1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  31 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  32 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  34 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  35 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
  36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  37 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  38 #include "gc_implementation/shared/gcHeapSummary.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_implementation/shared/spaceDecorator.hpp"
  44 #include "gc_interface/gcCause.hpp"
  45 #include "memory/gcLocker.inline.hpp"
  46 #include "memory/referencePolicy.hpp"
  47 #include "memory/referenceProcessor.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/fprofiler.hpp"
  51 #include "runtime/safepoint.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/management.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 
  58 elapsedTimer        PSMarkSweep::_accumulated_time;
  59 unsigned int        PSMarkSweep::_total_invocations = 0;
  60 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  61 CollectorCounters*  PSMarkSweep::_counters = NULL;
  62 
  63 void PSMarkSweep::initialize() {
  64   MemRegion mr = Universe::heap()->reserved_region();
  65   _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
  66   _counters = new CollectorCounters("PSMarkSweep", 1);
  67 }
  68 
  69 // This method contains all heap specific policy for invoking mark sweep.
  70 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  71 // the heap. It will do nothing further. If we need to bail out for policy
  72 // reasons, scavenge before full gc, or any other specialized behavior, it
  73 // needs to be added here.
  74 //
  75 // Note that this method should only be called from the vm_thread while
  76 // at a safepoint!
  77 //
  78 // Note that the all_soft_refs_clear flag in the collector policy
  79 // may be true because this method can be called without intervening
  80 // activity.  For example when the heap space is tight and full measure
  81 // are being taken to free space.
  82 
  83 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  84   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  85   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  86   assert(!Universe::heap()->is_gc_active(), "not reentrant");
  87 
  88   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  89   GCCause::Cause gc_cause = heap->gc_cause();
  90   PSAdaptiveSizePolicy* policy = heap->size_policy();
  91   IsGCActiveMark mark;
  92 
  93   if (ScavengeBeforeFullGC) {
  94     PSScavenge::invoke_no_policy();
  95   }
  96 
  97   const bool clear_all_soft_refs =
  98     heap->collector_policy()->should_clear_all_soft_refs();
  99 
 100   int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
 101   IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
 102   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
 103 }
 104 
 105 // This method contains no policy. You should probably
 106 // be calling invoke() instead.
 107 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 108   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 109   assert(ref_processor() != NULL, "Sanity");
 110 
 111   if (GC_locker::check_active_before_gc()) {
 112     return false;
 113   }
 114 
 115   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 116   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 117   GCCause::Cause gc_cause = heap->gc_cause();
 118 
 119   _gc_timer->register_gc_start(os::elapsed_counter());
 120   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 121 
 122   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 123 
 124   // The scope of casr should end after code that can change
 125   // CollectorPolicy::_should_clear_all_soft_refs.
 126   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 127 
 128   PSYoungGen* young_gen = heap->young_gen();
 129   PSOldGen* old_gen = heap->old_gen();
 130   PSPermGen* perm_gen = heap->perm_gen();
 131 
 132   // Increment the invocation count
 133   heap->increment_total_collections(true /* full */);
 134 
 135   // Save information needed to minimize mangling
 136   heap->record_gen_tops_before_GC();
 137 
 138   // We need to track unique mark sweep invocations as well.
 139   _total_invocations++;
 140 
 141   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 142 
 143   heap->print_heap_before_gc();
 144   heap->trace_heap_before_gc(_gc_tracer);
 145 
 146   // Fill in TLABs
 147   heap->accumulate_statistics_all_tlabs();
 148   heap->ensure_parsability(true);  // retire TLABs
 149 
 150   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 151     HandleMark hm;  // Discard invalid handles created during verification
 152     gclog_or_tty->print(" VerifyBeforeGC:");
 153     Universe::verify();
 154   }
 155 
 156   // Verify object start arrays
 157   if (VerifyObjectStartArray &&
 158       VerifyBeforeGC) {
 159     old_gen->verify_object_start_array();
 160     perm_gen->verify_object_start_array();
 161   }
 162 
 163   heap->pre_full_gc_dump(_gc_timer);
 164 
 165   // Filled in below to track the state of the young gen after the collection.
 166   bool eden_empty;
 167   bool survivors_empty;
 168   bool young_gen_empty;
 169 
 170   {
 171     HandleMark hm;
 172 
 173     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 174     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 175     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
 176     TraceCollectorStats tcs(counters());
 177     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 178 
 179     if (TraceGen1Time) accumulated_time()->start();
 180 
 181     // Let the size policy know we're starting
 182     size_policy->major_collection_begin();
 183 
 184     // When collecting the permanent generation methodOops may be moving,
 185     // so we either have to flush all bcp data or convert it into bci.
