1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardTableRS.hpp"
  46 #include "memory/collectorPolicy.hpp"
  47 #include "memory/gcLocker.inline.hpp"
  48 #include "memory/genCollectedHeap.hpp"
  49 #include "memory/genMarkSweep.hpp"
  50 #include "memory/genOopClosures.inline.hpp"
  51 #include "memory/iterator.hpp"
  52 #include "memory/referencePolicy.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/jvmtiExport.hpp"
  56 #include "runtime/globals_extension.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/vmThread.hpp"
  60 #include "services/memoryService.hpp"
  61 #include "services/runtimeService.hpp"
  62 
  63 // statics
  64 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  65 bool          CMSCollector::_full_gc_requested          = false;
  66 
  67 //////////////////////////////////////////////////////////////////
  68 // In support of CMS/VM thread synchronization
  69 //////////////////////////////////////////////////////////////////
  70 // We split use of the CGC_lock into 2 "levels".
  71 // The low-level locking is of the usual CGC_lock monitor. We introduce
  72 // a higher level "token" (hereafter "CMS token") built on top of the
  73 // low level monitor (hereafter "CGC lock").
  74 // The token-passing protocol gives priority to the VM thread. The
  75 // CMS-lock doesn't provide any fairness guarantees, but clients
  76 // should ensure that it is only held for very short, bounded
  77 // durations.
  78 //
  79 // When either of the CMS thread or the VM thread is involved in
  80 // collection operations during which it does not want the other
  81 // thread to interfere, it obtains the CMS token.
  82 //
  83 // If either thread tries to get the token while the other has
  84 // it, that thread waits. However, if the VM thread and CMS thread
  85 // both want the token, then the VM thread gets priority while the
  86 // CMS thread waits. This ensures, for instance, that the "concurrent"
  87 // phases of the CMS thread's work do not block out the VM thread
  88 // for long periods of time as the CMS thread continues to hog
  89 // the token. (See bug 4616232).
  90 //
  91 // The baton-passing functions are, however, controlled by the
  92 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  93 // and here the low-level CMS lock, not the high level token,
  94 // ensures mutual exclusion.
  95 //
  96 // Two important conditions that we have to satisfy:
  97 // 1. if a thread does a low-level wait on the CMS lock, then it
  98 //    relinquishes the CMS token if it were holding that token
  99 //    when it acquired the low-level CMS lock.
 100 // 2. any low-level notifications on the low-level lock
 101 //    should only be sent when a thread has relinquished the token.
 102 //
 103 // In the absence of either property, we'd have potential deadlock.
 104 //
 105 // We protect each of the CMS (concurrent and sequential) phases
 106 // with the CMS _token_, not the CMS _lock_.
 107 //
 108 // The only code protected by CMS lock is the token acquisition code
 109 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 110 // baton-passing code.
 111 //
 112 // Unfortunately, i couldn't come up with a good abstraction to factor and
 113 // hide the naked CGC_lock manipulation in the baton-passing code
 114 // further below. That's something we should try to do. Also, the proof
 115 // of correctness of this 2-level locking scheme is far from obvious,
 116 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 117 // that there may be a theoretical possibility of delay/starvation in the
 118 // low-level lock/wait/notify scheme used for the baton-passing because of
 119 // potential intereference with the priority scheme embodied in the
 120 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 121 // invocation further below and marked with "XXX 20011219YSR".
 122 // Indeed, as we note elsewhere, this may become yet more slippery
 123 // in the presence of multiple CMS and/or multiple VM threads. XXX
 124 
 125 class CMSTokenSync: public StackObj {
 126  private:
 127   bool _is_cms_thread;
 128  public:
 129   CMSTokenSync(bool is_cms_thread):
 130     _is_cms_thread(is_cms_thread) {
 131     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 132            "Incorrect argument to constructor");
 133     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 134   }
 135 
 136   ~CMSTokenSync() {
 137     assert(_is_cms_thread ?
 138              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 139              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 140           "Incorrect state");
 141     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 142   }
 143 };
 144 
 145 // Convenience class that does a CMSTokenSync, and then acquires
 146 // upto three locks.
 147 class CMSTokenSyncWithLocks: public CMSTokenSync {
 148  private:
 149   // Note: locks are acquired in textual declaration order
 150   // and released in the opposite order
 151   MutexLockerEx _locker1, _locker2, _locker3;
 152  public:
 153   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 154                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 155     CMSTokenSync(is_cms_thread),
 156     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 157     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 158     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 159   { }
 160 };
 161 
 162 
 163 // Wrapper class to temporarily disable icms during a foreground cms collection.
 164 class ICMSDisabler: public StackObj {
 165  public:
 166   // The ctor disables icms and wakes up the thread so it notices the change;
 167   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 168   // CMSIncrementalMode.
 169   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 170   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 171 };
 172 
 173 //////////////////////////////////////////////////////////////////
 174 //  Concurrent Mark-Sweep Generation /////////////////////////////
 175 //////////////////////////////////////////////////////////////////
 176 
 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 178 
 179 // This struct contains per-thread things necessary to support parallel
 180 // young-gen collection.
 181 class CMSParGCThreadState: public CHeapObj<mtGC> {
 182  public:
 183   CFLS_LAB lab;
 184   PromotionInfo promo;
 185 
 186   // Constructor.
 187   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 188     promo.setSpace(cfls);
 189   }
 190 };
 191 
 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 193      ReservedSpace rs, size_t initial_byte_size, int level,
 194      CardTableRS* ct, bool use_adaptive_freelists,
 195      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 196   CardGeneration(rs, initial_byte_size, level, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _debug_collection_type(Concurrent_collection_type)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 212                                            use_adaptive_freelists,
 213                                            dictionaryChoice);
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   if (_cmsSpace == NULL) {
 216     vm_exit_during_initialization(
 217       "CompactibleFreeListSpace allocation failure");
 218   }
 219   _cmsSpace->_gen = this;
 220 
 221   _gc_stats = new CMSGCStats();
 222 
 223   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 224   // offsets match. The ability to tell free chunks from objects
 225   // depends on this property.
 226   debug_only(
 227     FreeChunk* junk = NULL;
 228     assert(UseCompressedOops ||
 229            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 230            "Offset of FreeChunk::_prev within FreeChunk must match"
 231            "  that of OopDesc::_klass within OopDesc");
 232   )
 233   if (CollectedHeap::use_parallel_gc_threads()) {
 234     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 235     _par_gc_thread_states =
 236       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 237     if (_par_gc_thread_states == NULL) {
 238       vm_exit_during_initialization("Could not allocate par gc structs");
 239     }
 240     for (uint i = 0; i < ParallelGCThreads; i++) {
 241       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 242       if (_par_gc_thread_states[i] == NULL) {
 243         vm_exit_during_initialization("Could not allocate par gc structs");
 244       }
 245     }
 246   } else {
 247     _par_gc_thread_states = NULL;
 248   }
 249   _incremental_collection_failed = false;
 250   // The "dilatation_factor" is the expansion that can occur on
 251   // account of the fact that the minimum object size in the CMS
 252   // generation may be larger than that in, say, a contiguous young
 253   //  generation.
 254   // Ideally, in the calculation below, we'd compute the dilatation
 255   // factor as: MinChunkSize/(promoting_gen's min object size)
 256   // Since we do not have such a general query interface for the
 257   // promoting generation, we'll instead just use the mimimum
 258   // object size (which today is a header's worth of space);
 259   // note that all arithmetic is in units of HeapWords.
 260   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 261   assert(_dilatation_factor >= 1.0, "from previous assert");
 262 }
 263 
 264 
 265 // The field "_initiating_occupancy" represents the occupancy percentage
 266 // at which we trigger a new collection cycle.  Unless explicitly specified
 267 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
 268 // is calculated by:
 269 //
 270 //   Let "f" be MinHeapFreeRatio in
 271 //
 272 //    _intiating_occupancy = 100-f +
 273 //                           f * (CMSTrigger[Perm]Ratio/100)
 274 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
 275 //
 276 // That is, if we assume the heap is at its desired maximum occupancy at the
 277 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
 278 // space be allocated before initiating a new collection cycle.
 279 //
 280 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
 281   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
 282   if (io >= 0) {
 283     _initiating_occupancy = (double)io / 100.0;
 284   } else {
 285     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 286                              (double)(tr * MinHeapFreeRatio) / 100.0)
 287                             / 100.0;
 288   }
 289 }
 290 
 291 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 292   assert(collector() != NULL, "no collector");
 293   collector()->ref_processor_init();
 294 }
 295 
 296 void CMSCollector::ref_processor_init() {
 297   if (_ref_processor == NULL) {
 298     // Allocate and initialize a reference processor
 299     _ref_processor =
 300       new ReferenceProcessor(_span,                               // span
 301                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 302                              (int) ParallelGCThreads,             // mt processing degree
 303                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 304                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 305                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 306                              &_is_alive_closure,                  // closure for liveness info
 307                              false);                              // next field updates do not need write barrier
 308     // Initialize the _ref_processor field of CMSGen
 309     _cmsGen->set_ref_processor(_ref_processor);
 310 
 311     // Allocate a dummy ref processor for perm gen.
 312     ReferenceProcessor* rp2 = new ReferenceProcessor();
 313     if (rp2 == NULL) {
 314       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
 315     }
 316     _permGen->set_ref_processor(rp2);
 317   }
 318 }
 319 
 320 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 321   GenCollectedHeap* gch = GenCollectedHeap::heap();
 322   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 323     "Wrong type of heap");
 324   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 325     gch->gen_policy()->size_policy();
 326   assert(sp->is_gc_cms_adaptive_size_policy(),
 327     "Wrong type of size policy");
 328   return sp;
 329 }
 330 
 331 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 332   CMSGCAdaptivePolicyCounters* results =
 333     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 334   assert(
 335     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 336     "Wrong gc policy counter kind");
 337   return results;
 338 }
 339 
 340 
 341 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 342 
 343   const char* gen_name = "old";
 344 
 345   // Generation Counters - generation 1, 1 subspace
 346   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 347 
 348   _space_counters = new GSpaceCounters(gen_name, 0,
 349                                        _virtual_space.reserved_size(),
 350                                        this, _gen_counters);
 351 }
 352 
 353 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 354   _cms_gen(cms_gen)
 355 {
 356   assert(alpha <= 100, "bad value");
 357   _saved_alpha = alpha;
 358 
 359   // Initialize the alphas to the bootstrap value of 100.
 360   _gc0_alpha = _cms_alpha = 100;
 361 
 362   _cms_begin_time.update();
 363   _cms_end_time.update();
 364 
 365   _gc0_duration = 0.0;
 366   _gc0_period = 0.0;
 367   _gc0_promoted = 0;
 368 
 369   _cms_duration = 0.0;
 370   _cms_period = 0.0;
 371   _cms_allocated = 0;
 372 
 373   _cms_used_at_gc0_begin = 0;
 374   _cms_used_at_gc0_end = 0;
 375   _allow_duty_cycle_reduction = false;
 376   _valid_bits = 0;
 377   _icms_duty_cycle = CMSIncrementalDutyCycle;
 378 }
 379 
 380 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 381   // TBD: CR 6909490
 382   return 1.0;
 383 }
 384 
 385 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 386 }
 387 
 388 // If promotion failure handling is on use
 389 // the padded average size of the promotion for each
 390 // young generation collection.
 391 double CMSStats::time_until_cms_gen_full() const {
 392   size_t cms_free = _cms_gen->cmsSpace()->free();
 393   GenCollectedHeap* gch = GenCollectedHeap::heap();
 394   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 395                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 396   if (cms_free > expected_promotion) {
 397     // Start a cms collection if there isn't enough space to promote
 398     // for the next minor collection.  Use the padded average as
 399     // a safety factor.
 400     cms_free -= expected_promotion;
 401 
 402     // Adjust by the safety factor.
 403     double cms_free_dbl = (double)cms_free;
 404     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 405     // Apply a further correction factor which tries to adjust
 406     // for recent occurance of concurrent mode failures.
 407     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 408     cms_free_dbl = cms_free_dbl * cms_adjustment;
 409 
 410     if (PrintGCDetails && Verbose) {
 411       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 412         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 413         cms_free, expected_promotion);
 414       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 415         cms_free_dbl, cms_consumption_rate() + 1.0);
 416     }
 417     // Add 1 in case the consumption rate goes to zero.
 418     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 419   }
 420   return 0.0;
 421 }
 422 
 423 // Compare the duration of the cms collection to the
 424 // time remaining before the cms generation is empty.
 425 // Note that the time from the start of the cms collection
 426 // to the start of the cms sweep (less than the total
 427 // duration of the cms collection) can be used.  This
 428 // has been tried and some applications experienced
 429 // promotion failures early in execution.  This was
 430 // possibly because the averages were not accurate
 431 // enough at the beginning.
 432 double CMSStats::time_until_cms_start() const {
 433   // We add "gc0_period" to the "work" calculation
 434   // below because this query is done (mostly) at the
 435   // end of a scavenge, so we need to conservatively
 436   // account for that much possible delay
 437   // in the query so as to avoid concurrent mode failures
 438   // due to starting the collection just a wee bit too
 439   // late.
 440   double work = cms_duration() + gc0_period();
 441   double deadline = time_until_cms_gen_full();
 442   // If a concurrent mode failure occurred recently, we want to be
 443   // more conservative and halve our expected time_until_cms_gen_full()
 444   if (work > deadline) {
 445     if (Verbose && PrintGCDetails) {
 446       gclog_or_tty->print(
 447         " CMSCollector: collect because of anticipated promotion "
 448         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 449         gc0_period(), time_until_cms_gen_full());
 450     }
 451     return 0.0;
 452   }
 453   return work - deadline;
 454 }
 455 
 456 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 457 // amount of change to prevent wild oscillation.
 458 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 459                                               unsigned int new_duty_cycle) {
 460   assert(old_duty_cycle <= 100, "bad input value");
 461   assert(new_duty_cycle <= 100, "bad input value");
 462 
 463   // Note:  use subtraction with caution since it may underflow (values are
 464   // unsigned).  Addition is safe since we're in the range 0-100.
 465   unsigned int damped_duty_cycle = new_duty_cycle;
 466   if (new_duty_cycle < old_duty_cycle) {
 467     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 468     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 469       damped_duty_cycle = old_duty_cycle - largest_delta;
 470     }
 471   } else if (new_duty_cycle > old_duty_cycle) {
 472     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 473     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 474       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 475     }
 476   }
 477   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 478 
 479   if (CMSTraceIncrementalPacing) {
 480     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 481                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 482   }
 483   return damped_duty_cycle;
 484 }
 485 
 486 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 487   assert(CMSIncrementalPacing && valid(),
 488          "should be handled in icms_update_duty_cycle()");
 489 
 490   double cms_time_so_far = cms_timer().seconds();
 491   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 492   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 493 
 494   // Avoid division by 0.
 495   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 496   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 497 
 498   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 499   if (new_duty_cycle > _icms_duty_cycle) {
 500     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 501     if (new_duty_cycle > 2) {
 502       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 503                                                 new_duty_cycle);
 504     }
 505   } else if (_allow_duty_cycle_reduction) {
 506     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 507     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 508     // Respect the minimum duty cycle.
 509     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 510     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 511   }
 512 
 513   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 514     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 515   }
 516 
 517   _allow_duty_cycle_reduction = false;
 518   return _icms_duty_cycle;
 519 }
 520 
 521 #ifndef PRODUCT
 522 void CMSStats::print_on(outputStream *st) const {
 523   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 524   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 525                gc0_duration(), gc0_period(), gc0_promoted());
 526   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 527             cms_duration(), cms_duration_per_mb(),
 528             cms_period(), cms_allocated());
 529   st->print(",cms_since_beg=%g,cms_since_end=%g",
 530             cms_time_since_begin(), cms_time_since_end());
 531   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 532             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 533   if (CMSIncrementalMode) {
 534     st->print(",dc=%d", icms_duty_cycle());
 535   }
 536 
 537   if (valid()) {
 538     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 539               promotion_rate(), cms_allocation_rate());
 540     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 541               cms_consumption_rate(), time_until_cms_gen_full());
 542   }
 543   st->print(" ");
 544 }
 545 #endif // #ifndef PRODUCT
 546 
 547 CMSCollector::CollectorState CMSCollector::_collectorState =
 548                              CMSCollector::Idling;
 549 bool CMSCollector::_foregroundGCIsActive = false;
 550 bool CMSCollector::_foregroundGCShouldWait = false;
 551 
 552 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 553                            ConcurrentMarkSweepGeneration* permGen,
 554                            CardTableRS*                   ct,
 555                            ConcurrentMarkSweepPolicy*     cp):
 556   _cmsGen(cmsGen),
 557   _permGen(permGen),
 558   _ct(ct),
 559   _ref_processor(NULL),    // will be set later
 560   _conc_workers(NULL),     // may be set later
 561   _abort_preclean(false),
 562   _start_sampling(false),
 563   _between_prologue_and_epilogue(false),
 564   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 565   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
 566   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 567                  -1 /* lock-free */, "No_lock" /* dummy */),
 568   _modUnionClosure(&_modUnionTable),
 569   _modUnionClosurePar(&_modUnionTable),
 570   // Adjust my span to cover old (cms) gen and perm gen
 571   _span(cmsGen->reserved()._union(permGen->reserved())),
 572   // Construct the is_alive_closure with _span & markBitMap
 573   _is_alive_closure(_span, &_markBitMap),
 574   _restart_addr(NULL),
 575   _overflow_list(NULL),
 576   _stats(cmsGen),
 577   _eden_chunk_array(NULL),     // may be set in ctor body
 578   _eden_chunk_capacity(0),     // -- ditto --
 579   _eden_chunk_index(0),        // -- ditto --
 580   _survivor_plab_array(NULL),  // -- ditto --
 581   _survivor_chunk_array(NULL), // -- ditto --
 582   _survivor_chunk_capacity(0), // -- ditto --
 583   _survivor_chunk_index(0),    // -- ditto --
 584   _ser_pmc_preclean_ovflw(0),
 585   _ser_kac_preclean_ovflw(0),
 586   _ser_pmc_remark_ovflw(0),
 587   _par_pmc_remark_ovflw(0),
 588   _ser_kac_ovflw(0),
 589   _par_kac_ovflw(0),
 590 #ifndef PRODUCT
 591   _num_par_pushes(0),
 592 #endif
 593   _collection_count_start(0),
 594   _verifying(false),
 595   _icms_start_limit(NULL),
 596   _icms_stop_limit(NULL),
 597   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 598   _completed_initialization(false),
 599   _collector_policy(cp),
 600   _should_unload_classes(false),
 601   _concurrent_cycles_since_last_unload(0),
 602   _roots_scanning_options(0),
 603   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 604   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 605   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 606   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 607   _cms_start_registered(false)
 608 {
 609   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 610     ExplicitGCInvokesConcurrent = true;
 611   }
 612   // Now expand the span and allocate the collection support structures
 613   // (MUT, marking bit map etc.) to cover both generations subject to
 614   // collection.
 615 
 616   // First check that _permGen is adjacent to _cmsGen and above it.
 617   assert(   _cmsGen->reserved().word_size()  > 0
 618          && _permGen->reserved().word_size() > 0,
 619          "generations should not be of zero size");
 620   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
 621          "_cmsGen and _permGen should not overlap");
 622   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
 623          "_cmsGen->end() different from _permGen->start()");
 624 
 625   // For use by dirty card to oop closures.
 626   _cmsGen->cmsSpace()->set_collector(this);
 627   _permGen->cmsSpace()->set_collector(this);
 628 
 629   // Allocate MUT and marking bit map
 630   {
 631     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 632     if (!_markBitMap.allocate(_span)) {
 633       warning("Failed to allocate CMS Bit Map");
 634       return;
 635     }
 636     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 637   }
 638   {
 639     _modUnionTable.allocate(_span);
 640     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 641   }
 642 
 643   if (!_markStack.allocate(MarkStackSize)) {
 644     warning("Failed to allocate CMS Marking Stack");
 645     return;
 646   }
 647   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
 648     warning("Failed to allocate CMS Revisit Stack");
 649     return;
 650   }
 651 
 652   // Support for multi-threaded concurrent phases
 653   if (CMSConcurrentMTEnabled) {
 654     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 655       // just for now
 656       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 657     }
 658     if (ConcGCThreads > 1) {
 659       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 660                                  ConcGCThreads, true);
 661       if (_conc_workers == NULL) {
 662         warning("GC/CMS: _conc_workers allocation failure: "
 663               "forcing -CMSConcurrentMTEnabled");
 664         CMSConcurrentMTEnabled = false;
 665       } else {
 666         _conc_workers->initialize_workers();
 667       }
 668     } else {
 669       CMSConcurrentMTEnabled = false;
 670     }
 671   }
 672   if (!CMSConcurrentMTEnabled) {
 673     ConcGCThreads = 0;
 674   } else {
 675     // Turn off CMSCleanOnEnter optimization temporarily for
 676     // the MT case where it's not fixed yet; see 6178663.
 677     CMSCleanOnEnter = false;
 678   }
 679   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 680          "Inconsistency");
 681 
 682   // Parallel task queues; these are shared for the
 683   // concurrent and stop-world phases of CMS, but
 684   // are not shared with parallel scavenge (ParNew).
 685   {
 686     uint i;
 687     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 688 
 689     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 690          || ParallelRefProcEnabled)
 691         && num_queues > 0) {
 692       _task_queues = new OopTaskQueueSet(num_queues);
 693       if (_task_queues == NULL) {
 694         warning("task_queues allocation failure.");
 695         return;
 696       }
 697       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 698       if (_hash_seed == NULL) {
 699         warning("_hash_seed array allocation failure");
 700         return;
 701       }
 702 
 703       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 704       for (i = 0; i < num_queues; i++) {
 705         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 706         if (q == NULL) {
 707           warning("work_queue allocation failure.");
 708           return;
 709         }
 710         _task_queues->register_queue(i, q);
 711       }
 712       for (i = 0; i < num_queues; i++) {
 713         _task_queues->queue(i)->initialize();
 714         _hash_seed[i] = 17;  // copied from ParNew
 715       }
 716     }
 717   }
 718 
 719   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 720   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
 721 
 722   // Clip CMSBootstrapOccupancy between 0 and 100.
 723   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
 724                          /(double)100;
 725 
 726   _full_gcs_since_conc_gc = 0;
 727 
 728   // Now tell CMS generations the identity of their collector
 729   ConcurrentMarkSweepGeneration::set_collector(this);
 730 
 731   // Create & start a CMS thread for this CMS collector
 732   _cmsThread = ConcurrentMarkSweepThread::start(this);
 733   assert(cmsThread() != NULL, "CMS Thread should have been created");
 734   assert(cmsThread()->collector() == this,
 735          "CMS Thread should refer to this gen");
 736   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 737 
 738   // Support for parallelizing young gen rescan
 739   GenCollectedHeap* gch = GenCollectedHeap::heap();
 740   _young_gen = gch->prev_gen(_cmsGen);
 741   if (gch->supports_inline_contig_alloc()) {
 742     _top_addr = gch->top_addr();
 743     _end_addr = gch->end_addr();
 744     assert(_young_gen != NULL, "no _young_gen");
 745     _eden_chunk_index = 0;
 746     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 747     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 748     if (_eden_chunk_array == NULL) {
 749       _eden_chunk_capacity = 0;
 750       warning("GC/CMS: _eden_chunk_array allocation failure");
 751     }
 752   }
 753   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 754 
 755   // Support for parallelizing survivor space rescan
 756   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 757     const size_t max_plab_samples =
 758       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 759 
 760     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 761     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 762     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 763     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 764         || _cursor == NULL) {
 765       warning("Failed to allocate survivor plab/chunk array");
 766       if (_survivor_plab_array  != NULL) {
 767         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 768         _survivor_plab_array = NULL;
 769       }
 770       if (_survivor_chunk_array != NULL) {
 771         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 772         _survivor_chunk_array = NULL;
 773       }
 774       if (_cursor != NULL) {
 775         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 776         _cursor = NULL;
 777       }
 778     } else {
 779       _survivor_chunk_capacity = 2*max_plab_samples;
 780       for (uint i = 0; i < ParallelGCThreads; i++) {
 781         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 782         if (vec == NULL) {
 783           warning("Failed to allocate survivor plab array");
 784           for (int j = i; j > 0; j--) {
 785             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 786           }
 787           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 788           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 789           _survivor_plab_array = NULL;
 790           _survivor_chunk_array = NULL;
 791           _survivor_chunk_capacity = 0;
 792           break;
 793         } else {
 794           ChunkArray* cur =
 795             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 796                                                         max_plab_samples);
 797           assert(cur->end() == 0, "Should be 0");
 798           assert(cur->array() == vec, "Should be vec");
 799           assert(cur->capacity() == max_plab_samples, "Error");
 800         }
 801       }
 802     }
 803   }
 804   assert(   (   _survivor_plab_array  != NULL
 805              && _survivor_chunk_array != NULL)
 806          || (   _survivor_chunk_capacity == 0
 807              && _survivor_chunk_index == 0),
 808          "Error");
 809 
 810   // Choose what strong roots should be scanned depending on verification options
 811   // and perm gen collection mode.
 812   if (!CMSClassUnloadingEnabled) {
 813     // If class unloading is disabled we want to include all classes into the root set.
 814     add_root_scanning_option(SharedHeap::SO_AllClasses);
 815   } else {
 816     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 817   }
 818 
 819   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 820   _gc_counters = new CollectorCounters("CMS", 1);
 821   _completed_initialization = true;
 822   _inter_sweep_timer.start();  // start of time
 823 }
 824 
 825 const char* ConcurrentMarkSweepGeneration::name() const {
 826   return "concurrent mark-sweep generation";
 827 }
 828 void ConcurrentMarkSweepGeneration::update_counters() {
 829   if (UsePerfData) {
 830     _space_counters->update_all();
 831     _gen_counters->update_all();
 832   }
 833 }
 834 
 835 // this is an optimized version of update_counters(). it takes the
 836 // used value as a parameter rather than computing it.
 837 //
 838 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 839   if (UsePerfData) {
 840     _space_counters->update_used(used);
 841     _space_counters->update_capacity();
 842     _gen_counters->update_all();
 843   }
 844 }
 845 
 846 void ConcurrentMarkSweepGeneration::print() const {
 847   Generation::print();
 848   cmsSpace()->print();
 849 }
 850 
 851 #ifndef PRODUCT
 852 void ConcurrentMarkSweepGeneration::print_statistics() {
 853   cmsSpace()->printFLCensus(0);
 854 }
 855 #endif
 856 
 857 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 858   GenCollectedHeap* gch = GenCollectedHeap::heap();
 859   if (PrintGCDetails) {
 860     if (Verbose) {
 861       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 862         level(), short_name(), s, used(), capacity());
 863     } else {
 864       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 865         level(), short_name(), s, used() / K, capacity() / K);
 866     }
 867   }
 868   if (Verbose) {
 869     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 870               gch->used(), gch->capacity());
 871   } else {
 872     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 873               gch->used() / K, gch->capacity() / K);
 874   }
 875 }
 876 
 877 size_t
 878 ConcurrentMarkSweepGeneration::contiguous_available() const {
 879   // dld proposes an improvement in precision here. If the committed
 880   // part of the space ends in a free block we should add that to
 881   // uncommitted size in the calculation below. Will make this
 882   // change later, staying with the approximation below for the
 883   // time being. -- ysr.
 884   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 885 }
 886 
 887 size_t
 888 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 889   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 890 }
 891 
 892 size_t ConcurrentMarkSweepGeneration::max_available() const {
 893   return free() + _virtual_space.uncommitted_size();
 894 }
 895 
 896 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 897   size_t available = max_available();
 898   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 899   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 900   if (Verbose && PrintGCDetails) {
 901     gclog_or_tty->print_cr(
 902       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 903       "max_promo("SIZE_FORMAT")",
 904       res? "":" not", available, res? ">=":"<",
 905       av_promo, max_promotion_in_bytes);
 906   }
 907   return res;
 908 }
 909 
 910 // At a promotion failure dump information on block layout in heap
 911 // (cms old generation).
 912 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 913   if (CMSDumpAtPromotionFailure) {
 914     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 915   }
 916 }
 917 
 918 CompactibleSpace*
 919 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 920   return _cmsSpace;
 921 }
 922 
 923 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 924   // Clear the promotion information.  These pointers can be adjusted
 925   // along with all the other pointers into the heap but
 926   // compaction is expected to be a rare event with
 927   // a heap using cms so don't do it without seeing the need.
 928   if (CollectedHeap::use_parallel_gc_threads()) {
 929     for (uint i = 0; i < ParallelGCThreads; i++) {
 930       _par_gc_thread_states[i]->promo.reset();
 931     }
 932   }
 933 }
 934 
 935 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 936   blk->do_space(_cmsSpace);
 937 }
 938 
 939 void ConcurrentMarkSweepGeneration::compute_new_size() {
 940   assert_locked_or_safepoint(Heap_lock);
 941 
 942   // If incremental collection failed, we just want to expand
 943   // to the limit.
 944   if (incremental_collection_failed()) {
 945     clear_incremental_collection_failed();
 946     grow_to_reserved();
 947     return;
 948   }
 949 
 950   size_t expand_bytes = 0;
 951   double free_percentage = ((double) free()) / capacity();
 952   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 953   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 954 
 955   // compute expansion delta needed for reaching desired free percentage
 956   if (free_percentage < desired_free_percentage) {
 957     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 958     assert(desired_capacity >= capacity(), "invalid expansion size");
 959     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 960   }
 961   if (expand_bytes > 0) {
 962     if (PrintGCDetails && Verbose) {
 963       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 964       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 965       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 966       gclog_or_tty->print_cr("  Desired free fraction %f",
 967         desired_free_percentage);
 968       gclog_or_tty->print_cr("  Maximum free fraction %f",
 969         maximum_free_percentage);
 970       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 971       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 972         desired_capacity/1000);
 973       int prev_level = level() - 1;
 974       if (prev_level >= 0) {
 975         size_t prev_size = 0;
 976         GenCollectedHeap* gch = GenCollectedHeap::heap();
 977         Generation* prev_gen = gch->_gens[prev_level];
 978         prev_size = prev_gen->capacity();
 979           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 980                                  prev_size/1000);
 981       }
 982       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 983         unsafe_max_alloc_nogc()/1000);
 984       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 985         contiguous_available()/1000);
 986       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 987         expand_bytes);
 988     }
 989     // safe if expansion fails
 990     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 991     if (PrintGCDetails && Verbose) {
 992       gclog_or_tty->print_cr("  Expanded free fraction %f",
 993         ((double) free()) / capacity());
 994     }
 995   }
 996 }
 997 
 998 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 999   return cmsSpace()->freelistLock();
1000 }
1001 
1002 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1003                                                   bool   tlab) {
1004   CMSSynchronousYieldRequest yr;
1005   MutexLockerEx x(freelistLock(),
1006                   Mutex::_no_safepoint_check_flag);
1007   return have_lock_and_allocate(size, tlab);
1008 }
1009 
1010 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1011                                                   bool   tlab /* ignored */) {
1012   assert_lock_strong(freelistLock());
1013   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1014   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1015   // Allocate the object live (grey) if the background collector has
1016   // started marking. This is necessary because the marker may
1017   // have passed this address and consequently this object will
1018   // not otherwise be greyed and would be incorrectly swept up.
1019   // Note that if this object contains references, the writing
1020   // of those references will dirty the card containing this object
1021   // allowing the object to be blackened (and its references scanned)
1022   // either during a preclean phase or at the final checkpoint.
1023   if (res != NULL) {
1024     // We may block here with an uninitialized object with
1025     // its mark-bit or P-bits not yet set. Such objects need
1026     // to be safely navigable by block_start().
1027     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1028     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1029     collector()->direct_allocated(res, adjustedSize);
1030     _direct_allocated_words += adjustedSize;
1031     // allocation counters
1032     NOT_PRODUCT(
1033       _numObjectsAllocated++;
1034       _numWordsAllocated += (int)adjustedSize;
1035     )
1036   }
1037   return res;
1038 }
1039 
1040 // In the case of direct allocation by mutators in a generation that
1041 // is being concurrently collected, the object must be allocated
1042 // live (grey) if the background collector has started marking.
1043 // This is necessary because the marker may
1044 // have passed this address and consequently this object will
1045 // not otherwise be greyed and would be incorrectly swept up.
1046 // Note that if this object contains references, the writing
1047 // of those references will dirty the card containing this object
1048 // allowing the object to be blackened (and its references scanned)
1049 // either during a preclean phase or at the final checkpoint.
1050 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1051   assert(_markBitMap.covers(start, size), "Out of bounds");
1052   if (_collectorState >= Marking) {
1053     MutexLockerEx y(_markBitMap.lock(),
1054                     Mutex::_no_safepoint_check_flag);
1055     // [see comments preceding SweepClosure::do_blk() below for details]
1056     // 1. need to mark the object as live so it isn't collected
1057     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1058     // 3. need to mark the end of the object so marking, precleaning or sweeping
1059     //    can skip over uninitialized or unparsable objects. An allocated
1060     //    object is considered uninitialized for our purposes as long as
1061     //    its klass word is NULL. (Unparsable objects are those which are
1062     //    initialized in the sense just described, but whose sizes can still
1063     //    not be correctly determined. Note that the class of unparsable objects
1064     //    can only occur in the perm gen. All old gen objects are parsable
1065     //    as soon as they are initialized.)
1066     _markBitMap.mark(start);          // object is live
1067     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1068     _markBitMap.mark(start + size - 1);
1069                                       // mark end of object
1070   }
1071   // check that oop looks uninitialized
1072   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1073 }
1074 
1075 void CMSCollector::promoted(bool par, HeapWord* start,
1076                             bool is_obj_array, size_t obj_size) {
1077   assert(_markBitMap.covers(start), "Out of bounds");
1078   // See comment in direct_allocated() about when objects should
1079   // be allocated live.
1080   if (_collectorState >= Marking) {
1081     // we already hold the marking bit map lock, taken in
1082     // the prologue
1083     if (par) {
1084       _markBitMap.par_mark(start);
1085     } else {
1086       _markBitMap.mark(start);
1087     }
1088     // We don't need to mark the object as uninitialized (as
1089     // in direct_allocated above) because this is being done with the
1090     // world stopped and the object will be initialized by the
1091     // time the marking, precleaning or sweeping get to look at it.
1092     // But see the code for copying objects into the CMS generation,
1093     // where we need to ensure that concurrent readers of the
1094     // block offset table are able to safely navigate a block that
1095     // is in flux from being free to being allocated (and in
1096     // transition while being copied into) and subsequently
1097     // becoming a bona-fide object when the copy/promotion is complete.
1098     assert(SafepointSynchronize::is_at_safepoint(),
1099            "expect promotion only at safepoints");
1100 
1101     if (_collectorState < Sweeping) {
1102       // Mark the appropriate cards in the modUnionTable, so that
1103       // this object gets scanned before the sweep. If this is
1104       // not done, CMS generation references in the object might
1105       // not get marked.
1106       // For the case of arrays, which are otherwise precisely
1107       // marked, we need to dirty the entire array, not just its head.
1108       if (is_obj_array) {
1109         // The [par_]mark_range() method expects mr.end() below to
1110         // be aligned to the granularity of a bit's representation
1111         // in the heap. In the case of the MUT below, that's a
1112         // card size.
1113         MemRegion mr(start,
1114                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1115                         CardTableModRefBS::card_size /* bytes */));
1116         if (par) {
1117           _modUnionTable.par_mark_range(mr);
1118         } else {
1119           _modUnionTable.mark_range(mr);
1120         }
1121       } else {  // not an obj array; we can just mark the head
1122         if (par) {
1123           _modUnionTable.par_mark(start);
1124         } else {
1125           _modUnionTable.mark(start);
1126         }
1127       }
1128     }
1129   }
1130 }
1131 
1132 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1133 {
1134   size_t delta = pointer_delta(addr, space->bottom());
1135   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1136 }
1137 
1138 void CMSCollector::icms_update_allocation_limits()
1139 {
1140   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1141   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1142 
1143   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1144   if (CMSTraceIncrementalPacing) {
1145     stats().print();
1146   }
1147 
1148   assert(duty_cycle <= 100, "invalid duty cycle");
1149   if (duty_cycle != 0) {
1150     // The duty_cycle is a percentage between 0 and 100; convert to words and
1151     // then compute the offset from the endpoints of the space.
1152     size_t free_words = eden->free() / HeapWordSize;
1153     double free_words_dbl = (double)free_words;
1154     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1155     size_t offset_words = (free_words - duty_cycle_words) / 2;
1156 
1157     _icms_start_limit = eden->top() + offset_words;
1158     _icms_stop_limit = eden->end() - offset_words;
1159 
1160     // The limits may be adjusted (shifted to the right) by
1161     // CMSIncrementalOffset, to allow the application more mutator time after a
1162     // young gen gc (when all mutators were stopped) and before CMS starts and
1163     // takes away one or more cpus.
1164     if (CMSIncrementalOffset != 0) {
1165       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1166       size_t adjustment = (size_t)adjustment_dbl;
1167       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1168       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1169         _icms_start_limit += adjustment;
1170         _icms_stop_limit = tmp_stop;
1171       }
1172     }
1173   }
1174   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1175     _icms_start_limit = _icms_stop_limit = eden->end();
1176   }
1177 
1178   // Install the new start limit.
1179   eden->set_soft_end(_icms_start_limit);
1180 
1181   if (CMSTraceIncrementalMode) {
1182     gclog_or_tty->print(" icms alloc limits:  "
1183                            PTR_FORMAT "," PTR_FORMAT
1184                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1185                            _icms_start_limit, _icms_stop_limit,
1186                            percent_of_space(eden, _icms_start_limit),
1187                            percent_of_space(eden, _icms_stop_limit));
1188     if (Verbose) {
1189       gclog_or_tty->print("eden:  ");
1190       eden->print_on(gclog_or_tty);
1191     }
1192   }
1193 }
1194 
1195 // Any changes here should try to maintain the invariant
1196 // that if this method is called with _icms_start_limit
1197 // and _icms_stop_limit both NULL, then it should return NULL
1198 // and not notify the icms thread.
1199 HeapWord*
1200 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1201                                        size_t word_size)
1202 {
1203   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1204   // nop.
1205   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1206     if (top <= _icms_start_limit) {
1207       if (CMSTraceIncrementalMode) {
1208         space->print_on(gclog_or_tty);
1209         gclog_or_tty->stamp();
1210         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1211                                ", new limit=" PTR_FORMAT
1212                                " (" SIZE_FORMAT "%%)",
1213                                top, _icms_stop_limit,
1214                                percent_of_space(space, _icms_stop_limit));
1215       }
1216       ConcurrentMarkSweepThread::start_icms();
1217       assert(top < _icms_stop_limit, "Tautology");
1218       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1219         return _icms_stop_limit;
1220       }
1221 
1222       // The allocation will cross both the _start and _stop limits, so do the
1223       // stop notification also and return end().
1224       if (CMSTraceIncrementalMode) {
1225         space->print_on(gclog_or_tty);
1226         gclog_or_tty->stamp();
1227         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1228                                ", new limit=" PTR_FORMAT
1229                                " (" SIZE_FORMAT "%%)",
1230                                top, space->end(),
1231                                percent_of_space(space, space->end()));
1232       }
1233       ConcurrentMarkSweepThread::stop_icms();
1234       return space->end();
1235     }
1236 
1237     if (top <= _icms_stop_limit) {
1238       if (CMSTraceIncrementalMode) {
1239         space->print_on(gclog_or_tty);
1240         gclog_or_tty->stamp();
1241         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1242                                ", new limit=" PTR_FORMAT
1243                                " (" SIZE_FORMAT "%%)",
1244                                top, space->end(),
1245                                percent_of_space(space, space->end()));
1246       }
1247       ConcurrentMarkSweepThread::stop_icms();
1248       return space->end();
1249     }
1250 
1251     if (CMSTraceIncrementalMode) {
1252       space->print_on(gclog_or_tty);
1253       gclog_or_tty->stamp();
1254       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1255                              ", new limit=" PTR_FORMAT,
1256                              top, NULL);
1257     }
1258   }
1259 
1260   return NULL;
1261 }
1262 
1263 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1264   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1265   // allocate, copy and if necessary update promoinfo --
1266   // delegate to underlying space.
1267   assert_lock_strong(freelistLock());
1268 
1269 #ifndef PRODUCT
1270   if (Universe::heap()->promotion_should_fail()) {
1271     return NULL;
1272   }
1273 #endif  // #ifndef PRODUCT
1274 
1275   oop res = _cmsSpace->promote(obj, obj_size);
1276   if (res == NULL) {
1277     // expand and retry
1278     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1279     expand(s*HeapWordSize, MinHeapDeltaBytes,
1280       CMSExpansionCause::_satisfy_promotion);
1281     // Since there's currently no next generation, we don't try to promote
1282     // into a more senior generation.
1283     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1284                                "is made to pass on a possibly failing "
1285                                "promotion to next generation");
1286     res = _cmsSpace->promote(obj, obj_size);
1287   }
1288   if (res != NULL) {
1289     // See comment in allocate() about when objects should
1290     // be allocated live.
