oopDesc::header_size(),
1101                                  word_sz - oopDesc::header_size());
1102   }
1103 
1104   // Now we can track the promoted object, if necessary.  We take care
1105   // to delay the transition from uninitialized to full object
1106   // (i.e., insertion of klass pointer) until after, so that it
1107   // atomically becomes a promoted object.
1108   if (promoInfo->tracking()) {
1109     promoInfo->track((PromotedObject*)obj, old->klass());
1110   }
1111   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1112   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1113   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1114 
1115   // Finally, install the klass pointer (this should be volatile).
1116   OrderAccess::storestore();
1117   obj->set_klass(old->klass());
1118   // We should now be able to calculate the right size for this object
1119   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1120 
1121   collector()->promoted(true,          // parallel
1122                         obj_ptr, old->is_objArray(), word_sz);
1123 
1124   NOT_PRODUCT(
1125     Atomic::inc_ptr(&_numObjectsPromoted);
1126     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1127   )
1128 
1129   return obj;
1130 }
1131 
1132 void
1133 ConcurrentMarkSweepGeneration::
1134 par_promote_alloc_done(int thread_num) {
1135   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1136   ps->lab.retire(thread_num);
1137 }
1138 
1139 void
1140 ConcurrentMarkSweepGeneration::
1141 par_oop_since_save_marks_iterate_done(int thread_num) {
1142   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1143   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1144   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1145 }
1146 
1147 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1148                                                    size_t size,
1149                                                    bool   tlab)
1150 {
1151   // We allow a STW collection only if a full
1152   // collection was requested.
1153   return full || should_allocate(size, tlab); // FIX ME !!!
1154   // This and promotion failure handling are connected at the
1155   // hip and should be fixed by untying them.
1156 }
1157 
1158 bool CMSCollector::shouldConcurrentCollect() {
1159   if (_full_gc_requested) {
1160     if (Verbose && PrintGCDetails) {
1161       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1162                              " gc request (or gc_locker)");
1163     }
1164     return true;
1165   }
1166 
1167   FreelistLocker x(this);
1168   // ------------------------------------------------------------------
1169   // Print out lots of information which affects the initiation of
1170   // a collection.
1171   if (PrintCMSInitiationStatistics && stats().valid()) {
1172     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1173     gclog_or_tty->stamp();
1174     gclog_or_tty->cr();
1175     stats().print_on(gclog_or_tty);
1176     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1177       stats().time_until_cms_gen_full());
1178     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1179     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1180                            _cmsGen->contiguous_available());
1181     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1182     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1183     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1184     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1185     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1186     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1187     gclog_or_tty->print_cr("metadata initialized %d",
1188       MetaspaceGC::should_concurrent_collect());
1189   }
1190   // ------------------------------------------------------------------
1191 
1192   // If the estimated time to complete a cms collection (cms_duration())
1193   // is less than the estimated time remaining until the cms generation
1194   // is full, start a collection.
1195   if (!UseCMSInitiatingOccupancyOnly) {
1196     if (stats().valid()) {
1197       if (stats().time_until_cms_start() == 0.0) {
1198         return true;
1199       }
1200     } else {
1201       // We want to conservatively collect somewhat early in order
1202       // to try and "bootstrap" our CMS/promotion statistics;
1203       // this branch will not fire after the first successful CMS
1204       // collection because the stats should then be valid.
1205       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1206         if (Verbose && PrintGCDetails) {
1207           gclog_or_tty->print_cr(
1208             " CMSCollector: collect for bootstrapping statistics:"
1209             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1210             _bootstrap_occupancy);
1211         }
1212         return true;
1213       }
1214     }
1215   }
1216 
1217   // Otherwise, we start a collection cycle if
1218   // old gen want a collection cycle started. Each may use
1219   // an appropriate criterion for making this decision.
1220   // XXX We need to make sure that the gen expansion
1221   // criterion dovetails well with this. XXX NEED TO FIX THIS
1222   if (_cmsGen->should_concurrent_collect()) {
1223     if (Verbose && PrintGCDetails) {
1224       gclog_or_tty->print_cr("CMS old gen initiated");
1225     }
1226     return true;
1227   }
1228 
1229   // We start a collection if we believe an incremental collection may fail;
1230   // this is not likely to be productive in practice because it's probably too
1231   // late anyway.
1232   GenCollectedHeap* gch = GenCollectedHeap::heap();
1233   assert(gch->collector_policy()->is_generation_policy(),
1234          "You may want to check the correctness of the following");
1235   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1236     if (Verbose && PrintGCDetails) {
1237       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1238     }
1239     return true;
1240   }
1241 
1242   if (MetaspaceGC::should_concurrent_collect()) {
1243     if (Verbose && PrintGCDetails) {
1244       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1245     }
1246     return true;
1247   }
1248 
1249   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1250   if (CMSTriggerInterval >= 0) {
1251     if (CMSTriggerInterval == 0) {
1252       // Trigger always
1253       return true;
1254     }
1255 
1256     // Check the CMS time since begin (we do not check the stats validity
1257     // as we want to be able to trigger the first CMS cycle as well)
1258     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1259       if (Verbose && PrintGCDetails) {
1260         if (stats().valid()) {
1261           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1262                                  stats().cms_time_since_begin());
1263         } else {
1264           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1265         }
1266       }
1267       return true;
1268     }
1269   }
1270 
1271   return false;
1272 }
1273 
1274 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1275 
1276 // Clear _expansion_cause fields of constituent generations
1277 void CMSCollector::clear_expansion_cause() {
1278   _cmsGen->clear_expansion_cause();
1279 }
1280 
1281 // We should be conservative in starting a collection cycle.  To
1282 // start too eagerly runs the risk of collecting too often in the
1283 // extreme.  To collect too rarely falls back on full collections,
1284 // which works, even if not optimum in terms of concurrent work.
1285 // As a work around for too eagerly collecting, use the flag
1286 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1287 // giving the user an easily understandable way of controlling the
1288 // collections.
1289 // We want to start a new collection cycle if any of the following
1290 // conditions hold:
1291 // . our current occupancy exceeds the configured initiating occupancy
1292 //   for this generation, or
1293 // . we recently needed to expand this space and have not, since that
1294 //   expansion, done a collection of this generation, or
1295 // . the underlying space believes that it may be a good idea to initiate
1296 //   a concurrent collection (this may be based on criteria such as the
1297 //   following: the space uses linear allocation and linear allocation is
1298 //   going to fail, or there is believed to be excessive fragmentation in
1299 //   the generation, etc... or ...
1300 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1301 //   the case of the old generation; see CR 6543076):
1302 //   we may be approaching a point at which allocation requests may fail because
1303 //   we will be out of sufficient free space given allocation rate estimates.]
1304 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1305 
1306   assert_lock_strong(freelistLock());
1307   if (occupancy() > initiating_occupancy()) {
1308     if (PrintGCDetails && Verbose) {
1309       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1310         short_name(), occupancy(), initiating_occupancy());
1311     }
1312     return true;
1313   }
1314   if (UseCMSInitiatingOccupancyOnly) {
1315     return false;
1316   }
1317   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1318     if (PrintGCDetails && Verbose) {
1319       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1320         short_name());
1321     }
1322     return true;
1323   }
1324   if (_cmsSpace->should_concurrent_collect()) {
1325     if (PrintGCDetails && Verbose) {
1326       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1327         short_name());
1328     }
1329     return true;
1330   }
1331   return false;
1332 }
1333 
1334 void ConcurrentMarkSweepGeneration::collect(bool   full,
1335                                             bool   clear_all_soft_refs,
1336                                             size_t size,
1337                                             bool   tlab)
1338 {
1339   collector()->collect(full, clear_all_soft_refs, size, tlab);
1340 }
1341 
1342 void CMSCollector::collect(bool   full,
1343                            bool   clear_all_soft_refs,
1344                            size_t size,
1345                            bool   tlab)
1346 {
1347   // The following "if" branch is present for defensive reasons.
1348   // In the current uses of this interface, it can be replaced with:
1349   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1350   // But I am not placing that assert here to allow future
1351   // generality in invoking this interface.
1352   if (GC_locker::is_active()) {
1353     // A consistency test for GC_locker
1354     assert(GC_locker::needs_gc(), "Should have been set already");
1355     // Skip this foreground collection, instead
1356     // expanding the heap if necessary.
1357     // Need the free list locks for the call to free() in compute_new_size()
1358     compute_new_size();
1359     return;
1360   }
1361   acquire_control_and_collect(full, clear_all_soft_refs);
1362 }
1363 
1364 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1365   GenCollectedHeap* gch = GenCollectedHeap::heap();
1366   unsigned int gc_count = gch->total_full_collections();
1367   if (gc_count == full_gc_count) {
1368     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1369     _full_gc_requested = true;
1370     _full_gc_cause = cause;
1371     CGC_lock->notify();   // nudge CMS thread
1372   } else {
1373     assert(gc_count > full_gc_count, "Error: causal loop");
1374   }
1375 }
1376 
1377 bool CMSCollector::is_external_interruption() {
1378   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1379   return GCCause::is_user_requested_gc(cause) ||
1380          GCCause::is_serviceability_requested_gc(cause);
1381 }
1382 
1383 void CMSCollector::report_concurrent_mode_interruption() {
1384   if (is_external_interruption()) {
1385     if (PrintGCDetails) {
1386       gclog_or_tty->print(" (concurrent mode interrupted)");
1387     }
1388   } else {
1389     if (PrintGCDetails) {
1390       gclog_or_tty->print(" (concurrent mode failure)");
1391     }
1392     _gc_tracer_cm->report_concurrent_mode_failure();
1393   }
1394 }
1395 
1396 
1397 // The foreground and background collectors need to coordinate in order
1398 // to make sure that they do not mutually interfere with CMS collections.
1399 // When a background collection is active,
1400 // the foreground collector may need to take over (preempt) and
1401 // synchronously complete an ongoing collection. Depending on the
1402 // frequency of the background collections and the heap usage
1403 // of the application, this preemption can be seldom or frequent.
1404 // There are only certain
1405 // points in the background collection that the "collection-baton"
1406 // can be passed to the foreground collector.
1407 //
1408 // The foreground collector will wait for the baton before
1409 // starting any part of the collection.  The foreground collector
1410 // will only wait at one location.
1411 //
1412 // The background collector will yield the baton before starting a new
1413 // phase of the collection (e.g., before initial marking, marking from roots,
1414 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1415 // of the loop which switches the phases. The background collector does some
1416 // of the phases (initial mark, final re-mark) with the world stopped.
1417 // Because of locking involved in stopping the world,
1418 // the foreground collector should not block waiting for the background
1419 // collector when it is doing a stop-the-world phase.  The background
1420 // collector will yield the baton at an additional point just before
1421 // it enters a stop-the-world phase.  Once the world is stopped, the
1422 // background collector checks the phase of the collection.  If the
1423 // phase has not changed, it proceeds with the collection.  If the
1424 // phase has changed, it skips that phase of the collection.  See
1425 // the comments on the use of the Heap_lock in collect_in_background().
1426 //
1427 // Variable used in baton passing.
1428 //   _foregroundGCIsActive - Set to true by the foreground collector when
1429 //      it wants the baton.  The foreground clears it when it has finished
1430 //      the collection.
1431 //   _foregroundGCShouldWait - Set to true by the background collector
1432 //        when it is running.  The foreground collector waits while
1433 //      _foregroundGCShouldWait is true.
1434 //  CGC_lock - monitor used to protect access to the above variables
1435 //      and to notify the foreground and background collectors.
1436 //  _collectorState - current state of the CMS collection.
1437 //
1438 // The foreground collector
1439 //   acquires the CGC_lock
1440 //   sets _foregroundGCIsActive
1441 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1442 //     various locks acquired in preparation for the collection
1443 //     are released so as not to block the background collector
1444 //     that is in the midst of a collection
1445 //   proceeds with the collection
1446 //   clears _foregroundGCIsActive
1447 //   returns
1448 //
1449 // The background collector in a loop iterating on the phases of the
1450 //      collection
1451 //   acquires the CGC_lock
1452 //   sets _foregroundGCShouldWait
1453 //   if _foregroundGCIsActive is set
1454 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1455 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1456 //     and exits the loop.
1457 //   otherwise
1458 //     proceed with that phase of the collection
1459 //     if the phase is a stop-the-world phase,
1460 //       yield the baton once more just before enqueueing
1461 //       the stop-world CMS operation (executed by the VM thread).
1462 //   returns after all phases of the collection are done
1463 //
1464 
1465 void CMSCollector::acquire_control_and_collect(bool full,
1466         bool clear_all_soft_refs) {
1467   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1468   assert(!Thread::current()->is_ConcurrentGC_thread(),
1469          "shouldn't try to acquire control from self!");
1470 
1471   // Start the protocol for acquiring control of the
1472   // collection from the background collector (aka CMS thread).
1473   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1474          "VM thread should have CMS token");
1475   // Remember the possibly interrupted state of an ongoing
1476   // concurrent collection
1477   CollectorState first_state = _collectorState;
1478 
1479   // Signal to a possibly ongoing concurrent collection that
1480   // we want to do a foreground collection.
1481   _foregroundGCIsActive = true;
1482 
1483   // release locks and wait for a notify from the background collector
1484   // releasing the locks in only necessary for phases which
1485   // do yields to improve the granularity of the collection.
1486   assert_lock_strong(bitMapLock());
1487   // We need to lock the Free list lock for the space that we are
1488   // currently collecting.
1489   assert(haveFreelistLocks(), "Must be holding free list locks");
1490   bitMapLock()->unlock();
1491   releaseFreelistLocks();
1492   {
1493     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1494     if (_foregroundGCShouldWait) {
1495       // We are going to be waiting for action for the CMS thread;
1496       // it had better not be gone (for instance at shutdown)!
1497       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1498              "CMS thread must be running");
1499       // Wait here until the background collector gives us the go-ahead
1500       ConcurrentMarkSweepThread::clear_CMS_flag(
1501         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1502       // Get a possibly blocked CMS thread going:
1503       //   Note that we set _foregroundGCIsActive true above,
1504       //   without protection of the CGC_lock.
1505       CGC_lock->notify();
1506       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1507              "Possible deadlock");
1508       while (_foregroundGCShouldWait) {
1509         // wait for notification
1510         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1511         // Possibility of delay/starvation here, since CMS token does
1512         // not know to give priority to VM thread? Actually, i think
1513         // there wouldn't be any delay/starvation, but the proof of
1514         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1515       }
1516       ConcurrentMarkSweepThread::set_CMS_flag(
1517         ConcurrentMarkSweepThread::CMS_vm_has_token);
1518     }
1519   }
1520   // The CMS_token is already held.  Get back the other locks.
1521   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1522          "VM thread should have CMS token");
1523   getFreelistLocks();
1524   bitMapLock()->lock_without_safepoint_check();
1525   if (TraceCMSState) {
1526     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1527       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1528     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1529   }
1530 
1531   // Inform cms gen if this was due to partial collection failing.
1532   // The CMS gen may use this fact to determine its expansion policy.
1533   GenCollectedHeap* gch = GenCollectedHeap::heap();
1534   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1535     assert(!_cmsGen->incremental_collection_failed(),
1536            "Should have been noticed, reacted to and cleared");
1537     _cmsGen->set_incremental_collection_failed();
1538   }
1539 
1540   if (first_state > Idling) {
1541     report_concurrent_mode_interruption();
1542   }
1543 
1544   set_did_compact(true);
1545 
1546   // If the collection is being acquired from the background
1547   // collector, there may be references on the discovered
1548   // references lists.  Abandon those references, since some
1549   // of them may have become unreachable after concurrent
1550   // discovery; the STW compacting collector will redo discovery
1551   // more precisely, without being subject to floating garbage.
1552   // Leaving otherwise unreachable references in the discovered
1553   // lists would require special handling.
1554   ref_processor()->disable_discovery();
1555   ref_processor()->abandon_partial_discovery();
1556   ref_processor()->verify_no_references_recorded();
1557 
1558   if (first_state > Idling) {
1559     save_heap_summary();
1560   }
1561 
1562   do_compaction_work(clear_all_soft_refs);
1563 
1564   // Has the GC time limit been exceeded?
1565   size_t max_eden_size = _young_gen->max_capacity() -
1566                          _young_gen->to()->capacity() -
1567                          _young_gen->from()->capacity();
1568   GCCause::Cause gc_cause = gch->gc_cause();
1569   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1570                                          _young_gen->eden()->used(),
1571                                          _cmsGen->max_capacity(),
1572                                          max_eden_size,
1573                                          full,
1574                                          gc_cause,
1575                                          gch->collector_policy());
1576 
1577   // Reset the expansion cause, now that we just completed
1578   // a collection cycle.
1579   clear_expansion_cause();
1580   _foregroundGCIsActive = false;
1581   return;
1582 }
1583 
1584 // Resize the tenured generation
1585 // after obtaining the free list locks for the
1586 // two generations.
1587 void CMSCollector::compute_new_size() {
1588   assert_locked_or_safepoint(Heap_lock);
1589   FreelistLocker z(this);
1590   MetaspaceGC::compute_new_size();
1591   _cmsGen->compute_new_size_free_list();
1592 }
1593 
1594 // A work method used by the foreground collector to do
1595 // a mark-sweep-compact.
1596 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1597   GenCollectedHeap* gch = GenCollectedHeap::heap();
1598 
1599   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1600   gc_timer->register_gc_start();
1601 
1602   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1603   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1604 
1605   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1606 
1607   // Temporarily widen the span of the weak reference processing to
1608   // the entire heap.
1609   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1610   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1611   // Temporarily, clear the "is_alive_non_header" field of the
1612   // reference processor.
1613   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1614   // Temporarily make reference _processing_ single threaded (non-MT).
1615   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1616   // Temporarily make refs discovery atomic
1617   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1618   // Temporarily make reference _discovery_ single threaded (non-MT)
1619   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1620 
1621   ref_processor()->set_enqueuing_is_done(false);
1622   ref_processor()->enable_discovery();
1623   ref_processor()->setup_policy(clear_all_soft_refs);
1624   // If an asynchronous collection finishes, the _modUnionTable is
1625   // all clear.  If we are assuming the collection from an asynchronous
1626   // collection, clear the _modUnionTable.
1627   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1628     "_modUnionTable should be clear if the baton was not passed");
1629   _modUnionTable.clear_all();
1630   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1631     "mod union for klasses should be clear if the baton was passed");
1632   _ct->klass_rem_set()->clear_mod_union();
1633 
1634   // We must adjust the allocation statistics being maintained
1635   // in the free list space. We do so by reading and clearing
1636   // the sweep timer and updating the block flux rate estimates below.
1637   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1638   if (_inter_sweep_timer.is_active()) {
1639     _inter_sweep_timer.stop();
1640     // Note that we do not use this sample to update the _inter_sweep_estimate.
1641     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1642                                             _inter_sweep_estimate.padded_average(),
1643                                             _intra_sweep_estimate.padded_average());
1644   }
1645 
1646   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
1647     ref_processor(), clear_all_soft_refs);
1648   #ifdef ASSERT
1649     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1650     size_t free_size = cms_space->free();
1651     assert(free_size ==
1652            pointer_delta(cms_space->end(), cms_space->compaction_top())
1653            * HeapWordSize,
1654       "All the free space should be compacted into one chunk at top");
1655     assert(cms_space->dictionary()->total_chunk_size(
1656                                       debug_only(cms_space->freelistLock())) == 0 ||
1657            cms_space->totalSizeInIndexedFreeLists() == 0,
1658       "All the free space should be in a single chunk");
1659     size_t num = cms_space->totalCount();
1660     assert((free_size == 0 && num == 0) ||
1661            (free_size > 0  && (num == 1 || num == 2)),
1662          "There should be at most 2 free chunks after compaction");
1663   #endif // ASSERT
1664   _collectorState = Resetting;
1665   assert(_restart_addr == NULL,
1666          "Should have been NULL'd before baton was passed");
1667   reset(false /* == !concurrent */);
1668   _cmsGen->reset_after_compaction();
1669   _concurrent_cycles_since_last_unload = 0;
1670 
1671   // Clear any data recorded in the PLAB chunk arrays.
1672   if (_survivor_plab_array != NULL) {
1673     reset_survivor_plab_arrays();
1674   }
1675 
1676   // Adjust the per-size allocation stats for the next epoch.
1677   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1678   // Restart the "inter sweep timer" for the next epoch.
1679   _inter_sweep_timer.reset();
1680   _inter_sweep_timer.start();
1681 
1682   gc_timer->register_gc_end();
1683 
1684   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1685 
1686   // For a mark-sweep-compact, compute_new_size() will be called
1687   // in the heap's do_collection() method.
1688 }
1689 
1690 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1691   ContiguousSpace* eden_space = _young_gen->eden();
1692   ContiguousSpace* from_space = _young_gen->from();
1693   ContiguousSpace* to_space   = _young_gen->to();
1694   // Eden
1695   if (_eden_chunk_array != NULL) {
1696     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1697                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1698                            p2i(eden_space->end()), eden_space->capacity());
1699     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1700                            "_eden_chunk_capacity=" SIZE_FORMAT,
1701                            _eden_chunk_index, _eden_chunk_capacity);
1702     for (size_t i = 0; i < _eden_chunk_index; i++) {
1703       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1704                              i, p2i(_eden_chunk_array[i]));
1705     }
1706   }
1707   // Survivor
1708   if (_survivor_chunk_array != NULL) {
1709     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1710                            p2i(from_space->bottom()), p2i(from_space->top()),
1711                            p2i(from_space->end()), from_space->capacity());
1712     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1713                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1714                            _survivor_chunk_index, _survivor_chunk_capacity);
1715     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1716       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1717                              i, p2i(_survivor_chunk_array[i]));
1718     }
1719   }
1720 }
1721 
1722 void CMSCollector::getFreelistLocks() const {
1723   // Get locks for all free lists in all generations that this
1724   // collector is responsible for
1725   _cmsGen->freelistLock()->lock_without_safepoint_check();
1726 }
1727 
1728 void CMSCollector::releaseFreelistLocks() const {
1729   // Release locks for all free lists in all generations that this
1730   // collector is responsible for
1731   _cmsGen->freelistLock()->unlock();
1732 }
1733 
1734 bool CMSCollector::haveFreelistLocks() const {
1735   // Check locks for all free lists in all generations that this
1736   // collector is responsible for
1737   assert_lock_strong(_cmsGen->freelistLock());
1738   PRODUCT_ONLY(ShouldNotReachHere());
1739   return true;
1740 }
1741 
1742 // A utility class that is used by the CMS collector to
1743 // temporarily "release" the foreground collector from its
1744 // usual obligation to wait for the background collector to
1745 // complete an ongoing phase before proceeding.
1746 class ReleaseForegroundGC: public StackObj {
1747  private:
1748   CMSCollector* _c;
1749  public:
1750   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1751     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1752     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1753     // allow a potentially blocked foreground collector to proceed
1754     _c->_foregroundGCShouldWait = false;
1755     if (_c->_foregroundGCIsActive) {
1756       CGC_lock->notify();
1757     }
1758     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1759            "Possible deadlock");
1760   }
1761 
1762   ~ReleaseForegroundGC() {
1763     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1764     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1765     _c->_foregroundGCShouldWait = true;
1766   }
1767 };
1768 
1769 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1770   assert(Thread::current()->is_ConcurrentGC_thread(),
1771     "A CMS asynchronous collection is only allowed on a CMS thread.");
1772 
1773   GenCollectedHeap* gch = GenCollectedHeap::heap();
1774   {
1775     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1776     MutexLockerEx hl(Heap_lock, safepoint_check);
1777     FreelistLocker fll(this);
1778     MutexLockerEx x(CGC_lock, safepoint_check);
1779     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1780       // The foreground collector is active or we're
1781       // not using asynchronous collections.  Skip this
1782       // background collection.
1783       assert(!_foregroundGCShouldWait, "Should be clear");
1784       return;
1785     } else {
1786       assert(_collectorState == Idling, "Should be idling before start.");
1787       _collectorState = InitialMarking;
1788       register_gc_start(cause);
1789       // Reset the expansion cause, now that we are about to begin
1790       // a new cycle.
1791       clear_expansion_cause();
1792 
1793       // Clear the MetaspaceGC flag since a concurrent collection
1794       // is starting but also clear it after the collection.
1795       MetaspaceGC::set_should_concurrent_collect(false);
1796     }
1797     // Decide if we want to enable class unloading as part of the
1798     // ensuing concurrent GC cycle.
1799     update_should_unload_classes();
1800     _full_gc_requested = false;           // acks all outstanding full gc requests
1801     _full_gc_cause = GCCause::_no_gc;
1802     // Signal that we are about to start a collection
1803     gch->increment_total_full_collections();  // ... starting a collection cycle
1804     _collection_count_start = gch->total_full_collections();
1805   }
1806 
1807   // Used for PrintGC
1808   size_t prev_used;
1809   if (PrintGC && Verbose) {
1810     prev_used = _cmsGen->used();
1811   }
1812 
1813   // The change of the collection state is normally done at this level;
1814   // the exceptions are phases that are executed while the world is
1815   // stopped.  For those phases the change of state is done while the
1816   // world is stopped.  For baton passing purposes this allows the
1817   // background collector to finish the phase and change state atomically.
1818   // The foreground collector cannot wait on a phase that is done
1819   // while the world is stopped because the foreground collector already
1820   // has the world stopped and would deadlock.
1821   while (_collectorState != Idling) {
1822     if (TraceCMSState) {
1823       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1824         p2i(Thread::current()), _collectorState);
1825     }
1826     // The foreground collector
1827     //   holds the Heap_lock throughout its collection.
1828     //   holds the CMS token (but not the lock)
1829     //     except while it is waiting for the background collector to yield.
1830     //
1831     // The foreground collector should be blocked (not for long)
1832     //   if the background collector is about to start a phase
1833     //   executed with world stopped.  If the background
1834     //   collector has already started such a phase, the
1835     //   foreground collector is blocked waiting for the
1836     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1837     //   are executed in the VM thread.
1838     //
1839     // The locking order is
1840     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1841     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1842     //   CMS token  (claimed in
1843     //                stop_world_and_do() -->
1844     //                  safepoint_synchronize() -->
1845     //                    CMSThread::synchronize())
1846 
1847     {
1848       // Check if the FG collector wants us to yield.
1849       CMSTokenSync x(true); // is cms thread
1850       if (waitForForegroundGC()) {
1851         // We yielded to a foreground GC, nothing more to be
1852         // done this round.
1853         assert(_foregroundGCShouldWait == false, "We set it to false in "
1854                "waitForForegroundGC()");
1855         if (TraceCMSState) {
1856           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1857             " exiting collection CMS state %d",
1858             p2i(Thread::current()), _collectorState);
1859         }
1860         return;
1861       } else {
1862         // The background collector can run but check to see if the
1863         // foreground collector has done a collection while the
1864         // background collector was waiting to get the CGC_lock
1865         // above.  If yes, break so that _foregroundGCShouldWait
1866         // is cleared before returning.
1867         if (_collectorState == Idling) {
1868           break;
1869         }
1870       }
1871     }
1872 
1873     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1874       "should be waiting");
1875 
1876     switch (_collectorState) {
1877       case InitialMarking:
1878         {
1879           ReleaseForegroundGC x(this);
1880           stats().record_cms_begin();
1881           VM_CMS_Initial_Mark initial_mark_op(this);
1882           VMThread::execute(&initial_mark_op);
1883         }
1884         // The collector state may be any legal state at this point
1885         // since the background collector may have yielded to the
1886         // foreground collector.
1887         break;
1888       case Marking:
1889         // initial marking in checkpointRootsInitialWork has been completed
1890         if (markFromRoots()) { // we were successful
1891           assert(_collectorState == Precleaning, "Collector state should "
1892             "have changed");
1893         } else {
1894           assert(_foregroundGCIsActive, "Internal state inconsistency");
1895         }
1896         break;
1897       case Precleaning:
1898         // marking from roots in markFromRoots has been completed
1899         preclean();
1900         assert(_collectorState == AbortablePreclean ||
1901                _collectorState == FinalMarking,
1902                "Collector state should have changed");
1903         break;
1904       case AbortablePreclean:
1905         abortable_preclean();
1906         assert(_collectorState == FinalMarking, "Collector state should "
1907           "have changed");
1908         break;
1909       case FinalMarking:
1910         {
1911           ReleaseForegroundGC x(this);
1912 
1913           VM_CMS_Final_Remark final_remark_op(this);
1914           VMThread::execute(&final_remark_op);
1915         }
1916         assert(_foregroundGCShouldWait, "block post-condition");
1917         break;
1918       case Sweeping:
1919         // final marking in checkpointRootsFinal has been completed
1920         sweep();
1921         assert(_collectorState == Resizing, "Collector state change "
1922           "to Resizing must be done under the free_list_lock");
1923 
1924       case Resizing: {
1925         // Sweeping has been completed...
1926         // At this point the background collection has completed.
1927         // Don't move the call to compute_new_size() down
1928         // into code that might be executed if the background
1929         // collection was preempted.
1930         {
1931           ReleaseForegroundGC x(this);   // unblock FG collection
1932           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1933           CMSTokenSync        z(true);   // not strictly needed.
1934           if (_collectorState == Resizing) {
1935             compute_new_size();
1936             save_heap_summary();
1937             _collectorState = Resetting;
1938           } else {
1939             assert(_collectorState == Idling, "The state should only change"
1940                    " because the foreground collector has finished the collection");
1941           }
1942         }
1943         break;
1944       }
1945       case Resetting:
1946         // CMS heap resizing has been completed
1947         reset(true);
1948         assert(_collectorState == Idling, "Collector state should "
1949           "have changed");
1950 
1951         MetaspaceGC::set_should_concurrent_collect(false);
1952 
1953         stats().record_cms_end();
1954         // Don't move the concurrent_phases_end() and compute_new_size()
1955         // calls to here because a preempted background collection
1956         // has it's state set to "Resetting".
1957         break;
1958       case Idling:
1959       default:
1960         ShouldNotReachHere();
1961         break;
1962     }
1963     if (TraceCMSState) {
1964       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1965         p2i(Thread::current()), _collectorState);
1966     }
1967     assert(_foregroundGCShouldWait, "block post-condition");
1968   }
1969 
1970   // Should this be in gc_epilogue?
1971   collector_policy()->counters()->update_counters();
1972 
1973   {
1974     // Clear _foregroundGCShouldWait and, in the event that the
1975     // foreground collector is waiting, notify it, before
1976     // returning.
1977     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1978     _foregroundGCShouldWait = false;
1979     if (_foregroundGCIsActive) {
1980       CGC_lock->notify();
1981     }
1982     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1983            "Possible deadlock");
1984   }
1985   if (TraceCMSState) {
1986     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1987       " exiting collection CMS state %d",
1988       p2i(Thread::current()), _collectorState);
1989   }
1990   if (PrintGC && Verbose) {
1991     _cmsGen->print_heap_change(prev_used);
1992   }
1993 }
1994 
1995 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1996   _cms_start_registered = true;
1997   _gc_timer_cm->register_gc_start();
1998   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1999 }
2000 
2001 void CMSCollector::register_gc_end() {
2002   if (_cms_start_registered) {
2003     report_heap_summary(GCWhen::AfterGC);
2004 
2005     _gc_timer_cm->register_gc_end();
2006     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2007     _cms_start_registered = false;
2008   }
2009 }
2010 
2011 void CMSCollector::save_heap_summary() {
2012   GenCollectedHeap* gch = GenCollectedHeap::heap();
2013   _last_heap_summary = gch->create_heap_summary();
2014   _last_metaspace_summary = gch->create_metaspace_summary();
2015 }
2016 
2017 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2018   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2019   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2020 }
2021 
2022 bool CMSCollector::waitForForegroundGC() {
2023   bool res = false;
2024   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2025          "CMS thread should have CMS token");
2026   // Block the foreground collector until the
2027   // background collectors decides whether to
2028   // yield.
2029   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2030   _foregroundGCShouldWait = true;
2031   if (_foregroundGCIsActive) {
2032     // The background collector yields to the
2033     // foreground collector and returns a value
2034     // indicating that it has yielded.  The foreground
2035     // collector can proceed.