 186     CodeCache::gc_prologue();
 187     Threads::gc_prologue();
 188     BiasedLocking::preserve_marks();
 189 
 190     // Capture heap size before collection for printing.
 191     size_t prev_used = heap->used();
 192 
 193     // Capture perm gen size before collection for sizing.
 194     size_t perm_gen_prev_used = perm_gen->used_in_bytes();
 195 
 196     // For PrintGCDetails
 197     size_t old_gen_prev_used = old_gen->used_in_bytes();
 198     size_t young_gen_prev_used = young_gen->used_in_bytes();
 199 
 200     allocate_stacks();
 201 
 202     COMPILER2_PRESENT(DerivedPointerTable::clear());
 203 
 204     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 205     ref_processor()->setup_policy(clear_all_softrefs);
 206 
 207     mark_sweep_phase1(clear_all_softrefs);
 208 
 209     mark_sweep_phase2();
 210 
 211     // Don't add any more derived pointers during phase3
 212     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
 213     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
 214 
 215     mark_sweep_phase3();
 216 
 217     mark_sweep_phase4();
 218 
 219     restore_marks();
 220 
 221     deallocate_stacks();
 222 
 223     if (ZapUnusedHeapArea) {
 224       // Do a complete mangle (top to end) because the usage for
 225       // scratch does not maintain a top pointer.
 226       young_gen->to_space()->mangle_unused_area_complete();
 227     }
 228 
 229     eden_empty = young_gen->eden_space()->is_empty();
 230     if (!eden_empty) {
 231       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 232     }
 233 
 234     // Update heap occupancy information which is used as
 235     // input to soft ref clearing policy at the next gc.
 236     Universe::update_heap_info_at_gc();
 237 
 238     survivors_empty = young_gen->from_space()->is_empty() &&
 239                       young_gen->to_space()->is_empty();
 240     young_gen_empty = eden_empty && survivors_empty;
 241 
 242     BarrierSet* bs = heap->barrier_set();
 243     if (bs->is_a(BarrierSet::ModRef)) {
 244       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
 245       MemRegion old_mr = heap->old_gen()->reserved();
 246       MemRegion perm_mr = heap->perm_gen()->reserved();
 247       assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
 248 
 249       if (young_gen_empty) {
 250         modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
 251       } else {
 252         modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
 253       }
 254     }
 255 
 256     BiasedLocking::restore_marks();
 257     Threads::gc_epilogue();
 258     CodeCache::gc_epilogue();
 259     JvmtiExport::gc_epilogue();
 260 
 261     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 262 
 263     ref_processor()->enqueue_discovered_references(NULL);
 264 
 265     // Update time of last GC
 266     reset_millis_since_last_gc();
 267 
 268     // Let the size policy know we're done
 269     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 270 
 271     if (UseAdaptiveSizePolicy) {
 272 
 273       if (PrintAdaptiveSizePolicy) {
 274         gclog_or_tty->print("AdaptiveSizeStart: ");
 275         gclog_or_tty->stamp();
 276         gclog_or_tty->print_cr(" collection: %d ",
 277                        heap->total_collections());
 278         if (Verbose) {
 279           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
 280             " perm_gen_capacity: %d ",
 281             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
 282             perm_gen->capacity_in_bytes());
 283         }
 284       }
 285 
 286       // Don't check if the size_policy is ready here.  Let
 287       // the size_policy check that internally.
 288       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 289           ((gc_cause != GCCause::_java_lang_system_gc) ||
 290             UseAdaptiveSizePolicyWithSystemGC)) {
 291         // Calculate optimal free space amounts
 292         assert(young_gen->max_size() >
 293           young_gen->from_space()->capacity_in_bytes() +
 294           young_gen->to_space()->capacity_in_bytes(),
 295           "Sizes of space in young gen are out-of-bounds");
 296         size_t max_eden_size = young_gen->max_size() -
 297           young_gen->from_space()->capacity_in_bytes() -
 298           young_gen->to_space()->capacity_in_bytes();
 299         size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
 300                                  young_gen->eden_space()->used_in_bytes(),
 301                                  old_gen->used_in_bytes(),
 302                                  perm_gen->used_in_bytes(),
 303                                  young_gen->eden_space()->capacity_in_bytes(),
 304                                  old_gen->max_gen_size(),
 305                                  max_eden_size,
 306                                  true /* full gc*/,
 307                                  gc_cause,
 308                                  heap->collector_policy());
 309 
 310         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 311 
 312         // Don't resize the young generation at an major collection.  A
 313         // desired young generation size may have been calculated but
 314         // resizing the young generation complicates the code because the
 315         // resizing of the old generation may have moved the boundary
 316         // between the young generation and the old generation.  Let the
 317         // young generation resizing happen at the minor collections.