1291     assert(obj->is_oop(), "Will dereference klass pointer below");
1292     collector()->promoted(false,           // Not parallel
1293                           (HeapWord*)res, obj->is_objArray(), obj_size);
1294     // promotion counters
1295     NOT_PRODUCT(
1296       _numObjectsPromoted++;
1297       _numWordsPromoted +=
1298         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1299     )
1300   }
1301   return res;
1302 }
1303 
1304 
1305 HeapWord*
1306 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1307                                              HeapWord* top,
1308                                              size_t word_sz)
1309 {
1310   return collector()->allocation_limit_reached(space, top, word_sz);
1311 }
1312 
1313 // IMPORTANT: Notes on object size recognition in CMS.
1314 // ---------------------------------------------------
1315 // A block of storage in the CMS generation is always in
1316 // one of three states. A free block (FREE), an allocated
1317 // object (OBJECT) whose size() method reports the correct size,
1318 // and an intermediate state (TRANSIENT) in which its size cannot
1319 // be accurately determined.
1320 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1321 // -----------------------------------------------------
1322 // FREE:      klass_word & 1 == 1; mark_word holds block size
1323 //
1324 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1325 //            obj->size() computes correct size
1326 //            [Perm Gen objects needs to be "parsable" before they can be navigated]
1327 //
1328 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1329 //
1330 // STATE IDENTIFICATION: (64 bit+COOPS)
1331 // ------------------------------------
1332 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1333 //
1334 // OBJECT:    klass_word installed; klass_word != 0;
1335 //            obj->size() computes correct size
1336 //            [Perm Gen comment above continues to hold]
1337 //
1338 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1339 //
1340 //
1341 // STATE TRANSITION DIAGRAM
1342 //
1343 //        mut / parnew                     mut  /  parnew
1344 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1345 //  ^                                                                   |
1346 //  |------------------------ DEAD <------------------------------------|
1347 //         sweep                            mut
1348 //
1349 // While a block is in TRANSIENT state its size cannot be determined
1350 // so readers will either need to come back later or stall until
1351 // the size can be determined. Note that for the case of direct
1352 // allocation, P-bits, when available, may be used to determine the
1353 // size of an object that may not yet have been initialized.
1354 
1355 // Things to support parallel young-gen collection.
1356 oop
1357 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1358                                            oop old, markOop m,
1359                                            size_t word_sz) {
1360 #ifndef PRODUCT
1361   if (Universe::heap()->promotion_should_fail()) {
1362     return NULL;
1363   }
1364 #endif  // #ifndef PRODUCT
1365 
1366   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1367   PromotionInfo* promoInfo = &ps->promo;
1368   // if we are tracking promotions, then first ensure space for
1369   // promotion (including spooling space for saving header if necessary).
1370   // then allocate and copy, then track promoted info if needed.
1371   // When tracking (see PromotionInfo::track()), the mark word may
1372   // be displaced and in this case restoration of the mark word
1373   // occurs in the (oop_since_save_marks_)iterate phase.
1374   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1375     // Out of space for allocating spooling buffers;
1376     // try expanding and allocating spooling buffers.
1377     if (!expand_and_ensure_spooling_space(promoInfo)) {
1378       return NULL;
1379     }
1380   }
1381   assert(promoInfo->has_spooling_space(), "Control point invariant");
1382   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1383   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1384   if (obj_ptr == NULL) {
1385      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1386      if (obj_ptr == NULL) {
1387        return NULL;
1388      }
1389   }
1390   oop obj = oop(obj_ptr);
1391   OrderAccess::storestore();
1392   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1393   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1394   // IMPORTANT: See note on object initialization for CMS above.
1395   // Otherwise, copy the object.  Here we must be careful to insert the
1396   // klass pointer last, since this marks the block as an allocated object.
1397   // Except with compressed oops it's the mark word.
1398   HeapWord* old_ptr = (HeapWord*)old;
1399   // Restore the mark word copied above.
1400   obj->set_mark(m);
1401   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1402   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1403   OrderAccess::storestore();
1404 
1405   if (UseCompressedOops) {
1406     // Copy gap missed by (aligned) header size calculation below
1407     obj->set_klass_gap(old->klass_gap());
1408   }
1409   if (word_sz > (size_t)oopDesc::header_size()) {
1410     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1411                                  obj_ptr + oopDesc::header_size(),
1412                                  word_sz - oopDesc::header_size());
1413   }
1414 
1415   // Now we can track the promoted object, if necessary.  We take care
1416   // to delay the transition from uninitialized to full object
1417   // (i.e., insertion of klass pointer) until after, so that it
1418   // atomically becomes a promoted object.
1419   if (promoInfo->tracking()) {
1420     promoInfo->track((PromotedObject*)obj, old->klass());
1421   }
1422   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1423   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1424   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1425 
1426   // Finally, install the klass pointer (this should be volatile).
1427   OrderAccess::storestore();
1428   obj->set_klass(old->klass());
1429   // We should now be able to calculate the right size for this object
1430   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1431 
1432   collector()->promoted(true,          // parallel
1433                         obj_ptr, old->is_objArray(), word_sz);
1434 
1435   NOT_PRODUCT(
1436     Atomic::inc_ptr(&_numObjectsPromoted);
1437     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1438   )
1439 
1440   return obj;
1441 }
1442 
1443 void
1444 ConcurrentMarkSweepGeneration::
1445 par_promote_alloc_undo(int thread_num,
1446                        HeapWord* obj, size_t word_sz) {
1447   // CMS does not support promotion undo.
1448   ShouldNotReachHere();
1449 }
1450 
1451 void
1452 ConcurrentMarkSweepGeneration::
1453 par_promote_alloc_done(int thread_num) {
1454   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1455   ps->lab.retire(thread_num);
1456 }
1457 
1458 void
1459 ConcurrentMarkSweepGeneration::
1460 par_oop_since_save_marks_iterate_done(int thread_num) {
1461   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1462   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1463   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1464 }
1465 
1466 // XXXPERM
1467 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1468                                                    size_t size,
1469                                                    bool   tlab)
1470 {
1471   // We allow a STW collection only if a full
1472   // collection was requested.
1473   return full || should_allocate(size, tlab); // FIX ME !!!
1474   // This and promotion failure handling are connected at the
1475   // hip and should be fixed by untying them.
1476 }
1477 
1478 bool CMSCollector::shouldConcurrentCollect() {
1479   if (_full_gc_requested) {
1480     if (Verbose && PrintGCDetails) {
1481       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1482                              " gc request (or gc_locker)");
1483     }
1484     return true;
1485   }
1486 
1487   // For debugging purposes, change the type of collection.
1488   // If the rotation is not on the concurrent collection
1489   // type, don't start a concurrent collection.
1490   NOT_PRODUCT(
1491     if (RotateCMSCollectionTypes &&
1492         (_cmsGen->debug_collection_type() !=
1493           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1494       assert(_cmsGen->debug_collection_type() !=
1495         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1496         "Bad cms collection type");
1497       return false;
1498     }
1499   )
1500 
1501   FreelistLocker x(this);
1502   // ------------------------------------------------------------------
1503   // Print out lots of information which affects the initiation of
1504   // a collection.
1505   if (PrintCMSInitiationStatistics && stats().valid()) {
1506     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1507     gclog_or_tty->stamp();
1508     gclog_or_tty->print_cr("");
1509     stats().print_on(gclog_or_tty);
1510     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1511       stats().time_until_cms_gen_full());
1512     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1513     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1514                            _cmsGen->contiguous_available());
1515     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1516     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1517     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1518     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1519     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
1520   }
1521   // ------------------------------------------------------------------
1522 
1523   // If the estimated time to complete a cms collection (cms_duration())
1524   // is less than the estimated time remaining until the cms generation
1525   // is full, start a collection.
1526   if (!UseCMSInitiatingOccupancyOnly) {
1527     if (stats().valid()) {
1528       if (stats().time_until_cms_start() == 0.0) {
1529         return true;
1530       }
1531     } else {
1532       // We want to conservatively collect somewhat early in order
1533       // to try and "bootstrap" our CMS/promotion statistics;
1534       // this branch will not fire after the first successful CMS
1535       // collection because the stats should then be valid.
1536       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1537         if (Verbose && PrintGCDetails) {
1538           gclog_or_tty->print_cr(
1539             " CMSCollector: collect for bootstrapping statistics:"
1540             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1541             _bootstrap_occupancy);
1542         }
1543         return true;
1544       }
1545     }
1546   }
1547 
1548   // Otherwise, we start a collection cycle if either the perm gen or
1549   // old gen want a collection cycle started. Each may use
1550   // an appropriate criterion for making this decision.
1551   // XXX We need to make sure that the gen expansion
1552   // criterion dovetails well with this. XXX NEED TO FIX THIS
1553   if (_cmsGen->should_concurrent_collect()) {
1554     if (Verbose && PrintGCDetails) {
1555       gclog_or_tty->print_cr("CMS old gen initiated");
1556     }
1557     return true;
1558   }
1559 
1560   // We start a collection if we believe an incremental collection may fail;
1561   // this is not likely to be productive in practice because it's probably too
1562   // late anyway.
1563   GenCollectedHeap* gch = GenCollectedHeap::heap();
1564   assert(gch->collector_policy()->is_two_generation_policy(),
1565          "You may want to check the correctness of the following");
1566   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1567     if (Verbose && PrintGCDetails) {
1568       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1569     }
1570     return true;
1571   }
1572 
1573   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
1574     bool res = update_should_unload_classes();
1575     if (res) {
1576       if (Verbose && PrintGCDetails) {
1577         gclog_or_tty->print_cr("CMS perm gen initiated");
1578       }
1579       return true;
1580     }
1581   }
1582   return false;
1583 }
1584 
1585 // Clear _expansion_cause fields of constituent generations
1586 void CMSCollector::clear_expansion_cause() {
1587   _cmsGen->clear_expansion_cause();
1588   _permGen->clear_expansion_cause();
1589 }
1590 
1591 // We should be conservative in starting a collection cycle.  To
1592 // start too eagerly runs the risk of collecting too often in the
1593 // extreme.  To collect too rarely falls back on full collections,
1594 // which works, even if not optimum in terms of concurrent work.
1595 // As a work around for too eagerly collecting, use the flag
1596 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1597 // giving the user an easily understandable way of controlling the
1598 // collections.
1599 // We want to start a new collection cycle if any of the following
1600 // conditions hold:
1601 // . our current occupancy exceeds the configured initiating occupancy
1602 //   for this generation, or
1603 // . we recently needed to expand this space and have not, since that
1604 //   expansion, done a collection of this generation, or
1605 // . the underlying space believes that it may be a good idea to initiate
1606 //   a concurrent collection (this may be based on criteria such as the
1607 //   following: the space uses linear allocation and linear allocation is
1608 //   going to fail, or there is believed to be excessive fragmentation in
1609 //   the generation, etc... or ...
1610 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1611 //   the case of the old generation, not the perm generation; see CR 6543076):
1612 //   we may be approaching a point at which allocation requests may fail because
1613 //   we will be out of sufficient free space given allocation rate estimates.]
1614 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1615 
1616   assert_lock_strong(freelistLock());
1617   if (occupancy() > initiating_occupancy()) {
1618     if (PrintGCDetails && Verbose) {
1619       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1620         short_name(), occupancy(), initiating_occupancy());
1621     }
1622     return true;
1623   }
1624   if (UseCMSInitiatingOccupancyOnly) {
1625     return false;
1626   }
1627   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1628     if (PrintGCDetails && Verbose) {
1629       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1630         short_name());
1631     }
1632     return true;
1633   }
1634   if (_cmsSpace->should_concurrent_collect()) {
1635     if (PrintGCDetails && Verbose) {
1636       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1637         short_name());
1638     }
1639     return true;
1640   }
1641   return false;
1642 }
1643 
1644 void ConcurrentMarkSweepGeneration::collect(bool   full,
1645                                             bool   clear_all_soft_refs,
1646                                             size_t size,
1647                                             bool   tlab)
1648 {
1649   collector()->collect(full, clear_all_soft_refs, size, tlab);
1650 }
1651 
1652 void CMSCollector::collect(bool   full,
1653                            bool   clear_all_soft_refs,
1654                            size_t size,
1655                            bool   tlab)
1656 {
1657   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1658     // For debugging purposes skip the collection if the state
1659     // is not currently idle
1660     if (TraceCMSState) {
1661       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1662         Thread::current(), full, _collectorState);
1663     }
1664     return;
1665   }
1666 
1667   // The following "if" branch is present for defensive reasons.
1668   // In the current uses of this interface, it can be replaced with:
1669   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1670   // But I am not placing that assert here to allow future
1671   // generality in invoking this interface.
1672   if (GC_locker::is_active()) {
1673     // A consistency test for GC_locker
1674     assert(GC_locker::needs_gc(), "Should have been set already");
1675     // Skip this foreground collection, instead
1676     // expanding the heap if necessary.
1677     // Need the free list locks for the call to free() in compute_new_size()
1678     compute_new_size();
1679     return;
1680   }
1681   acquire_control_and_collect(full, clear_all_soft_refs);
1682   _full_gcs_since_conc_gc++;
1683 
1684 }
1685 
1686 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
1687   GenCollectedHeap* gch = GenCollectedHeap::heap();
1688   unsigned int gc_count = gch->total_full_collections();
1689   if (gc_count == full_gc_count) {
1690     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1691     _full_gc_requested = true;
1692     CGC_lock->notify();   // nudge CMS thread
1693   } else {
1694     assert(gc_count > full_gc_count, "Error: causal loop");
1695   }
1696 }
1697 
1698 
1699 // The foreground and background collectors need to coordinate in order
1700 // to make sure that they do not mutually interfere with CMS collections.
1701 // When a background collection is active,
1702 // the foreground collector may need to take over (preempt) and
1703 // synchronously complete an ongoing collection. Depending on the
1704 // frequency of the background collections and the heap usage
1705 // of the application, this preemption can be seldom or frequent.
1706 // There are only certain
1707 // points in the background collection that the "collection-baton"
1708 // can be passed to the foreground collector.
1709 //
1710 // The foreground collector will wait for the baton before
1711 // starting any part of the collection.  The foreground collector
1712 // will only wait at one location.
1713 //
1714 // The background collector will yield the baton before starting a new
1715 // phase of the collection (e.g., before initial marking, marking from roots,
1716 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1717 // of the loop which switches the phases. The background collector does some
1718 // of the phases (initial mark, final re-mark) with the world stopped.
1719 // Because of locking involved in stopping the world,
1720 // the foreground collector should not block waiting for the background
1721 // collector when it is doing a stop-the-world phase.  The background
1722 // collector will yield the baton at an additional point just before
1723 // it enters a stop-the-world phase.  Once the world is stopped, the
1724 // background collector checks the phase of the collection.  If the
1725 // phase has not changed, it proceeds with the collection.  If the
1726 // phase has changed, it skips that phase of the collection.  See
1727 // the comments on the use of the Heap_lock in collect_in_background().
1728 //
1729 // Variable used in baton passing.
1730 //   _foregroundGCIsActive - Set to true by the foreground collector when
1731 //      it wants the baton.  The foreground clears it when it has finished
1732 //      the collection.
1733 //   _foregroundGCShouldWait - Set to true by the background collector
1734 //        when it is running.  The foreground collector waits while
1735 //      _foregroundGCShouldWait is true.
1736 //  CGC_lock - monitor used to protect access to the above variables
1737 //      and to notify the foreground and background collectors.
1738 //  _collectorState - current state of the CMS collection.
1739 //
1740 // The foreground collector
1741 //   acquires the CGC_lock
1742 //   sets _foregroundGCIsActive
1743 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1744 //     various locks acquired in preparation for the collection
1745 //     are released so as not to block the background collector
1746 //     that is in the midst of a collection
1747 //   proceeds with the collection
1748 //   clears _foregroundGCIsActive
1749 //   returns
1750 //
1751 // The background collector in a loop iterating on the phases of the
1752 //      collection
1753 //   acquires the CGC_lock
1754 //   sets _foregroundGCShouldWait
1755 //   if _foregroundGCIsActive is set
1756 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1757 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1758 //     and exits the loop.
1759 //   otherwise
1760 //     proceed with that phase of the collection
1761 //     if the phase is a stop-the-world phase,
1762 //       yield the baton once more just before enqueueing
1763 //       the stop-world CMS operation (executed by the VM thread).
1764 //   returns after all phases of the collection are done
1765 //
1766 
1767 void CMSCollector::acquire_control_and_collect(bool full,
1768         bool clear_all_soft_refs) {
1769   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1770   assert(!Thread::current()->is_ConcurrentGC_thread(),
1771          "shouldn't try to acquire control from self!");
1772 
1773   // Start the protocol for acquiring control of the
1774   // collection from the background collector (aka CMS thread).
1775   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1776          "VM thread should have CMS token");
1777   // Remember the possibly interrupted state of an ongoing
1778   // concurrent collection
1779   CollectorState first_state = _collectorState;
1780 
1781   // Signal to a possibly ongoing concurrent collection that
1782   // we want to do a foreground collection.
1783   _foregroundGCIsActive = true;
1784 
1785   // Disable incremental mode during a foreground collection.
1786   ICMSDisabler icms_disabler;
1787 
1788   // release locks and wait for a notify from the background collector
1789   // releasing the locks in only necessary for phases which
1790   // do yields to improve the granularity of the collection.
1791   assert_lock_strong(bitMapLock());
1792   // We need to lock the Free list lock for the space that we are
1793   // currently collecting.
1794   assert(haveFreelistLocks(), "Must be holding free list locks");
1795   bitMapLock()->unlock();
1796   releaseFreelistLocks();
1797   {
1798     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1799     if (_foregroundGCShouldWait) {
1800       // We are going to be waiting for action for the CMS thread;
1801       // it had better not be gone (for instance at shutdown)!
1802       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1803              "CMS thread must be running");
1804       // Wait here until the background collector gives us the go-ahead
1805       ConcurrentMarkSweepThread::clear_CMS_flag(
1806         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1807       // Get a possibly blocked CMS thread going:
1808       //   Note that we set _foregroundGCIsActive true above,
1809       //   without protection of the CGC_lock.
1810       CGC_lock->notify();
1811       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1812              "Possible deadlock");
1813       while (_foregroundGCShouldWait) {
1814         // wait for notification
1815         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1816         // Possibility of delay/starvation here, since CMS token does
1817         // not know to give priority to VM thread? Actually, i think
1818         // there wouldn't be any delay/starvation, but the proof of
1819         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1820       }
1821       ConcurrentMarkSweepThread::set_CMS_flag(
1822         ConcurrentMarkSweepThread::CMS_vm_has_token);
1823     }
1824   }
1825   // The CMS_token is already held.  Get back the other locks.
1826   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1827          "VM thread should have CMS token");
1828   getFreelistLocks();
1829   bitMapLock()->lock_without_safepoint_check();
1830   if (TraceCMSState) {
1831     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1832       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1833     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1834   }
1835 
1836   // Check if we need to do a compaction, or if not, whether
1837   // we need to start the mark-sweep from scratch.
1838   bool should_compact    = false;
1839   bool should_start_over = false;
1840   decide_foreground_collection_type(clear_all_soft_refs,
1841     &should_compact, &should_start_over);
1842 
1843 NOT_PRODUCT(
1844   if (RotateCMSCollectionTypes) {
1845     if (_cmsGen->debug_collection_type() ==
1846         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1847       should_compact = true;
1848     } else if (_cmsGen->debug_collection_type() ==
1849                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1850       should_compact = false;
1851     }
1852   }
1853 )
1854 
1855   if (PrintGCDetails && first_state > Idling) {
1856     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1857     if (GCCause::is_user_requested_gc(cause) ||
1858         GCCause::is_serviceability_requested_gc(cause)) {
1859       gclog_or_tty->print(" (concurrent mode interrupted)");
1860     } else {
1861       gclog_or_tty->print(" (concurrent mode failure)");
1862     }
1863   }
1864 
1865   if (should_compact) {
1866     // If the collection is being acquired from the background
1867     // collector, there may be references on the discovered
1868     // references lists that have NULL referents (being those
1869     // that were concurrently cleared by a mutator) or
1870     // that are no longer active (having been enqueued concurrently
1871     // by the mutator).
1872     // Scrub the list of those references because Mark-Sweep-Compact
1873     // code assumes referents are not NULL and that all discovered
1874     // Reference objects are active.
1875     ref_processor()->clean_up_discovered_references();
1876 
1877     do_compaction_work(clear_all_soft_refs);
1878 
1879     // Has the GC time limit been exceeded?
1880     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1881     size_t max_eden_size = young_gen->max_capacity() -
1882                            young_gen->to()->capacity() -
1883                            young_gen->from()->capacity();
1884     GenCollectedHeap* gch = GenCollectedHeap::heap();
1885     GCCause::Cause gc_cause = gch->gc_cause();
1886     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1887                                            young_gen->eden()->used(),
1888                                            _cmsGen->max_capacity(),
1889                                            max_eden_size,
1890                                            full,
1891                                            gc_cause,
1892                                            gch->collector_policy());
1893   } else {
1894     do_mark_sweep_work(clear_all_soft_refs, first_state,
1895       should_start_over);
1896   }
1897   // Reset the expansion cause, now that we just completed
1898   // a collection cycle.
1899   clear_expansion_cause();
1900   _foregroundGCIsActive = false;
1901   return;
1902 }
1903 
1904 // Resize the perm generation and the tenured generation
1905 // after obtaining the free list locks for the
1906 // two generations.
1907 void CMSCollector::compute_new_size() {
1908   assert_locked_or_safepoint(Heap_lock);
1909   FreelistLocker z(this);
1910   _permGen->compute_new_size();
1911   _cmsGen->compute_new_size();
1912 }
1913 
1914 // A work method used by foreground collection to determine
1915 // what type of collection (compacting or not, continuing or fresh)
1916 // it should do.
1917 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1918 // and CMSCompactWhenClearAllSoftRefs the default in the future
1919 // and do away with the flags after a suitable period.
1920 void CMSCollector::decide_foreground_collection_type(
1921   bool clear_all_soft_refs, bool* should_compact,
1922   bool* should_start_over) {
1923   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1924   // flag is set, and we have either requested a System.gc() or
1925   // the number of full gc's since the last concurrent cycle
1926   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1927   // or if an incremental collection has failed
1928   GenCollectedHeap* gch = GenCollectedHeap::heap();
1929   assert(gch->collector_policy()->is_two_generation_policy(),
1930          "You may want to check the correctness of the following");
1931   // Inform cms gen if this was due to partial collection failing.
1932   // The CMS gen may use this fact to determine its expansion policy.
1933   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1934     assert(!_cmsGen->incremental_collection_failed(),
1935            "Should have been noticed, reacted to and cleared");
1936     _cmsGen->set_incremental_collection_failed();
1937   }
1938   *should_compact =
1939     UseCMSCompactAtFullCollection &&
1940     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1941      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1942      gch->incremental_collection_will_fail(true /* consult_young */));
1943   *should_start_over = false;
1944   if (clear_all_soft_refs && !*should_compact) {
1945     // We are about to do a last ditch collection attempt
1946     // so it would normally make sense to do a compaction
1947     // to reclaim as much space as possible.
1948     if (CMSCompactWhenClearAllSoftRefs) {
1949       // Default: The rationale is that in this case either
1950       // we are past the final marking phase, in which case
1951       // we'd have to start over, or so little has been done
1952       // that there's little point in saving that work. Compaction
1953       // appears to be the sensible choice in either case.
1954       *should_compact = true;
1955     } else {
1956       // We have been asked to clear all soft refs, but not to
1957       // compact. Make sure that we aren't past the final checkpoint
1958       // phase, for that is where we process soft refs. If we are already
1959       // past that phase, we'll need to redo the refs discovery phase and
1960       // if necessary clear soft refs that weren't previously
1961       // cleared. We do so by remembering the phase in which
1962       // we came in, and if we are past the refs processing
1963       // phase, we'll choose to just redo the mark-sweep
1964       // collection from scratch.
1965       if (_collectorState > FinalMarking) {
1966         // We are past the refs processing phase;
1967         // start over and do a fresh synchronous CMS cycle
1968         _collectorState = Resetting; // skip to reset to start new cycle
1969         reset(false /* == !asynch */);
1970         *should_start_over = true;
1971       } // else we can continue a possibly ongoing current cycle
1972     }
1973   }
1974 }
1975 
1976 // A work method used by the foreground collector to do
1977 // a mark-sweep-compact.
1978 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1979   GenCollectedHeap* gch = GenCollectedHeap::heap();
1980 
1981   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1982   gc_timer->register_gc_start(os::elapsed_counter());
1983 
1984   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1985   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1986 
1987   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
1988   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
1989     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
1990       "collections passed to foreground collector", _full_gcs_since_conc_gc);
1991   }
1992 
1993   // Sample collection interval time and reset for collection pause.
1994   if (UseAdaptiveSizePolicy) {
1995     size_policy()->msc_collection_begin();
1996   }
1997 
1998   // Temporarily widen the span of the weak reference processing to
1999   // the entire heap.
2000   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2001   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2002   // Temporarily, clear the "is_alive_non_header" field of the
2003   // reference processor.
2004   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2005   // Temporarily make reference _processing_ single threaded (non-MT).
2006   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2007   // Temporarily make refs discovery atomic
2008   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2009   // Temporarily make reference _discovery_ single threaded (non-MT)
2010   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2011 
2012   ref_processor()->set_enqueuing_is_done(false);
2013   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2014   ref_processor()->setup_policy(clear_all_soft_refs);
2015   // If an asynchronous collection finishes, the _modUnionTable is
2016   // all clear.  If we are assuming the collection from an asynchronous
2017   // collection, clear the _modUnionTable.
2018   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2019     "_modUnionTable should be clear if the baton was not passed");
2020   _modUnionTable.clear_all();
2021 
2022   // We must adjust the allocation statistics being maintained
2023   // in the free list space. We do so by reading and clearing
2024   // the sweep timer and updating the block flux rate estimates below.
2025   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2026   if (_inter_sweep_timer.is_active()) {
2027     _inter_sweep_timer.stop();
2028     // Note that we do not use this sample to update the _inter_sweep_estimate.
2029     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2030                                             _inter_sweep_estimate.padded_average(),
2031                                             _intra_sweep_estimate.padded_average());
2032   }
2033 
2034   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2035     ref_processor(), clear_all_soft_refs);
2036   #ifdef ASSERT
2037     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2038     size_t free_size = cms_space->free();
2039     assert(free_size ==
2040            pointer_delta(cms_space->end(), cms_space->compaction_top())
2041            * HeapWordSize,
2042       "All the free space should be compacted into one chunk at top");
2043     assert(cms_space->dictionary()->total_chunk_size(
2044                                       debug_only(cms_space->freelistLock())) == 0 ||
2045            cms_space->totalSizeInIndexedFreeLists() == 0,
2046       "All the free space should be in a single chunk");
2047     size_t num = cms_space->totalCount();
2048     assert((free_size == 0 && num == 0) ||
2049            (free_size > 0  && (num == 1 || num == 2)),
2050          "There should be at most 2 free chunks after compaction");
2051   #endif // ASSERT
2052   _collectorState = Resetting;
2053   assert(_restart_addr == NULL,
2054          "Should have been NULL'd before baton was passed");
2055   reset(false /* == !asynch */);
2056   _cmsGen->reset_after_compaction();
2057   _concurrent_cycles_since_last_unload = 0;
2058 
2059   if (verifying() && !should_unload_classes()) {
2060     perm_gen_verify_bit_map()->clear_all();
2061   }
2062 
2063   // Clear any data recorded in the PLAB chunk arrays.
2064   if (_survivor_plab_array != NULL) {
2065     reset_survivor_plab_arrays();
2066   }
2067 
2068   // Adjust the per-size allocation stats for the next epoch.
2069   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2070   // Restart the "inter sweep timer" for the next epoch.
2071   _inter_sweep_timer.reset();
2072   _inter_sweep_timer.start();
2073 
2074   // Sample collection pause time and reset for collection interval.
2075   if (UseAdaptiveSizePolicy) {
2076     size_policy()->msc_collection_end(gch->gc_cause());
2077   }
2078 
2079   gc_timer->register_gc_end(os::elapsed_counter());
2080 
2081   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2082 
2083   // For a mark-sweep-compact, compute_new_size() will be called
2084   // in the heap's do_collection() method.
2085 }
2086 
2087 // A work method used by the foreground collector to do
2088 // a mark-sweep, after taking over from a possibly on-going
2089 // concurrent mark-sweep collection.
2090 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2091   CollectorState first_state, bool should_start_over) {
2092   if (PrintGC && Verbose) {
2093     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2094       "collector with count %d",
2095       _full_gcs_since_conc_gc);
2096   }
2097   switch (_collectorState) {
2098     case Idling:
2099       if (first_state == Idling || should_start_over) {
2100         // The background GC was not active, or should
2101         // restarted from scratch;  start the cycle.
2102         _collectorState = InitialMarking;
2103       }
2104       // If first_state was not Idling, then a background GC
2105       // was in progress and has now finished.  No need to do it
2106       // again.  Leave the state as Idling.
2107       break;
2108     case Precleaning:
2109       // In the foreground case don't do the precleaning since
2110       // it is not done concurrently and there is extra work
2111       // required.
2112       _collectorState = FinalMarking;
2113   }
2114   collect_in_foreground(clear_all_soft_refs);
2115 
2116   // For a mark-sweep, compute_new_size() will be called
2117   // in the heap's do_collection() method.
2118 }
2119 
2120 
2121 void CMSCollector::getFreelistLocks() const {
2122   // Get locks for all free lists in all generations that this
2123   // collector is responsible for
2124   _cmsGen->freelistLock()->lock_without_safepoint_check();
2125   _permGen->freelistLock()->lock_without_safepoint_check();
2126 }
2127 
2128 void CMSCollector::releaseFreelistLocks() const {
2129   // Release locks for all free lists in all generations that this
2130   // collector is responsible for
2131   _cmsGen->freelistLock()->unlock();
2132   _permGen->freelistLock()->unlock();
2133 }
2134 
2135 bool CMSCollector::haveFreelistLocks() const {
2136   // Check locks for all free lists in all generations that this
2137   // collector is responsible for
2138   assert_lock_strong(_cmsGen->freelistLock());
2139   assert_lock_strong(_permGen->freelistLock());
2140   PRODUCT_ONLY(ShouldNotReachHere());
2141   return true;
2142 }
2143 
2144 // A utility class that is used by the CMS collector to
2145 // temporarily "release" the foreground collector from its
2146 // usual obligation to wait for the background collector to
2147 // complete an ongoing phase before proceeding.
2148 class ReleaseForegroundGC: public StackObj {
2149  private:
2150   CMSCollector* _c;
2151  public:
2152   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2153     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2154     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2155     // allow a potentially blocked foreground collector to proceed
2156     _c->_foregroundGCShouldWait = false;
2157     if (_c->_foregroundGCIsActive) {
2158       CGC_lock->notify();
2159     }
2160     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2161            "Possible deadlock");
2162   }
2163 
2164   ~ReleaseForegroundGC() {
2165     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2166     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2167     _c->_foregroundGCShouldWait = true;
2168   }
2169 };
2170 
2171 // There are separate collect_in_background and collect_in_foreground because of
2172 // the different locking requirements of the background collector and the
2173 // foreground collector.  There was originally an attempt to share
2174 // one "collect" method between the background collector and the foreground
2175 // collector but the if-then-else required made it cleaner to have
2176 // separate methods.
2177 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
2178   assert(Thread::current()->is_ConcurrentGC_thread(),
2179     "A CMS asynchronous collection is only allowed on a CMS thread.");
2180 
2181   GenCollectedHeap* gch = GenCollectedHeap::heap();
2182   {
2183     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2184     MutexLockerEx hl(Heap_lock, safepoint_check);
2185     FreelistLocker fll(this);
2186     MutexLockerEx x(CGC_lock, safepoint_check);
2187     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2188       // The foreground collector is active or we're
2189       // not using asynchronous collections.  Skip this
2190       // background collection.
2191       assert(!_foregroundGCShouldWait, "Should be clear");
2192       return;
2193     } else {
2194       assert(_collectorState == Idling, "Should be idling before start.");
2195       _collectorState = InitialMarking;
2196       // Reset the expansion cause, now that we are about to begin
2197       // a new cycle.
2198       clear_expansion_cause();
2199     }
2200     // Decide if we want to enable class unloading as part of the
2201     // ensuing concurrent GC cycle.
2202     update_should_unload_classes();
2203     _full_gc_requested = false;           // acks all outstanding full gc requests
2204     // Signal that we are about to start a collection
2205     gch->increment_total_full_collections();  // ... starting a collection cycle
2206     _collection_count_start = gch->total_full_collections();
2207   }
2208 
2209   // Used for PrintGC
2210   size_t prev_used;
2211   if (PrintGC && Verbose) {
2212     prev_used = _cmsGen->used(); // XXXPERM
2213   }
2214 
2215   // The change of the collection state is normally done at this level;
2216   // the exceptions are phases that are executed while the world is
2217   // stopped.  For those phases the change of state is done while the
2218   // world is stopped.  For baton passing purposes this allows the
2219   // background collector to finish the phase and change state atomically.
2220   // The foreground collector cannot wait on a phase that is done
2221   // while the world is stopped because the foreground collector already
2222   // has the world stopped and would deadlock.
2223   while (_collectorState != Idling) {
2224     if (TraceCMSState) {
2225       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2226         Thread::current(), _collectorState);
2227     }
2228     // The foreground collector
2229     //   holds the Heap_lock throughout its collection.
2230     //   holds the CMS token (but not the lock)
2231     //     except while it is waiting for the background collector to yield.
2232     //
2233     // The foreground collector should be blocked (not for long)
2234     //   if the background collector is about to start a phase
2235     //   executed with world stopped.  If the background
2236     //   collector has already started such a phase, the
2237     //   foreground collector is blocked waiting for the
2238     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2239     //   are executed in the VM thread.
2240     //
2241     // The locking order is
2242     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2243     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2244     //   CMS token  (claimed in
2245     //                stop_world_and_do() -->
2246     //                  safepoint_synchronize() -->
2247     //                    CMSThread::synchronize())
2248 
2249     {
2250       // Check if the FG collector wants us to yield.
2251       CMSTokenSync x(true); // is cms thread
2252       if (waitForForegroundGC()) {
2253         // We yielded to a foreground GC, nothing more to be
2254         // done this round.
2255         assert(_foregroundGCShouldWait == false, "We set it to false in "
2256                "waitForForegroundGC()");
2257         if (TraceCMSState) {
2258           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2259             " exiting collection CMS state %d",
2260             Thread::current(), _collectorState);
2261         }
2262         return;
2263       } else {
2264         // The background collector can run but check to see if the
2265         // foreground collector has done a collection while the
2266         // background collector was waiting to get the CGC_lock
2267         // above.  If yes, break so that _foregroundGCShouldWait
2268         // is cleared before returning.
2269         if (_collectorState == Idling) {
2270           break;
2271         }
2272       }
2273     }
2274 
2275     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2276       "should be waiting");
2277 
2278     switch (_collectorState) {
2279       case InitialMarking:
2280         {
2281           ReleaseForegroundGC x(this);
2282           stats().record_cms_begin();
2283           VM_CMS_Initial_Mark initial_mark_op(this);
2284           VMThread::execute(&initial_mark_op);
2285         }
2286         // The collector state may be any legal state at this point
2287         // since the background collector may have yielded to the
2288         // foreground collector.
2289         break;
2290       case Marking:
2291         // initial marking in checkpointRootsInitialWork has been completed
2292         if (markFromRoots(true)) { // we were successful
2293           assert(_collectorState == Precleaning, "Collector state should "
2294             "have changed");
2295         } else {
2296           assert(_foregroundGCIsActive, "Internal state inconsistency");
2297         }
2298         break;
2299       case Precleaning:
2300         if (UseAdaptiveSizePolicy) {
2301           size_policy()->concurrent_precleaning_begin();
2302         }
2303         // marking from roots in markFromRoots has been completed
2304         preclean();
2305         if (UseAdaptiveSizePolicy) {
2306           size_policy()->concurrent_precleaning_end();
2307         }
2308         assert(_collectorState == AbortablePreclean ||
2309                _collectorState == FinalMarking,
2310                "Collector state should have changed");
2311         break;
2312       case AbortablePreclean:
2313         if (UseAdaptiveSizePolicy) {
2314         size_policy()->concurrent_phases_resume();
2315         }
2316         abortable_preclean();
2317         if (UseAdaptiveSizePolicy) {
2318           size_policy()->concurrent_precleaning_end();
2319         }
2320         assert(_collectorState == FinalMarking, "Collector state should "
2321           "have changed");
2322         break;
2323       case FinalMarking:
2324         {
2325           ReleaseForegroundGC x(this);
2326 
2327           VM_CMS_Final_Remark final_remark_op(this);
2328           VMThread::execute(&final_remark_op);
2329         }
2330         assert(_foregroundGCShouldWait, "block post-condition");
2331         break;
2332       case Sweeping:
2333         if (UseAdaptiveSizePolicy) {
2334           size_policy()->concurrent_sweeping_begin();
2335         }
2336         // final marking in checkpointRootsFinal has been completed
2337         sweep(true);
2338         assert(_collectorState == Resizing, "Collector state change "
2339           "to Resizing must be done under the free_list_lock");
2340         _full_gcs_since_conc_gc = 0;
2341 
2342         // Stop the timers for adaptive size policy for the concurrent phases
2343         if (UseAdaptiveSizePolicy) {
2344           size_policy()->concurrent_sweeping_end();
2345           size_policy()->concurrent_phases_end(gch->gc_cause(),
2346                                              gch->prev_gen(_cmsGen)->capacity(),
2347                                              _cmsGen->free());
2348         }
2349 
2350       case Resizing: {
2351         // Sweeping has been completed...
2352         // At this point the background collection has completed.
2353         // Don't move the call to compute_new_size() down
2354         // into code that might be executed if the background
2355         // collection was preempted.
2356         {
2357           ReleaseForegroundGC x(this);   // unblock FG collection
2358           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2359           CMSTokenSync        z(true);   // not strictly needed.
2360           if (_collectorState == Resizing) {
2361             compute_new_size();
2362             _collectorState = Resetting;
2363           } else {
2364             assert(_collectorState == Idling, "The state should only change"
2365                    " because the foreground collector has finished the collection");
2366           }
2367         }
2368         break;
2369       }
2370       case Resetting:
2371         // CMS heap resizing has been completed
2372         reset(true);
2373         assert(_collectorState == Idling, "Collector state should "
2374           "have changed");
2375         stats().record_cms_end();
2376         // Don't move the concurrent_phases_end() and compute_new_size()
2377         // calls to here because a preempted background collection
2378         // has it's state set to "Resetting".
2379         break;
2380       case Idling:
2381       default:
2382         ShouldNotReachHere();
2383         break;
2384     }
2385     if (TraceCMSState) {
2386       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2387         Thread::current(), _collectorState);
2388     }
2389     assert(_foregroundGCShouldWait, "block post-condition");
2390   }
2391 
2392   // Should this be in gc_epilogue?
2393   collector_policy()->counters()->update_counters();
2394 
2395   {
2396     // Clear _foregroundGCShouldWait and, in the event that the
2397     // foreground collector is waiting, notify it, before
2398     // returning.
2399     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2400     _foregroundGCShouldWait = false;
2401     if (_foregroundGCIsActive) {
2402       CGC_lock->notify();
2403     }
2404     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2405            "Possible deadlock");
2406   }
2407   if (TraceCMSState) {
2408     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2409       " exiting collection CMS state %d",
2410       Thread::current(), _collectorState);
2411   }
2412   if (PrintGC && Verbose) {
2413     _cmsGen->print_heap_change(prev_used);
2414   }
2415 }
2416 
2417 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2418   _cms_start_registered = true;
2419   _gc_timer_cm->register_gc_start(os::elapsed_counter());
2420   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2421 }
2422 
2423 void CMSCollector::register_gc_end() {
2424   if (_cms_start_registered) {
2425     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2426     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2427     _cms_start_registered = false;
2428   }
2429 }
2430 
2431 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
2432   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2433          "Foreground collector should be waiting, not executing");
2434   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2435     "may only be done by the VM Thread with the world stopped");
2436   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2437          "VM thread should have CMS token");
2438 
2439   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2440     true, NULL);)
2441   if (UseAdaptiveSizePolicy) {
2442     size_policy()->ms_collection_begin();
2443   }
2444   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2445 
2446   HandleMark hm;  // Discard invalid handles created during verification
2447 
2448   if (VerifyBeforeGC &&
2449       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2450     Universe::verify();
2451   }
2452 
2453   // Snapshot the soft reference policy to be used in this collection cycle.