2036     res = true;
2037     _foregroundGCShouldWait = false;
2038     ConcurrentMarkSweepThread::clear_CMS_flag(
2039       ConcurrentMarkSweepThread::CMS_cms_has_token);
2040     ConcurrentMarkSweepThread::set_CMS_flag(
2041       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2042     // Get a possibly blocked foreground thread going
2043     CGC_lock->notify();
2044     if (TraceCMSState) {
2045       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2046         p2i(Thread::current()), _collectorState);
2047     }
2048     while (_foregroundGCIsActive) {
2049       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2050     }
2051     ConcurrentMarkSweepThread::set_CMS_flag(
2052       ConcurrentMarkSweepThread::CMS_cms_has_token);
2053     ConcurrentMarkSweepThread::clear_CMS_flag(
2054       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2055   }
2056   if (TraceCMSState) {
2057     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2058       p2i(Thread::current()), _collectorState);
2059   }
2060   return res;
2061 }
2062 
2063 // Because of the need to lock the free lists and other structures in
2064 // the collector, common to all the generations that the collector is
2065 // collecting, we need the gc_prologues of individual CMS generations
2066 // delegate to their collector. It may have been simpler had the
2067 // current infrastructure allowed one to call a prologue on a
2068 // collector. In the absence of that we have the generation's
2069 // prologue delegate to the collector, which delegates back
2070 // some "local" work to a worker method in the individual generations
2071 // that it's responsible for collecting, while itself doing any
2072 // work common to all generations it's responsible for. A similar
2073 // comment applies to the  gc_epilogue()'s.
2074 // The role of the variable _between_prologue_and_epilogue is to
2075 // enforce the invocation protocol.
2076 void CMSCollector::gc_prologue(bool full) {
2077   // Call gc_prologue_work() for the CMSGen
2078   // we are responsible for.
2079 
2080   // The following locking discipline assumes that we are only called
2081   // when the world is stopped.
2082   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2083 
2084   // The CMSCollector prologue must call the gc_prologues for the
2085   // "generations" that it's responsible
2086   // for.
2087 
2088   assert(   Thread::current()->is_VM_thread()
2089          || (   CMSScavengeBeforeRemark
2090              && Thread::current()->is_ConcurrentGC_thread()),
2091          "Incorrect thread type for prologue execution");
2092 
2093   if (_between_prologue_and_epilogue) {
2094     // We have already been invoked; this is a gc_prologue delegation
2095     // from yet another CMS generation that we are responsible for, just
2096     // ignore it since all relevant work has already been done.
2097     return;
2098   }
2099 
2100   // set a bit saying prologue has been called; cleared in epilogue
2101   _between_prologue_and_epilogue = true;
2102   // Claim locks for common data structures, then call gc_prologue_work()
2103   // for each CMSGen.
2104 
2105   getFreelistLocks();   // gets free list locks on constituent spaces
2106   bitMapLock()->lock_without_safepoint_check();
2107 
2108   // Should call gc_prologue_work() for all cms gens we are responsible for
2109   bool duringMarking =    _collectorState >= Marking
2110                          && _collectorState < Sweeping;
2111 
2112   // The young collections clear the modified oops state, which tells if
2113   // there are any modified oops in the class. The remark phase also needs
2114   // that information. Tell the young collection to save the union of all
2115   // modified klasses.
2116   if (duringMarking) {
2117     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2118   }
2119 
2120   bool registerClosure = duringMarking;
2121 
2122   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2123 
2124   if (!full) {
2125     stats().record_gc0_begin();
2126   }
2127 }
2128 
2129 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2130 
2131   _capacity_at_prologue = capacity();
2132   _used_at_prologue = used();
2133 
2134   // Delegate to CMScollector which knows how to coordinate between
2135   // this and any other CMS generations that it is responsible for
2136   // collecting.
2137   collector()->gc_prologue(full);
2138 }
2139 
2140 // This is a "private" interface for use by this generation's CMSCollector.
2141 // Not to be called directly by any other entity (for instance,
2142 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2143 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2144   bool registerClosure, ModUnionClosure* modUnionClosure) {
2145   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2146   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2147     "Should be NULL");
2148   if (registerClosure) {
2149     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2150   }
2151   cmsSpace()->gc_prologue();
2152   // Clear stat counters
2153   NOT_PRODUCT(
2154     assert(_numObjectsPromoted == 0, "check");
2155     assert(_numWordsPromoted   == 0, "check");
2156     if (Verbose && PrintGC) {
2157       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2158                           SIZE_FORMAT" bytes concurrently",
2159       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2160     }
2161     _numObjectsAllocated = 0;
2162     _numWordsAllocated   = 0;
2163   )
2164 }
2165 
2166 void CMSCollector::gc_epilogue(bool full) {
2167   // The following locking discipline assumes that we are only called
2168   // when the world is stopped.
2169   assert(SafepointSynchronize::is_at_safepoint(),
2170          "world is stopped assumption");
2171 
2172   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2173   // if linear allocation blocks need to be appropriately marked to allow the
2174   // the blocks to be parsable. We also check here whether we need to nudge the
2175   // CMS collector thread to start a new cycle (if it's not already active).
2176   assert(   Thread::current()->is_VM_thread()
2177          || (   CMSScavengeBeforeRemark
2178              && Thread::current()->is_ConcurrentGC_thread()),
2179          "Incorrect thread type for epilogue execution");
2180 
2181   if (!_between_prologue_and_epilogue) {
2182     // We have already been invoked; this is a gc_epilogue delegation
2183     // from yet another CMS generation that we are responsible for, just
2184     // ignore it since all relevant work has already been done.
2185     return;
2186   }
2187   assert(haveFreelistLocks(), "must have freelist locks");
2188   assert_lock_strong(bitMapLock());
2189 
2190   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2191 
2192   _cmsGen->gc_epilogue_work(full);
2193 
2194   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2195     // in case sampling was not already enabled, enable it
2196     _start_sampling = true;
2197   }
2198   // reset _eden_chunk_array so sampling starts afresh
2199   _eden_chunk_index = 0;
2200 
2201   size_t cms_used   = _cmsGen->cmsSpace()->used();
2202 
2203   // update performance counters - this uses a special version of
2204   // update_counters() that allows the utilization to be passed as a
2205   // parameter, avoiding multiple calls to used().
2206   //
2207   _cmsGen->update_counters(cms_used);
2208 
2209   bitMapLock()->unlock();
2210   releaseFreelistLocks();
2211 
2212   if (!CleanChunkPoolAsync) {
2213     Chunk::clean_chunk_pool();
2214   }
2215 
2216   set_did_compact(false);
2217   _between_prologue_and_epilogue = false;  // ready for next cycle
2218 }
2219 
2220 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2221   collector()->gc_epilogue(full);
2222 
2223   // Also reset promotion tracking in par gc thread states.
2224   for (uint i = 0; i < ParallelGCThreads; i++) {
2225     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2226   }
2227 }
2228 
2229 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2230   assert(!incremental_collection_failed(), "Should have been cleared");
2231   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2232   cmsSpace()->gc_epilogue();
2233     // Print stat counters
2234   NOT_PRODUCT(
2235     assert(_numObjectsAllocated == 0, "check");
2236     assert(_numWordsAllocated == 0, "check");
2237     if (Verbose && PrintGC) {
2238       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2239                           SIZE_FORMAT" bytes",
2240                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2241     }
2242     _numObjectsPromoted = 0;
2243     _numWordsPromoted   = 0;
2244   )
2245 
2246   if (PrintGC && Verbose) {
2247     // Call down the chain in contiguous_available needs the freelistLock
2248     // so print this out before releasing the freeListLock.
2249     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2250                         contiguous_available());
2251   }
2252 }
2253 
2254 #ifndef PRODUCT
2255 bool CMSCollector::have_cms_token() {
2256   Thread* thr = Thread::current();
2257   if (thr->is_VM_thread()) {
2258     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2259   } else if (thr->is_ConcurrentGC_thread()) {
2260     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2261   } else if (thr->is_GC_task_thread()) {
2262     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2263            ParGCRareEvent_lock->owned_by_self();
2264   }
2265   return false;
2266 }
2267 #endif
2268 
2269 // Check reachability of the given heap address in CMS generation,
2270 // treating all other generations as roots.
2271 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2272   // We could "guarantee" below, rather than assert, but I'll
2273   // leave these as "asserts" so that an adventurous debugger
2274   // could try this in the product build provided some subset of
2275   // the conditions were met, provided they were interested in the
2276   // results and knew that the computation below wouldn't interfere
2277   // with other concurrent computations mutating the structures
2278   // being read or written.
2279   assert(SafepointSynchronize::is_at_safepoint(),
2280          "Else mutations in object graph will make answer suspect");
2281   assert(have_cms_token(), "Should hold cms token");
2282   assert(haveFreelistLocks(), "must hold free list locks");
2283   assert_lock_strong(bitMapLock());
2284 
2285   // Clear the marking bit map array before starting, but, just
2286   // for kicks, first report if the given address is already marked
2287   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2288                 _markBitMap.isMarked(addr) ? "" : " not");
2289 
2290   if (verify_after_remark()) {
2291     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2292     bool result = verification_mark_bm()->isMarked(addr);
2293     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2294                            result ? "IS" : "is NOT");
2295     return result;
2296   } else {
2297     gclog_or_tty->print_cr("Could not compute result");
2298     return false;
2299   }
2300 }
2301 
2302 
2303 void
2304 CMSCollector::print_on_error(outputStream* st) {
2305   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2306   if (collector != NULL) {
2307     CMSBitMap* bitmap = &collector->_markBitMap;
2308     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2309     bitmap->print_on_error(st, " Bits: ");
2310 
2311     st->cr();
2312 
2313     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2314     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2315     mut_bitmap->print_on_error(st, " Bits: ");
2316   }
2317 }
2318 
2319 ////////////////////////////////////////////////////////
2320 // CMS Verification Support
2321 ////////////////////////////////////////////////////////
2322 // Following the remark phase, the following invariant
2323 // should hold -- each object in the CMS heap which is
2324 // marked in markBitMap() should be marked in the verification_mark_bm().
2325 
2326 class VerifyMarkedClosure: public BitMapClosure {
2327   CMSBitMap* _marks;
2328   bool       _failed;
2329 
2330  public:
2331   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2332 
2333   bool do_bit(size_t offset) {
2334     HeapWord* addr = _marks->offsetToHeapWord(offset);
2335     if (!_marks->isMarked(addr)) {
2336       oop(addr)->print_on(gclog_or_tty);
2337       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", p2i(addr));
2338       _failed = true;
2339     }
2340     return true;
2341   }
2342 
2343   bool failed() { return _failed; }
2344 };
2345 
2346 bool CMSCollector::verify_after_remark(bool silent) {
2347   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2348   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2349   static bool init = false;
2350 
2351   assert(SafepointSynchronize::is_at_safepoint(),
2352          "Else mutations in object graph will make answer suspect");
2353   assert(have_cms_token(),
2354          "Else there may be mutual interference in use of "
2355          " verification data structures");
2356   assert(_collectorState > Marking && _collectorState <= Sweeping,
2357          "Else marking info checked here may be obsolete");
2358   assert(haveFreelistLocks(), "must hold free list locks");
2359   assert_lock_strong(bitMapLock());
2360 
2361 
2362   // Allocate marking bit map if not already allocated
2363   if (!init) { // first time
2364     if (!verification_mark_bm()->allocate(_span)) {
2365       return false;
2366     }
2367     init = true;
2368   }
2369 
2370   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2371 
2372   // Turn off refs discovery -- so we will be tracing through refs.
2373   // This is as intended, because by this time
2374   // GC must already have cleared any refs that need to be cleared,
2375   // and traced those that need to be marked; moreover,
2376   // the marking done here is not going to interfere in any
2377   // way with the marking information used by GC.
2378   NoRefDiscovery no_discovery(ref_processor());
2379 
2380   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2381 
2382   // Clear any marks from a previous round
2383   verification_mark_bm()->clear_all();
2384   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2385   verify_work_stacks_empty();
2386 
2387   GenCollectedHeap* gch = GenCollectedHeap::heap();
2388   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2389   // Update the saved marks which may affect the root scans.
2390   gch->save_marks();
2391 
2392   if (CMSRemarkVerifyVariant == 1) {
2393     // In this first variant of verification, we complete
2394     // all marking, then check if the new marks-vector is
2395     // a subset of the CMS marks-vector.
2396     verify_after_remark_work_1();
2397   } else if (CMSRemarkVerifyVariant == 2) {
2398     // In this second variant of verification, we flag an error
2399     // (i.e. an object reachable in the new marks-vector not reachable
2400     // in the CMS marks-vector) immediately, also indicating the
2401     // identify of an object (A) that references the unmarked object (B) --
2402     // presumably, a mutation to A failed to be picked up by preclean/remark?
2403     verify_after_remark_work_2();
2404   } else {
2405     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2406             CMSRemarkVerifyVariant);
2407   }
2408   if (!silent) gclog_or_tty->print(" done] ");
2409   return true;
2410 }
2411 
2412 void CMSCollector::verify_after_remark_work_1() {
2413   ResourceMark rm;
2414   HandleMark  hm;
2415   GenCollectedHeap* gch = GenCollectedHeap::heap();
2416 
2417   // Get a clear set of claim bits for the roots processing to work with.
2418   ClassLoaderDataGraph::clear_claimed_marks();
2419 
2420   // Mark from roots one level into CMS
2421   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2422   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2423 
2424   gch->gen_process_roots(_cmsGen->level(),
2425                          true,   // younger gens are roots
2426                          true,   // activate StrongRootsScope
2427                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2428                          should_unload_classes(),
2429                          &notOlder,
2430                          NULL,
2431                          NULL);  // SSS: Provide correct closure
2432 
2433   // Now mark from the roots
2434   MarkFromRootsClosure markFromRootsClosure(this, _span,
2435     verification_mark_bm(), verification_mark_stack(),
2436     false /* don't yield */, true /* verifying */);
2437   assert(_restart_addr == NULL, "Expected pre-condition");
2438   verification_mark_bm()->iterate(&markFromRootsClosure);
2439   while (_restart_addr != NULL) {
2440     // Deal with stack overflow: by restarting at the indicated
2441     // address.
2442     HeapWord* ra = _restart_addr;
2443     markFromRootsClosure.reset(ra);
2444     _restart_addr = NULL;
2445     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2446   }
2447   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2448   verify_work_stacks_empty();
2449 
2450   // Marking completed -- now verify that each bit marked in
2451   // verification_mark_bm() is also marked in markBitMap(); flag all
2452   // errors by printing corresponding objects.
2453   VerifyMarkedClosure vcl(markBitMap());
2454   verification_mark_bm()->iterate(&vcl);
2455   if (vcl.failed()) {
2456     gclog_or_tty->print("Verification failed");
2457     gch->print_on(gclog_or_tty);
2458     fatal("CMS: failed marking verification after remark");
2459   }
2460 }
2461 
2462 class VerifyKlassOopsKlassClosure : public KlassClosure {
2463   class VerifyKlassOopsClosure : public OopClosure {
2464     CMSBitMap* _bitmap;
2465    public:
2466     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2467     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2468     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2469   } _oop_closure;
2470  public:
2471   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2472   void do_klass(Klass* k) {
2473     k->oops_do(&_oop_closure);
2474   }
2475 };
2476 
2477 void CMSCollector::verify_after_remark_work_2() {
2478   ResourceMark rm;
2479   HandleMark  hm;
2480   GenCollectedHeap* gch = GenCollectedHeap::heap();
2481 
2482   // Get a clear set of claim bits for the roots processing to work with.
2483   ClassLoaderDataGraph::clear_claimed_marks();
2484 
2485   // Mark from roots one level into CMS
2486   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2487                                      markBitMap());
2488   CLDToOopClosure cld_closure(&notOlder, true);
2489 
2490   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2491 
2492   gch->gen_process_roots(_cmsGen->level(),
2493                          true,   // younger gens are roots
2494                          true,   // activate StrongRootsScope
2495                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2496                          should_unload_classes(),
2497                          &notOlder,
2498                          NULL,
2499                          &cld_closure);
2500 
2501   // Now mark from the roots
2502   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2503     verification_mark_bm(), markBitMap(), verification_mark_stack());
2504   assert(_restart_addr == NULL, "Expected pre-condition");
2505   verification_mark_bm()->iterate(&markFromRootsClosure);
2506   while (_restart_addr != NULL) {
2507     // Deal with stack overflow: by restarting at the indicated
2508     // address.
2509     HeapWord* ra = _restart_addr;
2510     markFromRootsClosure.reset(ra);
2511     _restart_addr = NULL;
2512     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2513   }
2514   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2515   verify_work_stacks_empty();
2516 
2517   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2518   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2519 
2520   // Marking completed -- now verify that each bit marked in
2521   // verification_mark_bm() is also marked in markBitMap(); flag all
2522   // errors by printing corresponding objects.
2523   VerifyMarkedClosure vcl(markBitMap());
2524   verification_mark_bm()->iterate(&vcl);
2525   assert(!vcl.failed(), "Else verification above should not have succeeded");
2526 }
2527 
2528 void ConcurrentMarkSweepGeneration::save_marks() {
2529   // delegate to CMS space
2530   cmsSpace()->save_marks();
2531   for (uint i = 0; i < ParallelGCThreads; i++) {
2532     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2533   }
2534 }
2535 
2536 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2537   return cmsSpace()->no_allocs_since_save_marks();
2538 }
2539 
2540 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2541                                                                 \
2542 void ConcurrentMarkSweepGeneration::                            \
2543 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2544   cl->set_generation(this);                                     \
2545   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2546   cl->reset_generation();                                       \
2547   save_marks();                                                 \
2548 }
2549 
2550 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2551 
2552 void
2553 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2554   if (freelistLock()->owned_by_self()) {
2555     Generation::oop_iterate(cl);
2556   } else {
2557     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2558     Generation::oop_iterate(cl);
2559   }
2560 }
2561 
2562 void
2563 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2564   if (freelistLock()->owned_by_self()) {
2565     Generation::object_iterate(cl);
2566   } else {
2567     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2568     Generation::object_iterate(cl);
2569   }
2570 }
2571 
2572 void
2573 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2574   if (freelistLock()->owned_by_self()) {
2575     Generation::safe_object_iterate(cl);
2576   } else {
2577     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2578     Generation::safe_object_iterate(cl);
2579   }
2580 }
2581 
2582 void
2583 ConcurrentMarkSweepGeneration::post_compact() {
2584 }
2585 
2586 void
2587 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2588   // Fix the linear allocation blocks to look like free blocks.
2589 
2590   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2591   // are not called when the heap is verified during universe initialization and
2592   // at vm shutdown.
2593   if (freelistLock()->owned_by_self()) {
2594     cmsSpace()->prepare_for_verify();
2595   } else {
2596     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2597     cmsSpace()->prepare_for_verify();
2598   }
2599 }
2600 
2601 void
2602 ConcurrentMarkSweepGeneration::verify() {
2603   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2604   // are not called when the heap is verified during universe initialization and
2605   // at vm shutdown.
2606   if (freelistLock()->owned_by_self()) {
2607     cmsSpace()->verify();
2608   } else {
2609     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2610     cmsSpace()->verify();
2611   }
2612 }
2613 
2614 void CMSCollector::verify() {
2615   _cmsGen->verify();
2616 }
2617 
2618 #ifndef PRODUCT
2619 bool CMSCollector::overflow_list_is_empty() const {
2620   assert(_num_par_pushes >= 0, "Inconsistency");
2621   if (_overflow_list == NULL) {
2622     assert(_num_par_pushes == 0, "Inconsistency");
2623   }
2624   return _overflow_list == NULL;
2625 }
2626 
2627 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2628 // merely consolidate assertion checks that appear to occur together frequently.
2629 void CMSCollector::verify_work_stacks_empty() const {
2630   assert(_markStack.isEmpty(), "Marking stack should be empty");
2631   assert(overflow_list_is_empty(), "Overflow list should be empty");
2632 }
2633 
2634 void CMSCollector::verify_overflow_empty() const {
2635   assert(overflow_list_is_empty(), "Overflow list should be empty");
2636   assert(no_preserved_marks(), "No preserved marks");
2637 }
2638 #endif // PRODUCT
2639 
2640 // Decide if we want to enable class unloading as part of the
2641 // ensuing concurrent GC cycle. We will collect and
2642 // unload classes if it's the case that:
2643 // (1) an explicit gc request has been made and the flag
2644 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2645 // (2) (a) class unloading is enabled at the command line, and
2646 //     (b) old gen is getting really full
2647 // NOTE: Provided there is no change in the state of the heap between
2648 // calls to this method, it should have idempotent results. Moreover,
2649 // its results should be monotonically increasing (i.e. going from 0 to 1,
2650 // but not 1 to 0) between successive calls between which the heap was
2651 // not collected. For the implementation below, it must thus rely on
2652 // the property that concurrent_cycles_since_last_unload()
2653 // will not decrease unless a collection cycle happened and that
2654 // _cmsGen->is_too_full() are
2655 // themselves also monotonic in that sense. See check_monotonicity()
2656 // below.
2657 void CMSCollector::update_should_unload_classes() {
2658   _should_unload_classes = false;
2659   // Condition 1 above
2660   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2661     _should_unload_classes = true;
2662   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2663     // Disjuncts 2.b.(i,ii,iii) above
2664     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2665                               CMSClassUnloadingMaxInterval)
2666                            || _cmsGen->is_too_full();
2667   }
2668 }
2669 
2670 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2671   bool res = should_concurrent_collect();
2672   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2673   return res;
2674 }
2675 
2676 void CMSCollector::setup_cms_unloading_and_verification_state() {
2677   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2678                              || VerifyBeforeExit;
2679   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2680 
2681   // We set the proper root for this CMS cycle here.
2682   if (should_unload_classes()) {   // Should unload classes this cycle
2683     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2684     set_verifying(should_verify);    // Set verification state for this cycle
2685     return;                            // Nothing else needs to be done at this time
2686   }
2687 
2688   // Not unloading classes this cycle
2689   assert(!should_unload_classes(), "Inconsistency!");
2690 
2691   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2692     // Include symbols, strings and code cache elements to prevent their resurrection.
2693     add_root_scanning_option(rso);
2694     set_verifying(true);
2695   } else if (verifying() && !should_verify) {
2696     // We were verifying, but some verification flags got disabled.
2697     set_verifying(false);
2698     // Exclude symbols, strings and code cache elements from root scanning to
2699     // reduce IM and RM pauses.
2700     remove_root_scanning_option(rso);
2701   }
2702 }
2703 
2704 
2705 #ifndef PRODUCT
2706 HeapWord* CMSCollector::block_start(const void* p) const {
2707   const HeapWord* addr = (HeapWord*)p;
2708   if (_span.contains(p)) {
2709     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2710       return _cmsGen->cmsSpace()->block_start(p);
2711     }
2712   }
2713   return NULL;
2714 }
2715 #endif
2716 
2717 HeapWord*
2718 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2719                                                    bool   tlab,
2720                                                    bool   parallel) {
2721   CMSSynchronousYieldRequest yr;
2722   assert(!tlab, "Can't deal with TLAB allocation");
2723   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2724   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2725   if (GCExpandToAllocateDelayMillis > 0) {
2726     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2727   }
2728   return have_lock_and_allocate(word_size, tlab);
2729 }
2730 
2731 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2732     size_t bytes,
2733     size_t expand_bytes,
2734     CMSExpansionCause::Cause cause)
2735 {
2736 
2737   bool success = expand(bytes, expand_bytes);
2738 
2739   // remember why we expanded; this information is used
2740   // by shouldConcurrentCollect() when making decisions on whether to start
2741   // a new CMS cycle.
2742   if (success) {
2743     set_expansion_cause(cause);
2744     if (PrintGCDetails && Verbose) {
2745       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2746         CMSExpansionCause::to_string(cause));
2747     }
2748   }
2749 }
2750 
2751 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2752   HeapWord* res = NULL;
2753   MutexLocker x(ParGCRareEvent_lock);
2754   while (true) {
2755     // Expansion by some other thread might make alloc OK now:
2756     res = ps->lab.alloc(word_sz);
2757     if (res != NULL) return res;
2758     // If there's not enough expansion space available, give up.
2759     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2760       return NULL;
2761     }
2762     // Otherwise, we try expansion.
2763     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2764     // Now go around the loop and try alloc again;
2765     // A competing par_promote might beat us to the expansion space,
2766     // so we may go around the loop again if promotion fails again.
2767     if (GCExpandToAllocateDelayMillis > 0) {
2768       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2769     }
2770   }
2771 }
2772 
2773 
2774 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2775   PromotionInfo* promo) {
2776   MutexLocker x(ParGCRareEvent_lock);
2777   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2778   while (true) {
2779     // Expansion by some other thread might make alloc OK now:
2780     if (promo->ensure_spooling_space()) {
2781       assert(promo->has_spooling_space(),
2782              "Post-condition of successful ensure_spooling_space()");
2783       return true;
2784     }
2785     // If there's not enough expansion space available, give up.
2786     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2787       return false;
2788     }
2789     // Otherwise, we try expansion.
2790     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2791     // Now go around the loop and try alloc again;
2792     // A competing allocation might beat us to the expansion space,
2793     // so we may go around the loop again if allocation fails again.
2794     if (GCExpandToAllocateDelayMillis > 0) {
2795       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2796     }
2797   }
2798 }
2799 
2800 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2801   // Only shrink if a compaction was done so that all the free space
2802   // in the generation is in a contiguous block at the end.
2803   if (did_compact()) {
2804     CardGeneration::shrink(bytes);
2805   }
2806 }
2807 
2808 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2809   assert_locked_or_safepoint(Heap_lock);
2810 }
2811 
2812 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2813   assert_locked_or_safepoint(Heap_lock);
2814   assert_lock_strong(freelistLock());
2815   if (PrintGCDetails && Verbose) {
2816     warning("Shrinking of CMS not yet implemented");
2817   }
2818   return;
2819 }
2820 
2821 
2822 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2823 // phases.
2824 class CMSPhaseAccounting: public StackObj {
2825  public:
2826   CMSPhaseAccounting(CMSCollector *collector,
2827                      const char *phase,
2828                      const GCId gc_id,
2829                      bool print_cr = true);
2830   ~CMSPhaseAccounting();
2831 
2832  private:
2833   CMSCollector *_collector;
2834   const char *_phase;
2835   elapsedTimer _wallclock;
2836   bool _print_cr;
2837   const GCId _gc_id;
2838 
2839  public:
2840   // Not MT-safe; so do not pass around these StackObj's
2841   // where they may be accessed by other threads.
2842   jlong wallclock_millis() {
2843     assert(_wallclock.is_active(), "Wall clock should not stop");
2844     _wallclock.stop();  // to record time
2845     jlong ret = _wallclock.milliseconds();
2846     _wallclock.start(); // restart
2847     return ret;
2848   }
2849 };
2850 
2851 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2852                                        const char *phase,
2853                                        const GCId gc_id,
2854                                        bool print_cr) :
2855   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2856 
2857   if (PrintCMSStatistics != 0) {
2858     _collector->resetYields();
2859   }
2860   if (PrintGCDetails) {
2861     gclog_or_tty->gclog_stamp(_gc_id);
2862     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2863       _collector->cmsGen()->short_name(), _phase);
2864   }
2865   _collector->resetTimer();
2866   _wallclock.start();
2867   _collector->startTimer();
2868 }
2869 
2870 CMSPhaseAccounting::~CMSPhaseAccounting() {
2871   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2872   _collector->stopTimer();
2873   _wallclock.stop();
2874   if (PrintGCDetails) {
2875     gclog_or_tty->gclog_stamp(_gc_id);
2876     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2877                  _collector->cmsGen()->short_name(),
2878                  _phase, _collector->timerValue(), _wallclock.seconds());
2879     if (_print_cr) {
2880       gclog_or_tty->cr();
2881     }
2882     if (PrintCMSStatistics != 0) {
2883       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2884                     _collector->yields());
2885     }
2886   }
2887 }
2888 
2889 // CMS work
2890 
2891 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2892 class CMSParMarkTask : public AbstractGangTask {
2893  protected:
2894   CMSCollector*     _collector;
2895   uint              _n_workers;
2896   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2897       AbstractGangTask(name),
2898       _collector(collector),
2899       _n_workers(n_workers) {}
2900   // Work method in support of parallel rescan ... of young gen spaces
2901   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2902                              ContiguousSpace* space,
2903                              HeapWord** chunk_array, size_t chunk_top);
2904   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2905 };
2906 
2907 // Parallel initial mark task
2908 class CMSParInitialMarkTask: public CMSParMarkTask {
2909  public:
2910   CMSParInitialMarkTask(CMSCollector* collector, uint n_workers) :
2911       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
2912                      collector, n_workers) {}
2913   void work(uint worker_id);
2914 };
2915 
2916 // Checkpoint the roots into this generation from outside
2917 // this generation. [Note this initial checkpoint need only
2918 // be approximate -- we'll do a catch up phase subsequently.]
2919 void CMSCollector::checkpointRootsInitial() {
2920   assert(_collectorState == InitialMarking, "Wrong collector state");
2921   check_correct_thread_executing();
2922   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2923 
2924   save_heap_summary();
2925   report_heap_summary(GCWhen::BeforeGC);
2926 
2927   ReferenceProcessor* rp = ref_processor();
2928   assert(_restart_addr == NULL, "Control point invariant");
2929   {
2930     // acquire locks for subsequent manipulations
2931     MutexLockerEx x(bitMapLock(),
2932                     Mutex::_no_safepoint_check_flag);
2933     checkpointRootsInitialWork();
2934     // enable ("weak") refs discovery
2935     rp->enable_discovery();
2936     _collectorState = Marking;
2937   }
2938 }
2939 
2940 void CMSCollector::checkpointRootsInitialWork() {
2941   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2942   assert(_collectorState == InitialMarking, "just checking");
2943 
2944   // If there has not been a GC[n-1] since last GC[n] cycle completed,
2945   // precede our marking with a collection of all
2946   // younger generations to keep floating garbage to a minimum.
2947   // XXX: we won't do this for now -- it's an optimization to be done later.
2948 
2949   // already have locks
2950   assert_lock_strong(bitMapLock());
2951   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2952 
2953   // Setup the verification and class unloading state for this
2954   // CMS collection cycle.
2955   setup_cms_unloading_and_verification_state();
2956 
2957   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2958     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2959 
2960   // Reset all the PLAB chunk arrays if necessary.
2961   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2962     reset_survivor_plab_arrays();
2963   }
2964 
2965   ResourceMark rm;
2966   HandleMark  hm;
2967 
2968   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2969   GenCollectedHeap* gch = GenCollectedHeap::heap();
2970 
2971   verify_work_stacks_empty();
2972   verify_overflow_empty();
2973 
2974   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2975   // Update the saved marks which may affect the root scans.
2976   gch->save_marks();
2977 
2978   // weak reference processing has not started yet.
2979   ref_processor()->set_enqueuing_is_done(false);
2980 
2981   // Need to remember all newly created CLDs,
2982   // so that we can guarantee that the remark finds them.
2983   ClassLoaderDataGraph::remember_new_clds(true);
2984 
2985   // Whenever a CLD is found, it will be claimed before proceeding to mark
2986   // the klasses. The claimed marks need to be cleared before marking starts.
2987   ClassLoaderDataGraph::clear_claimed_marks();
2988 
2989   if (CMSPrintEdenSurvivorChunks) {
2990     print_eden_and_survivor_chunk_arrays();
2991   }
2992 
2993   {
2994     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2995     if (CMSParallelInitialMarkEnabled) {
2996       // The parallel version.
2997       FlexibleWorkGang* workers = gch->workers();
2998       assert(workers != NULL, "Need parallel worker threads.");
2999       uint n_workers = workers->active_workers();
3000       CMSParInitialMarkTask tsk(this, n_workers);
3001       gch->set_par_threads(n_workers);
3002       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3003       if (n_workers > 1) {
3004         StrongRootsScope srs;
3005         workers->run_task(&tsk);
3006       } else {
3007         StrongRootsScope srs;
3008         tsk.work(0);
3009       }
3010       gch->set_par_threads(0);
3011     } else {
3012       // The serial version.
3013       CLDToOopClosure cld_closure(&notOlder, true);
3014       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3015       gch->gen_process_roots(_cmsGen->level(),
3016                              true,   // younger gens are roots
3017                              true,   // activate StrongRootsScope
3018                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3019                              should_unload_classes(),
3020                              &notOlder,
3021                              NULL,
3022                              &cld_closure);
3023     }
3024   }
3025 
3026   // Clear mod-union table; it will be dirtied in the prologue of
3027   // CMS generation per each younger generation collection.