 318       }
 319       if (PrintAdaptiveSizePolicy) {
 320         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 321                        heap->total_collections());
 322       }
 323     }
 324 
 325     if (UsePerfData) {
 326       heap->gc_policy_counters()->update_counters();
 327       heap->gc_policy_counters()->update_old_capacity(
 328         old_gen->capacity_in_bytes());
 329       heap->gc_policy_counters()->update_young_capacity(
 330         young_gen->capacity_in_bytes());
 331     }
 332 
 333     heap->resize_all_tlabs();
 334 
 335     // We collected the perm gen, so we'll resize it here.
 336     perm_gen->compute_new_size(perm_gen_prev_used);
 337 
 338     if (TraceGen1Time) accumulated_time()->stop();
 339 
 340     if (PrintGC) {
 341       if (PrintGCDetails) {
 342         // Don't print a GC timestamp here.  This is after the GC so
 343         // would be confusing.
 344         young_gen->print_used_change(young_gen_prev_used);
 345         old_gen->print_used_change(old_gen_prev_used);
 346       }
 347       heap->print_heap_change(prev_used);
 348       // Do perm gen after heap becase prev_used does
 349       // not include the perm gen (done this way in the other
 350       // collectors).
 351       if (PrintGCDetails) {
 352         perm_gen->print_used_change(perm_gen_prev_used);
 353       }
 354     }
 355 
 356     // Track memory usage and detect low memory
 357     MemoryService::track_memory_usage();
 358     heap->update_counters();
 359   }
 360 
 361   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 362     HandleMark hm;  // Discard invalid handles created during verification
 363     gclog_or_tty->print(" VerifyAfterGC:");
 364     Universe::verify();
 365   }
 366 
 367   // Re-verify object start arrays
 368   if (VerifyObjectStartArray &&
 369       VerifyAfterGC) {
 370     old_gen->verify_object_start_array();
 371     perm_gen->verify_object_start_array();
 372   }
 373 
 374   if (ZapUnusedHeapArea) {
 375     old_gen->object_space()->check_mangled_unused_area_complete();
 376     perm_gen->object_space()->check_mangled_unused_area_complete();
 377   }
 378 
 379   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 380 
 381   heap->print_heap_after_gc();
 382   heap->trace_heap_after_gc(_gc_tracer);
 383 
 384   heap->post_full_gc_dump(_gc_timer);
 385 
 386 #ifdef TRACESPINNING
 387   ParallelTaskTerminator::print_termination_counts();
 388 #endif
 389 
 390   _gc_timer->register_gc_end(os::elapsed_counter());
 391 
 392   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 393 
 394   return true;
 395 }
 396 
 397 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 398                                              PSYoungGen* young_gen,
 399                                              PSOldGen* old_gen) {
 400   MutableSpace* const eden_space = young_gen->eden_space();
 401   assert(!eden_space->is_empty(), "eden must be non-empty");
 402   assert(young_gen->virtual_space()->alignment() ==
 403          old_gen->virtual_space()->alignment(), "alignments do not match");
 404 
 405   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 406     return false;
 407   }
 408 
 409   // Both generations must be completely committed.
 410   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 411     return false;
 412   }
 413   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 414     return false;
 415   }
 416 
 417   // Figure out how much to take from eden.  Include the average amount promoted
 418   // in the total; otherwise the next young gen GC will simply bail out to a
 419   // full GC.
 420   const size_t alignment = old_gen->virtual_space()->alignment();
 421   const size_t eden_used = eden_space->used_in_bytes();
 422   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 423   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
 424   const size_t eden_capacity = eden_space->capacity_in_bytes();
 425 
 426   if (absorb_size >= eden_capacity) {
 427     return false; // Must leave some space in eden.
 428   }
 429 
 430   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 431   if (new_young_size < young_gen->min_gen_size()) {
 432     return false; // Respect young gen minimum size.
 433   }
 434 
 435   if (TraceAdaptiveGCBoundary && Verbose) {
 436     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
 437                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 438                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 439                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 440                         absorb_size / K,
 441                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 442                         young_gen->from_space()->used_in_bytes() / K,
 443                         young_gen->to_space()->used_in_bytes() / K,
 444                         young_gen->capacity_in_bytes() / K, new_young_size / K);
 445   }
 446 
 447   // Fill the unused part of the old gen.
