1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1AllocRegion.hpp"
  30 #include "gc_implementation/g1/g1HRPrinter.hpp"
  31 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  32 #include "gc_implementation/g1/g1RemSet.hpp"
  33 #include "gc_implementation/g1/g1YCTypes.hpp"
  34 #include "gc_implementation/g1/heapRegionSeq.hpp"
  35 #include "gc_implementation/g1/heapRegionSets.hpp"
  36 #include "gc_implementation/shared/hSpaceCounters.hpp"
  37 #include "gc_implementation/shared/gcTrace.hpp"
  38 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  39 #include "memory/barrierSet.hpp"
  40 #include "memory/memRegion.hpp"
  41 #include "memory/sharedHeap.hpp"
  42 #include "utilities/stack.hpp"
  43 
  44 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  45 // It uses the "Garbage First" heap organization and algorithm, which
  46 // may combine concurrent marking with parallel, incremental compaction of
  47 // heap subsets that will yield large amounts of garbage.
  48 
  49 class HeapRegion;
  50 class HRRSCleanupTask;
  51 class PermanentGenerationSpec;
  52 class GenerationSpec;
  53 class OopsInHeapRegionClosure;
  54 class G1ScanHeapEvacClosure;
  55 class ObjectClosure;
  56 class SpaceClosure;
  57 class CompactibleSpaceClosure;
  58 class Space;
  59 class G1CollectorPolicy;
  60 class GenRemSet;
  61 class G1RemSet;
  62 class HeapRegionRemSetIterator;
  63 class ConcurrentMark;
  64 class ConcurrentMarkThread;
  65 class ConcurrentG1Refine;
  66 class ConcurrentGCTimer;
  67 class GenerationCounters;
  68 class STWGCTimer;
  69 class G1NewTracer;
  70 class G1OldTracer;
  71 
  72 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  73 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  74 
  75 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  76 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  77 
  78 enum GCAllocPurpose {
  79   GCAllocForTenured,
  80   GCAllocForSurvived,
  81   GCAllocPurposeCount
  82 };
  83 
  84 class YoungList : public CHeapObj<mtGC> {
  85 private:
  86   G1CollectedHeap* _g1h;
  87 
  88   HeapRegion* _head;
  89 
  90   HeapRegion* _survivor_head;
  91   HeapRegion* _survivor_tail;
  92 
  93   HeapRegion* _curr;
  94 
  95   uint        _length;
  96   uint        _survivor_length;
  97 
  98   size_t      _last_sampled_rs_lengths;
  99   size_t      _sampled_rs_lengths;
 100 
 101   void         empty_list(HeapRegion* list);
 102 
 103 public:
 104   YoungList(G1CollectedHeap* g1h);
 105 
 106   void         push_region(HeapRegion* hr);
 107   void         add_survivor_region(HeapRegion* hr);
 108 
 109   void         empty_list();
 110   bool         is_empty() { return _length == 0; }
 111   uint         length() { return _length; }
 112   uint         survivor_length() { return _survivor_length; }
 113 
 114   // Currently we do not keep track of the used byte sum for the
 115   // young list and the survivors and it'd be quite a lot of work to
 116   // do so. When we'll eventually replace the young list with
 117   // instances of HeapRegionLinkedList we'll get that for free. So,
 118   // we'll report the more accurate information then.
 119   size_t       eden_used_bytes() {
 120     assert(length() >= survivor_length(), "invariant");
 121     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 122   }
 123   size_t       survivor_used_bytes() {
 124     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 125   }
 126 
 127   void rs_length_sampling_init();
 128   bool rs_length_sampling_more();
 129   void rs_length_sampling_next();
 130 
 131   void reset_sampled_info() {
 132     _last_sampled_rs_lengths =   0;
 133   }
 134   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 135 
 136   // for development purposes
 137   void reset_auxilary_lists();
 138   void clear() { _head = NULL; _length = 0; }
 139 
 140   void clear_survivors() {
 141     _survivor_head    = NULL;
 142     _survivor_tail    = NULL;
 143     _survivor_length  = 0;
 144   }
 145 
 146   HeapRegion* first_region() { return _head; }
 147   HeapRegion* first_survivor_region() { return _survivor_head; }
 148   HeapRegion* last_survivor_region() { return _survivor_tail; }
 149 
 150   // debugging
 151   bool          check_list_well_formed();
 152   bool          check_list_empty(bool check_sample = true);
 153   void          print();
 154 };
 155 
 156 class MutatorAllocRegion : public G1AllocRegion {
 157 protected:
 158   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 159   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 160 public:
 161   MutatorAllocRegion()
 162     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 163 };
 164 
 165 // The G1 STW is alive closure.
 166 // An instance is embedded into the G1CH and used as the
 167 // (optional) _is_alive_non_header closure in the STW
 168 // reference processor. It is also extensively used during
 169 // refence processing during STW evacuation pauses.
 170 class G1STWIsAliveClosure: public BoolObjectClosure {
 171   G1CollectedHeap* _g1;
 172 public:
 173   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 174   void do_object(oop p) { assert(false, "Do not call."); }
 175   bool do_object_b(oop p);
 176 };
 177 
 178 class SurvivorGCAllocRegion : public G1AllocRegion {
 179 protected:
 180   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 181   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 182 public:
 183   SurvivorGCAllocRegion()
 184   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 185 };
 186 
 187 class OldGCAllocRegion : public G1AllocRegion {
 188 protected:
 189   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 190   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 191 public:
 192   OldGCAllocRegion()
 193   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 194 };
 195 
 196 class RefineCardTableEntryClosure;
 197 
 198 class G1CollectedHeap : public SharedHeap {
 199   friend class VM_G1CollectForAllocation;
 200   friend class VM_GenCollectForPermanentAllocation;
 201   friend class VM_G1CollectFull;
 202   friend class VM_G1IncCollectionPause;
 203   friend class VMStructs;
 204   friend class MutatorAllocRegion;
 205   friend class SurvivorGCAllocRegion;
 206   friend class OldGCAllocRegion;
 207 
 208   // Closures used in implementation.
 209   template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
 210   friend class G1ParCopyClosure;
 211   friend class G1IsAliveClosure;
 212   friend class G1EvacuateFollowersClosure;
 213   friend class G1ParScanThreadState;
 214   friend class G1ParScanClosureSuper;
 215   friend class G1ParEvacuateFollowersClosure;
 216   friend class G1ParTask;
 217   friend class G1FreeGarbageRegionClosure;
 218   friend class RefineCardTableEntryClosure;
 219   friend class G1PrepareCompactClosure;
 220   friend class RegionSorter;
 221   friend class RegionResetter;
 222   friend class CountRCClosure;
 223   friend class EvacPopObjClosure;
 224   friend class G1ParCleanupCTTask;
 225 
 226   // Other related classes.
 227   friend class G1MarkSweep;
 228 
 229 private:
 230   // The one and only G1CollectedHeap, so static functions can find it.
 231   static G1CollectedHeap* _g1h;
 232 
 233   static size_t _humongous_object_threshold_in_words;
 234 
 235   // Storage for the G1 heap (excludes the permanent generation).
 236   VirtualSpace _g1_storage;
 237   MemRegion    _g1_reserved;
 238 
 239   // The part of _g1_storage that is currently committed.
 240   MemRegion _g1_committed;
 241 
 242   // The master free list. It will satisfy all new region allocations.
 243   MasterFreeRegionList      _free_list;
 244 
 245   // The secondary free list which contains regions that have been
 246   // freed up during the cleanup process. This will be appended to the
 247   // master free list when appropriate.
 248   SecondaryFreeRegionList   _secondary_free_list;
 249 
 250   // It keeps track of the old regions.
 251   MasterOldRegionSet        _old_set;
 252 
 253   // It keeps track of the humongous regions.
 254   MasterHumongousRegionSet  _humongous_set;
 255 
 256   // The number of regions we could create by expansion.
 257   uint _expansion_regions;
 258 
 259   // The block offset table for the G1 heap.
 260   G1BlockOffsetSharedArray* _bot_shared;
 261 
 262   // Tears down the region sets / lists so that they are empty and the
 263   // regions on the heap do not belong to a region set / list. The
 264   // only exception is the humongous set which we leave unaltered. If
 265   // free_list_only is true, it will only tear down the master free
 266   // list. It is called before a Full GC (free_list_only == false) or
 267   // before heap shrinking (free_list_only == true).
 268   void tear_down_region_sets(bool free_list_only);
 269 
 270   // Rebuilds the region sets / lists so that they are repopulated to
 271   // reflect the contents of the heap. The only exception is the
 272   // humongous set which was not torn down in the first place. If
 273   // free_list_only is true, it will only rebuild the master free
 274   // list. It is called after a Full GC (free_list_only == false) or
 275   // after heap shrinking (free_list_only == true).
 276   void rebuild_region_sets(bool free_list_only);
 277 
 278   // The sequence of all heap regions in the heap.
 279   HeapRegionSeq _hrs;
 280 
 281   // Alloc region used to satisfy mutator allocation requests.
 282   MutatorAllocRegion _mutator_alloc_region;
 283 
 284   // Alloc region used to satisfy allocation requests by the GC for
 285   // survivor objects.
 286   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 287 
 288   // PLAB sizing policy for survivors.