3028 
3029   assert(_modUnionTable.isAllClear(),
3030        "Was cleared in most recent final checkpoint phase"
3031        " or no bits are set in the gc_prologue before the start of the next "
3032        "subsequent marking phase.");
3033 
3034   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3035 
3036   // Save the end of the used_region of the constituent generations
3037   // to be used to limit the extent of sweep in each generation.
3038   save_sweep_limits();
3039   verify_overflow_empty();
3040 }
3041 
3042 bool CMSCollector::markFromRoots() {
3043   // we might be tempted to assert that:
3044   // assert(!SafepointSynchronize::is_at_safepoint(),
3045   //        "inconsistent argument?");
3046   // However that wouldn't be right, because it's possible that
3047   // a safepoint is indeed in progress as a younger generation
3048   // stop-the-world GC happens even as we mark in this generation.
3049   assert(_collectorState == Marking, "inconsistent state?");
3050   check_correct_thread_executing();
3051   verify_overflow_empty();
3052 
3053   // Weak ref discovery note: We may be discovering weak
3054   // refs in this generation concurrent (but interleaved) with
3055   // weak ref discovery by a younger generation collector.
3056 
3057   CMSTokenSyncWithLocks ts(true, bitMapLock());
3058   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3059   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3060   bool res = markFromRootsWork();
3061   if (res) {
3062     _collectorState = Precleaning;
3063   } else { // We failed and a foreground collection wants to take over
3064     assert(_foregroundGCIsActive, "internal state inconsistency");
3065     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3066     if (PrintGCDetails) {
3067       gclog_or_tty->print_cr("bailing out to foreground collection");
3068     }
3069   }
3070   verify_overflow_empty();
3071   return res;
3072 }
3073 
3074 bool CMSCollector::markFromRootsWork() {
3075   // iterate over marked bits in bit map, doing a full scan and mark
3076   // from these roots using the following algorithm:
3077   // . if oop is to the right of the current scan pointer,
3078   //   mark corresponding bit (we'll process it later)
3079   // . else (oop is to left of current scan pointer)
3080   //   push oop on marking stack
3081   // . drain the marking stack
3082 
3083   // Note that when we do a marking step we need to hold the
3084   // bit map lock -- recall that direct allocation (by mutators)
3085   // and promotion (by younger generation collectors) is also
3086   // marking the bit map. [the so-called allocate live policy.]
3087   // Because the implementation of bit map marking is not
3088   // robust wrt simultaneous marking of bits in the same word,
3089   // we need to make sure that there is no such interference
3090   // between concurrent such updates.
3091 
3092   // already have locks
3093   assert_lock_strong(bitMapLock());
3094 
3095   verify_work_stacks_empty();
3096   verify_overflow_empty();
3097   bool result = false;
3098   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3099     result = do_marking_mt();
3100   } else {
3101     result = do_marking_st();
3102   }
3103   return result;
3104 }
3105 
3106 // Forward decl
3107 class CMSConcMarkingTask;
3108 
3109 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3110   CMSCollector*       _collector;
3111   CMSConcMarkingTask* _task;
3112  public:
3113   virtual void yield();
3114 
3115   // "n_threads" is the number of threads to be terminated.
3116   // "queue_set" is a set of work queues of other threads.
3117   // "collector" is the CMS collector associated with this task terminator.
3118   // "yield" indicates whether we need the gang as a whole to yield.
3119   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3120     ParallelTaskTerminator(n_threads, queue_set),
3121     _collector(collector) { }
3122 
3123   void set_task(CMSConcMarkingTask* task) {
3124     _task = task;
3125   }
3126 };
3127 
3128 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3129   CMSConcMarkingTask* _task;
3130  public:
3131   bool should_exit_termination();
3132   void set_task(CMSConcMarkingTask* task) {
3133     _task = task;
3134   }
3135 };
3136 
3137 // MT Concurrent Marking Task
3138 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3139   CMSCollector* _collector;
3140   uint          _n_workers;       // requested/desired # workers
3141   bool          _result;
3142   CompactibleFreeListSpace*  _cms_space;
3143   char          _pad_front[64];   // padding to ...
3144   HeapWord*     _global_finger;   // ... avoid sharing cache line
3145   char          _pad_back[64];
3146   HeapWord*     _restart_addr;
3147 
3148   //  Exposed here for yielding support
3149   Mutex* const _bit_map_lock;
3150 
3151   // The per thread work queues, available here for stealing
3152   OopTaskQueueSet*  _task_queues;
3153 
3154   // Termination (and yielding) support
3155   CMSConcMarkingTerminator _term;
3156   CMSConcMarkingTerminatorTerminator _term_term;
3157 
3158  public:
3159   CMSConcMarkingTask(CMSCollector* collector,
3160                  CompactibleFreeListSpace* cms_space,
3161                  YieldingFlexibleWorkGang* workers,
3162                  OopTaskQueueSet* task_queues):
3163     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3164     _collector(collector),
3165     _cms_space(cms_space),
3166     _n_workers(0), _result(true),
3167     _task_queues(task_queues),
3168     _term(_n_workers, task_queues, _collector),
3169     _bit_map_lock(collector->bitMapLock())
3170   {
3171     _requested_size = _n_workers;
3172     _term.set_task(this);
3173     _term_term.set_task(this);
3174     _restart_addr = _global_finger = _cms_space->bottom();
3175   }
3176 
3177 
3178   OopTaskQueueSet* task_queues()  { return _task_queues; }
3179 
3180   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3181 
3182   HeapWord** global_finger_addr() { return &_global_finger; }
3183 
3184   CMSConcMarkingTerminator* terminator() { return &_term; }
3185 
3186   virtual void set_for_termination(uint active_workers) {
3187     terminator()->reset_for_reuse(active_workers);
3188   }
3189 
3190   void work(uint worker_id);
3191   bool should_yield() {
3192     return    ConcurrentMarkSweepThread::should_yield()
3193            && !_collector->foregroundGCIsActive();
3194   }
3195 
3196   virtual void coordinator_yield();  // stuff done by coordinator
3197   bool result() { return _result; }
3198 
3199   void reset(HeapWord* ra) {
3200     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3201     _restart_addr = _global_finger = ra;
3202     _term.reset_for_reuse();
3203   }
3204 
3205   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3206                                            OopTaskQueue* work_q);
3207 
3208  private:
3209   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3210   void do_work_steal(int i);
3211   void bump_global_finger(HeapWord* f);
3212 };
3213 
3214 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3215   assert(_task != NULL, "Error");
3216   return _task->yielding();
3217   // Note that we do not need the disjunct || _task->should_yield() above
3218   // because we want terminating threads to yield only if the task
3219   // is already in the midst of yielding, which happens only after at least one
3220   // thread has yielded.
3221 }
3222 
3223 void CMSConcMarkingTerminator::yield() {
3224   if (_task->should_yield()) {
3225     _task->yield();
3226   } else {
3227     ParallelTaskTerminator::yield();
3228   }
3229 }
3230 
3231 ////////////////////////////////////////////////////////////////
3232 // Concurrent Marking Algorithm Sketch
3233 ////////////////////////////////////////////////////////////////
3234 // Until all tasks exhausted (both spaces):
3235 // -- claim next available chunk
3236 // -- bump global finger via CAS
3237 // -- find first object that starts in this chunk
3238 //    and start scanning bitmap from that position
3239 // -- scan marked objects for oops
3240 // -- CAS-mark target, and if successful:
3241 //    . if target oop is above global finger (volatile read)
3242 //      nothing to do
3243 //    . if target oop is in chunk and above local finger
3244 //        then nothing to do
3245 //    . else push on work-queue
3246 // -- Deal with possible overflow issues:
3247 //    . local work-queue overflow causes stuff to be pushed on
3248 //      global (common) overflow queue
3249 //    . always first empty local work queue
3250 //    . then get a batch of oops from global work queue if any
3251 //    . then do work stealing
3252 // -- When all tasks claimed (both spaces)
3253 //    and local work queue empty,
3254 //    then in a loop do:
3255 //    . check global overflow stack; steal a batch of oops and trace
3256 //    . try to steal from other threads oif GOS is empty
3257 //    . if neither is available, offer termination
3258 // -- Terminate and return result
3259 //
3260 void CMSConcMarkingTask::work(uint worker_id) {
3261   elapsedTimer _timer;
3262   ResourceMark rm;
3263   HandleMark hm;
3264 
3265   DEBUG_ONLY(_collector->verify_overflow_empty();)
3266 
3267   // Before we begin work, our work queue should be empty
3268   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3269   // Scan the bitmap covering _cms_space, tracing through grey objects.
3270   _timer.start();
3271   do_scan_and_mark(worker_id, _cms_space);
3272   _timer.stop();
3273   if (PrintCMSStatistics != 0) {
3274     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3275       worker_id, _timer.seconds());
3276       // XXX: need xxx/xxx type of notation, two timers
3277   }
3278 
3279   // ... do work stealing
3280   _timer.reset();
3281   _timer.start();
3282   do_work_steal(worker_id);
3283   _timer.stop();
3284   if (PrintCMSStatistics != 0) {
3285     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3286       worker_id, _timer.seconds());
3287       // XXX: need xxx/xxx type of notation, two timers
3288   }
3289   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3290   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3291   // Note that under the current task protocol, the
3292   // following assertion is true even of the spaces
3293   // expanded since the completion of the concurrent
3294   // marking. XXX This will likely change under a strict
3295   // ABORT semantics.
3296   // After perm removal the comparison was changed to
3297   // greater than or equal to from strictly greater than.
3298   // Before perm removal the highest address sweep would
3299   // have been at the end of perm gen but now is at the
3300   // end of the tenured gen.
3301   assert(_global_finger >=  _cms_space->end(),
3302          "All tasks have been completed");
3303   DEBUG_ONLY(_collector->verify_overflow_empty();)
3304 }
3305 
3306 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3307   HeapWord* read = _global_finger;
3308   HeapWord* cur  = read;
3309   while (f > read) {
3310     cur = read;
3311     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3312     if (cur == read) {
3313       // our cas succeeded
3314       assert(_global_finger >= f, "protocol consistency");
3315       break;
3316     }
3317   }
3318 }
3319 
3320 // This is really inefficient, and should be redone by
3321 // using (not yet available) block-read and -write interfaces to the
3322 // stack and the work_queue. XXX FIX ME !!!
3323 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3324                                                       OopTaskQueue* work_q) {
3325   // Fast lock-free check
3326   if (ovflw_stk->length() == 0) {
3327     return false;
3328   }
3329   assert(work_q->size() == 0, "Shouldn't steal");
3330   MutexLockerEx ml(ovflw_stk->par_lock(),
3331                    Mutex::_no_safepoint_check_flag);
3332   // Grab up to 1/4 the size of the work queue
3333   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3334                     (size_t)ParGCDesiredObjsFromOverflowList);
3335   num = MIN2(num, ovflw_stk->length());
3336   for (int i = (int) num; i > 0; i--) {
3337     oop cur = ovflw_stk->pop();
3338     assert(cur != NULL, "Counted wrong?");
3339     work_q->push(cur);
3340   }
3341   return num > 0;
3342 }
3343 
3344 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3345   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3346   int n_tasks = pst->n_tasks();
3347   // We allow that there may be no tasks to do here because
3348   // we are restarting after a stack overflow.
3349   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3350   uint nth_task = 0;
3351 
3352   HeapWord* aligned_start = sp->bottom();
3353   if (sp->used_region().contains(_restart_addr)) {
3354     // Align down to a card boundary for the start of 0th task
3355     // for this space.
3356     aligned_start =
3357       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3358                                  CardTableModRefBS::card_size);
3359   }
3360 
3361   size_t chunk_size = sp->marking_task_size();
3362   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3363     // Having claimed the nth task in this space,
3364     // compute the chunk that it corresponds to:
3365     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3366                                aligned_start + (nth_task+1)*chunk_size);
3367     // Try and bump the global finger via a CAS;
3368     // note that we need to do the global finger bump
3369     // _before_ taking the intersection below, because
3370     // the task corresponding to that region will be
3371     // deemed done even if the used_region() expands
3372     // because of allocation -- as it almost certainly will
3373     // during start-up while the threads yield in the
3374     // closure below.
3375     HeapWord* finger = span.end();
3376     bump_global_finger(finger);   // atomically
3377     // There are null tasks here corresponding to chunks
3378     // beyond the "top" address of the space.
3379     span = span.intersection(sp->used_region());
3380     if (!span.is_empty()) {  // Non-null task
3381       HeapWord* prev_obj;
3382       assert(!span.contains(_restart_addr) || nth_task == 0,
3383              "Inconsistency");
3384       if (nth_task == 0) {
3385         // For the 0th task, we'll not need to compute a block_start.
3386         if (span.contains(_restart_addr)) {
3387           // In the case of a restart because of stack overflow,
3388           // we might additionally skip a chunk prefix.
3389           prev_obj = _restart_addr;
3390         } else {
3391           prev_obj = span.start();
3392         }
3393       } else {
3394         // We want to skip the first object because
3395         // the protocol is to scan any object in its entirety
3396         // that _starts_ in this span; a fortiori, any
3397         // object starting in an earlier span is scanned
3398         // as part of an earlier claimed task.
3399         // Below we use the "careful" version of block_start
3400         // so we do not try to navigate uninitialized objects.
3401         prev_obj = sp->block_start_careful(span.start());
3402         // Below we use a variant of block_size that uses the
3403         // Printezis bits to avoid waiting for allocated
3404         // objects to become initialized/parsable.
3405         while (prev_obj < span.start()) {
3406           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3407           if (sz > 0) {
3408             prev_obj += sz;
3409           } else {
3410             // In this case we may end up doing a bit of redundant
3411             // scanning, but that appears unavoidable, short of
3412             // locking the free list locks; see bug 6324141.
3413             break;
3414           }
3415         }
3416       }
3417       if (prev_obj < span.end()) {
3418         MemRegion my_span = MemRegion(prev_obj, span.end());
3419         // Do the marking work within a non-empty span --
3420         // the last argument to the constructor indicates whether the
3421         // iteration should be incremental with periodic yields.
3422         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3423                                     &_collector->_markBitMap,
3424                                     work_queue(i),
3425                                     &_collector->_markStack);
3426         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3427       } // else nothing to do for this task
3428     }   // else nothing to do for this task
3429   }
3430   // We'd be tempted to assert here that since there are no
3431   // more tasks left to claim in this space, the global_finger
3432   // must exceed space->top() and a fortiori space->end(). However,
3433   // that would not quite be correct because the bumping of
3434   // global_finger occurs strictly after the claiming of a task,
3435   // so by the time we reach here the global finger may not yet
3436   // have been bumped up by the thread that claimed the last
3437   // task.
3438   pst->all_tasks_completed();
3439 }
3440 
3441 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3442  private:
3443   CMSCollector* _collector;
3444   CMSConcMarkingTask* _task;
3445   MemRegion     _span;
3446   CMSBitMap*    _bit_map;
3447   CMSMarkStack* _overflow_stack;
3448   OopTaskQueue* _work_queue;
3449  protected:
3450   DO_OOP_WORK_DEFN
3451  public:
3452   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3453                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3454     MetadataAwareOopClosure(collector->ref_processor()),
3455     _collector(collector),
3456     _task(task),
3457     _span(collector->_span),
3458     _work_queue(work_queue),
3459     _bit_map(bit_map),
3460     _overflow_stack(overflow_stack)
3461   { }
3462   virtual void do_oop(oop* p);
3463   virtual void do_oop(narrowOop* p);
3464 
3465   void trim_queue(size_t max);
3466   void handle_stack_overflow(HeapWord* lost);
3467   void do_yield_check() {
3468     if (_task->should_yield()) {
3469       _task->yield();
3470     }
3471   }
3472 };
3473 
3474 // Grey object scanning during work stealing phase --
3475 // the salient assumption here is that any references
3476 // that are in these stolen objects being scanned must
3477 // already have been initialized (else they would not have
3478 // been published), so we do not need to check for
3479 // uninitialized objects before pushing here.
3480 void Par_ConcMarkingClosure::do_oop(oop obj) {
3481   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3482   HeapWord* addr = (HeapWord*)obj;
3483   // Check if oop points into the CMS generation
3484   // and is not marked
3485   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3486     // a white object ...
3487     // If we manage to "claim" the object, by being the
3488     // first thread to mark it, then we push it on our
3489     // marking stack
3490     if (_bit_map->par_mark(addr)) {     // ... now grey
3491       // push on work queue (grey set)
3492       bool simulate_overflow = false;
3493       NOT_PRODUCT(
3494         if (CMSMarkStackOverflowALot &&
3495             _collector->simulate_overflow()) {
3496           // simulate a stack overflow
3497           simulate_overflow = true;
3498         }
3499       )
3500       if (simulate_overflow ||
3501           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3502         // stack overflow
3503         if (PrintCMSStatistics != 0) {
3504           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3505                                  SIZE_FORMAT, _overflow_stack->capacity());
3506         }
3507         // We cannot assert that the overflow stack is full because
3508         // it may have been emptied since.
3509         assert(simulate_overflow ||
3510                _work_queue->size() == _work_queue->max_elems(),
3511               "Else push should have succeeded");
3512         handle_stack_overflow(addr);
3513       }
3514     } // Else, some other thread got there first
3515     do_yield_check();
3516   }
3517 }
3518 
3519 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3520 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3521 
3522 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3523   while (_work_queue->size() > max) {
3524     oop new_oop;
3525     if (_work_queue->pop_local(new_oop)) {
3526       assert(new_oop->is_oop(), "Should be an oop");
3527       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3528       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3529       new_oop->oop_iterate(this);  // do_oop() above
3530       do_yield_check();
3531     }
3532   }
3533 }
3534 
3535 // Upon stack overflow, we discard (part of) the stack,
3536 // remembering the least address amongst those discarded
3537 // in CMSCollector's _restart_address.
3538 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3539   // We need to do this under a mutex to prevent other
3540   // workers from interfering with the work done below.
3541   MutexLockerEx ml(_overflow_stack->par_lock(),
3542                    Mutex::_no_safepoint_check_flag);
3543   // Remember the least grey address discarded
3544   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3545   _collector->lower_restart_addr(ra);
3546   _overflow_stack->reset();  // discard stack contents
3547   _overflow_stack->expand(); // expand the stack if possible
3548 }
3549 
3550 
3551 void CMSConcMarkingTask::do_work_steal(int i) {
3552   OopTaskQueue* work_q = work_queue(i);
3553   oop obj_to_scan;
3554   CMSBitMap* bm = &(_collector->_markBitMap);
3555   CMSMarkStack* ovflw = &(_collector->_markStack);
3556   int* seed = _collector->hash_seed(i);
3557   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3558   while (true) {
3559     cl.trim_queue(0);
3560     assert(work_q->size() == 0, "Should have been emptied above");
3561     if (get_work_from_overflow_stack(ovflw, work_q)) {
3562       // Can't assert below because the work obtained from the
3563       // overflow stack may already have been stolen from us.
3564       // assert(work_q->size() > 0, "Work from overflow stack");
3565       continue;
3566     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3567       assert(obj_to_scan->is_oop(), "Should be an oop");
3568       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3569       obj_to_scan->oop_iterate(&cl);
3570     } else if (terminator()->offer_termination(&_term_term)) {
3571       assert(work_q->size() == 0, "Impossible!");
3572       break;
3573     } else if (yielding() || should_yield()) {
3574       yield();
3575     }
3576   }
3577 }
3578 
3579 // This is run by the CMS (coordinator) thread.
3580 void CMSConcMarkingTask::coordinator_yield() {
3581   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3582          "CMS thread should hold CMS token");
3583   // First give up the locks, then yield, then re-lock
3584   // We should probably use a constructor/destructor idiom to
3585   // do this unlock/lock or modify the MutexUnlocker class to
3586   // serve our purpose. XXX
3587   assert_lock_strong(_bit_map_lock);
3588   _bit_map_lock->unlock();
3589   ConcurrentMarkSweepThread::desynchronize(true);
3590   _collector->stopTimer();
3591   if (PrintCMSStatistics != 0) {
3592     _collector->incrementYields();
3593   }
3594 
3595   // It is possible for whichever thread initiated the yield request
3596   // not to get a chance to wake up and take the bitmap lock between
3597   // this thread releasing it and reacquiring it. So, while the
3598   // should_yield() flag is on, let's sleep for a bit to give the
3599   // other thread a chance to wake up. The limit imposed on the number
3600   // of iterations is defensive, to avoid any unforseen circumstances
3601   // putting us into an infinite loop. Since it's always been this
3602   // (coordinator_yield()) method that was observed to cause the
3603   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3604   // which is by default non-zero. For the other seven methods that
3605   // also perform the yield operation, as are using a different
3606   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3607   // can enable the sleeping for those methods too, if necessary.
3608   // See 6442774.
3609   //
3610   // We really need to reconsider the synchronization between the GC
3611   // thread and the yield-requesting threads in the future and we
3612   // should really use wait/notify, which is the recommended
3613   // way of doing this type of interaction. Additionally, we should
3614   // consolidate the eight methods that do the yield operation and they
3615   // are almost identical into one for better maintainability and
3616   // readability. See 6445193.
3617   //
3618   // Tony 2006.06.29
3619   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3620                    ConcurrentMarkSweepThread::should_yield() &&
3621                    !CMSCollector::foregroundGCIsActive(); ++i) {
3622     os::sleep(Thread::current(), 1, false);
3623   }
3624 
3625   ConcurrentMarkSweepThread::synchronize(true);
3626   _bit_map_lock->lock_without_safepoint_check();
3627   _collector->startTimer();
3628 }
3629 
3630 bool CMSCollector::do_marking_mt() {
3631   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3632   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3633                                                                   conc_workers()->active_workers(),
3634                                                                   Threads::number_of_non_daemon_threads());
3635   conc_workers()->set_active_workers(num_workers);
3636 
3637   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3638 
3639   CMSConcMarkingTask tsk(this,
3640                          cms_space,
3641                          conc_workers(),
3642                          task_queues());
3643 
3644   // Since the actual number of workers we get may be different
3645   // from the number we requested above, do we need to do anything different
3646   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3647   // class?? XXX
3648   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3649 
3650   // Refs discovery is already non-atomic.
3651   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3652   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3653   conc_workers()->start_task(&tsk);
3654   while (tsk.yielded()) {
3655     tsk.coordinator_yield();
3656     conc_workers()->continue_task(&tsk);
3657   }
3658   // If the task was aborted, _restart_addr will be non-NULL
3659   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3660   while (_restart_addr != NULL) {
3661     // XXX For now we do not make use of ABORTED state and have not
3662     // yet implemented the right abort semantics (even in the original
3663     // single-threaded CMS case). That needs some more investigation
3664     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3665     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3666     // If _restart_addr is non-NULL, a marking stack overflow
3667     // occurred; we need to do a fresh marking iteration from the
3668     // indicated restart address.
3669     if (_foregroundGCIsActive) {
3670       // We may be running into repeated stack overflows, having
3671       // reached the limit of the stack size, while making very
3672       // slow forward progress. It may be best to bail out and
3673       // let the foreground collector do its job.
3674       // Clear _restart_addr, so that foreground GC
3675       // works from scratch. This avoids the headache of
3676       // a "rescan" which would otherwise be needed because
3677       // of the dirty mod union table & card table.
3678       _restart_addr = NULL;
3679       return false;
3680     }
3681     // Adjust the task to restart from _restart_addr
3682     tsk.reset(_restart_addr);
3683     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3684                   _restart_addr);
3685     _restart_addr = NULL;
3686     // Get the workers going again
3687     conc_workers()->start_task(&tsk);
3688     while (tsk.yielded()) {
3689       tsk.coordinator_yield();
3690       conc_workers()->continue_task(&tsk);
3691     }
3692   }
3693   assert(tsk.completed(), "Inconsistency");
3694   assert(tsk.result() == true, "Inconsistency");
3695   return true;
3696 }
3697 
3698 bool CMSCollector::do_marking_st() {
3699   ResourceMark rm;
3700   HandleMark   hm;
3701 
3702   // Temporarily make refs discovery single threaded (non-MT)
3703   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3704   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3705     &_markStack, CMSYield);
3706   // the last argument to iterate indicates whether the iteration
3707   // should be incremental with periodic yields.
3708   _markBitMap.iterate(&markFromRootsClosure);
3709   // If _restart_addr is non-NULL, a marking stack overflow
3710   // occurred; we need to do a fresh iteration from the
3711   // indicated restart address.
3712   while (_restart_addr != NULL) {
3713     if (_foregroundGCIsActive) {
3714       // We may be running into repeated stack overflows, having
3715       // reached the limit of the stack size, while making very
3716       // slow forward progress. It may be best to bail out and
3717       // let the foreground collector do its job.
3718       // Clear _restart_addr, so that foreground GC
3719       // works from scratch. This avoids the headache of
3720       // a "rescan" which would otherwise be needed because
3721       // of the dirty mod union table & card table.
3722       _restart_addr = NULL;
3723       return false;  // indicating failure to complete marking
3724     }
3725     // Deal with stack overflow:
3726     // we restart marking from _restart_addr
3727     HeapWord* ra = _restart_addr;
3728     markFromRootsClosure.reset(ra);
3729     _restart_addr = NULL;
3730     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3731   }
3732   return true;
3733 }
3734 
3735 void CMSCollector::preclean() {
3736   check_correct_thread_executing();
3737   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3738   verify_work_stacks_empty();
3739   verify_overflow_empty();
3740   _abort_preclean = false;
3741   if (CMSPrecleaningEnabled) {
3742     if (!CMSEdenChunksRecordAlways) {
3743       _eden_chunk_index = 0;
3744     }
3745     size_t used = get_eden_used();
3746     size_t capacity = get_eden_capacity();
3747     // Don't start sampling unless we will get sufficiently
3748     // many samples.
3749     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3750                 * CMSScheduleRemarkEdenPenetration)) {
3751       _start_sampling = true;
3752     } else {
3753       _start_sampling = false;
3754     }
3755     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3756     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3757     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3758   }
3759   CMSTokenSync x(true); // is cms thread
3760   if (CMSPrecleaningEnabled) {
3761     sample_eden();
3762     _collectorState = AbortablePreclean;
3763   } else {
3764     _collectorState = FinalMarking;
3765   }
3766   verify_work_stacks_empty();
3767   verify_overflow_empty();
3768 }
3769 
3770 // Try and schedule the remark such that young gen
3771 // occupancy is CMSScheduleRemarkEdenPenetration %.
3772 void CMSCollector::abortable_preclean() {
3773   check_correct_thread_executing();
3774   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3775   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3776 
3777   // If Eden's current occupancy is below this threshold,
3778   // immediately schedule the remark; else preclean
3779   // past the next scavenge in an effort to
3780   // schedule the pause as described above. By choosing
3781   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3782   // we will never do an actual abortable preclean cycle.
3783   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3784     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3785     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3786     // We need more smarts in the abortable preclean
3787     // loop below to deal with cases where allocation
3788     // in young gen is very very slow, and our precleaning
3789     // is running a losing race against a horde of
3790     // mutators intent on flooding us with CMS updates
3791     // (dirty cards).
3792     // One, admittedly dumb, strategy is to give up
3793     // after a certain number of abortable precleaning loops
3794     // or after a certain maximum time. We want to make
3795     // this smarter in the next iteration.
3796     // XXX FIX ME!!! YSR
3797     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3798     while (!(should_abort_preclean() ||
3799              ConcurrentMarkSweepThread::should_terminate())) {
3800       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3801       cumworkdone += workdone;
3802       loops++;
3803       // Voluntarily terminate abortable preclean phase if we have
3804       // been at it for too long.
3805       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3806           loops >= CMSMaxAbortablePrecleanLoops) {
3807         if (PrintGCDetails) {
3808           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3809         }
3810         break;
3811       }
3812       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3813         if (PrintGCDetails) {
3814           gclog_or_tty->print(" CMS: abort preclean due to time ");
3815         }
3816         break;
3817       }
3818       // If we are doing little work each iteration, we should
3819       // take a short break.
3820       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3821         // Sleep for some time, waiting for work to accumulate
3822         stopTimer();
3823         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3824         startTimer();
3825         waited++;
3826       }
3827     }
3828     if (PrintCMSStatistics > 0) {
3829       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3830                           loops, waited, cumworkdone);
3831     }
3832   }
3833   CMSTokenSync x(true); // is cms thread
3834   if (_collectorState != Idling) {
3835     assert(_collectorState == AbortablePreclean,
3836            "Spontaneous state transition?");
3837     _collectorState = FinalMarking;
3838   } // Else, a foreground collection completed this CMS cycle.
3839   return;
3840 }
3841 
3842 // Respond to an Eden sampling opportunity
3843 void CMSCollector::sample_eden() {
3844   // Make sure a young gc cannot sneak in between our
3845   // reading and recording of a sample.
3846   assert(Thread::current()->is_ConcurrentGC_thread(),
3847          "Only the cms thread may collect Eden samples");
3848   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3849          "Should collect samples while holding CMS token");
3850   if (!_start_sampling) {
3851     return;
3852   }
3853   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3854   // is populated by the young generation.
3855   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3856     if (_eden_chunk_index < _eden_chunk_capacity) {
3857       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3858       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3859              "Unexpected state of Eden");
3860       // We'd like to check that what we just sampled is an oop-start address;
3861       // however, we cannot do that here since the object may not yet have been
3862       // initialized. So we'll instead do the check when we _use_ this sample
3863       // later.
3864       if (_eden_chunk_index == 0 ||
3865           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3866                          _eden_chunk_array[_eden_chunk_index-1])
3867            >= CMSSamplingGrain)) {
3868         _eden_chunk_index++;  // commit sample
3869       }
3870     }
3871   }
3872   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3873     size_t used = get_eden_used();
3874     size_t capacity = get_eden_capacity();
3875     assert(used <= capacity, "Unexpected state of Eden");
3876     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3877       _abort_preclean = true;
3878     }
3879   }
3880 }
3881 
3882 
3883 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3884   assert(_collectorState == Precleaning ||
3885          _collectorState == AbortablePreclean, "incorrect state");
3886   ResourceMark rm;
3887   HandleMark   hm;
3888 
3889   // Precleaning is currently not MT but the reference processor
3890   // may be set for MT.  Disable it temporarily here.
3891   ReferenceProcessor* rp = ref_processor();
3892   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3893 
3894   // Do one pass of scrubbing the discovered reference lists
3895   // to remove any reference objects with strongly-reachable
3896   // referents.
3897   if (clean_refs) {
3898     CMSPrecleanRefsYieldClosure yield_cl(this);
3899     assert(rp->span().equals(_span), "Spans should be equal");
3900     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3901                                    &_markStack, true /* preclean */);
3902     CMSDrainMarkingStackClosure complete_trace(this,
3903                                    _span, &_markBitMap, &_markStack,
3904                                    &keep_alive, true /* preclean */);
3905 
3906     // We don't want this step to interfere with a young
3907     // collection because we don't want to take CPU
3908     // or memory bandwidth away from the young GC threads
3909     // (which may be as many as there are CPUs).
3910     // Note that we don't need to protect ourselves from
3911     // interference with mutators because they can't
3912     // manipulate the discovered reference lists nor affect
3913     // the computed reachability of the referents, the
3914     // only properties manipulated by the precleaning
3915     // of these reference lists.
3916     stopTimer();
3917     CMSTokenSyncWithLocks x(true /* is cms thread */,
3918                             bitMapLock());
3919     startTimer();
3920     sample_eden();
3921 
3922     // The following will yield to allow foreground
3923     // collection to proceed promptly. XXX YSR:
3924     // The code in this method may need further
3925     // tweaking for better performance and some restructuring
3926     // for cleaner interfaces.
3927     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3928     rp->preclean_discovered_references(
3929           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3930           gc_timer, _gc_tracer_cm->gc_id());
3931   }
3932 
3933   if (clean_survivor) {  // preclean the active survivor space(s)
3934     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3935                              &_markBitMap, &_modUnionTable,
3936                              &_markStack, true /* precleaning phase */);
3937     stopTimer();
3938     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3939                              bitMapLock());
3940     startTimer();
3941     unsigned int before_count =
3942       GenCollectedHeap::heap()->total_collections();
3943     SurvivorSpacePrecleanClosure
3944       sss_cl(this, _span, &_markBitMap, &_markStack,
3945              &pam_cl, before_count, CMSYield);
3946     _young_gen->from()->object_iterate_careful(&sss_cl);
3947     _young_gen->to()->object_iterate_careful(&sss_cl);
3948   }
3949   MarkRefsIntoAndScanClosure
3950     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3951              &_markStack, this, CMSYield,
3952              true /* precleaning phase */);
3953   // CAUTION: The following closure has persistent state that may need to
3954   // be reset upon a decrease in the sequence of addresses it
3955   // processes.