 448   MutableSpace* const old_space = old_gen->object_space();
 449   HeapWord* const unused_start = old_space->top();
 450   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 451 
 452   if (unused_words > 0) {
 453     if (unused_words < CollectedHeap::min_fill_size()) {
 454       return false;  // If the old gen cannot be filled, must give up.
 455     }
 456     CollectedHeap::fill_with_objects(unused_start, unused_words);
 457   }
 458 
 459   // Take the live data from eden and set both top and end in the old gen to
 460   // eden top.  (Need to set end because reset_after_change() mangles the region
 461   // from end to virtual_space->high() in debug builds).
 462   HeapWord* const new_top = eden_space->top();
 463   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 464                                         absorb_size);
 465   young_gen->reset_after_change();
 466   old_space->set_top(new_top);
 467   old_space->set_end(new_top);
 468   old_gen->reset_after_change();
 469 
 470   // Update the object start array for the filler object and the data from eden.
 471   ObjectStartArray* const start_array = old_gen->start_array();
 472   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 473     start_array->allocate_block(p);
 474   }
 475 
 476   // Could update the promoted average here, but it is not typically updated at
 477   // full GCs and the value to use is unclear.  Something like
 478   //
 479   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 480 
 481   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 482   return true;
 483 }
 484 
 485 void PSMarkSweep::allocate_stacks() {
 486   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 487   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 488 
 489   PSYoungGen* young_gen = heap->young_gen();
 490 
 491   MutableSpace* to_space = young_gen->to_space();
 492   _preserved_marks = (PreservedMark*)to_space->top();
 493   _preserved_count = 0;
 494 
 495   // We want to calculate the size in bytes first.
 496   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 497   // Now divide by the size of a PreservedMark
 498   _preserved_count_max /= sizeof(PreservedMark);
 499 }
 500 
 501 
 502 void PSMarkSweep::deallocate_stacks() {
 503   _preserved_mark_stack.clear(true);
 504   _preserved_oop_stack.clear(true);
 505   _marking_stack.clear();
 506   _objarray_stack.clear(true);
 507   _revisit_klass_stack.clear(true);
 508   _revisit_mdo_stack.clear(true);
 509 }
 510 
 511 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 512   // Recursively traverse all live objects and mark them
 513   GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer);
 514   trace(" 1");
 515 
 516   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 517   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 518 
 519   // General strong roots.
 520   {
 521     ParallelScavengeHeap::ParStrongRootsScope psrs;
 522     Universe::oops_do(mark_and_push_closure());
 523     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 524     CodeBlobToOopClosure each_active_code_blob(mark_and_push_closure(), /*do_marking=*/ true);
 525     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
 526     ObjectSynchronizer::oops_do(mark_and_push_closure());
 527     FlatProfiler::oops_do(mark_and_push_closure());
 528     Management::oops_do(mark_and_push_closure());
 529     JvmtiExport::oops_do(mark_and_push_closure());
 530     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 531     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 532     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 533   }
 534 
 535   // Flush marking stack.
 536   follow_stack();
 537 
 538   // Process reference objects found during marking
 539   {
 540     ref_processor()->setup_policy(clear_all_softrefs);
 541     const ReferenceProcessorStats& stats =
 542       ref_processor()->process_discovered_references(
 543         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer);
 544     gc_tracer()->report_gc_reference_stats(stats);
 545   }
 546 
 547   // Follow system dictionary roots and unload classes
 548   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
 549 
 550   // Follow code cache roots
 551   CodeCache::do_unloading(is_alive_closure(), mark_and_push_closure(),
 552                           purged_class);
 553   follow_stack(); // Flush marking stack
 554 
 555   // Update subklass/sibling/implementor links of live klasses
 556   follow_weak_klass_links();
 557   assert(_marking_stack.is_empty(), "just drained");
 558 
 559   // Visit memoized mdo's and clear unmarked weak refs
 560   follow_mdo_weak_refs();
 561   assert(_marking_stack.is_empty(), "just drained");
 562 
 563   // Visit interned string tables and delete unmarked oops
 564   StringTable::unlink(is_alive_closure());
 565   // Clean up unreferenced symbols in symbol table.
 566   SymbolTable::unlink();
 567 
 568   assert(_marking_stack.is_empty(), "stack should be empty by now");
 569 }
 570 
 571 
 572 void PSMarkSweep::mark_sweep_phase2() {
 573   GCTraceTime tm("phase 2", PrintGCDetails && Verbose, true, _gc_timer);
 574   trace("2");
 575 
 576   // Now all live objects are marked, compute the new object addresses.