 289   PLABStats _survivor_plab_stats;
 290 
 291   // Alloc region used to satisfy allocation requests by the GC for
 292   // old objects.
 293   OldGCAllocRegion _old_gc_alloc_region;
 294 
 295   // PLAB sizing policy for tenured objects.
 296   PLABStats _old_plab_stats;
 297 
 298   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
 299     PLABStats* stats = NULL;
 300 
 301     switch (purpose) {
 302     case GCAllocForSurvived:
 303       stats = &_survivor_plab_stats;
 304       break;
 305     case GCAllocForTenured:
 306       stats = &_old_plab_stats;
 307       break;
 308     default:
 309       assert(false, "unrecognized GCAllocPurpose");
 310     }
 311 
 312     return stats;
 313   }
 314 
 315   // The last old region we allocated to during the last GC.
 316   // Typically, it is not full so we should re-use it during the next GC.
 317   HeapRegion* _retained_old_gc_alloc_region;
 318 
 319   // It specifies whether we should attempt to expand the heap after a
 320   // region allocation failure. If heap expansion fails we set this to
 321   // false so that we don't re-attempt the heap expansion (it's likely
 322   // that subsequent expansion attempts will also fail if one fails).
 323   // Currently, it is only consulted during GC and it's reset at the
 324   // start of each GC.
 325   bool _expand_heap_after_alloc_failure;
 326 
 327   // It resets the mutator alloc region before new allocations can take place.
 328   void init_mutator_alloc_region();
 329 
 330   // It releases the mutator alloc region.
 331   void release_mutator_alloc_region();
 332 
 333   // It initializes the GC alloc regions at the start of a GC.
 334   void init_gc_alloc_regions();
 335 
 336   // It releases the GC alloc regions at the end of a GC.
 337   void release_gc_alloc_regions(uint no_of_gc_workers);
 338 
 339   // It does any cleanup that needs to be done on the GC alloc regions
 340   // before a Full GC.
 341   void abandon_gc_alloc_regions();
 342 
 343   // Helper for monitoring and management support.
 344   G1MonitoringSupport* _g1mm;
 345 
 346   // Determines PLAB size for a particular allocation purpose.
 347   size_t desired_plab_sz(GCAllocPurpose purpose);
 348 
 349   // Outside of GC pauses, the number of bytes used in all regions other
 350   // than the current allocation region.
 351   size_t _summary_bytes_used;
 352 
 353   // This is used for a quick test on whether a reference points into
 354   // the collection set or not. Basically, we have an array, with one
 355   // byte per region, and that byte denotes whether the corresponding
 356   // region is in the collection set or not. The entry corresponding
 357   // the bottom of the heap, i.e., region 0, is pointed to by
 358   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 359   // biased so that it actually points to address 0 of the address
 360   // space, to make the test as fast as possible (we can simply shift
 361   // the address to address into it, instead of having to subtract the
 362   // bottom of the heap from the address before shifting it; basically
 363   // it works in the same way the card table works).
 364   bool* _in_cset_fast_test;
 365 
 366   // The allocated array used for the fast test on whether a reference
 367   // points into the collection set or not. This field is also used to
 368   // free the array.
 369   bool* _in_cset_fast_test_base;
 370 
 371   // The length of the _in_cset_fast_test_base array.
 372   uint _in_cset_fast_test_length;
 373 
 374   volatile unsigned _gc_time_stamp;
 375 
 376   size_t* _surviving_young_words;
 377 
 378   G1HRPrinter _hr_printer;
 379 
 380   void setup_surviving_young_words();
 381   void update_surviving_young_words(size_t* surv_young_words);
 382   void cleanup_surviving_young_words();
 383 
 384   // It decides whether an explicit GC should start a concurrent cycle
 385   // instead of doing a STW GC. Currently, a concurrent cycle is
 386   // explicitly started if:
 387   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 388   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 389   // (c) cause == _g1_humongous_allocation
 390   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 391 
 392   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 393   // concurrent cycles) we have started.
 394   volatile unsigned int _old_marking_cycles_started;
 395 
 396   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 397   // concurrent cycles) we have completed.
 398   volatile unsigned int _old_marking_cycles_completed;
 399 
 400   bool _concurrent_cycle_started;
 401 
 402   // This is a non-product method that is helpful for testing. It is
 403   // called at the end of a GC and artificially expands the heap by
 404   // allocating a number of dead regions. This way we can induce very
 405   // frequent marking cycles and stress the cleanup / concurrent
 406   // cleanup code more (as all the regions that will be allocated by
 407   // this method will be found dead by the marking cycle).
 408   void allocate_dummy_regions() PRODUCT_RETURN;
 409 
 410   // Clear RSets after a compaction. It also resets the GC time stamps.
 411   void clear_rsets_post_compaction();
 412 
 413   // If the HR printer is active, dump the state of the regions in the
 414   // heap after a compaction.
 415   void print_hrs_post_compaction();
 416 
 417   double verify(bool guard, const char* msg);
 418   void verify_before_gc();
 419   void verify_after_gc();
 420 
 421   void log_gc_header();
 422   void log_gc_footer(double pause_time_sec);
 423 
 424   // These are macros so that, if the assert fires, we get the correct
 425   // line number, file, etc.
 426 
 427 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 428   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 429           (_extra_message_),                                                  \
 430           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 431           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 432           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 433 
 434 #define assert_heap_locked()                                                  \
 435   do {                                                                        \
 436     assert(Heap_lock->owned_by_self(),                                        \
 437            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 438   } while (0)
 439 
 440 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 441   do {                                                                        \
 442     assert(Heap_lock->owned_by_self() ||                                      \
 443            (SafepointSynchronize::is_at_safepoint() &&                        \
 444              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 445            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 446                                         "should be at a safepoint"));         \
 447   } while (0)
 448 
 449 #define assert_heap_locked_and_not_at_safepoint()                             \
 450   do {                                                                        \
 451     assert(Heap_lock->owned_by_self() &&                                      \
 452                                     !SafepointSynchronize::is_at_safepoint(), \
 453           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 454                                        "should not be at a safepoint"));      \
 455   } while (0)
 456 
 457 #define assert_heap_not_locked()                                              \
 458   do {                                                                        \
 459     assert(!Heap_lock->owned_by_self(),                                       \
 460         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 461   } while (0)
 462 
 463 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 464   do {                                                                        \
 465     assert(!Heap_lock->owned_by_self() &&                                     \
 466                                     !SafepointSynchronize::is_at_safepoint(), \
 467       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 468                                    "should not be at a safepoint"));          \
 469   } while (0)
 470 
 471 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 472   do {                                                                        \
 473     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 474               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 475            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 476   } while (0)
 477 
 478 #define assert_not_at_safepoint()                                             \
 479   do {                                                                        \
 480     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 481            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 482   } while (0)
 483 
 484 protected:
 485 
 486   // The young region list.
 487   YoungList*  _young_list;
 488 
 489   // The current policy object for the collector.
 490   G1CollectorPolicy* _g1_policy;
 491 
 492   // This is the second level of trying to allocate a new region. If
 493   // new_region() didn't find a region on the free_list, this call will
 494   // check whether there's anything available on the
 495   // secondary_free_list and/or wait for more regions to appear on
 496   // that list, if _free_regions_coming is set.
 497   HeapRegion* new_region_try_secondary_free_list();
 498 
 499   // Try to allocate a single non-humongous HeapRegion sufficient for
 500   // an allocation of the given word_size. If do_expand is true,
 501   // attempt to expand the heap if necessary to satisfy the allocation
 502   // request.
 503   HeapRegion* new_region(size_t word_size, bool do_expand);
 504 
 505   // Attempt to satisfy a humongous allocation request of the given
 506   // size by finding a contiguous set of free regions of num_regions
 507   // length and remove them from the master free list. Return the
 508   // index of the first region or G1_NULL_HRS_INDEX if the search
 509   // was unsuccessful.
 510   uint humongous_obj_allocate_find_first(uint num_regions,
 511                                          size_t word_size);
 512 
 513   // Initialize a contiguous set of free regions of length num_regions
 514   // and starting at index first so that they appear as a single
 515   // humongous region.
 516   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 517                                                       uint num_regions,
 518                                                       size_t word_size);
 519 
 520   // Attempt to allocate a humongous object of the given size. Return
 521   // NULL if unsuccessful.
 522   HeapWord* humongous_obj_allocate(size_t word_size);
 523 
 524   // The following two methods, allocate_new_tlab() and
 525   // mem_allocate(), are the two main entry points from the runtime
 526   // into the G1's allocation routines. They have the following
 527   // assumptions:
 528   //
 529   // * They should both be called outside safepoints.
 530   //
 531   // * They should both be called without holding the Heap_lock.
 532   //
 533   // * All allocation requests for new TLABs should go to
 534   //   allocate_new_tlab().
 535   //
 536   // * All non-TLAB allocation requests should go to mem_allocate().
 537   //
 538   // * If either call cannot satisfy the allocation request using the
 539   //   current allocating region, they will try to get a new one. If
 540   //   this fails, they will attempt to do an evacuation pause and
 541   //   retry the allocation.
 542   //
 543   // * If all allocation attempts fail, even after trying to schedule
 544   //   an evacuation pause, allocate_new_tlab() will return NULL,
 545   //   whereas mem_allocate() will attempt a heap expansion and/or
 546   //   schedule a Full GC.