3956   ScanMarkedObjectsAgainCarefullyClosure
3957     smoac_cl(this, _span,
3958       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3959 
3960   // Preclean dirty cards in ModUnionTable and CardTable using
3961   // appropriate convergence criterion;
3962   // repeat CMSPrecleanIter times unless we find that
3963   // we are losing.
3964   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3965   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3966          "Bad convergence multiplier");
3967   assert(CMSPrecleanThreshold >= 100,
3968          "Unreasonably low CMSPrecleanThreshold");
3969 
3970   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3971   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3972        numIter < CMSPrecleanIter;
3973        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3974     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3975     if (Verbose && PrintGCDetails) {
3976       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3977     }
3978     // Either there are very few dirty cards, so re-mark
3979     // pause will be small anyway, or our pre-cleaning isn't
3980     // that much faster than the rate at which cards are being
3981     // dirtied, so we might as well stop and re-mark since
3982     // precleaning won't improve our re-mark time by much.
3983     if (curNumCards <= CMSPrecleanThreshold ||
3984         (numIter > 0 &&
3985          (curNumCards * CMSPrecleanDenominator >
3986          lastNumCards * CMSPrecleanNumerator))) {
3987       numIter++;
3988       cumNumCards += curNumCards;
3989       break;
3990     }
3991   }
3992 
3993   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3994 
3995   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3996   cumNumCards += curNumCards;
3997   if (PrintGCDetails && PrintCMSStatistics != 0) {
3998     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3999                   curNumCards, cumNumCards, numIter);
4000   }
4001   return cumNumCards;   // as a measure of useful work done
4002 }
4003 
4004 // PRECLEANING NOTES:
4005 // Precleaning involves:
4006 // . reading the bits of the modUnionTable and clearing the set bits.
4007 // . For the cards corresponding to the set bits, we scan the
4008 //   objects on those cards. This means we need the free_list_lock
4009 //   so that we can safely iterate over the CMS space when scanning
4010 //   for oops.
4011 // . When we scan the objects, we'll be both reading and setting
4012 //   marks in the marking bit map, so we'll need the marking bit map.
4013 // . For protecting _collector_state transitions, we take the CGC_lock.
4014 //   Note that any races in the reading of of card table entries by the
4015 //   CMS thread on the one hand and the clearing of those entries by the
4016 //   VM thread or the setting of those entries by the mutator threads on the
4017 //   other are quite benign. However, for efficiency it makes sense to keep
4018 //   the VM thread from racing with the CMS thread while the latter is
4019 //   dirty card info to the modUnionTable. We therefore also use the
4020 //   CGC_lock to protect the reading of the card table and the mod union
4021 //   table by the CM thread.
4022 // . We run concurrently with mutator updates, so scanning
4023 //   needs to be done carefully  -- we should not try to scan
4024 //   potentially uninitialized objects.
4025 //
4026 // Locking strategy: While holding the CGC_lock, we scan over and
4027 // reset a maximal dirty range of the mod union / card tables, then lock
4028 // the free_list_lock and bitmap lock to do a full marking, then
4029 // release these locks; and repeat the cycle. This allows for a
4030 // certain amount of fairness in the sharing of these locks between
4031 // the CMS collector on the one hand, and the VM thread and the
4032 // mutators on the other.
4033 
4034 // NOTE: preclean_mod_union_table() and preclean_card_table()
4035 // further below are largely identical; if you need to modify
4036 // one of these methods, please check the other method too.
4037 
4038 size_t CMSCollector::preclean_mod_union_table(
4039   ConcurrentMarkSweepGeneration* gen,
4040   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4041   verify_work_stacks_empty();
4042   verify_overflow_empty();
4043 
4044   // strategy: starting with the first card, accumulate contiguous
4045   // ranges of dirty cards; clear these cards, then scan the region
4046   // covered by these cards.
4047 
4048   // Since all of the MUT is committed ahead, we can just use
4049   // that, in case the generations expand while we are precleaning.
4050   // It might also be fine to just use the committed part of the
4051   // generation, but we might potentially miss cards when the
4052   // generation is rapidly expanding while we are in the midst
4053   // of precleaning.
4054   HeapWord* startAddr = gen->reserved().start();
4055   HeapWord* endAddr   = gen->reserved().end();
4056 
4057   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4058 
4059   size_t numDirtyCards, cumNumDirtyCards;
4060   HeapWord *nextAddr, *lastAddr;
4061   for (cumNumDirtyCards = numDirtyCards = 0,
4062        nextAddr = lastAddr = startAddr;
4063        nextAddr < endAddr;
4064        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4065 
4066     ResourceMark rm;
4067     HandleMark   hm;
4068 
4069     MemRegion dirtyRegion;
4070     {
4071       stopTimer();
4072       // Potential yield point
4073       CMSTokenSync ts(true);
4074       startTimer();
4075       sample_eden();
4076       // Get dirty region starting at nextOffset (inclusive),
4077       // simultaneously clearing it.
4078       dirtyRegion =
4079         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4080       assert(dirtyRegion.start() >= nextAddr,
4081              "returned region inconsistent?");
4082     }
4083     // Remember where the next search should begin.
4084     // The returned region (if non-empty) is a right open interval,
4085     // so lastOffset is obtained from the right end of that
4086     // interval.
4087     lastAddr = dirtyRegion.end();
4088     // Should do something more transparent and less hacky XXX
4089     numDirtyCards =
4090       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4091 
4092     // We'll scan the cards in the dirty region (with periodic
4093     // yields for foreground GC as needed).
4094     if (!dirtyRegion.is_empty()) {
4095       assert(numDirtyCards > 0, "consistency check");
4096       HeapWord* stop_point = NULL;
4097       stopTimer();
4098       // Potential yield point
4099       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4100                                bitMapLock());
4101       startTimer();
4102       {
4103         verify_work_stacks_empty();
4104         verify_overflow_empty();
4105         sample_eden();
4106         stop_point =
4107           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4108       }
4109       if (stop_point != NULL) {
4110         // The careful iteration stopped early either because it found an
4111         // uninitialized object, or because we were in the midst of an
4112         // "abortable preclean", which should now be aborted. Redirty
4113         // the bits corresponding to the partially-scanned or unscanned
4114         // cards. We'll either restart at the next block boundary or
4115         // abort the preclean.
4116         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4117                "Should only be AbortablePreclean.");
4118         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4119         if (should_abort_preclean()) {
4120           break; // out of preclean loop
4121         } else {
4122           // Compute the next address at which preclean should pick up;
4123           // might need bitMapLock in order to read P-bits.
4124           lastAddr = next_card_start_after_block(stop_point);
4125         }
4126       }
4127     } else {
4128       assert(lastAddr == endAddr, "consistency check");
4129       assert(numDirtyCards == 0, "consistency check");
4130       break;
4131     }
4132   }
4133   verify_work_stacks_empty();
4134   verify_overflow_empty();
4135   return cumNumDirtyCards;
4136 }
4137 
4138 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4139 // below are largely identical; if you need to modify
4140 // one of these methods, please check the other method too.
4141 
4142 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4143   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4144   // strategy: it's similar to precleamModUnionTable above, in that
4145   // we accumulate contiguous ranges of dirty cards, mark these cards
4146   // precleaned, then scan the region covered by these cards.
4147   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4148   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4149 
4150   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4151 
4152   size_t numDirtyCards, cumNumDirtyCards;
4153   HeapWord *lastAddr, *nextAddr;
4154 
4155   for (cumNumDirtyCards = numDirtyCards = 0,
4156        nextAddr = lastAddr = startAddr;
4157        nextAddr < endAddr;
4158        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4159 
4160     ResourceMark rm;
4161     HandleMark   hm;
4162 
4163     MemRegion dirtyRegion;
4164     {
4165       // See comments in "Precleaning notes" above on why we
4166       // do this locking. XXX Could the locking overheads be
4167       // too high when dirty cards are sparse? [I don't think so.]
4168       stopTimer();
4169       CMSTokenSync x(true); // is cms thread
4170       startTimer();
4171       sample_eden();
4172       // Get and clear dirty region from card table
4173       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4174                                     MemRegion(nextAddr, endAddr),
4175                                     true,
4176                                     CardTableModRefBS::precleaned_card_val());
4177 
4178       assert(dirtyRegion.start() >= nextAddr,
4179              "returned region inconsistent?");
4180     }
4181     lastAddr = dirtyRegion.end();
4182     numDirtyCards =
4183       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4184 
4185     if (!dirtyRegion.is_empty()) {
4186       stopTimer();
4187       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4188       startTimer();
4189       sample_eden();
4190       verify_work_stacks_empty();
4191       verify_overflow_empty();
4192       HeapWord* stop_point =
4193         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4194       if (stop_point != NULL) {
4195         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4196                "Should only be AbortablePreclean.");
4197         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4198         if (should_abort_preclean()) {
4199           break; // out of preclean loop
4200         } else {
4201           // Compute the next address at which preclean should pick up.
4202           lastAddr = next_card_start_after_block(stop_point);
4203         }
4204       }
4205     } else {
4206       break;
4207     }
4208   }
4209   verify_work_stacks_empty();
4210   verify_overflow_empty();
4211   return cumNumDirtyCards;
4212 }
4213 
4214 class PrecleanKlassClosure : public KlassClosure {
4215   KlassToOopClosure _cm_klass_closure;
4216  public:
4217   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4218   void do_klass(Klass* k) {
4219     if (k->has_accumulated_modified_oops()) {
4220       k->clear_accumulated_modified_oops();
4221 
4222       _cm_klass_closure.do_klass(k);
4223     }
4224   }
4225 };
4226 
4227 // The freelist lock is needed to prevent asserts, is it really needed?
4228 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4229 
4230   cl->set_freelistLock(freelistLock);
4231 
4232   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4233 
4234   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4235   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4236   PrecleanKlassClosure preclean_klass_closure(cl);
4237   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4238 
4239   verify_work_stacks_empty();
4240   verify_overflow_empty();
4241 }
4242 
4243 void CMSCollector::checkpointRootsFinal() {
4244   assert(_collectorState == FinalMarking, "incorrect state transition?");
4245   check_correct_thread_executing();
4246   // world is stopped at this checkpoint
4247   assert(SafepointSynchronize::is_at_safepoint(),
4248          "world should be stopped");
4249   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4250 
4251   verify_work_stacks_empty();
4252   verify_overflow_empty();
4253 
4254   if (PrintGCDetails) {
4255     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4256                         _young_gen->used() / K,
4257                         _young_gen->capacity() / K);
4258   }
4259   {
4260     if (CMSScavengeBeforeRemark) {
4261       GenCollectedHeap* gch = GenCollectedHeap::heap();
4262       // Temporarily set flag to false, GCH->do_collection will
4263       // expect it to be false and set to true
4264       FlagSetting fl(gch->_is_gc_active, false);
4265       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4266         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4267       int level = _cmsGen->level() - 1;
4268       if (level >= 0) {
4269         gch->do_collection(true,        // full (i.e. force, see below)
4270                            false,       // !clear_all_soft_refs
4271                            0,           // size
4272                            false,       // is_tlab
4273                            level        // max_level
4274                           );
4275       }
4276     }
4277     FreelistLocker x(this);
4278     MutexLockerEx y(bitMapLock(),
4279                     Mutex::_no_safepoint_check_flag);
4280     checkpointRootsFinalWork();
4281   }
4282   verify_work_stacks_empty();
4283   verify_overflow_empty();
4284 }
4285 
4286 void CMSCollector::checkpointRootsFinalWork() {
4287   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4288 
4289   assert(haveFreelistLocks(), "must have free list locks");
4290   assert_lock_strong(bitMapLock());
4291 
4292   ResourceMark rm;
4293   HandleMark   hm;
4294 
4295   GenCollectedHeap* gch = GenCollectedHeap::heap();
4296 
4297   if (should_unload_classes()) {
4298     CodeCache::gc_prologue();
4299   }
4300   assert(haveFreelistLocks(), "must have free list locks");
4301   assert_lock_strong(bitMapLock());
4302 
4303   // We might assume that we need not fill TLAB's when
4304   // CMSScavengeBeforeRemark is set, because we may have just done
4305   // a scavenge which would have filled all TLAB's -- and besides
4306   // Eden would be empty. This however may not always be the case --
4307   // for instance although we asked for a scavenge, it may not have
4308   // happened because of a JNI critical section. We probably need
4309   // a policy for deciding whether we can in that case wait until
4310   // the critical section releases and then do the remark following
4311   // the scavenge, and skip it here. In the absence of that policy,
4312   // or of an indication of whether the scavenge did indeed occur,
4313   // we cannot rely on TLAB's having been filled and must do
4314   // so here just in case a scavenge did not happen.
4315   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4316   // Update the saved marks which may affect the root scans.
4317   gch->save_marks();
4318 
4319   if (CMSPrintEdenSurvivorChunks) {
4320     print_eden_and_survivor_chunk_arrays();
4321   }
4322 
4323   {
4324     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4325 
4326     // Note on the role of the mod union table:
4327     // Since the marker in "markFromRoots" marks concurrently with
4328     // mutators, it is possible for some reachable objects not to have been
4329     // scanned. For instance, an only reference to an object A was
4330     // placed in object B after the marker scanned B. Unless B is rescanned,
4331     // A would be collected. Such updates to references in marked objects
4332     // are detected via the mod union table which is the set of all cards
4333     // dirtied since the first checkpoint in this GC cycle and prior to
4334     // the most recent young generation GC, minus those cleaned up by the
4335     // concurrent precleaning.
4336     if (CMSParallelRemarkEnabled) {
4337       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4338       do_remark_parallel();
4339     } else {
4340       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4341                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4342       do_remark_non_parallel();
4343     }
4344   }
4345   verify_work_stacks_empty();
4346   verify_overflow_empty();
4347 
4348   {
4349     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4350     refProcessingWork();
4351   }
4352   verify_work_stacks_empty();
4353   verify_overflow_empty();
4354 
4355   if (should_unload_classes()) {
4356     CodeCache::gc_epilogue();
4357   }
4358   JvmtiExport::gc_epilogue();
4359 
4360   // If we encountered any (marking stack / work queue) overflow
4361   // events during the current CMS cycle, take appropriate
4362   // remedial measures, where possible, so as to try and avoid
4363   // recurrence of that condition.
4364   assert(_markStack.isEmpty(), "No grey objects");
4365   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4366                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4367   if (ser_ovflw > 0) {
4368     if (PrintCMSStatistics != 0) {
4369       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4370         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4371         ", kac_preclean="SIZE_FORMAT")",
4372         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4373         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4374     }
4375     _markStack.expand();
4376     _ser_pmc_remark_ovflw = 0;
4377     _ser_pmc_preclean_ovflw = 0;
4378     _ser_kac_preclean_ovflw = 0;
4379     _ser_kac_ovflw = 0;
4380   }
4381   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4382     if (PrintCMSStatistics != 0) {
4383       gclog_or_tty->print_cr("Work queue overflow (benign) "
4384         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4385         _par_pmc_remark_ovflw, _par_kac_ovflw);
4386     }
4387     _par_pmc_remark_ovflw = 0;
4388     _par_kac_ovflw = 0;
4389   }
4390   if (PrintCMSStatistics != 0) {
4391      if (_markStack._hit_limit > 0) {
4392        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4393                               _markStack._hit_limit);
4394      }
4395      if (_markStack._failed_double > 0) {
4396        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4397                               " current capacity "SIZE_FORMAT,
4398                               _markStack._failed_double,
4399                               _markStack.capacity());
4400      }
4401   }
4402   _markStack._hit_limit = 0;
4403   _markStack._failed_double = 0;
4404 
4405   if ((VerifyAfterGC || VerifyDuringGC) &&
4406       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4407     verify_after_remark();
4408   }
4409 
4410   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4411 
4412   // Change under the freelistLocks.
4413   _collectorState = Sweeping;
4414   // Call isAllClear() under bitMapLock
4415   assert(_modUnionTable.isAllClear(),
4416       "Should be clear by end of the final marking");
4417   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4418       "Should be clear by end of the final marking");
4419 }
4420 
4421 void CMSParInitialMarkTask::work(uint worker_id) {
4422   elapsedTimer _timer;
4423   ResourceMark rm;
4424   HandleMark   hm;
4425 
4426   // ---------- scan from roots --------------
4427   _timer.start();
4428   GenCollectedHeap* gch = GenCollectedHeap::heap();
4429   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4430 
4431   // ---------- young gen roots --------------
4432   {
4433     work_on_young_gen_roots(worker_id, &par_mri_cl);
4434     _timer.stop();
4435     if (PrintCMSStatistics != 0) {
4436       gclog_or_tty->print_cr(
4437         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4438         worker_id, _timer.seconds());
4439     }
4440   }
4441 
4442   // ---------- remaining roots --------------
4443   _timer.reset();
4444   _timer.start();
4445 
4446   CLDToOopClosure cld_closure(&par_mri_cl, true);
4447 
4448   gch->gen_process_roots(_collector->_cmsGen->level(),
4449                          false,     // yg was scanned above
4450                          false,     // this is parallel code
4451                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4452                          _collector->should_unload_classes(),
4453                          &par_mri_cl,
4454                          NULL,
4455                          &cld_closure);
4456   assert(_collector->should_unload_classes()
4457          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4458          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4459   _timer.stop();
4460   if (PrintCMSStatistics != 0) {
4461     gclog_or_tty->print_cr(
4462       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4463       worker_id, _timer.seconds());
4464   }
4465 }
4466 
4467 // Parallel remark task
4468 class CMSParRemarkTask: public CMSParMarkTask {
4469   CompactibleFreeListSpace* _cms_space;
4470 
4471   // The per-thread work queues, available here for stealing.
4472   OopTaskQueueSet*       _task_queues;
4473   ParallelTaskTerminator _term;
4474 
4475  public:
4476   // A value of 0 passed to n_workers will cause the number of
4477   // workers to be taken from the active workers in the work gang.
4478   CMSParRemarkTask(CMSCollector* collector,
4479                    CompactibleFreeListSpace* cms_space,
4480                    uint n_workers, FlexibleWorkGang* workers,
4481                    OopTaskQueueSet* task_queues):
4482     CMSParMarkTask("Rescan roots and grey objects in parallel",
4483                    collector, n_workers),
4484     _cms_space(cms_space),
4485     _task_queues(task_queues),
4486     _term(n_workers, task_queues) { }
4487 
4488   OopTaskQueueSet* task_queues() { return _task_queues; }
4489 
4490   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4491 
4492   ParallelTaskTerminator* terminator() { return &_term; }
4493   uint n_workers() { return _n_workers; }
4494 
4495   void work(uint worker_id);
4496 
4497  private:
4498   // ... of  dirty cards in old space
4499   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4500                                   Par_MarkRefsIntoAndScanClosure* cl);
4501 
4502   // ... work stealing for the above
4503   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4504 };
4505 
4506 class RemarkKlassClosure : public KlassClosure {
4507   KlassToOopClosure _cm_klass_closure;
4508  public:
4509   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4510   void do_klass(Klass* k) {
4511     // Check if we have modified any oops in the Klass during the concurrent marking.
4512     if (k->has_accumulated_modified_oops()) {
4513       k->clear_accumulated_modified_oops();
4514 
4515       // We could have transfered the current modified marks to the accumulated marks,
4516       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4517     } else if (k->has_modified_oops()) {
4518       // Don't clear anything, this info is needed by the next young collection.
4519     } else {
4520       // No modified oops in the Klass.
4521       return;
4522     }
4523 
4524     // The klass has modified fields, need to scan the klass.
4525     _cm_klass_closure.do_klass(k);
4526   }
4527 };
4528 
4529 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4530   ParNewGeneration* young_gen = _collector->_young_gen;
4531   ContiguousSpace* eden_space = young_gen->eden();
4532   ContiguousSpace* from_space = young_gen->from();
4533   ContiguousSpace* to_space   = young_gen->to();
4534 
4535   HeapWord** eca = _collector->_eden_chunk_array;
4536   size_t     ect = _collector->_eden_chunk_index;
4537   HeapWord** sca = _collector->_survivor_chunk_array;
4538   size_t     sct = _collector->_survivor_chunk_index;
4539 
4540   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4541   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4542 
4543   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4544   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4545   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4546 }
4547 
4548 // work_queue(i) is passed to the closure
4549 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4550 // also is passed to do_dirty_card_rescan_tasks() and to
4551 // do_work_steal() to select the i-th task_queue.
4552 
4553 void CMSParRemarkTask::work(uint worker_id) {
4554   elapsedTimer _timer;
4555   ResourceMark rm;
4556   HandleMark   hm;
4557 
4558   // ---------- rescan from roots --------------
4559   _timer.start();
4560   GenCollectedHeap* gch = GenCollectedHeap::heap();
4561   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4562     _collector->_span, _collector->ref_processor(),
4563     &(_collector->_markBitMap),
4564     work_queue(worker_id));
4565 
4566   // Rescan young gen roots first since these are likely
4567   // coarsely partitioned and may, on that account, constitute
4568   // the critical path; thus, it's best to start off that
4569   // work first.
4570   // ---------- young gen roots --------------
4571   {
4572     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4573     _timer.stop();
4574     if (PrintCMSStatistics != 0) {
4575       gclog_or_tty->print_cr(
4576         "Finished young gen rescan work in %dth thread: %3.3f sec",
4577         worker_id, _timer.seconds());
4578     }
4579   }
4580 
4581   // ---------- remaining roots --------------
4582   _timer.reset();
4583   _timer.start();
4584   gch->gen_process_roots(_collector->_cmsGen->level(),
4585                          false,     // yg was scanned above
4586                          false,     // this is parallel code
4587                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4588                          _collector->should_unload_classes(),
4589                          &par_mrias_cl,
4590                          NULL,
4591                          NULL);     // The dirty klasses will be handled below
4592 
4593   assert(_collector->should_unload_classes()
4594          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4595          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4596   _timer.stop();
4597   if (PrintCMSStatistics != 0) {
4598     gclog_or_tty->print_cr(
4599       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4600       worker_id, _timer.seconds());
4601   }
4602 
4603   // ---------- unhandled CLD scanning ----------
4604   if (worker_id == 0) { // Single threaded at the moment.
4605     _timer.reset();
4606     _timer.start();
4607 
4608     // Scan all new class loader data objects and new dependencies that were
4609     // introduced during concurrent marking.
4610     ResourceMark rm;
4611     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4612     for (int i = 0; i < array->length(); i++) {
4613       par_mrias_cl.do_class_loader_data(array->at(i));
4614     }
4615 
4616     // We don't need to keep track of new CLDs anymore.
4617     ClassLoaderDataGraph::remember_new_clds(false);
4618 
4619     _timer.stop();
4620     if (PrintCMSStatistics != 0) {
4621       gclog_or_tty->print_cr(
4622           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4623           worker_id, _timer.seconds());
4624     }
4625   }
4626 
4627   // ---------- dirty klass scanning ----------
4628   if (worker_id == 0) { // Single threaded at the moment.
4629     _timer.reset();
4630     _timer.start();
4631 
4632     // Scan all classes that was dirtied during the concurrent marking phase.
4633     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4634     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4635 
4636     _timer.stop();
4637     if (PrintCMSStatistics != 0) {
4638       gclog_or_tty->print_cr(
4639           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4640           worker_id, _timer.seconds());
4641     }
4642   }
4643 
4644   // We might have added oops to ClassLoaderData::_handles during the
4645   // concurrent marking phase. These oops point to newly allocated objects
4646   // that are guaranteed to be kept alive. Either by the direct allocation
4647   // code, or when the young collector processes the roots. Hence,
4648   // we don't have to revisit the _handles block during the remark phase.
4649 
4650   // ---------- rescan dirty cards ------------
4651   _timer.reset();
4652   _timer.start();
4653 
4654   // Do the rescan tasks for each of the two spaces
4655   // (cms_space) in turn.
4656   // "worker_id" is passed to select the task_queue for "worker_id"
4657   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4658   _timer.stop();
4659   if (PrintCMSStatistics != 0) {
4660     gclog_or_tty->print_cr(
4661       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4662       worker_id, _timer.seconds());
4663   }
4664 
4665   // ---------- steal work from other threads ...
4666   // ---------- ... and drain overflow list.
4667   _timer.reset();
4668   _timer.start();
4669   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4670   _timer.stop();
4671   if (PrintCMSStatistics != 0) {
4672     gclog_or_tty->print_cr(
4673       "Finished work stealing in %dth thread: %3.3f sec",
4674       worker_id, _timer.seconds());
4675   }
4676 }
4677 
4678 // Note that parameter "i" is not used.
4679 void
4680 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4681   OopsInGenClosure* cl, ContiguousSpace* space,
4682   HeapWord** chunk_array, size_t chunk_top) {
4683   // Until all tasks completed:
4684   // . claim an unclaimed task
4685   // . compute region boundaries corresponding to task claimed
4686   //   using chunk_array
4687   // . par_oop_iterate(cl) over that region
4688 
4689   ResourceMark rm;
4690   HandleMark   hm;
4691 
4692   SequentialSubTasksDone* pst = space->par_seq_tasks();
4693 
4694   uint nth_task = 0;
4695   uint n_tasks  = pst->n_tasks();
4696 
4697   if (n_tasks > 0) {
4698     assert(pst->valid(), "Uninitialized use?");
4699     HeapWord *start, *end;
4700     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4701       // We claimed task # nth_task; compute its boundaries.
4702       if (chunk_top == 0) {  // no samples were taken
4703         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4704         start = space->bottom();
4705         end   = space->top();
4706       } else if (nth_task == 0) {
4707         start = space->bottom();
4708         end   = chunk_array[nth_task];
4709       } else if (nth_task < (uint)chunk_top) {
4710         assert(nth_task >= 1, "Control point invariant");
4711         start = chunk_array[nth_task - 1];
4712         end   = chunk_array[nth_task];
4713       } else {
4714         assert(nth_task == (uint)chunk_top, "Control point invariant");
4715         start = chunk_array[chunk_top - 1];
4716         end   = space->top();
4717       }
4718       MemRegion mr(start, end);
4719       // Verify that mr is in space
4720       assert(mr.is_empty() || space->used_region().contains(mr),
4721              "Should be in space");
4722       // Verify that "start" is an object boundary
4723       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4724              "Should be an oop");
4725       space->par_oop_iterate(mr, cl);
4726     }
4727     pst->all_tasks_completed();
4728   }
4729 }
4730 
4731 void
4732 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4733   CompactibleFreeListSpace* sp, int i,
4734   Par_MarkRefsIntoAndScanClosure* cl) {
4735   // Until all tasks completed:
4736   // . claim an unclaimed task
4737   // . compute region boundaries corresponding to task claimed
4738   // . transfer dirty bits ct->mut for that region
4739   // . apply rescanclosure to dirty mut bits for that region
4740 
4741   ResourceMark rm;
4742   HandleMark   hm;
4743 
4744   OopTaskQueue* work_q = work_queue(i);
4745   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4746   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4747   // CAUTION: This closure has state that persists across calls to
4748   // the work method dirty_range_iterate_clear() in that it has
4749   // embedded in it a (subtype of) UpwardsObjectClosure. The
4750   // use of that state in the embedded UpwardsObjectClosure instance
4751   // assumes that the cards are always iterated (even if in parallel
4752   // by several threads) in monotonically increasing order per each
4753   // thread. This is true of the implementation below which picks
4754   // card ranges (chunks) in monotonically increasing order globally
4755   // and, a-fortiori, in monotonically increasing order per thread
4756   // (the latter order being a subsequence of the former).
4757   // If the work code below is ever reorganized into a more chaotic
4758   // work-partitioning form than the current "sequential tasks"
4759   // paradigm, the use of that persistent state will have to be
4760   // revisited and modified appropriately. See also related
4761   // bug 4756801 work on which should examine this code to make
4762   // sure that the changes there do not run counter to the
4763   // assumptions made here and necessary for correctness and
4764   // efficiency. Note also that this code might yield inefficient
4765   // behavior in the case of very large objects that span one or
4766   // more work chunks. Such objects would potentially be scanned
4767   // several times redundantly. Work on 4756801 should try and
4768   // address that performance anomaly if at all possible. XXX
4769   MemRegion  full_span  = _collector->_span;
4770   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4771   MarkFromDirtyCardsClosure
4772     greyRescanClosure(_collector, full_span, // entire span of interest
4773                       sp, bm, work_q, cl);
4774 
4775   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4776   assert(pst->valid(), "Uninitialized use?");
4777   uint nth_task = 0;
4778   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4779   MemRegion span = sp->used_region();
4780   HeapWord* start_addr = span.start();
4781   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4782                                            alignment);
4783   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4784   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4785          start_addr, "Check alignment");
4786   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4787          chunk_size, "Check alignment");
4788 
4789   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4790     // Having claimed the nth_task, compute corresponding mem-region,
4791     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4792     // The alignment restriction ensures that we do not need any
4793     // synchronization with other gang-workers while setting or
4794     // clearing bits in thus chunk of the MUT.
4795     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4796                                     start_addr + (nth_task+1)*chunk_size);
4797     // The last chunk's end might be way beyond end of the
4798     // used region. In that case pull back appropriately.
4799     if (this_span.end() > end_addr) {
4800       this_span.set_end(end_addr);
4801       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4802     }
4803     // Iterate over the dirty cards covering this chunk, marking them
4804     // precleaned, and setting the corresponding bits in the mod union
4805     // table. Since we have been careful to partition at Card and MUT-word
4806     // boundaries no synchronization is needed between parallel threads.
4807     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4808                                                  &modUnionClosure);
4809 
4810     // Having transferred these marks into the modUnionTable,
4811     // rescan the marked objects on the dirty cards in the modUnionTable.
4812     // Even if this is at a synchronous collection, the initial marking
4813     // may have been done during an asynchronous collection so there
4814     // may be dirty bits in the mod-union table.
4815     _collector->_modUnionTable.dirty_range_iterate_clear(
4816                   this_span, &greyRescanClosure);
4817     _collector->_modUnionTable.verifyNoOneBitsInRange(
4818                                  this_span.start(),
4819                                  this_span.end());
4820   }
4821   pst->all_tasks_completed();  // declare that i am done
4822 }
4823 
4824 // . see if we can share work_queues with ParNew? XXX
4825 void
4826 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4827                                 int* seed) {
4828   OopTaskQueue* work_q = work_queue(i);
4829   NOT_PRODUCT(int num_steals = 0;)
4830   oop obj_to_scan;
4831   CMSBitMap* bm = &(_collector->_markBitMap);
4832 
4833   while (true) {
4834     // Completely finish any left over work from (an) earlier round(s)
4835     cl->trim_queue(0);
4836     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4837                                          (size_t)ParGCDesiredObjsFromOverflowList);
4838     // Now check if there's any work in the overflow list
4839     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4840     // only affects the number of attempts made to get work from the
4841     // overflow list and does not affect the number of workers.  Just
4842     // pass ParallelGCThreads so this behavior is unchanged.
4843     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4844                                                 work_q,
4845                                                 ParallelGCThreads)) {
4846       // found something in global overflow list;
4847       // not yet ready to go stealing work from others.
4848       // We'd like to assert(work_q->size() != 0, ...)
4849       // because we just took work from the overflow list,
4850       // but of course we can't since all of that could have
4851       // been already stolen from us.
4852       // "He giveth and He taketh away."
4853       continue;
4854     }
4855     // Verify that we have no work before we resort to stealing
4856     assert(work_q->size() == 0, "Have work, shouldn't steal");
4857     // Try to steal from other queues that have work
4858     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4859       NOT_PRODUCT(num_steals++;)
4860       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4861       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4862       // Do scanning work
4863       obj_to_scan->oop_iterate(cl);
4864       // Loop around, finish this work, and try to steal some more
4865     } else if (terminator()->offer_termination()) {
4866         break;  // nirvana from the infinite cycle
4867     }
4868   }
4869   NOT_PRODUCT(
4870     if (PrintCMSStatistics != 0) {
4871       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4872     }
4873   )
4874   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4875          "Else our work is not yet done");
4876 }
4877 
4878 // Record object boundaries in _eden_chunk_array by sampling the eden
4879 // top in the slow-path eden object allocation code path and record
4880 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4881 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4882 // sampling in sample_eden() that activates during the part of the
4883 // preclean phase.
4884 void CMSCollector::sample_eden_chunk() {
4885   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4886     if (_eden_chunk_lock->try_lock()) {
4887       // Record a sample. This is the critical section. The contents
4888       // of the _eden_chunk_array have to be non-decreasing in the
4889       // address order.