2454   ref_processor()->setup_policy(clear_all_soft_refs);
2455 
2456   bool init_mark_was_synchronous = false; // until proven otherwise
2457   while (_collectorState != Idling) {
2458     if (TraceCMSState) {
2459       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2460         Thread::current(), _collectorState);
2461     }
2462     switch (_collectorState) {
2463       case InitialMarking:
2464         register_gc_start(GenCollectedHeap::heap()->gc_cause());
2465         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2466         checkpointRootsInitial(false);
2467         assert(_collectorState == Marking, "Collector state should have changed"
2468           " within checkpointRootsInitial()");
2469         break;
2470       case Marking:
2471         // initial marking in checkpointRootsInitialWork has been completed
2472         if (VerifyDuringGC &&
2473             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2474           gclog_or_tty->print("Verify before initial mark: ");
2475           Universe::verify();
2476         }
2477         {
2478           bool res = markFromRoots(false);
2479           assert(res && _collectorState == FinalMarking, "Collector state should "
2480             "have changed");
2481           break;
2482         }
2483       case FinalMarking:
2484         if (VerifyDuringGC &&
2485             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2486           gclog_or_tty->print("Verify before re-mark: ");
2487           Universe::verify();
2488         }
2489         checkpointRootsFinal(false, clear_all_soft_refs,
2490                              init_mark_was_synchronous);
2491         assert(_collectorState == Sweeping, "Collector state should not "
2492           "have changed within checkpointRootsFinal()");
2493         break;
2494       case Sweeping:
2495         // final marking in checkpointRootsFinal has been completed
2496         if (VerifyDuringGC &&
2497             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2498           gclog_or_tty->print("Verify before sweep: ");
2499           Universe::verify();
2500         }
2501         sweep(false);
2502         assert(_collectorState == Resizing, "Incorrect state");
2503         break;
2504       case Resizing: {
2505         // Sweeping has been completed; the actual resize in this case
2506         // is done separately; nothing to be done in this state.
2507         _collectorState = Resetting;
2508         break;
2509       }
2510       case Resetting:
2511         // The heap has been resized.
2512         if (VerifyDuringGC &&
2513             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2514           gclog_or_tty->print("Verify before reset: ");
2515           Universe::verify();
2516         }
2517         reset(false);
2518         assert(_collectorState == Idling, "Collector state should "
2519           "have changed");
2520         break;
2521       case Precleaning:
2522       case AbortablePreclean:
2523         // Elide the preclean phase
2524         _collectorState = FinalMarking;
2525         break;
2526       default:
2527         ShouldNotReachHere();
2528     }
2529     if (TraceCMSState) {
2530       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2531         Thread::current(), _collectorState);
2532     }
2533   }
2534 
2535   if (UseAdaptiveSizePolicy) {
2536     GenCollectedHeap* gch = GenCollectedHeap::heap();
2537     size_policy()->ms_collection_end(gch->gc_cause());
2538   }
2539 
2540   if (VerifyAfterGC &&
2541       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2542     Universe::verify();
2543   }
2544   if (TraceCMSState) {
2545     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2546       " exiting collection CMS state %d",
2547       Thread::current(), _collectorState);
2548   }
2549 }
2550 
2551 bool CMSCollector::waitForForegroundGC() {
2552   bool res = false;
2553   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2554          "CMS thread should have CMS token");
2555   // Block the foreground collector until the
2556   // background collectors decides whether to
2557   // yield.
2558   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2559   _foregroundGCShouldWait = true;
2560   if (_foregroundGCIsActive) {
2561     // The background collector yields to the
2562     // foreground collector and returns a value
2563     // indicating that it has yielded.  The foreground
2564     // collector can proceed.
2565     res = true;
2566     _foregroundGCShouldWait = false;
2567     ConcurrentMarkSweepThread::clear_CMS_flag(
2568       ConcurrentMarkSweepThread::CMS_cms_has_token);
2569     ConcurrentMarkSweepThread::set_CMS_flag(
2570       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2571     // Get a possibly blocked foreground thread going
2572     CGC_lock->notify();
2573     if (TraceCMSState) {
2574       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2575         Thread::current(), _collectorState);
2576     }
2577     while (_foregroundGCIsActive) {
2578       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2579     }
2580     ConcurrentMarkSweepThread::set_CMS_flag(
2581       ConcurrentMarkSweepThread::CMS_cms_has_token);
2582     ConcurrentMarkSweepThread::clear_CMS_flag(
2583       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2584   }
2585   if (TraceCMSState) {
2586     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2587       Thread::current(), _collectorState);
2588   }
2589   return res;
2590 }
2591 
2592 // Because of the need to lock the free lists and other structures in
2593 // the collector, common to all the generations that the collector is
2594 // collecting, we need the gc_prologues of individual CMS generations
2595 // delegate to their collector. It may have been simpler had the
2596 // current infrastructure allowed one to call a prologue on a
2597 // collector. In the absence of that we have the generation's
2598 // prologue delegate to the collector, which delegates back
2599 // some "local" work to a worker method in the individual generations
2600 // that it's responsible for collecting, while itself doing any
2601 // work common to all generations it's responsible for. A similar
2602 // comment applies to the  gc_epilogue()'s.
2603 // The role of the varaible _between_prologue_and_epilogue is to
2604 // enforce the invocation protocol.
2605 void CMSCollector::gc_prologue(bool full) {
2606   // Call gc_prologue_work() for each CMSGen and PermGen that
2607   // we are responsible for.
2608 
2609   // The following locking discipline assumes that we are only called
2610   // when the world is stopped.
2611   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2612 
2613   // The CMSCollector prologue must call the gc_prologues for the
2614   // "generations" (including PermGen if any) that it's responsible
2615   // for.
2616 
2617   assert(   Thread::current()->is_VM_thread()
2618          || (   CMSScavengeBeforeRemark
2619              && Thread::current()->is_ConcurrentGC_thread()),
2620          "Incorrect thread type for prologue execution");
2621 
2622   if (_between_prologue_and_epilogue) {
2623     // We have already been invoked; this is a gc_prologue delegation
2624     // from yet another CMS generation that we are responsible for, just
2625     // ignore it since all relevant work has already been done.
2626     return;
2627   }
2628 
2629   // set a bit saying prologue has been called; cleared in epilogue
2630   _between_prologue_and_epilogue = true;
2631   // Claim locks for common data structures, then call gc_prologue_work()
2632   // for each CMSGen and PermGen that we are responsible for.
2633 
2634   getFreelistLocks();   // gets free list locks on constituent spaces
2635   bitMapLock()->lock_without_safepoint_check();
2636 
2637   // Should call gc_prologue_work() for all cms gens we are responsible for
2638   bool registerClosure =    _collectorState >= Marking
2639                          && _collectorState < Sweeping;
2640   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2641                                                &_modUnionClosurePar
2642                                                : &_modUnionClosure;
2643   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2644   _permGen->gc_prologue_work(full, registerClosure, muc);
2645 
2646   if (!full) {
2647     stats().record_gc0_begin();
2648   }
2649 }
2650 
2651 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2652   // Delegate to CMScollector which knows how to coordinate between
2653   // this and any other CMS generations that it is responsible for
2654   // collecting.
2655   collector()->gc_prologue(full);
2656 }
2657 
2658 // This is a "private" interface for use by this generation's CMSCollector.
2659 // Not to be called directly by any other entity (for instance,
2660 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2661 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2662   bool registerClosure, ModUnionClosure* modUnionClosure) {
2663   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2664   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2665     "Should be NULL");
2666   if (registerClosure) {
2667     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2668   }
2669   cmsSpace()->gc_prologue();
2670   // Clear stat counters
2671   NOT_PRODUCT(
2672     assert(_numObjectsPromoted == 0, "check");
2673     assert(_numWordsPromoted   == 0, "check");
2674     if (Verbose && PrintGC) {
2675       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2676                           SIZE_FORMAT" bytes concurrently",
2677       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2678     }
2679     _numObjectsAllocated = 0;
2680     _numWordsAllocated   = 0;
2681   )
2682 }
2683 
2684 void CMSCollector::gc_epilogue(bool full) {
2685   // The following locking discipline assumes that we are only called
2686   // when the world is stopped.
2687   assert(SafepointSynchronize::is_at_safepoint(),
2688          "world is stopped assumption");
2689 
2690   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2691   // if linear allocation blocks need to be appropriately marked to allow the
2692   // the blocks to be parsable. We also check here whether we need to nudge the
2693   // CMS collector thread to start a new cycle (if it's not already active).
2694   assert(   Thread::current()->is_VM_thread()
2695          || (   CMSScavengeBeforeRemark
2696              && Thread::current()->is_ConcurrentGC_thread()),
2697          "Incorrect thread type for epilogue execution");
2698 
2699   if (!_between_prologue_and_epilogue) {
2700     // We have already been invoked; this is a gc_epilogue delegation
2701     // from yet another CMS generation that we are responsible for, just
2702     // ignore it since all relevant work has already been done.
2703     return;
2704   }
2705   assert(haveFreelistLocks(), "must have freelist locks");
2706   assert_lock_strong(bitMapLock());
2707 
2708   _cmsGen->gc_epilogue_work(full);
2709   _permGen->gc_epilogue_work(full);
2710 
2711   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2712     // in case sampling was not already enabled, enable it
2713     _start_sampling = true;
2714   }
2715   // reset _eden_chunk_array so sampling starts afresh
2716   _eden_chunk_index = 0;
2717 
2718   size_t cms_used   = _cmsGen->cmsSpace()->used();
2719   size_t perm_used  = _permGen->cmsSpace()->used();
2720 
2721   // update performance counters - this uses a special version of
2722   // update_counters() that allows the utilization to be passed as a
2723   // parameter, avoiding multiple calls to used().
2724   //
2725   _cmsGen->update_counters(cms_used);
2726   _permGen->update_counters(perm_used);
2727 
2728   if (CMSIncrementalMode) {
2729     icms_update_allocation_limits();
2730   }
2731 
2732   bitMapLock()->unlock();
2733   releaseFreelistLocks();
2734 
2735   if (!CleanChunkPoolAsync) {
2736     Chunk::clean_chunk_pool();
2737   }
2738 
2739   _between_prologue_and_epilogue = false;  // ready for next cycle
2740 }
2741 
2742 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2743   collector()->gc_epilogue(full);
2744 
2745   // Also reset promotion tracking in par gc thread states.
2746   if (CollectedHeap::use_parallel_gc_threads()) {
2747     for (uint i = 0; i < ParallelGCThreads; i++) {
2748       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2749     }
2750   }
2751 }
2752 
2753 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2754   assert(!incremental_collection_failed(), "Should have been cleared");
2755   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2756   cmsSpace()->gc_epilogue();
2757     // Print stat counters
2758   NOT_PRODUCT(
2759     assert(_numObjectsAllocated == 0, "check");
2760     assert(_numWordsAllocated == 0, "check");
2761     if (Verbose && PrintGC) {
2762       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2763                           SIZE_FORMAT" bytes",
2764                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2765     }
2766     _numObjectsPromoted = 0;
2767     _numWordsPromoted   = 0;
2768   )
2769 
2770   if (PrintGC && Verbose) {
2771     // Call down the chain in contiguous_available needs the freelistLock
2772     // so print this out before releasing the freeListLock.
2773     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2774                         contiguous_available());
2775   }
2776 }
2777 
2778 #ifndef PRODUCT
2779 bool CMSCollector::have_cms_token() {
2780   Thread* thr = Thread::current();
2781   if (thr->is_VM_thread()) {
2782     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2783   } else if (thr->is_ConcurrentGC_thread()) {
2784     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2785   } else if (thr->is_GC_task_thread()) {
2786     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2787            ParGCRareEvent_lock->owned_by_self();
2788   }
2789   return false;
2790 }
2791 #endif
2792 
2793 // Check reachability of the given heap address in CMS generation,
2794 // treating all other generations as roots.
2795 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2796   // We could "guarantee" below, rather than assert, but i'll
2797   // leave these as "asserts" so that an adventurous debugger
2798   // could try this in the product build provided some subset of
2799   // the conditions were met, provided they were intersted in the
2800   // results and knew that the computation below wouldn't interfere
2801   // with other concurrent computations mutating the structures
2802   // being read or written.
2803   assert(SafepointSynchronize::is_at_safepoint(),
2804          "Else mutations in object graph will make answer suspect");
2805   assert(have_cms_token(), "Should hold cms token");
2806   assert(haveFreelistLocks(), "must hold free list locks");
2807   assert_lock_strong(bitMapLock());
2808 
2809   // Clear the marking bit map array before starting, but, just
2810   // for kicks, first report if the given address is already marked
2811   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2812                 _markBitMap.isMarked(addr) ? "" : " not");
2813 
2814   if (verify_after_remark()) {
2815     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2816     bool result = verification_mark_bm()->isMarked(addr);
2817     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2818                            result ? "IS" : "is NOT");
2819     return result;
2820   } else {
2821     gclog_or_tty->print_cr("Could not compute result");
2822     return false;
2823   }
2824 }
2825 
2826 ////////////////////////////////////////////////////////
2827 // CMS Verification Support
2828 ////////////////////////////////////////////////////////
2829 // Following the remark phase, the following invariant
2830 // should hold -- each object in the CMS heap which is
2831 // marked in markBitMap() should be marked in the verification_mark_bm().
2832 
2833 class VerifyMarkedClosure: public BitMapClosure {
2834   CMSBitMap* _marks;
2835   bool       _failed;
2836 
2837  public:
2838   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2839 
2840   bool do_bit(size_t offset) {
2841     HeapWord* addr = _marks->offsetToHeapWord(offset);
2842     if (!_marks->isMarked(addr)) {
2843       oop(addr)->print_on(gclog_or_tty);
2844       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2845       _failed = true;
2846     }
2847     return true;
2848   }
2849 
2850   bool failed() { return _failed; }
2851 };
2852 
2853 bool CMSCollector::verify_after_remark() {
2854   gclog_or_tty->print(" [Verifying CMS Marking... ");
2855   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2856   static bool init = false;
2857 
2858   assert(SafepointSynchronize::is_at_safepoint(),
2859          "Else mutations in object graph will make answer suspect");
2860   assert(have_cms_token(),
2861          "Else there may be mutual interference in use of "
2862          " verification data structures");
2863   assert(_collectorState > Marking && _collectorState <= Sweeping,
2864          "Else marking info checked here may be obsolete");
2865   assert(haveFreelistLocks(), "must hold free list locks");
2866   assert_lock_strong(bitMapLock());
2867 
2868 
2869   // Allocate marking bit map if not already allocated
2870   if (!init) { // first time
2871     if (!verification_mark_bm()->allocate(_span)) {
2872       return false;
2873     }
2874     init = true;
2875   }
2876 
2877   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2878 
2879   // Turn off refs discovery -- so we will be tracing through refs.
2880   // This is as intended, because by this time
2881   // GC must already have cleared any refs that need to be cleared,
2882   // and traced those that need to be marked; moreover,
2883   // the marking done here is not going to intefere in any
2884   // way with the marking information used by GC.
2885   NoRefDiscovery no_discovery(ref_processor());
2886 
2887   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2888 
2889   // Clear any marks from a previous round
2890   verification_mark_bm()->clear_all();
2891   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2892   verify_work_stacks_empty();
2893 
2894   GenCollectedHeap* gch = GenCollectedHeap::heap();
2895   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2896   // Update the saved marks which may affect the root scans.
2897   gch->save_marks();
2898 
2899   if (CMSRemarkVerifyVariant == 1) {
2900     // In this first variant of verification, we complete
2901     // all marking, then check if the new marks-verctor is
2902     // a subset of the CMS marks-vector.
2903     verify_after_remark_work_1();
2904   } else if (CMSRemarkVerifyVariant == 2) {
2905     // In this second variant of verification, we flag an error
2906     // (i.e. an object reachable in the new marks-vector not reachable
2907     // in the CMS marks-vector) immediately, also indicating the
2908     // identify of an object (A) that references the unmarked object (B) --
2909     // presumably, a mutation to A failed to be picked up by preclean/remark?
2910     verify_after_remark_work_2();
2911   } else {
2912     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2913             CMSRemarkVerifyVariant);
2914   }
2915   gclog_or_tty->print(" done] ");
2916   return true;
2917 }
2918 
2919 void CMSCollector::verify_after_remark_work_1() {
2920   ResourceMark rm;
2921   HandleMark  hm;
2922   GenCollectedHeap* gch = GenCollectedHeap::heap();
2923 
2924   // Mark from roots one level into CMS
2925   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2926   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2927 
2928   gch->gen_process_strong_roots(_cmsGen->level(),
2929                                 true,   // younger gens are roots
2930                                 true,   // activate StrongRootsScope
2931                                 true,   // collecting perm gen
2932                                 SharedHeap::ScanningOption(roots_scanning_options()),
2933                                 &notOlder,
2934                                 true,   // walk code active on stacks
2935                                 NULL);
2936 
2937   // Now mark from the roots
2938   assert(_revisitStack.isEmpty(), "Should be empty");
2939   MarkFromRootsClosure markFromRootsClosure(this, _span,
2940     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
2941     false /* don't yield */, true /* verifying */);
2942   assert(_restart_addr == NULL, "Expected pre-condition");
2943   verification_mark_bm()->iterate(&markFromRootsClosure);
2944   while (_restart_addr != NULL) {
2945     // Deal with stack overflow: by restarting at the indicated
2946     // address.
2947     HeapWord* ra = _restart_addr;
2948     markFromRootsClosure.reset(ra);
2949     _restart_addr = NULL;
2950     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2951   }
2952   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2953   verify_work_stacks_empty();
2954   // Should reset the revisit stack above, since no class tree
2955   // surgery is forthcoming.
2956   _revisitStack.reset(); // throwing away all contents
2957 
2958   // Marking completed -- now verify that each bit marked in
2959   // verification_mark_bm() is also marked in markBitMap(); flag all
2960   // errors by printing corresponding objects.
2961   VerifyMarkedClosure vcl(markBitMap());
2962   verification_mark_bm()->iterate(&vcl);
2963   if (vcl.failed()) {
2964     gclog_or_tty->print("Verification failed");
2965     Universe::heap()->print_on(gclog_or_tty);
2966     fatal("CMS: failed marking verification after remark");
2967   }
2968 }
2969 
2970 void CMSCollector::verify_after_remark_work_2() {
2971   ResourceMark rm;
2972   HandleMark  hm;
2973   GenCollectedHeap* gch = GenCollectedHeap::heap();
2974 
2975   // Mark from roots one level into CMS
2976   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2977                                      markBitMap());
2978   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2979   gch->gen_process_strong_roots(_cmsGen->level(),
2980                                 true,   // younger gens are roots
2981                                 true,   // activate StrongRootsScope
2982                                 true,   // collecting perm gen
2983                                 SharedHeap::ScanningOption(roots_scanning_options()),
2984                                 &notOlder,
2985                                 true,   // walk code active on stacks
2986                                 NULL);
2987 
2988   // Now mark from the roots
2989   assert(_revisitStack.isEmpty(), "Should be empty");
2990   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2991     verification_mark_bm(), markBitMap(), verification_mark_stack());
2992   assert(_restart_addr == NULL, "Expected pre-condition");
2993   verification_mark_bm()->iterate(&markFromRootsClosure);
2994   while (_restart_addr != NULL) {
2995     // Deal with stack overflow: by restarting at the indicated
2996     // address.
2997     HeapWord* ra = _restart_addr;
2998     markFromRootsClosure.reset(ra);
2999     _restart_addr = NULL;
3000     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3001   }
3002   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3003   verify_work_stacks_empty();
3004   // Should reset the revisit stack above, since no class tree
3005   // surgery is forthcoming.
3006   _revisitStack.reset(); // throwing away all contents
3007 
3008   // Marking completed -- now verify that each bit marked in
3009   // verification_mark_bm() is also marked in markBitMap(); flag all
3010   // errors by printing corresponding objects.
3011   VerifyMarkedClosure vcl(markBitMap());
3012   verification_mark_bm()->iterate(&vcl);
3013   assert(!vcl.failed(), "Else verification above should not have succeeded");
3014 }
3015 
3016 void ConcurrentMarkSweepGeneration::save_marks() {
3017   // delegate to CMS space
3018   cmsSpace()->save_marks();
3019   for (uint i = 0; i < ParallelGCThreads; i++) {
3020     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3021   }
3022 }
3023 
3024 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3025   return cmsSpace()->no_allocs_since_save_marks();
3026 }
3027 
3028 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3029                                                                 \
3030 void ConcurrentMarkSweepGeneration::                            \
3031 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3032   cl->set_generation(this);                                     \
3033   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3034   cl->reset_generation();                                       \
3035   save_marks();                                                 \
3036 }
3037 
3038 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3039 
3040 void
3041 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
3042 {
3043   // Not currently implemented; need to do the following. -- ysr.
3044   // dld -- I think that is used for some sort of allocation profiler.  So it
3045   // really means the objects allocated by the mutator since the last
3046   // GC.  We could potentially implement this cheaply by recording only
3047   // the direct allocations in a side data structure.
3048   //
3049   // I think we probably ought not to be required to support these
3050   // iterations at any arbitrary point; I think there ought to be some
3051   // call to enable/disable allocation profiling in a generation/space,
3052   // and the iterator ought to return the objects allocated in the
3053   // gen/space since the enable call, or the last iterator call (which
3054   // will probably be at a GC.)  That way, for gens like CM&S that would
3055   // require some extra data structure to support this, we only pay the
3056   // cost when it's in use...
3057   cmsSpace()->object_iterate_since_last_GC(blk);
3058 }
3059 
3060 void
3061 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3062   cl->set_generation(this);
3063   younger_refs_in_space_iterate(_cmsSpace, cl);
3064   cl->reset_generation();
3065 }
3066 
3067 void
3068 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
3069   if (freelistLock()->owned_by_self()) {
3070     Generation::oop_iterate(mr, cl);
3071   } else {
3072     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3073     Generation::oop_iterate(mr, cl);
3074   }
3075 }
3076 
3077 void
3078 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
3079   if (freelistLock()->owned_by_self()) {
3080     Generation::oop_iterate(cl);
3081   } else {
3082     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3083     Generation::oop_iterate(cl);
3084   }
3085 }
3086 
3087 void
3088 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3089   if (freelistLock()->owned_by_self()) {
3090     Generation::object_iterate(cl);
3091   } else {
3092     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3093     Generation::object_iterate(cl);
3094   }
3095 }
3096 
3097 void
3098 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3099   if (freelistLock()->owned_by_self()) {
3100     Generation::safe_object_iterate(cl);
3101   } else {
3102     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3103     Generation::safe_object_iterate(cl);
3104   }
3105 }
3106 
3107 void
3108 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
3109 }
3110 
3111 void
3112 ConcurrentMarkSweepGeneration::post_compact() {
3113 }
3114 
3115 void
3116 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3117   // Fix the linear allocation blocks to look like free blocks.
3118 
3119   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3120   // are not called when the heap is verified during universe initialization and
3121   // at vm shutdown.
3122   if (freelistLock()->owned_by_self()) {
3123     cmsSpace()->prepare_for_verify();
3124   } else {
3125     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3126     cmsSpace()->prepare_for_verify();
3127   }
3128 }
3129 
3130 void
3131 ConcurrentMarkSweepGeneration::verify() {
3132   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3133   // are not called when the heap is verified during universe initialization and
3134   // at vm shutdown.
3135   if (freelistLock()->owned_by_self()) {
3136     cmsSpace()->verify();
3137   } else {
3138     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3139     cmsSpace()->verify();
3140   }
3141 }
3142 
3143 void CMSCollector::verify() {
3144   _cmsGen->verify();
3145   _permGen->verify();
3146 }
3147 
3148 #ifndef PRODUCT
3149 bool CMSCollector::overflow_list_is_empty() const {
3150   assert(_num_par_pushes >= 0, "Inconsistency");
3151   if (_overflow_list == NULL) {
3152     assert(_num_par_pushes == 0, "Inconsistency");
3153   }
3154   return _overflow_list == NULL;
3155 }
3156 
3157 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3158 // merely consolidate assertion checks that appear to occur together frequently.
3159 void CMSCollector::verify_work_stacks_empty() const {
3160   assert(_markStack.isEmpty(), "Marking stack should be empty");
3161   assert(overflow_list_is_empty(), "Overflow list should be empty");
3162 }
3163 
3164 void CMSCollector::verify_overflow_empty() const {
3165   assert(overflow_list_is_empty(), "Overflow list should be empty");
3166   assert(no_preserved_marks(), "No preserved marks");
3167 }
3168 #endif // PRODUCT
3169 
3170 // Decide if we want to enable class unloading as part of the
3171 // ensuing concurrent GC cycle. We will collect the perm gen and
3172 // unload classes if it's the case that:
3173 // (1) an explicit gc request has been made and the flag
3174 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3175 // (2) (a) class unloading is enabled at the command line, and
3176 //     (b) (i)   perm gen threshold has been crossed, or
3177 //         (ii)  old gen is getting really full, or
3178 //         (iii) the previous N CMS collections did not collect the
3179 //               perm gen
3180 // NOTE: Provided there is no change in the state of the heap between
3181 // calls to this method, it should have idempotent results. Moreover,
3182 // its results should be monotonically increasing (i.e. going from 0 to 1,
3183 // but not 1 to 0) between successive calls between which the heap was
3184 // not collected. For the implementation below, it must thus rely on
3185 // the property that concurrent_cycles_since_last_unload()
3186 // will not decrease unless a collection cycle happened and that
3187 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
3188 // themselves also monotonic in that sense. See check_monotonicity()
3189 // below.
3190 bool CMSCollector::update_should_unload_classes() {
3191   _should_unload_classes = false;
3192   // Condition 1 above
3193   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3194     _should_unload_classes = true;
3195   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3196     // Disjuncts 2.b.(i,ii,iii) above
3197     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3198                               CMSClassUnloadingMaxInterval)
3199                            || _permGen->should_concurrent_collect()
3200                            || _cmsGen->is_too_full();
3201   }
3202   return _should_unload_classes;
3203 }
3204 
3205 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3206   bool res = should_concurrent_collect();
3207   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3208   return res;
3209 }
3210 
3211 void CMSCollector::setup_cms_unloading_and_verification_state() {
3212   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3213                              || VerifyBeforeExit;
3214   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3215 
3216   if (should_unload_classes()) {   // Should unload classes this cycle
3217     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3218     set_verifying(should_verify);    // Set verification state for this cycle
3219     return;                            // Nothing else needs to be done at this time
3220   }
3221 
3222   // Not unloading classes this cycle
3223   assert(!should_unload_classes(), "Inconsitency!");
3224   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3225     // We were not verifying, or we _were_ unloading classes in the last cycle,
3226     // AND some verification options are enabled this cycle; in this case,
3227     // we must make sure that the deadness map is allocated if not already so,
3228     // and cleared (if already allocated previously --
3229     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
3230     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
3231       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
3232         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
3233                 "permanent generation verification disabled");
3234         return;  // Note that we leave verification disabled, so we'll retry this
3235                  // allocation next cycle. We _could_ remember this failure
3236                  // and skip further attempts and permanently disable verification
3237                  // attempts if that is considered more desirable.
3238       }
3239       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
3240               "_perm_gen_ver_bit_map inconsistency?");
3241     } else {
3242       perm_gen_verify_bit_map()->clear_all();
3243     }
3244     // Include symbols, strings and code cache elements to prevent their resurrection.
3245     add_root_scanning_option(rso);
3246     set_verifying(true);
3247   } else if (verifying() && !should_verify) {
3248     // We were verifying, but some verification flags got disabled.
3249     set_verifying(false);
3250     // Exclude symbols, strings and code cache elements from root scanning to
3251     // reduce IM and RM pauses.
3252     remove_root_scanning_option(rso);
3253   }
3254 }
3255 
3256 
3257 #ifndef PRODUCT
3258 HeapWord* CMSCollector::block_start(const void* p) const {
3259   const HeapWord* addr = (HeapWord*)p;
3260   if (_span.contains(p)) {
3261     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3262       return _cmsGen->cmsSpace()->block_start(p);
3263     } else {
3264       assert(_permGen->cmsSpace()->is_in_reserved(addr),
3265              "Inconsistent _span?");
3266       return _permGen->cmsSpace()->block_start(p);
3267     }
3268   }
3269   return NULL;
3270 }
3271 #endif
3272 
3273 HeapWord*
3274 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3275                                                    bool   tlab,
3276                                                    bool   parallel) {
3277   CMSSynchronousYieldRequest yr;
3278   assert(!tlab, "Can't deal with TLAB allocation");
3279   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3280   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3281     CMSExpansionCause::_satisfy_allocation);
3282   if (GCExpandToAllocateDelayMillis > 0) {
3283     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3284   }
3285   return have_lock_and_allocate(word_size, tlab);
3286 }
3287 
3288 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3289 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3290 // to CardGeneration and share it...
3291 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3292   return CardGeneration::expand(bytes, expand_bytes);
3293 }
3294 
3295 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3296   CMSExpansionCause::Cause cause)
3297 {
3298 
3299   bool success = expand(bytes, expand_bytes);
3300 
3301   // remember why we expanded; this information is used
3302   // by shouldConcurrentCollect() when making decisions on whether to start
3303   // a new CMS cycle.
3304   if (success) {
3305     set_expansion_cause(cause);
3306     if (PrintGCDetails && Verbose) {
3307       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3308         CMSExpansionCause::to_string(cause));
3309     }
3310   }
3311 }
3312 
3313 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3314   HeapWord* res = NULL;
3315   MutexLocker x(ParGCRareEvent_lock);
3316   while (true) {
3317     // Expansion by some other thread might make alloc OK now:
3318     res = ps->lab.alloc(word_sz);
3319     if (res != NULL) return res;
3320     // If there's not enough expansion space available, give up.
3321     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3322       return NULL;
3323     }
3324     // Otherwise, we try expansion.
3325     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3326       CMSExpansionCause::_allocate_par_lab);
3327     // Now go around the loop and try alloc again;
3328     // A competing par_promote might beat us to the expansion space,
3329     // so we may go around the loop again if promotion fails agaion.
3330     if (GCExpandToAllocateDelayMillis > 0) {
3331       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3332     }
3333   }
3334 }
3335 
3336 
3337 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3338   PromotionInfo* promo) {
3339   MutexLocker x(ParGCRareEvent_lock);
3340   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3341   while (true) {
3342     // Expansion by some other thread might make alloc OK now:
3343     if (promo->ensure_spooling_space()) {
3344       assert(promo->has_spooling_space(),
3345              "Post-condition of successful ensure_spooling_space()");
3346       return true;
3347     }
3348     // If there's not enough expansion space available, give up.
3349     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3350       return false;
3351     }
3352     // Otherwise, we try expansion.
3353     expand(refill_size_bytes, MinHeapDeltaBytes,
3354       CMSExpansionCause::_allocate_par_spooling_space);
3355     // Now go around the loop and try alloc again;
3356     // A competing allocation might beat us to the expansion space,
3357     // so we may go around the loop again if allocation fails again.
3358     if (GCExpandToAllocateDelayMillis > 0) {
3359       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3360     }
3361   }
3362 }
3363 
3364 
3365 
3366 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3367   assert_locked_or_safepoint(Heap_lock);
3368   size_t size = ReservedSpace::page_align_size_down(bytes);
3369   if (size > 0) {
3370     shrink_by(size);
3371   }
3372 }
3373 
3374 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3375   assert_locked_or_safepoint(Heap_lock);
3376   bool result = _virtual_space.expand_by(bytes);
3377   if (result) {
3378     HeapWord* old_end = _cmsSpace->end();
3379     size_t new_word_size =
3380       heap_word_size(_virtual_space.committed_size());
3381     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3382     _bts->resize(new_word_size);  // resize the block offset shared array
3383     Universe::heap()->barrier_set()->resize_covered_region(mr);
3384     // Hmmmm... why doesn't CFLS::set_end verify locking?
3385     // This is quite ugly; FIX ME XXX
3386     _cmsSpace->assert_locked(freelistLock());
3387     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3388 
3389     // update the space and generation capacity counters
3390     if (UsePerfData) {
3391       _space_counters->update_capacity();
3392       _gen_counters->update_all();
3393     }
3394 
3395     if (Verbose && PrintGC) {
3396       size_t new_mem_size = _virtual_space.committed_size();
3397       size_t old_mem_size = new_mem_size - bytes;
3398       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
3399                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3400     }
3401   }
3402   return result;
3403 }
3404 
3405 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3406   assert_locked_or_safepoint(Heap_lock);
3407   bool success = true;
3408   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3409   if (remaining_bytes > 0) {
3410     success = grow_by(remaining_bytes);
3411     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3412   }
3413   return success;
3414 }
3415 
3416 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3417   assert_locked_or_safepoint(Heap_lock);
3418   assert_lock_strong(freelistLock());
3419   // XXX Fix when compaction is implemented.
3420   warning("Shrinking of CMS not yet implemented");
3421   return;
3422 }
3423 
3424 
3425 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3426 // phases.
3427 class CMSPhaseAccounting: public StackObj {
3428  public:
3429   CMSPhaseAccounting(CMSCollector *collector,
3430                      const char *phase,
3431                      bool print_cr = true);
3432   ~CMSPhaseAccounting();
3433 
3434  private:
3435   CMSCollector *_collector;
3436   const char *_phase;
3437   elapsedTimer _wallclock;
3438   bool _print_cr;
3439 
3440  public:
3441   // Not MT-safe; so do not pass around these StackObj's
3442   // where they may be accessed by other threads.
3443   jlong wallclock_millis() {
3444     assert(_wallclock.is_active(), "Wall clock should not stop");
3445     _wallclock.stop();  // to record time
3446     jlong ret = _wallclock.milliseconds();
3447     _wallclock.start(); // restart
3448     return ret;
3449   }
3450 };
3451 
3452 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3453                                        const char *phase,
3454                                        bool print_cr) :
3455   _collector(collector), _phase(phase), _print_cr(print_cr) {
3456 
3457   if (PrintCMSStatistics != 0) {
3458     _collector->resetYields();
3459   }
3460   if (PrintGCDetails && PrintGCTimeStamps) {
3461     gclog_or_tty->date_stamp(PrintGCDateStamps);
3462     gclog_or_tty->stamp();
3463     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
3464       _collector->cmsGen()->short_name(), _phase);
3465   }
3466   _collector->resetTimer();
3467   _wallclock.start();
3468   _collector->startTimer();
3469 }
3470 
3471 CMSPhaseAccounting::~CMSPhaseAccounting() {
3472   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3473   _collector->stopTimer();
3474   _wallclock.stop();
3475   if (PrintGCDetails) {
3476     gclog_or_tty->date_stamp(PrintGCDateStamps);
3477     gclog_or_tty->stamp(PrintGCTimeStamps);
3478     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3479                  _collector->cmsGen()->short_name(),
3480                  _phase, _collector->timerValue(), _wallclock.seconds());
3481     if (_print_cr) {
3482       gclog_or_tty->print_cr("");
3483     }
3484     if (PrintCMSStatistics != 0) {
3485       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3486                     _collector->yields());
3487     }
3488   }
3489 }
3490 
3491 // CMS work
3492 
3493 // Checkpoint the roots into this generation from outside
3494 // this generation. [Note this initial checkpoint need only
3495 // be approximate -- we'll do a catch up phase subsequently.]
3496 void CMSCollector::checkpointRootsInitial(bool asynch) {
3497   assert(_collectorState == InitialMarking, "Wrong collector state");
3498   check_correct_thread_executing();
3499   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3500 
3501   ReferenceProcessor* rp = ref_processor();
3502   SpecializationStats::clear();
3503   assert(_restart_addr == NULL, "Control point invariant");
3504   if (asynch) {
3505     // acquire locks for subsequent manipulations
3506     MutexLockerEx x(bitMapLock(),
3507                     Mutex::_no_safepoint_check_flag);
3508     checkpointRootsInitialWork(asynch);
3509     // enable ("weak") refs discovery
3510     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3511     _collectorState = Marking;
3512   } else {
3513     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3514     // which recognizes if we are a CMS generation, and doesn't try to turn on
3515     // discovery; verify that they aren't meddling.
3516     assert(!rp->discovery_is_atomic(),
3517            "incorrect setting of discovery predicate");
3518     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3519            "ref discovery for this generation kind");
3520     // already have locks
3521     checkpointRootsInitialWork(asynch);
3522     // now enable ("weak") refs discovery
3523     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3524     _collectorState = Marking;
3525   }
3526   SpecializationStats::print();
3527 }
3528 
3529 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3530   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3531   assert(_collectorState == InitialMarking, "just checking");
3532 
3533   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3534   // precede our marking with a collection of all
3535   // younger generations to keep floating garbage to a minimum.
3536   // XXX: we won't do this for now -- it's an optimization to be done later.
3537 
3538   // already have locks
3539   assert_lock_strong(bitMapLock());
3540   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3541 
3542   // Setup the verification and class unloading state for this
3543   // CMS collection cycle.
3544   setup_cms_unloading_and_verification_state();
3545 
3546   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3547     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3548   if (UseAdaptiveSizePolicy) {
3549     size_policy()->checkpoint_roots_initial_begin();
3550   }
3551 
3552   // Reset all the PLAB chunk arrays if necessary.
3553   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3554     reset_survivor_plab_arrays();
3555   }
3556 
3557   ResourceMark rm;
3558   HandleMark  hm;
3559 
3560   FalseClosure falseClosure;
3561   // In the case of a synchronous collection, we will elide the
3562   // remark step, so it's important to catch all the nmethod oops
3563   // in this step.
3564   // The final 'true' flag to gen_process_strong_roots will ensure this.
3565   // If 'async' is true, we can relax the nmethod tracing.
3566   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3567   GenCollectedHeap* gch = GenCollectedHeap::heap();
3568 
3569   verify_work_stacks_empty();
3570   verify_overflow_empty();
3571 
3572   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3573   // Update the saved marks which may affect the root scans.
3574   gch->save_marks();
3575 
3576   // weak reference processing has not started yet.
3577   ref_processor()->set_enqueuing_is_done(false);
3578 
3579   {
3580     // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
3581     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3582     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3583     gch->gen_process_strong_roots(_cmsGen->level(),
3584                                   true,   // younger gens are roots
3585                                   true,   // activate StrongRootsScope
3586                                   true,   // collecting perm gen
3587                                   SharedHeap::ScanningOption(roots_scanning_options()),
3588                                   &notOlder,
3589                                   true,   // walk all of code cache if (so & SO_CodeCache)
3590                                   NULL);
3591   }
3592 
3593   // Clear mod-union table; it will be dirtied in the prologue of
3594   // CMS generation per each younger generation collection.
3595 
3596   assert(_modUnionTable.isAllClear(),
3597        "Was cleared in most recent final checkpoint phase"
3598        " or no bits are set in the gc_prologue before the start of the next "
3599        "subsequent marking phase.");
3600 
3601   // Save the end of the used_region of the constituent generations
3602   // to be used to limit the extent of sweep in each generation.
3603   save_sweep_limits();
3604   if (UseAdaptiveSizePolicy) {
3605     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3606   }
3607   verify_overflow_empty();
3608 }
3609 
3610 bool CMSCollector::markFromRoots(bool asynch) {
3611   // we might be tempted to assert that:
3612   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3613   //        "inconsistent argument?");
3614   // However that wouldn't be right, because it's possible that
3615   // a safepoint is indeed in progress as a younger generation
3616   // stop-the-world GC happens even as we mark in this generation.
3617   assert(_collectorState == Marking, "inconsistent state?");
3618   check_correct_thread_executing();
3619   verify_overflow_empty();
3620 
3621   bool res;
3622   if (asynch) {
3623 
3624     // Start the timers for adaptive size policy for the concurrent phases
3625     // Do it here so that the foreground MS can use the concurrent
3626     // timer since a foreground MS might has the sweep done concurrently
3627     // or STW.
3628     if (UseAdaptiveSizePolicy) {
3629       size_policy()->concurrent_marking_begin();
3630     }
3631 
3632     // Weak ref discovery note: We may be discovering weak
3633     // refs in this generation concurrent (but interleaved) with
3634     // weak ref discovery by a younger generation collector.
3635 
3636     CMSTokenSyncWithLocks ts(true, bitMapLock());
3637     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3638     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3639     res = markFromRootsWork(asynch);
3640     if (res) {
3641       _collectorState = Precleaning;
3642     } else { // We failed and a foreground collection wants to take over
3643       assert(_foregroundGCIsActive, "internal state inconsistency");
3644       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3645       if (PrintGCDetails) {
3646         gclog_or_tty->print_cr("bailing out to foreground collection");
3647       }
3648     }
3649     if (UseAdaptiveSizePolicy) {
3650       size_policy()->concurrent_marking_end();
3651     }
3652   } else {
3653     assert(SafepointSynchronize::is_at_safepoint(),
3654            "inconsistent with asynch == false");
3655     if (UseAdaptiveSizePolicy) {
3656       size_policy()->ms_collection_marking_begin();
3657     }
3658     // already have locks
3659     res = markFromRootsWork(asynch);
3660     _collectorState = FinalMarking;
3661     if (UseAdaptiveSizePolicy) {
3662       GenCollectedHeap* gch = GenCollectedHeap::heap();
3663       size_policy()->ms_collection_marking_end(gch->gc_cause());
3664     }
3665   }
3666   verify_overflow_empty();
3667   return res;
3668 }
3669 
3670 bool CMSCollector::markFromRootsWork(bool asynch) {
3671   // iterate over marked bits in bit map, doing a full scan and mark
3672   // from these roots using the following algorithm:
3673   // . if oop is to the right of the current scan pointer,
3674   //   mark corresponding bit (we'll process it later)
3675   // . else (oop is to left of current scan pointer)
3676   //   push oop on marking stack
3677   // . drain the marking stack
3678 
3679   // Note that when we do a marking step we need to hold the
3680   // bit map lock -- recall that direct allocation (by mutators)
3681   // and promotion (by younger generation collectors) is also
3682   // marking the bit map. [the so-called allocate live policy.]