 547   //
 548   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 549   //   should never be called with word_size being humongous. All
 550   //   humongous allocation requests should go to mem_allocate() which
 551   //   will satisfy them with a special path.
 552 
 553   virtual HeapWord* allocate_new_tlab(size_t word_size);
 554 
 555   virtual HeapWord* mem_allocate(size_t word_size,
 556                                  bool*  gc_overhead_limit_was_exceeded);
 557 
 558   // The following three methods take a gc_count_before_ret
 559   // parameter which is used to return the GC count if the method
 560   // returns NULL. Given that we are required to read the GC count
 561   // while holding the Heap_lock, and these paths will take the
 562   // Heap_lock at some point, it's easier to get them to read the GC
 563   // count while holding the Heap_lock before they return NULL instead
 564   // of the caller (namely: mem_allocate()) having to also take the
 565   // Heap_lock just to read the GC count.
 566 
 567   // First-level mutator allocation attempt: try to allocate out of
 568   // the mutator alloc region without taking the Heap_lock. This
 569   // should only be used for non-humongous allocations.
 570   inline HeapWord* attempt_allocation(size_t word_size,
 571                                       unsigned int* gc_count_before_ret);
 572 
 573   // Second-level mutator allocation attempt: take the Heap_lock and
 574   // retry the allocation attempt, potentially scheduling a GC
 575   // pause. This should only be used for non-humongous allocations.
 576   HeapWord* attempt_allocation_slow(size_t word_size,
 577                                     unsigned int* gc_count_before_ret);
 578 
 579   // Takes the Heap_lock and attempts a humongous allocation. It can
 580   // potentially schedule a GC pause.
 581   HeapWord* attempt_allocation_humongous(size_t word_size,
 582                                          unsigned int* gc_count_before_ret);
 583 
 584   // Allocation attempt that should be called during safepoints (e.g.,
 585   // at the end of a successful GC). expect_null_mutator_alloc_region
 586   // specifies whether the mutator alloc region is expected to be NULL
 587   // or not.
 588   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 589                                        bool expect_null_mutator_alloc_region);
 590 
 591   // It dirties the cards that cover the block so that so that the post
 592   // write barrier never queues anything when updating objects on this
 593   // block. It is assumed (and in fact we assert) that the block
 594   // belongs to a young region.
 595   inline void dirty_young_block(HeapWord* start, size_t word_size);
 596 
 597   // Allocate blocks during garbage collection. Will ensure an
 598   // allocation region, either by picking one or expanding the
 599   // heap, and then allocate a block of the given size. The block
 600   // may not be a humongous - it must fit into a single heap region.
 601   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 602 
 603   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 604                                     HeapRegion*    alloc_region,
 605                                     bool           par,
 606                                     size_t         word_size);
 607 
 608   // Ensure that no further allocations can happen in "r", bearing in mind
 609   // that parallel threads might be attempting allocations.
 610   void par_allocate_remaining_space(HeapRegion* r);
 611 
 612   // Allocation attempt during GC for a survivor object / PLAB.
 613   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 614 
 615   // Allocation attempt during GC for an old object / PLAB.
 616   inline HeapWord* old_attempt_allocation(size_t word_size);
 617 
 618   // These methods are the "callbacks" from the G1AllocRegion class.
 619 
 620   // For mutator alloc regions.
 621   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 622   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 623                                    size_t allocated_bytes);
 624 
 625   // For GC alloc regions.
 626   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 627                                   GCAllocPurpose ap);
 628   void retire_gc_alloc_region(HeapRegion* alloc_region,
 629                               size_t allocated_bytes, GCAllocPurpose ap);
 630 
 631   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 632   //   inspection request and should collect the entire heap
 633   // - if clear_all_soft_refs is true, all soft references should be
 634   //   cleared during the GC
 635   // - if explicit_gc is false, word_size describes the allocation that
 636   //   the GC should attempt (at least) to satisfy
 637   // - it returns false if it is unable to do the collection due to the
 638   //   GC locker being active, true otherwise
 639   bool do_collection(bool explicit_gc,
 640                      bool clear_all_soft_refs,
 641                      size_t word_size);
 642 
 643   // Callback from VM_G1CollectFull operation.
 644   // Perform a full collection.
 645   void do_full_collection(bool clear_all_soft_refs);
 646 
 647   // Resize the heap if necessary after a full collection.  If this is
 648   // after a collect-for allocation, "word_size" is the allocation size,
 649   // and will be considered part of the used portion of the heap.
 650   void resize_if_necessary_after_full_collection(size_t word_size);
 651 
 652   // Callback from VM_G1CollectForAllocation operation.
 653   // This function does everything necessary/possible to satisfy a
 654   // failed allocation request (including collection, expansion, etc.)
 655   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 656 
 657   // Attempting to expand the heap sufficiently
 658   // to support an allocation of the given "word_size".  If
 659   // successful, perform the allocation and return the address of the
 660   // allocated block, or else "NULL".
 661   HeapWord* expand_and_allocate(size_t word_size);
 662 
 663   // Process any reference objects discovered during
 664   // an incremental evacuation pause.
 665   void process_discovered_references(uint no_of_gc_workers);
 666 
 667   // Enqueue any remaining discovered references
 668   // after processing.
 669   void enqueue_discovered_references(uint no_of_gc_workers);
 670 
 671 public:
 672 
 673   G1MonitoringSupport* g1mm() {
 674     assert(_g1mm != NULL, "should have been initialized");
 675     return _g1mm;
 676   }
 677 
 678   // Expand the garbage-first heap by at least the given size (in bytes!).
 679   // Returns true if the heap was expanded by the requested amount;
 680   // false otherwise.
 681   // (Rounds up to a HeapRegion boundary.)
 682   bool expand(size_t expand_bytes);
 683 
 684   // Do anything common to GC's.
 685   virtual void gc_prologue(bool full);
 686   virtual void gc_epilogue(bool full);
 687 
 688   // We register a region with the fast "in collection set" test. We
 689   // simply set to true the array slot corresponding to this region.
 690   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 691     assert(_in_cset_fast_test_base != NULL, "sanity");
 692     assert(r->in_collection_set(), "invariant");
 693     uint index = r->hrs_index();
 694     assert(index < _in_cset_fast_test_length, "invariant");
 695     assert(!_in_cset_fast_test_base[index], "invariant");
 696     _in_cset_fast_test_base[index] = true;
 697   }
 698 
 699   // This is a fast test on whether a reference points into the
 700   // collection set or not. It does not assume that the reference
 701   // points into the heap; if it doesn't, it will return false.
 702   bool in_cset_fast_test(oop obj) {
 703     assert(_in_cset_fast_test != NULL, "sanity");
 704     if (_g1_committed.contains((HeapWord*) obj)) {
 705       // no need to subtract the bottom of the heap from obj,
 706       // _in_cset_fast_test is biased
 707       uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
 708       bool ret = _in_cset_fast_test[index];
 709       // let's make sure the result is consistent with what the slower
 710       // test returns
 711       assert( ret || !obj_in_cs(obj), "sanity");
 712       assert(!ret ||  obj_in_cs(obj), "sanity");
 713       return ret;
 714     } else {
 715       return false;
 716     }
 717   }
 718 
 719   void clear_cset_fast_test() {
 720     assert(_in_cset_fast_test_base != NULL, "sanity");
 721     memset(_in_cset_fast_test_base, false,
 722            (size_t) _in_cset_fast_test_length * sizeof(bool));
 723   }
 724 
 725   // This is called at the start of either a concurrent cycle or a Full
 726   // GC to update the number of old marking cycles started.
 727   void increment_old_marking_cycles_started();
 728 
 729   // This is called at the end of either a concurrent cycle or a Full
 730   // GC to update the number of old marking cycles completed. Those two
 731   // can happen in a nested fashion, i.e., we start a concurrent
 732   // cycle, a Full GC happens half-way through it which ends first,
 733   // and then the cycle notices that a Full GC happened and ends
 734   // too. The concurrent parameter is a boolean to help us do a bit
 735   // tighter consistency checking in the method. If concurrent is
 736   // false, the caller is the inner caller in the nesting (i.e., the
 737   // Full GC). If concurrent is true, the caller is the outer caller
 738   // in this nesting (i.e., the concurrent cycle). Further nesting is
 739   // not currently supported. The end of this call also notifies
 740   // the FullGCCount_lock in case a Java thread is waiting for a full
 741   // GC to happen (e.g., it called System.gc() with
 742   // +ExplicitGCInvokesConcurrent).
 743   void increment_old_marking_cycles_completed(bool concurrent);
 744 
 745   unsigned int old_marking_cycles_completed() {
 746     return _old_marking_cycles_completed;
 747   }
 748 
 749   void register_concurrent_cycle_start(jlong start_time);
 750   void register_concurrent_cycle_end();
 751   void trace_heap_after_concurrent_cycle();
 752 
 753   G1YCType yc_type();
 754 
 755   G1HRPrinter* hr_printer() { return &_hr_printer; }
 756 
 757 protected:
 758 
 759   // Shrink the garbage-first heap by at most the given size (in bytes!).
 760   // (Rounds down to a HeapRegion boundary.)