4890       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4891       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4892              "Unexpected state of Eden");
4893       if (_eden_chunk_index == 0 ||
4894           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4895            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4896                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4897         _eden_chunk_index++;  // commit sample
4898       }
4899       _eden_chunk_lock->unlock();
4900     }
4901   }
4902 }
4903 
4904 // Return a thread-local PLAB recording array, as appropriate.
4905 void* CMSCollector::get_data_recorder(int thr_num) {
4906   if (_survivor_plab_array != NULL &&
4907       (CMSPLABRecordAlways ||
4908        (_collectorState > Marking && _collectorState < FinalMarking))) {
4909     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4910     ChunkArray* ca = &_survivor_plab_array[thr_num];
4911     ca->reset();   // clear it so that fresh data is recorded
4912     return (void*) ca;
4913   } else {
4914     return NULL;
4915   }
4916 }
4917 
4918 // Reset all the thread-local PLAB recording arrays
4919 void CMSCollector::reset_survivor_plab_arrays() {
4920   for (uint i = 0; i < ParallelGCThreads; i++) {
4921     _survivor_plab_array[i].reset();
4922   }
4923 }
4924 
4925 // Merge the per-thread plab arrays into the global survivor chunk
4926 // array which will provide the partitioning of the survivor space
4927 // for CMS initial scan and rescan.
4928 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4929                                               int no_of_gc_threads) {
4930   assert(_survivor_plab_array  != NULL, "Error");
4931   assert(_survivor_chunk_array != NULL, "Error");
4932   assert(_collectorState == FinalMarking ||
4933          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4934   for (int j = 0; j < no_of_gc_threads; j++) {
4935     _cursor[j] = 0;
4936   }
4937   HeapWord* top = surv->top();
4938   size_t i;
4939   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4940     HeapWord* min_val = top;          // Higher than any PLAB address
4941     uint      min_tid = 0;            // position of min_val this round
4942     for (int j = 0; j < no_of_gc_threads; j++) {
4943       ChunkArray* cur_sca = &_survivor_plab_array[j];
4944       if (_cursor[j] == cur_sca->end()) {
4945         continue;
4946       }
4947       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4948       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4949       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4950       if (cur_val < min_val) {
4951         min_tid = j;
4952         min_val = cur_val;
4953       } else {
4954         assert(cur_val < top, "All recorded addresses should be less");
4955       }
4956     }
4957     // At this point min_val and min_tid are respectively
4958     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4959     // and the thread (j) that witnesses that address.
4960     // We record this address in the _survivor_chunk_array[i]
4961     // and increment _cursor[min_tid] prior to the next round i.
4962     if (min_val == top) {
4963       break;
4964     }
4965     _survivor_chunk_array[i] = min_val;
4966     _cursor[min_tid]++;
4967   }
4968   // We are all done; record the size of the _survivor_chunk_array
4969   _survivor_chunk_index = i; // exclusive: [0, i)
4970   if (PrintCMSStatistics > 0) {
4971     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4972   }
4973   // Verify that we used up all the recorded entries
4974   #ifdef ASSERT
4975     size_t total = 0;
4976     for (int j = 0; j < no_of_gc_threads; j++) {
4977       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4978       total += _cursor[j];
4979     }
4980     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4981     // Check that the merged array is in sorted order
4982     if (total > 0) {
4983       for (size_t i = 0; i < total - 1; i++) {
4984         if (PrintCMSStatistics > 0) {
4985           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4986                               i, p2i(_survivor_chunk_array[i]));
4987         }
4988         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4989                "Not sorted");
4990       }
4991     }
4992   #endif // ASSERT
4993 }
4994 
4995 // Set up the space's par_seq_tasks structure for work claiming
4996 // for parallel initial scan and rescan of young gen.
4997 // See ParRescanTask where this is currently used.
4998 void
4999 CMSCollector::
5000 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5001   assert(n_threads > 0, "Unexpected n_threads argument");
5002 
5003   // Eden space
5004   if (!_young_gen->eden()->is_empty()) {
5005     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5006     assert(!pst->valid(), "Clobbering existing data?");
5007     // Each valid entry in [0, _eden_chunk_index) represents a task.
5008     size_t n_tasks = _eden_chunk_index + 1;
5009     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5010     // Sets the condition for completion of the subtask (how many threads
5011     // need to finish in order to be done).
5012     pst->set_n_threads(n_threads);
5013     pst->set_n_tasks((int)n_tasks);
5014   }
5015 
5016   // Merge the survivor plab arrays into _survivor_chunk_array
5017   if (_survivor_plab_array != NULL) {
5018     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5019   } else {
5020     assert(_survivor_chunk_index == 0, "Error");
5021   }
5022 
5023   // To space
5024   {
5025     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5026     assert(!pst->valid(), "Clobbering existing data?");
5027     // Sets the condition for completion of the subtask (how many threads
5028     // need to finish in order to be done).
5029     pst->set_n_threads(n_threads);
5030     pst->set_n_tasks(1);
5031     assert(pst->valid(), "Error");
5032   }
5033 
5034   // From space
5035   {
5036     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5037     assert(!pst->valid(), "Clobbering existing data?");
5038     size_t n_tasks = _survivor_chunk_index + 1;
5039     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5040     // Sets the condition for completion of the subtask (how many threads
5041     // need to finish in order to be done).
5042     pst->set_n_threads(n_threads);
5043     pst->set_n_tasks((int)n_tasks);
5044     assert(pst->valid(), "Error");
5045   }
5046 }
5047 
5048 // Parallel version of remark
5049 void CMSCollector::do_remark_parallel() {
5050   GenCollectedHeap* gch = GenCollectedHeap::heap();
5051   FlexibleWorkGang* workers = gch->workers();
5052   assert(workers != NULL, "Need parallel worker threads.");
5053   // Choose to use the number of GC workers most recently set
5054   // into "active_workers".  If active_workers is not set, set it
5055   // to ParallelGCThreads.
5056   uint n_workers = workers->active_workers();
5057   if (n_workers == 0) {
5058     assert(n_workers > 0, "Should have been set during scavenge");
5059     n_workers = ParallelGCThreads;
5060     workers->set_active_workers(n_workers);
5061   }
5062   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5063 
5064   CMSParRemarkTask tsk(this,
5065     cms_space,
5066     n_workers, workers, task_queues());
5067 
5068   // Set up for parallel process_roots work.
5069   gch->set_par_threads(n_workers);
5070   // We won't be iterating over the cards in the card table updating
5071   // the younger_gen cards, so we shouldn't call the following else
5072   // the verification code as well as subsequent younger_refs_iterate
5073   // code would get confused. XXX
5074   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5075 
5076   // The young gen rescan work will not be done as part of
5077   // process_roots (which currently doesn't know how to
5078   // parallelize such a scan), but rather will be broken up into
5079   // a set of parallel tasks (via the sampling that the [abortable]
5080   // preclean phase did of eden, plus the [two] tasks of
5081   // scanning the [two] survivor spaces. Further fine-grain
5082   // parallelization of the scanning of the survivor spaces
5083   // themselves, and of precleaning of the younger gen itself
5084   // is deferred to the future.
5085   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5086 
5087   // The dirty card rescan work is broken up into a "sequence"
5088   // of parallel tasks (per constituent space) that are dynamically
5089   // claimed by the parallel threads.
5090   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5091 
5092   // It turns out that even when we're using 1 thread, doing the work in a
5093   // separate thread causes wide variance in run times.  We can't help this
5094   // in the multi-threaded case, but we special-case n=1 here to get
5095   // repeatable measurements of the 1-thread overhead of the parallel code.
5096   if (n_workers > 1) {
5097     // Make refs discovery MT-safe, if it isn't already: it may not
5098     // necessarily be so, since it's possible that we are doing
5099     // ST marking.
5100     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5101     StrongRootsScope srs;
5102     workers->run_task(&tsk);
5103   } else {
5104     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5105     StrongRootsScope srs;
5106     tsk.work(0);
5107   }
5108 
5109   gch->set_par_threads(0);  // 0 ==> non-parallel.
5110   // restore, single-threaded for now, any preserved marks
5111   // as a result of work_q overflow
5112   restore_preserved_marks_if_any();
5113 }
5114 
5115 // Non-parallel version of remark
5116 void CMSCollector::do_remark_non_parallel() {
5117   ResourceMark rm;
5118   HandleMark   hm;
5119   GenCollectedHeap* gch = GenCollectedHeap::heap();
5120   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5121 
5122   MarkRefsIntoAndScanClosure
5123     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5124              &_markStack, this,
5125              false /* should_yield */, false /* not precleaning */);
5126   MarkFromDirtyCardsClosure
5127     markFromDirtyCardsClosure(this, _span,
5128                               NULL,  // space is set further below
5129                               &_markBitMap, &_markStack, &mrias_cl);
5130   {
5131     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5132     // Iterate over the dirty cards, setting the corresponding bits in the
5133     // mod union table.
5134     {
5135       ModUnionClosure modUnionClosure(&_modUnionTable);
5136       _ct->ct_bs()->dirty_card_iterate(
5137                       _cmsGen->used_region(),
5138                       &modUnionClosure);
5139     }
5140     // Having transferred these marks into the modUnionTable, we just need
5141     // to rescan the marked objects on the dirty cards in the modUnionTable.
5142     // The initial marking may have been done during an asynchronous
5143     // collection so there may be dirty bits in the mod-union table.
5144     const int alignment =
5145       CardTableModRefBS::card_size * BitsPerWord;
5146     {
5147       // ... First handle dirty cards in CMS gen
5148       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5149       MemRegion ur = _cmsGen->used_region();
5150       HeapWord* lb = ur.start();
5151       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5152       MemRegion cms_span(lb, ub);
5153       _modUnionTable.dirty_range_iterate_clear(cms_span,
5154                                                &markFromDirtyCardsClosure);
5155       verify_work_stacks_empty();
5156       if (PrintCMSStatistics != 0) {
5157         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5158           markFromDirtyCardsClosure.num_dirty_cards());
5159       }
5160     }
5161   }
5162   if (VerifyDuringGC &&
5163       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5164     HandleMark hm;  // Discard invalid handles created during verification
5165     Universe::verify();
5166   }
5167   {
5168     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5169 
5170     verify_work_stacks_empty();
5171 
5172     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5173     StrongRootsScope srs;
5174 
5175     gch->gen_process_roots(_cmsGen->level(),
5176                            true,  // younger gens as roots
5177                            false, // use the local StrongRootsScope
5178                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5179                            should_unload_classes(),
5180                            &mrias_cl,
5181                            NULL,
5182                            NULL); // The dirty klasses will be handled below
5183 
5184     assert(should_unload_classes()
5185            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5186            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5187   }
5188 
5189   {
5190     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5191 
5192     verify_work_stacks_empty();
5193 
5194     // Scan all class loader data objects that might have been introduced
5195     // during concurrent marking.
5196     ResourceMark rm;
5197     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5198     for (int i = 0; i < array->length(); i++) {
5199       mrias_cl.do_class_loader_data(array->at(i));
5200     }
5201 
5202     // We don't need to keep track of new CLDs anymore.
5203     ClassLoaderDataGraph::remember_new_clds(false);
5204 
5205     verify_work_stacks_empty();
5206   }
5207 
5208   {
5209     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5210 
5211     verify_work_stacks_empty();
5212 
5213     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5214     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5215 
5216     verify_work_stacks_empty();
5217   }
5218 
5219   // We might have added oops to ClassLoaderData::_handles during the
5220   // concurrent marking phase. These oops point to newly allocated objects
5221   // that are guaranteed to be kept alive. Either by the direct allocation
5222   // code, or when the young collector processes the roots. Hence,
5223   // we don't have to revisit the _handles block during the remark phase.
5224 
5225   verify_work_stacks_empty();
5226   // Restore evacuated mark words, if any, used for overflow list links
5227   if (!CMSOverflowEarlyRestoration) {
5228     restore_preserved_marks_if_any();
5229   }
5230   verify_overflow_empty();
5231 }
5232 
5233 ////////////////////////////////////////////////////////
5234 // Parallel Reference Processing Task Proxy Class
5235 ////////////////////////////////////////////////////////
5236 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5237   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5238   CMSCollector*          _collector;
5239   CMSBitMap*             _mark_bit_map;
5240   const MemRegion        _span;
5241   ProcessTask&           _task;
5242 
5243 public:
5244   CMSRefProcTaskProxy(ProcessTask&     task,
5245                       CMSCollector*    collector,
5246                       const MemRegion& span,
5247                       CMSBitMap*       mark_bit_map,
5248                       AbstractWorkGang* workers,
5249                       OopTaskQueueSet* task_queues):
5250     // XXX Should superclass AGTWOQ also know about AWG since it knows
5251     // about the task_queues used by the AWG? Then it could initialize
5252     // the terminator() object. See 6984287. The set_for_termination()
5253     // below is a temporary band-aid for the regression in 6984287.
5254     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5255       task_queues),
5256     _task(task),
5257     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5258   {
5259     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5260            "Inconsistency in _span");
5261     set_for_termination(workers->active_workers());
5262   }
5263 
5264   OopTaskQueueSet* task_queues() { return queues(); }
5265 
5266   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5267 
5268   void do_work_steal(int i,
5269                      CMSParDrainMarkingStackClosure* drain,
5270                      CMSParKeepAliveClosure* keep_alive,
5271                      int* seed);
5272 
5273   virtual void work(uint worker_id);
5274 };
5275 
5276 void CMSRefProcTaskProxy::work(uint worker_id) {
5277   ResourceMark rm;
5278   HandleMark hm;
5279   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5280   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5281                                         _mark_bit_map,
5282                                         work_queue(worker_id));
5283   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5284                                                  _mark_bit_map,
5285                                                  work_queue(worker_id));
5286   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5287   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5288   if (_task.marks_oops_alive()) {
5289     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5290                   _collector->hash_seed(worker_id));
5291   }
5292   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5293   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5294 }
5295 
5296 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5297   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5298   EnqueueTask& _task;
5299 
5300 public:
5301   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5302     : AbstractGangTask("Enqueue reference objects in parallel"),
5303       _task(task)
5304   { }
5305 
5306   virtual void work(uint worker_id)
5307   {
5308     _task.work(worker_id);
5309   }
5310 };
5311 
5312 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5313   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5314    _span(span),
5315    _bit_map(bit_map),
5316    _work_queue(work_queue),
5317    _mark_and_push(collector, span, bit_map, work_queue),
5318    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5319                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5320 { }
5321 
5322 // . see if we can share work_queues with ParNew? XXX
5323 void CMSRefProcTaskProxy::do_work_steal(int i,
5324   CMSParDrainMarkingStackClosure* drain,
5325   CMSParKeepAliveClosure* keep_alive,
5326   int* seed) {
5327   OopTaskQueue* work_q = work_queue(i);
5328   NOT_PRODUCT(int num_steals = 0;)
5329   oop obj_to_scan;
5330 
5331   while (true) {
5332     // Completely finish any left over work from (an) earlier round(s)
5333     drain->trim_queue(0);
5334     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5335                                          (size_t)ParGCDesiredObjsFromOverflowList);
5336     // Now check if there's any work in the overflow list
5337     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5338     // only affects the number of attempts made to get work from the
5339     // overflow list and does not affect the number of workers.  Just
5340     // pass ParallelGCThreads so this behavior is unchanged.
5341     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5342                                                 work_q,
5343                                                 ParallelGCThreads)) {
5344       // Found something in global overflow list;
5345       // not yet ready to go stealing work from others.
5346       // We'd like to assert(work_q->size() != 0, ...)
5347       // because we just took work from the overflow list,
5348       // but of course we can't, since all of that might have
5349       // been already stolen from us.
5350       continue;
5351     }
5352     // Verify that we have no work before we resort to stealing
5353     assert(work_q->size() == 0, "Have work, shouldn't steal");
5354     // Try to steal from other queues that have work
5355     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5356       NOT_PRODUCT(num_steals++;)
5357       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5358       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5359       // Do scanning work
5360       obj_to_scan->oop_iterate(keep_alive);
5361       // Loop around, finish this work, and try to steal some more
5362     } else if (terminator()->offer_termination()) {
5363       break;  // nirvana from the infinite cycle
5364     }
5365   }
5366   NOT_PRODUCT(
5367     if (PrintCMSStatistics != 0) {
5368       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5369     }
5370   )
5371 }
5372 
5373 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5374 {
5375   GenCollectedHeap* gch = GenCollectedHeap::heap();
5376   FlexibleWorkGang* workers = gch->workers();
5377   assert(workers != NULL, "Need parallel worker threads.");
5378   CMSRefProcTaskProxy rp_task(task, &_collector,
5379                               _collector.ref_processor()->span(),
5380                               _collector.markBitMap(),
5381                               workers, _collector.task_queues());
5382   workers->run_task(&rp_task);
5383 }
5384 
5385 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5386 {
5387 
5388   GenCollectedHeap* gch = GenCollectedHeap::heap();
5389   FlexibleWorkGang* workers = gch->workers();
5390   assert(workers != NULL, "Need parallel worker threads.");
5391   CMSRefEnqueueTaskProxy enq_task(task);
5392   workers->run_task(&enq_task);
5393 }
5394 
5395 void CMSCollector::refProcessingWork() {
5396   ResourceMark rm;
5397   HandleMark   hm;
5398 
5399   ReferenceProcessor* rp = ref_processor();
5400   assert(rp->span().equals(_span), "Spans should be equal");
5401   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5402   // Process weak references.
5403   rp->setup_policy(false);
5404   verify_work_stacks_empty();
5405 
5406   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5407                                           &_markStack, false /* !preclean */);
5408   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5409                                 _span, &_markBitMap, &_markStack,
5410                                 &cmsKeepAliveClosure, false /* !preclean */);
5411   {
5412     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5413 
5414     ReferenceProcessorStats stats;
5415     if (rp->processing_is_mt()) {
5416       // Set the degree of MT here.  If the discovery is done MT, there
5417       // may have been a different number of threads doing the discovery
5418       // and a different number of discovered lists may have Ref objects.
5419       // That is OK as long as the Reference lists are balanced (see
5420       // balance_all_queues() and balance_queues()).
5421       GenCollectedHeap* gch = GenCollectedHeap::heap();
5422       uint active_workers = ParallelGCThreads;
5423       FlexibleWorkGang* workers = gch->workers();
5424       if (workers != NULL) {
5425         active_workers = workers->active_workers();
5426         // The expectation is that active_workers will have already
5427         // been set to a reasonable value.  If it has not been set,
5428         // investigate.
5429         assert(active_workers > 0, "Should have been set during scavenge");
5430       }
5431       rp->set_active_mt_degree(active_workers);
5432       CMSRefProcTaskExecutor task_executor(*this);
5433       stats = rp->process_discovered_references(&_is_alive_closure,
5434                                         &cmsKeepAliveClosure,
5435                                         &cmsDrainMarkingStackClosure,
5436                                         &task_executor,
5437                                         _gc_timer_cm,
5438                                         _gc_tracer_cm->gc_id());
5439     } else {
5440       stats = rp->process_discovered_references(&_is_alive_closure,
5441                                         &cmsKeepAliveClosure,
5442                                         &cmsDrainMarkingStackClosure,
5443                                         NULL,
5444                                         _gc_timer_cm,
5445                                         _gc_tracer_cm->gc_id());
5446     }
5447     _gc_tracer_cm->report_gc_reference_stats(stats);
5448 
5449   }
5450 
5451   // This is the point where the entire marking should have completed.
5452   verify_work_stacks_empty();
5453 
5454   if (should_unload_classes()) {
5455     {
5456       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5457 
5458       // Unload classes and purge the SystemDictionary.
5459       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5460 
5461       // Unload nmethods.
5462       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5463 
5464       // Prune dead klasses from subklass/sibling/implementor lists.
5465       Klass::clean_weak_klass_links(&_is_alive_closure);
5466     }
5467 
5468     {
5469       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5470       // Clean up unreferenced symbols in symbol table.
5471       SymbolTable::unlink();
5472     }
5473 
5474     {
5475       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5476       // Delete entries for dead interned strings.
5477       StringTable::unlink(&_is_alive_closure);
5478     }
5479   }
5480 
5481 
5482   // Restore any preserved marks as a result of mark stack or
5483   // work queue overflow
5484   restore_preserved_marks_if_any();  // done single-threaded for now
5485 
5486   rp->set_enqueuing_is_done(true);
5487   if (rp->processing_is_mt()) {
5488     rp->balance_all_queues();
5489     CMSRefProcTaskExecutor task_executor(*this);
5490     rp->enqueue_discovered_references(&task_executor);
5491   } else {
5492     rp->enqueue_discovered_references(NULL);
5493   }
5494   rp->verify_no_references_recorded();
5495   assert(!rp->discovery_enabled(), "should have been disabled");
5496 }
5497 
5498 #ifndef PRODUCT
5499 void CMSCollector::check_correct_thread_executing() {
5500   Thread* t = Thread::current();
5501   // Only the VM thread or the CMS thread should be here.
5502   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5503          "Unexpected thread type");
5504   // If this is the vm thread, the foreground process
5505   // should not be waiting.  Note that _foregroundGCIsActive is
5506   // true while the foreground collector is waiting.
5507   if (_foregroundGCShouldWait) {
5508     // We cannot be the VM thread
5509     assert(t->is_ConcurrentGC_thread(),
5510            "Should be CMS thread");
5511   } else {
5512     // We can be the CMS thread only if we are in a stop-world
5513     // phase of CMS collection.
5514     if (t->is_ConcurrentGC_thread()) {
5515       assert(_collectorState == InitialMarking ||
5516              _collectorState == FinalMarking,
5517              "Should be a stop-world phase");
5518       // The CMS thread should be holding the CMS_token.
5519       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5520              "Potential interference with concurrently "
5521              "executing VM thread");
5522     }
5523   }
5524 }
5525 #endif
5526 
5527 void CMSCollector::sweep() {
5528   assert(_collectorState == Sweeping, "just checking");
5529   check_correct_thread_executing();
5530   verify_work_stacks_empty();
5531   verify_overflow_empty();
5532   increment_sweep_count();
5533   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5534 
5535   _inter_sweep_timer.stop();
5536   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5537 
5538   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5539   _intra_sweep_timer.reset();
5540   _intra_sweep_timer.start();
5541   {
5542     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5543     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5544     // First sweep the old gen
5545     {
5546       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5547                                bitMapLock());
5548       sweepWork(_cmsGen);
5549     }
5550 
5551     // Update Universe::_heap_*_at_gc figures.
5552     // We need all the free list locks to make the abstract state
5553     // transition from Sweeping to Resetting. See detailed note
5554     // further below.
5555     {
5556       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5557       // Update heap occupancy information which is used as
5558       // input to soft ref clearing policy at the next gc.
5559       Universe::update_heap_info_at_gc();
5560       _collectorState = Resizing;
5561     }
5562   }
5563   verify_work_stacks_empty();
5564   verify_overflow_empty();
5565 
5566   if (should_unload_classes()) {
5567     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5568     // requires that the virtual spaces are stable and not deleted.
5569     ClassLoaderDataGraph::set_should_purge(true);
5570   }
5571 
5572   _intra_sweep_timer.stop();
5573   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5574 
5575   _inter_sweep_timer.reset();
5576   _inter_sweep_timer.start();
5577 
5578   // We need to use a monotonically non-decreasing time in ms
5579   // or we will see time-warp warnings and os::javaTimeMillis()
5580   // does not guarantee monotonicity.
5581   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5582   update_time_of_last_gc(now);
5583 
5584   // NOTE on abstract state transitions:
5585   // Mutators allocate-live and/or mark the mod-union table dirty
5586   // based on the state of the collection.  The former is done in
5587   // the interval [Marking, Sweeping] and the latter in the interval
5588   // [Marking, Sweeping).  Thus the transitions into the Marking state
5589   // and out of the Sweeping state must be synchronously visible
5590   // globally to the mutators.
5591   // The transition into the Marking state happens with the world
5592   // stopped so the mutators will globally see it.  Sweeping is
5593   // done asynchronously by the background collector so the transition
5594   // from the Sweeping state to the Resizing state must be done
5595   // under the freelistLock (as is the check for whether to
5596   // allocate-live and whether to dirty the mod-union table).
5597   assert(_collectorState == Resizing, "Change of collector state to"
5598     " Resizing must be done under the freelistLocks (plural)");
5599 
5600   // Now that sweeping has been completed, we clear
5601   // the incremental_collection_failed flag,
5602   // thus inviting a younger gen collection to promote into
5603   // this generation. If such a promotion may still fail,
5604   // the flag will be set again when a young collection is
5605   // attempted.
5606   GenCollectedHeap* gch = GenCollectedHeap::heap();
5607   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5608   gch->update_full_collections_completed(_collection_count_start);
5609 }
5610 
5611 // FIX ME!!! Looks like this belongs in CFLSpace, with
5612 // CMSGen merely delegating to it.
5613 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5614   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5615   HeapWord*  minAddr        = _cmsSpace->bottom();
5616   HeapWord*  largestAddr    =
5617     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5618   if (largestAddr == NULL) {
5619     // The dictionary appears to be empty.  In this case
5620     // try to coalesce at the end of the heap.
5621     largestAddr = _cmsSpace->end();
5622   }
5623   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5624   size_t nearLargestOffset =
5625     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5626   if (PrintFLSStatistics != 0) {
5627     gclog_or_tty->print_cr(
5628       "CMS: Large Block: " PTR_FORMAT ";"
5629       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5630       p2i(largestAddr),
5631       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5632   }
5633   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5634 }
5635 
5636 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5637   return addr >= _cmsSpace->nearLargestChunk();
5638 }
5639 
5640 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5641   return _cmsSpace->find_chunk_at_end();
5642 }
5643 
5644 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
5645                                                     bool full) {
5646   // The next lower level has been collected.  Gather any statistics
5647   // that are of interest at this point.
5648   if (!full && (current_level + 1) == level()) {
5649     // Gather statistics on the young generation collection.
5650     collector()->stats().record_gc0_end(used());
5651   }
5652 }
5653 
5654 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5655   // We iterate over the space(s) underlying this generation,
5656   // checking the mark bit map to see if the bits corresponding
5657   // to specific blocks are marked or not. Blocks that are
5658   // marked are live and are not swept up. All remaining blocks
5659   // are swept up, with coalescing on-the-fly as we sweep up
5660   // contiguous free and/or garbage blocks:
5661   // We need to ensure that the sweeper synchronizes with allocators
5662   // and stop-the-world collectors. In particular, the following
5663   // locks are used:
5664   // . CMS token: if this is held, a stop the world collection cannot occur
5665   // . freelistLock: if this is held no allocation can occur from this
5666   //                 generation by another thread
5667   // . bitMapLock: if this is held, no other thread can access or update
5668   //
5669 
5670   // Note that we need to hold the freelistLock if we use
5671   // block iterate below; else the iterator might go awry if
5672   // a mutator (or promotion) causes block contents to change
5673   // (for instance if the allocator divvies up a block).
5674   // If we hold the free list lock, for all practical purposes
5675   // young generation GC's can't occur (they'll usually need to
5676   // promote), so we might as well prevent all young generation
5677   // GC's while we do a sweeping step. For the same reason, we might
5678   // as well take the bit map lock for the entire duration
5679 
5680   // check that we hold the requisite locks
5681   assert(have_cms_token(), "Should hold cms token");
5682   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5683   assert_lock_strong(gen->freelistLock());
5684   assert_lock_strong(bitMapLock());
5685 
5686   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5687   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5688   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5689                                       _inter_sweep_estimate.padded_average(),
5690                                       _intra_sweep_estimate.padded_average());
5691   gen->setNearLargestChunk();
5692 
5693   {
5694     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5695     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5696     // We need to free-up/coalesce garbage/blocks from a
5697     // co-terminal free run. This is done in the SweepClosure
5698     // destructor; so, do not remove this scope, else the
5699     // end-of-sweep-census below will be off by a little bit.
5700   }
5701   gen->cmsSpace()->sweep_completed();
5702   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5703   if (should_unload_classes()) {                // unloaded classes this cycle,
5704     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5705   } else {                                      // did not unload classes,
5706     _concurrent_cycles_since_last_unload++;     // ... increment count
5707   }
5708 }
5709 
5710 // Reset CMS data structures (for now just the marking bit map)
5711 // preparatory for the next cycle.
5712 void CMSCollector::reset(bool concurrent) {
5713   if (concurrent) {
5714     CMSTokenSyncWithLocks ts(true, bitMapLock());
5715 
5716     // If the state is not "Resetting", the foreground  thread
5717     // has done a collection and the resetting.
5718     if (_collectorState != Resetting) {
5719       assert(_collectorState == Idling, "The state should only change"
5720         " because the foreground collector has finished the collection");
5721       return;
5722     }
5723 
5724     // Clear the mark bitmap (no grey objects to start with)
5725     // for the next cycle.
5726     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5727     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5728 
5729     HeapWord* curAddr = _markBitMap.startWord();
5730     while (curAddr < _markBitMap.endWord()) {
5731       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5732       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5733       _markBitMap.clear_large_range(chunk);
5734       if (ConcurrentMarkSweepThread::should_yield() &&
5735           !foregroundGCIsActive() &&
5736           CMSYield) {
5737         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5738                "CMS thread should hold CMS token");
5739         assert_lock_strong(bitMapLock());
5740         bitMapLock()->unlock();
5741         ConcurrentMarkSweepThread::desynchronize(true);
5742         stopTimer();
5743         if (PrintCMSStatistics != 0) {
5744           incrementYields();
5745         }
5746 
5747         // See the comment in coordinator_yield()
5748         for (unsigned i = 0; i < CMSYieldSleepCount &&
5749                          ConcurrentMarkSweepThread::should_yield() &&
5750                          !CMSCollector::foregroundGCIsActive(); ++i) {
5751           os::sleep(Thread::current(), 1, false);
5752         }
5753 
5754         ConcurrentMarkSweepThread::synchronize(true);
5755         bitMapLock()->lock_without_safepoint_check();
5756         startTimer();
5757       }
5758       curAddr = chunk.end();
5759     }
5760     // A successful mostly concurrent collection has been done.
5761     // Because only the full (i.e., concurrent mode failure) collections
5762     // are being measured for gc overhead limits, clean the "near" flag
5763     // and count.
5764     size_policy()->reset_gc_overhead_limit_count();
5765     _collectorState = Idling;
5766   } else {
5767     // already have the lock
5768     assert(_collectorState == Resetting, "just checking");
5769     assert_lock_strong(bitMapLock());
5770     _markBitMap.clear_all();
5771     _collectorState = Idling;
5772   }
5773 
5774   register_gc_end();
5775 }
5776 
5777 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5778   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5779   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5780   TraceCollectorStats tcs(counters());
5781 
5782   switch (op) {
5783     case CMS_op_checkpointRootsInitial: {
5784       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5785       checkpointRootsInitial();
5786       if (PrintGC) {
5787         _cmsGen->printOccupancy("initial-mark");
5788       }
5789       break;
5790     }
5791     case CMS_op_checkpointRootsFinal: {
5792       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5793       checkpointRootsFinal();
5794       if (PrintGC) {
5795         _cmsGen->printOccupancy("remark");
5796       }
5797       break;
5798     }
5799     default:
5800       fatal("No such CMS_op");
5801   }
5802 }
5803 
5804 #ifndef PRODUCT
5805 size_t const CMSCollector::skip_header_HeapWords() {
5806   return FreeChunk::header_size();
5807 }
5808 
5809 // Try and collect here conditions that should hold when
5810 // CMS thread is exiting. The idea is that the foreground GC
5811 // thread should not be blocked if it wants to terminate
5812 // the CMS thread and yet continue to run the VM for a while
5813 // after that.
5814 void CMSCollector::verify_ok_to_terminate() const {
5815   assert(Thread::current()->is_ConcurrentGC_thread(),
5816          "should be called by CMS thread");
5817   assert(!_foregroundGCShouldWait, "should be false");
5818   // We could check here that all the various low-level locks
5819   // are not held by the CMS thread, but that is overkill; see
5820   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5821   // is checked.
5822 }
5823 #endif
5824 
5825 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5826    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5827           "missing Printezis mark?");
5828   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5829   size_t size = pointer_delta(nextOneAddr + 1, addr);
5830   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5831          "alignment problem");
5832   assert(size >= 3, "Necessary for Printezis marks to work");
5833   return size;
5834 }
5835 
5836 // A variant of the above (block_size_using_printezis_bits()) except
5837 // that we return 0 if the P-bits are not yet set.