3683   // Because the implementation of bit map marking is not
3684   // robust wrt simultaneous marking of bits in the same word,
3685   // we need to make sure that there is no such interference
3686   // between concurrent such updates.
3687 
3688   // already have locks
3689   assert_lock_strong(bitMapLock());
3690 
3691   // Clear the revisit stack, just in case there are any
3692   // obsolete contents from a short-circuited previous CMS cycle.
3693   _revisitStack.reset();
3694   verify_work_stacks_empty();
3695   verify_overflow_empty();
3696   assert(_revisitStack.isEmpty(), "tabula rasa");
3697   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
3698   bool result = false;
3699   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3700     result = do_marking_mt(asynch);
3701   } else {
3702     result = do_marking_st(asynch);
3703   }
3704   return result;
3705 }
3706 
3707 // Forward decl
3708 class CMSConcMarkingTask;
3709 
3710 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3711   CMSCollector*       _collector;
3712   CMSConcMarkingTask* _task;
3713  public:
3714   virtual void yield();
3715 
3716   // "n_threads" is the number of threads to be terminated.
3717   // "queue_set" is a set of work queues of other threads.
3718   // "collector" is the CMS collector associated with this task terminator.
3719   // "yield" indicates whether we need the gang as a whole to yield.
3720   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3721     ParallelTaskTerminator(n_threads, queue_set),
3722     _collector(collector) { }
3723 
3724   void set_task(CMSConcMarkingTask* task) {
3725     _task = task;
3726   }
3727 };
3728 
3729 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3730   CMSConcMarkingTask* _task;
3731  public:
3732   bool should_exit_termination();
3733   void set_task(CMSConcMarkingTask* task) {
3734     _task = task;
3735   }
3736 };
3737 
3738 // MT Concurrent Marking Task
3739 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3740   CMSCollector* _collector;
3741   int           _n_workers;                  // requested/desired # workers
3742   bool          _asynch;
3743   bool          _result;
3744   CompactibleFreeListSpace*  _cms_space;
3745   CompactibleFreeListSpace* _perm_space;
3746   char          _pad_front[64];   // padding to ...
3747   HeapWord*     _global_finger;   // ... avoid sharing cache line
3748   char          _pad_back[64];
3749   HeapWord*     _restart_addr;
3750 
3751   //  Exposed here for yielding support
3752   Mutex* const _bit_map_lock;
3753 
3754   // The per thread work queues, available here for stealing
3755   OopTaskQueueSet*  _task_queues;
3756 
3757   // Termination (and yielding) support
3758   CMSConcMarkingTerminator _term;
3759   CMSConcMarkingTerminatorTerminator _term_term;
3760 
3761  public:
3762   CMSConcMarkingTask(CMSCollector* collector,
3763                  CompactibleFreeListSpace* cms_space,
3764                  CompactibleFreeListSpace* perm_space,
3765                  bool asynch,
3766                  YieldingFlexibleWorkGang* workers,
3767                  OopTaskQueueSet* task_queues):
3768     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3769     _collector(collector),
3770     _cms_space(cms_space),
3771     _perm_space(perm_space),
3772     _asynch(asynch), _n_workers(0), _result(true),
3773     _task_queues(task_queues),
3774     _term(_n_workers, task_queues, _collector),
3775     _bit_map_lock(collector->bitMapLock())
3776   {
3777     _requested_size = _n_workers;
3778     _term.set_task(this);
3779     _term_term.set_task(this);
3780     assert(_cms_space->bottom() < _perm_space->bottom(),
3781            "Finger incorrectly initialized below");
3782     _restart_addr = _global_finger = _cms_space->bottom();
3783   }
3784 
3785 
3786   OopTaskQueueSet* task_queues()  { return _task_queues; }
3787 
3788   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3789 
3790   HeapWord** global_finger_addr() { return &_global_finger; }
3791 
3792   CMSConcMarkingTerminator* terminator() { return &_term; }
3793 
3794   virtual void set_for_termination(int active_workers) {
3795     terminator()->reset_for_reuse(active_workers);
3796   }
3797 
3798   void work(uint worker_id);
3799   bool should_yield() {
3800     return    ConcurrentMarkSweepThread::should_yield()
3801            && !_collector->foregroundGCIsActive()
3802            && _asynch;
3803   }
3804 
3805   virtual void coordinator_yield();  // stuff done by coordinator
3806   bool result() { return _result; }
3807 
3808   void reset(HeapWord* ra) {
3809     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3810     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
3811     assert(ra             <  _perm_space->end(), "ra too large");
3812     _restart_addr = _global_finger = ra;
3813     _term.reset_for_reuse();
3814   }
3815 
3816   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3817                                            OopTaskQueue* work_q);
3818 
3819  private:
3820   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3821   void do_work_steal(int i);
3822   void bump_global_finger(HeapWord* f);
3823 };
3824 
3825 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3826   assert(_task != NULL, "Error");
3827   return _task->yielding();
3828   // Note that we do not need the disjunct || _task->should_yield() above
3829   // because we want terminating threads to yield only if the task
3830   // is already in the midst of yielding, which happens only after at least one
3831   // thread has yielded.
3832 }
3833 
3834 void CMSConcMarkingTerminator::yield() {
3835   if (_task->should_yield()) {
3836     _task->yield();
3837   } else {
3838     ParallelTaskTerminator::yield();
3839   }
3840 }
3841 
3842 ////////////////////////////////////////////////////////////////
3843 // Concurrent Marking Algorithm Sketch
3844 ////////////////////////////////////////////////////////////////
3845 // Until all tasks exhausted (both spaces):
3846 // -- claim next available chunk
3847 // -- bump global finger via CAS
3848 // -- find first object that starts in this chunk
3849 //    and start scanning bitmap from that position
3850 // -- scan marked objects for oops
3851 // -- CAS-mark target, and if successful:
3852 //    . if target oop is above global finger (volatile read)
3853 //      nothing to do
3854 //    . if target oop is in chunk and above local finger
3855 //        then nothing to do
3856 //    . else push on work-queue
3857 // -- Deal with possible overflow issues:
3858 //    . local work-queue overflow causes stuff to be pushed on
3859 //      global (common) overflow queue
3860 //    . always first empty local work queue
3861 //    . then get a batch of oops from global work queue if any
3862 //    . then do work stealing
3863 // -- When all tasks claimed (both spaces)
3864 //    and local work queue empty,
3865 //    then in a loop do:
3866 //    . check global overflow stack; steal a batch of oops and trace
3867 //    . try to steal from other threads oif GOS is empty
3868 //    . if neither is available, offer termination
3869 // -- Terminate and return result
3870 //
3871 void CMSConcMarkingTask::work(uint worker_id) {
3872   elapsedTimer _timer;
3873   ResourceMark rm;
3874   HandleMark hm;
3875 
3876   DEBUG_ONLY(_collector->verify_overflow_empty();)
3877 
3878   // Before we begin work, our work queue should be empty
3879   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3880   // Scan the bitmap covering _cms_space, tracing through grey objects.
3881   _timer.start();
3882   do_scan_and_mark(worker_id, _cms_space);
3883   _timer.stop();
3884   if (PrintCMSStatistics != 0) {
3885     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3886       worker_id, _timer.seconds());
3887       // XXX: need xxx/xxx type of notation, two timers
3888   }
3889 
3890   // ... do the same for the _perm_space
3891   _timer.reset();
3892   _timer.start();
3893   do_scan_and_mark(worker_id, _perm_space);
3894   _timer.stop();
3895   if (PrintCMSStatistics != 0) {
3896     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
3897       worker_id, _timer.seconds());
3898       // XXX: need xxx/xxx type of notation, two timers
3899   }
3900 
3901   // ... do work stealing
3902   _timer.reset();
3903   _timer.start();
3904   do_work_steal(worker_id);
3905   _timer.stop();
3906   if (PrintCMSStatistics != 0) {
3907     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3908       worker_id, _timer.seconds());
3909       // XXX: need xxx/xxx type of notation, two timers
3910   }
3911   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3912   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3913   // Note that under the current task protocol, the
3914   // following assertion is true even of the spaces
3915   // expanded since the completion of the concurrent
3916   // marking. XXX This will likely change under a strict
3917   // ABORT semantics.
3918   assert(_global_finger >  _cms_space->end() &&
3919          _global_finger >= _perm_space->end(),
3920          "All tasks have been completed");
3921   DEBUG_ONLY(_collector->verify_overflow_empty();)
3922 }
3923 
3924 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3925   HeapWord* read = _global_finger;
3926   HeapWord* cur  = read;
3927   while (f > read) {
3928     cur = read;
3929     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3930     if (cur == read) {
3931       // our cas succeeded
3932       assert(_global_finger >= f, "protocol consistency");
3933       break;
3934     }
3935   }
3936 }
3937 
3938 // This is really inefficient, and should be redone by
3939 // using (not yet available) block-read and -write interfaces to the
3940 // stack and the work_queue. XXX FIX ME !!!
3941 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3942                                                       OopTaskQueue* work_q) {
3943   // Fast lock-free check
3944   if (ovflw_stk->length() == 0) {
3945     return false;
3946   }
3947   assert(work_q->size() == 0, "Shouldn't steal");
3948   MutexLockerEx ml(ovflw_stk->par_lock(),
3949                    Mutex::_no_safepoint_check_flag);
3950   // Grab up to 1/4 the size of the work queue
3951   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3952                     (size_t)ParGCDesiredObjsFromOverflowList);
3953   num = MIN2(num, ovflw_stk->length());
3954   for (int i = (int) num; i > 0; i--) {
3955     oop cur = ovflw_stk->pop();
3956     assert(cur != NULL, "Counted wrong?");
3957     work_q->push(cur);
3958   }
3959   return num > 0;
3960 }
3961 
3962 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3963   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3964   int n_tasks = pst->n_tasks();
3965   // We allow that there may be no tasks to do here because
3966   // we are restarting after a stack overflow.
3967   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3968   uint nth_task = 0;
3969 
3970   HeapWord* aligned_start = sp->bottom();
3971   if (sp->used_region().contains(_restart_addr)) {
3972     // Align down to a card boundary for the start of 0th task
3973     // for this space.
3974     aligned_start =
3975       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3976                                  CardTableModRefBS::card_size);
3977   }
3978 
3979   size_t chunk_size = sp->marking_task_size();
3980   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3981     // Having claimed the nth task in this space,
3982     // compute the chunk that it corresponds to:
3983     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3984                                aligned_start + (nth_task+1)*chunk_size);
3985     // Try and bump the global finger via a CAS;
3986     // note that we need to do the global finger bump
3987     // _before_ taking the intersection below, because
3988     // the task corresponding to that region will be
3989     // deemed done even if the used_region() expands
3990     // because of allocation -- as it almost certainly will
3991     // during start-up while the threads yield in the
3992     // closure below.
3993     HeapWord* finger = span.end();
3994     bump_global_finger(finger);   // atomically
3995     // There are null tasks here corresponding to chunks
3996     // beyond the "top" address of the space.
3997     span = span.intersection(sp->used_region());
3998     if (!span.is_empty()) {  // Non-null task
3999       HeapWord* prev_obj;
4000       assert(!span.contains(_restart_addr) || nth_task == 0,
4001              "Inconsistency");
4002       if (nth_task == 0) {
4003         // For the 0th task, we'll not need to compute a block_start.
4004         if (span.contains(_restart_addr)) {
4005           // In the case of a restart because of stack overflow,
4006           // we might additionally skip a chunk prefix.
4007           prev_obj = _restart_addr;
4008         } else {
4009           prev_obj = span.start();
4010         }
4011       } else {
4012         // We want to skip the first object because
4013         // the protocol is to scan any object in its entirety
4014         // that _starts_ in this span; a fortiori, any
4015         // object starting in an earlier span is scanned
4016         // as part of an earlier claimed task.
4017         // Below we use the "careful" version of block_start
4018         // so we do not try to navigate uninitialized objects.
4019         prev_obj = sp->block_start_careful(span.start());
4020         // Below we use a variant of block_size that uses the
4021         // Printezis bits to avoid waiting for allocated
4022         // objects to become initialized/parsable.
4023         while (prev_obj < span.start()) {
4024           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4025           if (sz > 0) {
4026             prev_obj += sz;
4027           } else {
4028             // In this case we may end up doing a bit of redundant
4029             // scanning, but that appears unavoidable, short of
4030             // locking the free list locks; see bug 6324141.
4031             break;
4032           }
4033         }
4034       }
4035       if (prev_obj < span.end()) {
4036         MemRegion my_span = MemRegion(prev_obj, span.end());
4037         // Do the marking work within a non-empty span --
4038         // the last argument to the constructor indicates whether the
4039         // iteration should be incremental with periodic yields.
4040         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4041                                     &_collector->_markBitMap,
4042                                     work_queue(i),
4043                                     &_collector->_markStack,
4044                                     &_collector->_revisitStack,
4045                                     _asynch);
4046         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4047       } // else nothing to do for this task
4048     }   // else nothing to do for this task
4049   }
4050   // We'd be tempted to assert here that since there are no
4051   // more tasks left to claim in this space, the global_finger
4052   // must exceed space->top() and a fortiori space->end(). However,
4053   // that would not quite be correct because the bumping of
4054   // global_finger occurs strictly after the claiming of a task,
4055   // so by the time we reach here the global finger may not yet
4056   // have been bumped up by the thread that claimed the last
4057   // task.
4058   pst->all_tasks_completed();
4059 }
4060 
4061 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
4062  private:
4063   CMSConcMarkingTask* _task;
4064   MemRegion     _span;
4065   CMSBitMap*    _bit_map;
4066   CMSMarkStack* _overflow_stack;
4067   OopTaskQueue* _work_queue;
4068  protected:
4069   DO_OOP_WORK_DEFN
4070  public:
4071   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4072                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
4073                          CMSMarkStack* revisit_stack):
4074     Par_KlassRememberingOopClosure(collector, collector->ref_processor(), revisit_stack),
4075     _task(task),
4076     _span(collector->_span),
4077     _work_queue(work_queue),
4078     _bit_map(bit_map),
4079     _overflow_stack(overflow_stack)
4080   { }
4081   virtual void do_oop(oop* p);
4082   virtual void do_oop(narrowOop* p);
4083   void trim_queue(size_t max);
4084   void handle_stack_overflow(HeapWord* lost);
4085   void do_yield_check() {
4086     if (_task->should_yield()) {
4087       _task->yield();
4088     }
4089   }
4090 };
4091 
4092 // Grey object scanning during work stealing phase --
4093 // the salient assumption here is that any references
4094 // that are in these stolen objects being scanned must
4095 // already have been initialized (else they would not have
4096 // been published), so we do not need to check for
4097 // uninitialized objects before pushing here.
4098 void Par_ConcMarkingClosure::do_oop(oop obj) {
4099   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4100   HeapWord* addr = (HeapWord*)obj;
4101   // Check if oop points into the CMS generation
4102   // and is not marked
4103   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4104     // a white object ...
4105     // If we manage to "claim" the object, by being the
4106     // first thread to mark it, then we push it on our
4107     // marking stack
4108     if (_bit_map->par_mark(addr)) {     // ... now grey
4109       // push on work queue (grey set)
4110       bool simulate_overflow = false;
4111       NOT_PRODUCT(
4112         if (CMSMarkStackOverflowALot &&
4113             _collector->simulate_overflow()) {
4114           // simulate a stack overflow
4115           simulate_overflow = true;
4116         }
4117       )
4118       if (simulate_overflow ||
4119           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4120         // stack overflow
4121         if (PrintCMSStatistics != 0) {
4122           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4123                                  SIZE_FORMAT, _overflow_stack->capacity());
4124         }
4125         // We cannot assert that the overflow stack is full because
4126         // it may have been emptied since.
4127         assert(simulate_overflow ||
4128                _work_queue->size() == _work_queue->max_elems(),
4129               "Else push should have succeeded");
4130         handle_stack_overflow(addr);
4131       }
4132     } // Else, some other thread got there first
4133     do_yield_check();
4134   }
4135 }
4136 
4137 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4138 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4139 
4140 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4141   while (_work_queue->size() > max) {
4142     oop new_oop;
4143     if (_work_queue->pop_local(new_oop)) {
4144       assert(new_oop->is_oop(), "Should be an oop");
4145       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4146       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4147       assert(new_oop->is_parsable(), "Should be parsable");
4148       new_oop->oop_iterate(this);  // do_oop() above
4149       do_yield_check();
4150     }
4151   }
4152 }
4153 
4154 // Upon stack overflow, we discard (part of) the stack,
4155 // remembering the least address amongst those discarded
4156 // in CMSCollector's _restart_address.
4157 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4158   // We need to do this under a mutex to prevent other
4159   // workers from interfering with the work done below.
4160   MutexLockerEx ml(_overflow_stack->par_lock(),
4161                    Mutex::_no_safepoint_check_flag);
4162   // Remember the least grey address discarded
4163   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4164   _collector->lower_restart_addr(ra);
4165   _overflow_stack->reset();  // discard stack contents
4166   _overflow_stack->expand(); // expand the stack if possible
4167 }
4168 
4169 
4170 void CMSConcMarkingTask::do_work_steal(int i) {
4171   OopTaskQueue* work_q = work_queue(i);
4172   oop obj_to_scan;
4173   CMSBitMap* bm = &(_collector->_markBitMap);
4174   CMSMarkStack* ovflw = &(_collector->_markStack);
4175   CMSMarkStack* revisit = &(_collector->_revisitStack);
4176   int* seed = _collector->hash_seed(i);
4177   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw, revisit);
4178   while (true) {
4179     cl.trim_queue(0);
4180     assert(work_q->size() == 0, "Should have been emptied above");
4181     if (get_work_from_overflow_stack(ovflw, work_q)) {
4182       // Can't assert below because the work obtained from the
4183       // overflow stack may already have been stolen from us.
4184       // assert(work_q->size() > 0, "Work from overflow stack");
4185       continue;
4186     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4187       assert(obj_to_scan->is_oop(), "Should be an oop");
4188       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4189       obj_to_scan->oop_iterate(&cl);
4190     } else if (terminator()->offer_termination(&_term_term)) {
4191       assert(work_q->size() == 0, "Impossible!");
4192       break;
4193     } else if (yielding() || should_yield()) {
4194       yield();
4195     }
4196   }
4197 }
4198 
4199 // This is run by the CMS (coordinator) thread.
4200 void CMSConcMarkingTask::coordinator_yield() {
4201   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4202          "CMS thread should hold CMS token");
4203   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4204   // First give up the locks, then yield, then re-lock
4205   // We should probably use a constructor/destructor idiom to
4206   // do this unlock/lock or modify the MutexUnlocker class to
4207   // serve our purpose. XXX
4208   assert_lock_strong(_bit_map_lock);
4209   _bit_map_lock->unlock();
4210   ConcurrentMarkSweepThread::desynchronize(true);
4211   ConcurrentMarkSweepThread::acknowledge_yield_request();
4212   _collector->stopTimer();
4213   if (PrintCMSStatistics != 0) {
4214     _collector->incrementYields();
4215   }
4216   _collector->icms_wait();
4217 
4218   // It is possible for whichever thread initiated the yield request
4219   // not to get a chance to wake up and take the bitmap lock between
4220   // this thread releasing it and reacquiring it. So, while the
4221   // should_yield() flag is on, let's sleep for a bit to give the
4222   // other thread a chance to wake up. The limit imposed on the number
4223   // of iterations is defensive, to avoid any unforseen circumstances
4224   // putting us into an infinite loop. Since it's always been this
4225   // (coordinator_yield()) method that was observed to cause the
4226   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4227   // which is by default non-zero. For the other seven methods that
4228   // also perform the yield operation, as are using a different
4229   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4230   // can enable the sleeping for those methods too, if necessary.
4231   // See 6442774.
4232   //
4233   // We really need to reconsider the synchronization between the GC
4234   // thread and the yield-requesting threads in the future and we
4235   // should really use wait/notify, which is the recommended
4236   // way of doing this type of interaction. Additionally, we should
4237   // consolidate the eight methods that do the yield operation and they
4238   // are almost identical into one for better maintenability and
4239   // readability. See 6445193.
4240   //
4241   // Tony 2006.06.29
4242   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4243                    ConcurrentMarkSweepThread::should_yield() &&
4244                    !CMSCollector::foregroundGCIsActive(); ++i) {
4245     os::sleep(Thread::current(), 1, false);
4246     ConcurrentMarkSweepThread::acknowledge_yield_request();
4247   }
4248 
4249   ConcurrentMarkSweepThread::synchronize(true);
4250   _bit_map_lock->lock_without_safepoint_check();
4251   _collector->startTimer();
4252 }
4253 
4254 bool CMSCollector::do_marking_mt(bool asynch) {
4255   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4256   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4257                                        conc_workers()->total_workers(),
4258                                        conc_workers()->active_workers(),
4259                                        Threads::number_of_non_daemon_threads());
4260   conc_workers()->set_active_workers(num_workers);
4261 
4262   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4263   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
4264 
4265   CMSConcMarkingTask tsk(this,
4266                          cms_space,
4267                          perm_space,
4268                          asynch,
4269                          conc_workers(),
4270                          task_queues());
4271 
4272   // Since the actual number of workers we get may be different
4273   // from the number we requested above, do we need to do anything different
4274   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4275   // class?? XXX
4276   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4277   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
4278 
4279   // Refs discovery is already non-atomic.
4280   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4281   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4282   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
4283   conc_workers()->start_task(&tsk);
4284   while (tsk.yielded()) {
4285     tsk.coordinator_yield();
4286     conc_workers()->continue_task(&tsk);
4287   }
4288   // If the task was aborted, _restart_addr will be non-NULL
4289   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4290   while (_restart_addr != NULL) {
4291     // XXX For now we do not make use of ABORTED state and have not
4292     // yet implemented the right abort semantics (even in the original
4293     // single-threaded CMS case). That needs some more investigation
4294     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4295     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4296     // If _restart_addr is non-NULL, a marking stack overflow
4297     // occurred; we need to do a fresh marking iteration from the
4298     // indicated restart address.
4299     if (_foregroundGCIsActive && asynch) {
4300       // We may be running into repeated stack overflows, having
4301       // reached the limit of the stack size, while making very
4302       // slow forward progress. It may be best to bail out and
4303       // let the foreground collector do its job.
4304       // Clear _restart_addr, so that foreground GC
4305       // works from scratch. This avoids the headache of
4306       // a "rescan" which would otherwise be needed because
4307       // of the dirty mod union table & card table.
4308       _restart_addr = NULL;
4309       return false;
4310     }
4311     // Adjust the task to restart from _restart_addr
4312     tsk.reset(_restart_addr);
4313     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4314                   _restart_addr);
4315     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
4316                   _restart_addr);
4317     _restart_addr = NULL;
4318     // Get the workers going again
4319     conc_workers()->start_task(&tsk);
4320     while (tsk.yielded()) {
4321       tsk.coordinator_yield();
4322       conc_workers()->continue_task(&tsk);
4323     }
4324   }
4325   assert(tsk.completed(), "Inconsistency");
4326   assert(tsk.result() == true, "Inconsistency");
4327   return true;
4328 }
4329 
4330 bool CMSCollector::do_marking_st(bool asynch) {
4331   ResourceMark rm;
4332   HandleMark   hm;
4333 
4334   // Temporarily make refs discovery single threaded (non-MT)
4335   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4336   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4337     &_markStack, &_revisitStack, CMSYield && asynch);
4338   // the last argument to iterate indicates whether the iteration
4339   // should be incremental with periodic yields.
4340   _markBitMap.iterate(&markFromRootsClosure);
4341   // If _restart_addr is non-NULL, a marking stack overflow
4342   // occurred; we need to do a fresh iteration from the
4343   // indicated restart address.
4344   while (_restart_addr != NULL) {
4345     if (_foregroundGCIsActive && asynch) {
4346       // We may be running into repeated stack overflows, having
4347       // reached the limit of the stack size, while making very
4348       // slow forward progress. It may be best to bail out and
4349       // let the foreground collector do its job.
4350       // Clear _restart_addr, so that foreground GC
4351       // works from scratch. This avoids the headache of
4352       // a "rescan" which would otherwise be needed because
4353       // of the dirty mod union table & card table.
4354       _restart_addr = NULL;
4355       return false;  // indicating failure to complete marking
4356     }
4357     // Deal with stack overflow:
4358     // we restart marking from _restart_addr
4359     HeapWord* ra = _restart_addr;
4360     markFromRootsClosure.reset(ra);
4361     _restart_addr = NULL;
4362     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4363   }
4364   return true;
4365 }
4366 
4367 void CMSCollector::preclean() {
4368   check_correct_thread_executing();
4369   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4370   verify_work_stacks_empty();
4371   verify_overflow_empty();
4372   _abort_preclean = false;
4373   if (CMSPrecleaningEnabled) {
4374     _eden_chunk_index = 0;
4375     size_t used = get_eden_used();
4376     size_t capacity = get_eden_capacity();
4377     // Don't start sampling unless we will get sufficiently
4378     // many samples.
4379     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4380                 * CMSScheduleRemarkEdenPenetration)) {
4381       _start_sampling = true;
4382     } else {
4383       _start_sampling = false;
4384     }
4385     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4386     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4387     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4388   }
4389   CMSTokenSync x(true); // is cms thread
4390   if (CMSPrecleaningEnabled) {
4391     sample_eden();
4392     _collectorState = AbortablePreclean;
4393   } else {
4394     _collectorState = FinalMarking;
4395   }
4396   verify_work_stacks_empty();
4397   verify_overflow_empty();
4398 }
4399 
4400 // Try and schedule the remark such that young gen
4401 // occupancy is CMSScheduleRemarkEdenPenetration %.
4402 void CMSCollector::abortable_preclean() {
4403   check_correct_thread_executing();
4404   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4405   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4406 
4407   // If Eden's current occupancy is below this threshold,
4408   // immediately schedule the remark; else preclean
4409   // past the next scavenge in an effort to
4410   // schedule the pause as described avove. By choosing
4411   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4412   // we will never do an actual abortable preclean cycle.
4413   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4414     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4415     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4416     // We need more smarts in the abortable preclean
4417     // loop below to deal with cases where allocation
4418     // in young gen is very very slow, and our precleaning
4419     // is running a losing race against a horde of
4420     // mutators intent on flooding us with CMS updates
4421     // (dirty cards).
4422     // One, admittedly dumb, strategy is to give up
4423     // after a certain number of abortable precleaning loops
4424     // or after a certain maximum time. We want to make
4425     // this smarter in the next iteration.
4426     // XXX FIX ME!!! YSR
4427     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4428     while (!(should_abort_preclean() ||
4429              ConcurrentMarkSweepThread::should_terminate())) {
4430       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4431       cumworkdone += workdone;
4432       loops++;
4433       // Voluntarily terminate abortable preclean phase if we have
4434       // been at it for too long.
4435       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4436           loops >= CMSMaxAbortablePrecleanLoops) {
4437         if (PrintGCDetails) {
4438           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4439         }
4440         break;
4441       }
4442       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4443         if (PrintGCDetails) {
4444           gclog_or_tty->print(" CMS: abort preclean due to time ");
4445         }
4446         break;
4447       }
4448       // If we are doing little work each iteration, we should
4449       // take a short break.
4450       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4451         // Sleep for some time, waiting for work to accumulate
4452         stopTimer();
4453         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4454         startTimer();
4455         waited++;
4456       }
4457     }
4458     if (PrintCMSStatistics > 0) {
4459       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4460                           loops, waited, cumworkdone);
4461     }
4462   }
4463   CMSTokenSync x(true); // is cms thread
4464   if (_collectorState != Idling) {
4465     assert(_collectorState == AbortablePreclean,
4466            "Spontaneous state transition?");
4467     _collectorState = FinalMarking;
4468   } // Else, a foreground collection completed this CMS cycle.
4469   return;
4470 }
4471 
4472 // Respond to an Eden sampling opportunity
4473 void CMSCollector::sample_eden() {
4474   // Make sure a young gc cannot sneak in between our
4475   // reading and recording of a sample.
4476   assert(Thread::current()->is_ConcurrentGC_thread(),
4477          "Only the cms thread may collect Eden samples");
4478   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4479          "Should collect samples while holding CMS token");
4480   if (!_start_sampling) {
4481     return;
4482   }
4483   if (_eden_chunk_array) {
4484     if (_eden_chunk_index < _eden_chunk_capacity) {
4485       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4486       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4487              "Unexpected state of Eden");
4488       // We'd like to check that what we just sampled is an oop-start address;
4489       // however, we cannot do that here since the object may not yet have been
4490       // initialized. So we'll instead do the check when we _use_ this sample
4491       // later.
4492       if (_eden_chunk_index == 0 ||
4493           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4494                          _eden_chunk_array[_eden_chunk_index-1])
4495            >= CMSSamplingGrain)) {
4496         _eden_chunk_index++;  // commit sample
4497       }
4498     }
4499   }
4500   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4501     size_t used = get_eden_used();
4502     size_t capacity = get_eden_capacity();
4503     assert(used <= capacity, "Unexpected state of Eden");
4504     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4505       _abort_preclean = true;
4506     }
4507   }
4508 }
4509 
4510 
4511 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4512   assert(_collectorState == Precleaning ||
4513          _collectorState == AbortablePreclean, "incorrect state");
4514   ResourceMark rm;
4515   HandleMark   hm;
4516 
4517   // Precleaning is currently not MT but the reference processor
4518   // may be set for MT.  Disable it temporarily here.
4519   ReferenceProcessor* rp = ref_processor();
4520   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4521 
4522   // Do one pass of scrubbing the discovered reference lists
4523   // to remove any reference objects with strongly-reachable
4524   // referents.
4525   if (clean_refs) {
4526     CMSPrecleanRefsYieldClosure yield_cl(this);
4527     assert(rp->span().equals(_span), "Spans should be equal");
4528     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4529                                    &_markStack, &_revisitStack,
4530                                    true /* preclean */);
4531     CMSDrainMarkingStackClosure complete_trace(this,
4532                                    _span, &_markBitMap, &_markStack,
4533                                    &keep_alive, true /* preclean */);
4534 
4535     // We don't want this step to interfere with a young
4536     // collection because we don't want to take CPU
4537     // or memory bandwidth away from the young GC threads
4538     // (which may be as many as there are CPUs).
4539     // Note that we don't need to protect ourselves from
4540     // interference with mutators because they can't
4541     // manipulate the discovered reference lists nor affect
4542     // the computed reachability of the referents, the
4543     // only properties manipulated by the precleaning
4544     // of these reference lists.
4545     stopTimer();
4546     CMSTokenSyncWithLocks x(true /* is cms thread */,
4547                             bitMapLock());
4548     startTimer();
4549     sample_eden();
4550 
4551     // The following will yield to allow foreground
4552     // collection to proceed promptly. XXX YSR:
4553     // The code in this method may need further
4554     // tweaking for better performance and some restructuring
4555     // for cleaner interfaces.
4556     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4557     rp->preclean_discovered_references(
4558           rp->is_alive_non_header(), &keep_alive, &complete_trace,
4559           &yield_cl, should_unload_classes(), gc_timer);
4560   }
4561 
4562   if (clean_survivor) {  // preclean the active survivor space(s)
4563     assert(_young_gen->kind() == Generation::DefNew ||
4564            _young_gen->kind() == Generation::ParNew ||
4565            _young_gen->kind() == Generation::ASParNew,
4566          "incorrect type for cast");
4567     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4568     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4569                              &_markBitMap, &_modUnionTable,
4570                              &_markStack, &_revisitStack,
4571                              true /* precleaning phase */);
4572     stopTimer();
4573     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4574                              bitMapLock());
4575     startTimer();
4576     unsigned int before_count =
4577       GenCollectedHeap::heap()->total_collections();
4578     SurvivorSpacePrecleanClosure
4579       sss_cl(this, _span, &_markBitMap, &_markStack,
4580              &pam_cl, before_count, CMSYield);
4581     DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4582     dng->from()->object_iterate_careful(&sss_cl);
4583     dng->to()->object_iterate_careful(&sss_cl);
4584   }
4585   MarkRefsIntoAndScanClosure
4586     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4587              &_markStack, &_revisitStack, this, CMSYield,
4588              true /* precleaning phase */);
4589   // CAUTION: The following closure has persistent state that may need to
4590   // be reset upon a decrease in the sequence of addresses it
4591   // processes.
4592   ScanMarkedObjectsAgainCarefullyClosure
4593     smoac_cl(this, _span,
4594       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
4595 
4596   // Preclean dirty cards in ModUnionTable and CardTable using
4597   // appropriate convergence criterion;
4598   // repeat CMSPrecleanIter times unless we find that
4599   // we are losing.
4600   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4601   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4602          "Bad convergence multiplier");
4603   assert(CMSPrecleanThreshold >= 100,
4604          "Unreasonably low CMSPrecleanThreshold");
4605 
4606   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4607   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4608        numIter < CMSPrecleanIter;
4609        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4610     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4611     if (CMSPermGenPrecleaningEnabled) {
4612       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
4613     }
4614     if (Verbose && PrintGCDetails) {
4615       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4616     }
4617     // Either there are very few dirty cards, so re-mark
4618     // pause will be small anyway, or our pre-cleaning isn't
4619     // that much faster than the rate at which cards are being
4620     // dirtied, so we might as well stop and re-mark since
4621     // precleaning won't improve our re-mark time by much.
4622     if (curNumCards <= CMSPrecleanThreshold ||
4623         (numIter > 0 &&
4624          (curNumCards * CMSPrecleanDenominator >
4625          lastNumCards * CMSPrecleanNumerator))) {
4626       numIter++;
4627       cumNumCards += curNumCards;
4628       break;
4629     }
4630   }
4631   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4632   if (CMSPermGenPrecleaningEnabled) {
4633     curNumCards += preclean_card_table(_permGen, &smoac_cl);
4634   }
4635   cumNumCards += curNumCards;
4636   if (PrintGCDetails && PrintCMSStatistics != 0) {
4637     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4638                   curNumCards, cumNumCards, numIter);
4639   }
4640   return cumNumCards;   // as a measure of useful work done
4641 }
4642 
4643 // PRECLEANING NOTES:
4644 // Precleaning involves:
4645 // . reading the bits of the modUnionTable and clearing the set bits.
4646 // . For the cards corresponding to the set bits, we scan the
4647 //   objects on those cards. This means we need the free_list_lock
4648 //   so that we can safely iterate over the CMS space when scanning
4649 //   for oops.
4650 // . When we scan the objects, we'll be both reading and setting
4651 //   marks in the marking bit map, so we'll need the marking bit map.
4652 // . For protecting _collector_state transitions, we take the CGC_lock.
4653 //   Note that any races in the reading of of card table entries by the
4654 //   CMS thread on the one hand and the clearing of those entries by the
4655 //   VM thread or the setting of those entries by the mutator threads on the
4656 //   other are quite benign. However, for efficiency it makes sense to keep
4657 //   the VM thread from racing with the CMS thread while the latter is
4658 //   dirty card info to the modUnionTable. We therefore also use the
4659 //   CGC_lock to protect the reading of the card table and the mod union
4660 //   table by the CM thread.
4661 // . We run concurrently with mutator updates, so scanning
4662 //   needs to be done carefully  -- we should not try to scan
4663 //   potentially uninitialized objects.
4664 //
4665 // Locking strategy: While holding the CGC_lock, we scan over and
4666 // reset a maximal dirty range of the mod union / card tables, then lock
4667 // the free_list_lock and bitmap lock to do a full marking, then
4668 // release these locks; and repeat the cycle. This allows for a
4669 // certain amount of fairness in the sharing of these locks between
4670 // the CMS collector on the one hand, and the VM thread and the
4671 // mutators on the other.
4672 
4673 // NOTE: preclean_mod_union_table() and preclean_card_table()
4674 // further below are largely identical; if you need to modify
4675 // one of these methods, please check the other method too.
4676 
4677 size_t CMSCollector::preclean_mod_union_table(
4678   ConcurrentMarkSweepGeneration* gen,
4679   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4680   verify_work_stacks_empty();
4681   verify_overflow_empty();
4682 
4683   // Turn off checking for this method but turn it back on
4684   // selectively.  There are yield points in this method
4685   // but it is difficult to turn the checking off just around
4686   // the yield points.  It is simpler to selectively turn
4687   // it on.
4688   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4689 
4690   // strategy: starting with the first card, accumulate contiguous
4691   // ranges of dirty cards; clear these cards, then scan the region
4692   // covered by these cards.
4693 
4694   // Since all of the MUT is committed ahead, we can just use
4695   // that, in case the generations expand while we are precleaning.
4696   // It might also be fine to just use the committed part of the
4697   // generation, but we might potentially miss cards when the
4698   // generation is rapidly expanding while we are in the midst
4699   // of precleaning.
4700   HeapWord* startAddr = gen->reserved().start();
4701   HeapWord* endAddr   = gen->reserved().end();
4702 
4703   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4704 
4705   size_t numDirtyCards, cumNumDirtyCards;
4706   HeapWord *nextAddr, *lastAddr;
4707   for (cumNumDirtyCards = numDirtyCards = 0,
4708        nextAddr = lastAddr = startAddr;
4709        nextAddr < endAddr;
4710        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4711 
4712     ResourceMark rm;
4713     HandleMark   hm;
4714 
4715     MemRegion dirtyRegion;
4716     {
4717       stopTimer();
4718       // Potential yield point
4719       CMSTokenSync ts(true);
4720       startTimer();
4721       sample_eden();
4722       // Get dirty region starting at nextOffset (inclusive),
4723       // simultaneously clearing it.
4724       dirtyRegion =
4725         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4726       assert(dirtyRegion.start() >= nextAddr,
4727              "returned region inconsistent?");
4728     }
4729     // Remember where the next search should begin.
4730     // The returned region (if non-empty) is a right open interval,
4731     // so lastOffset is obtained from the right end of that
4732     // interval.
4733     lastAddr = dirtyRegion.end();
4734     // Should do something more transparent and less hacky XXX
4735     numDirtyCards =
4736       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4737 
4738     // We'll scan the cards in the dirty region (with periodic
4739     // yields for foreground GC as needed).
4740     if (!dirtyRegion.is_empty()) {
4741       assert(numDirtyCards > 0, "consistency check");
4742       HeapWord* stop_point = NULL;
4743       stopTimer();
4744       // Potential yield point
4745       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4746                                bitMapLock());
4747       startTimer();
4748       {
4749         verify_work_stacks_empty();
4750         verify_overflow_empty();
4751         sample_eden();
4752         DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4753         stop_point =
4754           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4755       }
4756       if (stop_point != NULL) {
4757         // The careful iteration stopped early either because it found an
4758         // uninitialized object, or because we were in the midst of an
4759         // "abortable preclean", which should now be aborted. Redirty
4760         // the bits corresponding to the partially-scanned or unscanned
4761         // cards. We'll either restart at the next block boundary or
4762         // abort the preclean.
4763         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
4764                (_collectorState == AbortablePreclean && should_abort_preclean()),
4765                "Unparsable objects should only be in perm gen.");
4766         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4767         if (should_abort_preclean()) {
4768           break; // out of preclean loop
4769         } else {
4770           // Compute the next address at which preclean should pick up;
4771           // might need bitMapLock in order to read P-bits.
4772           lastAddr = next_card_start_after_block(stop_point);
4773         }
4774       }
4775     } else {
4776       assert(lastAddr == endAddr, "consistency check");
4777       assert(numDirtyCards == 0, "consistency check");
4778       break;
4779     }
4780   }
4781   verify_work_stacks_empty();
4782   verify_overflow_empty();
4783   return cumNumDirtyCards;
4784 }
4785 
4786 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4787 // below are largely identical; if you need to modify
4788 // one of these methods, please check the other method too.
4789 
4790 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4791   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4792   // strategy: it's similar to precleamModUnionTable above, in that
4793   // we accumulate contiguous ranges of dirty cards, mark these cards
4794   // precleaned, then scan the region covered by these cards.
4795   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4796   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4797 
4798   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4799 
4800   size_t numDirtyCards, cumNumDirtyCards;
4801   HeapWord *lastAddr, *nextAddr;
4802 
4803   for (cumNumDirtyCards = numDirtyCards = 0,
4804        nextAddr = lastAddr = startAddr;
4805        nextAddr < endAddr;
4806        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4807 
4808     ResourceMark rm;
4809     HandleMark   hm;
4810 
4811     MemRegion dirtyRegion;
4812     {
4813       // See comments in "Precleaning notes" above on why we
4814       // do this locking. XXX Could the locking overheads be
4815       // too high when dirty cards are sparse? [I don't think so.]