 761   virtual void shrink(size_t expand_bytes);
 762   void shrink_helper(size_t expand_bytes);
 763 
 764   #if TASKQUEUE_STATS
 765   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 766   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 767   void reset_taskqueue_stats();
 768   #endif // TASKQUEUE_STATS
 769 
 770   // Schedule the VM operation that will do an evacuation pause to
 771   // satisfy an allocation request of word_size. *succeeded will
 772   // return whether the VM operation was successful (it did do an
 773   // evacuation pause) or not (another thread beat us to it or the GC
 774   // locker was active). Given that we should not be holding the
 775   // Heap_lock when we enter this method, we will pass the
 776   // gc_count_before (i.e., total_collections()) as a parameter since
 777   // it has to be read while holding the Heap_lock. Currently, both
 778   // methods that call do_collection_pause() release the Heap_lock
 779   // before the call, so it's easy to read gc_count_before just before.
 780   HeapWord* do_collection_pause(size_t       word_size,
 781                                 unsigned int gc_count_before,
 782                                 bool*        succeeded);
 783 
 784   // The guts of the incremental collection pause, executed by the vm
 785   // thread. It returns false if it is unable to do the collection due
 786   // to the GC locker being active, true otherwise
 787   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 788 
 789   // Actually do the work of evacuating the collection set.
 790   void evacuate_collection_set();
 791 
 792   // The g1 remembered set of the heap.
 793   G1RemSet* _g1_rem_set;
 794   // And it's mod ref barrier set, used to track updates for the above.
 795   ModRefBarrierSet* _mr_bs;
 796 
 797   // A set of cards that cover the objects for which the Rsets should be updated
 798   // concurrently after the collection.
 799   DirtyCardQueueSet _dirty_card_queue_set;
 800 
 801   // The Heap Region Rem Set Iterator.
 802   HeapRegionRemSetIterator** _rem_set_iterator;
 803 
 804   // The closure used to refine a single card.
 805   RefineCardTableEntryClosure* _refine_cte_cl;
 806 
 807   // A function to check the consistency of dirty card logs.
 808   void check_ct_logs_at_safepoint();
 809 
 810   // A DirtyCardQueueSet that is used to hold cards that contain
 811   // references into the current collection set. This is used to
 812   // update the remembered sets of the regions in the collection
 813   // set in the event of an evacuation failure.
 814   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 815 
 816   // After a collection pause, make the regions in the CS into free
 817   // regions.
 818   void free_collection_set(HeapRegion* cs_head);
 819 
 820   // Abandon the current collection set without recording policy
 821   // statistics or updating free lists.
 822   void abandon_collection_set(HeapRegion* cs_head);
 823 
 824   // Applies "scan_non_heap_roots" to roots outside the heap,
 825   // "scan_rs" to roots inside the heap (having done "set_region" to
 826   // indicate the region in which the root resides), and does "scan_perm"
 827   // (setting the generation to the perm generation.)  If "scan_rs" is
 828   // NULL, then this step is skipped.  The "worker_i"
 829   // param is for use with parallel roots processing, and should be
 830   // the "i" of the calling parallel worker thread's work(i) function.
 831   // In the sequential case this param will be ignored.
 832   void g1_process_strong_roots(bool collecting_perm_gen,
 833                                ScanningOption so,
 834                                OopClosure* scan_non_heap_roots,
 835                                OopsInHeapRegionClosure* scan_rs,
 836                                OopsInGenClosure* scan_perm,
 837                                int worker_i);
 838 
 839   // Apply "blk" to all the weak roots of the system.  These include
 840   // JNI weak roots, the code cache, system dictionary, symbol table,
 841   // string table, and referents of reachable weak refs.
 842   void g1_process_weak_roots(OopClosure* root_closure,
 843                              OopClosure* non_root_closure);
 844 
 845   // Frees a non-humongous region by initializing its contents and
 846   // adding it to the free list that's passed as a parameter (this is
 847   // usually a local list which will be appended to the master free
 848   // list later). The used bytes of freed regions are accumulated in
 849   // pre_used. If par is true, the region's RSet will not be freed
 850   // up. The assumption is that this will be done later.
 851   void free_region(HeapRegion* hr,
 852                    size_t* pre_used,
 853                    FreeRegionList* free_list,
 854                    bool par);
 855 
 856   // Frees a humongous region by collapsing it into individual regions
 857   // and calling free_region() for each of them. The freed regions
 858   // will be added to the free list that's passed as a parameter (this
 859   // is usually a local list which will be appended to the master free
 860   // list later). The used bytes of freed regions are accumulated in
 861   // pre_used. If par is true, the region's RSet will not be freed
 862   // up. The assumption is that this will be done later.
 863   void free_humongous_region(HeapRegion* hr,
 864                              size_t* pre_used,
 865                              FreeRegionList* free_list,
 866                              HumongousRegionSet* humongous_proxy_set,
 867                              bool par);
 868 
 869   // Notifies all the necessary spaces that the committed space has
 870   // been updated (either expanded or shrunk). It should be called
 871   // after _g1_storage is updated.
 872   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 873 
 874   // The concurrent marker (and the thread it runs in.)
 875   ConcurrentMark* _cm;
 876   ConcurrentMarkThread* _cmThread;
 877   bool _mark_in_progress;
 878 
 879   // The concurrent refiner.
 880   ConcurrentG1Refine* _cg1r;
 881 
 882   // The parallel task queues
 883   RefToScanQueueSet *_task_queues;
 884 
 885   // True iff a evacuation has failed in the current collection.
 886   bool _evacuation_failed;
 887 
 888   // Set the attribute indicating whether evacuation has failed in the
 889   // current collection.
 890   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
 891 
 892   // Failed evacuations cause some logical from-space objects to have
 893   // forwarding pointers to themselves.  Reset them.
 894   void remove_self_forwarding_pointers();
 895 
 896   // Together, these store an object with a preserved mark, and its mark value.
 897   Stack<oop, mtGC>     _objs_with_preserved_marks;
 898   Stack<markOop, mtGC> _preserved_marks_of_objs;
 899 
 900   // Preserve the mark of "obj", if necessary, in preparation for its mark
 901   // word being overwritten with a self-forwarding-pointer.
 902   void preserve_mark_if_necessary(oop obj, markOop m);
 903 
 904   // The stack of evac-failure objects left to be scanned.
 905   GrowableArray<oop>*    _evac_failure_scan_stack;
 906   // The closure to apply to evac-failure objects.
 907 
 908   OopsInHeapRegionClosure* _evac_failure_closure;
 909   // Set the field above.
 910   void
 911   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 912     _evac_failure_closure = evac_failure_closure;
 913   }
 914 
 915   // Push "obj" on the scan stack.
 916   void push_on_evac_failure_scan_stack(oop obj);
 917   // Process scan stack entries until the stack is empty.
 918   void drain_evac_failure_scan_stack();
 919   // True iff an invocation of "drain_scan_stack" is in progress; to
 920   // prevent unnecessary recursion.
 921   bool _drain_in_progress;
 922 
 923   // Do any necessary initialization for evacuation-failure handling.
 924   // "cl" is the closure that will be used to process evac-failure
 925   // objects.
 926   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 927   // Do any necessary cleanup for evacuation-failure handling data
 928   // structures.
 929   void finalize_for_evac_failure();
 930 
 931   // An attempt to evacuate "obj" has failed; take necessary steps.
 932   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
 933   void handle_evacuation_failure_common(oop obj, markOop m);
 934 
 935 #ifndef PRODUCT
 936   // Support for forcing evacuation failures. Analogous to
 937   // PromotionFailureALot for the other collectors.
 938 
 939   // Records whether G1EvacuationFailureALot should be in effect
 940   // for the current GC
 941   bool _evacuation_failure_alot_for_current_gc;
 942 
 943   // Used to record the GC number for interval checking when
 944   // determining whether G1EvaucationFailureALot is in effect
 945   // for the current GC.
 946   size_t _evacuation_failure_alot_gc_number;
 947 
 948   // Count of the number of evacuations between failures.
 949   volatile size_t _evacuation_failure_alot_count;
 950 
 951   // Set whether G1EvacuationFailureALot should be in effect
 952   // for the current GC (based upon the type of GC and which
 953   // command line flags are set);
 954   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 955                                                   bool during_initial_mark,
 956                                                   bool during_marking);
 957 
 958   inline void set_evacuation_failure_alot_for_current_gc();
 959 
 960   // Return true if it's time to cause an evacuation failure.
 961   inline bool evacuation_should_fail();
 962 
 963   // Reset the G1EvacuationFailureALot counters.  Should be called at
 964   // the end of an evacuation pause in which an evacuation failure ocurred.
 965   inline void reset_evacuation_should_fail();
 966 #endif // !PRODUCT
 967 
 968   // ("Weak") Reference processing support.
 969   //
 970   // G1 has 2 instances of the referece processor class. One
 971   // (_ref_processor_cm) handles reference object discovery
 972   // and subsequent processing during concurrent marking cycles.
 973   //
 974   // The other (_ref_processor_stw) handles reference object
 975   // discovery and processing during full GCs and incremental
 976   // evacuation pauses.
 977   //
 978   // During an incremental pause, reference discovery will be
 979   // temporarily disabled for _ref_processor_cm and will be
 980   // enabled for _ref_processor_stw. At the end of the evacuation
 981   // pause references discovered by _ref_processor_stw will be
 982   // processed and discovery will be disabled. The previous
 983   // setting for reference object discovery for _ref_processor_cm
 984   // will be re-instated.