5838 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5839   if (_markBitMap.isMarked(addr + 1)) {
5840     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5841     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5842     size_t size = pointer_delta(nextOneAddr + 1, addr);
5843     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5844            "alignment problem");
5845     assert(size >= 3, "Necessary for Printezis marks to work");
5846     return size;
5847   }
5848   return 0;
5849 }
5850 
5851 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5852   size_t sz = 0;
5853   oop p = (oop)addr;
5854   if (p->klass_or_null() != NULL) {
5855     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5856   } else {
5857     sz = block_size_using_printezis_bits(addr);
5858   }
5859   assert(sz > 0, "size must be nonzero");
5860   HeapWord* next_block = addr + sz;
5861   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5862                                              CardTableModRefBS::card_size);
5863   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5864          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5865          "must be different cards");
5866   return next_card;
5867 }
5868 
5869 
5870 // CMS Bit Map Wrapper /////////////////////////////////////////
5871 
5872 // Construct a CMS bit map infrastructure, but don't create the
5873 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5874 // further below.
5875 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5876   _bm(),
5877   _shifter(shifter),
5878   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5879                                     Monitor::_safepoint_check_sometimes) : NULL)
5880 {
5881   _bmStartWord = 0;
5882   _bmWordSize  = 0;
5883 }
5884 
5885 bool CMSBitMap::allocate(MemRegion mr) {
5886   _bmStartWord = mr.start();
5887   _bmWordSize  = mr.word_size();
5888   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5889                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5890   if (!brs.is_reserved()) {
5891     warning("CMS bit map allocation failure");
5892     return false;
5893   }
5894   // For now we'll just commit all of the bit map up front.
5895   // Later on we'll try to be more parsimonious with swap.
5896   if (!_virtual_space.initialize(brs, brs.size())) {
5897     warning("CMS bit map backing store failure");
5898     return false;
5899   }
5900   assert(_virtual_space.committed_size() == brs.size(),
5901          "didn't reserve backing store for all of CMS bit map?");
5902   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5903   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5904          _bmWordSize, "inconsistency in bit map sizing");
5905   _bm.set_size(_bmWordSize >> _shifter);
5906 
5907   // bm.clear(); // can we rely on getting zero'd memory? verify below
5908   assert(isAllClear(),
5909          "Expected zero'd memory from ReservedSpace constructor");
5910   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5911          "consistency check");
5912   return true;
5913 }
5914 
5915 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5916   HeapWord *next_addr, *end_addr, *last_addr;
5917   assert_locked();
5918   assert(covers(mr), "out-of-range error");
5919   // XXX assert that start and end are appropriately aligned
5920   for (next_addr = mr.start(), end_addr = mr.end();
5921        next_addr < end_addr; next_addr = last_addr) {
5922     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5923     last_addr = dirty_region.end();
5924     if (!dirty_region.is_empty()) {
5925       cl->do_MemRegion(dirty_region);
5926     } else {
5927       assert(last_addr == end_addr, "program logic");
5928       return;
5929     }
5930   }
5931 }
5932 
5933 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5934   _bm.print_on_error(st, prefix);
5935 }
5936 
5937 #ifndef PRODUCT
5938 void CMSBitMap::assert_locked() const {
5939   CMSLockVerifier::assert_locked(lock());
5940 }
5941 
5942 bool CMSBitMap::covers(MemRegion mr) const {
5943   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5944   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5945          "size inconsistency");
5946   return (mr.start() >= _bmStartWord) &&
5947          (mr.end()   <= endWord());
5948 }
5949 
5950 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5951     return (start >= _bmStartWord && (start + size) <= endWord());
5952 }
5953 
5954 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5955   // verify that there are no 1 bits in the interval [left, right)
5956   FalseBitMapClosure falseBitMapClosure;
5957   iterate(&falseBitMapClosure, left, right);
5958 }
5959 
5960 void CMSBitMap::region_invariant(MemRegion mr)
5961 {
5962   assert_locked();
5963   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5964   assert(!mr.is_empty(), "unexpected empty region");
5965   assert(covers(mr), "mr should be covered by bit map");
5966   // convert address range into offset range
5967   size_t start_ofs = heapWordToOffset(mr.start());
5968   // Make sure that end() is appropriately aligned
5969   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5970                         (1 << (_shifter+LogHeapWordSize))),
5971          "Misaligned mr.end()");
5972   size_t end_ofs   = heapWordToOffset(mr.end());
5973   assert(end_ofs > start_ofs, "Should mark at least one bit");
5974 }
5975 
5976 #endif
5977 
5978 bool CMSMarkStack::allocate(size_t size) {
5979   // allocate a stack of the requisite depth
5980   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5981                    size * sizeof(oop)));
5982   if (!rs.is_reserved()) {
5983     warning("CMSMarkStack allocation failure");
5984     return false;
5985   }
5986   if (!_virtual_space.initialize(rs, rs.size())) {
5987     warning("CMSMarkStack backing store failure");
5988     return false;
5989   }
5990   assert(_virtual_space.committed_size() == rs.size(),
5991          "didn't reserve backing store for all of CMS stack?");
5992   _base = (oop*)(_virtual_space.low());
5993   _index = 0;
5994   _capacity = size;
5995   NOT_PRODUCT(_max_depth = 0);
5996   return true;
5997 }
5998 
5999 // XXX FIX ME !!! In the MT case we come in here holding a
6000 // leaf lock. For printing we need to take a further lock
6001 // which has lower rank. We need to recalibrate the two
6002 // lock-ranks involved in order to be able to print the
6003 // messages below. (Or defer the printing to the caller.
6004 // For now we take the expedient path of just disabling the
6005 // messages for the problematic case.)
6006 void CMSMarkStack::expand() {
6007   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6008   if (_capacity == MarkStackSizeMax) {
6009     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6010       // We print a warning message only once per CMS cycle.
6011       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6012     }
6013     return;
6014   }
6015   // Double capacity if possible
6016   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6017   // Do not give up existing stack until we have managed to
6018   // get the double capacity that we desired.
6019   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6020                    new_capacity * sizeof(oop)));
6021   if (rs.is_reserved()) {
6022     // Release the backing store associated with old stack
6023     _virtual_space.release();
6024     // Reinitialize virtual space for new stack
6025     if (!_virtual_space.initialize(rs, rs.size())) {
6026       fatal("Not enough swap for expanded marking stack");
6027     }
6028     _base = (oop*)(_virtual_space.low());
6029     _index = 0;
6030     _capacity = new_capacity;
6031   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6032     // Failed to double capacity, continue;
6033     // we print a detail message only once per CMS cycle.
6034     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6035             SIZE_FORMAT"K",
6036             _capacity / K, new_capacity / K);
6037   }
6038 }
6039 
6040 
6041 // Closures
6042 // XXX: there seems to be a lot of code  duplication here;
6043 // should refactor and consolidate common code.
6044 
6045 // This closure is used to mark refs into the CMS generation in
6046 // the CMS bit map. Called at the first checkpoint. This closure
6047 // assumes that we do not need to re-mark dirty cards; if the CMS
6048 // generation on which this is used is not an oldest
6049 // generation then this will lose younger_gen cards!
6050 
6051 MarkRefsIntoClosure::MarkRefsIntoClosure(
6052   MemRegion span, CMSBitMap* bitMap):
6053     _span(span),
6054     _bitMap(bitMap)
6055 {
6056     assert(_ref_processor == NULL, "deliberately left NULL");
6057     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6058 }
6059 
6060 void MarkRefsIntoClosure::do_oop(oop obj) {
6061   // if p points into _span, then mark corresponding bit in _markBitMap
6062   assert(obj->is_oop(), "expected an oop");
6063   HeapWord* addr = (HeapWord*)obj;
6064   if (_span.contains(addr)) {
6065     // this should be made more efficient
6066     _bitMap->mark(addr);
6067   }
6068 }
6069 
6070 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6071 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6072 
6073 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6074   MemRegion span, CMSBitMap* bitMap):
6075     _span(span),
6076     _bitMap(bitMap)
6077 {
6078     assert(_ref_processor == NULL, "deliberately left NULL");
6079     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6080 }
6081 
6082 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6083   // if p points into _span, then mark corresponding bit in _markBitMap
6084   assert(obj->is_oop(), "expected an oop");
6085   HeapWord* addr = (HeapWord*)obj;
6086   if (_span.contains(addr)) {
6087     // this should be made more efficient
6088     _bitMap->par_mark(addr);
6089   }
6090 }
6091 
6092 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6093 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6094 
6095 // A variant of the above, used for CMS marking verification.
6096 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6097   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6098     _span(span),
6099     _verification_bm(verification_bm),
6100     _cms_bm(cms_bm)
6101 {
6102     assert(_ref_processor == NULL, "deliberately left NULL");
6103     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6104 }
6105 
6106 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6107   // if p points into _span, then mark corresponding bit in _markBitMap
6108   assert(obj->is_oop(), "expected an oop");
6109   HeapWord* addr = (HeapWord*)obj;
6110   if (_span.contains(addr)) {
6111     _verification_bm->mark(addr);
6112     if (!_cms_bm->isMarked(addr)) {
6113       oop(addr)->print();
6114       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6115       fatal("... aborting");
6116     }
6117   }
6118 }
6119 
6120 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6121 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6122 
6123 //////////////////////////////////////////////////
6124 // MarkRefsIntoAndScanClosure
6125 //////////////////////////////////////////////////
6126 
6127 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6128                                                        ReferenceProcessor* rp,
6129                                                        CMSBitMap* bit_map,
6130                                                        CMSBitMap* mod_union_table,
6131                                                        CMSMarkStack*  mark_stack,
6132                                                        CMSCollector* collector,
6133                                                        bool should_yield,
6134                                                        bool concurrent_precleaning):
6135   _collector(collector),
6136   _span(span),
6137   _bit_map(bit_map),
6138   _mark_stack(mark_stack),
6139   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6140                       mark_stack, concurrent_precleaning),
6141   _yield(should_yield),
6142   _concurrent_precleaning(concurrent_precleaning),
6143   _freelistLock(NULL)
6144 {
6145   _ref_processor = rp;
6146   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6147 }
6148 
6149 // This closure is used to mark refs into the CMS generation at the
6150 // second (final) checkpoint, and to scan and transitively follow
6151 // the unmarked oops. It is also used during the concurrent precleaning
6152 // phase while scanning objects on dirty cards in the CMS generation.
6153 // The marks are made in the marking bit map and the marking stack is
6154 // used for keeping the (newly) grey objects during the scan.
6155 // The parallel version (Par_...) appears further below.
6156 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6157   if (obj != NULL) {
6158     assert(obj->is_oop(), "expected an oop");
6159     HeapWord* addr = (HeapWord*)obj;
6160     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6161     assert(_collector->overflow_list_is_empty(),
6162            "overflow list should be empty");
6163     if (_span.contains(addr) &&
6164         !_bit_map->isMarked(addr)) {
6165       // mark bit map (object is now grey)
6166       _bit_map->mark(addr);
6167       // push on marking stack (stack should be empty), and drain the
6168       // stack by applying this closure to the oops in the oops popped
6169       // from the stack (i.e. blacken the grey objects)
6170       bool res = _mark_stack->push(obj);
6171       assert(res, "Should have space to push on empty stack");
6172       do {
6173         oop new_oop = _mark_stack->pop();
6174         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6175         assert(_bit_map->isMarked((HeapWord*)new_oop),
6176                "only grey objects on this stack");
6177         // iterate over the oops in this oop, marking and pushing
6178         // the ones in CMS heap (i.e. in _span).
6179         new_oop->oop_iterate(&_pushAndMarkClosure);
6180         // check if it's time to yield
6181         do_yield_check();
6182       } while (!_mark_stack->isEmpty() ||
6183                (!_concurrent_precleaning && take_from_overflow_list()));
6184         // if marking stack is empty, and we are not doing this
6185         // during precleaning, then check the overflow list
6186     }
6187     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6188     assert(_collector->overflow_list_is_empty(),
6189            "overflow list was drained above");
6190     // We could restore evacuated mark words, if any, used for
6191     // overflow list links here because the overflow list is
6192     // provably empty here. That would reduce the maximum
6193     // size requirements for preserved_{oop,mark}_stack.
6194     // But we'll just postpone it until we are all done
6195     // so we can just stream through.
6196     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6197       _collector->restore_preserved_marks_if_any();
6198       assert(_collector->no_preserved_marks(), "No preserved marks");
6199     }
6200     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6201            "All preserved marks should have been restored above");
6202   }
6203 }
6204 
6205 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6206 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6207 
6208 void MarkRefsIntoAndScanClosure::do_yield_work() {
6209   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6210          "CMS thread should hold CMS token");
6211   assert_lock_strong(_freelistLock);
6212   assert_lock_strong(_bit_map->lock());
6213   // relinquish the free_list_lock and bitMaplock()
6214   _bit_map->lock()->unlock();
6215   _freelistLock->unlock();
6216   ConcurrentMarkSweepThread::desynchronize(true);
6217   _collector->stopTimer();
6218   if (PrintCMSStatistics != 0) {
6219     _collector->incrementYields();
6220   }
6221 
6222   // See the comment in coordinator_yield()
6223   for (unsigned i = 0;
6224        i < CMSYieldSleepCount &&
6225        ConcurrentMarkSweepThread::should_yield() &&
6226        !CMSCollector::foregroundGCIsActive();
6227        ++i) {
6228     os::sleep(Thread::current(), 1, false);
6229   }
6230 
6231   ConcurrentMarkSweepThread::synchronize(true);
6232   _freelistLock->lock_without_safepoint_check();
6233   _bit_map->lock()->lock_without_safepoint_check();
6234   _collector->startTimer();
6235 }
6236 
6237 ///////////////////////////////////////////////////////////
6238 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6239 //                                 MarkRefsIntoAndScanClosure
6240 ///////////////////////////////////////////////////////////
6241 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6242   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6243   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6244   _span(span),
6245   _bit_map(bit_map),
6246   _work_queue(work_queue),
6247   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6248                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6249   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6250 {
6251   _ref_processor = rp;
6252   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6253 }
6254 
6255 // This closure is used to mark refs into the CMS generation at the
6256 // second (final) checkpoint, and to scan and transitively follow
6257 // the unmarked oops. The marks are made in the marking bit map and
6258 // the work_queue is used for keeping the (newly) grey objects during
6259 // the scan phase whence they are also available for stealing by parallel
6260 // threads. Since the marking bit map is shared, updates are
6261 // synchronized (via CAS).
6262 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6263   if (obj != NULL) {
6264     // Ignore mark word because this could be an already marked oop
6265     // that may be chained at the end of the overflow list.
6266     assert(obj->is_oop(true), "expected an oop");
6267     HeapWord* addr = (HeapWord*)obj;
6268     if (_span.contains(addr) &&
6269         !_bit_map->isMarked(addr)) {
6270       // mark bit map (object will become grey):
6271       // It is possible for several threads to be
6272       // trying to "claim" this object concurrently;
6273       // the unique thread that succeeds in marking the
6274       // object first will do the subsequent push on
6275       // to the work queue (or overflow list).
6276       if (_bit_map->par_mark(addr)) {
6277         // push on work_queue (which may not be empty), and trim the
6278         // queue to an appropriate length by applying this closure to
6279         // the oops in the oops popped from the stack (i.e. blacken the
6280         // grey objects)
6281         bool res = _work_queue->push(obj);
6282         assert(res, "Low water mark should be less than capacity?");
6283         trim_queue(_low_water_mark);
6284       } // Else, another thread claimed the object
6285     }
6286   }
6287 }
6288 
6289 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6290 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6291 
6292 // This closure is used to rescan the marked objects on the dirty cards
6293 // in the mod union table and the card table proper.
6294 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6295   oop p, MemRegion mr) {
6296 
6297   size_t size = 0;
6298   HeapWord* addr = (HeapWord*)p;
6299   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6300   assert(_span.contains(addr), "we are scanning the CMS generation");
6301   // check if it's time to yield
6302   if (do_yield_check()) {
6303     // We yielded for some foreground stop-world work,
6304     // and we have been asked to abort this ongoing preclean cycle.
6305     return 0;
6306   }
6307   if (_bitMap->isMarked(addr)) {
6308     // it's marked; is it potentially uninitialized?
6309     if (p->klass_or_null() != NULL) {
6310         // an initialized object; ignore mark word in verification below
6311         // since we are running concurrent with mutators
6312         assert(p->is_oop(true), "should be an oop");
6313         if (p->is_objArray()) {
6314           // objArrays are precisely marked; restrict scanning
6315           // to dirty cards only.
6316           size = CompactibleFreeListSpace::adjustObjectSize(
6317                    p->oop_iterate(_scanningClosure, mr));
6318         } else {
6319           // A non-array may have been imprecisely marked; we need
6320           // to scan object in its entirety.
6321           size = CompactibleFreeListSpace::adjustObjectSize(
6322                    p->oop_iterate(_scanningClosure));
6323         }
6324         #ifdef ASSERT
6325           size_t direct_size =
6326             CompactibleFreeListSpace::adjustObjectSize(p->size());
6327           assert(size == direct_size, "Inconsistency in size");
6328           assert(size >= 3, "Necessary for Printezis marks to work");
6329           if (!_bitMap->isMarked(addr+1)) {
6330             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6331           } else {
6332             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6333             assert(_bitMap->isMarked(addr+size-1),
6334                    "inconsistent Printezis mark");
6335           }
6336         #endif // ASSERT
6337     } else {
6338       // An uninitialized object.
6339       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6340       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6341       size = pointer_delta(nextOneAddr + 1, addr);
6342       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6343              "alignment problem");
6344       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6345       // will dirty the card when the klass pointer is installed in the
6346       // object (signaling the completion of initialization).
6347     }
6348   } else {
6349     // Either a not yet marked object or an uninitialized object
6350     if (p->klass_or_null() == NULL) {
6351       // An uninitialized object, skip to the next card, since
6352       // we may not be able to read its P-bits yet.
6353       assert(size == 0, "Initial value");
6354     } else {
6355       // An object not (yet) reached by marking: we merely need to
6356       // compute its size so as to go look at the next block.
6357       assert(p->is_oop(true), "should be an oop");
6358       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6359     }
6360   }
6361   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6362   return size;
6363 }
6364 
6365 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6366   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6367          "CMS thread should hold CMS token");
6368   assert_lock_strong(_freelistLock);
6369   assert_lock_strong(_bitMap->lock());
6370   // relinquish the free_list_lock and bitMaplock()
6371   _bitMap->lock()->unlock();
6372   _freelistLock->unlock();
6373   ConcurrentMarkSweepThread::desynchronize(true);
6374   _collector->stopTimer();
6375   if (PrintCMSStatistics != 0) {
6376     _collector->incrementYields();
6377   }
6378 
6379   // See the comment in coordinator_yield()
6380   for (unsigned i = 0; i < CMSYieldSleepCount &&
6381                    ConcurrentMarkSweepThread::should_yield() &&
6382                    !CMSCollector::foregroundGCIsActive(); ++i) {
6383     os::sleep(Thread::current(), 1, false);
6384   }
6385 
6386   ConcurrentMarkSweepThread::synchronize(true);
6387   _freelistLock->lock_without_safepoint_check();
6388   _bitMap->lock()->lock_without_safepoint_check();
6389   _collector->startTimer();
6390 }
6391 
6392 
6393 //////////////////////////////////////////////////////////////////
6394 // SurvivorSpacePrecleanClosure
6395 //////////////////////////////////////////////////////////////////
6396 // This (single-threaded) closure is used to preclean the oops in
6397 // the survivor spaces.
6398 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6399 
6400   HeapWord* addr = (HeapWord*)p;
6401   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6402   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6403   assert(p->klass_or_null() != NULL, "object should be initialized");
6404   // an initialized object; ignore mark word in verification below
6405   // since we are running concurrent with mutators
6406   assert(p->is_oop(true), "should be an oop");
6407   // Note that we do not yield while we iterate over
6408   // the interior oops of p, pushing the relevant ones
6409   // on our marking stack.
6410   size_t size = p->oop_iterate(_scanning_closure);
6411   do_yield_check();
6412   // Observe that below, we do not abandon the preclean
6413   // phase as soon as we should; rather we empty the
6414   // marking stack before returning. This is to satisfy
6415   // some existing assertions. In general, it may be a
6416   // good idea to abort immediately and complete the marking
6417   // from the grey objects at a later time.
6418   while (!_mark_stack->isEmpty()) {
6419     oop new_oop = _mark_stack->pop();
6420     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6421     assert(_bit_map->isMarked((HeapWord*)new_oop),
6422            "only grey objects on this stack");
6423     // iterate over the oops in this oop, marking and pushing
6424     // the ones in CMS heap (i.e. in _span).
6425     new_oop->oop_iterate(_scanning_closure);
6426     // check if it's time to yield
6427     do_yield_check();
6428   }
6429   unsigned int after_count =
6430     GenCollectedHeap::heap()->total_collections();
6431   bool abort = (_before_count != after_count) ||
6432                _collector->should_abort_preclean();
6433   return abort ? 0 : size;
6434 }
6435 
6436 void SurvivorSpacePrecleanClosure::do_yield_work() {
6437   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6438          "CMS thread should hold CMS token");
6439   assert_lock_strong(_bit_map->lock());
6440   // Relinquish the bit map lock
6441   _bit_map->lock()->unlock();
6442   ConcurrentMarkSweepThread::desynchronize(true);
6443   _collector->stopTimer();
6444   if (PrintCMSStatistics != 0) {
6445     _collector->incrementYields();
6446   }
6447 
6448   // See the comment in coordinator_yield()
6449   for (unsigned i = 0; i < CMSYieldSleepCount &&
6450                        ConcurrentMarkSweepThread::should_yield() &&
6451                        !CMSCollector::foregroundGCIsActive(); ++i) {
6452     os::sleep(Thread::current(), 1, false);
6453   }
6454 
6455   ConcurrentMarkSweepThread::synchronize(true);
6456   _bit_map->lock()->lock_without_safepoint_check();
6457   _collector->startTimer();
6458 }
6459 
6460 // This closure is used to rescan the marked objects on the dirty cards
6461 // in the mod union table and the card table proper. In the parallel
6462 // case, although the bitMap is shared, we do a single read so the
6463 // isMarked() query is "safe".
6464 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6465   // Ignore mark word because we are running concurrent with mutators
6466   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6467   HeapWord* addr = (HeapWord*)p;
6468   assert(_span.contains(addr), "we are scanning the CMS generation");
6469   bool is_obj_array = false;
6470   #ifdef ASSERT
6471     if (!_parallel) {
6472       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6473       assert(_collector->overflow_list_is_empty(),
6474              "overflow list should be empty");
6475 
6476     }
6477   #endif // ASSERT
6478   if (_bit_map->isMarked(addr)) {
6479     // Obj arrays are precisely marked, non-arrays are not;
6480     // so we scan objArrays precisely and non-arrays in their
6481     // entirety.
6482     if (p->is_objArray()) {
6483       is_obj_array = true;
6484       if (_parallel) {
6485         p->oop_iterate(_par_scan_closure, mr);
6486       } else {
6487         p->oop_iterate(_scan_closure, mr);
6488       }
6489     } else {
6490       if (_parallel) {
6491         p->oop_iterate(_par_scan_closure);
6492       } else {
6493         p->oop_iterate(_scan_closure);
6494       }
6495     }
6496   }
6497   #ifdef ASSERT
6498     if (!_parallel) {
6499       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6500       assert(_collector->overflow_list_is_empty(),
6501              "overflow list should be empty");
6502 
6503     }
6504   #endif // ASSERT
6505   return is_obj_array;
6506 }
6507 
6508 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6509                         MemRegion span,
6510                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6511                         bool should_yield, bool verifying):
6512   _collector(collector),
6513   _span(span),
6514   _bitMap(bitMap),
6515   _mut(&collector->_modUnionTable),
6516   _markStack(markStack),
6517   _yield(should_yield),
6518   _skipBits(0)
6519 {
6520   assert(_markStack->isEmpty(), "stack should be empty");
6521   _finger = _bitMap->startWord();
6522   _threshold = _finger;
6523   assert(_collector->_restart_addr == NULL, "Sanity check");
6524   assert(_span.contains(_finger), "Out of bounds _finger?");
6525   DEBUG_ONLY(_verifying = verifying;)
6526 }
6527 
6528 void MarkFromRootsClosure::reset(HeapWord* addr) {
6529   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6530   assert(_span.contains(addr), "Out of bounds _finger?");
6531   _finger = addr;
6532   _threshold = (HeapWord*)round_to(
6533                  (intptr_t)_finger, CardTableModRefBS::card_size);
6534 }
6535 
6536 // Should revisit to see if this should be restructured for
6537 // greater efficiency.
6538 bool MarkFromRootsClosure::do_bit(size_t offset) {
6539   if (_skipBits > 0) {
6540     _skipBits--;
6541     return true;
6542   }
6543   // convert offset into a HeapWord*
6544   HeapWord* addr = _bitMap->startWord() + offset;
6545   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6546          "address out of range");
6547   assert(_bitMap->isMarked(addr), "tautology");
6548   if (_bitMap->isMarked(addr+1)) {
6549     // this is an allocated but not yet initialized object
6550     assert(_skipBits == 0, "tautology");
6551     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6552     oop p = oop(addr);
6553     if (p->klass_or_null() == NULL) {
6554       DEBUG_ONLY(if (!_verifying) {)
6555         // We re-dirty the cards on which this object lies and increase
6556         // the _threshold so that we'll come back to scan this object
6557         // during the preclean or remark phase. (CMSCleanOnEnter)
6558         if (CMSCleanOnEnter) {
6559           size_t sz = _collector->block_size_using_printezis_bits(addr);
6560           HeapWord* end_card_addr   = (HeapWord*)round_to(
6561                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6562           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6563           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6564           // Bump _threshold to end_card_addr; note that
6565           // _threshold cannot possibly exceed end_card_addr, anyhow.
6566           // This prevents future clearing of the card as the scan proceeds
6567           // to the right.
6568           assert(_threshold <= end_card_addr,
6569                  "Because we are just scanning into this object");
6570           if (_threshold < end_card_addr) {
6571             _threshold = end_card_addr;
6572           }
6573           if (p->klass_or_null() != NULL) {
6574             // Redirty the range of cards...
6575             _mut->mark_range(redirty_range);
6576           } // ...else the setting of klass will dirty the card anyway.
6577         }
6578       DEBUG_ONLY(})
6579       return true;
6580     }
6581   }
6582   scanOopsInOop(addr);
6583   return true;
6584 }
6585 
6586 // We take a break if we've been at this for a while,
6587 // so as to avoid monopolizing the locks involved.
6588 void MarkFromRootsClosure::do_yield_work() {
6589   // First give up the locks, then yield, then re-lock
6590   // We should probably use a constructor/destructor idiom to
6591   // do this unlock/lock or modify the MutexUnlocker class to
6592   // serve our purpose. XXX
6593   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6594          "CMS thread should hold CMS token");
6595   assert_lock_strong(_bitMap->lock());
6596   _bitMap->lock()->unlock();
6597   ConcurrentMarkSweepThread::desynchronize(true);
6598   _collector->stopTimer();
6599   if (PrintCMSStatistics != 0) {
6600     _collector->incrementYields();
6601   }
6602 
6603   // See the comment in coordinator_yield()
6604   for (unsigned i = 0; i < CMSYieldSleepCount &&
6605                        ConcurrentMarkSweepThread::should_yield() &&
6606                        !CMSCollector::foregroundGCIsActive(); ++i) {
6607     os::sleep(Thread::current(), 1, false);
6608   }
6609 
6610   ConcurrentMarkSweepThread::synchronize(true);
6611   _bitMap->lock()->lock_without_safepoint_check();
6612   _collector->startTimer();
6613 }
6614 
6615 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6616   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6617   assert(_markStack->isEmpty(),
6618          "should drain stack to limit stack usage");
6619   // convert ptr to an oop preparatory to scanning
6620   oop obj = oop(ptr);
6621   // Ignore mark word in verification below, since we
6622   // may be running concurrent with mutators.
6623   assert(obj->is_oop(true), "should be an oop");
6624   assert(_finger <= ptr, "_finger runneth ahead");
6625   // advance the finger to right end of this object
6626   _finger = ptr + obj->size();
6627   assert(_finger > ptr, "we just incremented it above");
6628   // On large heaps, it may take us some time to get through
6629   // the marking phase. During
6630   // this time it's possible that a lot of mutations have
6631   // accumulated in the card table and the mod union table --
6632   // these mutation records are redundant until we have
6633   // actually traced into the corresponding card.
6634   // Here, we check whether advancing the finger would make
6635   // us cross into a new card, and if so clear corresponding
6636   // cards in the MUT (preclean them in the card-table in the
6637   // future).
6638 
6639   DEBUG_ONLY(if (!_verifying) {)
6640     // The clean-on-enter optimization is disabled by default,
6641     // until we fix 6178663.
6642     if (CMSCleanOnEnter && (_finger > _threshold)) {
6643       // [_threshold, _finger) represents the interval
6644       // of cards to be cleared  in MUT (or precleaned in card table).
6645       // The set of cards to be cleared is all those that overlap
6646       // with the interval [_threshold, _finger); note that
6647       // _threshold is always kept card-aligned but _finger isn't
6648       // always card-aligned.
6649       HeapWord* old_threshold = _threshold;
6650       assert(old_threshold == (HeapWord*)round_to(
6651               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6652              "_threshold should always be card-aligned");
6653       _threshold = (HeapWord*)round_to(
6654                      (intptr_t)_finger, CardTableModRefBS::card_size);
6655       MemRegion mr(old_threshold, _threshold);
6656       assert(!mr.is_empty(), "Control point invariant");
6657       assert(_span.contains(mr), "Should clear within span");
6658       _mut->clear_range(mr);
6659     }
6660   DEBUG_ONLY(})
6661   // Note: the finger doesn't advance while we drain
6662   // the stack below.
6663   PushOrMarkClosure pushOrMarkClosure(_collector,
6664                                       _span, _bitMap, _markStack,
6665                                       _finger, this);
6666   bool res = _markStack->push(obj);
6667   assert(res, "Empty non-zero size stack should have space for single push");
6668   while (!_markStack->isEmpty()) {
6669     oop new_oop = _markStack->pop();
6670     // Skip verifying header mark word below because we are
6671     // running concurrent with mutators.
6672     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6673     // now scan this oop's oops
6674     new_oop->oop_iterate(&pushOrMarkClosure);
6675     do_yield_check();
6676   }
6677   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6678 }
6679 
6680 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6681                        CMSCollector* collector, MemRegion span,
6682                        CMSBitMap* bit_map,
6683                        OopTaskQueue* work_queue,
6684                        CMSMarkStack*  overflow_stack):
6685   _collector(collector),
6686   _whole_span(collector->_span),
6687   _span(span),
6688   _bit_map(bit_map),
6689   _mut(&collector->_modUnionTable),
6690   _work_queue(work_queue),
6691   _overflow_stack(overflow_stack),
6692   _skip_bits(0),
6693   _task(task)
6694 {
6695   assert(_work_queue->size() == 0, "work_queue should be empty");
6696   _finger = span.start();
6697   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6698   assert(_span.contains(_finger), "Out of bounds _finger?");
6699 }
6700 
6701 // Should revisit to see if this should be restructured for
6702 // greater efficiency.
6703 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6704   if (_skip_bits > 0) {
6705     _skip_bits--;
6706     return true;
6707   }
6708   // convert offset into a HeapWord*
6709   HeapWord* addr = _bit_map->startWord() + offset;
6710   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6711          "address out of range");
6712   assert(_bit_map->isMarked(addr), "tautology");
6713   if (_bit_map->isMarked(addr+1)) {
6714     // this is an allocated object that might not yet be initialized
6715     assert(_skip_bits == 0, "tautology");
6716     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6717     oop p = oop(addr);
6718     if (p->klass_or_null() == NULL) {
6719       // in the case of Clean-on-Enter optimization, redirty card
6720       // and avoid clearing card by increasing  the threshold.
6721       return true;
6722     }
6723   }
6724   scan_oops_in_oop(addr);
6725   return true;
6726 }
6727 
6728 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6729   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6730   // Should we assert that our work queue is empty or
6731   // below some drain limit?
6732   assert(_work_queue->size() == 0,
6733          "should drain stack to limit stack usage");
6734   // convert ptr to an oop preparatory to scanning
6735   oop obj = oop(ptr);
6736   // Ignore mark word in verification below, since we
6737   // may be running concurrent with mutators.