4816       stopTimer();
4817       CMSTokenSync x(true); // is cms thread
4818       startTimer();
4819       sample_eden();
4820       // Get and clear dirty region from card table
4821       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4822                                     MemRegion(nextAddr, endAddr),
4823                                     true,
4824                                     CardTableModRefBS::precleaned_card_val());
4825 
4826       assert(dirtyRegion.start() >= nextAddr,
4827              "returned region inconsistent?");
4828     }
4829     lastAddr = dirtyRegion.end();
4830     numDirtyCards =
4831       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4832 
4833     if (!dirtyRegion.is_empty()) {
4834       stopTimer();
4835       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4836       startTimer();
4837       sample_eden();
4838       verify_work_stacks_empty();
4839       verify_overflow_empty();
4840       DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4841       HeapWord* stop_point =
4842         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4843       if (stop_point != NULL) {
4844         // The careful iteration stopped early because it found an
4845         // uninitialized object.  Redirty the bits corresponding to the
4846         // partially-scanned or unscanned cards, and start again at the
4847         // next block boundary.
4848         assert(CMSPermGenPrecleaningEnabled ||
4849                (_collectorState == AbortablePreclean && should_abort_preclean()),
4850                "Unparsable objects should only be in perm gen.");
4851         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4852         if (should_abort_preclean()) {
4853           break; // out of preclean loop
4854         } else {
4855           // Compute the next address at which preclean should pick up.
4856           lastAddr = next_card_start_after_block(stop_point);
4857         }
4858       }
4859     } else {
4860       break;
4861     }
4862   }
4863   verify_work_stacks_empty();
4864   verify_overflow_empty();
4865   return cumNumDirtyCards;
4866 }
4867 
4868 void CMSCollector::checkpointRootsFinal(bool asynch,
4869   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4870   assert(_collectorState == FinalMarking, "incorrect state transition?");
4871   check_correct_thread_executing();
4872   // world is stopped at this checkpoint
4873   assert(SafepointSynchronize::is_at_safepoint(),
4874          "world should be stopped");
4875   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4876 
4877   verify_work_stacks_empty();
4878   verify_overflow_empty();
4879 
4880   SpecializationStats::clear();
4881   if (PrintGCDetails) {
4882     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4883                         _young_gen->used() / K,
4884                         _young_gen->capacity() / K);
4885   }
4886   if (asynch) {
4887     if (CMSScavengeBeforeRemark) {
4888       GenCollectedHeap* gch = GenCollectedHeap::heap();
4889       // Temporarily set flag to false, GCH->do_collection will
4890       // expect it to be false and set to true
4891       FlagSetting fl(gch->_is_gc_active, false);
4892       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4893         PrintGCDetails && Verbose, true, _gc_timer_cm);)
4894       int level = _cmsGen->level() - 1;
4895       if (level >= 0) {
4896         gch->do_collection(true,        // full (i.e. force, see below)
4897                            false,       // !clear_all_soft_refs
4898                            0,           // size
4899                            false,       // is_tlab
4900                            level        // max_level
4901                           );
4902       }
4903     }
4904     FreelistLocker x(this);
4905     MutexLockerEx y(bitMapLock(),
4906                     Mutex::_no_safepoint_check_flag);
4907     assert(!init_mark_was_synchronous, "but that's impossible!");
4908     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4909     _gc_tracer_cm->report_class_count_after_gc(&_is_alive_closure);
4910   } else {
4911     // already have all the locks
4912     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4913                              init_mark_was_synchronous);
4914     _gc_tracer_cm->report_class_count_after_gc(&_is_alive_closure);
4915   }
4916   verify_work_stacks_empty();
4917   verify_overflow_empty();
4918   SpecializationStats::print();
4919 }
4920 
4921 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4922   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4923 
4924   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
4925 
4926   assert(haveFreelistLocks(), "must have free list locks");
4927   assert_lock_strong(bitMapLock());
4928 
4929   if (UseAdaptiveSizePolicy) {
4930     size_policy()->checkpoint_roots_final_begin();
4931   }
4932 
4933   ResourceMark rm;
4934   HandleMark   hm;
4935 
4936   GenCollectedHeap* gch = GenCollectedHeap::heap();
4937 
4938   if (should_unload_classes()) {
4939     CodeCache::gc_prologue();
4940   }
4941   assert(haveFreelistLocks(), "must have free list locks");
4942   assert_lock_strong(bitMapLock());
4943 
4944   DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());)
4945   if (!init_mark_was_synchronous) {
4946     // We might assume that we need not fill TLAB's when
4947     // CMSScavengeBeforeRemark is set, because we may have just done
4948     // a scavenge which would have filled all TLAB's -- and besides
4949     // Eden would be empty. This however may not always be the case --
4950     // for instance although we asked for a scavenge, it may not have
4951     // happened because of a JNI critical section. We probably need
4952     // a policy for deciding whether we can in that case wait until
4953     // the critical section releases and then do the remark following
4954     // the scavenge, and skip it here. In the absence of that policy,
4955     // or of an indication of whether the scavenge did indeed occur,
4956     // we cannot rely on TLAB's having been filled and must do
4957     // so here just in case a scavenge did not happen.
4958     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4959     // Update the saved marks which may affect the root scans.
4960     gch->save_marks();
4961 
4962     {
4963       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4964 
4965       // Note on the role of the mod union table:
4966       // Since the marker in "markFromRoots" marks concurrently with
4967       // mutators, it is possible for some reachable objects not to have been
4968       // scanned. For instance, an only reference to an object A was
4969       // placed in object B after the marker scanned B. Unless B is rescanned,
4970       // A would be collected. Such updates to references in marked objects
4971       // are detected via the mod union table which is the set of all cards
4972       // dirtied since the first checkpoint in this GC cycle and prior to
4973       // the most recent young generation GC, minus those cleaned up by the
4974       // concurrent precleaning.
4975       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4976         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
4977         do_remark_parallel();
4978       } else {
4979         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4980                     _gc_timer_cm);
4981         do_remark_non_parallel();
4982       }
4983     }
4984   } else {
4985     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
4986     // The initial mark was stop-world, so there's no rescanning to
4987     // do; go straight on to the next step below.
4988   }
4989   verify_work_stacks_empty();
4990   verify_overflow_empty();
4991 
4992   {
4993     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
4994     refProcessingWork(asynch, clear_all_soft_refs);
4995   }
4996   verify_work_stacks_empty();
4997   verify_overflow_empty();
4998 
4999   if (should_unload_classes()) {
5000     CodeCache::gc_epilogue();
5001   }
5002   JvmtiExport::gc_epilogue();
5003 
5004   // If we encountered any (marking stack / work queue) overflow
5005   // events during the current CMS cycle, take appropriate
5006   // remedial measures, where possible, so as to try and avoid
5007   // recurrence of that condition.
5008   assert(_markStack.isEmpty(), "No grey objects");
5009   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5010                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5011   if (ser_ovflw > 0) {
5012     if (PrintCMSStatistics != 0) {
5013       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5014         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5015         ", kac_preclean="SIZE_FORMAT")",
5016         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5017         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5018     }
5019     _markStack.expand();
5020     _ser_pmc_remark_ovflw = 0;
5021     _ser_pmc_preclean_ovflw = 0;
5022     _ser_kac_preclean_ovflw = 0;
5023     _ser_kac_ovflw = 0;
5024   }
5025   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5026     if (PrintCMSStatistics != 0) {
5027       gclog_or_tty->print_cr("Work queue overflow (benign) "
5028         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5029         _par_pmc_remark_ovflw, _par_kac_ovflw);
5030     }
5031     _par_pmc_remark_ovflw = 0;
5032     _par_kac_ovflw = 0;
5033   }
5034   if (PrintCMSStatistics != 0) {
5035      if (_markStack._hit_limit > 0) {
5036        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5037                               _markStack._hit_limit);
5038      }
5039      if (_markStack._failed_double > 0) {
5040        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5041                               " current capacity "SIZE_FORMAT,
5042                               _markStack._failed_double,
5043                               _markStack.capacity());
5044      }
5045   }
5046   _markStack._hit_limit = 0;
5047   _markStack._failed_double = 0;
5048 
5049   // Check that all the klasses have been checked
5050   assert(_revisitStack.isEmpty(), "Not all klasses revisited");
5051 
5052   if ((VerifyAfterGC || VerifyDuringGC) &&
5053       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5054     verify_after_remark();
5055   }
5056 
5057   // Change under the freelistLocks.
5058   _collectorState = Sweeping;
5059   // Call isAllClear() under bitMapLock
5060   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
5061     " final marking");
5062   if (UseAdaptiveSizePolicy) {
5063     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5064   }
5065 }
5066 
5067 // Parallel remark task
5068 class CMSParRemarkTask: public AbstractGangTask {
5069   CMSCollector* _collector;
5070   int           _n_workers;
5071   CompactibleFreeListSpace* _cms_space;
5072   CompactibleFreeListSpace* _perm_space;
5073 
5074   // The per-thread work queues, available here for stealing.
5075   OopTaskQueueSet*       _task_queues;
5076   ParallelTaskTerminator _term;
5077 
5078  public:
5079   // A value of 0 passed to n_workers will cause the number of
5080   // workers to be taken from the active workers in the work gang.
5081   CMSParRemarkTask(CMSCollector* collector,
5082                    CompactibleFreeListSpace* cms_space,
5083                    CompactibleFreeListSpace* perm_space,
5084                    int n_workers, FlexibleWorkGang* workers,
5085                    OopTaskQueueSet* task_queues):
5086     AbstractGangTask("Rescan roots and grey objects in parallel"),
5087     _collector(collector),
5088     _cms_space(cms_space), _perm_space(perm_space),
5089     _n_workers(n_workers),
5090     _task_queues(task_queues),
5091     _term(n_workers, task_queues) { }
5092 
5093   OopTaskQueueSet* task_queues() { return _task_queues; }
5094 
5095   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5096 
5097   ParallelTaskTerminator* terminator() { return &_term; }
5098   int n_workers() { return _n_workers; }
5099 
5100   void work(uint worker_id);
5101 
5102  private:
5103   // Work method in support of parallel rescan ... of young gen spaces
5104   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
5105                              ContiguousSpace* space,
5106                              HeapWord** chunk_array, size_t chunk_top);
5107 
5108   // ... of  dirty cards in old space
5109   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5110                                   Par_MarkRefsIntoAndScanClosure* cl);
5111 
5112   // ... work stealing for the above
5113   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5114 };
5115 
5116 // work_queue(i) is passed to the closure
5117 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5118 // also is passed to do_dirty_card_rescan_tasks() and to
5119 // do_work_steal() to select the i-th task_queue.
5120 
5121 void CMSParRemarkTask::work(uint worker_id) {
5122   elapsedTimer _timer;
5123   ResourceMark rm;
5124   HandleMark   hm;
5125 
5126   // ---------- rescan from roots --------------
5127   _timer.start();
5128   GenCollectedHeap* gch = GenCollectedHeap::heap();
5129   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5130     _collector->_span, _collector->ref_processor(),
5131     &(_collector->_markBitMap),
5132     work_queue(worker_id), &(_collector->_revisitStack));
5133 
5134   // Rescan young gen roots first since these are likely
5135   // coarsely partitioned and may, on that account, constitute
5136   // the critical path; thus, it's best to start off that
5137   // work first.
5138   // ---------- young gen roots --------------
5139   {
5140     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5141     EdenSpace* eden_space = dng->eden();
5142     ContiguousSpace* from_space = dng->from();
5143     ContiguousSpace* to_space   = dng->to();
5144 
5145     HeapWord** eca = _collector->_eden_chunk_array;
5146     size_t     ect = _collector->_eden_chunk_index;
5147     HeapWord** sca = _collector->_survivor_chunk_array;
5148     size_t     sct = _collector->_survivor_chunk_index;
5149 
5150     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5151     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5152 
5153     do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0);
5154     do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct);
5155     do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect);
5156 
5157     _timer.stop();
5158     if (PrintCMSStatistics != 0) {
5159       gclog_or_tty->print_cr(
5160         "Finished young gen rescan work in %dth thread: %3.3f sec",
5161         worker_id, _timer.seconds());
5162     }
5163   }
5164 
5165   // ---------- remaining roots --------------
5166   _timer.reset();
5167   _timer.start();
5168   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5169                                 false,     // yg was scanned above
5170                                 false,     // this is parallel code
5171                                 true,      // collecting perm gen
5172                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5173                                 &par_mrias_cl,
5174                                 true,   // walk all of code cache if (so & SO_CodeCache)
5175                                 NULL);
5176   assert(_collector->should_unload_classes()
5177          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5178          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5179   _timer.stop();
5180   if (PrintCMSStatistics != 0) {
5181     gclog_or_tty->print_cr(
5182       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5183       worker_id, _timer.seconds());
5184   }
5185 
5186   // ---------- rescan dirty cards ------------
5187   _timer.reset();
5188   _timer.start();
5189 
5190   // Do the rescan tasks for each of the two spaces
5191   // (cms_space and perm_space) in turn.
5192   // "worker_id" is passed to select the task_queue for "worker_id"
5193   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5194   do_dirty_card_rescan_tasks(_perm_space, worker_id, &par_mrias_cl);
5195   _timer.stop();
5196   if (PrintCMSStatistics != 0) {
5197     gclog_or_tty->print_cr(
5198       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5199       worker_id, _timer.seconds());
5200   }
5201 
5202   // ---------- steal work from other threads ...
5203   // ---------- ... and drain overflow list.
5204   _timer.reset();
5205   _timer.start();
5206   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5207   _timer.stop();
5208   if (PrintCMSStatistics != 0) {
5209     gclog_or_tty->print_cr(
5210       "Finished work stealing in %dth thread: %3.3f sec",
5211       worker_id, _timer.seconds());
5212   }
5213 }
5214 
5215 // Note that parameter "i" is not used.
5216 void
5217 CMSParRemarkTask::do_young_space_rescan(int i,
5218   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5219   HeapWord** chunk_array, size_t chunk_top) {
5220   // Until all tasks completed:
5221   // . claim an unclaimed task
5222   // . compute region boundaries corresponding to task claimed
5223   //   using chunk_array
5224   // . par_oop_iterate(cl) over that region
5225 
5226   ResourceMark rm;
5227   HandleMark   hm;
5228 
5229   SequentialSubTasksDone* pst = space->par_seq_tasks();
5230   assert(pst->valid(), "Uninitialized use?");
5231 
5232   uint nth_task = 0;
5233   uint n_tasks  = pst->n_tasks();
5234 
5235   HeapWord *start, *end;
5236   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5237     // We claimed task # nth_task; compute its boundaries.
5238     if (chunk_top == 0) {  // no samples were taken
5239       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5240       start = space->bottom();
5241       end   = space->top();
5242     } else if (nth_task == 0) {
5243       start = space->bottom();
5244       end   = chunk_array[nth_task];
5245     } else if (nth_task < (uint)chunk_top) {
5246       assert(nth_task >= 1, "Control point invariant");
5247       start = chunk_array[nth_task - 1];
5248       end   = chunk_array[nth_task];
5249     } else {
5250       assert(nth_task == (uint)chunk_top, "Control point invariant");
5251       start = chunk_array[chunk_top - 1];
5252       end   = space->top();
5253     }
5254     MemRegion mr(start, end);
5255     // Verify that mr is in space
5256     assert(mr.is_empty() || space->used_region().contains(mr),
5257            "Should be in space");
5258     // Verify that "start" is an object boundary
5259     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5260            "Should be an oop");
5261     space->par_oop_iterate(mr, cl);
5262   }
5263   pst->all_tasks_completed();
5264 }
5265 
5266 void
5267 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5268   CompactibleFreeListSpace* sp, int i,
5269   Par_MarkRefsIntoAndScanClosure* cl) {
5270   // Until all tasks completed:
5271   // . claim an unclaimed task
5272   // . compute region boundaries corresponding to task claimed
5273   // . transfer dirty bits ct->mut for that region
5274   // . apply rescanclosure to dirty mut bits for that region
5275 
5276   ResourceMark rm;
5277   HandleMark   hm;
5278 
5279   OopTaskQueue* work_q = work_queue(i);
5280   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5281   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5282   // CAUTION: This closure has state that persists across calls to
5283   // the work method dirty_range_iterate_clear() in that it has
5284   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5285   // use of that state in the imbedded UpwardsObjectClosure instance
5286   // assumes that the cards are always iterated (even if in parallel
5287   // by several threads) in monotonically increasing order per each
5288   // thread. This is true of the implementation below which picks
5289   // card ranges (chunks) in monotonically increasing order globally
5290   // and, a-fortiori, in monotonically increasing order per thread
5291   // (the latter order being a subsequence of the former).
5292   // If the work code below is ever reorganized into a more chaotic
5293   // work-partitioning form than the current "sequential tasks"
5294   // paradigm, the use of that persistent state will have to be
5295   // revisited and modified appropriately. See also related
5296   // bug 4756801 work on which should examine this code to make
5297   // sure that the changes there do not run counter to the
5298   // assumptions made here and necessary for correctness and
5299   // efficiency. Note also that this code might yield inefficient
5300   // behaviour in the case of very large objects that span one or
5301   // more work chunks. Such objects would potentially be scanned
5302   // several times redundantly. Work on 4756801 should try and
5303   // address that performance anomaly if at all possible. XXX
5304   MemRegion  full_span  = _collector->_span;
5305   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5306   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
5307   MarkFromDirtyCardsClosure
5308     greyRescanClosure(_collector, full_span, // entire span of interest
5309                       sp, bm, work_q, rs, cl);
5310 
5311   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5312   assert(pst->valid(), "Uninitialized use?");
5313   uint nth_task = 0;
5314   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5315   MemRegion span = sp->used_region();
5316   HeapWord* start_addr = span.start();
5317   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5318                                            alignment);
5319   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5320   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5321          start_addr, "Check alignment");
5322   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5323          chunk_size, "Check alignment");
5324 
5325   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5326     // Having claimed the nth_task, compute corresponding mem-region,
5327     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5328     // The alignment restriction ensures that we do not need any
5329     // synchronization with other gang-workers while setting or
5330     // clearing bits in thus chunk of the MUT.
5331     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5332                                     start_addr + (nth_task+1)*chunk_size);
5333     // The last chunk's end might be way beyond end of the
5334     // used region. In that case pull back appropriately.
5335     if (this_span.end() > end_addr) {
5336       this_span.set_end(end_addr);
5337       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5338     }
5339     // Iterate over the dirty cards covering this chunk, marking them
5340     // precleaned, and setting the corresponding bits in the mod union
5341     // table. Since we have been careful to partition at Card and MUT-word
5342     // boundaries no synchronization is needed between parallel threads.
5343     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5344                                                  &modUnionClosure);
5345 
5346     // Having transferred these marks into the modUnionTable,
5347     // rescan the marked objects on the dirty cards in the modUnionTable.
5348     // Even if this is at a synchronous collection, the initial marking
5349     // may have been done during an asynchronous collection so there
5350     // may be dirty bits in the mod-union table.
5351     _collector->_modUnionTable.dirty_range_iterate_clear(
5352                   this_span, &greyRescanClosure);
5353     _collector->_modUnionTable.verifyNoOneBitsInRange(
5354                                  this_span.start(),
5355                                  this_span.end());
5356   }
5357   pst->all_tasks_completed();  // declare that i am done
5358 }
5359 
5360 // . see if we can share work_queues with ParNew? XXX
5361 void
5362 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5363                                 int* seed) {
5364   OopTaskQueue* work_q = work_queue(i);
5365   NOT_PRODUCT(int num_steals = 0;)
5366   oop obj_to_scan;
5367   CMSBitMap* bm = &(_collector->_markBitMap);
5368 
5369   while (true) {
5370     // Completely finish any left over work from (an) earlier round(s)
5371     cl->trim_queue(0);
5372     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5373                                          (size_t)ParGCDesiredObjsFromOverflowList);
5374     // Now check if there's any work in the overflow list
5375     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5376     // only affects the number of attempts made to get work from the
5377     // overflow list and does not affect the number of workers.  Just
5378     // pass ParallelGCThreads so this behavior is unchanged.
5379     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5380                                                 work_q,
5381                                                 ParallelGCThreads)) {
5382       // found something in global overflow list;
5383       // not yet ready to go stealing work from others.
5384       // We'd like to assert(work_q->size() != 0, ...)
5385       // because we just took work from the overflow list,
5386       // but of course we can't since all of that could have
5387       // been already stolen from us.
5388       // "He giveth and He taketh away."
5389       continue;
5390     }
5391     // Verify that we have no work before we resort to stealing
5392     assert(work_q->size() == 0, "Have work, shouldn't steal");
5393     // Try to steal from other queues that have work
5394     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5395       NOT_PRODUCT(num_steals++;)
5396       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5397       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5398       // Do scanning work
5399       obj_to_scan->oop_iterate(cl);
5400       // Loop around, finish this work, and try to steal some more
5401     } else if (terminator()->offer_termination()) {
5402         break;  // nirvana from the infinite cycle
5403     }
5404   }
5405   NOT_PRODUCT(
5406     if (PrintCMSStatistics != 0) {
5407       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5408     }
5409   )
5410   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5411          "Else our work is not yet done");
5412 }
5413 
5414 // Return a thread-local PLAB recording array, as appropriate.
5415 void* CMSCollector::get_data_recorder(int thr_num) {
5416   if (_survivor_plab_array != NULL &&
5417       (CMSPLABRecordAlways ||
5418        (_collectorState > Marking && _collectorState < FinalMarking))) {
5419     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5420     ChunkArray* ca = &_survivor_plab_array[thr_num];
5421     ca->reset();   // clear it so that fresh data is recorded
5422     return (void*) ca;
5423   } else {
5424     return NULL;
5425   }
5426 }
5427 
5428 // Reset all the thread-local PLAB recording arrays
5429 void CMSCollector::reset_survivor_plab_arrays() {
5430   for (uint i = 0; i < ParallelGCThreads; i++) {
5431     _survivor_plab_array[i].reset();
5432   }
5433 }
5434 
5435 // Merge the per-thread plab arrays into the global survivor chunk
5436 // array which will provide the partitioning of the survivor space
5437 // for CMS rescan.
5438 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5439                                               int no_of_gc_threads) {
5440   assert(_survivor_plab_array  != NULL, "Error");
5441   assert(_survivor_chunk_array != NULL, "Error");
5442   assert(_collectorState == FinalMarking, "Error");
5443   for (int j = 0; j < no_of_gc_threads; j++) {
5444     _cursor[j] = 0;
5445   }
5446   HeapWord* top = surv->top();
5447   size_t i;
5448   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5449     HeapWord* min_val = top;          // Higher than any PLAB address
5450     uint      min_tid = 0;            // position of min_val this round
5451     for (int j = 0; j < no_of_gc_threads; j++) {
5452       ChunkArray* cur_sca = &_survivor_plab_array[j];
5453       if (_cursor[j] == cur_sca->end()) {
5454         continue;
5455       }
5456       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5457       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5458       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5459       if (cur_val < min_val) {
5460         min_tid = j;
5461         min_val = cur_val;
5462       } else {
5463         assert(cur_val < top, "All recorded addresses should be less");
5464       }
5465     }
5466     // At this point min_val and min_tid are respectively
5467     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5468     // and the thread (j) that witnesses that address.
5469     // We record this address in the _survivor_chunk_array[i]
5470     // and increment _cursor[min_tid] prior to the next round i.
5471     if (min_val == top) {
5472       break;
5473     }
5474     _survivor_chunk_array[i] = min_val;
5475     _cursor[min_tid]++;
5476   }
5477   // We are all done; record the size of the _survivor_chunk_array
5478   _survivor_chunk_index = i; // exclusive: [0, i)
5479   if (PrintCMSStatistics > 0) {
5480     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5481   }
5482   // Verify that we used up all the recorded entries
5483   #ifdef ASSERT
5484     size_t total = 0;
5485     for (int j = 0; j < no_of_gc_threads; j++) {
5486       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5487       total += _cursor[j];
5488     }
5489     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5490     // Check that the merged array is in sorted order
5491     if (total > 0) {
5492       for (size_t i = 0; i < total - 1; i++) {
5493         if (PrintCMSStatistics > 0) {
5494           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5495                               i, _survivor_chunk_array[i]);
5496         }
5497         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5498                "Not sorted");
5499       }
5500     }
5501   #endif // ASSERT
5502 }
5503 
5504 // Set up the space's par_seq_tasks structure for work claiming
5505 // for parallel rescan of young gen.
5506 // See ParRescanTask where this is currently used.
5507 void
5508 CMSCollector::
5509 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5510   assert(n_threads > 0, "Unexpected n_threads argument");
5511   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5512 
5513   // Eden space
5514   {
5515     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5516     assert(!pst->valid(), "Clobbering existing data?");
5517     // Each valid entry in [0, _eden_chunk_index) represents a task.
5518     size_t n_tasks = _eden_chunk_index + 1;
5519     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5520     // Sets the condition for completion of the subtask (how many threads
5521     // need to finish in order to be done).
5522     pst->set_n_threads(n_threads);
5523     pst->set_n_tasks((int)n_tasks);
5524   }
5525 
5526   // Merge the survivor plab arrays into _survivor_chunk_array
5527   if (_survivor_plab_array != NULL) {
5528     merge_survivor_plab_arrays(dng->from(), n_threads);
5529   } else {
5530     assert(_survivor_chunk_index == 0, "Error");
5531   }
5532 
5533   // To space
5534   {
5535     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5536     assert(!pst->valid(), "Clobbering existing data?");
5537     // Sets the condition for completion of the subtask (how many threads
5538     // need to finish in order to be done).
5539     pst->set_n_threads(n_threads);
5540     pst->set_n_tasks(1);
5541     assert(pst->valid(), "Error");
5542   }
5543 
5544   // From space
5545   {
5546     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5547     assert(!pst->valid(), "Clobbering existing data?");
5548     size_t n_tasks = _survivor_chunk_index + 1;
5549     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5550     // Sets the condition for completion of the subtask (how many threads
5551     // need to finish in order to be done).
5552     pst->set_n_threads(n_threads);
5553     pst->set_n_tasks((int)n_tasks);
5554     assert(pst->valid(), "Error");
5555   }
5556 }
5557 
5558 // Parallel version of remark
5559 void CMSCollector::do_remark_parallel() {
5560   GenCollectedHeap* gch = GenCollectedHeap::heap();
5561   FlexibleWorkGang* workers = gch->workers();
5562   assert(workers != NULL, "Need parallel worker threads.");
5563   // Choose to use the number of GC workers most recently set
5564   // into "active_workers".  If active_workers is not set, set it
5565   // to ParallelGCThreads.
5566   int n_workers = workers->active_workers();
5567   if (n_workers == 0) {
5568     assert(n_workers > 0, "Should have been set during scavenge");
5569     n_workers = ParallelGCThreads;
5570     workers->set_active_workers(n_workers);
5571   }
5572   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5573   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
5574 
5575   CMSParRemarkTask tsk(this,
5576     cms_space, perm_space,
5577     n_workers, workers, task_queues());
5578 
5579   // Set up for parallel process_strong_roots work.
5580   gch->set_par_threads(n_workers);
5581   // We won't be iterating over the cards in the card table updating
5582   // the younger_gen cards, so we shouldn't call the following else
5583   // the verification code as well as subsequent younger_refs_iterate
5584   // code would get confused. XXX
5585   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5586 
5587   // The young gen rescan work will not be done as part of
5588   // process_strong_roots (which currently doesn't knw how to
5589   // parallelize such a scan), but rather will be broken up into
5590   // a set of parallel tasks (via the sampling that the [abortable]
5591   // preclean phase did of EdenSpace, plus the [two] tasks of
5592   // scanning the [two] survivor spaces. Further fine-grain
5593   // parallelization of the scanning of the survivor spaces
5594   // themselves, and of precleaning of the younger gen itself
5595   // is deferred to the future.
5596   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5597 
5598   // The dirty card rescan work is broken up into a "sequence"
5599   // of parallel tasks (per constituent space) that are dynamically
5600   // claimed by the parallel threads.
5601   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5602   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
5603 
5604   // It turns out that even when we're using 1 thread, doing the work in a
5605   // separate thread causes wide variance in run times.  We can't help this
5606   // in the multi-threaded case, but we special-case n=1 here to get
5607   // repeatable measurements of the 1-thread overhead of the parallel code.
5608   if (n_workers > 1) {
5609     // Make refs discovery MT-safe, if it isn't already: it may not
5610     // necessarily be so, since it's possible that we are doing
5611     // ST marking.
5612     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5613     GenCollectedHeap::StrongRootsScope srs(gch);
5614     workers->run_task(&tsk);
5615   } else {
5616     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5617     GenCollectedHeap::StrongRootsScope srs(gch);
5618     tsk.work(0);
5619   }
5620   gch->set_par_threads(0);  // 0 ==> non-parallel.
5621   // restore, single-threaded for now, any preserved marks
5622   // as a result of work_q overflow
5623   restore_preserved_marks_if_any();
5624 }
5625 
5626 // Non-parallel version of remark
5627 void CMSCollector::do_remark_non_parallel() {
5628   ResourceMark rm;
5629   HandleMark   hm;
5630   GenCollectedHeap* gch = GenCollectedHeap::heap();
5631   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5632 
5633   MarkRefsIntoAndScanClosure
5634     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
5635              &_markStack, &_revisitStack, this,
5636              false /* should_yield */, false /* not precleaning */);
5637   MarkFromDirtyCardsClosure
5638     markFromDirtyCardsClosure(this, _span,
5639                               NULL,  // space is set further below
5640                               &_markBitMap, &_markStack, &_revisitStack,
5641                               &mrias_cl);
5642   {
5643     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5644     // Iterate over the dirty cards, setting the corresponding bits in the
5645     // mod union table.
5646     {
5647       ModUnionClosure modUnionClosure(&_modUnionTable);
5648       _ct->ct_bs()->dirty_card_iterate(
5649                       _cmsGen->used_region(),
5650                       &modUnionClosure);
5651       _ct->ct_bs()->dirty_card_iterate(
5652                       _permGen->used_region(),
5653                       &modUnionClosure);
5654     }
5655     // Having transferred these marks into the modUnionTable, we just need
5656     // to rescan the marked objects on the dirty cards in the modUnionTable.
5657     // The initial marking may have been done during an asynchronous
5658     // collection so there may be dirty bits in the mod-union table.
5659     const int alignment =
5660       CardTableModRefBS::card_size * BitsPerWord;
5661     {
5662       // ... First handle dirty cards in CMS gen
5663       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5664       MemRegion ur = _cmsGen->used_region();
5665       HeapWord* lb = ur.start();
5666       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5667       MemRegion cms_span(lb, ub);
5668       _modUnionTable.dirty_range_iterate_clear(cms_span,
5669                                                &markFromDirtyCardsClosure);
5670       verify_work_stacks_empty();
5671       if (PrintCMSStatistics != 0) {
5672         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5673           markFromDirtyCardsClosure.num_dirty_cards());
5674       }
5675     }
5676     {
5677       // .. and then repeat for dirty cards in perm gen
5678       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
5679       MemRegion ur = _permGen->used_region();
5680       HeapWord* lb = ur.start();
5681       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5682       MemRegion perm_span(lb, ub);
5683       _modUnionTable.dirty_range_iterate_clear(perm_span,
5684                                                &markFromDirtyCardsClosure);
5685       verify_work_stacks_empty();
5686       if (PrintCMSStatistics != 0) {
5687         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
5688           markFromDirtyCardsClosure.num_dirty_cards());
5689       }
5690     }
5691   }
5692   if (VerifyDuringGC &&
5693       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5694     HandleMark hm;  // Discard invalid handles created during verification
5695     Universe::verify();
5696   }
5697   {
5698     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5699 
5700     verify_work_stacks_empty();
5701 
5702     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5703     GenCollectedHeap::StrongRootsScope srs(gch);
5704     gch->gen_process_strong_roots(_cmsGen->level(),
5705                                   true,  // younger gens as roots
5706                                   false, // use the local StrongRootsScope
5707                                   true,  // collecting perm gen
5708                                   SharedHeap::ScanningOption(roots_scanning_options()),
5709                                   &mrias_cl,
5710                                   true,   // walk code active on stacks
5711                                   NULL);
5712     assert(should_unload_classes()
5713            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5714            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5715   }
5716   verify_work_stacks_empty();
5717   // Restore evacuated mark words, if any, used for overflow list links
5718   if (!CMSOverflowEarlyRestoration) {
5719     restore_preserved_marks_if_any();
5720   }
5721   verify_overflow_empty();
5722 }
5723 
5724 ////////////////////////////////////////////////////////
5725 // Parallel Reference Processing Task Proxy Class
5726 ////////////////////////////////////////////////////////
5727 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5728   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5729   CMSCollector*          _collector;
5730   CMSBitMap*             _mark_bit_map;
5731   const MemRegion        _span;
5732   ProcessTask&           _task;
5733 
5734 public:
5735   CMSRefProcTaskProxy(ProcessTask&     task,
5736                       CMSCollector*    collector,
5737                       const MemRegion& span,
5738                       CMSBitMap*       mark_bit_map,
5739                       AbstractWorkGang* workers,
5740                       OopTaskQueueSet* task_queues):
5741     // XXX Should superclass AGTWOQ also know about AWG since it knows
5742     // about the task_queues used by the AWG? Then it could initialize
5743     // the terminator() object. See 6984287. The set_for_termination()
5744     // below is a temporary band-aid for the regression in 6984287.
5745     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5746       task_queues),
5747     _task(task),
5748     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5749   {
5750     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5751            "Inconsistency in _span");
5752     set_for_termination(workers->active_workers());
5753   }
5754 
5755   OopTaskQueueSet* task_queues() { return queues(); }
5756 
5757   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5758 
5759   void do_work_steal(int i,
5760                      CMSParDrainMarkingStackClosure* drain,
5761                      CMSParKeepAliveClosure* keep_alive,
5762                      int* seed);
5763 
5764   virtual void work(uint worker_id);
5765 };
5766 
5767 void CMSRefProcTaskProxy::work(uint worker_id) {
5768   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5769   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5770                                         _mark_bit_map,
5771                                         &_collector->_revisitStack,
5772                                         work_queue(worker_id));
5773   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5774                                                  _mark_bit_map,
5775                                                  &_collector->_revisitStack,
5776                                                  work_queue(worker_id));
5777   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5778   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5779   if (_task.marks_oops_alive()) {
5780     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5781                   _collector->hash_seed(worker_id));
5782   }
5783   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5784   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5785 }
5786 
5787 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5788   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5789   EnqueueTask& _task;
5790 
5791 public:
5792   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5793     : AbstractGangTask("Enqueue reference objects in parallel"),
5794       _task(task)
5795   { }
5796 
5797   virtual void work(uint worker_id)
5798   {
5799     _task.work(worker_id);
5800   }
5801 };
5802 
5803 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5804   MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
5805   OopTaskQueue* work_queue):
5806    Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
5807    _span(span),
5808    _bit_map(bit_map),
5809    _work_queue(work_queue),
5810    _mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
5811    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5812                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5813 { }
5814 
5815 // . see if we can share work_queues with ParNew? XXX
5816 void CMSRefProcTaskProxy::do_work_steal(int i,
5817   CMSParDrainMarkingStackClosure* drain,
5818   CMSParKeepAliveClosure* keep_alive,
5819   int* seed) {
5820   OopTaskQueue* work_q = work_queue(i);
5821   NOT_PRODUCT(int num_steals = 0;)
5822   oop obj_to_scan;
5823 
5824   while (true) {
5825     // Completely finish any left over work from (an) earlier round(s)
5826     drain->trim_queue(0);
5827     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5828                                          (size_t)ParGCDesiredObjsFromOverflowList);
5829     // Now check if there's any work in the overflow list
5830     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5831     // only affects the number of attempts made to get work from the
5832     // overflow list and does not affect the number of workers.  Just
5833     // pass ParallelGCThreads so this behavior is unchanged.
5834     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5835                                                 work_q,
5836                                                 ParallelGCThreads)) {
5837       // Found something in global overflow list;
5838       // not yet ready to go stealing work from others.
5839       // We'd like to assert(work_q->size() != 0, ...)
5840       // because we just took work from the overflow list,
5841       // but of course we can't, since all of that might have
5842       // been already stolen from us.
5843       continue;
5844     }
5845     // Verify that we have no work before we resort to stealing
5846     assert(work_q->size() == 0, "Have work, shouldn't steal");
5847     // Try to steal from other queues that have work
5848     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5849       NOT_PRODUCT(num_steals++;)
5850       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5851       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5852       // Do scanning work
5853       obj_to_scan->oop_iterate(keep_alive);
5854       // Loop around, finish this work, and try to steal some more
5855     } else if (terminator()->offer_termination()) {
5856       break;  // nirvana from the infinite cycle
5857     }
5858   }
5859   NOT_PRODUCT(
5860     if (PrintCMSStatistics != 0) {
5861       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5862     }
5863   )
5864 }
5865 
5866 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5867 {
5868   GenCollectedHeap* gch = GenCollectedHeap::heap();
5869   FlexibleWorkGang* workers = gch->workers();
5870   assert(workers != NULL, "Need parallel worker threads.");
5871   CMSRefProcTaskProxy rp_task(task, &_collector,
5872                               _collector.ref_processor()->span(),
5873                               _collector.markBitMap(),
5874                               workers, _collector.task_queues());
5875   workers->run_task(&rp_task);
5876 }
5877 
5878 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5879 {
5880 
5881   GenCollectedHeap* gch = GenCollectedHeap::heap();
5882   FlexibleWorkGang* workers = gch->workers();
5883   assert(workers != NULL, "Need parallel worker threads.");
5884   CMSRefEnqueueTaskProxy enq_task(task);
5885   workers->run_task(&enq_task);
5886 }
5887 
5888 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
5889 
5890   ResourceMark rm;
5891   HandleMark   hm;
5892 
5893   ReferenceProcessor* rp = ref_processor();
5894   assert(rp->span().equals(_span), "Spans should be equal");
5895   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5896   // Process weak references.
5897   rp->setup_policy(clear_all_soft_refs);
5898   verify_work_stacks_empty();
5899 
5900   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5901                                           &_markStack, &_revisitStack,
5902                                           false /* !preclean */);
5903   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5904                                 _span, &_markBitMap, &_markStack,
5905                                 &cmsKeepAliveClosure, false /* !preclean */);
5906   {
5907     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
5908     if (rp->processing_is_mt()) {
5909       // Set the degree of MT here.  If the discovery is done MT, there
5910       // may have been a different number of threads doing the discovery
5911       // and a different number of discovered lists may have Ref objects.
5912       // That is OK as long as the Reference lists are balanced (see
5913       // balance_all_queues() and balance_queues()).
5914       GenCollectedHeap* gch = GenCollectedHeap::heap();
5915       int active_workers = ParallelGCThreads;
5916       FlexibleWorkGang* workers = gch->workers();
5917       if (workers != NULL) {
5918         active_workers = workers->active_workers();
5919         // The expectation is that active_workers will have already
5920         // been set to a reasonable value.  If it has not been set,
5921         // investigate.
5922         assert(active_workers > 0, "Should have been set during scavenge");
5923       }
5924       rp->set_active_mt_degree(active_workers);
5925       CMSRefProcTaskExecutor task_executor(*this);
5926       rp->process_discovered_references(&_is_alive_closure,
5927                                         &cmsKeepAliveClosure,
5928                                         &cmsDrainMarkingStackClosure,
5929                                         &task_executor,
5930                                         _gc_timer_cm);
5931     } else {
5932       rp->process_discovered_references(&_is_alive_closure,
5933                                         &cmsKeepAliveClosure,
5934                                         &cmsDrainMarkingStackClosure,
5935                                         NULL,
5936                                         _gc_timer_cm);
5937     }
5938     verify_work_stacks_empty();
5939   }
5940 
5941   if (should_unload_classes()) {
5942     {
5943       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
5944 
5945       // Follow SystemDictionary roots and unload classes
5946       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5947 
5948       // Follow CodeCache roots and unload any methods marked for unloading
5949       CodeCache::do_unloading(&_is_alive_closure,
5950                               &cmsKeepAliveClosure,
5951                               purged_class);
5952 
5953       cmsDrainMarkingStackClosure.do_void();
5954       verify_work_stacks_empty();
5955 
5956       // Update subklass/sibling/implementor links in KlassKlass descendants
5957       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
5958       oop k;
5959       while ((k = _revisitStack.pop()) != NULL) {
5960         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
5961                        &_is_alive_closure,
5962                        &cmsKeepAliveClosure);
5963       }
5964       assert(!ClassUnloading ||
5965              (_markStack.isEmpty() && overflow_list_is_empty()),
5966              "Should not have found new reachable objects");
5967       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
5968       cmsDrainMarkingStackClosure.do_void();
5969       verify_work_stacks_empty();
5970     }
5971 
5972     {
5973       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
5974       // Clean up unreferenced symbols in symbol table.
5975       SymbolTable::unlink();
5976     }
5977   }
5978 
5979   if (should_unload_classes() || !JavaObjectsInPerm) {
5980     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
5981     // Now clean up stale oops in StringTable
5982     StringTable::unlink(&_is_alive_closure);
5983   }
5984 
5985   verify_work_stacks_empty();
5986   // Restore any preserved marks as a result of mark stack or
5987   // work queue overflow
5988   restore_preserved_marks_if_any();  // done single-threaded for now
5989 
5990   rp->set_enqueuing_is_done(true);
5991   if (rp->processing_is_mt()) {
5992     rp->balance_all_queues();
5993     CMSRefProcTaskExecutor task_executor(*this);
5994     rp->enqueue_discovered_references(&task_executor);
5995   } else {
5996     rp->enqueue_discovered_references(NULL);
5997   }
5998   rp->verify_no_references_recorded();
5999   assert(!rp->discovery_enabled(), "should have been disabled");
6000 }
6001 
6002 #ifndef PRODUCT
6003 void CMSCollector::check_correct_thread_executing() {
6004   Thread* t = Thread::current();
6005   // Only the VM thread or the CMS thread should be here.
6006   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6007          "Unexpected thread type");
6008   // If this is the vm thread, the foreground process
6009   // should not be waiting.  Note that _foregroundGCIsActive is
6010   // true while the foreground collector is waiting.
6011   if (_foregroundGCShouldWait) {
6012     // We cannot be the VM thread
6013     assert(t->is_ConcurrentGC_thread(),
6014            "Should be CMS thread");
6015   } else {
6016     // We can be the CMS thread only if we are in a stop-world
6017     // phase of CMS collection.
6018     if (t->is_ConcurrentGC_thread()) {
6019       assert(_collectorState == InitialMarking ||
6020              _collectorState == FinalMarking,
6021              "Should be a stop-world phase");
6022       // The CMS thread should be holding the CMS_token.
6023       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6024              "Potential interference with concurrently "
6025              "executing VM thread");
6026     }
6027   }
6028 }
6029 #endif
6030 
6031 void CMSCollector::sweep(bool asynch) {
6032   assert(_collectorState == Sweeping, "just checking");
6033   check_correct_thread_executing();
6034   verify_work_stacks_empty();
6035   verify_overflow_empty();
6036   increment_sweep_count();
6037   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6038 
6039   _inter_sweep_timer.stop();
6040   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6041   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6042 
6043   // PermGen verification support: If perm gen sweeping is disabled in
6044   // this cycle, we preserve the perm gen object "deadness" information
6045   // in the perm_gen_verify_bit_map. In order to do that we traverse
6046   // all blocks in perm gen and mark all dead objects.
6047   if (verifying() && !should_unload_classes()) {
6048     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
6049            "Should have already been allocated");
6050     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
6051                                markBitMap(), perm_gen_verify_bit_map());
6052     if (asynch) {
6053       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6054                                bitMapLock());
6055       _permGen->cmsSpace()->blk_iterate(&mdo);
6056     } else {
6057       // In the case of synchronous sweep, we already have
6058       // the requisite locks/tokens.
6059       _permGen->cmsSpace()->blk_iterate(&mdo);
6060     }
6061   }
6062 
6063   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6064   _intra_sweep_timer.reset();
6065   _intra_sweep_timer.start();
6066   if (asynch) {
6067     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6068     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6069     // First sweep the old gen then the perm gen
6070     {
6071       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6072                                bitMapLock());
6073       sweepWork(_cmsGen, asynch);
6074     }
6075 
6076     // Now repeat for perm gen
6077     if (should_unload_classes()) {
6078       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6079                              bitMapLock());
6080       sweepWork(_permGen, asynch);
6081     }
6082 
6083     // Update Universe::_heap_*_at_gc figures.
6084     // We need all the free list locks to make the abstract state
6085     // transition from Sweeping to Resetting. See detailed note
6086     // further below.
6087     {
6088       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6089                                _permGen->freelistLock());
6090       // Update heap occupancy information which is used as
6091       // input to soft ref clearing policy at the next gc.
6092       Universe::update_heap_info_at_gc();
6093       _collectorState = Resizing;
6094     }
6095   } else {
6096     // already have needed locks
6097     sweepWork(_cmsGen,  asynch);
6098 
6099     if (should_unload_classes()) {
6100       sweepWork(_permGen, asynch);
6101     }
6102     // Update heap occupancy information which is used as
6103     // input to soft ref clearing policy at the next gc.
6104     Universe::update_heap_info_at_gc();
6105     _collectorState = Resizing;
6106   }
6107   verify_work_stacks_empty();
6108   verify_overflow_empty();
6109 
6110   _intra_sweep_timer.stop();
6111   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6112 
6113   _inter_sweep_timer.reset();
6114   _inter_sweep_timer.start();
6115 
6116   // We need to use a monotonically non-deccreasing time in ms
6117   // or we will see time-warp warnings and os::javaTimeMillis()
6118   // does not guarantee monotonicity.
6119   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6120   update_time_of_last_gc(now);
6121 
6122   // NOTE on abstract state transitions:
6123   // Mutators allocate-live and/or mark the mod-union table dirty
6124   // based on the state of the collection.  The former is done in
6125   // the interval [Marking, Sweeping] and the latter in the interval
6126   // [Marking, Sweeping).  Thus the transitions into the Marking state
6127   // and out of the Sweeping state must be synchronously visible
6128   // globally to the mutators.
6129   // The transition into the Marking state happens with the world
6130   // stopped so the mutators will globally see it.  Sweeping is
6131   // done asynchronously by the background collector so the transition
6132   // from the Sweeping state to the Resizing state must be done
6133   // under the freelistLock (as is the check for whether to
6134   // allocate-live and whether to dirty the mod-union table).
6135   assert(_collectorState == Resizing, "Change of collector state to"
6136     " Resizing must be done under the freelistLocks (plural)");
6137 
6138   // Now that sweeping has been completed, we clear
6139   // the incremental_collection_failed flag,
6140   // thus inviting a younger gen collection to promote into
6141   // this generation. If such a promotion may still fail,
6142   // the flag will be set again when a young collection is
6143   // attempted.
6144   GenCollectedHeap* gch = GenCollectedHeap::heap();
6145   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6146   gch->update_full_collections_completed(_collection_count_start);
6147 }
6148 
6149 // FIX ME!!! Looks like this belongs in CFLSpace, with
6150 // CMSGen merely delegating to it.
6151 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6152   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6153   HeapWord*  minAddr        = _cmsSpace->bottom();
6154   HeapWord*  largestAddr    =
6155     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6156   if (largestAddr == NULL) {
6157     // The dictionary appears to be empty.  In this case
6158     // try to coalesce at the end of the heap.
6159     largestAddr = _cmsSpace->end();
6160   }
6161   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6162   size_t nearLargestOffset =
6163     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6164   if (PrintFLSStatistics != 0) {
6165     gclog_or_tty->print_cr(
6166       "CMS: Large Block: " PTR_FORMAT ";"
6167       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6168       largestAddr,
6169       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6170   }
6171   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6172 }
6173 
6174 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6175   return addr >= _cmsSpace->nearLargestChunk();
6176 }
6177 
6178 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6179   return _cmsSpace->find_chunk_at_end();
6180 }
6181 
6182 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6183                                                     bool full) {
6184   // The next lower level has been collected.  Gather any statistics
6185   // that are of interest at this point.
6186   if (!full && (current_level + 1) == level()) {
6187     // Gather statistics on the young generation collection.
6188     collector()->stats().record_gc0_end(used());
6189   }
6190 }
6191 
6192 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6193   GenCollectedHeap* gch = GenCollectedHeap::heap();
6194   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6195     "Wrong type of heap");
6196   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6197     gch->gen_policy()->size_policy();
6198   assert(sp->is_gc_cms_adaptive_size_policy(),
6199     "Wrong type of size policy");
6200   return sp;
6201 }
6202 
6203 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6204   if (PrintGCDetails && Verbose) {
6205     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6206   }
6207   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6208   _debug_collection_type =
6209     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6210   if (PrintGCDetails && Verbose) {
6211     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6212   }
6213 }
6214 
6215 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6216   bool asynch) {
6217   // We iterate over the space(s) underlying this generation,
6218   // checking the mark bit map to see if the bits corresponding
6219   // to specific blocks are marked or not. Blocks that are
6220   // marked are live and are not swept up. All remaining blocks
6221   // are swept up, with coalescing on-the-fly as we sweep up
6222   // contiguous free and/or garbage blocks:
6223   // We need to ensure that the sweeper synchronizes with allocators
6224   // and stop-the-world collectors. In particular, the following
6225   // locks are used:
6226   // . CMS token: if this is held, a stop the world collection cannot occur
6227   // . freelistLock: if this is held no allocation can occur from this
6228   //                 generation by another thread
6229   // . bitMapLock: if this is held, no other thread can access or update
6230   //
6231 
6232   // Note that we need to hold the freelistLock if we use
6233   // block iterate below; else the iterator might go awry if
6234   // a mutator (or promotion) causes block contents to change
6235   // (for instance if the allocator divvies up a block).
6236   // If we hold the free list lock, for all practical purposes
6237   // young generation GC's can't occur (they'll usually need to
6238   // promote), so we might as well prevent all young generation
6239   // GC's while we do a sweeping step. For the same reason, we might
6240   // as well take the bit map lock for the entire duration
6241 
6242   // check that we hold the requisite locks
6243   assert(have_cms_token(), "Should hold cms token");
6244   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6245          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6246         "Should possess CMS token to sweep");
6247   assert_lock_strong(gen->freelistLock());
6248   assert_lock_strong(bitMapLock());
6249 
6250   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6251   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6252   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6253                                       _inter_sweep_estimate.padded_average(),
6254                                       _intra_sweep_estimate.padded_average());
6255   gen->setNearLargestChunk();
6256 
6257   {
6258     SweepClosure sweepClosure(this, gen, &_markBitMap,
6259                             CMSYield && asynch);
6260     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6261     // We need to free-up/coalesce garbage/blocks from a
6262     // co-terminal free run. This is done in the SweepClosure
6263     // destructor; so, do not remove this scope, else the
6264     // end-of-sweep-census below will be off by a little bit.
6265   }
6266   gen->cmsSpace()->sweep_completed();
6267   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6268   if (should_unload_classes()) {                // unloaded classes this cycle,
6269     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6270   } else {                                      // did not unload classes,
6271     _concurrent_cycles_since_last_unload++;     // ... increment count
6272   }
6273 }
6274 
6275 // Reset CMS data structures (for now just the marking bit map)
6276 // preparatory for the next cycle.
6277 void CMSCollector::reset(bool asynch) {
6278   GenCollectedHeap* gch = GenCollectedHeap::heap();
6279   CMSAdaptiveSizePolicy* sp = size_policy();
6280   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6281   if (asynch) {
6282     CMSTokenSyncWithLocks ts(true, bitMapLock());
6283 
6284     // If the state is not "Resetting", the foreground  thread
6285     // has done a collection and the resetting.
6286     if (_collectorState != Resetting) {
6287       assert(_collectorState == Idling, "The state should only change"
6288         " because the foreground collector has finished the collection");
6289       return;
6290     }
6291 
6292     // Clear the mark bitmap (no grey objects to start with)
6293     // for the next cycle.
6294     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6295     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6296 
6297     HeapWord* curAddr = _markBitMap.startWord();
6298     while (curAddr < _markBitMap.endWord()) {
6299       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6300       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6301       _markBitMap.clear_large_range(chunk);
6302       if (ConcurrentMarkSweepThread::should_yield() &&
6303           !foregroundGCIsActive() &&
6304           CMSYield) {
6305         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6306                "CMS thread should hold CMS token");
6307         assert_lock_strong(bitMapLock());
6308         bitMapLock()->unlock();
6309         ConcurrentMarkSweepThread::desynchronize(true);
6310         ConcurrentMarkSweepThread::acknowledge_yield_request();
6311         stopTimer();
6312         if (PrintCMSStatistics != 0) {
6313           incrementYields();
6314         }
6315         icms_wait();
6316 
6317         // See the comment in coordinator_yield()
6318         for (unsigned i = 0; i < CMSYieldSleepCount &&
6319                          ConcurrentMarkSweepThread::should_yield() &&
6320                          !CMSCollector::foregroundGCIsActive(); ++i) {
6321           os::sleep(Thread::current(), 1, false);
6322           ConcurrentMarkSweepThread::acknowledge_yield_request();
6323         }
6324 
6325         ConcurrentMarkSweepThread::synchronize(true);
6326         bitMapLock()->lock_without_safepoint_check();
6327         startTimer();
6328       }
6329       curAddr = chunk.end();
6330     }
6331     // A successful mostly concurrent collection has been done.
6332     // Because only the full (i.e., concurrent mode failure) collections
6333     // are being measured for gc overhead limits, clean the "near" flag
6334     // and count.
6335     sp->reset_gc_overhead_limit_count();
6336     _collectorState = Idling;
6337   } else {
6338     // already have the lock
6339     assert(_collectorState == Resetting, "just checking");
6340     assert_lock_strong(bitMapLock());
6341     _markBitMap.clear_all();
6342     _collectorState = Idling;
6343   }
6344 
6345   // Stop incremental mode after a cycle completes, so that any future cycles
6346   // are triggered by allocation.
6347   stop_icms();
6348 
6349   NOT_PRODUCT(
6350     if (RotateCMSCollectionTypes) {
6351       _cmsGen->rotate_debug_collection_type();
6352     }
6353   )
6354 
6355   register_gc_end();
6356 }
6357 
6358 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6359   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6360   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6361   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6362   TraceCollectorStats tcs(counters());
6363 
6364   switch (op) {
6365     case CMS_op_checkpointRootsInitial: {
6366       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6367       checkpointRootsInitial(true);       // asynch
6368       if (PrintGC) {
6369         _cmsGen->printOccupancy("initial-mark");
6370       }
6371       break;
6372     }
6373     case CMS_op_checkpointRootsFinal: {
6374       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6375       checkpointRootsFinal(true,    // asynch
6376                            false,   // !clear_all_soft_refs
6377                            false);  // !init_mark_was_synchronous
6378       if (PrintGC) {
6379         _cmsGen->printOccupancy("remark");
6380       }
6381       break;
6382     }
6383     default:
6384       fatal("No such CMS_op");
6385   }
6386 }
6387 
6388 #ifndef PRODUCT
6389 size_t const CMSCollector::skip_header_HeapWords() {
6390   return FreeChunk::header_size();
6391 }
6392 
6393 // Try and collect here conditions that should hold when
6394 // CMS thread is exiting. The idea is that the foreground GC
6395 // thread should not be blocked if it wants to terminate
6396 // the CMS thread and yet continue to run the VM for a while
6397 // after that.
6398 void CMSCollector::verify_ok_to_terminate() const {
6399   assert(Thread::current()->is_ConcurrentGC_thread(),
6400          "should be called by CMS thread");
6401   assert(!_foregroundGCShouldWait, "should be false");
6402   // We could check here that all the various low-level locks
6403   // are not held by the CMS thread, but that is overkill; see
6404   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6405   // is checked.
6406 }
6407 #endif
6408 
6409 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6410    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6411           "missing Printezis mark?");
6412   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6413   size_t size = pointer_delta(nextOneAddr + 1, addr);
6414   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6415          "alignment problem");
6416   assert(size >= 3, "Necessary for Printezis marks to work");
6417   return size;
6418 }
6419 
6420 // A variant of the above (block_size_using_printezis_bits()) except
6421 // that we return 0 if the P-bits are not yet set.
6422 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6423   if (_markBitMap.isMarked(addr + 1)) {
6424     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6425     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6426     size_t size = pointer_delta(nextOneAddr + 1, addr);
6427     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6428            "alignment problem");
6429     assert(size >= 3, "Necessary for Printezis marks to work");
6430     return size;
6431   }
6432   return 0;
6433 }
6434 
6435 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6436   size_t sz = 0;
6437   oop p = (oop)addr;
6438   if (p->klass_or_null() != NULL && p->is_parsable()) {
6439     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6440   } else {
6441     sz = block_size_using_printezis_bits(addr);
6442   }
6443   assert(sz > 0, "size must be nonzero");
6444   HeapWord* next_block = addr + sz;
6445   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6446                                              CardTableModRefBS::card_size);
6447   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6448          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6449          "must be different cards");
6450   return next_card;
6451 }
6452 
6453 
6454 // CMS Bit Map Wrapper /////////////////////////////////////////
6455 
6456 // Construct a CMS bit map infrastructure, but don't create the
6457 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6458 // further below.
6459 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6460   _bm(),
6461   _shifter(shifter),
6462   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6463 {
6464   _bmStartWord = 0;
6465   _bmWordSize  = 0;
6466 }
6467 
6468 bool CMSBitMap::allocate(MemRegion mr) {
6469   _bmStartWord = mr.start();
6470   _bmWordSize  = mr.word_size();
6471   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6472                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6473   if (!brs.is_reserved()) {
6474     warning("CMS bit map allocation failure");
6475     return false;
6476   }
6477   // For now we'll just commit all of the bit map up fromt.
6478   // Later on we'll try to be more parsimonious with swap.
6479   if (!_virtual_space.initialize(brs, brs.size())) {
6480     warning("CMS bit map backing store failure");
6481     return false;
6482   }
6483   assert(_virtual_space.committed_size() == brs.size(),
6484          "didn't reserve backing store for all of CMS bit map?");
6485   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6486   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6487          _bmWordSize, "inconsistency in bit map sizing");
6488   _bm.set_size(_bmWordSize >> _shifter);
6489 
6490   // bm.clear(); // can we rely on getting zero'd memory? verify below
6491   assert(isAllClear(),
6492          "Expected zero'd memory from ReservedSpace constructor");
6493   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6494          "consistency check");
6495   return true;
6496 }
6497 
6498 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6499   HeapWord *next_addr, *end_addr, *last_addr;
6500   assert_locked();
6501   assert(covers(mr), "out-of-range error");
6502   // XXX assert that start and end are appropriately aligned
6503   for (next_addr = mr.start(), end_addr = mr.end();
6504        next_addr < end_addr; next_addr = last_addr) {
6505     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6506     last_addr = dirty_region.end();
6507     if (!dirty_region.is_empty()) {
6508       cl->do_MemRegion(dirty_region);
6509     } else {
6510       assert(last_addr == end_addr, "program logic");
6511       return;
6512     }
6513   }
6514 }
6515 
6516 #ifndef PRODUCT
6517 void CMSBitMap::assert_locked() const {
6518   CMSLockVerifier::assert_locked(lock());
6519 }
6520 
6521 bool CMSBitMap::covers(MemRegion mr) const {
6522   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6523   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6524          "size inconsistency");
6525   return (mr.start() >= _bmStartWord) &&
6526          (mr.end()   <= endWord());
6527 }
6528 
6529 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6530     return (start >= _bmStartWord && (start + size) <= endWord());
6531 }
6532 
6533 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6534   // verify that there are no 1 bits in the interval [left, right)
6535   FalseBitMapClosure falseBitMapClosure;
6536   iterate(&falseBitMapClosure, left, right);
6537 }
6538 
6539 void CMSBitMap::region_invariant(MemRegion mr)
6540 {
6541   assert_locked();
6542   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6543   assert(!mr.is_empty(), "unexpected empty region");
6544   assert(covers(mr), "mr should be covered by bit map");
6545   // convert address range into offset range
6546   size_t start_ofs = heapWordToOffset(mr.start());
6547   // Make sure that end() is appropriately aligned
6548   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6549                         (1 << (_shifter+LogHeapWordSize))),
6550          "Misaligned mr.end()");
6551   size_t end_ofs   = heapWordToOffset(mr.end());
6552   assert(end_ofs > start_ofs, "Should mark at least one bit");
6553 }
6554 
6555 #endif
6556 
6557 bool CMSMarkStack::allocate(size_t size) {
6558   // allocate a stack of the requisite depth
6559   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6560                    size * sizeof(oop)));
6561   if (!rs.is_reserved()) {
6562     warning("CMSMarkStack allocation failure");
6563     return false;
6564   }
6565   if (!_virtual_space.initialize(rs, rs.size())) {
6566     warning("CMSMarkStack backing store failure");
6567     return false;
6568   }
6569   assert(_virtual_space.committed_size() == rs.size(),
6570          "didn't reserve backing store for all of CMS stack?");
6571   _base = (oop*)(_virtual_space.low());
6572   _index = 0;
6573   _capacity = size;
6574   NOT_PRODUCT(_max_depth = 0);
6575   return true;
6576 }
6577 
6578 // XXX FIX ME !!! In the MT case we come in here holding a
6579 // leaf lock. For printing we need to take a further lock
6580 // which has lower rank. We need to recallibrate the two
6581 // lock-ranks involved in order to be able to rpint the
6582 // messages below. (Or defer the printing to the caller.
6583 // For now we take the expedient path of just disabling the
6584 // messages for the problematic case.)
6585 void CMSMarkStack::expand() {
6586   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6587   if (_capacity == MarkStackSizeMax) {
6588     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6589       // We print a warning message only once per CMS cycle.
6590       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6591     }
6592     return;
6593   }
6594   // Double capacity if possible
6595   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6596   // Do not give up existing stack until we have managed to
6597   // get the double capacity that we desired.
6598   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6599                    new_capacity * sizeof(oop)));
6600   if (rs.is_reserved()) {
6601     // Release the backing store associated with old stack
6602     _virtual_space.release();
6603     // Reinitialize virtual space for new stack
6604     if (!_virtual_space.initialize(rs, rs.size())) {
6605       fatal("Not enough swap for expanded marking stack");
6606     }
6607     _base = (oop*)(_virtual_space.low());
6608     _index = 0;
6609     _capacity = new_capacity;
6610   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6611     // Failed to double capacity, continue;
6612     // we print a detail message only once per CMS cycle.
6613     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6614             SIZE_FORMAT"K",
6615             _capacity / K, new_capacity / K);
6616   }
6617 }
6618 
6619 
6620 // Closures
6621 // XXX: there seems to be a lot of code  duplication here;
6622 // should refactor and consolidate common code.
6623 
6624 // This closure is used to mark refs into the CMS generation in
6625 // the CMS bit map. Called at the first checkpoint. This closure
6626 // assumes that we do not need to re-mark dirty cards; if the CMS
6627 // generation on which this is used is not an oldest (modulo perm gen)
6628 // generation then this will lose younger_gen cards!
6629 
6630 MarkRefsIntoClosure::MarkRefsIntoClosure(
6631   MemRegion span, CMSBitMap* bitMap):
6632     _span(span),
6633     _bitMap(bitMap)
6634 {
6635     assert(_ref_processor == NULL, "deliberately left NULL");
6636     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6637 }
6638 
6639 void MarkRefsIntoClosure::do_oop(oop obj) {
6640   // if p points into _span, then mark corresponding bit in _markBitMap
6641   assert(obj->is_oop(), "expected an oop");
6642   HeapWord* addr = (HeapWord*)obj;
6643   if (_span.contains(addr)) {
6644     // this should be made more efficient
6645     _bitMap->mark(addr);
6646   }
6647 }
6648 
6649 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6650 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6651 
6652 // A variant of the above, used for CMS marking verification.
6653 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6654   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6655     _span(span),
6656     _verification_bm(verification_bm),
6657     _cms_bm(cms_bm)
6658 {
6659     assert(_ref_processor == NULL, "deliberately left NULL");
6660     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6661 }
6662 
6663 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6664   // if p points into _span, then mark corresponding bit in _markBitMap
6665   assert(obj->is_oop(), "expected an oop");
6666   HeapWord* addr = (HeapWord*)obj;
6667   if (_span.contains(addr)) {
6668     _verification_bm->mark(addr);
6669     if (!_cms_bm->isMarked(addr)) {
6670       oop(addr)->print();
6671       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6672       fatal("... aborting");
6673     }
6674   }
6675 }
6676 
6677 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6678 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6679 
6680 //////////////////////////////////////////////////
6681 // MarkRefsIntoAndScanClosure
6682 //////////////////////////////////////////////////
6683 
6684 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6685                                                        ReferenceProcessor* rp,
6686                                                        CMSBitMap* bit_map,
6687                                                        CMSBitMap* mod_union_table,
6688                                                        CMSMarkStack*  mark_stack,
6689                                                        CMSMarkStack*  revisit_stack,
6690                                                        CMSCollector* collector,
6691                                                        bool should_yield,
6692                                                        bool concurrent_precleaning):
6693   _collector(collector),
6694   _span(span),
6695   _bit_map(bit_map),
6696   _mark_stack(mark_stack),
6697   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6698                       mark_stack, revisit_stack, concurrent_precleaning),
6699   _yield(should_yield),
6700   _concurrent_precleaning(concurrent_precleaning),
6701   _freelistLock(NULL)
6702 {
6703   _ref_processor = rp;
6704   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6705 }
6706 
6707 // This closure is used to mark refs into the CMS generation at the
6708 // second (final) checkpoint, and to scan and transitively follow
6709 // the unmarked oops. It is also used during the concurrent precleaning
6710 // phase while scanning objects on dirty cards in the CMS generation.
6711 // The marks are made in the marking bit map and the marking stack is
6712 // used for keeping the (newly) grey objects during the scan.
6713 // The parallel version (Par_...) appears further below.
6714 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6715   if (obj != NULL) {
6716     assert(obj->is_oop(), "expected an oop");
6717     HeapWord* addr = (HeapWord*)obj;
6718     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6719     assert(_collector->overflow_list_is_empty(),
6720            "overflow list should be empty");
6721     if (_span.contains(addr) &&
6722         !_bit_map->isMarked(addr)) {
6723       // mark bit map (object is now grey)
6724       _bit_map->mark(addr);
6725       // push on marking stack (stack should be empty), and drain the
6726       // stack by applying this closure to the oops in the oops popped
6727       // from the stack (i.e. blacken the grey objects)
6728       bool res = _mark_stack->push(obj);
6729       assert(res, "Should have space to push on empty stack");
6730       do {
6731         oop new_oop = _mark_stack->pop();
6732         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6733         assert(new_oop->is_parsable(), "Found unparsable oop");
6734         assert(_bit_map->isMarked((HeapWord*)new_oop),
6735                "only grey objects on this stack");
6736         // iterate over the oops in this oop, marking and pushing
6737         // the ones in CMS heap (i.e. in _span).
6738         new_oop->oop_iterate(&_pushAndMarkClosure);
6739         // check if it's time to yield
6740         do_yield_check();
6741       } while (!_mark_stack->isEmpty() ||
6742                (!_concurrent_precleaning && take_from_overflow_list()));
6743         // if marking stack is empty, and we are not doing this
6744         // during precleaning, then check the overflow list
6745     }
6746     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6747     assert(_collector->overflow_list_is_empty(),
6748            "overflow list was drained above");
6749     // We could restore evacuated mark words, if any, used for
6750     // overflow list links here because the overflow list is
6751     // provably empty here. That would reduce the maximum
6752     // size requirements for preserved_{oop,mark}_stack.
6753     // But we'll just postpone it until we are all done
6754     // so we can just stream through.
6755     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6756       _collector->restore_preserved_marks_if_any();
6757       assert(_collector->no_preserved_marks(), "No preserved marks");
6758     }
6759     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6760            "All preserved marks should have been restored above");
6761   }
6762 }
6763 
6764 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6765 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6766 
6767 void MarkRefsIntoAndScanClosure::do_yield_work() {
6768   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6769          "CMS thread should hold CMS token");
6770   assert_lock_strong(_freelistLock);
6771   assert_lock_strong(_bit_map->lock());
6772   // relinquish the free_list_lock and bitMaplock()
6773   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6774   _bit_map->lock()->unlock();
6775   _freelistLock->unlock();
6776   ConcurrentMarkSweepThread::desynchronize(true);
6777   ConcurrentMarkSweepThread::acknowledge_yield_request();
6778   _collector->stopTimer();
6779   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6780   if (PrintCMSStatistics != 0) {
6781     _collector->incrementYields();
6782   }
6783   _collector->icms_wait();
6784 
6785   // See the comment in coordinator_yield()
6786   for (unsigned i = 0;
6787        i < CMSYieldSleepCount &&
6788        ConcurrentMarkSweepThread::should_yield() &&
6789        !CMSCollector::foregroundGCIsActive();
6790        ++i) {
6791     os::sleep(Thread::current(), 1, false);
6792     ConcurrentMarkSweepThread::acknowledge_yield_request();
6793   }
6794 
6795   ConcurrentMarkSweepThread::synchronize(true);
6796   _freelistLock->lock_without_safepoint_check();
6797   _bit_map->lock()->lock_without_safepoint_check();
6798   _collector->startTimer();
6799 }
6800 
6801 ///////////////////////////////////////////////////////////
6802 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6803 //                                 MarkRefsIntoAndScanClosure
6804 ///////////////////////////////////////////////////////////
6805 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6806   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6807   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
6808   _span(span),
6809   _bit_map(bit_map),
6810   _work_queue(work_queue),
6811   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6812                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6813   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
6814                           revisit_stack)
6815 {
6816   _ref_processor = rp;
6817   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6818 }
6819 
6820 // This closure is used to mark refs into the CMS generation at the
6821 // second (final) checkpoint, and to scan and transitively follow
6822 // the unmarked oops. The marks are made in the marking bit map and
6823 // the work_queue is used for keeping the (newly) grey objects during
6824 // the scan phase whence they are also available for stealing by parallel
6825 // threads. Since the marking bit map is shared, updates are
6826 // synchronized (via CAS).
6827 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6828   if (obj != NULL) {
6829     // Ignore mark word because this could be an already marked oop
6830     // that may be chained at the end of the overflow list.
6831     assert(obj->is_oop(true), "expected an oop");
6832     HeapWord* addr = (HeapWord*)obj;
6833     if (_span.contains(addr) &&
6834         !_bit_map->isMarked(addr)) {
6835       // mark bit map (object will become grey):
6836       // It is possible for several threads to be
6837       // trying to "claim" this object concurrently;
6838       // the unique thread that succeeds in marking the
6839       // object first will do the subsequent push on
6840       // to the work queue (or overflow list).
6841       if (_bit_map->par_mark(addr)) {
6842         // push on work_queue (which may not be empty), and trim the
6843         // queue to an appropriate length by applying this closure to
6844         // the oops in the oops popped from the stack (i.e. blacken the
6845         // grey objects)
6846         bool res = _work_queue->push(obj);
6847         assert(res, "Low water mark should be less than capacity?");
6848         trim_queue(_low_water_mark);
6849       } // Else, another thread claimed the object
6850     }
6851   }
6852 }
6853 
6854 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6855 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6856 
6857 // This closure is used to rescan the marked objects on the dirty cards
6858 // in the mod union table and the card table proper.
6859 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6860   oop p, MemRegion mr) {
6861 
6862   size_t size = 0;
6863   HeapWord* addr = (HeapWord*)p;
6864   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6865   assert(_span.contains(addr), "we are scanning the CMS generation");
6866   // check if it's time to yield
6867   if (do_yield_check()) {
6868     // We yielded for some foreground stop-world work,
6869     // and we have been asked to abort this ongoing preclean cycle.
6870     return 0;
6871   }
6872   if (_bitMap->isMarked(addr)) {
6873     // it's marked; is it potentially uninitialized?
6874     if (p->klass_or_null() != NULL) {
6875       // If is_conc_safe is false, the object may be undergoing
6876       // change by the VM outside a safepoint.  Don't try to
6877       // scan it, but rather leave it for the remark phase.
6878       if (CMSPermGenPrecleaningEnabled &&
6879           (!p->is_conc_safe() || !p->is_parsable())) {
6880         // Signal precleaning to redirty the card since
6881         // the klass pointer is already installed.
6882         assert(size == 0, "Initial value");
6883       } else {
6884         assert(p->is_parsable(), "must be parsable.");
6885         // an initialized object; ignore mark word in verification below
6886         // since we are running concurrent with mutators
6887         assert(p->is_oop(true), "should be an oop");
6888         if (p->is_objArray()) {
6889           // objArrays are precisely marked; restrict scanning
6890           // to dirty cards only.
6891           size = CompactibleFreeListSpace::adjustObjectSize(
6892                    p->oop_iterate(_scanningClosure, mr));
6893         } else {
6894           // A non-array may have been imprecisely marked; we need
6895           // to scan object in its entirety.
6896           size = CompactibleFreeListSpace::adjustObjectSize(
6897                    p->oop_iterate(_scanningClosure));
6898         }
6899         #ifdef DEBUG
6900           size_t direct_size =
6901             CompactibleFreeListSpace::adjustObjectSize(p->size());
6902           assert(size == direct_size, "Inconsistency in size");
6903           assert(size >= 3, "Necessary for Printezis marks to work");
6904           if (!_bitMap->isMarked(addr+1)) {
6905             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6906           } else {
6907             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6908             assert(_bitMap->isMarked(addr+size-1),
6909                    "inconsistent Printezis mark");
6910           }
6911         #endif // DEBUG
6912       }
6913     } else {
6914       // an unitialized object
6915       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6916       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6917       size = pointer_delta(nextOneAddr + 1, addr);
6918       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6919              "alignment problem");
6920       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6921       // will dirty the card when the klass pointer is installed in the
6922       // object (signalling the completion of initialization).
6923     }
6924   } else {
6925     // Either a not yet marked object or an uninitialized object
6926     if (p->klass_or_null() == NULL || !p->is_parsable()) {
6927       // An uninitialized object, skip to the next card, since
6928       // we may not be able to read its P-bits yet.
6929       assert(size == 0, "Initial value");
6930     } else {
6931       // An object not (yet) reached by marking: we merely need to
6932       // compute its size so as to go look at the next block.
6933       assert(p->is_oop(true), "should be an oop");
6934       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6935     }
6936   }
6937   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6938   return size;
6939 }
6940 
6941 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6942   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6943          "CMS thread should hold CMS token");
6944   assert_lock_strong(_freelistLock);
6945   assert_lock_strong(_bitMap->lock());
6946   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6947   // relinquish the free_list_lock and bitMaplock()
6948   _bitMap->lock()->unlock();
6949   _freelistLock->unlock();
6950   ConcurrentMarkSweepThread::desynchronize(true);
6951   ConcurrentMarkSweepThread::acknowledge_yield_request();
6952   _collector->stopTimer();
6953   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6954   if (PrintCMSStatistics != 0) {
6955     _collector->incrementYields();
6956   }
6957   _collector->icms_wait();
6958 
6959   // See the comment in coordinator_yield()
6960   for (unsigned i = 0; i < CMSYieldSleepCount &&
6961                    ConcurrentMarkSweepThread::should_yield() &&
6962                    !CMSCollector::foregroundGCIsActive(); ++i) {
6963     os::sleep(Thread::current(), 1, false);
6964     ConcurrentMarkSweepThread::acknowledge_yield_request();
6965   }
6966 
6967   ConcurrentMarkSweepThread::synchronize(true);
6968   _freelistLock->lock_without_safepoint_check();
6969   _bitMap->lock()->lock_without_safepoint_check();
6970   _collector->startTimer();
6971 }
6972 
6973 
6974 //////////////////////////////////////////////////////////////////
6975 // SurvivorSpacePrecleanClosure
6976 //////////////////////////////////////////////////////////////////
6977 // This (single-threaded) closure is used to preclean the oops in
6978 // the survivor spaces.
6979 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6980 
6981   HeapWord* addr = (HeapWord*)p;
6982   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6983   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6984   assert(p->klass_or_null() != NULL, "object should be initializd");
6985   assert(p->is_parsable(), "must be parsable.");
6986   // an initialized object; ignore mark word in verification below
6987   // since we are running concurrent with mutators
6988   assert(p->is_oop(true), "should be an oop");
6989   // Note that we do not yield while we iterate over
6990   // the interior oops of p, pushing the relevant ones
6991   // on our marking stack.
6992   size_t size = p->oop_iterate(_scanning_closure);
6993   do_yield_check();
6994   // Observe that below, we do not abandon the preclean
6995   // phase as soon as we should; rather we empty the
6996   // marking stack before returning. This is to satisfy
6997   // some existing assertions. In general, it may be a
6998   // good idea to abort immediately and complete the marking
6999   // from the grey objects at a later time.
7000   while (!_mark_stack->isEmpty()) {
7001     oop new_oop = _mark_stack->pop();
7002     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7003     assert(new_oop->is_parsable(), "Found unparsable oop");
7004     assert(_bit_map->isMarked((HeapWord*)new_oop),
7005            "only grey objects on this stack");
7006     // iterate over the oops in this oop, marking and pushing
7007     // the ones in CMS heap (i.e. in _span).
7008     new_oop->oop_iterate(_scanning_closure);
7009     // check if it's time to yield
7010     do_yield_check();
7011   }
7012   unsigned int after_count =
7013     GenCollectedHeap::heap()->total_collections();
7014   bool abort = (_before_count != after_count) ||
7015                _collector->should_abort_preclean();
7016   return abort ? 0 : size;
7017 }
7018 
7019 void SurvivorSpacePrecleanClosure::do_yield_work() {
7020   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7021          "CMS thread should hold CMS token");
7022   assert_lock_strong(_bit_map->lock());
7023   DEBUG_ONLY(RememberKlassesChecker smx(false);)
7024   // Relinquish the bit map lock
7025   _bit_map->lock()->unlock();
7026   ConcurrentMarkSweepThread::desynchronize(true);
7027   ConcurrentMarkSweepThread::acknowledge_yield_request();
7028   _collector->stopTimer();
7029   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7030   if (PrintCMSStatistics != 0) {
7031     _collector->incrementYields();
7032   }
7033   _collector->icms_wait();
7034 
7035   // See the comment in coordinator_yield()
7036   for (unsigned i = 0; i < CMSYieldSleepCount &&
7037                        ConcurrentMarkSweepThread::should_yield() &&
7038                        !CMSCollector::foregroundGCIsActive(); ++i) {
7039     os::sleep(Thread::current(), 1, false);
7040     ConcurrentMarkSweepThread::acknowledge_yield_request();
7041   }
7042 
7043   ConcurrentMarkSweepThread::synchronize(true);
7044   _bit_map->lock()->lock_without_safepoint_check();
7045   _collector->startTimer();
7046 }
7047 
7048 // This closure is used to rescan the marked objects on the dirty cards
7049 // in the mod union table and the card table proper. In the parallel
7050 // case, although the bitMap is shared, we do a single read so the
7051 // isMarked() query is "safe".
7052 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7053   // Ignore mark word because we are running concurrent with mutators
7054   assert(p->is_oop_or_null(true), "expected an oop or null");
7055   HeapWord* addr = (HeapWord*)p;
7056   assert(_span.contains(addr), "we are scanning the CMS generation");
7057   bool is_obj_array = false;
7058   #ifdef DEBUG
7059     if (!_parallel) {
7060       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7061       assert(_collector->overflow_list_is_empty(),
7062              "overflow list should be empty");
7063 
7064     }
7065   #endif // DEBUG
7066   if (_bit_map->isMarked(addr)) {
7067     // Obj arrays are precisely marked, non-arrays are not;
7068     // so we scan objArrays precisely and non-arrays in their
7069     // entirety.
7070     if (p->is_objArray()) {
7071       is_obj_array = true;
7072       if (_parallel) {
7073         p->oop_iterate(_par_scan_closure, mr);
7074       } else {
7075         p->oop_iterate(_scan_closure, mr);
7076       }
7077     } else {
7078       if (_parallel) {
7079         p->oop_iterate(_par_scan_closure);
7080       } else {
7081         p->oop_iterate(_scan_closure);
7082       }
7083     }
7084   }
7085   #ifdef DEBUG
7086     if (!_parallel) {
7087       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7088       assert(_collector->overflow_list_is_empty(),
7089              "overflow list should be empty");
7090 
7091     }
7092   #endif // DEBUG
7093   return is_obj_array;
7094 }
7095 
7096 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7097                         MemRegion span,
7098                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7099                         CMSMarkStack*  revisitStack,
7100                         bool should_yield, bool verifying):
7101   _collector(collector),
7102   _span(span),
7103   _bitMap(bitMap),
7104   _mut(&collector->_modUnionTable),
7105   _markStack(markStack),
7106   _revisitStack(revisitStack),
7107   _yield(should_yield),
7108   _skipBits(0)
7109 {
7110   assert(_markStack->isEmpty(), "stack should be empty");
7111   _finger = _bitMap->startWord();
7112   _threshold = _finger;
7113   assert(_collector->_restart_addr == NULL, "Sanity check");
7114   assert(_span.contains(_finger), "Out of bounds _finger?");
7115   DEBUG_ONLY(_verifying = verifying;)
7116 }
7117 
7118 void MarkFromRootsClosure::reset(HeapWord* addr) {
7119   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7120   assert(_span.contains(addr), "Out of bounds _finger?");
7121   _finger = addr;
7122   _threshold = (HeapWord*)round_to(
7123                  (intptr_t)_finger, CardTableModRefBS::card_size);
7124 }
7125 
7126 // Should revisit to see if this should be restructured for
7127 // greater efficiency.
7128 bool MarkFromRootsClosure::do_bit(size_t offset) {
7129   if (_skipBits > 0) {
7130     _skipBits--;
7131     return true;
7132   }
7133   // convert offset into a HeapWord*
7134   HeapWord* addr = _bitMap->startWord() + offset;
7135   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7136          "address out of range");
7137   assert(_bitMap->isMarked(addr), "tautology");
7138   if (_bitMap->isMarked(addr+1)) {
7139     // this is an allocated but not yet initialized object
7140     assert(_skipBits == 0, "tautology");
7141     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7142     oop p = oop(addr);
7143     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7144       DEBUG_ONLY(if (!_verifying) {)
7145         // We re-dirty the cards on which this object lies and increase
7146         // the _threshold so that we'll come back to scan this object
7147         // during the preclean or remark phase. (CMSCleanOnEnter)
7148         if (CMSCleanOnEnter) {
7149           size_t sz = _collector->block_size_using_printezis_bits(addr);
7150           HeapWord* end_card_addr   = (HeapWord*)round_to(
7151                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7152           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7153           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7154           // Bump _threshold to end_card_addr; note that
7155           // _threshold cannot possibly exceed end_card_addr, anyhow.
7156           // This prevents future clearing of the card as the scan proceeds
7157           // to the right.
7158           assert(_threshold <= end_card_addr,
7159                  "Because we are just scanning into this object");
7160           if (_threshold < end_card_addr) {
7161             _threshold = end_card_addr;
7162           }
7163           if (p->klass_or_null() != NULL) {
7164             // Redirty the range of cards...
7165             _mut->mark_range(redirty_range);
7166           } // ...else the setting of klass will dirty the card anyway.
7167         }
7168       DEBUG_ONLY(})
7169       return true;
7170     }
7171   }
7172   scanOopsInOop(addr);
7173   return true;
7174 }
7175 
7176 // We take a break if we've been at this for a while,
7177 // so as to avoid monopolizing the locks involved.
7178 void MarkFromRootsClosure::do_yield_work() {
7179   // First give up the locks, then yield, then re-lock
7180   // We should probably use a constructor/destructor idiom to
7181   // do this unlock/lock or modify the MutexUnlocker class to
7182   // serve our purpose. XXX
7183   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7184          "CMS thread should hold CMS token");
7185   assert_lock_strong(_bitMap->lock());
7186   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7187   _bitMap->lock()->unlock();
7188   ConcurrentMarkSweepThread::desynchronize(true);
7189   ConcurrentMarkSweepThread::acknowledge_yield_request();
7190   _collector->stopTimer();
7191   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7192   if (PrintCMSStatistics != 0) {
7193     _collector->incrementYields();
7194   }
7195   _collector->icms_wait();
7196 
7197   // See the comment in coordinator_yield()
7198   for (unsigned i = 0; i < CMSYieldSleepCount &&
7199                        ConcurrentMarkSweepThread::should_yield() &&
7200                        !CMSCollector::foregroundGCIsActive(); ++i) {
7201     os::sleep(Thread::current(), 1, false);
7202     ConcurrentMarkSweepThread::acknowledge_yield_request();
7203   }
7204 
7205   ConcurrentMarkSweepThread::synchronize(true);
7206   _bitMap->lock()->lock_without_safepoint_check();
7207   _collector->startTimer();
7208 }
7209 
7210 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7211   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7212   assert(_markStack->isEmpty(),
7213          "should drain stack to limit stack usage");
7214   // convert ptr to an oop preparatory to scanning
7215   oop obj = oop(ptr);
7216   // Ignore mark word in verification below, since we
7217   // may be running concurrent with mutators.
7218   assert(obj->is_oop(true), "should be an oop");
7219   assert(_finger <= ptr, "_finger runneth ahead");
7220   // advance the finger to right end of this object
7221   _finger = ptr + obj->size();
7222   assert(_finger > ptr, "we just incremented it above");
7223   // On large heaps, it may take us some time to get through
7224   // the marking phase (especially if running iCMS). During
7225   // this time it's possible that a lot of mutations have
7226   // accumulated in the card table and the mod union table --
7227   // these mutation records are redundant until we have
7228   // actually traced into the corresponding card.
7229   // Here, we check whether advancing the finger would make
7230   // us cross into a new card, and if so clear corresponding
7231   // cards in the MUT (preclean them in the card-table in the
7232   // future).
7233 
7234   DEBUG_ONLY(if (!_verifying) {)
7235     // The clean-on-enter optimization is disabled by default,
7236     // until we fix 6178663.
7237     if (CMSCleanOnEnter && (_finger > _threshold)) {
7238       // [_threshold, _finger) represents the interval
7239       // of cards to be cleared  in MUT (or precleaned in card table).
7240       // The set of cards to be cleared is all those that overlap
7241       // with the interval [_threshold, _finger); note that
7242       // _threshold is always kept card-aligned but _finger isn't
7243       // always card-aligned.
7244       HeapWord* old_threshold = _threshold;
7245       assert(old_threshold == (HeapWord*)round_to(
7246               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7247              "_threshold should always be card-aligned");
7248       _threshold = (HeapWord*)round_to(
7249                      (intptr_t)_finger, CardTableModRefBS::card_size);
7250       MemRegion mr(old_threshold, _threshold);
7251       assert(!mr.is_empty(), "Control point invariant");
7252       assert(_span.contains(mr), "Should clear within span");
7253       // XXX When _finger crosses from old gen into perm gen
7254       // we may be doing unnecessary cleaning; do better in the
7255       // future by detecting that condition and clearing fewer
7256       // MUT/CT entries.
7257       _mut->clear_range(mr);
7258     }
7259   DEBUG_ONLY(})
7260   // Note: the finger doesn't advance while we drain
7261   // the stack below.
7262   PushOrMarkClosure pushOrMarkClosure(_collector,
7263                                       _span, _bitMap, _markStack,
7264                                       _revisitStack,
7265                                       _finger, this);
7266   bool res = _markStack->push(obj);
7267   assert(res, "Empty non-zero size stack should have space for single push");
7268   while (!_markStack->isEmpty()) {
7269     oop new_oop = _markStack->pop();
7270     // Skip verifying header mark word below because we are
7271     // running concurrent with mutators.
7272     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7273     // now scan this oop's oops
7274     new_oop->oop_iterate(&pushOrMarkClosure);
7275     do_yield_check();
7276   }
7277   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7278 }
7279 
7280 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7281                        CMSCollector* collector, MemRegion span,
7282                        CMSBitMap* bit_map,
7283                        OopTaskQueue* work_queue,
7284                        CMSMarkStack*  overflow_stack,
7285                        CMSMarkStack*  revisit_stack,
7286                        bool should_yield):
7287   _collector(collector),
7288   _whole_span(collector->_span),
7289   _span(span),
7290   _bit_map(bit_map),
7291   _mut(&collector->_modUnionTable),
7292   _work_queue(work_queue),
7293   _overflow_stack(overflow_stack),
7294   _revisit_stack(revisit_stack),
7295   _yield(should_yield),
7296   _skip_bits(0),
7297   _task(task)
7298 {
7299   assert(_work_queue->size() == 0, "work_queue should be empty");
7300   _finger = span.start();
7301   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7302   assert(_span.contains(_finger), "Out of bounds _finger?");
7303 }
7304 
7305 // Should revisit to see if this should be restructured for
7306 // greater efficiency.
7307 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7308   if (_skip_bits > 0) {
7309     _skip_bits--;
7310     return true;
7311   }
7312   // convert offset into a HeapWord*
7313   HeapWord* addr = _bit_map->startWord() + offset;
7314   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7315          "address out of range");
7316   assert(_bit_map->isMarked(addr), "tautology");
7317   if (_bit_map->isMarked(addr+1)) {
7318     // this is an allocated object that might not yet be initialized
7319     assert(_skip_bits == 0, "tautology");
7320     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7321     oop p = oop(addr);
7322     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7323       // in the case of Clean-on-Enter optimization, redirty card
7324       // and avoid clearing card by increasing  the threshold.
7325       return true;
7326     }
7327   }
7328   scan_oops_in_oop(addr);
7329   return true;
7330 }
7331 
7332 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7333   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7334   // Should we assert that our work queue is empty or
7335   // below some drain limit?
7336   assert(_work_queue->size() == 0,
7337          "should drain stack to limit stack usage");
7338   // convert ptr to an oop preparatory to scanning
7339   oop obj = oop(ptr);
7340   // Ignore mark word in verification below, since we
7341   // may be running concurrent with mutators.
7342   assert(obj->is_oop(true), "should be an oop");
7343   assert(_finger <= ptr, "_finger runneth ahead");
7344   // advance the finger to right end of this object
7345   _finger = ptr + obj->size();
7346   assert(_finger > ptr, "we just incremented it above");
7347   // On large heaps, it may take us some time to get through
7348   // the marking phase (especially if running iCMS). During
7349   // this time it's possible that a lot of mutations have
7350   // accumulated in the card table and the mod union table --
7351   // these mutation records are redundant until we have
7352   // actually traced into the corresponding card.
7353   // Here, we check whether advancing the finger would make
7354   // us cross into a new card, and if so clear corresponding
7355   // cards in the MUT (preclean them in the card-table in the
7356   // future).
7357 
7358   // The clean-on-enter optimization is disabled by default,
7359   // until we fix 6178663.
7360   if (CMSCleanOnEnter && (_finger > _threshold)) {
7361     // [_threshold, _finger) represents the interval
7362     // of cards to be cleared  in MUT (or precleaned in card table).
7363     // The set of cards to be cleared is all those that overlap
7364     // with the interval [_threshold, _finger); note that
7365     // _threshold is always kept card-aligned but _finger isn't
7366     // always card-aligned.
7367     HeapWord* old_threshold = _threshold;
7368     assert(old_threshold == (HeapWord*)round_to(
7369             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7370            "_threshold should always be card-aligned");
7371     _threshold = (HeapWord*)round_to(
7372                    (intptr_t)_finger, CardTableModRefBS::card_size);
7373     MemRegion mr(old_threshold, _threshold);
7374     assert(!mr.is_empty(), "Control point invariant");
7375     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7376     // XXX When _finger crosses from old gen into perm gen
7377     // we may be doing unnecessary cleaning; do better in the
7378     // future by detecting that condition and clearing fewer
7379     // MUT/CT entries.
7380     _mut->clear_range(mr);
7381   }
7382 
7383   // Note: the local finger doesn't advance while we drain
7384   // the stack below, but the global finger sure can and will.
7385   HeapWord** gfa = _task->global_finger_addr();
7386   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7387                                       _span, _bit_map,
7388                                       _work_queue,
7389                                       _overflow_stack,
7390                                       _revisit_stack,
7391                                       _finger,
7392                                       gfa, this);
7393   bool res = _work_queue->push(obj);   // overflow could occur here
7394   assert(res, "Will hold once we use workqueues");
7395   while (true) {
7396     oop new_oop;
7397     if (!_work_queue->pop_local(new_oop)) {
7398       // We emptied our work_queue; check if there's stuff that can
7399       // be gotten from the overflow stack.
7400       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7401             _overflow_stack, _work_queue)) {
7402         do_yield_check();
7403         continue;
7404       } else {  // done
7405         break;
7406       }
7407     }
7408     // Skip verifying header mark word below because we are
7409     // running concurrent with mutators.
7410     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7411     // now scan this oop's oops
7412     new_oop->oop_iterate(&pushOrMarkClosure);
7413     do_yield_check();
7414   }
7415   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7416 }
7417 
7418 // Yield in response to a request from VM Thread or
7419 // from mutators.
7420 void Par_MarkFromRootsClosure::do_yield_work() {
7421   assert(_task != NULL, "sanity");
7422   _task->yield();
7423 }
7424 
7425 // A variant of the above used for verifying CMS marking work.
7426 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7427                         MemRegion span,
7428                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7429                         CMSMarkStack*  mark_stack):
7430   _collector(collector),
7431   _span(span),
7432   _verification_bm(verification_bm),
7433   _cms_bm(cms_bm),
7434   _mark_stack(mark_stack),
7435   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7436                       mark_stack)
7437 {
7438   assert(_mark_stack->isEmpty(), "stack should be empty");
7439   _finger = _verification_bm->startWord();
7440   assert(_collector->_restart_addr == NULL, "Sanity check");
7441   assert(_span.contains(_finger), "Out of bounds _finger?");
7442 }
7443 
7444 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7445   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7446   assert(_span.contains(addr), "Out of bounds _finger?");
7447   _finger = addr;
7448 }
7449 
7450 // Should revisit to see if this should be restructured for
7451 // greater efficiency.
7452 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7453   // convert offset into a HeapWord*
7454   HeapWord* addr = _verification_bm->startWord() + offset;
7455   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7456          "address out of range");
7457   assert(_verification_bm->isMarked(addr), "tautology");
7458   assert(_cms_bm->isMarked(addr), "tautology");
7459 
7460   assert(_mark_stack->isEmpty(),
7461          "should drain stack to limit stack usage");
7462   // convert addr to an oop preparatory to scanning
7463   oop obj = oop(addr);
7464   assert(obj->is_oop(), "should be an oop");
7465   assert(_finger <= addr, "_finger runneth ahead");
7466   // advance the finger to right end of this object
7467   _finger = addr + obj->size();
7468   assert(_finger > addr, "we just incremented it above");
7469   // Note: the finger doesn't advance while we drain
7470   // the stack below.
7471   bool res = _mark_stack->push(obj);
7472   assert(res, "Empty non-zero size stack should have space for single push");
7473   while (!_mark_stack->isEmpty()) {
7474     oop new_oop = _mark_stack->pop();
7475     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7476     // now scan this oop's oops
7477     new_oop->oop_iterate(&_pam_verify_closure);
7478   }
7479   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7480   return true;
7481 }
7482 
7483 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7484   CMSCollector* collector, MemRegion span,
7485   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7486   CMSMarkStack*  mark_stack):
7487   OopClosure(collector->ref_processor()),
7488   _collector(collector),
7489   _span(span),
7490   _verification_bm(verification_bm),
7491   _cms_bm(cms_bm),
7492   _mark_stack(mark_stack)
7493 { }
7494 
7495 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7496 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7497 
7498 // Upon stack overflow, we discard (part of) the stack,
7499 // remembering the least address amongst those discarded
7500 // in CMSCollector's _restart_address.
7501 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7502   // Remember the least grey address discarded
7503   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7504   _collector->lower_restart_addr(ra);
7505   _mark_stack->reset();  // discard stack contents
7506   _mark_stack->expand(); // expand the stack if possible
7507 }
7508 
7509 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7510   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7511   HeapWord* addr = (HeapWord*)obj;
7512   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7513     // Oop lies in _span and isn't yet grey or black
7514     _verification_bm->mark(addr);            // now grey
7515     if (!_cms_bm->isMarked(addr)) {
7516       oop(addr)->print();
7517       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7518                              addr);
7519       fatal("... aborting");
7520     }
7521 
7522     if (!_mark_stack->push(obj)) { // stack overflow
7523       if (PrintCMSStatistics != 0) {
7524         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7525                                SIZE_FORMAT, _mark_stack->capacity());
7526       }
7527       assert(_mark_stack->isFull(), "Else push should have succeeded");
7528       handle_stack_overflow(addr);
7529     }
7530     // anything including and to the right of _finger
7531     // will be scanned as we iterate over the remainder of the
7532     // bit map
7533   }
7534 }
7535 
7536 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7537                      MemRegion span,
7538                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7539                      CMSMarkStack*  revisitStack,
7540                      HeapWord* finger, MarkFromRootsClosure* parent) :
7541   KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
7542   _span(span),
7543   _bitMap(bitMap),
7544   _markStack(markStack),
7545   _finger(finger),
7546   _parent(parent)
7547 { }
7548 
7549 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7550                      MemRegion span,
7551                      CMSBitMap* bit_map,
7552                      OopTaskQueue* work_queue,
7553                      CMSMarkStack*  overflow_stack,
7554                      CMSMarkStack*  revisit_stack,
7555                      HeapWord* finger,
7556                      HeapWord** global_finger_addr,
7557                      Par_MarkFromRootsClosure* parent) :
7558   Par_KlassRememberingOopClosure(collector,
7559                             collector->ref_processor(),
7560                             revisit_stack),
7561   _whole_span(collector->_span),
7562   _span(span),
7563   _bit_map(bit_map),
7564   _work_queue(work_queue),
7565   _overflow_stack(overflow_stack),
7566   _finger(finger),
7567   _global_finger_addr(global_finger_addr),
7568   _parent(parent)
7569 { }
7570 
7571 // Assumes thread-safe access by callers, who are
7572 // responsible for mutual exclusion.
7573 void CMSCollector::lower_restart_addr(HeapWord* low) {
7574   assert(_span.contains(low), "Out of bounds addr");
7575   if (_restart_addr == NULL) {
7576     _restart_addr = low;
7577   } else {
7578     _restart_addr = MIN2(_restart_addr, low);
7579   }
7580 }
7581 
7582 // Upon stack overflow, we discard (part of) the stack,
7583 // remembering the least address amongst those discarded
7584 // in CMSCollector's _restart_address.
7585 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7586   // Remember the least grey address discarded
7587   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7588   _collector->lower_restart_addr(ra);
7589   _markStack->reset();  // discard stack contents
7590   _markStack->expand(); // expand the stack if possible
7591 }
7592 
7593 // Upon stack overflow, we discard (part of) the stack,
7594 // remembering the least address amongst those discarded
7595 // in CMSCollector's _restart_address.
7596 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7597   // We need to do this under a mutex to prevent other
7598   // workers from interfering with the work done below.
7599   MutexLockerEx ml(_overflow_stack->par_lock(),
7600                    Mutex::_no_safepoint_check_flag);
7601   // Remember the least grey address discarded
7602   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7603   _collector->lower_restart_addr(ra);
7604   _overflow_stack->reset();  // discard stack contents
7605   _overflow_stack->expand(); // expand the stack if possible
7606 }
7607 
7608 void PushOrMarkClosure::do_oop(oop obj) {
7609   // Ignore mark word because we are running concurrent with mutators.
7610   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7611   HeapWord* addr = (HeapWord*)obj;
7612   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7613     // Oop lies in _span and isn't yet grey or black
7614     _bitMap->mark(addr);            // now grey
7615     if (addr < _finger) {
7616       // the bit map iteration has already either passed, or
7617       // sampled, this bit in the bit map; we'll need to
7618       // use the marking stack to scan this oop's oops.
7619       bool simulate_overflow = false;
7620       NOT_PRODUCT(
7621         if (CMSMarkStackOverflowALot &&
7622             _collector->simulate_overflow()) {
7623           // simulate a stack overflow
7624           simulate_overflow = true;
7625         }
7626       )
7627       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7628         if (PrintCMSStatistics != 0) {
7629           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7630                                  SIZE_FORMAT, _markStack->capacity());
7631         }
7632         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7633         handle_stack_overflow(addr);
7634       }
7635     }
7636     // anything including and to the right of _finger
7637     // will be scanned as we iterate over the remainder of the
7638     // bit map
7639     do_yield_check();
7640   }
7641 }
7642 
7643 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7644 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7645 
7646 void Par_PushOrMarkClosure::do_oop(oop obj) {
7647   // Ignore mark word because we are running concurrent with mutators.
7648   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7649   HeapWord* addr = (HeapWord*)obj;
7650   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7651     // Oop lies in _span and isn't yet grey or black
7652     // We read the global_finger (volatile read) strictly after marking oop
7653     bool res = _bit_map->par_mark(addr);    // now grey
7654     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7655     // Should we push this marked oop on our stack?
7656     // -- if someone else marked it, nothing to do
7657     // -- if target oop is above global finger nothing to do
7658     // -- if target oop is in chunk and above local finger
7659     //      then nothing to do
7660     // -- else push on work queue
7661     if (   !res       // someone else marked it, they will deal with it
7662         || (addr >= *gfa)  // will be scanned in a later task
7663         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7664       return;
7665     }
7666     // the bit map iteration has already either passed, or
7667     // sampled, this bit in the bit map; we'll need to
7668     // use the marking stack to scan this oop's oops.
7669     bool simulate_overflow = false;
7670     NOT_PRODUCT(
7671       if (CMSMarkStackOverflowALot &&
7672           _collector->simulate_overflow()) {
7673         // simulate a stack overflow
7674         simulate_overflow = true;
7675       }
7676     )
7677     if (simulate_overflow ||
7678         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7679       // stack overflow
7680       if (PrintCMSStatistics != 0) {
7681         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7682                                SIZE_FORMAT, _overflow_stack->capacity());
7683       }
7684       // We cannot assert that the overflow stack is full because
7685       // it may have been emptied since.
7686       assert(simulate_overflow ||
7687              _work_queue->size() == _work_queue->max_elems(),
7688             "Else push should have succeeded");
7689       handle_stack_overflow(addr);
7690     }
7691     do_yield_check();
7692   }
7693 }
7694 
7695 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7696 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7697 
7698 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
7699                                              ReferenceProcessor* rp,
7700                                              CMSMarkStack* revisit_stack) :
7701   OopClosure(rp),
7702   _collector(collector),
7703   _revisit_stack(revisit_stack),
7704   _should_remember_klasses(collector->should_unload_classes()) {}
7705 
7706 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7707                                        MemRegion span,
7708                                        ReferenceProcessor* rp,
7709                                        CMSBitMap* bit_map,
7710                                        CMSBitMap* mod_union_table,
7711                                        CMSMarkStack*  mark_stack,
7712                                        CMSMarkStack*  revisit_stack,
7713                                        bool           concurrent_precleaning):
7714   KlassRememberingOopClosure(collector, rp, revisit_stack),
7715   _span(span),
7716   _bit_map(bit_map),
7717   _mod_union_table(mod_union_table),
7718   _mark_stack(mark_stack),
7719   _concurrent_precleaning(concurrent_precleaning)
7720 {
7721   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7722 }
7723 
7724 // Grey object rescan during pre-cleaning and second checkpoint phases --
7725 // the non-parallel version (the parallel version appears further below.)
7726 void PushAndMarkClosure::do_oop(oop obj) {
7727   // Ignore mark word verification. If during concurrent precleaning,
7728   // the object monitor may be locked. If during the checkpoint
7729   // phases, the object may already have been reached by a  different
7730   // path and may be at the end of the global overflow list (so
7731   // the mark word may be NULL).
7732   assert(obj->is_oop_or_null(true /* ignore mark word */),
7733          "expected an oop or NULL");
7734   HeapWord* addr = (HeapWord*)obj;
7735   // Check if oop points into the CMS generation
7736   // and is not marked
7737   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7738     // a white object ...
7739     _bit_map->mark(addr);         // ... now grey
7740     // push on the marking stack (grey set)
7741     bool simulate_overflow = false;
7742     NOT_PRODUCT(
7743       if (CMSMarkStackOverflowALot &&
7744           _collector->simulate_overflow()) {
7745         // simulate a stack overflow
7746         simulate_overflow = true;
7747       }
7748     )
7749     if (simulate_overflow || !_mark_stack->push(obj)) {
7750       if (_concurrent_precleaning) {
7751          // During precleaning we can just dirty the appropriate card(s)
7752          // in the mod union table, thus ensuring that the object remains
7753          // in the grey set  and continue. In the case of object arrays
7754          // we need to dirty all of the cards that the object spans,
7755          // since the rescan of object arrays will be limited to the
7756          // dirty cards.
7757          // Note that no one can be intefering with us in this action
7758          // of dirtying the mod union table, so no locking or atomics
7759          // are required.
7760          if (obj->is_objArray()) {
7761            size_t sz = obj->size();
7762            HeapWord* end_card_addr = (HeapWord*)round_to(
7763                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7764            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7765            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7766            _mod_union_table->mark_range(redirty_range);
7767          } else {
7768            _mod_union_table->mark(addr);
7769          }
7770          _collector->_ser_pmc_preclean_ovflw++;
7771       } else {
7772          // During the remark phase, we need to remember this oop
7773          // in the overflow list.
7774          _collector->push_on_overflow_list(obj);
7775          _collector->_ser_pmc_remark_ovflw++;
7776       }
7777     }
7778   }
7779 }
7780 
7781 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7782                                                MemRegion span,
7783                                                ReferenceProcessor* rp,
7784                                                CMSBitMap* bit_map,
7785                                                OopTaskQueue* work_queue,
7786                                                CMSMarkStack* revisit_stack):
7787   Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
7788   _span(span),
7789   _bit_map(bit_map),
7790   _work_queue(work_queue)
7791 {
7792   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7793 }
7794 
7795 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7796 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7797 
7798 // Grey object rescan during second checkpoint phase --
7799 // the parallel version.
7800 void Par_PushAndMarkClosure::do_oop(oop obj) {
7801   // In the assert below, we ignore the mark word because
7802   // this oop may point to an already visited object that is
7803   // on the overflow stack (in which case the mark word has
7804   // been hijacked for chaining into the overflow stack --
7805   // if this is the last object in the overflow stack then
7806   // its mark word will be NULL). Because this object may
7807   // have been subsequently popped off the global overflow
7808   // stack, and the mark word possibly restored to the prototypical
7809   // value, by the time we get to examined this failing assert in
7810   // the debugger, is_oop_or_null(false) may subsequently start
7811   // to hold.
7812   assert(obj->is_oop_or_null(true),
7813          "expected an oop or NULL");
7814   HeapWord* addr = (HeapWord*)obj;
7815   // Check if oop points into the CMS generation
7816   // and is not marked
7817   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7818     // a white object ...
7819     // If we manage to "claim" the object, by being the
7820     // first thread to mark it, then we push it on our
7821     // marking stack
7822     if (_bit_map->par_mark(addr)) {     // ... now grey
7823       // push on work queue (grey set)
7824       bool simulate_overflow = false;
7825       NOT_PRODUCT(
7826         if (CMSMarkStackOverflowALot &&
7827             _collector->par_simulate_overflow()) {
7828           // simulate a stack overflow
7829           simulate_overflow = true;
7830         }
7831       )
7832       if (simulate_overflow || !_work_queue->push(obj)) {
7833         _collector->par_push_on_overflow_list(obj);
7834         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7835       }
7836     } // Else, some other thread got there first
7837   }
7838 }
7839 
7840 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7841 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7842 
7843 void PushAndMarkClosure::remember_mdo(DataLayout* v) {
7844   // TBD
7845 }
7846 
7847 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
7848   // TBD
7849 }
7850 
7851 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7852   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7853   Mutex* bml = _collector->bitMapLock();
7854   assert_lock_strong(bml);
7855   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7856          "CMS thread should hold CMS token");
7857 
7858   bml->unlock();
7859   ConcurrentMarkSweepThread::desynchronize(true);
7860 
7861   ConcurrentMarkSweepThread::acknowledge_yield_request();
7862 
7863   _collector->stopTimer();
7864   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7865   if (PrintCMSStatistics != 0) {
7866     _collector->incrementYields();
7867   }
7868   _collector->icms_wait();
7869 
7870   // See the comment in coordinator_yield()
7871   for (unsigned i = 0; i < CMSYieldSleepCount &&
7872                        ConcurrentMarkSweepThread::should_yield() &&
7873                        !CMSCollector::foregroundGCIsActive(); ++i) {
7874     os::sleep(Thread::current(), 1, false);
7875     ConcurrentMarkSweepThread::acknowledge_yield_request();
7876   }
7877 
7878   ConcurrentMarkSweepThread::synchronize(true);
7879   bml->lock();
7880 
7881   _collector->startTimer();
7882 }
7883 
7884 bool CMSPrecleanRefsYieldClosure::should_return() {
7885   if (ConcurrentMarkSweepThread::should_yield()) {
7886     do_yield_work();
7887   }
7888   return _collector->foregroundGCIsActive();
7889 }
7890 
7891 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7892   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7893          "mr should be aligned to start at a card boundary");
7894   // We'd like to assert:
7895   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7896   //        "mr should be a range of cards");
7897   // However, that would be too strong in one case -- the last
7898   // partition ends at _unallocated_block which, in general, can be
7899   // an arbitrary boundary, not necessarily card aligned.
7900   if (PrintCMSStatistics != 0) {
7901     _num_dirty_cards +=
7902          mr.word_size()/CardTableModRefBS::card_size_in_words;
7903   }
7904   _space->object_iterate_mem(mr, &_scan_cl);
7905 }
7906 
7907 SweepClosure::SweepClosure(CMSCollector* collector,
7908                            ConcurrentMarkSweepGeneration* g,
7909                            CMSBitMap* bitMap, bool should_yield) :
7910   _collector(collector),
7911   _g(g),
7912   _sp(g->cmsSpace()),
7913   _limit(_sp->sweep_limit()),
7914   _freelistLock(_sp->freelistLock()),
7915   _bitMap(bitMap),
7916   _yield(should_yield),
7917   _inFreeRange(false),           // No free range at beginning of sweep
7918   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7919   _lastFreeRangeCoalesced(false),
7920   _freeFinger(g->used_region().start())
7921 {
7922   NOT_PRODUCT(
7923     _numObjectsFreed = 0;
7924     _numWordsFreed   = 0;
7925     _numObjectsLive = 0;
7926     _numWordsLive = 0;
7927     _numObjectsAlreadyFree = 0;
7928     _numWordsAlreadyFree = 0;
7929     _last_fc = NULL;
7930 
7931     _sp->initializeIndexedFreeListArrayReturnedBytes();
7932     _sp->dictionary()->initialize_dict_returned_bytes();
7933   )
7934   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7935          "sweep _limit out of bounds");
7936   if (CMSTraceSweeper) {
7937     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7938                         _limit);
7939   }
7940 }
7941 
7942 void SweepClosure::print_on(outputStream* st) const {
7943   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7944                 _sp->bottom(), _sp->end());
7945   tty->print_cr("_limit = " PTR_FORMAT, _limit);
7946   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
7947   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
7948   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7949                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7950 }
7951 
7952 #ifndef PRODUCT
7953 // Assertion checking only:  no useful work in product mode --
7954 // however, if any of the flags below become product flags,
7955 // you may need to review this code to see if it needs to be
7956 // enabled in product mode.
7957 SweepClosure::~SweepClosure() {
7958   assert_lock_strong(_freelistLock);
7959   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7960          "sweep _limit out of bounds");
7961   if (inFreeRange()) {
7962     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7963     print();
7964     ShouldNotReachHere();
7965   }
7966   if (Verbose && PrintGC) {
7967     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7968                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7969     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7970                            SIZE_FORMAT" bytes  "
7971       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7972       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7973       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7974     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7975                         * sizeof(HeapWord);
7976     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7977 
7978     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7979       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7980       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7981       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7982       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7983       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7984         indexListReturnedBytes);
7985       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7986         dict_returned_bytes);
7987     }
7988   }
7989   if (CMSTraceSweeper) {
7990     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7991                            _limit);
7992   }
7993 }
7994 #endif  // PRODUCT
7995 
7996 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7997     bool freeRangeInFreeLists) {
7998   if (CMSTraceSweeper) {
7999     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8000                freeFinger, freeRangeInFreeLists);
8001   }
8002   assert(!inFreeRange(), "Trampling existing free range");
8003   set_inFreeRange(true);
8004   set_lastFreeRangeCoalesced(false);
8005 
8006   set_freeFinger(freeFinger);
8007   set_freeRangeInFreeLists(freeRangeInFreeLists);
8008   if (CMSTestInFreeList) {
8009     if (freeRangeInFreeLists) {
8010       FreeChunk* fc = (FreeChunk*) freeFinger;
8011       assert(fc->is_free(), "A chunk on the free list should be free.");
8012       assert(fc->size() > 0, "Free range should have a size");
8013       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8014     }
8015   }
8016 }
8017 
8018 // Note that the sweeper runs concurrently with mutators. Thus,
8019 // it is possible for direct allocation in this generation to happen
8020 // in the middle of the sweep. Note that the sweeper also coalesces
8021 // contiguous free blocks. Thus, unless the sweeper and the allocator
8022 // synchronize appropriately freshly allocated blocks may get swept up.
8023 // This is accomplished by the sweeper locking the free lists while
8024 // it is sweeping. Thus blocks that are determined to be free are
8025 // indeed free. There is however one additional complication:
8026 // blocks that have been allocated since the final checkpoint and
8027 // mark, will not have been marked and so would be treated as
8028 // unreachable and swept up. To prevent this, the allocator marks
8029 // the bit map when allocating during the sweep phase. This leads,
8030 // however, to a further complication -- objects may have been allocated
8031 // but not yet initialized -- in the sense that the header isn't yet
8032 // installed. The sweeper can not then determine the size of the block
8033 // in order to skip over it. To deal with this case, we use a technique
8034 // (due to Printezis) to encode such uninitialized block sizes in the
8035 // bit map. Since the bit map uses a bit per every HeapWord, but the
8036 // CMS generation has a minimum object size of 3 HeapWords, it follows
8037 // that "normal marks" won't be adjacent in the bit map (there will
8038 // always be at least two 0 bits between successive 1 bits). We make use
8039 // of these "unused" bits to represent uninitialized blocks -- the bit
8040 // corresponding to the start of the uninitialized object and the next
8041 // bit are both set. Finally, a 1 bit marks the end of the object that
8042 // started with the two consecutive 1 bits to indicate its potentially
8043 // uninitialized state.
8044 
8045 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8046   FreeChunk* fc = (FreeChunk*)addr;
8047   size_t res;
8048 
8049   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8050   // than "addr == _limit" because although _limit was a block boundary when
8051   // we started the sweep, it may no longer be one because heap expansion
8052   // may have caused us to coalesce the block ending at the address _limit
8053   // with a newly expanded chunk (this happens when _limit was set to the
8054   // previous _end of the space), so we may have stepped past _limit:
8055   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8056   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8057     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8058            "sweep _limit out of bounds");
8059     assert(addr < _sp->end(), "addr out of bounds");
8060     // Flush any free range we might be holding as a single
8061     // coalesced chunk to the appropriate free list.
8062     if (inFreeRange()) {
8063       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8064              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8065       flush_cur_free_chunk(freeFinger(),
8066                            pointer_delta(addr, freeFinger()));
8067       if (CMSTraceSweeper) {
8068         gclog_or_tty->print("Sweep: last chunk: ");
8069         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8070                    "[coalesced:"SIZE_FORMAT"]\n",
8071                    freeFinger(), pointer_delta(addr, freeFinger()),
8072                    lastFreeRangeCoalesced());
8073       }
8074     }
8075 
8076     // help the iterator loop finish
8077     return pointer_delta(_sp->end(), addr);
8078   }
8079 
8080   assert(addr < _limit, "sweep invariant");
8081   // check if we should yield
8082   do_yield_check(addr);
8083   if (fc->is_free()) {
8084     // Chunk that is already free
8085     res = fc->size();
8086     do_already_free_chunk(fc);
8087     debug_only(_sp->verifyFreeLists());
8088     // If we flush the chunk at hand in lookahead_and_flush()
8089     // and it's coalesced with a preceding chunk, then the
8090     // process of "mangling" the payload of the coalesced block
8091     // will cause erasure of the size information from the
8092     // (erstwhile) header of all the coalesced blocks but the
8093     // first, so the first disjunct in the assert will not hold
8094     // in that specific case (in which case the second disjunct
8095     // will hold).
8096     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8097            "Otherwise the size info doesn't change at this step");
8098     NOT_PRODUCT(
8099       _numObjectsAlreadyFree++;
8100       _numWordsAlreadyFree += res;
8101     )
8102     NOT_PRODUCT(_last_fc = fc;)
8103   } else if (!_bitMap->isMarked(addr)) {
8104     // Chunk is fresh garbage
8105     res = do_garbage_chunk(fc);
8106     debug_only(_sp->verifyFreeLists());
8107     NOT_PRODUCT(
8108       _numObjectsFreed++;
8109       _numWordsFreed += res;
8110     )
8111   } else {
8112     // Chunk that is alive.
8113     res = do_live_chunk(fc);
8114     debug_only(_sp->verifyFreeLists());
8115     NOT_PRODUCT(
8116         _numObjectsLive++;
8117         _numWordsLive += res;
8118     )
8119   }
8120   return res;
8121 }
8122 
8123 // For the smart allocation, record following
8124 //  split deaths - a free chunk is removed from its free list because
8125 //      it is being split into two or more chunks.
8126 //  split birth - a free chunk is being added to its free list because
8127 //      a larger free chunk has been split and resulted in this free chunk.
8128 //  coal death - a free chunk is being removed from its free list because
8129 //      it is being coalesced into a large free chunk.
8130 //  coal birth - a free chunk is being added to its free list because
8131 //      it was created when two or more free chunks where coalesced into
8132 //      this free chunk.
8133 //
8134 // These statistics are used to determine the desired number of free
8135 // chunks of a given size.  The desired number is chosen to be relative
8136 // to the end of a CMS sweep.  The desired number at the end of a sweep
8137 // is the
8138 //      count-at-end-of-previous-sweep (an amount that was enough)
8139 //              - count-at-beginning-of-current-sweep  (the excess)
8140 //              + split-births  (gains in this size during interval)
8141 //              - split-deaths  (demands on this size during interval)
8142 // where the interval is from the end of one sweep to the end of the
8143 // next.
8144 //
8145 // When sweeping the sweeper maintains an accumulated chunk which is
8146 // the chunk that is made up of chunks that have been coalesced.  That
8147 // will be termed the left-hand chunk.  A new chunk of garbage that
8148 // is being considered for coalescing will be referred to as the
8149 // right-hand chunk.
8150 //
8151 // When making a decision on whether to coalesce a right-hand chunk with
8152 // the current left-hand chunk, the current count vs. the desired count
8153 // of the left-hand chunk is considered.  Also if the right-hand chunk
8154 // is near the large chunk at the end of the heap (see
8155 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8156 // left-hand chunk is coalesced.
8157 //
8158 // When making a decision about whether to split a chunk, the desired count
8159 // vs. the current count of the candidate to be split is also considered.
8160 // If the candidate is underpopulated (currently fewer chunks than desired)
8161 // a chunk of an overpopulated (currently more chunks than desired) size may
8162 // be chosen.  The "hint" associated with a free list, if non-null, points
8163 // to a free list which may be overpopulated.
8164 //
8165 
8166 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8167   const size_t size = fc->size();
8168   // Chunks that cannot be coalesced are not in the
8169   // free lists.
8170   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8171     assert(_sp->verify_chunk_in_free_list(fc),
8172       "free chunk should be in free lists");
8173   }
8174   // a chunk that is already free, should not have been
8175   // marked in the bit map
8176   HeapWord* const addr = (HeapWord*) fc;
8177   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8178   // Verify that the bit map has no bits marked between
8179   // addr and purported end of this block.
8180   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8181 
8182   // Some chunks cannot be coalesced under any circumstances.
8183   // See the definition of cantCoalesce().
8184   if (!fc->cantCoalesce()) {
8185     // This chunk can potentially be coalesced.
8186     if (_sp->adaptive_freelists()) {
8187       // All the work is done in
8188       do_post_free_or_garbage_chunk(fc, size);
8189     } else {  // Not adaptive free lists
8190       // this is a free chunk that can potentially be coalesced by the sweeper;
8191       if (!inFreeRange()) {
8192         // if the next chunk is a free block that can't be coalesced
8193         // it doesn't make sense to remove this chunk from the free lists
8194         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8195         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8196         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8197             nextChunk->is_free()               &&     // ... which is free...
8198             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8199           // nothing to do
8200         } else {
8201           // Potentially the start of a new free range:
8202           // Don't eagerly remove it from the free lists.
8203           // No need to remove it if it will just be put
8204           // back again.  (Also from a pragmatic point of view
8205           // if it is a free block in a region that is beyond
8206           // any allocated blocks, an assertion will fail)
8207           // Remember the start of a free run.
8208           initialize_free_range(addr, true);
8209           // end - can coalesce with next chunk
8210         }
8211       } else {
8212         // the midst of a free range, we are coalescing
8213         print_free_block_coalesced(fc);
8214         if (CMSTraceSweeper) {
8215           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8216         }
8217         // remove it from the free lists
8218         _sp->removeFreeChunkFromFreeLists(fc);
8219         set_lastFreeRangeCoalesced(true);
8220         // If the chunk is being coalesced and the current free range is
8221         // in the free lists, remove the current free range so that it
8222         // will be returned to the free lists in its entirety - all
8223         // the coalesced pieces included.
8224         if (freeRangeInFreeLists()) {
8225           FreeChunk* ffc = (FreeChunk*) freeFinger();
8226           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8227             "Size of free range is inconsistent with chunk size.");
8228           if (CMSTestInFreeList) {
8229             assert(_sp->verify_chunk_in_free_list(ffc),
8230               "free range is not in free lists");
8231           }
8232           _sp->removeFreeChunkFromFreeLists(ffc);
8233           set_freeRangeInFreeLists(false);
8234         }
8235       }
8236     }
8237     // Note that if the chunk is not coalescable (the else arm
8238     // below), we unconditionally flush, without needing to do
8239     // a "lookahead," as we do below.
8240     if (inFreeRange()) lookahead_and_flush(fc, size);
8241   } else {
8242     // Code path common to both original and adaptive free lists.
8243 
8244     // cant coalesce with previous block; this should be treated
8245     // as the end of a free run if any
8246     if (inFreeRange()) {
8247       // we kicked some butt; time to pick up the garbage
8248       assert(freeFinger() < addr, "freeFinger points too high");
8249       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8250     }
8251     // else, nothing to do, just continue
8252   }
8253 }
8254 
8255 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8256   // This is a chunk of garbage.  It is not in any free list.
8257   // Add it to a free list or let it possibly be coalesced into
8258   // a larger chunk.
8259   HeapWord* const addr = (HeapWord*) fc;
8260   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8261 
8262   if (_sp->adaptive_freelists()) {
8263     // Verify that the bit map has no bits marked between
8264     // addr and purported end of just dead object.
8265     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8266 
8267     do_post_free_or_garbage_chunk(fc, size);
8268   } else {
8269     if (!inFreeRange()) {
8270       // start of a new free range
8271       assert(size > 0, "A free range should have a size");
8272       initialize_free_range(addr, false);
8273     } else {
8274       // this will be swept up when we hit the end of the
8275       // free range
8276       if (CMSTraceSweeper) {
8277         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8278       }
8279       // If the chunk is being coalesced and the current free range is
8280       // in the free lists, remove the current free range so that it
8281       // will be returned to the free lists in its entirety - all
8282       // the coalesced pieces included.
8283       if (freeRangeInFreeLists()) {
8284         FreeChunk* ffc = (FreeChunk*)freeFinger();
8285         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8286           "Size of free range is inconsistent with chunk size.");
8287         if (CMSTestInFreeList) {
8288           assert(_sp->verify_chunk_in_free_list(ffc),
8289             "free range is not in free lists");
8290         }
8291         _sp->removeFreeChunkFromFreeLists(ffc);
8292         set_freeRangeInFreeLists(false);
8293       }
8294       set_lastFreeRangeCoalesced(true);
8295     }
8296     // this will be swept up when we hit the end of the free range
8297 
8298     // Verify that the bit map has no bits marked between
8299     // addr and purported end of just dead object.
8300     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8301   }
8302   assert(_limit >= addr + size,
8303          "A freshly garbage chunk can't possibly straddle over _limit");
8304   if (inFreeRange()) lookahead_and_flush(fc, size);
8305   return size;
8306 }
8307 
8308 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8309   HeapWord* addr = (HeapWord*) fc;
8310   // The sweeper has just found a live object. Return any accumulated
8311   // left hand chunk to the free lists.
8312   if (inFreeRange()) {
8313     assert(freeFinger() < addr, "freeFinger points too high");
8314     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8315   }
8316 
8317   // This object is live: we'd normally expect this to be
8318   // an oop, and like to assert the following:
8319   // assert(oop(addr)->is_oop(), "live block should be an oop");
8320   // However, as we commented above, this may be an object whose
8321   // header hasn't yet been initialized.
8322   size_t size;
8323   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8324   if (_bitMap->isMarked(addr + 1)) {
8325     // Determine the size from the bit map, rather than trying to
8326     // compute it from the object header.
8327     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8328     size = pointer_delta(nextOneAddr + 1, addr);
8329     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8330            "alignment problem");
8331 
8332 #ifdef DEBUG
8333       if (oop(addr)->klass_or_null() != NULL &&
8334           (   !_collector->should_unload_classes()
8335            || (oop(addr)->is_parsable()) &&
8336                oop(addr)->is_conc_safe())) {
8337         // Ignore mark word because we are running concurrent with mutators
8338         assert(oop(addr)->is_oop(true), "live block should be an oop");
8339         // is_conc_safe is checked before performing this assertion
8340         // because an object that is not is_conc_safe may yet have
8341         // the return from size() correct.
8342         assert(size ==
8343                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8344                "P-mark and computed size do not agree");
8345       }
8346 #endif
8347 
8348   } else {
8349     // This should be an initialized object that's alive.
8350     assert(oop(addr)->klass_or_null() != NULL &&
8351            (!_collector->should_unload_classes()
8352             || oop(addr)->is_parsable()),
8353            "Should be an initialized object");
8354     // Note that there are objects used during class redefinition,
8355     // e.g. merge_cp in VM_RedefineClasses::merge_cp_and_rewrite(),
8356     // which are discarded with their is_conc_safe state still
8357     // false.  These object may be floating garbage so may be
8358     // seen here.  If they are floating garbage their size
8359     // should be attainable from their klass.  Do not that
8360     // is_conc_safe() is true for oop(addr).
8361     // Ignore mark word because we are running concurrent with mutators
8362     assert(oop(addr)->is_oop(true), "live block should be an oop");
8363     // Verify that the bit map has no bits marked between
8364     // addr and purported end of this block.
8365     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8366     assert(size >= 3, "Necessary for Printezis marks to work");
8367     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8368     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8369   }
8370   return size;
8371 }
8372 
8373 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8374                                                  size_t chunkSize) {
8375   // do_post_free_or_garbage_chunk() should only be called in the case
8376   // of the adaptive free list allocator.
8377   const bool fcInFreeLists = fc->is_free();
8378   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8379   assert((HeapWord*)fc <= _limit, "sweep invariant");
8380   if (CMSTestInFreeList && fcInFreeLists) {
8381     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8382   }
8383 
8384   if (CMSTraceSweeper) {
8385     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8386   }
8387 
8388   HeapWord* const fc_addr = (HeapWord*) fc;
8389 
8390   bool coalesce;
8391   const size_t left  = pointer_delta(fc_addr, freeFinger());
8392   const size_t right = chunkSize;
8393   switch (FLSCoalescePolicy) {
8394     // numeric value forms a coalition aggressiveness metric
8395     case 0:  { // never coalesce
8396       coalesce = false;
8397       break;
8398     }
8399     case 1: { // coalesce if left & right chunks on overpopulated lists
8400       coalesce = _sp->coalOverPopulated(left) &&
8401                  _sp->coalOverPopulated(right);
8402       break;
8403     }
8404     case 2: { // coalesce if left chunk on overpopulated list (default)
8405       coalesce = _sp->coalOverPopulated(left);
8406       break;
8407     }
8408     case 3: { // coalesce if left OR right chunk on overpopulated list
8409       coalesce = _sp->coalOverPopulated(left) ||
8410                  _sp->coalOverPopulated(right);
8411       break;
8412     }
8413     case 4: { // always coalesce
8414       coalesce = true;
8415       break;
8416     }
8417     default:
8418      ShouldNotReachHere();
8419   }
8420 
8421   // Should the current free range be coalesced?
8422   // If the chunk is in a free range and either we decided to coalesce above
8423   // or the chunk is near the large block at the end of the heap
8424   // (isNearLargestChunk() returns true), then coalesce this chunk.
8425   const bool doCoalesce = inFreeRange()
8426                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8427   if (doCoalesce) {
8428     // Coalesce the current free range on the left with the new
8429     // chunk on the right.  If either is on a free list,
8430     // it must be removed from the list and stashed in the closure.
8431     if (freeRangeInFreeLists()) {
8432       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8433       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8434         "Size of free range is inconsistent with chunk size.");
8435       if (CMSTestInFreeList) {
8436         assert(_sp->verify_chunk_in_free_list(ffc),
8437           "Chunk is not in free lists");
8438       }
8439       _sp->coalDeath(ffc->size());
8440       _sp->removeFreeChunkFromFreeLists(ffc);
8441       set_freeRangeInFreeLists(false);
8442     }
8443     if (fcInFreeLists) {
8444       _sp->coalDeath(chunkSize);
8445       assert(fc->size() == chunkSize,
8446         "The chunk has the wrong size or is not in the free lists");
8447       _sp->removeFreeChunkFromFreeLists(fc);
8448     }
8449     set_lastFreeRangeCoalesced(true);
8450     print_free_block_coalesced(fc);
8451   } else {  // not in a free range and/or should not coalesce
8452     // Return the current free range and start a new one.
8453     if (inFreeRange()) {
8454       // In a free range but cannot coalesce with the right hand chunk.
8455       // Put the current free range into the free lists.
8456       flush_cur_free_chunk(freeFinger(),
8457                            pointer_delta(fc_addr, freeFinger()));
8458     }
8459     // Set up for new free range.  Pass along whether the right hand
8460     // chunk is in the free lists.
8461     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8462   }
8463 }
8464 
8465 // Lookahead flush:
8466 // If we are tracking a free range, and this is the last chunk that
8467 // we'll look at because its end crosses past _limit, we'll preemptively
8468 // flush it along with any free range we may be holding on to. Note that
8469 // this can be the case only for an already free or freshly garbage
8470 // chunk. If this block is an object, it can never straddle
8471 // over _limit. The "straddling" occurs when _limit is set at
8472 // the previous end of the space when this cycle started, and
8473 // a subsequent heap expansion caused the previously co-terminal
8474 // free block to be coalesced with the newly expanded portion,
8475 // thus rendering _limit a non-block-boundary making it dangerous
8476 // for the sweeper to step over and examine.
8477 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8478   assert(inFreeRange(), "Should only be called if currently in a free range.");
8479   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8480   assert(_sp->used_region().contains(eob - 1),
8481          err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8482                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8483                  _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8484   if (eob >= _limit) {
8485     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8486     if (CMSTraceSweeper) {
8487       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8488                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8489                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8490                              _limit, fc, eob, _sp->bottom(), _sp->end());
8491     }
8492     // Return the storage we are tracking back into the free lists.
8493     if (CMSTraceSweeper) {
8494       gclog_or_tty->print_cr("Flushing ... ");
8495     }
8496     assert(freeFinger() < eob, "Error");
8497     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8498   }
8499 }
8500 
8501 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8502   assert(inFreeRange(), "Should only be called if currently in a free range.");
8503   assert(size > 0,
8504     "A zero sized chunk cannot be added to the free lists.");
8505   if (!freeRangeInFreeLists()) {
8506     if (CMSTestInFreeList) {
8507       FreeChunk* fc = (FreeChunk*) chunk;
8508       fc->set_size(size);
8509       assert(!_sp->verify_chunk_in_free_list(fc),
8510         "chunk should not be in free lists yet");
8511     }
8512     if (CMSTraceSweeper) {
8513       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8514                     chunk, size);
8515     }
8516     // A new free range is going to be starting.  The current
8517     // free range has not been added to the free lists yet or
8518     // was removed so add it back.
8519     // If the current free range was coalesced, then the death
8520     // of the free range was recorded.  Record a birth now.
8521     if (lastFreeRangeCoalesced()) {
8522       _sp->coalBirth(size);
8523     }
8524     _sp->addChunkAndRepairOffsetTable(chunk, size,
8525             lastFreeRangeCoalesced());
8526   } else if (CMSTraceSweeper) {
8527     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8528   }
8529   set_inFreeRange(false);
8530   set_freeRangeInFreeLists(false);
8531 }
8532 
8533 // We take a break if we've been at this for a while,
8534 // so as to avoid monopolizing the locks involved.
8535 void SweepClosure::do_yield_work(HeapWord* addr) {
8536   // Return current free chunk being used for coalescing (if any)
8537   // to the appropriate freelist.  After yielding, the next
8538   // free block encountered will start a coalescing range of
8539   // free blocks.  If the next free block is adjacent to the
8540   // chunk just flushed, they will need to wait for the next
8541   // sweep to be coalesced.
8542   if (inFreeRange()) {
8543     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8544   }
8545 
8546   // First give up the locks, then yield, then re-lock.
8547   // We should probably use a constructor/destructor idiom to
8548   // do this unlock/lock or modify the MutexUnlocker class to
8549   // serve our purpose. XXX
8550   assert_lock_strong(_bitMap->lock());
8551   assert_lock_strong(_freelistLock);
8552   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8553          "CMS thread should hold CMS token");
8554   _bitMap->lock()->unlock();
8555   _freelistLock->unlock();
8556   ConcurrentMarkSweepThread::desynchronize(true);
8557   ConcurrentMarkSweepThread::acknowledge_yield_request();
8558   _collector->stopTimer();
8559   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8560   if (PrintCMSStatistics != 0) {
8561     _collector->incrementYields();
8562   }
8563   _collector->icms_wait();
8564 
8565   // See the comment in coordinator_yield()
8566   for (unsigned i = 0; i < CMSYieldSleepCount &&
8567                        ConcurrentMarkSweepThread::should_yield() &&
8568                        !CMSCollector::foregroundGCIsActive(); ++i) {
8569     os::sleep(Thread::current(), 1, false);
8570     ConcurrentMarkSweepThread::acknowledge_yield_request();
8571   }
8572 
8573   ConcurrentMarkSweepThread::synchronize(true);
8574   _freelistLock->lock();
8575   _bitMap->lock()->lock_without_safepoint_check();
8576   _collector->startTimer();
8577 }
8578 
8579 #ifndef PRODUCT
8580 // This is actually very useful in a product build if it can
8581 // be called from the debugger.  Compile it into the product
8582 // as needed.
8583 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8584   return debug_cms_space->verify_chunk_in_free_list(fc);
8585 }
8586 #endif
8587 
8588 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8589   if (CMSTraceSweeper) {
8590     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8591                            fc, fc->size());
8592   }
8593 }
8594 
8595 // CMSIsAliveClosure
8596 bool CMSIsAliveClosure::do_object_b(oop obj) {
8597   HeapWord* addr = (HeapWord*)obj;
8598   return addr != NULL &&
8599          (!_span.contains(addr) || _bit_map->isMarked(addr));
8600 }
8601 
8602 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8603                       MemRegion span,
8604                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8605                       CMSMarkStack* revisit_stack, bool cpc):
8606   KlassRememberingOopClosure(collector, NULL, revisit_stack),
8607   _span(span),
8608   _bit_map(bit_map),
8609   _mark_stack(mark_stack),
8610   _concurrent_precleaning(cpc) {
8611   assert(!_span.is_empty(), "Empty span could spell trouble");
8612 }
8613 
8614 
8615 // CMSKeepAliveClosure: the serial version
8616 void CMSKeepAliveClosure::do_oop(oop obj) {
8617   HeapWord* addr = (HeapWord*)obj;
8618   if (_span.contains(addr) &&
8619       !_bit_map->isMarked(addr)) {
8620     _bit_map->mark(addr);
8621     bool simulate_overflow = false;
8622     NOT_PRODUCT(
8623       if (CMSMarkStackOverflowALot &&
8624           _collector->simulate_overflow()) {
8625         // simulate a stack overflow
8626         simulate_overflow = true;
8627       }
8628     )
8629     if (simulate_overflow || !_mark_stack->push(obj)) {
8630       if (_concurrent_precleaning) {
8631         // We dirty the overflown object and let the remark
8632         // phase deal with it.
8633         assert(_collector->overflow_list_is_empty(), "Error");
8634         // In the case of object arrays, we need to dirty all of
8635         // the cards that the object spans. No locking or atomics
8636         // are needed since no one else can be mutating the mod union
8637         // table.
8638         if (obj->is_objArray()) {
8639           size_t sz = obj->size();
8640           HeapWord* end_card_addr =
8641             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8642           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8643           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8644           _collector->_modUnionTable.mark_range(redirty_range);
8645         } else {
8646           _collector->_modUnionTable.mark(addr);
8647         }
8648         _collector->_ser_kac_preclean_ovflw++;
8649       } else {
8650         _collector->push_on_overflow_list(obj);
8651         _collector->_ser_kac_ovflw++;
8652       }
8653     }
8654   }
8655 }
8656 
8657 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8658 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8659 
8660 // CMSParKeepAliveClosure: a parallel version of the above.
8661 // The work queues are private to each closure (thread),
8662 // but (may be) available for stealing by other threads.
8663 void CMSParKeepAliveClosure::do_oop(oop obj) {
8664   HeapWord* addr = (HeapWord*)obj;
8665   if (_span.contains(addr) &&
8666       !_bit_map->isMarked(addr)) {
8667     // In general, during recursive tracing, several threads
8668     // may be concurrently getting here; the first one to
8669     // "tag" it, claims it.
8670     if (_bit_map->par_mark(addr)) {
8671       bool res = _work_queue->push(obj);
8672       assert(res, "Low water mark should be much less than capacity");
8673       // Do a recursive trim in the hope that this will keep
8674       // stack usage lower, but leave some oops for potential stealers
8675       trim_queue(_low_water_mark);
8676     } // Else, another thread got there first
8677   }
8678 }
8679 
8680 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8681 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8682 
8683 void CMSParKeepAliveClosure::trim_queue(uint max) {
8684   while (_work_queue->size() > max) {
8685     oop new_oop;
8686     if (_work_queue->pop_local(new_oop)) {
8687       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8688       assert(_bit_map->isMarked((HeapWord*)new_oop),
8689              "no white objects on this stack!");
8690       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8691       // iterate over the oops in this oop, marking and pushing
8692       // the ones in CMS heap (i.e. in _span).
8693       new_oop->oop_iterate(&_mark_and_push);
8694     }
8695   }
8696 }
8697 
8698 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8699                                 CMSCollector* collector,
8700                                 MemRegion span, CMSBitMap* bit_map,
8701                                 CMSMarkStack* revisit_stack,
8702                                 OopTaskQueue* work_queue):
8703   Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
8704   _span(span),
8705   _bit_map(bit_map),
8706   _work_queue(work_queue) { }
8707 
8708 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8709   HeapWord* addr = (HeapWord*)obj;
8710   if (_span.contains(addr) &&
8711       !_bit_map->isMarked(addr)) {
8712     if (_bit_map->par_mark(addr)) {
8713       bool simulate_overflow = false;
8714       NOT_PRODUCT(
8715         if (CMSMarkStackOverflowALot &&
8716             _collector->par_simulate_overflow()) {
8717           // simulate a stack overflow
8718           simulate_overflow = true;
8719         }
8720       )
8721       if (simulate_overflow || !_work_queue->push(obj)) {
8722         _collector->par_push_on_overflow_list(obj);
8723         _collector->_par_kac_ovflw++;
8724       }
8725     } // Else another thread got there already
8726   }
8727 }
8728 
8729 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8730 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8731 
8732 //////////////////////////////////////////////////////////////////
8733 //  CMSExpansionCause                /////////////////////////////
8734 //////////////////////////////////////////////////////////////////
8735 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8736   switch (cause) {
8737     case _no_expansion:
8738       return "No expansion";
8739     case _satisfy_free_ratio:
8740       return "Free ratio";
8741     case _satisfy_promotion:
8742       return "Satisfy promotion";
8743     case _satisfy_allocation:
8744       return "allocation";
8745     case _allocate_par_lab:
8746       return "Par LAB";
8747     case _allocate_par_spooling_space:
8748       return "Par Spooling Space";
8749     case _adaptive_size_policy:
8750       return "Ergonomics";
8751     default:
8752       return "unknown";
8753   }
8754 }
8755 
8756 void CMSDrainMarkingStackClosure::do_void() {
8757   // the max number to take from overflow list at a time
8758   const size_t num = _mark_stack->capacity()/4;
8759   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8760          "Overflow list should be NULL during concurrent phases");
8761   while (!_mark_stack->isEmpty() ||
8762          // if stack is empty, check the overflow list
8763          _collector->take_from_overflow_list(num, _mark_stack)) {
8764     oop obj = _mark_stack->pop();
8765     HeapWord* addr = (HeapWord*)obj;
8766     assert(_span.contains(addr), "Should be within span");
8767     assert(_bit_map->isMarked(addr), "Should be marked");
8768     assert(obj->is_oop(), "Should be an oop");
8769     obj->oop_iterate(_keep_alive);
8770   }
8771 }
8772 
8773 void CMSParDrainMarkingStackClosure::do_void() {
8774   // drain queue
8775   trim_queue(0);
8776 }
8777 
8778 // Trim our work_queue so its length is below max at return
8779 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8780   while (_work_queue->size() > max) {
8781     oop new_oop;
8782     if (_work_queue->pop_local(new_oop)) {
8783       assert(new_oop->is_oop(), "Expected an oop");
8784       assert(_bit_map->isMarked((HeapWord*)new_oop),
8785              "no white objects on this stack!");
8786       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8787       // iterate over the oops in this oop, marking and pushing
8788       // the ones in CMS heap (i.e. in _span).
8789       new_oop->oop_iterate(&_mark_and_push);
8790     }
8791   }
8792 }
8793 
8794 ////////////////////////////////////////////////////////////////////
8795 // Support for Marking Stack Overflow list handling and related code
8796 ////////////////////////////////////////////////////////////////////
8797 // Much of the following code is similar in shape and spirit to the
8798 // code used in ParNewGC. We should try and share that code
8799 // as much as possible in the future.
8800 
8801 #ifndef PRODUCT
8802 // Debugging support for CMSStackOverflowALot
8803 
8804 // It's OK to call this multi-threaded;  the worst thing
8805 // that can happen is that we'll get a bunch of closely
8806 // spaced simulated oveflows, but that's OK, in fact
8807 // probably good as it would exercise the overflow code
8808 // under contention.
8809 bool CMSCollector::simulate_overflow() {
8810   if (_overflow_counter-- <= 0) { // just being defensive
8811     _overflow_counter = CMSMarkStackOverflowInterval;
8812     return true;
8813   } else {
8814     return false;
8815   }
8816 }
8817 
8818 bool CMSCollector::par_simulate_overflow() {
8819   return simulate_overflow();
8820 }
8821 #endif
8822 
8823 // Single-threaded
8824 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8825   assert(stack->isEmpty(), "Expected precondition");
8826   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8827   size_t i = num;
8828   oop  cur = _overflow_list;
8829   const markOop proto = markOopDesc::prototype();
8830   NOT_PRODUCT(ssize_t n = 0;)
8831   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8832     next = oop(cur->mark());
8833     cur->set_mark(proto);   // until proven otherwise
8834     assert(cur->is_oop(), "Should be an oop");
8835     bool res = stack->push(cur);
8836     assert(res, "Bit off more than can chew?");
8837     NOT_PRODUCT(n++;)
8838   }
8839   _overflow_list = cur;
8840 #ifndef PRODUCT
8841   assert(_num_par_pushes >= n, "Too many pops?");
8842   _num_par_pushes -=n;
8843 #endif
8844   return !stack->isEmpty();
8845 }
8846 
8847 #define BUSY  (oop(0x1aff1aff))
8848 // (MT-safe) Get a prefix of at most "num" from the list.
8849 // The overflow list is chained through the mark word of
8850 // each object in the list. We fetch the entire list,
8851 // break off a prefix of the right size and return the
8852 // remainder. If other threads try to take objects from
8853 // the overflow list at that time, they will wait for
8854 // some time to see if data becomes available. If (and
8855 // only if) another thread places one or more object(s)
8856 // on the global list before we have returned the suffix
8857 // to the global list, we will walk down our local list
8858 // to find its end and append the global list to
8859 // our suffix before returning it. This suffix walk can
8860 // prove to be expensive (quadratic in the amount of traffic)
8861 // when there are many objects in the overflow list and
8862 // there is much producer-consumer contention on the list.
8863 // *NOTE*: The overflow list manipulation code here and
8864 // in ParNewGeneration:: are very similar in shape,
8865 // except that in the ParNew case we use the old (from/eden)
8866 // copy of the object to thread the list via its klass word.
8867 // Because of the common code, if you make any changes in
8868 // the code below, please check the ParNew version to see if
8869 // similar changes might be needed.
8870 // CR 6797058 has been filed to consolidate the common code.
8871 bool CMSCollector::par_take_from_overflow_list(size_t num,
8872                                                OopTaskQueue* work_q,
8873                                                int no_of_gc_threads) {
8874   assert(work_q->size() == 0, "First empty local work queue");
8875   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8876   if (_overflow_list == NULL) {
8877     return false;
8878   }
8879   // Grab the entire list; we'll put back a suffix
8880   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8881   Thread* tid = Thread::current();
8882   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8883   // set to ParallelGCThreads.
8884   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8885   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8886   // If the list is busy, we spin for a short while,
8887   // sleeping between attempts to get the list.
8888   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8889     os::sleep(tid, sleep_time_millis, false);
8890     if (_overflow_list == NULL) {
8891       // Nothing left to take
8892       return false;
8893     } else if (_overflow_list != BUSY) {
8894       // Try and grab the prefix
8895       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8896     }
8897   }
8898   // If the list was found to be empty, or we spun long
8899   // enough, we give up and return empty-handed. If we leave
8900   // the list in the BUSY state below, it must be the case that
8901   // some other thread holds the overflow list and will set it
8902   // to a non-BUSY state in the future.
8903   if (prefix == NULL || prefix == BUSY) {
8904      // Nothing to take or waited long enough
8905      if (prefix == NULL) {
8906        // Write back the NULL in case we overwrote it with BUSY above
8907        // and it is still the same value.
8908        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8909      }
8910      return false;
8911   }
8912   assert(prefix != NULL && prefix != BUSY, "Error");
8913   size_t i = num;
8914   oop cur = prefix;
8915   // Walk down the first "num" objects, unless we reach the end.
8916   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8917   if (cur->mark() == NULL) {
8918     // We have "num" or fewer elements in the list, so there
8919     // is nothing to return to the global list.
8920     // Write back the NULL in lieu of the BUSY we wrote
8921     // above, if it is still the same value.
8922     if (_overflow_list == BUSY) {
8923       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8924     }
8925   } else {
8926     // Chop off the suffix and rerturn it to the global list.
8927     assert(cur->mark() != BUSY, "Error");
8928     oop suffix_head = cur->mark(); // suffix will be put back on global list
8929     cur->set_mark(NULL);           // break off suffix
8930     // It's possible that the list is still in the empty(busy) state
8931     // we left it in a short while ago; in that case we may be
8932     // able to place back the suffix without incurring the cost
8933     // of a walk down the list.
8934     oop observed_overflow_list = _overflow_list;
8935     oop cur_overflow_list = observed_overflow_list;
8936     bool attached = false;
8937     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8938       observed_overflow_list =
8939         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8940       if (cur_overflow_list == observed_overflow_list) {
8941         attached = true;
8942         break;
8943       } else cur_overflow_list = observed_overflow_list;
8944     }
8945     if (!attached) {
8946       // Too bad, someone else sneaked in (at least) an element; we'll need
8947       // to do a splice. Find tail of suffix so we can prepend suffix to global
8948       // list.
8949       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8950       oop suffix_tail = cur;
8951       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8952              "Tautology");
8953       observed_overflow_list = _overflow_list;
8954       do {
8955         cur_overflow_list = observed_overflow_list;
8956         if (cur_overflow_list != BUSY) {
8957           // Do the splice ...
8958           suffix_tail->set_mark(markOop(cur_overflow_list));
8959         } else { // cur_overflow_list == BUSY
8960           suffix_tail->set_mark(NULL);
8961         }
8962         // ... and try to place spliced list back on overflow_list ...
8963         observed_overflow_list =
8964           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8965       } while (cur_overflow_list != observed_overflow_list);
8966       // ... until we have succeeded in doing so.
8967     }
8968   }
8969 
8970   // Push the prefix elements on work_q
8971   assert(prefix != NULL, "control point invariant");
8972   const markOop proto = markOopDesc::prototype();
8973   oop next;
8974   NOT_PRODUCT(ssize_t n = 0;)
8975   for (cur = prefix; cur != NULL; cur = next) {
8976     next = oop(cur->mark());
8977     cur->set_mark(proto);   // until proven otherwise
8978     assert(cur->is_oop(), "Should be an oop");
8979     bool res = work_q->push(cur);
8980     assert(res, "Bit off more than we can chew?");
8981     NOT_PRODUCT(n++;)
8982   }
8983 #ifndef PRODUCT
8984   assert(_num_par_pushes >= n, "Too many pops?");
8985   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8986 #endif
8987   return true;
8988 }
8989 
8990 // Single-threaded
8991 void CMSCollector::push_on_overflow_list(oop p) {
8992   NOT_PRODUCT(_num_par_pushes++;)
8993   assert(p->is_oop(), "Not an oop");
8994   preserve_mark_if_necessary(p);
8995   p->set_mark((markOop)_overflow_list);
8996   _overflow_list = p;
8997 }
8998 
8999 // Multi-threaded; use CAS to prepend to overflow list
9000 void CMSCollector::par_push_on_overflow_list(oop p) {
9001   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9002   assert(p->is_oop(), "Not an oop");
9003   par_preserve_mark_if_necessary(p);
9004   oop observed_overflow_list = _overflow_list;
9005   oop cur_overflow_list;
9006   do {
9007     cur_overflow_list = observed_overflow_list;
9008     if (cur_overflow_list != BUSY) {
9009       p->set_mark(markOop(cur_overflow_list));
9010     } else {
9011       p->set_mark(NULL);
9012     }
9013     observed_overflow_list =
9014       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9015   } while (cur_overflow_list != observed_overflow_list);
9016 }
9017 #undef BUSY
9018 
9019 // Single threaded
9020 // General Note on GrowableArray: pushes may silently fail
9021 // because we are (temporarily) out of C-heap for expanding
9022 // the stack. The problem is quite ubiquitous and affects
9023 // a lot of code in the JVM. The prudent thing for GrowableArray
9024 // to do (for now) is to exit with an error. However, that may
9025 // be too draconian in some cases because the caller may be
9026 // able to recover without much harm. For such cases, we
9027 // should probably introduce a "soft_push" method which returns
9028 // an indication of success or failure with the assumption that
9029 // the caller may be able to recover from a failure; code in
9030 // the VM can then be changed, incrementally, to deal with such
9031 // failures where possible, thus, incrementally hardening the VM
9032 // in such low resource situations.
9033 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9034   _preserved_oop_stack.push(p);
9035   _preserved_mark_stack.push(m);
9036   assert(m == p->mark(), "Mark word changed");
9037   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9038          "bijection");
9039 }
9040 
9041 // Single threaded
9042 void CMSCollector::preserve_mark_if_necessary(oop p) {
9043   markOop m = p->mark();
9044   if (m->must_be_preserved(p)) {
9045     preserve_mark_work(p, m);
9046   }
9047 }
9048 
9049 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9050   markOop m = p->mark();
9051   if (m->must_be_preserved(p)) {
9052     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9053     // Even though we read the mark word without holding
9054     // the lock, we are assured that it will not change
9055     // because we "own" this oop, so no other thread can
9056     // be trying to push it on the overflow list; see
9057     // the assertion in preserve_mark_work() that checks
9058     // that m == p->mark().
9059     preserve_mark_work(p, m);
9060   }
9061 }
9062 
9063 // We should be able to do this multi-threaded,
9064 // a chunk of stack being a task (this is
9065 // correct because each oop only ever appears
9066 // once in the overflow list. However, it's
9067 // not very easy to completely overlap this with
9068 // other operations, so will generally not be done
9069 // until all work's been completed. Because we
9070 // expect the preserved oop stack (set) to be small,
9071 // it's probably fine to do this single-threaded.
9072 // We can explore cleverer concurrent/overlapped/parallel
9073 // processing of preserved marks if we feel the
9074 // need for this in the future. Stack overflow should
9075 // be so rare in practice and, when it happens, its
9076 // effect on performance so great that this will
9077 // likely just be in the noise anyway.
9078 void CMSCollector::restore_preserved_marks_if_any() {
9079   assert(SafepointSynchronize::is_at_safepoint(),
9080          "world should be stopped");
9081   assert(Thread::current()->is_ConcurrentGC_thread() ||
9082          Thread::current()->is_VM_thread(),
9083          "should be single-threaded");
9084   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9085          "bijection");
9086 
9087   while (!_preserved_oop_stack.is_empty()) {
9088     oop p = _preserved_oop_stack.pop();
9089     assert(p->is_oop(), "Should be an oop");
9090     assert(_span.contains(p), "oop should be in _span");
9091     assert(p->mark() == markOopDesc::prototype(),
9092            "Set when taken from overflow list");
9093     markOop m = _preserved_mark_stack.pop();
9094     p->set_mark(m);
9095   }
9096   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9097          "stacks were cleared above");
9098 }
9099 
9100 #ifndef PRODUCT
9101 bool CMSCollector::no_preserved_marks() const {
9102   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9103 }
9104 #endif
9105 
9106 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9107 {
9108   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9109   CMSAdaptiveSizePolicy* size_policy =
9110     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9111   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9112     "Wrong type for size policy");
9113   return size_policy;
9114 }
9115 
9116 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9117                                            size_t desired_promo_size) {
9118   if (cur_promo_size < desired_promo_size) {
9119     size_t expand_bytes = desired_promo_size - cur_promo_size;
9120     if (PrintAdaptiveSizePolicy && Verbose) {
9121       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9122         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9123         expand_bytes);
9124     }
9125     expand(expand_bytes,
9126            MinHeapDeltaBytes,
9127            CMSExpansionCause::_adaptive_size_policy);
9128   } else if (desired_promo_size < cur_promo_size) {
9129     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9130     if (PrintAdaptiveSizePolicy && Verbose) {
9131       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9132         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9133         shrink_bytes);
9134     }
9135     shrink(shrink_bytes);
9136   }
9137 }
9138 
9139 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9140   GenCollectedHeap* gch = GenCollectedHeap::heap();
9141   CMSGCAdaptivePolicyCounters* counters =
9142     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9143   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9144     "Wrong kind of counters");
9145   return counters;
9146 }
9147 
9148 
9149 void ASConcurrentMarkSweepGeneration::update_counters() {
9150   if (UsePerfData) {
9151     _space_counters->update_all();
9152     _gen_counters->update_all();
9153     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9154     GenCollectedHeap* gch = GenCollectedHeap::heap();
9155     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9156     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9157       "Wrong gc statistics type");
9158     counters->update_counters(gc_stats_l);
9159   }
9160 }
9161 
9162 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9163   if (UsePerfData) {
9164     _space_counters->update_used(used);
9165     _space_counters->update_capacity();
9166     _gen_counters->update_all();
9167 
9168     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9169     GenCollectedHeap* gch = GenCollectedHeap::heap();
9170     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9171     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9172       "Wrong gc statistics type");
9173     counters->update_counters(gc_stats_l);
9174   }
9175 }
9176 
9177 // The desired expansion delta is computed so that:
9178 // . desired free percentage or greater is used
9179 void ASConcurrentMarkSweepGeneration::compute_new_size() {
9180   assert_locked_or_safepoint(Heap_lock);
9181 
9182   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9183 
9184   // If incremental collection failed, we just want to expand
9185   // to the limit.
9186   if (incremental_collection_failed()) {
9187     clear_incremental_collection_failed();
9188     grow_to_reserved();
9189     return;
9190   }
9191 
9192   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
9193 
9194   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
9195     "Wrong type of heap");
9196   int prev_level = level() - 1;
9197   assert(prev_level >= 0, "The cms generation is the lowest generation");
9198   Generation* prev_gen = gch->get_gen(prev_level);
9199   assert(prev_gen->kind() == Generation::ASParNew,
9200     "Wrong type of young generation");
9201   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
9202   size_t cur_eden = younger_gen->eden()->capacity();
9203   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
9204   size_t cur_promo = free();
9205   size_policy->compute_tenured_generation_free_space(cur_promo,
9206                                                        max_available(),
9207                                                        cur_eden);
9208   resize(cur_promo, size_policy->promo_size());
9209 
9210   // Record the new size of the space in the cms generation
9211   // that is available for promotions.  This is temporary.
9212   // It should be the desired promo size.
9213   size_policy->avg_cms_promo()->sample(free());
9214   size_policy->avg_old_live()->sample(used());
9215 
9216   if (UsePerfData) {
9217     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9218     counters->update_cms_capacity_counter(capacity());
9219   }
9220 }
9221 
9222 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9223   assert_locked_or_safepoint(Heap_lock);
9224   assert_lock_strong(freelistLock());
9225   HeapWord* old_end = _cmsSpace->end();
9226   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9227   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9228   FreeChunk* chunk_at_end = find_chunk_at_end();
9229   if (chunk_at_end == NULL) {
9230     // No room to shrink
9231     if (PrintGCDetails && Verbose) {
9232       gclog_or_tty->print_cr("No room to shrink: old_end  "
9233         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9234         " chunk_at_end  " PTR_FORMAT,
9235         old_end, unallocated_start, chunk_at_end);
9236     }
9237     return;
9238   } else {
9239 
9240     // Find the chunk at the end of the space and determine
9241     // how much it can be shrunk.
9242     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9243     size_t aligned_shrinkable_size_in_bytes =
9244       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9245     assert(unallocated_start <= chunk_at_end->end(),
9246       "Inconsistent chunk at end of space");
9247     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9248     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9249 
9250     // Shrink the underlying space
9251     _virtual_space.shrink_by(bytes);
9252     if (PrintGCDetails && Verbose) {
9253       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9254         " desired_bytes " SIZE_FORMAT
9255         " shrinkable_size_in_bytes " SIZE_FORMAT
9256         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9257         "  bytes  " SIZE_FORMAT,
9258         desired_bytes, shrinkable_size_in_bytes,
9259         aligned_shrinkable_size_in_bytes, bytes);
9260       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9261         "  unallocated_start  " SIZE_FORMAT,
9262         old_end, unallocated_start);
9263     }
9264 
9265     // If the space did shrink (shrinking is not guaranteed),
9266     // shrink the chunk at the end by the appropriate amount.
9267     if (((HeapWord*)_virtual_space.high()) < old_end) {
9268       size_t new_word_size =
9269         heap_word_size(_virtual_space.committed_size());
9270 
9271       // Have to remove the chunk from the dictionary because it is changing
9272       // size and might be someplace elsewhere in the dictionary.
9273 
9274       // Get the chunk at end, shrink it, and put it
9275       // back.
9276       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9277       size_t word_size_change = word_size_before - new_word_size;
9278       size_t chunk_at_end_old_size = chunk_at_end->size();
9279       assert(chunk_at_end_old_size >= word_size_change,
9280         "Shrink is too large");
9281       chunk_at_end->set_size(chunk_at_end_old_size -
9282                           word_size_change);
9283       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9284         word_size_change);
9285 
9286       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9287 
9288       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9289       _bts->resize(new_word_size);  // resize the block offset shared array
9290       Universe::heap()->barrier_set()->resize_covered_region(mr);
9291       _cmsSpace->assert_locked();
9292       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9293 
9294       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9295 
9296       // update the space and generation capacity counters
9297       if (UsePerfData) {
9298         _space_counters->update_capacity();
9299         _gen_counters->update_all();
9300       }
9301 
9302       if (Verbose && PrintGCDetails) {
9303         size_t new_mem_size = _virtual_space.committed_size();
9304         size_t old_mem_size = new_mem_size + bytes;
9305         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
9306                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9307       }
9308     }
9309 
9310     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9311       "Inconsistency at end of space");
9312     assert(chunk_at_end->end() == _cmsSpace->end(),
9313       "Shrinking is inconsistent");
9314     return;
9315   }
9316 }
9317 
9318 // Transfer some number of overflown objects to usual marking
9319 // stack. Return true if some objects were transferred.
9320 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9321   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9322                     (size_t)ParGCDesiredObjsFromOverflowList);
9323 
9324   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9325   assert(_collector->overflow_list_is_empty() || res,
9326          "If list is not empty, we should have taken something");
9327   assert(!res || !_mark_stack->isEmpty(),
9328          "If we took something, it should now be on our stack");
9329   return res;
9330 }
9331 
9332 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9333   size_t res = _sp->block_size_no_stall(addr, _collector);
9334   if (_sp->block_is_obj(addr)) {
9335     if (_live_bit_map->isMarked(addr)) {
9336       // It can't have been dead in a previous cycle
9337       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9338     } else {
9339       _dead_bit_map->mark(addr);      // mark the dead object
9340     }
9341   }
9342   // Could be 0, if the block size could not be computed without stalling.
9343   return res;
9344 }
9345 
9346 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9347 
9348   switch (phase) {
9349     case CMSCollector::InitialMarking:
9350       initialize(true  /* fullGC */ ,
9351                  cause /* cause of the GC */,
9352                  true  /* recordGCBeginTime */,
9353                  true  /* recordPreGCUsage */,
9354                  false /* recordPeakUsage */,
9355                  false /* recordPostGCusage */,
9356                  true  /* recordAccumulatedGCTime */,
9357                  false /* recordGCEndTime */,
9358                  false /* countCollection */  );
9359       break;
9360 
9361     case CMSCollector::FinalMarking:
9362       initialize(true  /* fullGC */ ,
9363                  cause /* cause of the GC */,
9364                  false /* recordGCBeginTime */,
9365                  false /* recordPreGCUsage */,
9366                  false /* recordPeakUsage */,
9367                  false /* recordPostGCusage */,
9368                  true  /* recordAccumulatedGCTime */,
9369                  false /* recordGCEndTime */,
9370                  false /* countCollection */  );
9371       break;
9372 
9373     case CMSCollector::Sweeping:
9374       initialize(true  /* fullGC */ ,
9375                  cause /* cause of the GC */,
9376                  false /* recordGCBeginTime */,
9377                  false /* recordPreGCUsage */,
9378                  true  /* recordPeakUsage */,
9379                  true  /* recordPostGCusage */,
9380                  false /* recordAccumulatedGCTime */,
9381                  true  /* recordGCEndTime */,
9382                  true  /* countCollection */  );
9383       break;
9384 
9385     default:
9386       ShouldNotReachHere();
9387   }
9388 }
9389