 985   //
 986   // At the start of marking:
 987   //  * Discovery by the CM ref processor is verified to be inactive
 988   //    and it's discovered lists are empty.
 989   //  * Discovery by the CM ref processor is then enabled.
 990   //
 991   // At the end of marking:
 992   //  * Any references on the CM ref processor's discovered
 993   //    lists are processed (possibly MT).
 994   //
 995   // At the start of full GC we:
 996   //  * Disable discovery by the CM ref processor and
 997   //    empty CM ref processor's discovered lists
 998   //    (without processing any entries).
 999   //  * Verify that the STW ref processor is inactive and it's
1000   //    discovered lists are empty.
1001   //  * Temporarily set STW ref processor discovery as single threaded.
1002   //  * Temporarily clear the STW ref processor's _is_alive_non_header
1003   //    field.
1004   //  * Finally enable discovery by the STW ref processor.
1005   //
1006   // The STW ref processor is used to record any discovered
1007   // references during the full GC.
1008   //
1009   // At the end of a full GC we:
1010   //  * Enqueue any reference objects discovered by the STW ref processor
1011   //    that have non-live referents. This has the side-effect of
1012   //    making the STW ref processor inactive by disabling discovery.
1013   //  * Verify that the CM ref processor is still inactive
1014   //    and no references have been placed on it's discovered
1015   //    lists (also checked as a precondition during initial marking).
1016 
1017   // The (stw) reference processor...
1018   ReferenceProcessor* _ref_processor_stw;
1019 
1020   STWGCTimer* _gc_timer_stw;
1021   ConcurrentGCTimer* _gc_timer_cm;
1022 
1023   G1OldTracer* _gc_tracer_cm;
1024   G1NewTracer* _gc_tracer_stw;
1025 
1026   // During reference object discovery, the _is_alive_non_header
1027   // closure (if non-null) is applied to the referent object to
1028   // determine whether the referent is live. If so then the
1029   // reference object does not need to be 'discovered' and can
1030   // be treated as a regular oop. This has the benefit of reducing
1031   // the number of 'discovered' reference objects that need to
1032   // be processed.
1033   //
1034   // Instance of the is_alive closure for embedding into the
1035   // STW reference processor as the _is_alive_non_header field.
1036   // Supplying a value for the _is_alive_non_header field is
1037   // optional but doing so prevents unnecessary additions to
1038   // the discovered lists during reference discovery.
1039   G1STWIsAliveClosure _is_alive_closure_stw;
1040 
1041   // The (concurrent marking) reference processor...
1042   ReferenceProcessor* _ref_processor_cm;
1043 
1044   // Instance of the concurrent mark is_alive closure for embedding
1045   // into the Concurrent Marking reference processor as the
1046   // _is_alive_non_header field. Supplying a value for the
1047   // _is_alive_non_header field is optional but doing so prevents
1048   // unnecessary additions to the discovered lists during reference
1049   // discovery.
1050   G1CMIsAliveClosure _is_alive_closure_cm;
1051 
1052   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
1053   HeapRegion** _worker_cset_start_region;
1054 
1055   // Time stamp to validate the regions recorded in the cache
1056   // used by G1CollectedHeap::start_cset_region_for_worker().
1057   // The heap region entry for a given worker is valid iff
1058   // the associated time stamp value matches the current value
1059   // of G1CollectedHeap::_gc_time_stamp.
1060   unsigned int* _worker_cset_start_region_time_stamp;
1061 
1062   enum G1H_process_strong_roots_tasks {
1063     G1H_PS_filter_satb_buffers,
1064     G1H_PS_refProcessor_oops_do,
1065     // Leave this one last.
1066     G1H_PS_NumElements
1067   };
1068 
1069   SubTasksDone* _process_strong_tasks;
1070 
1071   volatile bool _free_regions_coming;
1072 
1073 public:
1074 
1075   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
1076 
1077   void set_refine_cte_cl_concurrency(bool concurrent);
1078 
1079   RefToScanQueue *task_queue(int i) const;
1080 
1081   // A set of cards where updates happened during the GC
1082   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1083 
1084   // A DirtyCardQueueSet that is used to hold cards that contain
1085   // references into the current collection set. This is used to
1086   // update the remembered sets of the regions in the collection
1087   // set in the event of an evacuation failure.
1088   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1089         { return _into_cset_dirty_card_queue_set; }
1090 
1091   // Create a G1CollectedHeap with the specified policy.
1092   // Must call the initialize method afterwards.
1093   // May not return if something goes wrong.
1094   G1CollectedHeap(G1CollectorPolicy* policy);
1095 
1096   // Initialize the G1CollectedHeap to have the initial and
1097   // maximum sizes, permanent generation, and remembered and barrier sets
1098   // specified by the policy object.
1099   jint initialize();
1100 
1101   // Initialize weak reference processing.
1102   virtual void ref_processing_init();
1103 
1104   void set_par_threads(uint t) {
1105     SharedHeap::set_par_threads(t);
1106     // Done in SharedHeap but oddly there are
1107     // two _process_strong_tasks's in a G1CollectedHeap
1108     // so do it here too.
1109     _process_strong_tasks->set_n_threads(t);
1110   }
1111 
1112   // Set _n_par_threads according to a policy TBD.
1113   void set_par_threads();
1114 
1115   void set_n_termination(int t) {
1116     _process_strong_tasks->set_n_threads(t);
1117   }
1118 
1119   virtual CollectedHeap::Name kind() const {
1120     return CollectedHeap::G1CollectedHeap;
1121   }
1122 
1123   // The current policy object for the collector.
1124   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1125 
1126   // Adaptive size policy.  No such thing for g1.
1127   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1128 
1129   // The rem set and barrier set.
1130   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1131   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
1132 
1133   // The rem set iterator.
1134   HeapRegionRemSetIterator* rem_set_iterator(int i) {
1135     return _rem_set_iterator[i];
1136   }
1137 
1138   HeapRegionRemSetIterator* rem_set_iterator() {
1139     return _rem_set_iterator[0];
1140   }
1141 
1142   unsigned get_gc_time_stamp() {
1143     return _gc_time_stamp;
1144   }
1145 
1146   void reset_gc_time_stamp() {
1147     _gc_time_stamp = 0;
1148     OrderAccess::fence();
1149     // Clear the cached CSet starting regions and time stamps.
1150     // Their validity is dependent on the GC timestamp.
1151     clear_cset_start_regions();
1152   }
1153 
1154   void check_gc_time_stamps() PRODUCT_RETURN;
1155 
1156   void increment_gc_time_stamp() {
1157     ++_gc_time_stamp;
1158     OrderAccess::fence();
1159   }
1160 
1161   // Reset the given region's GC timestamp. If it's starts humongous,
1162   // also reset the GC timestamp of its corresponding
1163   // continues humongous regions too.
1164   void reset_gc_time_stamps(HeapRegion* hr);
1165 
1166   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1167                                   DirtyCardQueue* into_cset_dcq,
1168                                   bool concurrent, int worker_i);
1169 
1170   // The shared block offset table array.
1171   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1172 
1173   // Reference Processing accessors
1174 
1175   // The STW reference processor....
1176   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1177 
1178   // The Concurent Marking reference processor...
1179   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1180 
1181   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1182   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1183 
1184   virtual size_t capacity() const;
1185   virtual size_t used() const;
1186   // This should be called when we're not holding the heap lock. The
1187   // result might be a bit inaccurate.
1188   size_t used_unlocked() const;
1189   size_t recalculate_used() const;
1190 
1191   // These virtual functions do the actual allocation.
1192   // Some heaps may offer a contiguous region for shared non-blocking
1193   // allocation, via inlined code (by exporting the address of the top and
1194   // end fields defining the extent of the contiguous allocation region.)
1195   // But G1CollectedHeap doesn't yet support this.
1196 
1197   // Return an estimate of the maximum allocation that could be performed
1198   // without triggering any collection or expansion activity.  In a
1199   // generational collector, for example, this is probably the largest
1200   // allocation that could be supported (without expansion) in the youngest
1201   // generation.  It is "unsafe" because no locks are taken; the result
1202   // should be treated as an approximation, not a guarantee, for use in
1203   // heuristic resizing decisions.
1204   virtual size_t unsafe_max_alloc();
1205 
1206   virtual bool is_maximal_no_gc() const {
1207     return _g1_storage.uncommitted_size() == 0;
1208   }
1209 
1210   // The total number of regions in the heap.
1211   uint n_regions() { return _hrs.length(); }
1212 
1213   // The max number of regions in the heap.
1214   uint max_regions() { return _hrs.max_length(); }
1215 
1216   // The number of regions that are completely free.
1217   uint free_regions() { return _free_list.length(); }
1218 
1219   // The number of regions that are not completely free.
1220   uint used_regions() { return n_regions() - free_regions(); }
1221 
1222   // The number of regions available for "regular" expansion.
1223   uint expansion_regions() { return _expansion_regions; }
1224 
1225   // Factory method for HeapRegion instances. It will return NULL if
1226   // the allocation fails.