6738   assert(obj->is_oop(true), "should be an oop");
6739   assert(_finger <= ptr, "_finger runneth ahead");
6740   // advance the finger to right end of this object
6741   _finger = ptr + obj->size();
6742   assert(_finger > ptr, "we just incremented it above");
6743   // On large heaps, it may take us some time to get through
6744   // the marking phase. During
6745   // this time it's possible that a lot of mutations have
6746   // accumulated in the card table and the mod union table --
6747   // these mutation records are redundant until we have
6748   // actually traced into the corresponding card.
6749   // Here, we check whether advancing the finger would make
6750   // us cross into a new card, and if so clear corresponding
6751   // cards in the MUT (preclean them in the card-table in the
6752   // future).
6753 
6754   // The clean-on-enter optimization is disabled by default,
6755   // until we fix 6178663.
6756   if (CMSCleanOnEnter && (_finger > _threshold)) {
6757     // [_threshold, _finger) represents the interval
6758     // of cards to be cleared  in MUT (or precleaned in card table).
6759     // The set of cards to be cleared is all those that overlap
6760     // with the interval [_threshold, _finger); note that
6761     // _threshold is always kept card-aligned but _finger isn't
6762     // always card-aligned.
6763     HeapWord* old_threshold = _threshold;
6764     assert(old_threshold == (HeapWord*)round_to(
6765             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6766            "_threshold should always be card-aligned");
6767     _threshold = (HeapWord*)round_to(
6768                    (intptr_t)_finger, CardTableModRefBS::card_size);
6769     MemRegion mr(old_threshold, _threshold);
6770     assert(!mr.is_empty(), "Control point invariant");
6771     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6772     _mut->clear_range(mr);
6773   }
6774 
6775   // Note: the local finger doesn't advance while we drain
6776   // the stack below, but the global finger sure can and will.
6777   HeapWord** gfa = _task->global_finger_addr();
6778   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6779                                       _span, _bit_map,
6780                                       _work_queue,
6781                                       _overflow_stack,
6782                                       _finger,
6783                                       gfa, this);
6784   bool res = _work_queue->push(obj);   // overflow could occur here
6785   assert(res, "Will hold once we use workqueues");
6786   while (true) {
6787     oop new_oop;
6788     if (!_work_queue->pop_local(new_oop)) {
6789       // We emptied our work_queue; check if there's stuff that can
6790       // be gotten from the overflow stack.
6791       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6792             _overflow_stack, _work_queue)) {
6793         do_yield_check();
6794         continue;
6795       } else {  // done
6796         break;
6797       }
6798     }
6799     // Skip verifying header mark word below because we are
6800     // running concurrent with mutators.
6801     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6802     // now scan this oop's oops
6803     new_oop->oop_iterate(&pushOrMarkClosure);
6804     do_yield_check();
6805   }
6806   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6807 }
6808 
6809 // Yield in response to a request from VM Thread or
6810 // from mutators.
6811 void Par_MarkFromRootsClosure::do_yield_work() {
6812   assert(_task != NULL, "sanity");
6813   _task->yield();
6814 }
6815 
6816 // A variant of the above used for verifying CMS marking work.
6817 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6818                         MemRegion span,
6819                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6820                         CMSMarkStack*  mark_stack):
6821   _collector(collector),
6822   _span(span),
6823   _verification_bm(verification_bm),
6824   _cms_bm(cms_bm),
6825   _mark_stack(mark_stack),
6826   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6827                       mark_stack)
6828 {
6829   assert(_mark_stack->isEmpty(), "stack should be empty");
6830   _finger = _verification_bm->startWord();
6831   assert(_collector->_restart_addr == NULL, "Sanity check");
6832   assert(_span.contains(_finger), "Out of bounds _finger?");
6833 }
6834 
6835 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6836   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6837   assert(_span.contains(addr), "Out of bounds _finger?");
6838   _finger = addr;
6839 }
6840 
6841 // Should revisit to see if this should be restructured for
6842 // greater efficiency.
6843 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6844   // convert offset into a HeapWord*
6845   HeapWord* addr = _verification_bm->startWord() + offset;
6846   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6847          "address out of range");
6848   assert(_verification_bm->isMarked(addr), "tautology");
6849   assert(_cms_bm->isMarked(addr), "tautology");
6850 
6851   assert(_mark_stack->isEmpty(),
6852          "should drain stack to limit stack usage");
6853   // convert addr to an oop preparatory to scanning
6854   oop obj = oop(addr);
6855   assert(obj->is_oop(), "should be an oop");
6856   assert(_finger <= addr, "_finger runneth ahead");
6857   // advance the finger to right end of this object
6858   _finger = addr + obj->size();
6859   assert(_finger > addr, "we just incremented it above");
6860   // Note: the finger doesn't advance while we drain
6861   // the stack below.
6862   bool res = _mark_stack->push(obj);
6863   assert(res, "Empty non-zero size stack should have space for single push");
6864   while (!_mark_stack->isEmpty()) {
6865     oop new_oop = _mark_stack->pop();
6866     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6867     // now scan this oop's oops
6868     new_oop->oop_iterate(&_pam_verify_closure);
6869   }
6870   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6871   return true;
6872 }
6873 
6874 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6875   CMSCollector* collector, MemRegion span,
6876   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6877   CMSMarkStack*  mark_stack):
6878   MetadataAwareOopClosure(collector->ref_processor()),
6879   _collector(collector),
6880   _span(span),
6881   _verification_bm(verification_bm),
6882   _cms_bm(cms_bm),
6883   _mark_stack(mark_stack)
6884 { }
6885 
6886 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6887 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6888 
6889 // Upon stack overflow, we discard (part of) the stack,
6890 // remembering the least address amongst those discarded
6891 // in CMSCollector's _restart_address.
6892 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6893   // Remember the least grey address discarded
6894   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6895   _collector->lower_restart_addr(ra);
6896   _mark_stack->reset();  // discard stack contents
6897   _mark_stack->expand(); // expand the stack if possible
6898 }
6899 
6900 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6901   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6902   HeapWord* addr = (HeapWord*)obj;
6903   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6904     // Oop lies in _span and isn't yet grey or black
6905     _verification_bm->mark(addr);            // now grey
6906     if (!_cms_bm->isMarked(addr)) {
6907       oop(addr)->print();
6908       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6909                              p2i(addr));
6910       fatal("... aborting");
6911     }
6912 
6913     if (!_mark_stack->push(obj)) { // stack overflow
6914       if (PrintCMSStatistics != 0) {
6915         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6916                                SIZE_FORMAT, _mark_stack->capacity());
6917       }
6918       assert(_mark_stack->isFull(), "Else push should have succeeded");
6919       handle_stack_overflow(addr);
6920     }
6921     // anything including and to the right of _finger
6922     // will be scanned as we iterate over the remainder of the
6923     // bit map
6924   }
6925 }
6926 
6927 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6928                      MemRegion span,
6929                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6930                      HeapWord* finger, MarkFromRootsClosure* parent) :
6931   MetadataAwareOopClosure(collector->ref_processor()),
6932   _collector(collector),
6933   _span(span),
6934   _bitMap(bitMap),
6935   _markStack(markStack),
6936   _finger(finger),
6937   _parent(parent)
6938 { }
6939 
6940 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6941                      MemRegion span,
6942                      CMSBitMap* bit_map,
6943                      OopTaskQueue* work_queue,
6944                      CMSMarkStack*  overflow_stack,
6945                      HeapWord* finger,
6946                      HeapWord** global_finger_addr,
6947                      Par_MarkFromRootsClosure* parent) :
6948   MetadataAwareOopClosure(collector->ref_processor()),
6949   _collector(collector),
6950   _whole_span(collector->_span),
6951   _span(span),
6952   _bit_map(bit_map),
6953   _work_queue(work_queue),
6954   _overflow_stack(overflow_stack),
6955   _finger(finger),
6956   _global_finger_addr(global_finger_addr),
6957   _parent(parent)
6958 { }
6959 
6960 // Assumes thread-safe access by callers, who are
6961 // responsible for mutual exclusion.
6962 void CMSCollector::lower_restart_addr(HeapWord* low) {
6963   assert(_span.contains(low), "Out of bounds addr");
6964   if (_restart_addr == NULL) {
6965     _restart_addr = low;
6966   } else {
6967     _restart_addr = MIN2(_restart_addr, low);
6968   }
6969 }
6970 
6971 // Upon stack overflow, we discard (part of) the stack,
6972 // remembering the least address amongst those discarded
6973 // in CMSCollector's _restart_address.
6974 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6975   // Remember the least grey address discarded
6976   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6977   _collector->lower_restart_addr(ra);
6978   _markStack->reset();  // discard stack contents
6979   _markStack->expand(); // expand the stack if possible
6980 }
6981 
6982 // Upon stack overflow, we discard (part of) the stack,
6983 // remembering the least address amongst those discarded
6984 // in CMSCollector's _restart_address.
6985 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6986   // We need to do this under a mutex to prevent other
6987   // workers from interfering with the work done below.
6988   MutexLockerEx ml(_overflow_stack->par_lock(),
6989                    Mutex::_no_safepoint_check_flag);
6990   // Remember the least grey address discarded
6991   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6992   _collector->lower_restart_addr(ra);
6993   _overflow_stack->reset();  // discard stack contents
6994   _overflow_stack->expand(); // expand the stack if possible
6995 }
6996 
6997 void PushOrMarkClosure::do_oop(oop obj) {
6998   // Ignore mark word because we are running concurrent with mutators.
6999   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7000   HeapWord* addr = (HeapWord*)obj;
7001   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7002     // Oop lies in _span and isn't yet grey or black
7003     _bitMap->mark(addr);            // now grey
7004     if (addr < _finger) {
7005       // the bit map iteration has already either passed, or
7006       // sampled, this bit in the bit map; we'll need to
7007       // use the marking stack to scan this oop's oops.
7008       bool simulate_overflow = false;
7009       NOT_PRODUCT(
7010         if (CMSMarkStackOverflowALot &&
7011             _collector->simulate_overflow()) {
7012           // simulate a stack overflow
7013           simulate_overflow = true;
7014         }
7015       )
7016       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7017         if (PrintCMSStatistics != 0) {
7018           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7019                                  SIZE_FORMAT, _markStack->capacity());
7020         }
7021         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7022         handle_stack_overflow(addr);
7023       }
7024     }
7025     // anything including and to the right of _finger
7026     // will be scanned as we iterate over the remainder of the
7027     // bit map
7028     do_yield_check();
7029   }
7030 }
7031 
7032 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7033 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7034 
7035 void Par_PushOrMarkClosure::do_oop(oop obj) {
7036   // Ignore mark word because we are running concurrent with mutators.
7037   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7038   HeapWord* addr = (HeapWord*)obj;
7039   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7040     // Oop lies in _span and isn't yet grey or black
7041     // We read the global_finger (volatile read) strictly after marking oop
7042     bool res = _bit_map->par_mark(addr);    // now grey
7043     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7044     // Should we push this marked oop on our stack?
7045     // -- if someone else marked it, nothing to do
7046     // -- if target oop is above global finger nothing to do
7047     // -- if target oop is in chunk and above local finger
7048     //      then nothing to do
7049     // -- else push on work queue
7050     if (   !res       // someone else marked it, they will deal with it
7051         || (addr >= *gfa)  // will be scanned in a later task
7052         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7053       return;
7054     }
7055     // the bit map iteration has already either passed, or
7056     // sampled, this bit in the bit map; we'll need to
7057     // use the marking stack to scan this oop's oops.
7058     bool simulate_overflow = false;
7059     NOT_PRODUCT(
7060       if (CMSMarkStackOverflowALot &&
7061           _collector->simulate_overflow()) {
7062         // simulate a stack overflow
7063         simulate_overflow = true;
7064       }
7065     )
7066     if (simulate_overflow ||
7067         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7068       // stack overflow
7069       if (PrintCMSStatistics != 0) {
7070         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7071                                SIZE_FORMAT, _overflow_stack->capacity());
7072       }
7073       // We cannot assert that the overflow stack is full because
7074       // it may have been emptied since.
7075       assert(simulate_overflow ||
7076              _work_queue->size() == _work_queue->max_elems(),
7077             "Else push should have succeeded");
7078       handle_stack_overflow(addr);
7079     }
7080     do_yield_check();
7081   }
7082 }
7083 
7084 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7085 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7086 
7087 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7088                                        MemRegion span,
7089                                        ReferenceProcessor* rp,
7090                                        CMSBitMap* bit_map,
7091                                        CMSBitMap* mod_union_table,
7092                                        CMSMarkStack*  mark_stack,
7093                                        bool           concurrent_precleaning):
7094   MetadataAwareOopClosure(rp),
7095   _collector(collector),
7096   _span(span),
7097   _bit_map(bit_map),
7098   _mod_union_table(mod_union_table),
7099   _mark_stack(mark_stack),
7100   _concurrent_precleaning(concurrent_precleaning)
7101 {
7102   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7103 }
7104 
7105 // Grey object rescan during pre-cleaning and second checkpoint phases --
7106 // the non-parallel version (the parallel version appears further below.)
7107 void PushAndMarkClosure::do_oop(oop obj) {
7108   // Ignore mark word verification. If during concurrent precleaning,
7109   // the object monitor may be locked. If during the checkpoint
7110   // phases, the object may already have been reached by a  different
7111   // path and may be at the end of the global overflow list (so
7112   // the mark word may be NULL).
7113   assert(obj->is_oop_or_null(true /* ignore mark word */),
7114          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7115   HeapWord* addr = (HeapWord*)obj;
7116   // Check if oop points into the CMS generation
7117   // and is not marked
7118   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7119     // a white object ...
7120     _bit_map->mark(addr);         // ... now grey
7121     // push on the marking stack (grey set)
7122     bool simulate_overflow = false;
7123     NOT_PRODUCT(
7124       if (CMSMarkStackOverflowALot &&
7125           _collector->simulate_overflow()) {
7126         // simulate a stack overflow
7127         simulate_overflow = true;
7128       }
7129     )
7130     if (simulate_overflow || !_mark_stack->push(obj)) {
7131       if (_concurrent_precleaning) {
7132          // During precleaning we can just dirty the appropriate card(s)
7133          // in the mod union table, thus ensuring that the object remains
7134          // in the grey set  and continue. In the case of object arrays
7135          // we need to dirty all of the cards that the object spans,
7136          // since the rescan of object arrays will be limited to the
7137          // dirty cards.
7138          // Note that no one can be interfering with us in this action
7139          // of dirtying the mod union table, so no locking or atomics
7140          // are required.
7141          if (obj->is_objArray()) {
7142            size_t sz = obj->size();
7143            HeapWord* end_card_addr = (HeapWord*)round_to(
7144                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7145            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7146            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7147            _mod_union_table->mark_range(redirty_range);
7148          } else {
7149            _mod_union_table->mark(addr);
7150          }
7151          _collector->_ser_pmc_preclean_ovflw++;
7152       } else {
7153          // During the remark phase, we need to remember this oop
7154          // in the overflow list.
7155          _collector->push_on_overflow_list(obj);
7156          _collector->_ser_pmc_remark_ovflw++;
7157       }
7158     }
7159   }
7160 }
7161 
7162 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7163                                                MemRegion span,
7164                                                ReferenceProcessor* rp,
7165                                                CMSBitMap* bit_map,
7166                                                OopTaskQueue* work_queue):
7167   MetadataAwareOopClosure(rp),
7168   _collector(collector),
7169   _span(span),
7170   _bit_map(bit_map),
7171   _work_queue(work_queue)
7172 {
7173   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7174 }
7175 
7176 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7177 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7178 
7179 // Grey object rescan during second checkpoint phase --
7180 // the parallel version.
7181 void Par_PushAndMarkClosure::do_oop(oop obj) {
7182   // In the assert below, we ignore the mark word because
7183   // this oop may point to an already visited object that is
7184   // on the overflow stack (in which case the mark word has
7185   // been hijacked for chaining into the overflow stack --
7186   // if this is the last object in the overflow stack then
7187   // its mark word will be NULL). Because this object may
7188   // have been subsequently popped off the global overflow
7189   // stack, and the mark word possibly restored to the prototypical
7190   // value, by the time we get to examined this failing assert in
7191   // the debugger, is_oop_or_null(false) may subsequently start
7192   // to hold.
7193   assert(obj->is_oop_or_null(true),
7194          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7195   HeapWord* addr = (HeapWord*)obj;
7196   // Check if oop points into the CMS generation
7197   // and is not marked
7198   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7199     // a white object ...
7200     // If we manage to "claim" the object, by being the
7201     // first thread to mark it, then we push it on our
7202     // marking stack
7203     if (_bit_map->par_mark(addr)) {     // ... now grey
7204       // push on work queue (grey set)
7205       bool simulate_overflow = false;
7206       NOT_PRODUCT(
7207         if (CMSMarkStackOverflowALot &&
7208             _collector->par_simulate_overflow()) {
7209           // simulate a stack overflow
7210           simulate_overflow = true;
7211         }
7212       )
7213       if (simulate_overflow || !_work_queue->push(obj)) {
7214         _collector->par_push_on_overflow_list(obj);
7215         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7216       }
7217     } // Else, some other thread got there first
7218   }
7219 }
7220 
7221 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7222 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7223 
7224 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7225   Mutex* bml = _collector->bitMapLock();
7226   assert_lock_strong(bml);
7227   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7228          "CMS thread should hold CMS token");
7229 
7230   bml->unlock();
7231   ConcurrentMarkSweepThread::desynchronize(true);
7232 
7233   _collector->stopTimer();
7234   if (PrintCMSStatistics != 0) {
7235     _collector->incrementYields();
7236   }
7237 
7238   // See the comment in coordinator_yield()
7239   for (unsigned i = 0; i < CMSYieldSleepCount &&
7240                        ConcurrentMarkSweepThread::should_yield() &&
7241                        !CMSCollector::foregroundGCIsActive(); ++i) {
7242     os::sleep(Thread::current(), 1, false);
7243   }
7244 
7245   ConcurrentMarkSweepThread::synchronize(true);
7246   bml->lock();
7247 
7248   _collector->startTimer();
7249 }
7250 
7251 bool CMSPrecleanRefsYieldClosure::should_return() {
7252   if (ConcurrentMarkSweepThread::should_yield()) {
7253     do_yield_work();
7254   }
7255   return _collector->foregroundGCIsActive();
7256 }
7257 
7258 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7259   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7260          "mr should be aligned to start at a card boundary");
7261   // We'd like to assert:
7262   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7263   //        "mr should be a range of cards");
7264   // However, that would be too strong in one case -- the last
7265   // partition ends at _unallocated_block which, in general, can be
7266   // an arbitrary boundary, not necessarily card aligned.
7267   if (PrintCMSStatistics != 0) {
7268     _num_dirty_cards +=
7269          mr.word_size()/CardTableModRefBS::card_size_in_words;
7270   }
7271   _space->object_iterate_mem(mr, &_scan_cl);
7272 }
7273 
7274 SweepClosure::SweepClosure(CMSCollector* collector,
7275                            ConcurrentMarkSweepGeneration* g,
7276                            CMSBitMap* bitMap, bool should_yield) :
7277   _collector(collector),
7278   _g(g),
7279   _sp(g->cmsSpace()),
7280   _limit(_sp->sweep_limit()),
7281   _freelistLock(_sp->freelistLock()),
7282   _bitMap(bitMap),
7283   _yield(should_yield),
7284   _inFreeRange(false),           // No free range at beginning of sweep
7285   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7286   _lastFreeRangeCoalesced(false),
7287   _freeFinger(g->used_region().start())
7288 {
7289   NOT_PRODUCT(
7290     _numObjectsFreed = 0;
7291     _numWordsFreed   = 0;
7292     _numObjectsLive = 0;
7293     _numWordsLive = 0;
7294     _numObjectsAlreadyFree = 0;
7295     _numWordsAlreadyFree = 0;
7296     _last_fc = NULL;
7297 
7298     _sp->initializeIndexedFreeListArrayReturnedBytes();
7299     _sp->dictionary()->initialize_dict_returned_bytes();
7300   )
7301   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7302          "sweep _limit out of bounds");
7303   if (CMSTraceSweeper) {
7304     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7305                         p2i(_limit));
7306   }
7307 }
7308 
7309 void SweepClosure::print_on(outputStream* st) const {
7310   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7311                 p2i(_sp->bottom()), p2i(_sp->end()));
7312   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7313   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7314   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7315   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7316                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7317 }
7318 
7319 #ifndef PRODUCT
7320 // Assertion checking only:  no useful work in product mode --
7321 // however, if any of the flags below become product flags,
7322 // you may need to review this code to see if it needs to be
7323 // enabled in product mode.
7324 SweepClosure::~SweepClosure() {
7325   assert_lock_strong(_freelistLock);
7326   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7327          "sweep _limit out of bounds");
7328   if (inFreeRange()) {
7329     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7330     print();
7331     ShouldNotReachHere();
7332   }
7333   if (Verbose && PrintGC) {
7334     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7335                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7336     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7337                            SIZE_FORMAT" bytes  "
7338       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7339       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7340       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7341     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7342                         * sizeof(HeapWord);
7343     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7344 
7345     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7346       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7347       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7348       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7349       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7350       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7351         indexListReturnedBytes);
7352       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7353         dict_returned_bytes);
7354     }
7355   }
7356   if (CMSTraceSweeper) {
7357     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7358                            p2i(_limit));
7359   }
7360 }
7361 #endif  // PRODUCT
7362 
7363 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7364     bool freeRangeInFreeLists) {
7365   if (CMSTraceSweeper) {
7366     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7367                p2i(freeFinger), freeRangeInFreeLists);
7368   }
7369   assert(!inFreeRange(), "Trampling existing free range");
7370   set_inFreeRange(true);
7371   set_lastFreeRangeCoalesced(false);
7372 
7373   set_freeFinger(freeFinger);
7374   set_freeRangeInFreeLists(freeRangeInFreeLists);
7375   if (CMSTestInFreeList) {
7376     if (freeRangeInFreeLists) {
7377       FreeChunk* fc = (FreeChunk*) freeFinger;
7378       assert(fc->is_free(), "A chunk on the free list should be free.");
7379       assert(fc->size() > 0, "Free range should have a size");
7380       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7381     }
7382   }
7383 }
7384 
7385 // Note that the sweeper runs concurrently with mutators. Thus,
7386 // it is possible for direct allocation in this generation to happen
7387 // in the middle of the sweep. Note that the sweeper also coalesces
7388 // contiguous free blocks. Thus, unless the sweeper and the allocator
7389 // synchronize appropriately freshly allocated blocks may get swept up.
7390 // This is accomplished by the sweeper locking the free lists while
7391 // it is sweeping. Thus blocks that are determined to be free are
7392 // indeed free. There is however one additional complication:
7393 // blocks that have been allocated since the final checkpoint and
7394 // mark, will not have been marked and so would be treated as
7395 // unreachable and swept up. To prevent this, the allocator marks
7396 // the bit map when allocating during the sweep phase. This leads,
7397 // however, to a further complication -- objects may have been allocated
7398 // but not yet initialized -- in the sense that the header isn't yet
7399 // installed. The sweeper can not then determine the size of the block
7400 // in order to skip over it. To deal with this case, we use a technique
7401 // (due to Printezis) to encode such uninitialized block sizes in the
7402 // bit map. Since the bit map uses a bit per every HeapWord, but the
7403 // CMS generation has a minimum object size of 3 HeapWords, it follows
7404 // that "normal marks" won't be adjacent in the bit map (there will
7405 // always be at least two 0 bits between successive 1 bits). We make use
7406 // of these "unused" bits to represent uninitialized blocks -- the bit
7407 // corresponding to the start of the uninitialized object and the next
7408 // bit are both set. Finally, a 1 bit marks the end of the object that
7409 // started with the two consecutive 1 bits to indicate its potentially
7410 // uninitialized state.
7411 
7412 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7413   FreeChunk* fc = (FreeChunk*)addr;
7414   size_t res;
7415 
7416   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7417   // than "addr == _limit" because although _limit was a block boundary when
7418   // we started the sweep, it may no longer be one because heap expansion
7419   // may have caused us to coalesce the block ending at the address _limit
7420   // with a newly expanded chunk (this happens when _limit was set to the
7421   // previous _end of the space), so we may have stepped past _limit:
7422   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7423   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7424     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7425            "sweep _limit out of bounds");
7426     assert(addr < _sp->end(), "addr out of bounds");
7427     // Flush any free range we might be holding as a single
7428     // coalesced chunk to the appropriate free list.
7429     if (inFreeRange()) {
7430       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7431              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", p2i(freeFinger())));
7432       flush_cur_free_chunk(freeFinger(),
7433                            pointer_delta(addr, freeFinger()));
7434       if (CMSTraceSweeper) {
7435         gclog_or_tty->print("Sweep: last chunk: ");
7436         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
7437                    "[coalesced:%d]\n",
7438                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7439                    lastFreeRangeCoalesced() ? 1 : 0);
7440       }
7441     }
7442 
7443     // help the iterator loop finish
7444     return pointer_delta(_sp->end(), addr);
7445   }
7446 
7447   assert(addr < _limit, "sweep invariant");
7448   // check if we should yield
7449   do_yield_check(addr);
7450   if (fc->is_free()) {
7451     // Chunk that is already free
7452     res = fc->size();
7453     do_already_free_chunk(fc);
7454     debug_only(_sp->verifyFreeLists());
7455     // If we flush the chunk at hand in lookahead_and_flush()
7456     // and it's coalesced with a preceding chunk, then the
7457     // process of "mangling" the payload of the coalesced block
7458     // will cause erasure of the size information from the
7459     // (erstwhile) header of all the coalesced blocks but the
7460     // first, so the first disjunct in the assert will not hold
7461     // in that specific case (in which case the second disjunct
7462     // will hold).
7463     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7464            "Otherwise the size info doesn't change at this step");
7465     NOT_PRODUCT(
7466       _numObjectsAlreadyFree++;
7467       _numWordsAlreadyFree += res;
7468     )
7469     NOT_PRODUCT(_last_fc = fc;)
7470   } else if (!_bitMap->isMarked(addr)) {
7471     // Chunk is fresh garbage
7472     res = do_garbage_chunk(fc);
7473     debug_only(_sp->verifyFreeLists());
7474     NOT_PRODUCT(
7475       _numObjectsFreed++;
7476       _numWordsFreed += res;
7477     )
7478   } else {
7479     // Chunk that is alive.
7480     res = do_live_chunk(fc);
7481     debug_only(_sp->verifyFreeLists());
7482     NOT_PRODUCT(
7483         _numObjectsLive++;
7484         _numWordsLive += res;
7485     )
7486   }
7487   return res;
7488 }
7489 
7490 // For the smart allocation, record following
7491 //  split deaths - a free chunk is removed from its free list because
7492 //      it is being split into two or more chunks.
7493 //  split birth - a free chunk is being added to its free list because
7494 //      a larger free chunk has been split and resulted in this free chunk.
7495 //  coal death - a free chunk is being removed from its free list because
7496 //      it is being coalesced into a large free chunk.
7497 //  coal birth - a free chunk is being added to its free list because
7498 //      it was created when two or more free chunks where coalesced into
7499 //      this free chunk.
7500 //
7501 // These statistics are used to determine the desired number of free
7502 // chunks of a given size.  The desired number is chosen to be relative
7503 // to the end of a CMS sweep.  The desired number at the end of a sweep
7504 // is the
7505 //      count-at-end-of-previous-sweep (an amount that was enough)
7506 //              - count-at-beginning-of-current-sweep  (the excess)
7507 //              + split-births  (gains in this size during interval)
7508 //              - split-deaths  (demands on this size during interval)
7509 // where the interval is from the end of one sweep to the end of the
7510 // next.
7511 //
7512 // When sweeping the sweeper maintains an accumulated chunk which is
7513 // the chunk that is made up of chunks that have been coalesced.  That
7514 // will be termed the left-hand chunk.  A new chunk of garbage that
7515 // is being considered for coalescing will be referred to as the
7516 // right-hand chunk.
7517 //
7518 // When making a decision on whether to coalesce a right-hand chunk with
7519 // the current left-hand chunk, the current count vs. the desired count
7520 // of the left-hand chunk is considered.  Also if the right-hand chunk
7521 // is near the large chunk at the end of the heap (see
7522 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7523 // left-hand chunk is coalesced.
7524 //
7525 // When making a decision about whether to split a chunk, the desired count
7526 // vs. the current count of the candidate to be split is also considered.
7527 // If the candidate is underpopulated (currently fewer chunks than desired)
7528 // a chunk of an overpopulated (currently more chunks than desired) size may
7529 // be chosen.  The "hint" associated with a free list, if non-null, points
7530 // to a free list which may be overpopulated.
7531 //
7532 
7533 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7534   const size_t size = fc->size();
7535   // Chunks that cannot be coalesced are not in the
7536   // free lists.
7537   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7538     assert(_sp->verify_chunk_in_free_list(fc),
7539       "free chunk should be in free lists");
7540   }
7541   // a chunk that is already free, should not have been
7542   // marked in the bit map
7543   HeapWord* const addr = (HeapWord*) fc;
7544   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7545   // Verify that the bit map has no bits marked between
7546   // addr and purported end of this block.
7547   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7548 
7549   // Some chunks cannot be coalesced under any circumstances.
7550   // See the definition of cantCoalesce().
7551   if (!fc->cantCoalesce()) {
7552     // This chunk can potentially be coalesced.
7553     if (_sp->adaptive_freelists()) {
7554       // All the work is done in
7555       do_post_free_or_garbage_chunk(fc, size);
7556     } else {  // Not adaptive free lists
7557       // this is a free chunk that can potentially be coalesced by the sweeper;
7558       if (!inFreeRange()) {
7559         // if the next chunk is a free block that can't be coalesced
7560         // it doesn't make sense to remove this chunk from the free lists
7561         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7562         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7563         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7564             nextChunk->is_free()               &&     // ... which is free...
7565             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7566           // nothing to do
7567         } else {
7568           // Potentially the start of a new free range:
7569           // Don't eagerly remove it from the free lists.
7570           // No need to remove it if it will just be put
7571           // back again.  (Also from a pragmatic point of view
7572           // if it is a free block in a region that is beyond
7573           // any allocated blocks, an assertion will fail)
7574           // Remember the start of a free run.
7575           initialize_free_range(addr, true);
7576           // end - can coalesce with next chunk
7577         }
7578       } else {
7579         // the midst of a free range, we are coalescing
7580         print_free_block_coalesced(fc);
7581         if (CMSTraceSweeper) {
7582           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7583         }
7584         // remove it from the free lists
7585         _sp->removeFreeChunkFromFreeLists(fc);
7586         set_lastFreeRangeCoalesced(true);
7587         // If the chunk is being coalesced and the current free range is
7588         // in the free lists, remove the current free range so that it
7589         // will be returned to the free lists in its entirety - all
7590         // the coalesced pieces included.
7591         if (freeRangeInFreeLists()) {
7592           FreeChunk* ffc = (FreeChunk*) freeFinger();
7593           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7594             "Size of free range is inconsistent with chunk size.");
7595           if (CMSTestInFreeList) {
7596             assert(_sp->verify_chunk_in_free_list(ffc),
7597               "free range is not in free lists");
7598           }
7599           _sp->removeFreeChunkFromFreeLists(ffc);
7600           set_freeRangeInFreeLists(false);
7601         }
7602       }
7603     }
7604     // Note that if the chunk is not coalescable (the else arm
7605     // below), we unconditionally flush, without needing to do
7606     // a "lookahead," as we do below.
7607     if (inFreeRange()) lookahead_and_flush(fc, size);
7608   } else {
7609     // Code path common to both original and adaptive free lists.
7610 
7611     // cant coalesce with previous block; this should be treated
7612     // as the end of a free run if any
7613     if (inFreeRange()) {
7614       // we kicked some butt; time to pick up the garbage
7615       assert(freeFinger() < addr, "freeFinger points too high");
7616       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7617     }
7618     // else, nothing to do, just continue
7619   }
7620 }
7621 
7622 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7623   // This is a chunk of garbage.  It is not in any free list.
7624   // Add it to a free list or let it possibly be coalesced into
7625   // a larger chunk.
7626   HeapWord* const addr = (HeapWord*) fc;
7627   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7628 
7629   if (_sp->adaptive_freelists()) {
7630     // Verify that the bit map has no bits marked between
7631     // addr and purported end of just dead object.
7632     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7633 
7634     do_post_free_or_garbage_chunk(fc, size);
7635   } else {
7636     if (!inFreeRange()) {
7637       // start of a new free range
7638       assert(size > 0, "A free range should have a size");
7639       initialize_free_range(addr, false);
7640     } else {
7641       // this will be swept up when we hit the end of the
7642       // free range
7643       if (CMSTraceSweeper) {
7644         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7645       }
7646       // If the chunk is being coalesced and the current free range is
7647       // in the free lists, remove the current free range so that it
7648       // will be returned to the free lists in its entirety - all
7649       // the coalesced pieces included.
7650       if (freeRangeInFreeLists()) {
7651         FreeChunk* ffc = (FreeChunk*)freeFinger();
7652         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7653           "Size of free range is inconsistent with chunk size.");
7654         if (CMSTestInFreeList) {
7655           assert(_sp->verify_chunk_in_free_list(ffc),
7656             "free range is not in free lists");
7657         }
7658         _sp->removeFreeChunkFromFreeLists(ffc);
7659         set_freeRangeInFreeLists(false);
7660       }
7661       set_lastFreeRangeCoalesced(true);
7662     }
7663     // this will be swept up when we hit the end of the free range
7664 
7665     // Verify that the bit map has no bits marked between
7666     // addr and purported end of just dead object.
7667     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7668   }
7669   assert(_limit >= addr + size,
7670          "A freshly garbage chunk can't possibly straddle over _limit");
7671   if (inFreeRange()) lookahead_and_flush(fc, size);
7672   return size;
7673 }
7674 
7675 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7676   HeapWord* addr = (HeapWord*) fc;
7677   // The sweeper has just found a live object. Return any accumulated
7678   // left hand chunk to the free lists.
7679   if (inFreeRange()) {
7680     assert(freeFinger() < addr, "freeFinger points too high");
7681     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7682   }
7683 
7684   // This object is live: we'd normally expect this to be
7685   // an oop, and like to assert the following:
7686   // assert(oop(addr)->is_oop(), "live block should be an oop");
7687   // However, as we commented above, this may be an object whose
7688   // header hasn't yet been initialized.
7689   size_t size;
7690   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7691   if (_bitMap->isMarked(addr + 1)) {
7692     // Determine the size from the bit map, rather than trying to
7693     // compute it from the object header.
7694     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7695     size = pointer_delta(nextOneAddr + 1, addr);
7696     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7697            "alignment problem");
7698 
7699 #ifdef ASSERT
7700       if (oop(addr)->klass_or_null() != NULL) {
7701         // Ignore mark word because we are running concurrent with mutators
7702         assert(oop(addr)->is_oop(true), "live block should be an oop");
7703         assert(size ==
7704                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7705                "P-mark and computed size do not agree");
7706       }
7707 #endif
7708 
7709   } else {
7710     // This should be an initialized object that's alive.
7711     assert(oop(addr)->klass_or_null() != NULL,
7712            "Should be an initialized object");
7713     // Ignore mark word because we are running concurrent with mutators
7714     assert(oop(addr)->is_oop(true), "live block should be an oop");
7715     // Verify that the bit map has no bits marked between
7716     // addr and purported end of this block.
7717     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7718     assert(size >= 3, "Necessary for Printezis marks to work");
7719     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7720     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7721   }
7722   return size;
7723 }
7724 
7725 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7726                                                  size_t chunkSize) {
7727   // do_post_free_or_garbage_chunk() should only be called in the case
7728   // of the adaptive free list allocator.
7729   const bool fcInFreeLists = fc->is_free();
7730   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7731   assert((HeapWord*)fc <= _limit, "sweep invariant");
7732   if (CMSTestInFreeList && fcInFreeLists) {
7733     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7734   }
7735 
7736   if (CMSTraceSweeper) {
7737     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7738   }
7739 
7740   HeapWord* const fc_addr = (HeapWord*) fc;
7741 
7742   bool coalesce;
7743   const size_t left  = pointer_delta(fc_addr, freeFinger());
7744   const size_t right = chunkSize;
7745   switch (FLSCoalescePolicy) {
7746     // numeric value forms a coalition aggressiveness metric
7747     case 0:  { // never coalesce
7748       coalesce = false;
7749       break;
7750     }
7751     case 1: { // coalesce if left & right chunks on overpopulated lists
7752       coalesce = _sp->coalOverPopulated(left) &&
7753                  _sp->coalOverPopulated(right);
7754       break;
7755     }
7756     case 2: { // coalesce if left chunk on overpopulated list (default)
7757       coalesce = _sp->coalOverPopulated(left);
7758       break;
7759     }
7760     case 3: { // coalesce if left OR right chunk on overpopulated list
7761       coalesce = _sp->coalOverPopulated(left) ||
7762                  _sp->coalOverPopulated(right);
7763       break;
7764     }
7765     case 4: { // always coalesce
7766       coalesce = true;
7767       break;
7768     }
7769     default:
7770      ShouldNotReachHere();
7771   }
7772 
7773   // Should the current free range be coalesced?
7774   // If the chunk is in a free range and either we decided to coalesce above
7775   // or the chunk is near the large block at the end of the heap
7776   // (isNearLargestChunk() returns true), then coalesce this chunk.
7777   const bool doCoalesce = inFreeRange()
7778                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7779   if (doCoalesce) {
7780     // Coalesce the current free range on the left with the new
7781     // chunk on the right.  If either is on a free list,
7782     // it must be removed from the list and stashed in the closure.
7783     if (freeRangeInFreeLists()) {
7784       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7785       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7786         "Size of free range is inconsistent with chunk size.");
7787       if (CMSTestInFreeList) {
7788         assert(_sp->verify_chunk_in_free_list(ffc),
7789           "Chunk is not in free lists");
7790       }
7791       _sp->coalDeath(ffc->size());
7792       _sp->removeFreeChunkFromFreeLists(ffc);
7793       set_freeRangeInFreeLists(false);
7794     }
7795     if (fcInFreeLists) {
7796       _sp->coalDeath(chunkSize);
7797       assert(fc->size() == chunkSize,
7798         "The chunk has the wrong size or is not in the free lists");
7799       _sp->removeFreeChunkFromFreeLists(fc);
7800     }
7801     set_lastFreeRangeCoalesced(true);
7802     print_free_block_coalesced(fc);
7803   } else {  // not in a free range and/or should not coalesce
7804     // Return the current free range and start a new one.
7805     if (inFreeRange()) {
7806       // In a free range but cannot coalesce with the right hand chunk.
7807       // Put the current free range into the free lists.
7808       flush_cur_free_chunk(freeFinger(),
7809                            pointer_delta(fc_addr, freeFinger()));
7810     }
7811     // Set up for new free range.  Pass along whether the right hand
7812     // chunk is in the free lists.
7813     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7814   }
7815 }
7816 
7817 // Lookahead flush:
7818 // If we are tracking a free range, and this is the last chunk that
7819 // we'll look at because its end crosses past _limit, we'll preemptively
7820 // flush it along with any free range we may be holding on to. Note that
7821 // this can be the case only for an already free or freshly garbage
7822 // chunk. If this block is an object, it can never straddle
7823 // over _limit. The "straddling" occurs when _limit is set at
7824 // the previous end of the space when this cycle started, and
7825 // a subsequent heap expansion caused the previously co-terminal
7826 // free block to be coalesced with the newly expanded portion,
7827 // thus rendering _limit a non-block-boundary making it dangerous
7828 // for the sweeper to step over and examine.
7829 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7830   assert(inFreeRange(), "Should only be called if currently in a free range.");
7831   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7832   assert(_sp->used_region().contains(eob - 1),
7833          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7834                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7835                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7836                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7837   if (eob >= _limit) {
7838     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7839     if (CMSTraceSweeper) {
7840       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7841                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7842                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7843                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7844     }
7845     // Return the storage we are tracking back into the free lists.
7846     if (CMSTraceSweeper) {
7847       gclog_or_tty->print_cr("Flushing ... ");
7848     }
7849     assert(freeFinger() < eob, "Error");
7850     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7851   }
7852 }
7853 
7854 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7855   assert(inFreeRange(), "Should only be called if currently in a free range.");
7856   assert(size > 0,
7857     "A zero sized chunk cannot be added to the free lists.");
7858   if (!freeRangeInFreeLists()) {
7859     if (CMSTestInFreeList) {
7860       FreeChunk* fc = (FreeChunk*) chunk;
7861       fc->set_size(size);
7862       assert(!_sp->verify_chunk_in_free_list(fc),
7863         "chunk should not be in free lists yet");
7864     }
7865     if (CMSTraceSweeper) {
7866       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7867                     p2i(chunk), size);
7868     }
7869     // A new free range is going to be starting.  The current
7870     // free range has not been added to the free lists yet or
7871     // was removed so add it back.
7872     // If the current free range was coalesced, then the death
7873     // of the free range was recorded.  Record a birth now.
7874     if (lastFreeRangeCoalesced()) {
7875       _sp->coalBirth(size);
7876     }
7877     _sp->addChunkAndRepairOffsetTable(chunk, size,
7878             lastFreeRangeCoalesced());
7879   } else if (CMSTraceSweeper) {
7880     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7881   }
7882   set_inFreeRange(false);
7883   set_freeRangeInFreeLists(false);
7884 }
7885 
7886 // We take a break if we've been at this for a while,
7887 // so as to avoid monopolizing the locks involved.
7888 void SweepClosure::do_yield_work(HeapWord* addr) {
7889   // Return current free chunk being used for coalescing (if any)
7890   // to the appropriate freelist.  After yielding, the next
7891   // free block encountered will start a coalescing range of
7892   // free blocks.  If the next free block is adjacent to the
7893   // chunk just flushed, they will need to wait for the next
7894   // sweep to be coalesced.
7895   if (inFreeRange()) {
7896     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7897   }
7898 
7899   // First give up the locks, then yield, then re-lock.
7900   // We should probably use a constructor/destructor idiom to
7901   // do this unlock/lock or modify the MutexUnlocker class to
7902   // serve our purpose. XXX
7903   assert_lock_strong(_bitMap->lock());
7904   assert_lock_strong(_freelistLock);
7905   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7906          "CMS thread should hold CMS token");
7907   _bitMap->lock()->unlock();
7908   _freelistLock->unlock();
7909   ConcurrentMarkSweepThread::desynchronize(true);
7910   _collector->stopTimer();
7911   if (PrintCMSStatistics != 0) {
7912     _collector->incrementYields();
7913   }
7914 
7915   // See the comment in coordinator_yield()
7916   for (unsigned i = 0; i < CMSYieldSleepCount &&
7917                        ConcurrentMarkSweepThread::should_yield() &&
7918                        !CMSCollector::foregroundGCIsActive(); ++i) {
7919     os::sleep(Thread::current(), 1, false);
7920   }
7921 
7922   ConcurrentMarkSweepThread::synchronize(true);
7923   _freelistLock->lock();
7924   _bitMap->lock()->lock_without_safepoint_check();
7925   _collector->startTimer();
7926 }
7927 
7928 #ifndef PRODUCT
7929 // This is actually very useful in a product build if it can
7930 // be called from the debugger.  Compile it into the product
7931 // as needed.
7932 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7933   return debug_cms_space->verify_chunk_in_free_list(fc);
7934 }
7935 #endif
7936 
7937 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7938   if (CMSTraceSweeper) {
7939     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7940                            p2i(fc), fc->size());
7941   }
7942 }
7943 
7944 // CMSIsAliveClosure
7945 bool CMSIsAliveClosure::do_object_b(oop obj) {
7946   HeapWord* addr = (HeapWord*)obj;
7947   return addr != NULL &&
7948          (!_span.contains(addr) || _bit_map->isMarked(addr));
7949 }
7950 
7951 
7952 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7953                       MemRegion span,
7954                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7955                       bool cpc):
7956   _collector(collector),
7957   _span(span),
7958   _bit_map(bit_map),
7959   _mark_stack(mark_stack),
7960   _concurrent_precleaning(cpc) {
7961   assert(!_span.is_empty(), "Empty span could spell trouble");
7962 }
7963 
7964 
7965 // CMSKeepAliveClosure: the serial version
7966 void CMSKeepAliveClosure::do_oop(oop obj) {
7967   HeapWord* addr = (HeapWord*)obj;
7968   if (_span.contains(addr) &&
7969       !_bit_map->isMarked(addr)) {
7970     _bit_map->mark(addr);
7971     bool simulate_overflow = false;
7972     NOT_PRODUCT(
7973       if (CMSMarkStackOverflowALot &&
7974           _collector->simulate_overflow()) {
7975         // simulate a stack overflow
7976         simulate_overflow = true;
7977       }
7978     )
7979     if (simulate_overflow || !_mark_stack->push(obj)) {
7980       if (_concurrent_precleaning) {
7981         // We dirty the overflown object and let the remark
7982         // phase deal with it.
7983         assert(_collector->overflow_list_is_empty(), "Error");
7984         // In the case of object arrays, we need to dirty all of
7985         // the cards that the object spans. No locking or atomics
7986         // are needed since no one else can be mutating the mod union
7987         // table.
7988         if (obj->is_objArray()) {
7989           size_t sz = obj->size();
7990           HeapWord* end_card_addr =
7991             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7992           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7993           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7994           _collector->_modUnionTable.mark_range(redirty_range);
7995         } else {
7996           _collector->_modUnionTable.mark(addr);
7997         }
7998         _collector->_ser_kac_preclean_ovflw++;
7999       } else {
8000         _collector->push_on_overflow_list(obj);
8001         _collector->_ser_kac_ovflw++;
8002       }
8003     }
8004   }
8005 }
8006 
8007 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8008 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8009 
8010 // CMSParKeepAliveClosure: a parallel version of the above.
8011 // The work queues are private to each closure (thread),
8012 // but (may be) available for stealing by other threads.
8013 void CMSParKeepAliveClosure::do_oop(oop obj) {
8014   HeapWord* addr = (HeapWord*)obj;
8015   if (_span.contains(addr) &&
8016       !_bit_map->isMarked(addr)) {
8017     // In general, during recursive tracing, several threads
8018     // may be concurrently getting here; the first one to
8019     // "tag" it, claims it.
8020     if (_bit_map->par_mark(addr)) {
8021       bool res = _work_queue->push(obj);
8022       assert(res, "Low water mark should be much less than capacity");
8023       // Do a recursive trim in the hope that this will keep
8024       // stack usage lower, but leave some oops for potential stealers
8025       trim_queue(_low_water_mark);
8026     } // Else, another thread got there first
8027   }
8028 }
8029 
8030 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8031 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8032 
8033 void CMSParKeepAliveClosure::trim_queue(uint max) {
8034   while (_work_queue->size() > max) {
8035     oop new_oop;
8036     if (_work_queue->pop_local(new_oop)) {
8037       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8038       assert(_bit_map->isMarked((HeapWord*)new_oop),
8039              "no white objects on this stack!");
8040       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8041       // iterate over the oops in this oop, marking and pushing
8042       // the ones in CMS heap (i.e. in _span).
8043       new_oop->oop_iterate(&_mark_and_push);
8044     }
8045   }
8046 }
8047 
8048 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8049                                 CMSCollector* collector,
8050                                 MemRegion span, CMSBitMap* bit_map,
8051                                 OopTaskQueue* work_queue):
8052   _collector(collector),
8053   _span(span),
8054   _bit_map(bit_map),
8055   _work_queue(work_queue) { }
8056 
8057 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8058   HeapWord* addr = (HeapWord*)obj;
8059   if (_span.contains(addr) &&
8060       !_bit_map->isMarked(addr)) {
8061     if (_bit_map->par_mark(addr)) {
8062       bool simulate_overflow = false;
8063       NOT_PRODUCT(
8064         if (CMSMarkStackOverflowALot &&
8065             _collector->par_simulate_overflow()) {
8066           // simulate a stack overflow
8067           simulate_overflow = true;
8068         }
8069       )
8070       if (simulate_overflow || !_work_queue->push(obj)) {
8071         _collector->par_push_on_overflow_list(obj);
8072         _collector->_par_kac_ovflw++;
8073       }
8074     } // Else another thread got there already
8075   }
8076 }
8077 
8078 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8079 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8080 
8081 //////////////////////////////////////////////////////////////////
8082 //  CMSExpansionCause                /////////////////////////////
8083 //////////////////////////////////////////////////////////////////
8084 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8085   switch (cause) {
8086     case _no_expansion:
8087       return "No expansion";
8088     case _satisfy_free_ratio:
8089       return "Free ratio";
8090     case _satisfy_promotion:
8091       return "Satisfy promotion";
8092     case _satisfy_allocation:
8093       return "allocation";
8094     case _allocate_par_lab:
8095       return "Par LAB";
8096     case _allocate_par_spooling_space:
8097       return "Par Spooling Space";
8098     case _adaptive_size_policy:
8099       return "Ergonomics";
8100     default:
8101       return "unknown";
8102   }
8103 }
8104 
8105 void CMSDrainMarkingStackClosure::do_void() {
8106   // the max number to take from overflow list at a time
8107   const size_t num = _mark_stack->capacity()/4;
8108   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8109          "Overflow list should be NULL during concurrent phases");
8110   while (!_mark_stack->isEmpty() ||
8111          // if stack is empty, check the overflow list
8112          _collector->take_from_overflow_list(num, _mark_stack)) {
8113     oop obj = _mark_stack->pop();
8114     HeapWord* addr = (HeapWord*)obj;
8115     assert(_span.contains(addr), "Should be within span");
8116     assert(_bit_map->isMarked(addr), "Should be marked");
8117     assert(obj->is_oop(), "Should be an oop");
8118     obj->oop_iterate(_keep_alive);
8119   }
8120 }
8121 
8122 void CMSParDrainMarkingStackClosure::do_void() {
8123   // drain queue
8124   trim_queue(0);
8125 }
8126 
8127 // Trim our work_queue so its length is below max at return
8128 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8129   while (_work_queue->size() > max) {
8130     oop new_oop;
8131     if (_work_queue->pop_local(new_oop)) {
8132       assert(new_oop->is_oop(), "Expected an oop");
8133       assert(_bit_map->isMarked((HeapWord*)new_oop),
8134              "no white objects on this stack!");
8135       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8136       // iterate over the oops in this oop, marking and pushing
8137       // the ones in CMS heap (i.e. in _span).
8138       new_oop->oop_iterate(&_mark_and_push);
8139     }
8140   }
8141 }
8142 
8143 ////////////////////////////////////////////////////////////////////
8144 // Support for Marking Stack Overflow list handling and related code
8145 ////////////////////////////////////////////////////////////////////
8146 // Much of the following code is similar in shape and spirit to the
8147 // code used in ParNewGC. We should try and share that code
8148 // as much as possible in the future.
8149 
8150 #ifndef PRODUCT
8151 // Debugging support for CMSStackOverflowALot
8152 
8153 // It's OK to call this multi-threaded;  the worst thing
8154 // that can happen is that we'll get a bunch of closely
8155 // spaced simulated overflows, but that's OK, in fact
8156 // probably good as it would exercise the overflow code
8157 // under contention.
8158 bool CMSCollector::simulate_overflow() {
8159   if (_overflow_counter-- <= 0) { // just being defensive
8160     _overflow_counter = CMSMarkStackOverflowInterval;
8161     return true;
8162   } else {
8163     return false;
8164   }
8165 }
8166 
8167 bool CMSCollector::par_simulate_overflow() {
8168   return simulate_overflow();
8169 }
8170 #endif
8171 
8172 // Single-threaded
8173 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8174   assert(stack->isEmpty(), "Expected precondition");
8175   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8176   size_t i = num;
8177   oop  cur = _overflow_list;
8178   const markOop proto = markOopDesc::prototype();
8179   NOT_PRODUCT(ssize_t n = 0;)
8180   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8181     next = oop(cur->mark());
8182     cur->set_mark(proto);   // until proven otherwise
8183     assert(cur->is_oop(), "Should be an oop");
8184     bool res = stack->push(cur);
8185     assert(res, "Bit off more than can chew?");
8186     NOT_PRODUCT(n++;)
8187   }
8188   _overflow_list = cur;
8189 #ifndef PRODUCT
8190   assert(_num_par_pushes >= n, "Too many pops?");
8191   _num_par_pushes -=n;
8192 #endif
8193   return !stack->isEmpty();
8194 }
8195 
8196 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8197 // (MT-safe) Get a prefix of at most "num" from the list.
8198 // The overflow list is chained through the mark word of
8199 // each object in the list. We fetch the entire list,
8200 // break off a prefix of the right size and return the
8201 // remainder. If other threads try to take objects from
8202 // the overflow list at that time, they will wait for
8203 // some time to see if data becomes available. If (and
8204 // only if) another thread places one or more object(s)
8205 // on the global list before we have returned the suffix
8206 // to the global list, we will walk down our local list
8207 // to find its end and append the global list to
8208 // our suffix before returning it. This suffix walk can
8209 // prove to be expensive (quadratic in the amount of traffic)
8210 // when there are many objects in the overflow list and
8211 // there is much producer-consumer contention on the list.
8212 // *NOTE*: The overflow list manipulation code here and
8213 // in ParNewGeneration:: are very similar in shape,
8214 // except that in the ParNew case we use the old (from/eden)
8215 // copy of the object to thread the list via its klass word.
8216 // Because of the common code, if you make any changes in
8217 // the code below, please check the ParNew version to see if
8218 // similar changes might be needed.
8219 // CR 6797058 has been filed to consolidate the common code.
8220 bool CMSCollector::par_take_from_overflow_list(size_t num,
8221                                                OopTaskQueue* work_q,
8222                                                int no_of_gc_threads) {
8223   assert(work_q->size() == 0, "First empty local work queue");
8224   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8225   if (_overflow_list == NULL) {
8226     return false;
8227   }
8228   // Grab the entire list; we'll put back a suffix
8229   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8230   Thread* tid = Thread::current();
8231   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8232   // set to ParallelGCThreads.
8233   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8234   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8235   // If the list is busy, we spin for a short while,
8236   // sleeping between attempts to get the list.
8237   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8238     os::sleep(tid, sleep_time_millis, false);
8239     if (_overflow_list == NULL) {
8240       // Nothing left to take
8241       return false;
8242     } else if (_overflow_list != BUSY) {
8243       // Try and grab the prefix
8244       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8245     }
8246   }
8247   // If the list was found to be empty, or we spun long
8248   // enough, we give up and return empty-handed. If we leave
8249   // the list in the BUSY state below, it must be the case that
8250   // some other thread holds the overflow list and will set it
8251   // to a non-BUSY state in the future.
8252   if (prefix == NULL || prefix == BUSY) {
8253      // Nothing to take or waited long enough
8254      if (prefix == NULL) {
8255        // Write back the NULL in case we overwrote it with BUSY above
8256        // and it is still the same value.
8257        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8258      }
8259      return false;
8260   }
8261   assert(prefix != NULL && prefix != BUSY, "Error");
8262   size_t i = num;
8263   oop cur = prefix;
8264   // Walk down the first "num" objects, unless we reach the end.
8265   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8266   if (cur->mark() == NULL) {
8267     // We have "num" or fewer elements in the list, so there
8268     // is nothing to return to the global list.
8269     // Write back the NULL in lieu of the BUSY we wrote
8270     // above, if it is still the same value.
8271     if (_overflow_list == BUSY) {
8272       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8273     }
8274   } else {
8275     // Chop off the suffix and return it to the global list.
8276     assert(cur->mark() != BUSY, "Error");
8277     oop suffix_head = cur->mark(); // suffix will be put back on global list
8278     cur->set_mark(NULL);           // break off suffix
8279     // It's possible that the list is still in the empty(busy) state
8280     // we left it in a short while ago; in that case we may be
8281     // able to place back the suffix without incurring the cost
8282     // of a walk down the list.
8283     oop observed_overflow_list = _overflow_list;
8284     oop cur_overflow_list = observed_overflow_list;
8285     bool attached = false;
8286     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8287       observed_overflow_list =
8288         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8289       if (cur_overflow_list == observed_overflow_list) {
8290         attached = true;
8291         break;
8292       } else cur_overflow_list = observed_overflow_list;
8293     }
8294     if (!attached) {
8295       // Too bad, someone else sneaked in (at least) an element; we'll need
8296       // to do a splice. Find tail of suffix so we can prepend suffix to global
8297       // list.
8298       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8299       oop suffix_tail = cur;
8300       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8301              "Tautology");
8302       observed_overflow_list = _overflow_list;
8303       do {
8304         cur_overflow_list = observed_overflow_list;
8305         if (cur_overflow_list != BUSY) {
8306           // Do the splice ...
8307           suffix_tail->set_mark(markOop(cur_overflow_list));
8308         } else { // cur_overflow_list == BUSY
8309           suffix_tail->set_mark(NULL);
8310         }
8311         // ... and try to place spliced list back on overflow_list ...
8312         observed_overflow_list =
8313           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8314       } while (cur_overflow_list != observed_overflow_list);
8315       // ... until we have succeeded in doing so.
8316     }
8317   }
8318 
8319   // Push the prefix elements on work_q
8320   assert(prefix != NULL, "control point invariant");
8321   const markOop proto = markOopDesc::prototype();
8322   oop next;
8323   NOT_PRODUCT(ssize_t n = 0;)
8324   for (cur = prefix; cur != NULL; cur = next) {
8325     next = oop(cur->mark());
8326     cur->set_mark(proto);   // until proven otherwise
8327     assert(cur->is_oop(), "Should be an oop");
8328     bool res = work_q->push(cur);
8329     assert(res, "Bit off more than we can chew?");
8330     NOT_PRODUCT(n++;)
8331   }
8332 #ifndef PRODUCT
8333   assert(_num_par_pushes >= n, "Too many pops?");
8334   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8335 #endif
8336   return true;
8337 }
8338 
8339 // Single-threaded
8340 void CMSCollector::push_on_overflow_list(oop p) {
8341   NOT_PRODUCT(_num_par_pushes++;)
8342   assert(p->is_oop(), "Not an oop");
8343   preserve_mark_if_necessary(p);
8344   p->set_mark((markOop)_overflow_list);
8345   _overflow_list = p;
8346 }
8347 
8348 // Multi-threaded; use CAS to prepend to overflow list
8349 void CMSCollector::par_push_on_overflow_list(oop p) {
8350   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8351   assert(p->is_oop(), "Not an oop");
8352   par_preserve_mark_if_necessary(p);
8353   oop observed_overflow_list = _overflow_list;
8354   oop cur_overflow_list;
8355   do {
8356     cur_overflow_list = observed_overflow_list;
8357     if (cur_overflow_list != BUSY) {
8358       p->set_mark(markOop(cur_overflow_list));
8359     } else {
8360       p->set_mark(NULL);
8361     }
8362     observed_overflow_list =
8363       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8364   } while (cur_overflow_list != observed_overflow_list);
8365 }
8366 #undef BUSY
8367 
8368 // Single threaded
8369 // General Note on GrowableArray: pushes may silently fail
8370 // because we are (temporarily) out of C-heap for expanding
8371 // the stack. The problem is quite ubiquitous and affects
8372 // a lot of code in the JVM. The prudent thing for GrowableArray
8373 // to do (for now) is to exit with an error. However, that may
8374 // be too draconian in some cases because the caller may be
8375 // able to recover without much harm. For such cases, we
8376 // should probably introduce a "soft_push" method which returns
8377 // an indication of success or failure with the assumption that
8378 // the caller may be able to recover from a failure; code in
8379 // the VM can then be changed, incrementally, to deal with such
8380 // failures where possible, thus, incrementally hardening the VM
8381 // in such low resource situations.
8382 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8383   _preserved_oop_stack.push(p);
8384   _preserved_mark_stack.push(m);
8385   assert(m == p->mark(), "Mark word changed");
8386   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8387          "bijection");
8388 }
8389 
8390 // Single threaded
8391 void CMSCollector::preserve_mark_if_necessary(oop p) {
8392   markOop m = p->mark();
8393   if (m->must_be_preserved(p)) {
8394     preserve_mark_work(p, m);
8395   }
8396 }
8397 
8398 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8399   markOop m = p->mark();
8400   if (m->must_be_preserved(p)) {
8401     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8402     // Even though we read the mark word without holding
8403     // the lock, we are assured that it will not change
8404     // because we "own" this oop, so no other thread can
8405     // be trying to push it on the overflow list; see
8406     // the assertion in preserve_mark_work() that checks
8407     // that m == p->mark().
8408     preserve_mark_work(p, m);
8409   }
8410 }
8411 
8412 // We should be able to do this multi-threaded,
8413 // a chunk of stack being a task (this is
8414 // correct because each oop only ever appears
8415 // once in the overflow list. However, it's
8416 // not very easy to completely overlap this with
8417 // other operations, so will generally not be done
8418 // until all work's been completed. Because we
8419 // expect the preserved oop stack (set) to be small,
8420 // it's probably fine to do this single-threaded.
8421 // We can explore cleverer concurrent/overlapped/parallel
8422 // processing of preserved marks if we feel the
8423 // need for this in the future. Stack overflow should
8424 // be so rare in practice and, when it happens, its
8425 // effect on performance so great that this will
8426 // likely just be in the noise anyway.
8427 void CMSCollector::restore_preserved_marks_if_any() {
8428   assert(SafepointSynchronize::is_at_safepoint(),
8429          "world should be stopped");
8430   assert(Thread::current()->is_ConcurrentGC_thread() ||
8431          Thread::current()->is_VM_thread(),
8432          "should be single-threaded");
8433   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8434          "bijection");
8435 
8436   while (!_preserved_oop_stack.is_empty()) {
8437     oop p = _preserved_oop_stack.pop();
8438     assert(p->is_oop(), "Should be an oop");
8439     assert(_span.contains(p), "oop should be in _span");
8440     assert(p->mark() == markOopDesc::prototype(),
8441            "Set when taken from overflow list");
8442     markOop m = _preserved_mark_stack.pop();
8443     p->set_mark(m);
8444   }
8445   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8446          "stacks were cleared above");
8447 }
8448 
8449 #ifndef PRODUCT
8450 bool CMSCollector::no_preserved_marks() const {
8451   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8452 }
8453 #endif
8454 
8455 // Transfer some number of overflown objects to usual marking
8456 // stack. Return true if some objects were transferred.
8457 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8458   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8459                     (size_t)ParGCDesiredObjsFromOverflowList);
8460 
8461   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8462   assert(_collector->overflow_list_is_empty() || res,
8463          "If list is not empty, we should have taken something");
8464   assert(!res || !_mark_stack->isEmpty(),
8465          "If we took something, it should now be on our stack");
8466   return res;
8467 }
8468 
8469 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8470   size_t res = _sp->block_size_no_stall(addr, _collector);
8471   if (_sp->block_is_obj(addr)) {
8472     if (_live_bit_map->isMarked(addr)) {
8473       // It can't have been dead in a previous cycle
8474       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8475     } else {
8476       _dead_bit_map->mark(addr);      // mark the dead object
8477     }
8478   }
8479   // Could be 0, if the block size could not be computed without stalling.
8480   return res;
8481 }
8482 
8483 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8484 
8485   switch (phase) {
8486     case CMSCollector::InitialMarking:
8487       initialize(true  /* fullGC */ ,
8488                  cause /* cause of the GC */,
8489                  true  /* recordGCBeginTime */,
8490                  true  /* recordPreGCUsage */,
8491                  false /* recordPeakUsage */,
8492                  false /* recordPostGCusage */,
8493                  true  /* recordAccumulatedGCTime */,
8494                  false /* recordGCEndTime */,
8495                  false /* countCollection */  );
8496       break;
8497 
8498     case CMSCollector::FinalMarking:
8499       initialize(true  /* fullGC */ ,
8500                  cause /* cause of the GC */,
8501                  false /* recordGCBeginTime */,
8502                  false /* recordPreGCUsage */,
8503                  false /* recordPeakUsage */,
8504                  false /* recordPostGCusage */,
8505                  true  /* recordAccumulatedGCTime */,
8506                  false /* recordGCEndTime */,
8507                  false /* countCollection */  );
8508       break;
8509 
8510     case CMSCollector::Sweeping:
8511       initialize(true  /* fullGC */ ,
8512                  cause /* cause of the GC */,
8513                  false /* recordGCBeginTime */,
8514                  false /* recordPreGCUsage */,
8515                  true  /* recordPeakUsage */,
8516                  true  /* recordPostGCusage */,
8517                  false /* recordAccumulatedGCTime */,
8518                  true  /* recordGCEndTime */,
8519                  true  /* countCollection */  );
8520       break;
8521 
8522     default:
8523       ShouldNotReachHere();
8524   }
8525 }