 577 
 578   // It is imperative that we traverse perm_gen LAST. If dead space is
 579   // allowed a range of dead object may get overwritten by a dead int
 580   // array. If perm_gen is not traversed last a klassOop may get
 581   // overwritten. This is fine since it is dead, but if the class has dead
 582   // instances we have to skip them, and in order to find their size we
 583   // need the klassOop!
 584   //
 585   // It is not required that we traverse spaces in the same order in
 586   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 587   // tracking expects us to do so. See comment under phase4.
 588 
 589   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 590   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 591 
 592   PSOldGen* old_gen = heap->old_gen();
 593   PSPermGen* perm_gen = heap->perm_gen();
 594 
 595   // Begin compacting into the old gen
 596   PSMarkSweepDecorator::set_destination_decorator_tenured();
 597 
 598   // This will also compact the young gen spaces.
 599   old_gen->precompact();
 600 
 601   // Compact the perm gen into the perm gen
 602   PSMarkSweepDecorator::set_destination_decorator_perm_gen();
 603 
 604   perm_gen->precompact();
 605 }
 606 
 607 // This should be moved to the shared markSweep code!
 608 class PSAlwaysTrueClosure: public BoolObjectClosure {
 609 public:
 610   void do_object(oop p) { ShouldNotReachHere(); }
 611   bool do_object_b(oop p) { return true; }
 612 };
 613 static PSAlwaysTrueClosure always_true;
 614 
 615 void PSMarkSweep::mark_sweep_phase3() {
 616   // Adjust the pointers to reflect the new locations
 617   GCTraceTime tm("phase 3", PrintGCDetails && Verbose, true, _gc_timer);
 618   trace("3");
 619 
 620   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 621   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 622 
 623   PSYoungGen* young_gen = heap->young_gen();
 624   PSOldGen* old_gen = heap->old_gen();
 625   PSPermGen* perm_gen = heap->perm_gen();
 626 
 627   // General strong roots.
 628   Universe::oops_do(adjust_root_pointer_closure());
 629   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
 630   Threads::oops_do(adjust_root_pointer_closure(), NULL);
 631   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
 632   FlatProfiler::oops_do(adjust_root_pointer_closure());
 633   Management::oops_do(adjust_root_pointer_closure());
 634   JvmtiExport::oops_do(adjust_root_pointer_closure());
 635   // SO_AllClasses
 636   SystemDictionary::oops_do(adjust_root_pointer_closure());
 637   //CodeCache::scavenge_root_nmethods_oops_do(adjust_root_pointer_closure());
 638 
 639   // Now adjust pointers in remaining weak roots.  (All of which should
 640   // have been cleared if they pointed to non-surviving objects.)
 641   // Global (weak) JNI handles
 642   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
 643 
 644   CodeCache::oops_do(adjust_pointer_closure());
 645   StringTable::oops_do(adjust_root_pointer_closure());
 646   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
 647   PSScavenge::reference_processor()->weak_oops_do(adjust_root_pointer_closure());
 648 
 649   adjust_marks();
 650 
 651   young_gen->adjust_pointers();
 652   old_gen->adjust_pointers();
 653   perm_gen->adjust_pointers();
 654 }
 655 
 656 void PSMarkSweep::mark_sweep_phase4() {
 657   EventMark m("4 compact heap");
 658   GCTraceTime tm("phase 4", PrintGCDetails && Verbose, true, _gc_timer);
 659   trace("4");
 660 
 661   // All pointers are now adjusted, move objects accordingly
 662 
 663   // It is imperative that we traverse perm_gen first in phase4. All
 664   // classes must be allocated earlier than their instances, and traversing
 665   // perm_gen first makes sure that all klassOops have moved to their new
 666   // location before any instance does a dispatch through it's klass!
 667   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 668   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 669 
 670   PSYoungGen* young_gen = heap->young_gen();
 671   PSOldGen* old_gen = heap->old_gen();
 672   PSPermGen* perm_gen = heap->perm_gen();
 673 
 674   perm_gen->compact();
 675   old_gen->compact();
 676   young_gen->compact();
 677 }
 678 
 679 jlong PSMarkSweep::millis_since_last_gc() {
 680   // We need a monotonically non-deccreasing time in ms but
 681   // os::javaTimeMillis() does not guarantee monotonicity.
 682   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 683   jlong ret_val = now - _time_of_last_gc;
 684   // XXX See note in genCollectedHeap::millis_since_last_gc().
 685   if (ret_val < 0) {
 686     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
 687     return 0;
 688   }
 689   return ret_val;
 690 }
 691 
 692 void PSMarkSweep::reset_millis_since_last_gc() {
 693   // We need a monotonically non-deccreasing time in ms but
 694   // os::javaTimeMillis() does not guarantee monotonicity.
 695   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 696 }