1227   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
1228 
1229   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1230   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1231   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1232   void verify_dirty_young_regions() PRODUCT_RETURN;
1233 
1234   // verify_region_sets() performs verification over the region
1235   // lists. It will be compiled in the product code to be used when
1236   // necessary (i.e., during heap verification).
1237   void verify_region_sets();
1238 
1239   // verify_region_sets_optional() is planted in the code for
1240   // list verification in non-product builds (and it can be enabled in
1241   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
1242 #if HEAP_REGION_SET_FORCE_VERIFY
1243   void verify_region_sets_optional() {
1244     verify_region_sets();
1245   }
1246 #else // HEAP_REGION_SET_FORCE_VERIFY
1247   void verify_region_sets_optional() { }
1248 #endif // HEAP_REGION_SET_FORCE_VERIFY
1249 
1250 #ifdef ASSERT
1251   bool is_on_master_free_list(HeapRegion* hr) {
1252     return hr->containing_set() == &_free_list;
1253   }
1254 
1255   bool is_in_humongous_set(HeapRegion* hr) {
1256     return hr->containing_set() == &_humongous_set;
1257   }
1258 #endif // ASSERT
1259 
1260   // Wrapper for the region list operations that can be called from
1261   // methods outside this class.
1262 
1263   void secondary_free_list_add_as_tail(FreeRegionList* list) {
1264     _secondary_free_list.add_as_tail(list);
1265   }
1266 
1267   void append_secondary_free_list() {
1268     _free_list.add_as_head(&_secondary_free_list);
1269   }
1270 
1271   void append_secondary_free_list_if_not_empty_with_lock() {
1272     // If the secondary free list looks empty there's no reason to
1273     // take the lock and then try to append it.
1274     if (!_secondary_free_list.is_empty()) {
1275       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1276       append_secondary_free_list();
1277     }
1278   }
1279 
1280   void old_set_remove(HeapRegion* hr) {
1281     _old_set.remove(hr);
1282   }
1283 
1284   size_t non_young_capacity_bytes() {
1285     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1286   }
1287 
1288   void set_free_regions_coming();
1289   void reset_free_regions_coming();
1290   bool free_regions_coming() { return _free_regions_coming; }
1291   void wait_while_free_regions_coming();
1292 
1293   // Determine whether the given region is one that we are using as an
1294   // old GC alloc region.
1295   bool is_old_gc_alloc_region(HeapRegion* hr) {
1296     return hr == _retained_old_gc_alloc_region;
1297   }
1298 
1299   // Perform a collection of the heap; intended for use in implementing
1300   // "System.gc".  This probably implies as full a collection as the
1301   // "CollectedHeap" supports.
1302   virtual void collect(GCCause::Cause cause);
1303 
1304   // The same as above but assume that the caller holds the Heap_lock.
1305   void collect_locked(GCCause::Cause cause);
1306 
1307   // This interface assumes that it's being called by the
1308   // vm thread. It collects the heap assuming that the
1309   // heap lock is already held and that we are executing in
1310   // the context of the vm thread.
1311   virtual void collect_as_vm_thread(GCCause::Cause cause);
1312 
1313   // True iff a evacuation has failed in the most-recent collection.
1314   bool evacuation_failed() { return _evacuation_failed; }
1315 
1316   // It will free a region if it has allocated objects in it that are
1317   // all dead. It calls either free_region() or
1318   // free_humongous_region() depending on the type of the region that
1319   // is passed to it.
1320   void free_region_if_empty(HeapRegion* hr,
1321                             size_t* pre_used,
1322                             FreeRegionList* free_list,
1323                             OldRegionSet* old_proxy_set,
1324                             HumongousRegionSet* humongous_proxy_set,
1325                             HRRSCleanupTask* hrrs_cleanup_task,
1326                             bool par);
1327 
1328   // It appends the free list to the master free list and updates the
1329   // master humongous list according to the contents of the proxy
1330   // list. It also adjusts the total used bytes according to pre_used
1331   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
1332   void update_sets_after_freeing_regions(size_t pre_used,
1333                                        FreeRegionList* free_list,
1334                                        OldRegionSet* old_proxy_set,
1335                                        HumongousRegionSet* humongous_proxy_set,
1336                                        bool par);
1337 
1338   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1339   virtual bool is_in(const void* p) const;
1340 
1341   // Return "TRUE" iff the given object address is within the collection
1342   // set.
1343   inline bool obj_in_cs(oop obj);
1344 
1345   // Return "TRUE" iff the given object address is in the reserved
1346   // region of g1 (excluding the permanent generation).
1347   bool is_in_g1_reserved(const void* p) const {
1348     return _g1_reserved.contains(p);
1349   }
1350 
1351   // Returns a MemRegion that corresponds to the space that has been
1352   // reserved for the heap
1353   MemRegion g1_reserved() {
1354     return _g1_reserved;
1355   }
1356 
1357   // Returns a MemRegion that corresponds to the space that has been
1358   // committed in the heap
1359   MemRegion g1_committed() {
1360     return _g1_committed;
1361   }
1362 
1363   virtual bool is_in_closed_subset(const void* p) const;
1364 
1365   // This resets the card table to all zeros.  It is used after
1366   // a collection pause which used the card table to claim cards.
1367   void cleanUpCardTable();
1368 
1369   // Iteration functions.
1370 
1371   // Iterate over all the ref-containing fields of all objects, calling
1372   // "cl.do_oop" on each.
1373   virtual void oop_iterate(OopClosure* cl) {
1374     oop_iterate(cl, true);
1375   }
1376   void oop_iterate(OopClosure* cl, bool do_perm);
1377 
1378   // Same as above, restricted to a memory region.
1379   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
1380     oop_iterate(mr, cl, true);
1381   }
1382   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
1383 
1384   // Iterate over all objects, calling "cl.do_object" on each.
1385   virtual void object_iterate(ObjectClosure* cl) {
1386     object_iterate(cl, true);
1387   }
1388   virtual void safe_object_iterate(ObjectClosure* cl) {
1389     object_iterate(cl, true);
1390   }
1391   void object_iterate(ObjectClosure* cl, bool do_perm);
1392 
1393   // Iterate over all objects allocated since the last collection, calling
1394   // "cl.do_object" on each.  The heap must have been initialized properly
1395   // to support this function, or else this call will fail.
1396   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
1397 
1398   // Iterate over all spaces in use in the heap, in ascending address order.
1399   virtual void space_iterate(SpaceClosure* cl);
1400 
1401   // Iterate over heap regions, in address order, terminating the
1402   // iteration early if the "doHeapRegion" method returns "true".
1403   void heap_region_iterate(HeapRegionClosure* blk) const;
1404 
1405   // Return the region with the given index. It assumes the index is valid.
1406   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
1407 
1408   // Divide the heap region sequence into "chunks" of some size (the number
1409   // of regions divided by the number of parallel threads times some
1410   // overpartition factor, currently 4).  Assumes that this will be called
1411   // in parallel by ParallelGCThreads worker threads with discinct worker
1412   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1413   // calls will use the same "claim_value", and that that claim value is
1414   // different from the claim_value of any heap region before the start of
1415   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1416   // attempting to claim the first region in each chunk, and, if
1417   // successful, applying the closure to each region in the chunk (and
1418   // setting the claim value of the second and subsequent regions of the
1419   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1420   // i.e., that a closure never attempt to abort a traversal.
1421   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1422                                        uint worker,
1423                                        uint no_of_par_workers,
1424                                        jint claim_value);
1425 
1426   // It resets all the region claim values to the default.
1427   void reset_heap_region_claim_values();
1428 
1429   // Resets the claim values of regions in the current
1430   // collection set to the default.
1431   void reset_cset_heap_region_claim_values();
1432 
1433 #ifdef ASSERT
1434   bool check_heap_region_claim_values(jint claim_value);
1435 
1436   // Same as the routine above but only checks regions in the
1437   // current collection set.
1438   bool check_cset_heap_region_claim_values(jint claim_value);
1439 #endif // ASSERT
1440 
1441   // Clear the cached cset start regions and (more importantly)
1442   // the time stamps. Called when we reset the GC time stamp.
1443   void clear_cset_start_regions();
1444 
1445   // Given the id of a worker, obtain or calculate a suitable
1446   // starting region for iterating over the current collection set.
1447   HeapRegion* start_cset_region_for_worker(int worker_i);
1448 
1449   // This is a convenience method that is used by the
1450   // HeapRegionIterator classes to calculate the starting region for
1451   // each worker so that they do not all start from the same region.
1452   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
1453 
1454   // Iterate over the regions (if any) in the current collection set.
1455   void collection_set_iterate(HeapRegionClosure* blk);
1456 
1457   // As above but starting from region r
1458   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1459 
1460   // Returns the first (lowest address) compactible space in the heap.
1461   virtual CompactibleSpace* first_compactible_space();
1462 
1463   // A CollectedHeap will contain some number of spaces.  This finds the
1464   // space containing a given address, or else returns NULL.
1465   virtual Space* space_containing(const void* addr) const;
1466 
1467   // A G1CollectedHeap will contain some number of heap regions.  This
1468   // finds the region containing a given address, or else returns NULL.
1469   template <class T>
1470   inline HeapRegion* heap_region_containing(const T addr) const;
1471 
1472   // Like the above, but requires "addr" to be in the heap (to avoid a
1473   // null-check), and unlike the above, may return an continuing humongous
1474   // region.
1475   template <class T>
1476   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1477 
1478   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1479   // each address in the (reserved) heap is a member of exactly
1480   // one block.  The defining characteristic of a block is that it is
1481   // possible to find its size, and thus to progress forward to the next
1482   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1483   // represent Java objects, or they might be free blocks in a
1484   // free-list-based heap (or subheap), as long as the two kinds are
1485   // distinguishable and the size of each is determinable.
1486 
1487   // Returns the address of the start of the "block" that contains the
1488   // address "addr".  We say "blocks" instead of "object" since some heaps
1489   // may not pack objects densely; a chunk may either be an object or a
1490   // non-object.
1491   virtual HeapWord* block_start(const void* addr) const;
1492 
1493   // Requires "addr" to be the start of a chunk, and returns its size.
1494   // "addr + size" is required to be the start of a new chunk, or the end
1495   // of the active area of the heap.
1496   virtual size_t block_size(const HeapWord* addr) const;
1497 
1498   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1499   // the block is an object.
1500   virtual bool block_is_obj(const HeapWord* addr) const;
1501 
1502   // Does this heap support heap inspection? (+PrintClassHistogram)
1503   virtual bool supports_heap_inspection() const { return true; }
1504 
1505   // Section on thread-local allocation buffers (TLABs)
1506   // See CollectedHeap for semantics.
1507 
1508   virtual bool supports_tlab_allocation() const;
1509   virtual size_t tlab_capacity(Thread* thr) const;
1510   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1511 
1512   // Can a compiler initialize a new object without store barriers?
1513   // This permission only extends from the creation of a new object
1514   // via a TLAB up to the first subsequent safepoint. If such permission
1515   // is granted for this heap type, the compiler promises to call
1516   // defer_store_barrier() below on any slow path allocation of
1517   // a new object for which such initializing store barriers will
1518   // have been elided. G1, like CMS, allows this, but should be
1519   // ready to provide a compensating write barrier as necessary
1520   // if that storage came out of a non-young region. The efficiency
1521   // of this implementation depends crucially on being able to
1522   // answer very efficiently in constant time whether a piece of
1523   // storage in the heap comes from a young region or not.
1524   // See ReduceInitialCardMarks.
1525   virtual bool can_elide_tlab_store_barriers() const {
1526     return true;
1527   }
1528 
1529   virtual bool card_mark_must_follow_store() const {
1530     return true;
1531   }
1532 
1533   bool is_in_young(const oop obj) {
1534     HeapRegion* hr = heap_region_containing(obj);
1535     return hr != NULL && hr->is_young();
1536   }
1537 
1538 #ifdef ASSERT
1539   virtual bool is_in_partial_collection(const void* p);
1540 #endif
1541 
1542   virtual bool is_scavengable(const void* addr);
1543 
1544   // We don't need barriers for initializing stores to objects
1545   // in the young gen: for the SATB pre-barrier, there is no
1546   // pre-value that needs to be remembered; for the remembered-set
1547   // update logging post-barrier, we don't maintain remembered set
1548   // information for young gen objects.
1549   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1550     return is_in_young(new_obj);
1551   }
1552 
1553   // Can a compiler elide a store barrier when it writes
1554   // a permanent oop into the heap?  Applies when the compiler
1555   // is storing x to the heap, where x->is_perm() is true.
1556   virtual bool can_elide_permanent_oop_store_barriers() const {
1557     // At least until perm gen collection is also G1-ified, at
1558     // which point this should return false.
1559     return true;
1560   }
1561 
1562   // Returns "true" iff the given word_size is "very large".
1563   static bool isHumongous(size_t word_size) {
1564     // Note this has to be strictly greater-than as the TLABs
1565     // are capped at the humongous thresold and we want to
1566     // ensure that we don't try to allocate a TLAB as
1567     // humongous and that we don't allocate a humongous
1568     // object in a TLAB.
1569     return word_size > _humongous_object_threshold_in_words;
1570   }
1571 
1572   // Update mod union table with the set of dirty cards.
1573   void updateModUnion();
1574 
1575   // Set the mod union bits corresponding to the given memRegion.  Note
1576   // that this is always a safe operation, since it doesn't clear any
1577   // bits.
1578   void markModUnionRange(MemRegion mr);
1579 
1580   // Records the fact that a marking phase is no longer in progress.
1581   void set_marking_complete() {
1582     _mark_in_progress = false;
1583   }
1584   void set_marking_started() {
1585     _mark_in_progress = true;
1586   }
1587   bool mark_in_progress() {
1588     return _mark_in_progress;
1589   }
1590 
1591   // Print the maximum heap capacity.
1592   virtual size_t max_capacity() const;
1593 
1594   virtual jlong millis_since_last_gc();
1595 
1596   // Perform any cleanup actions necessary before allowing a verification.
1597   virtual void prepare_for_verify();
1598 
1599   // Perform verification.
1600 
1601   // vo == UsePrevMarking  -> use "prev" marking information,
1602   // vo == UseNextMarking -> use "next" marking information
1603   // vo == UseMarkWord    -> use the mark word in the object header
1604   //
1605   // NOTE: Only the "prev" marking information is guaranteed to be
1606   // consistent most of the time, so most calls to this should use
1607   // vo == UsePrevMarking.
1608   // Currently, there is only one case where this is called with
1609   // vo == UseNextMarking, which is to verify the "next" marking
1610   // information at the end of remark.
1611   // Currently there is only one place where this is called with
1612   // vo == UseMarkWord, which is to verify the marking during a
1613   // full GC.
1614   void verify(bool silent, VerifyOption vo);
1615 
1616   // Override; it uses the "prev" marking information
1617   virtual void verify(bool silent);
1618 
1619   virtual void print_on(outputStream* st) const;
1620   virtual void print_extended_on(outputStream* st) const;
1621 
1622   virtual void print_gc_threads_on(outputStream* st) const;
1623   virtual void gc_threads_do(ThreadClosure* tc) const;
1624 
1625   // Override
1626   void print_tracing_info() const;
1627 
1628   // The following two methods are helpful for debugging RSet issues.
1629   void print_cset_rsets() PRODUCT_RETURN;
1630   void print_all_rsets() PRODUCT_RETURN;
1631 
1632   // Convenience function to be used in situations where the heap type can be
1633   // asserted to be this type.
1634   static G1CollectedHeap* heap();
1635 
1636   void set_region_short_lived_locked(HeapRegion* hr);
1637   // add appropriate methods for any other surv rate groups
1638 
1639   YoungList* young_list() { return _young_list; }
1640 
1641   // debugging
1642   bool check_young_list_well_formed() {
1643     return _young_list->check_list_well_formed();
1644   }
1645 
1646   bool check_young_list_empty(bool check_heap,
1647                               bool check_sample = true);
1648 
1649   // *** Stuff related to concurrent marking.  It's not clear to me that so
1650   // many of these need to be public.
1651 
1652   // The functions below are helper functions that a subclass of
1653   // "CollectedHeap" can use in the implementation of its virtual
1654   // functions.
1655   // This performs a concurrent marking of the live objects in a
1656   // bitmap off to the side.
1657   void doConcurrentMark();
1658 
1659   bool isMarkedPrev(oop obj) const;
1660   bool isMarkedNext(oop obj) const;
1661 
1662   // Determine if an object is dead, given the object and also
1663   // the region to which the object belongs. An object is dead
1664   // iff a) it was not allocated since the last mark and b) it
1665   // is not marked.
1666 
1667   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1668     return
1669       !hr->obj_allocated_since_prev_marking(obj) &&
1670       !isMarkedPrev(obj);
1671   }
1672 
1673   // This function returns true when an object has been
1674   // around since the previous marking and hasn't yet
1675   // been marked during this marking.
1676 
1677   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1678     return
1679       !hr->obj_allocated_since_next_marking(obj) &&
1680       !isMarkedNext(obj);
1681   }
1682 
1683   // Determine if an object is dead, given only the object itself.
1684   // This will find the region to which the object belongs and
1685   // then call the region version of the same function.
1686 
1687   // Added if it is in permanent gen it isn't dead.
1688   // Added if it is NULL it isn't dead.
1689 
1690   bool is_obj_dead(const oop obj) const {
1691     const HeapRegion* hr = heap_region_containing(obj);
1692     if (hr == NULL) {
1693       if (Universe::heap()->is_in_permanent(obj))
1694         return false;
1695       else if (obj == NULL) return false;
1696       else return true;
1697     }
1698     else return is_obj_dead(obj, hr);
1699   }
1700 
1701   bool is_obj_ill(const oop obj) const {
1702     const HeapRegion* hr = heap_region_containing(obj);
1703     if (hr == NULL) {
1704       if (Universe::heap()->is_in_permanent(obj))
1705         return false;
1706       else if (obj == NULL) return false;
1707       else return true;
1708     }
1709     else return is_obj_ill(obj, hr);
1710   }
1711 
1712   // The methods below are here for convenience and dispatch the
1713   // appropriate method depending on value of the given VerifyOption
1714   // parameter. The options for that parameter are:
1715   //
1716   // vo == UsePrevMarking -> use "prev" marking information,
1717   // vo == UseNextMarking -> use "next" marking information,
1718   // vo == UseMarkWord    -> use mark word from object header
1719 
1720   bool is_obj_dead_cond(const oop obj,
1721                         const HeapRegion* hr,
1722                         const VerifyOption vo) const {
1723     switch (vo) {
1724     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
1725     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
1726     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
1727     default:                            ShouldNotReachHere();
1728     }
1729     return false; // keep some compilers happy
1730   }
1731 
1732   bool is_obj_dead_cond(const oop obj,
1733                         const VerifyOption vo) const {
1734     switch (vo) {
1735     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
1736     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
1737     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
1738     default:                            ShouldNotReachHere();
1739     }
1740     return false; // keep some compilers happy
1741   }
1742 
1743   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1744   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1745   bool is_marked(oop obj, VerifyOption vo);
1746   const char* top_at_mark_start_str(VerifyOption vo);
1747 
1748   // The following is just to alert the verification code
1749   // that a full collection has occurred and that the
1750   // remembered sets are no longer up to date.
1751   bool _full_collection;
1752   void set_full_collection() { _full_collection = true;}
1753   void clear_full_collection() {_full_collection = false;}
1754   bool full_collection() {return _full_collection;}
1755 
1756   ConcurrentMark* concurrent_mark() const { return _cm; }
1757   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1758 
1759   // The dirty cards region list is used to record a subset of regions
1760   // whose cards need clearing. The list if populated during the
1761   // remembered set scanning and drained during the card table
1762   // cleanup. Although the methods are reentrant, population/draining
1763   // phases must not overlap. For synchronization purposes the last
1764   // element on the list points to itself.
1765   HeapRegion* _dirty_cards_region_list;
1766   void push_dirty_cards_region(HeapRegion* hr);
1767   HeapRegion* pop_dirty_cards_region();
1768 
1769 public:
1770   void stop_conc_gc_threads();
1771 
1772   size_t pending_card_num();
1773   size_t cards_scanned();
1774 
1775 protected:
1776   size_t _max_heap_capacity;
1777 };
1778 
1779 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1780 private:
1781   bool        _retired;
1782 
1783 public:
1784   G1ParGCAllocBuffer(size_t gclab_word_size);
1785 
1786   void set_buf(HeapWord* buf) {
1787     ParGCAllocBuffer::set_buf(buf);
1788     _retired = false;
1789   }
1790 
1791   void retire(bool end_of_gc, bool retain) {
1792     if (_retired)
1793       return;
1794     ParGCAllocBuffer::retire(end_of_gc, retain);
1795     _retired = true;
1796   }
1797 };
1798 
1799 class G1ParScanThreadState : public StackObj {
1800 protected:
1801   G1CollectedHeap* _g1h;
1802   RefToScanQueue*  _refs;
1803   DirtyCardQueue   _dcq;
1804   CardTableModRefBS* _ct_bs;
1805   G1RemSet* _g1_rem;
1806 
1807   G1ParGCAllocBuffer  _surviving_alloc_buffer;
1808   G1ParGCAllocBuffer  _tenured_alloc_buffer;
1809   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
1810   ageTable            _age_table;
1811 
1812   size_t           _alloc_buffer_waste;
1813   size_t           _undo_waste;
1814 
1815   OopsInHeapRegionClosure*      _evac_failure_cl;
1816   G1ParScanHeapEvacClosure*     _evac_cl;
1817   G1ParScanPartialArrayClosure* _partial_scan_cl;
1818 
1819   int _hash_seed;
1820   uint _queue_num;
1821 
1822   size_t _term_attempts;
1823 
1824   double _start;
1825   double _start_strong_roots;
1826   double _strong_roots_time;
1827   double _start_term;
1828   double _term_time;
1829 
1830   // Map from young-age-index (0 == not young, 1 is youngest) to
1831   // surviving words. base is what we get back from the malloc call
1832   size_t* _surviving_young_words_base;
1833   // this points into the array, as we use the first few entries for padding
1834   size_t* _surviving_young_words;
1835 
1836 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1837 
1838   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1839 
1840   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1841 
1842   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1843   CardTableModRefBS* ctbs()                      { return _ct_bs; }
1844 
1845   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1846     if (!from->is_survivor()) {
1847       _g1_rem->par_write_ref(from, p, tid);
1848     }
1849   }
1850 
1851   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1852     // If the new value of the field points to the same region or
1853     // is the to-space, we don't need to include it in the Rset updates.
1854     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1855       size_t card_index = ctbs()->index_for(p);
1856       // If the card hasn't been added to the buffer, do it.
1857       if (ctbs()->mark_card_deferred(card_index)) {
1858         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1859       }
1860     }
1861   }
1862 
1863 public:
1864   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
1865 
1866   ~G1ParScanThreadState() {
1867     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
1868   }
1869 
1870   RefToScanQueue*   refs()            { return _refs;             }
1871   ageTable*         age_table()       { return &_age_table;       }
1872 
1873   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1874     return _alloc_buffers[purpose];
1875   }
1876 
1877   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1878   size_t undo_waste() const                      { return _undo_waste; }
1879 
1880 #ifdef ASSERT
1881   bool verify_ref(narrowOop* ref) const;
1882   bool verify_ref(oop* ref) const;
1883   bool verify_task(StarTask ref) const;
1884 #endif // ASSERT
1885 
1886   template <class T> void push_on_queue(T* ref) {
1887     assert(verify_ref(ref), "sanity");
1888     refs()->push(ref);
1889   }
1890 
1891   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1892     if (G1DeferredRSUpdate) {
1893       deferred_rs_update(from, p, tid);
1894     } else {
1895       immediate_rs_update(from, p, tid);
1896     }
1897   }
1898 
1899   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1900     HeapWord* obj = NULL;
1901     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1902     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1903       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1904       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
1905       alloc_buf->retire(false /* end_of_gc */, false /* retain */);
1906 
1907       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1908       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1909       // Otherwise.
1910       alloc_buf->set_word_size(gclab_word_size);
1911       alloc_buf->set_buf(buf);
1912 
1913       obj = alloc_buf->allocate(word_sz);
1914       assert(obj != NULL, "buffer was definitely big enough...");
1915     } else {
1916       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1917     }
1918     return obj;
1919   }
1920 
1921   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1922     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1923     if (obj != NULL) return obj;
1924     return allocate_slow(purpose, word_sz);
1925   }
1926 
1927   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
1928     if (alloc_buffer(purpose)->contains(obj)) {
1929       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
1930              "should contain whole object");
1931       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
1932     } else {
1933       CollectedHeap::fill_with_object(obj, word_sz);
1934       add_to_undo_waste(word_sz);
1935     }
1936   }
1937 
1938   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
1939     _evac_failure_cl = evac_failure_cl;
1940   }
1941   OopsInHeapRegionClosure* evac_failure_closure() {
1942     return _evac_failure_cl;
1943   }
1944 
1945   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
1946     _evac_cl = evac_cl;
1947   }
1948 
1949   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
1950     _partial_scan_cl = partial_scan_cl;
1951   }
1952 
1953   int* hash_seed() { return &_hash_seed; }
1954   uint queue_num() { return _queue_num; }
1955 
1956   size_t term_attempts() const  { return _term_attempts; }
1957   void note_term_attempt() { _term_attempts++; }
1958 
1959   void start_strong_roots() {
1960     _start_strong_roots = os::elapsedTime();
1961   }
1962   void end_strong_roots() {
1963     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
1964   }
1965   double strong_roots_time() const { return _strong_roots_time; }
1966 
1967   void start_term_time() {
1968     note_term_attempt();
1969     _start_term = os::elapsedTime();
1970   }
1971   void end_term_time() {
1972     _term_time += (os::elapsedTime() - _start_term);
1973   }
1974   double term_time() const { return _term_time; }
1975 
1976   double elapsed_time() const {
1977     return os::elapsedTime() - _start;
1978   }
1979 
1980   static void
1981     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
1982   void
1983     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
1984 
1985   size_t* surviving_young_words() {
1986     // We add on to hide entry 0 which accumulates surviving words for
1987     // age -1 regions (i.e. non-young ones)
1988     return _surviving_young_words;
1989   }
1990 
1991   void retire_alloc_buffers() {
1992     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1993       size_t waste = _alloc_buffers[ap]->words_remaining();
1994       add_to_alloc_buffer_waste(waste);
1995       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
1996                                                  true /* end_of_gc */,
1997                                                  false /* retain */);
1998     }
1999   }
2000 
2001   template <class T> void deal_with_reference(T* ref_to_scan) {
2002     if (has_partial_array_mask(ref_to_scan)) {
2003       _partial_scan_cl->do_oop_nv(ref_to_scan);
2004     } else {
2005       // Note: we can use "raw" versions of "region_containing" because
2006       // "obj_to_scan" is definitely in the heap, and is not in a
2007       // humongous region.
2008       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
2009       _evac_cl->set_region(r);
2010       _evac_cl->do_oop_nv(ref_to_scan);
2011     }
2012   }
2013 
2014   void deal_with_reference(StarTask ref) {
2015     assert(verify_task(ref), "sanity");
2016     if (ref.is_narrow()) {
2017       deal_with_reference((narrowOop*)ref);
2018     } else {
2019       deal_with_reference((oop*)ref);
2020     }
2021   }
2022 
2023 public:
2024   void trim_queue();
2025 };
2026 
2027 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP