1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifndef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  69 #else
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74 #endif // IA32 || AMD64
  75   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  76   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  77   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  78   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  79   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  80   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  81   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  82   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  83   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  84   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  85   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  86   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  87   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  88   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  89   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  90   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  91   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  92   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
  93 };
  94 
  95 // Map ideal registers (machine types) to ideal types
  96 const Type *Type::mreg2type[_last_machine_leaf];
  97 
  98 // Map basic types to canonical Type* pointers.
  99 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 100 
 101 // Map basic types to constant-zero Types.
 102 const Type* Type::            _zero_type[T_CONFLICT+1];
 103 
 104 // Map basic types to array-body alias types.
 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 106 
 107 //=============================================================================
 108 // Convenience common pre-built types.
 109 const Type *Type::ABIO;         // State-of-machine only
 110 const Type *Type::BOTTOM;       // All values
 111 const Type *Type::CONTROL;      // Control only
 112 const Type *Type::DOUBLE;       // All doubles
 113 const Type *Type::FLOAT;        // All floats
 114 const Type *Type::HALF;         // Placeholder half of doublewide type
 115 const Type *Type::MEMORY;       // Abstract store only
 116 const Type *Type::RETURN_ADDRESS;
 117 const Type *Type::TOP;          // No values in set
 118 
 119 //------------------------------get_const_type---------------------------
 120 const Type* Type::get_const_type(ciType* type) {
 121   if (type == NULL) {
 122     return NULL;
 123   } else if (type->is_primitive_type()) {
 124     return get_const_basic_type(type->basic_type());
 125   } else {
 126     return TypeOopPtr::make_from_klass(type->as_klass());
 127   }
 128 }
 129 
 130 //---------------------------array_element_basic_type---------------------------------
 131 // Mapping to the array element's basic type.
 132 BasicType Type::array_element_basic_type() const {
 133   BasicType bt = basic_type();
 134   if (bt == T_INT) {
 135     if (this == TypeInt::INT)   return T_INT;
 136     if (this == TypeInt::CHAR)  return T_CHAR;
 137     if (this == TypeInt::BYTE)  return T_BYTE;
 138     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 139     if (this == TypeInt::SHORT) return T_SHORT;
 140     return T_VOID;
 141   }
 142   return bt;
 143 }
 144 
 145 //---------------------------get_typeflow_type---------------------------------
 146 // Import a type produced by ciTypeFlow.
 147 const Type* Type::get_typeflow_type(ciType* type) {
 148   switch (type->basic_type()) {
 149 
 150   case ciTypeFlow::StateVector::T_BOTTOM:
 151     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 152     return Type::BOTTOM;
 153 
 154   case ciTypeFlow::StateVector::T_TOP:
 155     assert(type == ciTypeFlow::StateVector::top_type(), "");
 156     return Type::TOP;
 157 
 158   case ciTypeFlow::StateVector::T_NULL:
 159     assert(type == ciTypeFlow::StateVector::null_type(), "");
 160     return TypePtr::NULL_PTR;
 161 
 162   case ciTypeFlow::StateVector::T_LONG2:
 163     // The ciTypeFlow pass pushes a long, then the half.
 164     // We do the same.
 165     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 166     return TypeInt::TOP;
 167 
 168   case ciTypeFlow::StateVector::T_DOUBLE2:
 169     // The ciTypeFlow pass pushes double, then the half.
 170     // Our convention is the same.
 171     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 172     return Type::TOP;
 173 
 174   case T_ADDRESS:
 175     assert(type->is_return_address(), "");
 176     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 177 
 178   default:
 179     // make sure we did not mix up the cases:
 180     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 181     assert(type != ciTypeFlow::StateVector::top_type(), "");
 182     assert(type != ciTypeFlow::StateVector::null_type(), "");
 183     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 184     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 185     assert(!type->is_return_address(), "");
 186 
 187     return Type::get_const_type(type);
 188   }
 189 }
 190 
 191 
 192 //------------------------------make-------------------------------------------
 193 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 194 // and look for an existing copy in the type dictionary.
 195 const Type *Type::make( enum TYPES t ) {
 196   return (new Type(t))->hashcons();
 197 }
 198 
 199 //------------------------------cmp--------------------------------------------
 200 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 201   if( t1->_base != t2->_base )
 202     return 1;                   // Missed badly
 203   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 204   return !t1->eq(t2);           // Return ZERO if equal
 205 }
 206 
 207 //------------------------------hash-------------------------------------------
 208 int Type::uhash( const Type *const t ) {
 209   return t->hash();
 210 }
 211 
 212 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 213 
 214 //--------------------------Initialize_shared----------------------------------
 215 void Type::Initialize_shared(Compile* current) {
 216   // This method does not need to be locked because the first system
 217   // compilations (stub compilations) occur serially.  If they are
 218   // changed to proceed in parallel, then this section will need
 219   // locking.
 220 
 221   Arena* save = current->type_arena();
 222   Arena* shared_type_arena = new (mtCompiler)Arena();
 223 
 224   current->set_type_arena(shared_type_arena);
 225   _shared_type_dict =
 226     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 227                                   shared_type_arena, 128 );
 228   current->set_type_dict(_shared_type_dict);
 229 
 230   // Make shared pre-built types.
 231   CONTROL = make(Control);      // Control only
 232   TOP     = make(Top);          // No values in set
 233   MEMORY  = make(Memory);       // Abstract store only
 234   ABIO    = make(Abio);         // State-of-machine only
 235   RETURN_ADDRESS=make(Return_Address);
 236   FLOAT   = make(FloatBot);     // All floats
 237   DOUBLE  = make(DoubleBot);    // All doubles
 238   BOTTOM  = make(Bottom);       // Everything
 239   HALF    = make(Half);         // Placeholder half of doublewide type
 240 
 241   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 242   TypeF::ONE  = TypeF::make(1.0); // Float 1
 243 
 244   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 245   TypeD::ONE  = TypeD::make(1.0); // Double 1
 246 
 247   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 248   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 249   TypeInt::ONE     = TypeInt::make( 1);  //  1
 250   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 251   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 252   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 253   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 254   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 255   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 256   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 257   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 258   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 259   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 260   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 261   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 262   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 263   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 264   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 265   // CmpL is overloaded both as the bytecode computation returning
 266   // a trinary (-1,0,+1) integer result AND as an efficient long
 267   // compare returning optimizer ideal-type flags.
 268   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 269   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 270   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 271   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 272   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 273 
 274   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 275   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 276   TypeLong::ONE     = TypeLong::make( 1);        //  1
 277   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 278   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 279   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 280   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 281 
 282   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 283   fboth[0] = Type::CONTROL;
 284   fboth[1] = Type::CONTROL;
 285   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 286 
 287   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 288   ffalse[0] = Type::CONTROL;
 289   ffalse[1] = Type::TOP;
 290   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 291 
 292   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 293   fneither[0] = Type::TOP;
 294   fneither[1] = Type::TOP;
 295   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 296 
 297   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 298   ftrue[0] = Type::TOP;
 299   ftrue[1] = Type::CONTROL;
 300   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 301 
 302   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 303   floop[0] = Type::CONTROL;
 304   floop[1] = TypeInt::INT;
 305   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 306 
 307   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 308   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 309   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 310 
 311   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 312   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 313 
 314   const Type **fmembar = TypeTuple::fields(0);
 315   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 316 
 317   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 318   fsc[0] = TypeInt::CC;
 319   fsc[1] = Type::MEMORY;
 320   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 321 
 322   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 323   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 324   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 325   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 326                                            false, 0, oopDesc::mark_offset_in_bytes());
 327   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 328                                            false, 0, oopDesc::klass_offset_in_bytes());
 329   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 330 
 331   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 332 
 333   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 334   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 335 
 336   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 337 
 338   mreg2type[Op_Node] = Type::BOTTOM;
 339   mreg2type[Op_Set ] = 0;
 340   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 341   mreg2type[Op_RegI] = TypeInt::INT;
 342   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 343   mreg2type[Op_RegF] = Type::FLOAT;
 344   mreg2type[Op_RegD] = Type::DOUBLE;
 345   mreg2type[Op_RegL] = TypeLong::LONG;
 346   mreg2type[Op_RegFlags] = TypeInt::CC;
 347 
 348   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 349 
 350   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 351 
 352 #ifdef _LP64
 353   if (UseCompressedOops) {
 354     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 355     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 356   } else
 357 #endif
 358   {
 359     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 360     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 361   }
 362   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 363   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 364   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 365   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 366   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 367   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 368   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 369 
 370   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 371   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 372   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 373   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 374   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 375   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 376   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 377   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 378   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 379   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 380   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 381   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 382 
 383   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 384   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 385 
 386   const Type **fi2c = TypeTuple::fields(2);
 387   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 388   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 389   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 390 
 391   const Type **intpair = TypeTuple::fields(2);
 392   intpair[0] = TypeInt::INT;
 393   intpair[1] = TypeInt::INT;
 394   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 395 
 396   const Type **longpair = TypeTuple::fields(2);
 397   longpair[0] = TypeLong::LONG;
 398   longpair[1] = TypeLong::LONG;
 399   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 400 
 401   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 402   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 403   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 404   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 405   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 406   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 407   _const_basic_type[T_INT]         = TypeInt::INT;
 408   _const_basic_type[T_LONG]        = TypeLong::LONG;
 409   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 410   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 411   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 412   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 413   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 414   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 415   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 416 
 417   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 418   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 419   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 420   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 421   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 422   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 423   _zero_type[T_INT]         = TypeInt::ZERO;
 424   _zero_type[T_LONG]        = TypeLong::ZERO;
 425   _zero_type[T_FLOAT]       = TypeF::ZERO;
 426   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 427   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 428   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 429   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 430   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 431 
 432   // get_zero_type() should not happen for T_CONFLICT
 433   _zero_type[T_CONFLICT]= NULL;
 434 
 435   // Vector predefined types, it needs initialized _const_basic_type[].
 436   if (Matcher::vector_size_supported(T_BYTE,4)) {
 437     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 438   }
 439   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 440     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 441   }
 442   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 443     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 444   }
 445   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 446     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 447   }
 448   mreg2type[Op_VecS] = TypeVect::VECTS;
 449   mreg2type[Op_VecD] = TypeVect::VECTD;
 450   mreg2type[Op_VecX] = TypeVect::VECTX;
 451   mreg2type[Op_VecY] = TypeVect::VECTY;
 452 
 453   // Restore working type arena.
 454   current->set_type_arena(save);
 455   current->set_type_dict(NULL);
 456 }
 457 
 458 //------------------------------Initialize-------------------------------------
 459 void Type::Initialize(Compile* current) {
 460   assert(current->type_arena() != NULL, "must have created type arena");
 461 
 462   if (_shared_type_dict == NULL) {
 463     Initialize_shared(current);
 464   }
 465 
 466   Arena* type_arena = current->type_arena();
 467 
 468   // Create the hash-cons'ing dictionary with top-level storage allocation
 469   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 470   current->set_type_dict(tdic);
 471 
 472   // Transfer the shared types.
 473   DictI i(_shared_type_dict);
 474   for( ; i.test(); ++i ) {
 475     Type* t = (Type*)i._value;
 476     tdic->Insert(t,t);  // New Type, insert into Type table
 477   }
 478 }
 479 
 480 //------------------------------hashcons---------------------------------------
 481 // Do the hash-cons trick.  If the Type already exists in the type table,
 482 // delete the current Type and return the existing Type.  Otherwise stick the
 483 // current Type in the Type table.
 484 const Type *Type::hashcons(void) {
 485   debug_only(base());           // Check the assertion in Type::base().
 486   // Look up the Type in the Type dictionary
 487   Dict *tdic = type_dict();
 488   Type* old = (Type*)(tdic->Insert(this, this, false));
 489   if( old ) {                   // Pre-existing Type?
 490     if( old != this )           // Yes, this guy is not the pre-existing?
 491       delete this;              // Yes, Nuke this guy
 492     assert( old->_dual, "" );
 493     return old;                 // Return pre-existing
 494   }
 495 
 496   // Every type has a dual (to make my lattice symmetric).
 497   // Since we just discovered a new Type, compute its dual right now.
 498   assert( !_dual, "" );         // No dual yet
 499   _dual = xdual();              // Compute the dual
 500   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 501     _dual = this;
 502     return this;
 503   }
 504   assert( !_dual->_dual, "" );  // No reverse dual yet
 505   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 506   // New Type, insert into Type table
 507   tdic->Insert((void*)_dual,(void*)_dual);
 508   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 509 #ifdef ASSERT
 510   Type *dual_dual = (Type*)_dual->xdual();
 511   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 512   delete dual_dual;
 513 #endif
 514   return this;                  // Return new Type
 515 }
 516 
 517 //------------------------------eq---------------------------------------------
 518 // Structural equality check for Type representations
 519 bool Type::eq( const Type * ) const {
 520   return true;                  // Nothing else can go wrong
 521 }
 522 
 523 //------------------------------hash-------------------------------------------
 524 // Type-specific hashing function.
 525 int Type::hash(void) const {
 526   return _base;
 527 }
 528 
 529 //------------------------------is_finite--------------------------------------
 530 // Has a finite value
 531 bool Type::is_finite() const {
 532   return false;
 533 }
 534 
 535 //------------------------------is_nan-----------------------------------------
 536 // Is not a number (NaN)
 537 bool Type::is_nan()    const {
 538   return false;
 539 }
 540 
 541 //----------------------interface_vs_oop---------------------------------------
 542 #ifdef ASSERT
 543 bool Type::interface_vs_oop(const Type *t) const {
 544   bool result = false;
 545 
 546   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 547   const TypePtr*    t_ptr =    t->make_ptr();
 548   if( this_ptr == NULL || t_ptr == NULL )
 549     return result;
 550 
 551   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 552   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 553   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 554     bool this_interface = this_inst->klass()->is_interface();
 555     bool    t_interface =    t_inst->klass()->is_interface();
 556     result = this_interface ^ t_interface;
 557   }
 558 
 559   return result;
 560 }
 561 #endif
 562 
 563 //------------------------------meet-------------------------------------------
 564 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 565 // commutative and the lattice is symmetric.
 566 const Type *Type::meet( const Type *t ) const {
 567   if (isa_narrowoop() && t->isa_narrowoop()) {
 568     const Type* result = make_ptr()->meet(t->make_ptr());
 569     return result->make_narrowoop();
 570   }
 571   if (isa_narrowklass() && t->isa_narrowklass()) {
 572     const Type* result = make_ptr()->meet(t->make_ptr());
 573     return result->make_narrowklass();
 574   }
 575 
 576   const Type *mt = xmeet(t);
 577   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 578   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 579 #ifdef ASSERT
 580   assert( mt == t->xmeet(this), "meet not commutative" );
 581   const Type* dual_join = mt->_dual;
 582   const Type *t2t    = dual_join->xmeet(t->_dual);
 583   const Type *t2this = dual_join->xmeet(   _dual);
 584 
 585   // Interface meet Oop is Not Symmetric:
 586   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 587   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 588 
 589   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
 590     tty->print_cr("=== Meet Not Symmetric ===");
 591     tty->print("t   =                   ");         t->dump(); tty->cr();
 592     tty->print("this=                   ");            dump(); tty->cr();
 593     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
 594 
 595     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
 596     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
 597     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
 598 
 599     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
 600     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
 601 
 602     fatal("meet not symmetric" );
 603   }
 604 #endif
 605   return mt;
 606 }
 607 
 608 //------------------------------xmeet------------------------------------------
 609 // Compute the MEET of two types.  It returns a new Type object.
 610 const Type *Type::xmeet( const Type *t ) const {
 611   // Perform a fast test for common case; meeting the same types together.
 612   if( this == t ) return this;  // Meeting same type-rep?
 613 
 614   // Meeting TOP with anything?
 615   if( _base == Top ) return t;
 616 
 617   // Meeting BOTTOM with anything?
 618   if( _base == Bottom ) return BOTTOM;
 619 
 620   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 621   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 622   switch (t->base()) {  // Switch on original type
 623 
 624   // Cut in half the number of cases I must handle.  Only need cases for when
 625   // the given enum "t->type" is less than or equal to the local enum "type".
 626   case FloatCon:
 627   case DoubleCon:
 628   case Int:
 629   case Long:
 630     return t->xmeet(this);
 631 
 632   case OopPtr:
 633     return t->xmeet(this);
 634 
 635   case InstPtr:
 636     return t->xmeet(this);
 637 
 638   case MetadataPtr:
 639   case KlassPtr:
 640     return t->xmeet(this);
 641 
 642   case AryPtr:
 643     return t->xmeet(this);
 644 
 645   case NarrowOop:
 646     return t->xmeet(this);
 647 
 648   case NarrowKlass:
 649     return t->xmeet(this);
 650 
 651   case Bad:                     // Type check
 652   default:                      // Bogus type not in lattice
 653     typerr(t);
 654     return Type::BOTTOM;
 655 
 656   case Bottom:                  // Ye Olde Default
 657     return t;
 658 
 659   case FloatTop:
 660     if( _base == FloatTop ) return this;
 661   case FloatBot:                // Float
 662     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 663     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 664     typerr(t);
 665     return Type::BOTTOM;
 666 
 667   case DoubleTop:
 668     if( _base == DoubleTop ) return this;
 669   case DoubleBot:               // Double
 670     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 671     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 672     typerr(t);
 673     return Type::BOTTOM;
 674 
 675   // These next few cases must match exactly or it is a compile-time error.
 676   case Control:                 // Control of code
 677   case Abio:                    // State of world outside of program
 678   case Memory:
 679     if( _base == t->_base )  return this;
 680     typerr(t);
 681     return Type::BOTTOM;
 682 
 683   case Top:                     // Top of the lattice
 684     return this;
 685   }
 686 
 687   // The type is unchanged
 688   return this;
 689 }
 690 
 691 //-----------------------------filter------------------------------------------
 692 const Type *Type::filter( const Type *kills ) const {
 693   const Type* ft = join(kills);
 694   if (ft->empty())
 695     return Type::TOP;           // Canonical empty value
 696   return ft;
 697 }
 698 
 699 //------------------------------xdual------------------------------------------
 700 // Compute dual right now.
 701 const Type::TYPES Type::dual_type[Type::lastype] = {
 702   Bad,          // Bad
 703   Control,      // Control
 704   Bottom,       // Top
 705   Bad,          // Int - handled in v-call
 706   Bad,          // Long - handled in v-call
 707   Half,         // Half
 708   Bad,          // NarrowOop - handled in v-call
 709   Bad,          // NarrowKlass - handled in v-call
 710 
 711   Bad,          // Tuple - handled in v-call
 712   Bad,          // Array - handled in v-call
 713   Bad,          // VectorS - handled in v-call
 714   Bad,          // VectorD - handled in v-call
 715   Bad,          // VectorX - handled in v-call
 716   Bad,          // VectorY - handled in v-call
 717 
 718   Bad,          // AnyPtr - handled in v-call
 719   Bad,          // RawPtr - handled in v-call
 720   Bad,          // OopPtr - handled in v-call
 721   Bad,          // InstPtr - handled in v-call
 722   Bad,          // AryPtr - handled in v-call
 723 
 724   Bad,          //  MetadataPtr - handled in v-call
 725   Bad,          // KlassPtr - handled in v-call
 726 
 727   Bad,          // Function - handled in v-call
 728   Abio,         // Abio
 729   Return_Address,// Return_Address
 730   Memory,       // Memory
 731   FloatBot,     // FloatTop
 732   FloatCon,     // FloatCon
 733   FloatTop,     // FloatBot
 734   DoubleBot,    // DoubleTop
 735   DoubleCon,    // DoubleCon
 736   DoubleTop,    // DoubleBot
 737   Top           // Bottom
 738 };
 739 
 740 const Type *Type::xdual() const {
 741   // Note: the base() accessor asserts the sanity of _base.
 742   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 743   return new Type(_type_info[_base].dual_type);
 744 }
 745 
 746 //------------------------------has_memory-------------------------------------
 747 bool Type::has_memory() const {
 748   Type::TYPES tx = base();
 749   if (tx == Memory) return true;
 750   if (tx == Tuple) {
 751     const TypeTuple *t = is_tuple();
 752     for (uint i=0; i < t->cnt(); i++) {
 753       tx = t->field_at(i)->base();
 754       if (tx == Memory)  return true;
 755     }
 756   }
 757   return false;
 758 }
 759 
 760 #ifndef PRODUCT
 761 //------------------------------dump2------------------------------------------
 762 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 763   st->print(_type_info[_base].msg);
 764 }
 765 
 766 //------------------------------dump-------------------------------------------
 767 void Type::dump_on(outputStream *st) const {
 768   ResourceMark rm;
 769   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 770   dump2(d,1, st);
 771   if (is_ptr_to_narrowoop()) {
 772     st->print(" [narrow]");
 773   } else if (is_ptr_to_narrowklass()) {
 774     st->print(" [narrowklass]");
 775   }
 776 }
 777 #endif
 778 
 779 //------------------------------singleton--------------------------------------
 780 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 781 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 782 bool Type::singleton(void) const {
 783   return _base == Top || _base == Half;
 784 }
 785 
 786 //------------------------------empty------------------------------------------
 787 // TRUE if Type is a type with no values, FALSE otherwise.
 788 bool Type::empty(void) const {
 789   switch (_base) {
 790   case DoubleTop:
 791   case FloatTop:
 792   case Top:
 793     return true;
 794 
 795   case Half:
 796   case Abio:
 797   case Return_Address:
 798   case Memory:
 799   case Bottom:
 800   case FloatBot:
 801   case DoubleBot:
 802     return false;  // never a singleton, therefore never empty
 803   }
 804 
 805   ShouldNotReachHere();
 806   return false;
 807 }
 808 
 809 //------------------------------dump_stats-------------------------------------
 810 // Dump collected statistics to stderr
 811 #ifndef PRODUCT
 812 void Type::dump_stats() {
 813   tty->print("Types made: %d\n", type_dict()->Size());
 814 }
 815 #endif
 816 
 817 //------------------------------typerr-----------------------------------------
 818 void Type::typerr( const Type *t ) const {
 819 #ifndef PRODUCT
 820   tty->print("\nError mixing types: ");
 821   dump();
 822   tty->print(" and ");
 823   t->dump();
 824   tty->print("\n");
 825 #endif
 826   ShouldNotReachHere();
 827 }
 828 
 829 
 830 //=============================================================================
 831 // Convenience common pre-built types.
 832 const TypeF *TypeF::ZERO;       // Floating point zero
 833 const TypeF *TypeF::ONE;        // Floating point one
 834 
 835 //------------------------------make-------------------------------------------
 836 // Create a float constant
 837 const TypeF *TypeF::make(float f) {
 838   return (TypeF*)(new TypeF(f))->hashcons();
 839 }
 840 
 841 //------------------------------meet-------------------------------------------
 842 // Compute the MEET of two types.  It returns a new Type object.
 843 const Type *TypeF::xmeet( const Type *t ) const {
 844   // Perform a fast test for common case; meeting the same types together.
 845   if( this == t ) return this;  // Meeting same type-rep?
 846 
 847   // Current "this->_base" is FloatCon
 848   switch (t->base()) {          // Switch on original type
 849   case AnyPtr:                  // Mixing with oops happens when javac
 850   case RawPtr:                  // reuses local variables
 851   case OopPtr:
 852   case InstPtr:
 853   case AryPtr:
 854   case MetadataPtr:
 855   case KlassPtr:
 856   case NarrowOop:
 857   case NarrowKlass:
 858   case Int:
 859   case Long:
 860   case DoubleTop:
 861   case DoubleCon:
 862   case DoubleBot:
 863   case Bottom:                  // Ye Olde Default
 864     return Type::BOTTOM;
 865 
 866   case FloatBot:
 867     return t;
 868 
 869   default:                      // All else is a mistake
 870     typerr(t);
 871 
 872   case FloatCon:                // Float-constant vs Float-constant?
 873     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 874                                 // must compare bitwise as positive zero, negative zero and NaN have
 875                                 // all the same representation in C++
 876       return FLOAT;             // Return generic float
 877                                 // Equal constants
 878   case Top:
 879   case FloatTop:
 880     break;                      // Return the float constant
 881   }
 882   return this;                  // Return the float constant
 883 }
 884 
 885 //------------------------------xdual------------------------------------------
 886 // Dual: symmetric
 887 const Type *TypeF::xdual() const {
 888   return this;
 889 }
 890 
 891 //------------------------------eq---------------------------------------------
 892 // Structural equality check for Type representations
 893 bool TypeF::eq( const Type *t ) const {
 894   if( g_isnan(_f) ||
 895       g_isnan(t->getf()) ) {
 896     // One or both are NANs.  If both are NANs return true, else false.
 897     return (g_isnan(_f) && g_isnan(t->getf()));
 898   }
 899   if (_f == t->getf()) {
 900     // (NaN is impossible at this point, since it is not equal even to itself)
 901     if (_f == 0.0) {
 902       // difference between positive and negative zero
 903       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 904     }
 905     return true;
 906   }
 907   return false;
 908 }
 909 
 910 //------------------------------hash-------------------------------------------
 911 // Type-specific hashing function.
 912 int TypeF::hash(void) const {
 913   return *(int*)(&_f);
 914 }
 915 
 916 //------------------------------is_finite--------------------------------------
 917 // Has a finite value
 918 bool TypeF::is_finite() const {
 919   return g_isfinite(getf()) != 0;
 920 }
 921 
 922 //------------------------------is_nan-----------------------------------------
 923 // Is not a number (NaN)
 924 bool TypeF::is_nan()    const {
 925   return g_isnan(getf()) != 0;
 926 }
 927 
 928 //------------------------------dump2------------------------------------------
 929 // Dump float constant Type
 930 #ifndef PRODUCT
 931 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
 932   Type::dump2(d,depth, st);
 933   st->print("%f", _f);
 934 }
 935 #endif
 936 
 937 //------------------------------singleton--------------------------------------
 938 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 939 // constants (Ldi nodes).  Singletons are integer, float or double constants
 940 // or a single symbol.
 941 bool TypeF::singleton(void) const {
 942   return true;                  // Always a singleton
 943 }
 944 
 945 bool TypeF::empty(void) const {
 946   return false;                 // always exactly a singleton
 947 }
 948 
 949 //=============================================================================
 950 // Convenience common pre-built types.
 951 const TypeD *TypeD::ZERO;       // Floating point zero
 952 const TypeD *TypeD::ONE;        // Floating point one
 953 
 954 //------------------------------make-------------------------------------------
 955 const TypeD *TypeD::make(double d) {
 956   return (TypeD*)(new TypeD(d))->hashcons();
 957 }
 958 
 959 //------------------------------meet-------------------------------------------
 960 // Compute the MEET of two types.  It returns a new Type object.
 961 const Type *TypeD::xmeet( const Type *t ) const {
 962   // Perform a fast test for common case; meeting the same types together.
 963   if( this == t ) return this;  // Meeting same type-rep?
 964 
 965   // Current "this->_base" is DoubleCon
 966   switch (t->base()) {          // Switch on original type
 967   case AnyPtr:                  // Mixing with oops happens when javac
 968   case RawPtr:                  // reuses local variables
 969   case OopPtr:
 970   case InstPtr:
 971   case AryPtr:
 972   case MetadataPtr:
 973   case KlassPtr:
 974   case NarrowOop:
 975   case NarrowKlass:
 976   case Int:
 977   case Long:
 978   case FloatTop:
 979   case FloatCon:
 980   case FloatBot:
 981   case Bottom:                  // Ye Olde Default
 982     return Type::BOTTOM;
 983 
 984   case DoubleBot:
 985     return t;
 986 
 987   default:                      // All else is a mistake
 988     typerr(t);
 989 
 990   case DoubleCon:               // Double-constant vs Double-constant?
 991     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
 992       return DOUBLE;            // Return generic double
 993   case Top:
 994   case DoubleTop:
 995     break;
 996   }
 997   return this;                  // Return the double constant
 998 }
 999 
1000 //------------------------------xdual------------------------------------------
1001 // Dual: symmetric
1002 const Type *TypeD::xdual() const {
1003   return this;
1004 }
1005 
1006 //------------------------------eq---------------------------------------------
1007 // Structural equality check for Type representations
1008 bool TypeD::eq( const Type *t ) const {
1009   if( g_isnan(_d) ||
1010       g_isnan(t->getd()) ) {
1011     // One or both are NANs.  If both are NANs return true, else false.
1012     return (g_isnan(_d) && g_isnan(t->getd()));
1013   }
1014   if (_d == t->getd()) {
1015     // (NaN is impossible at this point, since it is not equal even to itself)
1016     if (_d == 0.0) {
1017       // difference between positive and negative zero
1018       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1019     }
1020     return true;
1021   }
1022   return false;
1023 }
1024 
1025 //------------------------------hash-------------------------------------------
1026 // Type-specific hashing function.
1027 int TypeD::hash(void) const {
1028   return *(int*)(&_d);
1029 }
1030 
1031 //------------------------------is_finite--------------------------------------
1032 // Has a finite value
1033 bool TypeD::is_finite() const {
1034   return g_isfinite(getd()) != 0;
1035 }
1036 
1037 //------------------------------is_nan-----------------------------------------
1038 // Is not a number (NaN)
1039 bool TypeD::is_nan()    const {
1040   return g_isnan(getd()) != 0;
1041 }
1042 
1043 //------------------------------dump2------------------------------------------
1044 // Dump double constant Type
1045 #ifndef PRODUCT
1046 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1047   Type::dump2(d,depth,st);
1048   st->print("%f", _d);
1049 }
1050 #endif
1051 
1052 //------------------------------singleton--------------------------------------
1053 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1054 // constants (Ldi nodes).  Singletons are integer, float or double constants
1055 // or a single symbol.
1056 bool TypeD::singleton(void) const {
1057   return true;                  // Always a singleton
1058 }
1059 
1060 bool TypeD::empty(void) const {
1061   return false;                 // always exactly a singleton
1062 }
1063 
1064 //=============================================================================
1065 // Convience common pre-built types.
1066 const TypeInt *TypeInt::MINUS_1;// -1
1067 const TypeInt *TypeInt::ZERO;   // 0
1068 const TypeInt *TypeInt::ONE;    // 1
1069 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1070 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1071 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1072 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1073 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1074 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1075 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1076 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1077 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1078 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1079 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1080 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1081 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1082 const TypeInt *TypeInt::INT;    // 32-bit integers
1083 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1084 
1085 //------------------------------TypeInt----------------------------------------
1086 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1087 }
1088 
1089 //------------------------------make-------------------------------------------
1090 const TypeInt *TypeInt::make( jint lo ) {
1091   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1092 }
1093 
1094 static int normalize_int_widen( jint lo, jint hi, int w ) {
1095   // Certain normalizations keep us sane when comparing types.
1096   // The 'SMALLINT' covers constants and also CC and its relatives.
1097   if (lo <= hi) {
1098     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1099     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1100   } else {
1101     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1102     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1103   }
1104   return w;
1105 }
1106 
1107 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1108   w = normalize_int_widen(lo, hi, w);
1109   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1110 }
1111 
1112 //------------------------------meet-------------------------------------------
1113 // Compute the MEET of two types.  It returns a new Type representation object
1114 // with reference count equal to the number of Types pointing at it.
1115 // Caller should wrap a Types around it.
1116 const Type *TypeInt::xmeet( const Type *t ) const {
1117   // Perform a fast test for common case; meeting the same types together.
1118   if( this == t ) return this;  // Meeting same type?
1119 
1120   // Currently "this->_base" is a TypeInt
1121   switch (t->base()) {          // Switch on original type
1122   case AnyPtr:                  // Mixing with oops happens when javac
1123   case RawPtr:                  // reuses local variables
1124   case OopPtr:
1125   case InstPtr:
1126   case AryPtr:
1127   case MetadataPtr:
1128   case KlassPtr:
1129   case NarrowOop:
1130   case NarrowKlass:
1131   case Long:
1132   case FloatTop:
1133   case FloatCon:
1134   case FloatBot:
1135   case DoubleTop:
1136   case DoubleCon:
1137   case DoubleBot:
1138   case Bottom:                  // Ye Olde Default
1139     return Type::BOTTOM;
1140   default:                      // All else is a mistake
1141     typerr(t);
1142   case Top:                     // No change
1143     return this;
1144   case Int:                     // Int vs Int?
1145     break;
1146   }
1147 
1148   // Expand covered set
1149   const TypeInt *r = t->is_int();
1150   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1151 }
1152 
1153 //------------------------------xdual------------------------------------------
1154 // Dual: reverse hi & lo; flip widen
1155 const Type *TypeInt::xdual() const {
1156   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1157   return new TypeInt(_hi,_lo,w);
1158 }
1159 
1160 //------------------------------widen------------------------------------------
1161 // Only happens for optimistic top-down optimizations.
1162 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1163   // Coming from TOP or such; no widening
1164   if( old->base() != Int ) return this;
1165   const TypeInt *ot = old->is_int();
1166 
1167   // If new guy is equal to old guy, no widening
1168   if( _lo == ot->_lo && _hi == ot->_hi )
1169     return old;
1170 
1171   // If new guy contains old, then we widened
1172   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1173     // New contains old
1174     // If new guy is already wider than old, no widening
1175     if( _widen > ot->_widen ) return this;
1176     // If old guy was a constant, do not bother
1177     if (ot->_lo == ot->_hi)  return this;
1178     // Now widen new guy.
1179     // Check for widening too far
1180     if (_widen == WidenMax) {
1181       int max = max_jint;
1182       int min = min_jint;
1183       if (limit->isa_int()) {
1184         max = limit->is_int()->_hi;
1185         min = limit->is_int()->_lo;
1186       }
1187       if (min < _lo && _hi < max) {
1188         // If neither endpoint is extremal yet, push out the endpoint
1189         // which is closer to its respective limit.
1190         if (_lo >= 0 ||                 // easy common case
1191             (juint)(_lo - min) >= (juint)(max - _hi)) {
1192           // Try to widen to an unsigned range type of 31 bits:
1193           return make(_lo, max, WidenMax);
1194         } else {
1195           return make(min, _hi, WidenMax);
1196         }
1197       }
1198       return TypeInt::INT;
1199     }
1200     // Returned widened new guy
1201     return make(_lo,_hi,_widen+1);
1202   }
1203 
1204   // If old guy contains new, then we probably widened too far & dropped to
1205   // bottom.  Return the wider fellow.
1206   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1207     return old;
1208 
1209   //fatal("Integer value range is not subset");
1210   //return this;
1211   return TypeInt::INT;
1212 }
1213 
1214 //------------------------------narrow---------------------------------------
1215 // Only happens for pessimistic optimizations.
1216 const Type *TypeInt::narrow( const Type *old ) const {
1217   if (_lo >= _hi)  return this;   // already narrow enough
1218   if (old == NULL)  return this;
1219   const TypeInt* ot = old->isa_int();
1220   if (ot == NULL)  return this;
1221   jint olo = ot->_lo;
1222   jint ohi = ot->_hi;
1223 
1224   // If new guy is equal to old guy, no narrowing
1225   if (_lo == olo && _hi == ohi)  return old;
1226 
1227   // If old guy was maximum range, allow the narrowing
1228   if (olo == min_jint && ohi == max_jint)  return this;
1229 
1230   if (_lo < olo || _hi > ohi)
1231     return this;                // doesn't narrow; pretty wierd
1232 
1233   // The new type narrows the old type, so look for a "death march".
1234   // See comments on PhaseTransform::saturate.
1235   juint nrange = _hi - _lo;
1236   juint orange = ohi - olo;
1237   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1238     // Use the new type only if the range shrinks a lot.
1239     // We do not want the optimizer computing 2^31 point by point.
1240     return old;
1241   }
1242 
1243   return this;
1244 }
1245 
1246 //-----------------------------filter------------------------------------------
1247 const Type *TypeInt::filter( const Type *kills ) const {
1248   const TypeInt* ft = join(kills)->isa_int();
1249   if (ft == NULL || ft->empty())
1250     return Type::TOP;           // Canonical empty value
1251   if (ft->_widen < this->_widen) {
1252     // Do not allow the value of kill->_widen to affect the outcome.
1253     // The widen bits must be allowed to run freely through the graph.
1254     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1255   }
1256   return ft;
1257 }
1258 
1259 //------------------------------eq---------------------------------------------
1260 // Structural equality check for Type representations
1261 bool TypeInt::eq( const Type *t ) const {
1262   const TypeInt *r = t->is_int(); // Handy access
1263   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1264 }
1265 
1266 //------------------------------hash-------------------------------------------
1267 // Type-specific hashing function.
1268 int TypeInt::hash(void) const {
1269   return _lo+_hi+_widen+(int)Type::Int;
1270 }
1271 
1272 //------------------------------is_finite--------------------------------------
1273 // Has a finite value
1274 bool TypeInt::is_finite() const {
1275   return true;
1276 }
1277 
1278 //------------------------------dump2------------------------------------------
1279 // Dump TypeInt
1280 #ifndef PRODUCT
1281 static const char* intname(char* buf, jint n) {
1282   if (n == min_jint)
1283     return "min";
1284   else if (n < min_jint + 10000)
1285     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1286   else if (n == max_jint)
1287     return "max";
1288   else if (n > max_jint - 10000)
1289     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1290   else
1291     sprintf(buf, INT32_FORMAT, n);
1292   return buf;
1293 }
1294 
1295 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1296   char buf[40], buf2[40];
1297   if (_lo == min_jint && _hi == max_jint)
1298     st->print("int");
1299   else if (is_con())
1300     st->print("int:%s", intname(buf, get_con()));
1301   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1302     st->print("bool");
1303   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1304     st->print("byte");
1305   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1306     st->print("char");
1307   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1308     st->print("short");
1309   else if (_hi == max_jint)
1310     st->print("int:>=%s", intname(buf, _lo));
1311   else if (_lo == min_jint)
1312     st->print("int:<=%s", intname(buf, _hi));
1313   else
1314     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1315 
1316   if (_widen != 0 && this != TypeInt::INT)
1317     st->print(":%.*s", _widen, "wwww");
1318 }
1319 #endif
1320 
1321 //------------------------------singleton--------------------------------------
1322 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1323 // constants.
1324 bool TypeInt::singleton(void) const {
1325   return _lo >= _hi;
1326 }
1327 
1328 bool TypeInt::empty(void) const {
1329   return _lo > _hi;
1330 }
1331 
1332 //=============================================================================
1333 // Convenience common pre-built types.
1334 const TypeLong *TypeLong::MINUS_1;// -1
1335 const TypeLong *TypeLong::ZERO; // 0
1336 const TypeLong *TypeLong::ONE;  // 1
1337 const TypeLong *TypeLong::POS;  // >=0
1338 const TypeLong *TypeLong::LONG; // 64-bit integers
1339 const TypeLong *TypeLong::INT;  // 32-bit subrange
1340 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1341 
1342 //------------------------------TypeLong---------------------------------------
1343 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1344 }
1345 
1346 //------------------------------make-------------------------------------------
1347 const TypeLong *TypeLong::make( jlong lo ) {
1348   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1349 }
1350 
1351 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1352   // Certain normalizations keep us sane when comparing types.
1353   // The 'SMALLINT' covers constants.
1354   if (lo <= hi) {
1355     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1356     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1357   } else {
1358     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1359     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1360   }
1361   return w;
1362 }
1363 
1364 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1365   w = normalize_long_widen(lo, hi, w);
1366   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1367 }
1368 
1369 
1370 //------------------------------meet-------------------------------------------
1371 // Compute the MEET of two types.  It returns a new Type representation object
1372 // with reference count equal to the number of Types pointing at it.
1373 // Caller should wrap a Types around it.
1374 const Type *TypeLong::xmeet( const Type *t ) const {
1375   // Perform a fast test for common case; meeting the same types together.
1376   if( this == t ) return this;  // Meeting same type?
1377 
1378   // Currently "this->_base" is a TypeLong
1379   switch (t->base()) {          // Switch on original type
1380   case AnyPtr:                  // Mixing with oops happens when javac
1381   case RawPtr:                  // reuses local variables
1382   case OopPtr:
1383   case InstPtr:
1384   case AryPtr:
1385   case MetadataPtr:
1386   case KlassPtr:
1387   case NarrowOop:
1388   case NarrowKlass:
1389   case Int:
1390   case FloatTop:
1391   case FloatCon:
1392   case FloatBot:
1393   case DoubleTop:
1394   case DoubleCon:
1395   case DoubleBot:
1396   case Bottom:                  // Ye Olde Default
1397     return Type::BOTTOM;
1398   default:                      // All else is a mistake
1399     typerr(t);
1400   case Top:                     // No change
1401     return this;
1402   case Long:                    // Long vs Long?
1403     break;
1404   }
1405 
1406   // Expand covered set
1407   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1408   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1409 }
1410 
1411 //------------------------------xdual------------------------------------------
1412 // Dual: reverse hi & lo; flip widen
1413 const Type *TypeLong::xdual() const {
1414   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1415   return new TypeLong(_hi,_lo,w);
1416 }
1417 
1418 //------------------------------widen------------------------------------------
1419 // Only happens for optimistic top-down optimizations.
1420 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1421   // Coming from TOP or such; no widening
1422   if( old->base() != Long ) return this;
1423   const TypeLong *ot = old->is_long();
1424 
1425   // If new guy is equal to old guy, no widening
1426   if( _lo == ot->_lo && _hi == ot->_hi )
1427     return old;
1428 
1429   // If new guy contains old, then we widened
1430   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1431     // New contains old
1432     // If new guy is already wider than old, no widening
1433     if( _widen > ot->_widen ) return this;
1434     // If old guy was a constant, do not bother
1435     if (ot->_lo == ot->_hi)  return this;
1436     // Now widen new guy.
1437     // Check for widening too far
1438     if (_widen == WidenMax) {
1439       jlong max = max_jlong;
1440       jlong min = min_jlong;
1441       if (limit->isa_long()) {
1442         max = limit->is_long()->_hi;
1443         min = limit->is_long()->_lo;
1444       }
1445       if (min < _lo && _hi < max) {
1446         // If neither endpoint is extremal yet, push out the endpoint
1447         // which is closer to its respective limit.
1448         if (_lo >= 0 ||                 // easy common case
1449             (julong)(_lo - min) >= (julong)(max - _hi)) {
1450           // Try to widen to an unsigned range type of 32/63 bits:
1451           if (max >= max_juint && _hi < max_juint)
1452             return make(_lo, max_juint, WidenMax);
1453           else
1454             return make(_lo, max, WidenMax);
1455         } else {
1456           return make(min, _hi, WidenMax);
1457         }
1458       }
1459       return TypeLong::LONG;
1460     }
1461     // Returned widened new guy
1462     return make(_lo,_hi,_widen+1);
1463   }
1464 
1465   // If old guy contains new, then we probably widened too far & dropped to
1466   // bottom.  Return the wider fellow.
1467   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1468     return old;
1469 
1470   //  fatal("Long value range is not subset");
1471   // return this;
1472   return TypeLong::LONG;
1473 }
1474 
1475 //------------------------------narrow----------------------------------------
1476 // Only happens for pessimistic optimizations.
1477 const Type *TypeLong::narrow( const Type *old ) const {
1478   if (_lo >= _hi)  return this;   // already narrow enough
1479   if (old == NULL)  return this;
1480   const TypeLong* ot = old->isa_long();
1481   if (ot == NULL)  return this;
1482   jlong olo = ot->_lo;
1483   jlong ohi = ot->_hi;
1484 
1485   // If new guy is equal to old guy, no narrowing
1486   if (_lo == olo && _hi == ohi)  return old;
1487 
1488   // If old guy was maximum range, allow the narrowing
1489   if (olo == min_jlong && ohi == max_jlong)  return this;
1490 
1491   if (_lo < olo || _hi > ohi)
1492     return this;                // doesn't narrow; pretty wierd
1493 
1494   // The new type narrows the old type, so look for a "death march".
1495   // See comments on PhaseTransform::saturate.
1496   julong nrange = _hi - _lo;
1497   julong orange = ohi - olo;
1498   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1499     // Use the new type only if the range shrinks a lot.
1500     // We do not want the optimizer computing 2^31 point by point.
1501     return old;
1502   }
1503 
1504   return this;
1505 }
1506 
1507 //-----------------------------filter------------------------------------------
1508 const Type *TypeLong::filter( const Type *kills ) const {
1509   const TypeLong* ft = join(kills)->isa_long();
1510   if (ft == NULL || ft->empty())
1511     return Type::TOP;           // Canonical empty value
1512   if (ft->_widen < this->_widen) {
1513     // Do not allow the value of kill->_widen to affect the outcome.
1514     // The widen bits must be allowed to run freely through the graph.
1515     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1516   }
1517   return ft;
1518 }
1519 
1520 //------------------------------eq---------------------------------------------
1521 // Structural equality check for Type representations
1522 bool TypeLong::eq( const Type *t ) const {
1523   const TypeLong *r = t->is_long(); // Handy access
1524   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1525 }
1526 
1527 //------------------------------hash-------------------------------------------
1528 // Type-specific hashing function.
1529 int TypeLong::hash(void) const {
1530   return (int)(_lo+_hi+_widen+(int)Type::Long);
1531 }
1532 
1533 //------------------------------is_finite--------------------------------------
1534 // Has a finite value
1535 bool TypeLong::is_finite() const {
1536   return true;
1537 }
1538 
1539 //------------------------------dump2------------------------------------------
1540 // Dump TypeLong
1541 #ifndef PRODUCT
1542 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1543   if (n > x) {
1544     if (n >= x + 10000)  return NULL;
1545     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1546   } else if (n < x) {
1547     if (n <= x - 10000)  return NULL;
1548     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1549   } else {
1550     return xname;
1551   }
1552   return buf;
1553 }
1554 
1555 static const char* longname(char* buf, jlong n) {
1556   const char* str;
1557   if (n == min_jlong)
1558     return "min";
1559   else if (n < min_jlong + 10000)
1560     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1561   else if (n == max_jlong)
1562     return "max";
1563   else if (n > max_jlong - 10000)
1564     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1565   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1566     return str;
1567   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1568     return str;
1569   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1570     return str;
1571   else
1572     sprintf(buf, JLONG_FORMAT, n);
1573   return buf;
1574 }
1575 
1576 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1577   char buf[80], buf2[80];
1578   if (_lo == min_jlong && _hi == max_jlong)
1579     st->print("long");
1580   else if (is_con())
1581     st->print("long:%s", longname(buf, get_con()));
1582   else if (_hi == max_jlong)
1583     st->print("long:>=%s", longname(buf, _lo));
1584   else if (_lo == min_jlong)
1585     st->print("long:<=%s", longname(buf, _hi));
1586   else
1587     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1588 
1589   if (_widen != 0 && this != TypeLong::LONG)
1590     st->print(":%.*s", _widen, "wwww");
1591 }
1592 #endif
1593 
1594 //------------------------------singleton--------------------------------------
1595 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1596 // constants
1597 bool TypeLong::singleton(void) const {
1598   return _lo >= _hi;
1599 }
1600 
1601 bool TypeLong::empty(void) const {
1602   return _lo > _hi;
1603 }
1604 
1605 //=============================================================================
1606 // Convenience common pre-built types.
1607 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1608 const TypeTuple *TypeTuple::IFFALSE;
1609 const TypeTuple *TypeTuple::IFTRUE;
1610 const TypeTuple *TypeTuple::IFNEITHER;
1611 const TypeTuple *TypeTuple::LOOPBODY;
1612 const TypeTuple *TypeTuple::MEMBAR;
1613 const TypeTuple *TypeTuple::STORECONDITIONAL;
1614 const TypeTuple *TypeTuple::START_I2C;
1615 const TypeTuple *TypeTuple::INT_PAIR;
1616 const TypeTuple *TypeTuple::LONG_PAIR;
1617 
1618 
1619 //------------------------------make-------------------------------------------
1620 // Make a TypeTuple from the range of a method signature
1621 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1622   ciType* return_type = sig->return_type();
1623   uint total_fields = TypeFunc::Parms + return_type->size();
1624   const Type **field_array = fields(total_fields);
1625   switch (return_type->basic_type()) {
1626   case T_LONG:
1627     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1628     field_array[TypeFunc::Parms+1] = Type::HALF;
1629     break;
1630   case T_DOUBLE:
1631     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1632     field_array[TypeFunc::Parms+1] = Type::HALF;
1633     break;
1634   case T_OBJECT:
1635   case T_ARRAY:
1636   case T_BOOLEAN:
1637   case T_CHAR:
1638   case T_FLOAT:
1639   case T_BYTE:
1640   case T_SHORT:
1641   case T_INT:
1642     field_array[TypeFunc::Parms] = get_const_type(return_type);
1643     break;
1644   case T_VOID:
1645     break;
1646   default:
1647     ShouldNotReachHere();
1648   }
1649   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1650 }
1651 
1652 // Make a TypeTuple from the domain of a method signature
1653 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1654   uint total_fields = TypeFunc::Parms + sig->size();
1655 
1656   uint pos = TypeFunc::Parms;
1657   const Type **field_array;
1658   if (recv != NULL) {
1659     total_fields++;
1660     field_array = fields(total_fields);
1661     // Use get_const_type here because it respects UseUniqueSubclasses:
1662     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
1663   } else {
1664     field_array = fields(total_fields);
1665   }
1666 
1667   int i = 0;
1668   while (pos < total_fields) {
1669     ciType* type = sig->type_at(i);
1670 
1671     switch (type->basic_type()) {
1672     case T_LONG:
1673       field_array[pos++] = TypeLong::LONG;
1674       field_array[pos++] = Type::HALF;
1675       break;
1676     case T_DOUBLE:
1677       field_array[pos++] = Type::DOUBLE;
1678       field_array[pos++] = Type::HALF;
1679       break;
1680     case T_OBJECT:
1681     case T_ARRAY:
1682     case T_BOOLEAN:
1683     case T_CHAR:
1684     case T_FLOAT:
1685     case T_BYTE:
1686     case T_SHORT:
1687     case T_INT:
1688       field_array[pos++] = get_const_type(type);
1689       break;
1690     default:
1691       ShouldNotReachHere();
1692     }
1693     i++;
1694   }
1695   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1696 }
1697 
1698 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1699   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1700 }
1701 
1702 //------------------------------fields-----------------------------------------
1703 // Subroutine call type with space allocated for argument types
1704 const Type **TypeTuple::fields( uint arg_cnt ) {
1705   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1706   flds[TypeFunc::Control  ] = Type::CONTROL;
1707   flds[TypeFunc::I_O      ] = Type::ABIO;
1708   flds[TypeFunc::Memory   ] = Type::MEMORY;
1709   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1710   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1711 
1712   return flds;
1713 }
1714 
1715 //------------------------------meet-------------------------------------------
1716 // Compute the MEET of two types.  It returns a new Type object.
1717 const Type *TypeTuple::xmeet( const Type *t ) const {
1718   // Perform a fast test for common case; meeting the same types together.
1719   if( this == t ) return this;  // Meeting same type-rep?
1720 
1721   // Current "this->_base" is Tuple
1722   switch (t->base()) {          // switch on original type
1723 
1724   case Bottom:                  // Ye Olde Default
1725     return t;
1726 
1727   default:                      // All else is a mistake
1728     typerr(t);
1729 
1730   case Tuple: {                 // Meeting 2 signatures?
1731     const TypeTuple *x = t->is_tuple();
1732     assert( _cnt == x->_cnt, "" );
1733     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1734     for( uint i=0; i<_cnt; i++ )
1735       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1736     return TypeTuple::make(_cnt,fields);
1737   }
1738   case Top:
1739     break;
1740   }
1741   return this;                  // Return the double constant
1742 }
1743 
1744 //------------------------------xdual------------------------------------------
1745 // Dual: compute field-by-field dual
1746 const Type *TypeTuple::xdual() const {
1747   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1748   for( uint i=0; i<_cnt; i++ )
1749     fields[i] = _fields[i]->dual();
1750   return new TypeTuple(_cnt,fields);
1751 }
1752 
1753 //------------------------------eq---------------------------------------------
1754 // Structural equality check for Type representations
1755 bool TypeTuple::eq( const Type *t ) const {
1756   const TypeTuple *s = (const TypeTuple *)t;
1757   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1758   for (uint i = 0; i < _cnt; i++)
1759     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1760       return false;             // Missed
1761   return true;
1762 }
1763 
1764 //------------------------------hash-------------------------------------------
1765 // Type-specific hashing function.
1766 int TypeTuple::hash(void) const {
1767   intptr_t sum = _cnt;
1768   for( uint i=0; i<_cnt; i++ )
1769     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1770   return sum;
1771 }
1772 
1773 //------------------------------dump2------------------------------------------
1774 // Dump signature Type
1775 #ifndef PRODUCT
1776 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1777   st->print("{");
1778   if( !depth || d[this] ) {     // Check for recursive print
1779     st->print("...}");
1780     return;
1781   }
1782   d.Insert((void*)this, (void*)this);   // Stop recursion
1783   if( _cnt ) {
1784     uint i;
1785     for( i=0; i<_cnt-1; i++ ) {
1786       st->print("%d:", i);
1787       _fields[i]->dump2(d, depth-1, st);
1788       st->print(", ");
1789     }
1790     st->print("%d:", i);
1791     _fields[i]->dump2(d, depth-1, st);
1792   }
1793   st->print("}");
1794 }
1795 #endif
1796 
1797 //------------------------------singleton--------------------------------------
1798 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1799 // constants (Ldi nodes).  Singletons are integer, float or double constants
1800 // or a single symbol.
1801 bool TypeTuple::singleton(void) const {
1802   return false;                 // Never a singleton
1803 }
1804 
1805 bool TypeTuple::empty(void) const {
1806   for( uint i=0; i<_cnt; i++ ) {
1807     if (_fields[i]->empty())  return true;
1808   }
1809   return false;
1810 }
1811 
1812 //=============================================================================
1813 // Convenience common pre-built types.
1814 
1815 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1816   // Certain normalizations keep us sane when comparing types.
1817   // We do not want arrayOop variables to differ only by the wideness
1818   // of their index types.  Pick minimum wideness, since that is the
1819   // forced wideness of small ranges anyway.
1820   if (size->_widen != Type::WidenMin)
1821     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1822   else
1823     return size;
1824 }
1825 
1826 //------------------------------make-------------------------------------------
1827 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
1828   if (UseCompressedOops && elem->isa_oopptr()) {
1829     elem = elem->make_narrowoop();
1830   }
1831   size = normalize_array_size(size);
1832   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
1833 }
1834 
1835 //------------------------------meet-------------------------------------------
1836 // Compute the MEET of two types.  It returns a new Type object.
1837 const Type *TypeAry::xmeet( const Type *t ) const {
1838   // Perform a fast test for common case; meeting the same types together.
1839   if( this == t ) return this;  // Meeting same type-rep?
1840 
1841   // Current "this->_base" is Ary
1842   switch (t->base()) {          // switch on original type
1843 
1844   case Bottom:                  // Ye Olde Default
1845     return t;
1846 
1847   default:                      // All else is a mistake
1848     typerr(t);
1849 
1850   case Array: {                 // Meeting 2 arrays?
1851     const TypeAry *a = t->is_ary();
1852     return TypeAry::make(_elem->meet(a->_elem),
1853                          _size->xmeet(a->_size)->is_int());
1854   }
1855   case Top:
1856     break;
1857   }
1858   return this;                  // Return the double constant
1859 }
1860 
1861 //------------------------------xdual------------------------------------------
1862 // Dual: compute field-by-field dual
1863 const Type *TypeAry::xdual() const {
1864   const TypeInt* size_dual = _size->dual()->is_int();
1865   size_dual = normalize_array_size(size_dual);
1866   return new TypeAry( _elem->dual(), size_dual);
1867 }
1868 
1869 //------------------------------eq---------------------------------------------
1870 // Structural equality check for Type representations
1871 bool TypeAry::eq( const Type *t ) const {
1872   const TypeAry *a = (const TypeAry*)t;
1873   return _elem == a->_elem &&
1874     _size == a->_size;
1875 }
1876 
1877 //------------------------------hash-------------------------------------------
1878 // Type-specific hashing function.
1879 int TypeAry::hash(void) const {
1880   return (intptr_t)_elem + (intptr_t)_size;
1881 }
1882 
1883 //----------------------interface_vs_oop---------------------------------------
1884 #ifdef ASSERT
1885 bool TypeAry::interface_vs_oop(const Type *t) const {
1886   const TypeAry* t_ary = t->is_ary();
1887   if (t_ary) {
1888     return _elem->interface_vs_oop(t_ary->_elem);
1889   }
1890   return false;
1891 }
1892 #endif
1893 
1894 //------------------------------dump2------------------------------------------
1895 #ifndef PRODUCT
1896 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1897   _elem->dump2(d, depth, st);
1898   st->print("[");
1899   _size->dump2(d, depth, st);
1900   st->print("]");
1901 }
1902 #endif
1903 
1904 //------------------------------singleton--------------------------------------
1905 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1906 // constants (Ldi nodes).  Singletons are integer, float or double constants
1907 // or a single symbol.
1908 bool TypeAry::singleton(void) const {
1909   return false;                 // Never a singleton
1910 }
1911 
1912 bool TypeAry::empty(void) const {
1913   return _elem->empty() || _size->empty();
1914 }
1915 
1916 //--------------------------ary_must_be_exact----------------------------------
1917 bool TypeAry::ary_must_be_exact() const {
1918   if (!UseExactTypes)       return false;
1919   // This logic looks at the element type of an array, and returns true
1920   // if the element type is either a primitive or a final instance class.
1921   // In such cases, an array built on this ary must have no subclasses.
1922   if (_elem == BOTTOM)      return false;  // general array not exact
1923   if (_elem == TOP   )      return false;  // inverted general array not exact
1924   const TypeOopPtr*  toop = NULL;
1925   if (UseCompressedOops && _elem->isa_narrowoop()) {
1926     toop = _elem->make_ptr()->isa_oopptr();
1927   } else {
1928     toop = _elem->isa_oopptr();
1929   }
1930   if (!toop)                return true;   // a primitive type, like int
1931   ciKlass* tklass = toop->klass();
1932   if (tklass == NULL)       return false;  // unloaded class
1933   if (!tklass->is_loaded()) return false;  // unloaded class
1934   const TypeInstPtr* tinst;
1935   if (_elem->isa_narrowoop())
1936     tinst = _elem->make_ptr()->isa_instptr();
1937   else
1938     tinst = _elem->isa_instptr();
1939   if (tinst)
1940     return tklass->as_instance_klass()->is_final();
1941   const TypeAryPtr*  tap;
1942   if (_elem->isa_narrowoop())
1943     tap = _elem->make_ptr()->isa_aryptr();
1944   else
1945     tap = _elem->isa_aryptr();
1946   if (tap)
1947     return tap->ary()->ary_must_be_exact();
1948   return false;
1949 }
1950 
1951 //==============================TypeVect=======================================
1952 // Convenience common pre-built types.
1953 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
1954 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
1955 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
1956 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
1957 
1958 //------------------------------make-------------------------------------------
1959 const TypeVect* TypeVect::make(const Type *elem, uint length) {
1960   BasicType elem_bt = elem->array_element_basic_type();
1961   assert(is_java_primitive(elem_bt), "only primitive types in vector");
1962   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
1963   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
1964   int size = length * type2aelembytes(elem_bt);
1965   switch (Matcher::vector_ideal_reg(size)) {
1966   case Op_VecS:
1967     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
1968   case Op_VecD:
1969   case Op_RegD:
1970     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
1971   case Op_VecX:
1972     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
1973   case Op_VecY:
1974     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
1975   }
1976  ShouldNotReachHere();
1977   return NULL;
1978 }
1979 
1980 //------------------------------meet-------------------------------------------
1981 // Compute the MEET of two types.  It returns a new Type object.
1982 const Type *TypeVect::xmeet( const Type *t ) const {
1983   // Perform a fast test for common case; meeting the same types together.
1984   if( this == t ) return this;  // Meeting same type-rep?
1985 
1986   // Current "this->_base" is Vector
1987   switch (t->base()) {          // switch on original type
1988 
1989   case Bottom:                  // Ye Olde Default
1990     return t;
1991 
1992   default:                      // All else is a mistake
1993     typerr(t);
1994 
1995   case VectorS:
1996   case VectorD:
1997   case VectorX:
1998   case VectorY: {                // Meeting 2 vectors?
1999     const TypeVect* v = t->is_vect();
2000     assert(  base() == v->base(), "");
2001     assert(length() == v->length(), "");
2002     assert(element_basic_type() == v->element_basic_type(), "");
2003     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2004   }
2005   case Top:
2006     break;
2007   }
2008   return this;
2009 }
2010 
2011 //------------------------------xdual------------------------------------------
2012 // Dual: compute field-by-field dual
2013 const Type *TypeVect::xdual() const {
2014   return new TypeVect(base(), _elem->dual(), _length);
2015 }
2016 
2017 //------------------------------eq---------------------------------------------
2018 // Structural equality check for Type representations
2019 bool TypeVect::eq(const Type *t) const {
2020   const TypeVect *v = t->is_vect();
2021   return (_elem == v->_elem) && (_length == v->_length);
2022 }
2023 
2024 //------------------------------hash-------------------------------------------
2025 // Type-specific hashing function.
2026 int TypeVect::hash(void) const {
2027   return (intptr_t)_elem + (intptr_t)_length;
2028 }
2029 
2030 //------------------------------singleton--------------------------------------
2031 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2032 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2033 // constant value (when vector is created with Replicate code).
2034 bool TypeVect::singleton(void) const {
2035 // There is no Con node for vectors yet.
2036 //  return _elem->singleton();
2037   return false;
2038 }
2039 
2040 bool TypeVect::empty(void) const {
2041   return _elem->empty();
2042 }
2043 
2044 //------------------------------dump2------------------------------------------
2045 #ifndef PRODUCT
2046 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2047   switch (base()) {
2048   case VectorS:
2049     st->print("vectors["); break;
2050   case VectorD:
2051     st->print("vectord["); break;
2052   case VectorX:
2053     st->print("vectorx["); break;
2054   case VectorY:
2055     st->print("vectory["); break;
2056   default:
2057     ShouldNotReachHere();
2058   }
2059   st->print("%d]:{", _length);
2060   _elem->dump2(d, depth, st);
2061   st->print("}");
2062 }
2063 #endif
2064 
2065 
2066 //=============================================================================
2067 // Convenience common pre-built types.
2068 const TypePtr *TypePtr::NULL_PTR;
2069 const TypePtr *TypePtr::NOTNULL;
2070 const TypePtr *TypePtr::BOTTOM;
2071 
2072 //------------------------------meet-------------------------------------------
2073 // Meet over the PTR enum
2074 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2075   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2076   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2077   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2078   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2079   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2080   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2081   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2082 };
2083 
2084 //------------------------------make-------------------------------------------
2085 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2086   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2087 }
2088 
2089 //------------------------------cast_to_ptr_type-------------------------------
2090 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2091   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2092   if( ptr == _ptr ) return this;
2093   return make(_base, ptr, _offset);
2094 }
2095 
2096 //------------------------------get_con----------------------------------------
2097 intptr_t TypePtr::get_con() const {
2098   assert( _ptr == Null, "" );
2099   return _offset;
2100 }
2101 
2102 //------------------------------meet-------------------------------------------
2103 // Compute the MEET of two types.  It returns a new Type object.
2104 const Type *TypePtr::xmeet( const Type *t ) const {
2105   // Perform a fast test for common case; meeting the same types together.
2106   if( this == t ) return this;  // Meeting same type-rep?
2107 
2108   // Current "this->_base" is AnyPtr
2109   switch (t->base()) {          // switch on original type
2110   case Int:                     // Mixing ints & oops happens when javac
2111   case Long:                    // reuses local variables
2112   case FloatTop:
2113   case FloatCon:
2114   case FloatBot:
2115   case DoubleTop:
2116   case DoubleCon:
2117   case DoubleBot:
2118   case NarrowOop:
2119   case NarrowKlass:
2120   case Bottom:                  // Ye Olde Default
2121     return Type::BOTTOM;
2122   case Top:
2123     return this;
2124 
2125   case AnyPtr: {                // Meeting to AnyPtrs
2126     const TypePtr *tp = t->is_ptr();
2127     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2128   }
2129   case RawPtr:                  // For these, flip the call around to cut down
2130   case OopPtr:
2131   case InstPtr:                 // on the cases I have to handle.
2132   case AryPtr:
2133   case MetadataPtr:
2134   case KlassPtr:
2135     return t->xmeet(this);      // Call in reverse direction
2136   default:                      // All else is a mistake
2137     typerr(t);
2138 
2139   }
2140   return this;
2141 }
2142 
2143 //------------------------------meet_offset------------------------------------
2144 int TypePtr::meet_offset( int offset ) const {
2145   // Either is 'TOP' offset?  Return the other offset!
2146   if( _offset == OffsetTop ) return offset;
2147   if( offset == OffsetTop ) return _offset;
2148   // If either is different, return 'BOTTOM' offset
2149   if( _offset != offset ) return OffsetBot;
2150   return _offset;
2151 }
2152 
2153 //------------------------------dual_offset------------------------------------
2154 int TypePtr::dual_offset( ) const {
2155   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2156   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2157   return _offset;               // Map everything else into self
2158 }
2159 
2160 //------------------------------xdual------------------------------------------
2161 // Dual: compute field-by-field dual
2162 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2163   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2164 };
2165 const Type *TypePtr::xdual() const {
2166   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2167 }
2168 
2169 //------------------------------xadd_offset------------------------------------
2170 int TypePtr::xadd_offset( intptr_t offset ) const {
2171   // Adding to 'TOP' offset?  Return 'TOP'!
2172   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2173   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2174   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2175   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2176   offset += (intptr_t)_offset;
2177   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2178 
2179   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2180   // It is possible to construct a negative offset during PhaseCCP
2181 
2182   return (int)offset;        // Sum valid offsets
2183 }
2184 
2185 //------------------------------add_offset-------------------------------------
2186 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2187   return make( AnyPtr, _ptr, xadd_offset(offset) );
2188 }
2189 
2190 //------------------------------eq---------------------------------------------
2191 // Structural equality check for Type representations
2192 bool TypePtr::eq( const Type *t ) const {
2193   const TypePtr *a = (const TypePtr*)t;
2194   return _ptr == a->ptr() && _offset == a->offset();
2195 }
2196 
2197 //------------------------------hash-------------------------------------------
2198 // Type-specific hashing function.
2199 int TypePtr::hash(void) const {
2200   return _ptr + _offset;
2201 }
2202 
2203 //------------------------------dump2------------------------------------------
2204 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2205   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2206 };
2207 
2208 #ifndef PRODUCT
2209 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2210   if( _ptr == Null ) st->print("NULL");
2211   else st->print("%s *", ptr_msg[_ptr]);
2212   if( _offset == OffsetTop ) st->print("+top");
2213   else if( _offset == OffsetBot ) st->print("+bot");
2214   else if( _offset ) st->print("+%d", _offset);
2215 }
2216 #endif
2217 
2218 //------------------------------singleton--------------------------------------
2219 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2220 // constants
2221 bool TypePtr::singleton(void) const {
2222   // TopPTR, Null, AnyNull, Constant are all singletons
2223   return (_offset != OffsetBot) && !below_centerline(_ptr);
2224 }
2225 
2226 bool TypePtr::empty(void) const {
2227   return (_offset == OffsetTop) || above_centerline(_ptr);
2228 }
2229 
2230 //=============================================================================
2231 // Convenience common pre-built types.
2232 const TypeRawPtr *TypeRawPtr::BOTTOM;
2233 const TypeRawPtr *TypeRawPtr::NOTNULL;
2234 
2235 //------------------------------make-------------------------------------------
2236 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2237   assert( ptr != Constant, "what is the constant?" );
2238   assert( ptr != Null, "Use TypePtr for NULL" );
2239   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2240 }
2241 
2242 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2243   assert( bits, "Use TypePtr for NULL" );
2244   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2245 }
2246 
2247 //------------------------------cast_to_ptr_type-------------------------------
2248 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2249   assert( ptr != Constant, "what is the constant?" );
2250   assert( ptr != Null, "Use TypePtr for NULL" );
2251   assert( _bits==0, "Why cast a constant address?");
2252   if( ptr == _ptr ) return this;
2253   return make(ptr);
2254 }
2255 
2256 //------------------------------get_con----------------------------------------
2257 intptr_t TypeRawPtr::get_con() const {
2258   assert( _ptr == Null || _ptr == Constant, "" );
2259   return (intptr_t)_bits;
2260 }
2261 
2262 //------------------------------meet-------------------------------------------
2263 // Compute the MEET of two types.  It returns a new Type object.
2264 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2265   // Perform a fast test for common case; meeting the same types together.
2266   if( this == t ) return this;  // Meeting same type-rep?
2267 
2268   // Current "this->_base" is RawPtr
2269   switch( t->base() ) {         // switch on original type
2270   case Bottom:                  // Ye Olde Default
2271     return t;
2272   case Top:
2273     return this;
2274   case AnyPtr:                  // Meeting to AnyPtrs
2275     break;
2276   case RawPtr: {                // might be top, bot, any/not or constant
2277     enum PTR tptr = t->is_ptr()->ptr();
2278     enum PTR ptr = meet_ptr( tptr );
2279     if( ptr == Constant ) {     // Cannot be equal constants, so...
2280       if( tptr == Constant && _ptr != Constant)  return t;
2281       if( _ptr == Constant && tptr != Constant)  return this;
2282       ptr = NotNull;            // Fall down in lattice
2283     }
2284     return make( ptr );
2285   }
2286 
2287   case OopPtr:
2288   case InstPtr:
2289   case AryPtr:
2290   case MetadataPtr:
2291   case KlassPtr:
2292     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2293   default:                      // All else is a mistake
2294     typerr(t);
2295   }
2296 
2297   // Found an AnyPtr type vs self-RawPtr type
2298   const TypePtr *tp = t->is_ptr();
2299   switch (tp->ptr()) {
2300   case TypePtr::TopPTR:  return this;
2301   case TypePtr::BotPTR:  return t;
2302   case TypePtr::Null:
2303     if( _ptr == TypePtr::TopPTR ) return t;
2304     return TypeRawPtr::BOTTOM;
2305   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2306   case TypePtr::AnyNull:
2307     if( _ptr == TypePtr::Constant) return this;
2308     return make( meet_ptr(TypePtr::AnyNull) );
2309   default: ShouldNotReachHere();
2310   }
2311   return this;
2312 }
2313 
2314 //------------------------------xdual------------------------------------------
2315 // Dual: compute field-by-field dual
2316 const Type *TypeRawPtr::xdual() const {
2317   return new TypeRawPtr( dual_ptr(), _bits );
2318 }
2319 
2320 //------------------------------add_offset-------------------------------------
2321 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2322   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2323   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2324   if( offset == 0 ) return this; // No change
2325   switch (_ptr) {
2326   case TypePtr::TopPTR:
2327   case TypePtr::BotPTR:
2328   case TypePtr::NotNull:
2329     return this;
2330   case TypePtr::Null:
2331   case TypePtr::Constant: {
2332     address bits = _bits+offset;
2333     if ( bits == 0 ) return TypePtr::NULL_PTR;
2334     return make( bits );
2335   }
2336   default:  ShouldNotReachHere();
2337   }
2338   return NULL;                  // Lint noise
2339 }
2340 
2341 //------------------------------eq---------------------------------------------
2342 // Structural equality check for Type representations
2343 bool TypeRawPtr::eq( const Type *t ) const {
2344   const TypeRawPtr *a = (const TypeRawPtr*)t;
2345   return _bits == a->_bits && TypePtr::eq(t);
2346 }
2347 
2348 //------------------------------hash-------------------------------------------
2349 // Type-specific hashing function.
2350 int TypeRawPtr::hash(void) const {
2351   return (intptr_t)_bits + TypePtr::hash();
2352 }
2353 
2354 //------------------------------dump2------------------------------------------
2355 #ifndef PRODUCT
2356 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2357   if( _ptr == Constant )
2358     st->print(INTPTR_FORMAT, _bits);
2359   else
2360     st->print("rawptr:%s", ptr_msg[_ptr]);
2361 }
2362 #endif
2363 
2364 //=============================================================================
2365 // Convenience common pre-built type.
2366 const TypeOopPtr *TypeOopPtr::BOTTOM;
2367 
2368 //------------------------------TypeOopPtr-------------------------------------
2369 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
2370   : TypePtr(t, ptr, offset),
2371     _const_oop(o), _klass(k),
2372     _klass_is_exact(xk),
2373     _is_ptr_to_narrowoop(false),
2374     _is_ptr_to_narrowklass(false),
2375     _is_ptr_to_boxed_value(false),
2376     _instance_id(instance_id) {
2377   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2378       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2379     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2380   }
2381 #ifdef _LP64
2382   if (_offset != 0) {
2383     if (_offset == oopDesc::klass_offset_in_bytes()) {
2384       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2385     } else if (klass() == NULL) {
2386       // Array with unknown body type
2387       assert(this->isa_aryptr(), "only arrays without klass");
2388       _is_ptr_to_narrowoop = UseCompressedOops;
2389     } else if (this->isa_aryptr()) {
2390       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2391                              _offset != arrayOopDesc::length_offset_in_bytes());
2392     } else if (klass()->is_instance_klass()) {
2393       ciInstanceKlass* ik = klass()->as_instance_klass();
2394       ciField* field = NULL;
2395       if (this->isa_klassptr()) {
2396         // Perm objects don't use compressed references
2397       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2398         // unsafe access
2399         _is_ptr_to_narrowoop = UseCompressedOops;
2400       } else { // exclude unsafe ops
2401         assert(this->isa_instptr(), "must be an instance ptr.");
2402 
2403         if (klass() == ciEnv::current()->Class_klass() &&
2404             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2405              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2406           // Special hidden fields from the Class.
2407           assert(this->isa_instptr(), "must be an instance ptr.");
2408           _is_ptr_to_narrowoop = false;
2409         } else if (klass() == ciEnv::current()->Class_klass() &&
2410                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2411           // Static fields
2412           assert(o != NULL, "must be constant");
2413           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2414           ciField* field = k->get_field_by_offset(_offset, true);
2415           assert(field != NULL, "missing field");
2416           BasicType basic_elem_type = field->layout_type();
2417           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2418                                                        basic_elem_type == T_ARRAY);
2419         } else {
2420           // Instance fields which contains a compressed oop references.
2421           field = ik->get_field_by_offset(_offset, false);
2422           if (field != NULL) {
2423             BasicType basic_elem_type = field->layout_type();
2424             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2425                                                          basic_elem_type == T_ARRAY);
2426           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2427             // Compile::find_alias_type() cast exactness on all types to verify
2428             // that it does not affect alias type.
2429             _is_ptr_to_narrowoop = UseCompressedOops;
2430           } else {
2431             // Type for the copy start in LibraryCallKit::inline_native_clone().
2432             _is_ptr_to_narrowoop = UseCompressedOops;
2433           }
2434         }
2435       }
2436     }
2437   }
2438 #endif
2439 }
2440 
2441 //------------------------------make-------------------------------------------
2442 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2443                                    int offset, int instance_id) {
2444   assert(ptr != Constant, "no constant generic pointers");
2445   ciKlass*  k = Compile::current()->env()->Object_klass();
2446   bool      xk = false;
2447   ciObject* o = NULL;
2448   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
2449 }
2450 
2451 
2452 //------------------------------cast_to_ptr_type-------------------------------
2453 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2454   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2455   if( ptr == _ptr ) return this;
2456   return make(ptr, _offset, _instance_id);
2457 }
2458 
2459 //-----------------------------cast_to_instance_id----------------------------
2460 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2461   // There are no instances of a general oop.
2462   // Return self unchanged.
2463   return this;
2464 }
2465 
2466 //-----------------------------cast_to_exactness-------------------------------
2467 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2468   // There is no such thing as an exact general oop.
2469   // Return self unchanged.
2470   return this;
2471 }
2472 
2473 
2474 //------------------------------as_klass_type----------------------------------
2475 // Return the klass type corresponding to this instance or array type.
2476 // It is the type that is loaded from an object of this type.
2477 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2478   ciKlass* k = klass();
2479   bool    xk = klass_is_exact();
2480   if (k == NULL)
2481     return TypeKlassPtr::OBJECT;
2482   else
2483     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2484 }
2485 
2486 
2487 //------------------------------meet-------------------------------------------
2488 // Compute the MEET of two types.  It returns a new Type object.
2489 const Type *TypeOopPtr::xmeet( const Type *t ) const {
2490   // Perform a fast test for common case; meeting the same types together.
2491   if( this == t ) return this;  // Meeting same type-rep?
2492 
2493   // Current "this->_base" is OopPtr
2494   switch (t->base()) {          // switch on original type
2495 
2496   case Int:                     // Mixing ints & oops happens when javac
2497   case Long:                    // reuses local variables
2498   case FloatTop:
2499   case FloatCon:
2500   case FloatBot:
2501   case DoubleTop:
2502   case DoubleCon:
2503   case DoubleBot:
2504   case NarrowOop:
2505   case NarrowKlass:
2506   case Bottom:                  // Ye Olde Default
2507     return Type::BOTTOM;
2508   case Top:
2509     return this;
2510 
2511   default:                      // All else is a mistake
2512     typerr(t);
2513 
2514   case RawPtr:
2515   case MetadataPtr:
2516   case KlassPtr:
2517     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2518 
2519   case AnyPtr: {
2520     // Found an AnyPtr type vs self-OopPtr type
2521     const TypePtr *tp = t->is_ptr();
2522     int offset = meet_offset(tp->offset());
2523     PTR ptr = meet_ptr(tp->ptr());
2524     switch (tp->ptr()) {
2525     case Null:
2526       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2527       // else fall through:
2528     case TopPTR:
2529     case AnyNull: {
2530       int instance_id = meet_instance_id(InstanceTop);
2531       return make(ptr, offset, instance_id);
2532     }
2533     case BotPTR:
2534     case NotNull:
2535       return TypePtr::make(AnyPtr, ptr, offset);
2536     default: typerr(t);
2537     }
2538   }
2539 
2540   case OopPtr: {                 // Meeting to other OopPtrs
2541     const TypeOopPtr *tp = t->is_oopptr();
2542     int instance_id = meet_instance_id(tp->instance_id());
2543     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
2544   }
2545 
2546   case InstPtr:                  // For these, flip the call around to cut down
2547   case AryPtr:
2548     return t->xmeet(this);      // Call in reverse direction
2549 
2550   } // End of switch
2551   return this;                  // Return the double constant
2552 }
2553 
2554 
2555 //------------------------------xdual------------------------------------------
2556 // Dual of a pure heap pointer.  No relevant klass or oop information.
2557 const Type *TypeOopPtr::xdual() const {
2558   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2559   assert(const_oop() == NULL,             "no constants here");
2560   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
2561 }
2562 
2563 //--------------------------make_from_klass_common-----------------------------
2564 // Computes the element-type given a klass.
2565 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2566   if (klass->is_instance_klass()) {
2567     Compile* C = Compile::current();
2568     Dependencies* deps = C->dependencies();
2569     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2570     // Element is an instance
2571     bool klass_is_exact = false;
2572     if (klass->is_loaded()) {
2573       // Try to set klass_is_exact.
2574       ciInstanceKlass* ik = klass->as_instance_klass();
2575       klass_is_exact = ik->is_final();
2576       if (!klass_is_exact && klass_change
2577           && deps != NULL && UseUniqueSubclasses) {
2578         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2579         if (sub != NULL) {
2580           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2581           klass = ik = sub;
2582           klass_is_exact = sub->is_final();
2583         }
2584       }
2585       if (!klass_is_exact && try_for_exact
2586           && deps != NULL && UseExactTypes) {
2587         if (!ik->is_interface() && !ik->has_subklass()) {
2588           // Add a dependence; if concrete subclass added we need to recompile
2589           deps->assert_leaf_type(ik);
2590           klass_is_exact = true;
2591         }
2592       }
2593     }
2594     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2595   } else if (klass->is_obj_array_klass()) {
2596     // Element is an object array. Recursively call ourself.
2597     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2598     bool xk = etype->klass_is_exact();
2599     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2600     // We used to pass NotNull in here, asserting that the sub-arrays
2601     // are all not-null.  This is not true in generally, as code can
2602     // slam NULLs down in the subarrays.
2603     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2604     return arr;
2605   } else if (klass->is_type_array_klass()) {
2606     // Element is an typeArray
2607     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2608     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2609     // We used to pass NotNull in here, asserting that the array pointer
2610     // is not-null. That was not true in general.
2611     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2612     return arr;
2613   } else {
2614     ShouldNotReachHere();
2615     return NULL;
2616   }
2617 }
2618 
2619 //------------------------------make_from_constant-----------------------------
2620 // Make a java pointer from an oop constant
2621 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2622                                                  bool require_constant,
2623                                                  bool is_autobox_cache) {
2624   assert(!o->is_null_object(), "null object not yet handled here.");
2625   ciKlass* klass = o->klass();
2626   if (klass->is_instance_klass()) {
2627     // Element is an instance
2628     if (require_constant) {
2629       if (!o->can_be_constant())  return NULL;
2630     } else if (!o->should_be_constant()) {
2631       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2632     }
2633     return TypeInstPtr::make(o);
2634   } else if (klass->is_obj_array_klass()) {
2635     // Element is an object array. Recursively call ourself.
2636     const TypeOopPtr *etype =
2637       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2638     if (is_autobox_cache) {
2639       // The pointers in the autobox arrays are always non-null.
2640       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2641     }
2642     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2643     // We used to pass NotNull in here, asserting that the sub-arrays
2644     // are all not-null.  This is not true in generally, as code can
2645     // slam NULLs down in the subarrays.
2646     if (require_constant) {
2647       if (!o->can_be_constant())  return NULL;
2648     } else if (!o->should_be_constant()) {
2649       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2650     }
2651     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, is_autobox_cache);
2652     return arr;
2653   } else if (klass->is_type_array_klass()) {
2654     // Element is an typeArray
2655     const Type* etype =
2656       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2657     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2658     // We used to pass NotNull in here, asserting that the array pointer
2659     // is not-null. That was not true in general.
2660     if (require_constant) {
2661       if (!o->can_be_constant())  return NULL;
2662     } else if (!o->should_be_constant()) {
2663       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2664     }
2665     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2666     return arr;
2667   }
2668 
2669   fatal("unhandled object type");
2670   return NULL;
2671 }
2672 
2673 //------------------------------get_con----------------------------------------
2674 intptr_t TypeOopPtr::get_con() const {
2675   assert( _ptr == Null || _ptr == Constant, "" );
2676   assert( _offset >= 0, "" );
2677 
2678   if (_offset != 0) {
2679     // After being ported to the compiler interface, the compiler no longer
2680     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2681     // to a handle at compile time.  This handle is embedded in the generated
2682     // code and dereferenced at the time the nmethod is made.  Until that time,
2683     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2684     // have access to the addresses!).  This does not seem to currently happen,
2685     // but this assertion here is to help prevent its occurence.
2686     tty->print_cr("Found oop constant with non-zero offset");
2687     ShouldNotReachHere();
2688   }
2689 
2690   return (intptr_t)const_oop()->constant_encoding();
2691 }
2692 
2693 
2694 //-----------------------------filter------------------------------------------
2695 // Do not allow interface-vs.-noninterface joins to collapse to top.
2696 const Type *TypeOopPtr::filter( const Type *kills ) const {
2697 
2698   const Type* ft = join(kills);
2699   const TypeInstPtr* ftip = ft->isa_instptr();
2700   const TypeInstPtr* ktip = kills->isa_instptr();
2701   const TypeKlassPtr* ftkp = ft->isa_klassptr();
2702   const TypeKlassPtr* ktkp = kills->isa_klassptr();
2703 
2704   if (ft->empty()) {
2705     // Check for evil case of 'this' being a class and 'kills' expecting an
2706     // interface.  This can happen because the bytecodes do not contain
2707     // enough type info to distinguish a Java-level interface variable
2708     // from a Java-level object variable.  If we meet 2 classes which
2709     // both implement interface I, but their meet is at 'j/l/O' which
2710     // doesn't implement I, we have no way to tell if the result should
2711     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2712     // into a Phi which "knows" it's an Interface type we'll have to
2713     // uplift the type.
2714     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2715       return kills;             // Uplift to interface
2716     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
2717       return kills;             // Uplift to interface
2718 
2719     return Type::TOP;           // Canonical empty value
2720   }
2721 
2722   // If we have an interface-typed Phi or cast and we narrow to a class type,
2723   // the join should report back the class.  However, if we have a J/L/Object
2724   // class-typed Phi and an interface flows in, it's possible that the meet &
2725   // join report an interface back out.  This isn't possible but happens
2726   // because the type system doesn't interact well with interfaces.
2727   if (ftip != NULL && ktip != NULL &&
2728       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2729       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2730     // Happens in a CTW of rt.jar, 320-341, no extra flags
2731     assert(!ftip->klass_is_exact(), "interface could not be exact");
2732     return ktip->cast_to_ptr_type(ftip->ptr());
2733   }
2734   // Interface klass type could be exact in opposite to interface type,
2735   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
2736   if (ftkp != NULL && ktkp != NULL &&
2737       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
2738       !ftkp->klass_is_exact() && // Keep exact interface klass
2739       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
2740     return ktkp->cast_to_ptr_type(ftkp->ptr());
2741   }
2742 
2743   return ft;
2744 }
2745 
2746 //------------------------------eq---------------------------------------------
2747 // Structural equality check for Type representations
2748 bool TypeOopPtr::eq( const Type *t ) const {
2749   const TypeOopPtr *a = (const TypeOopPtr*)t;
2750   if (_klass_is_exact != a->_klass_is_exact ||
2751       _instance_id != a->_instance_id)  return false;
2752   ciObject* one = const_oop();
2753   ciObject* two = a->const_oop();
2754   if (one == NULL || two == NULL) {
2755     return (one == two) && TypePtr::eq(t);
2756   } else {
2757     return one->equals(two) && TypePtr::eq(t);
2758   }
2759 }
2760 
2761 //------------------------------hash-------------------------------------------
2762 // Type-specific hashing function.
2763 int TypeOopPtr::hash(void) const {
2764   return
2765     (const_oop() ? const_oop()->hash() : 0) +
2766     _klass_is_exact +
2767     _instance_id +
2768     TypePtr::hash();
2769 }
2770 
2771 //------------------------------dump2------------------------------------------
2772 #ifndef PRODUCT
2773 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2774   st->print("oopptr:%s", ptr_msg[_ptr]);
2775   if( _klass_is_exact ) st->print(":exact");
2776   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2777   switch( _offset ) {
2778   case OffsetTop: st->print("+top"); break;
2779   case OffsetBot: st->print("+any"); break;
2780   case         0: break;
2781   default:        st->print("+%d",_offset); break;
2782   }
2783   if (_instance_id == InstanceTop)
2784     st->print(",iid=top");
2785   else if (_instance_id != InstanceBot)
2786     st->print(",iid=%d",_instance_id);
2787 }
2788 #endif
2789 
2790 //------------------------------singleton--------------------------------------
2791 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2792 // constants
2793 bool TypeOopPtr::singleton(void) const {
2794   // detune optimizer to not generate constant oop + constant offset as a constant!
2795   // TopPTR, Null, AnyNull, Constant are all singletons
2796   return (_offset == 0) && !below_centerline(_ptr);
2797 }
2798 
2799 //------------------------------add_offset-------------------------------------
2800 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
2801   return make( _ptr, xadd_offset(offset), _instance_id);
2802 }
2803 
2804 //------------------------------meet_instance_id--------------------------------
2805 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2806   // Either is 'TOP' instance?  Return the other instance!
2807   if( _instance_id == InstanceTop ) return  instance_id;
2808   if(  instance_id == InstanceTop ) return _instance_id;
2809   // If either is different, return 'BOTTOM' instance
2810   if( _instance_id != instance_id ) return InstanceBot;
2811   return _instance_id;
2812 }
2813 
2814 //------------------------------dual_instance_id--------------------------------
2815 int TypeOopPtr::dual_instance_id( ) const {
2816   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2817   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2818   return _instance_id;              // Map everything else into self
2819 }
2820 
2821 
2822 //=============================================================================
2823 // Convenience common pre-built types.
2824 const TypeInstPtr *TypeInstPtr::NOTNULL;
2825 const TypeInstPtr *TypeInstPtr::BOTTOM;
2826 const TypeInstPtr *TypeInstPtr::MIRROR;
2827 const TypeInstPtr *TypeInstPtr::MARK;
2828 const TypeInstPtr *TypeInstPtr::KLASS;
2829 
2830 //------------------------------TypeInstPtr-------------------------------------
2831 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
2832  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
2833    assert(k != NULL &&
2834           (k->is_loaded() || o == NULL),
2835           "cannot have constants with non-loaded klass");
2836 };
2837 
2838 //------------------------------make-------------------------------------------
2839 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
2840                                      ciKlass* k,
2841                                      bool xk,
2842                                      ciObject* o,
2843                                      int offset,
2844                                      int instance_id) {
2845   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
2846   // Either const_oop() is NULL or else ptr is Constant
2847   assert( (!o && ptr != Constant) || (o && ptr == Constant),
2848           "constant pointers must have a value supplied" );
2849   // Ptr is never Null
2850   assert( ptr != Null, "NULL pointers are not typed" );
2851 
2852   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
2853   if (!UseExactTypes)  xk = false;
2854   if (ptr == Constant) {
2855     // Note:  This case includes meta-object constants, such as methods.
2856     xk = true;
2857   } else if (k->is_loaded()) {
2858     ciInstanceKlass* ik = k->as_instance_klass();
2859     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
2860     if (xk && ik->is_interface())  xk = false;  // no exact interface
2861   }
2862 
2863   // Now hash this baby
2864   TypeInstPtr *result =
2865     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
2866 
2867   return result;
2868 }
2869 
2870 /**
2871  *  Create constant type for a constant boxed value
2872  */
2873 const Type* TypeInstPtr::get_const_boxed_value() const {
2874   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
2875   assert((const_oop() != NULL), "should be called only for constant object");
2876   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
2877   BasicType bt = constant.basic_type();
2878   switch (bt) {
2879     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
2880     case T_INT:      return TypeInt::make(constant.as_int());
2881     case T_CHAR:     return TypeInt::make(constant.as_char());
2882     case T_BYTE:     return TypeInt::make(constant.as_byte());
2883     case T_SHORT:    return TypeInt::make(constant.as_short());
2884     case T_FLOAT:    return TypeF::make(constant.as_float());
2885     case T_DOUBLE:   return TypeD::make(constant.as_double());
2886     case T_LONG:     return TypeLong::make(constant.as_long());
2887     default:         break;
2888   }
2889   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
2890   return NULL;
2891 }
2892 
2893 //------------------------------cast_to_ptr_type-------------------------------
2894 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
2895   if( ptr == _ptr ) return this;
2896   // Reconstruct _sig info here since not a problem with later lazy
2897   // construction, _sig will show up on demand.
2898   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
2899 }
2900 
2901 
2902 //-----------------------------cast_to_exactness-------------------------------
2903 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
2904   if( klass_is_exact == _klass_is_exact ) return this;
2905   if (!UseExactTypes)  return this;
2906   if (!_klass->is_loaded())  return this;
2907   ciInstanceKlass* ik = _klass->as_instance_klass();
2908   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
2909   if( ik->is_interface() )              return this;  // cannot set xk
2910   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
2911 }
2912 
2913 //-----------------------------cast_to_instance_id----------------------------
2914 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
2915   if( instance_id == _instance_id ) return this;
2916   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
2917 }
2918 
2919 //------------------------------xmeet_unloaded---------------------------------
2920 // Compute the MEET of two InstPtrs when at least one is unloaded.
2921 // Assume classes are different since called after check for same name/class-loader
2922 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
2923     int off = meet_offset(tinst->offset());
2924     PTR ptr = meet_ptr(tinst->ptr());
2925     int instance_id = meet_instance_id(tinst->instance_id());
2926 
2927     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
2928     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
2929     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
2930       //
2931       // Meet unloaded class with java/lang/Object
2932       //
2933       // Meet
2934       //          |                     Unloaded Class
2935       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
2936       //  ===================================================================
2937       //   TOP    | ..........................Unloaded......................|
2938       //  AnyNull |  U-AN    |................Unloaded......................|
2939       // Constant | ... O-NN .................................. |   O-BOT   |
2940       //  NotNull | ... O-NN .................................. |   O-BOT   |
2941       //  BOTTOM  | ........................Object-BOTTOM ..................|
2942       //
2943       assert(loaded->ptr() != TypePtr::Null, "insanity check");
2944       //
2945       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
2946       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
2947       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
2948       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
2949         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
2950         else                                      { return TypeInstPtr::NOTNULL; }
2951       }
2952       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
2953 
2954       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
2955     }
2956 
2957     // Both are unloaded, not the same class, not Object
2958     // Or meet unloaded with a different loaded class, not java/lang/Object
2959     if( ptr != TypePtr::BotPTR ) {
2960       return TypeInstPtr::NOTNULL;
2961     }
2962     return TypeInstPtr::BOTTOM;
2963 }
2964 
2965 
2966 //------------------------------meet-------------------------------------------
2967 // Compute the MEET of two types.  It returns a new Type object.
2968 const Type *TypeInstPtr::xmeet( const Type *t ) const {
2969   // Perform a fast test for common case; meeting the same types together.
2970   if( this == t ) return this;  // Meeting same type-rep?
2971 
2972   // Current "this->_base" is Pointer
2973   switch (t->base()) {          // switch on original type
2974 
2975   case Int:                     // Mixing ints & oops happens when javac
2976   case Long:                    // reuses local variables
2977   case FloatTop:
2978   case FloatCon:
2979   case FloatBot:
2980   case DoubleTop:
2981   case DoubleCon:
2982   case DoubleBot:
2983   case NarrowOop:
2984   case NarrowKlass:
2985   case Bottom:                  // Ye Olde Default
2986     return Type::BOTTOM;
2987   case Top:
2988     return this;
2989 
2990   default:                      // All else is a mistake
2991     typerr(t);
2992 
2993   case MetadataPtr:
2994   case KlassPtr:
2995   case RawPtr: return TypePtr::BOTTOM;
2996 
2997   case AryPtr: {                // All arrays inherit from Object class
2998     const TypeAryPtr *tp = t->is_aryptr();
2999     int offset = meet_offset(tp->offset());
3000     PTR ptr = meet_ptr(tp->ptr());
3001     int instance_id = meet_instance_id(tp->instance_id());
3002     switch (ptr) {
3003     case TopPTR:
3004     case AnyNull:                // Fall 'down' to dual of object klass
3005       if (klass()->equals(ciEnv::current()->Object_klass())) {
3006         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
3007       } else {
3008         // cannot subclass, so the meet has to fall badly below the centerline
3009         ptr = NotNull;
3010         instance_id = InstanceBot;
3011         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
3012       }
3013     case Constant:
3014     case NotNull:
3015     case BotPTR:                // Fall down to object klass
3016       // LCA is object_klass, but if we subclass from the top we can do better
3017       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3018         // If 'this' (InstPtr) is above the centerline and it is Object class
3019         // then we can subclass in the Java class hierarchy.
3020         if (klass()->equals(ciEnv::current()->Object_klass())) {
3021           // that is, tp's array type is a subtype of my klass
3022           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3023                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
3024         }
3025       }
3026       // The other case cannot happen, since I cannot be a subtype of an array.
3027       // The meet falls down to Object class below centerline.
3028       if( ptr == Constant )
3029          ptr = NotNull;
3030       instance_id = InstanceBot;
3031       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
3032     default: typerr(t);
3033     }
3034   }
3035 
3036   case OopPtr: {                // Meeting to OopPtrs
3037     // Found a OopPtr type vs self-InstPtr type
3038     const TypeOopPtr *tp = t->is_oopptr();
3039     int offset = meet_offset(tp->offset());
3040     PTR ptr = meet_ptr(tp->ptr());
3041     switch (tp->ptr()) {
3042     case TopPTR:
3043     case AnyNull: {
3044       int instance_id = meet_instance_id(InstanceTop);
3045       return make(ptr, klass(), klass_is_exact(),
3046                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
3047     }
3048     case NotNull:
3049     case BotPTR: {
3050       int instance_id = meet_instance_id(tp->instance_id());
3051       return TypeOopPtr::make(ptr, offset, instance_id);
3052     }
3053     default: typerr(t);
3054     }
3055   }
3056 
3057   case AnyPtr: {                // Meeting to AnyPtrs
3058     // Found an AnyPtr type vs self-InstPtr type
3059     const TypePtr *tp = t->is_ptr();
3060     int offset = meet_offset(tp->offset());
3061     PTR ptr = meet_ptr(tp->ptr());
3062     switch (tp->ptr()) {
3063     case Null:
3064       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
3065       // else fall through to AnyNull
3066     case TopPTR:
3067     case AnyNull: {
3068       int instance_id = meet_instance_id(InstanceTop);
3069       return make( ptr, klass(), klass_is_exact(),
3070                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
3071     }
3072     case NotNull:
3073     case BotPTR:
3074       return TypePtr::make( AnyPtr, ptr, offset );
3075     default: typerr(t);
3076     }
3077   }
3078 
3079   /*
3080                  A-top         }
3081                /   |   \       }  Tops
3082            B-top A-any C-top   }
3083               | /  |  \ |      }  Any-nulls
3084            B-any   |   C-any   }
3085               |    |    |
3086            B-con A-con C-con   } constants; not comparable across classes
3087               |    |    |
3088            B-not   |   C-not   }
3089               | \  |  / |      }  not-nulls
3090            B-bot A-not C-bot   }
3091                \   |   /       }  Bottoms
3092                  A-bot         }
3093   */
3094 
3095   case InstPtr: {                // Meeting 2 Oops?
3096     // Found an InstPtr sub-type vs self-InstPtr type
3097     const TypeInstPtr *tinst = t->is_instptr();
3098     int off = meet_offset( tinst->offset() );
3099     PTR ptr = meet_ptr( tinst->ptr() );
3100     int instance_id = meet_instance_id(tinst->instance_id());
3101 
3102     // Check for easy case; klasses are equal (and perhaps not loaded!)
3103     // If we have constants, then we created oops so classes are loaded
3104     // and we can handle the constants further down.  This case handles
3105     // both-not-loaded or both-loaded classes
3106     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3107       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
3108     }
3109 
3110     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3111     ciKlass* tinst_klass = tinst->klass();
3112     ciKlass* this_klass  = this->klass();
3113     bool tinst_xk = tinst->klass_is_exact();
3114     bool this_xk  = this->klass_is_exact();
3115     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3116       // One of these classes has not been loaded
3117       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3118 #ifndef PRODUCT
3119       if( PrintOpto && Verbose ) {
3120         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3121         tty->print("  this == "); this->dump(); tty->cr();
3122         tty->print(" tinst == "); tinst->dump(); tty->cr();
3123       }
3124 #endif
3125       return unloaded_meet;
3126     }
3127 
3128     // Handle mixing oops and interfaces first.
3129     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
3130       ciKlass *tmp = tinst_klass; // Swap interface around
3131       tinst_klass = this_klass;
3132       this_klass = tmp;
3133       bool tmp2 = tinst_xk;
3134       tinst_xk = this_xk;
3135       this_xk = tmp2;
3136     }
3137     if (tinst_klass->is_interface() &&
3138         !(this_klass->is_interface() ||
3139           // Treat java/lang/Object as an honorary interface,
3140           // because we need a bottom for the interface hierarchy.
3141           this_klass == ciEnv::current()->Object_klass())) {
3142       // Oop meets interface!
3143 
3144       // See if the oop subtypes (implements) interface.
3145       ciKlass *k;
3146       bool xk;
3147       if( this_klass->is_subtype_of( tinst_klass ) ) {
3148         // Oop indeed subtypes.  Now keep oop or interface depending
3149         // on whether we are both above the centerline or either is
3150         // below the centerline.  If we are on the centerline
3151         // (e.g., Constant vs. AnyNull interface), use the constant.
3152         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3153         // If we are keeping this_klass, keep its exactness too.
3154         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3155       } else {                  // Does not implement, fall to Object
3156         // Oop does not implement interface, so mixing falls to Object
3157         // just like the verifier does (if both are above the
3158         // centerline fall to interface)
3159         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3160         xk = above_centerline(ptr) ? tinst_xk : false;
3161         // Watch out for Constant vs. AnyNull interface.
3162         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3163         instance_id = InstanceBot;
3164       }
3165       ciObject* o = NULL;  // the Constant value, if any
3166       if (ptr == Constant) {
3167         // Find out which constant.
3168         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3169       }
3170       return make( ptr, k, xk, o, off, instance_id );
3171     }
3172 
3173     // Either oop vs oop or interface vs interface or interface vs Object
3174 
3175     // !!! Here's how the symmetry requirement breaks down into invariants:
3176     // If we split one up & one down AND they subtype, take the down man.
3177     // If we split one up & one down AND they do NOT subtype, "fall hard".
3178     // If both are up and they subtype, take the subtype class.
3179     // If both are up and they do NOT subtype, "fall hard".
3180     // If both are down and they subtype, take the supertype class.
3181     // If both are down and they do NOT subtype, "fall hard".
3182     // Constants treated as down.
3183 
3184     // Now, reorder the above list; observe that both-down+subtype is also
3185     // "fall hard"; "fall hard" becomes the default case:
3186     // If we split one up & one down AND they subtype, take the down man.
3187     // If both are up and they subtype, take the subtype class.
3188 
3189     // If both are down and they subtype, "fall hard".
3190     // If both are down and they do NOT subtype, "fall hard".
3191     // If both are up and they do NOT subtype, "fall hard".
3192     // If we split one up & one down AND they do NOT subtype, "fall hard".
3193 
3194     // If a proper subtype is exact, and we return it, we return it exactly.
3195     // If a proper supertype is exact, there can be no subtyping relationship!
3196     // If both types are equal to the subtype, exactness is and-ed below the
3197     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3198 
3199     // Check for subtyping:
3200     ciKlass *subtype = NULL;
3201     bool subtype_exact = false;
3202     if( tinst_klass->equals(this_klass) ) {
3203       subtype = this_klass;
3204       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3205     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3206       subtype = this_klass;     // Pick subtyping class
3207       subtype_exact = this_xk;
3208     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3209       subtype = tinst_klass;    // Pick subtyping class
3210       subtype_exact = tinst_xk;
3211     }
3212 
3213     if( subtype ) {
3214       if( above_centerline(ptr) ) { // both are up?
3215         this_klass = tinst_klass = subtype;
3216         this_xk = tinst_xk = subtype_exact;
3217       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3218         this_klass = tinst_klass; // tinst is down; keep down man
3219         this_xk = tinst_xk;
3220       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3221         tinst_klass = this_klass; // this is down; keep down man
3222         tinst_xk = this_xk;
3223       } else {
3224         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3225       }
3226     }
3227 
3228     // Check for classes now being equal
3229     if (tinst_klass->equals(this_klass)) {
3230       // If the klasses are equal, the constants may still differ.  Fall to
3231       // NotNull if they do (neither constant is NULL; that is a special case
3232       // handled elsewhere).
3233       ciObject* o = NULL;             // Assume not constant when done
3234       ciObject* this_oop  = const_oop();
3235       ciObject* tinst_oop = tinst->const_oop();
3236       if( ptr == Constant ) {
3237         if (this_oop != NULL && tinst_oop != NULL &&
3238             this_oop->equals(tinst_oop) )
3239           o = this_oop;
3240         else if (above_centerline(this ->_ptr))
3241           o = tinst_oop;
3242         else if (above_centerline(tinst ->_ptr))
3243           o = this_oop;
3244         else
3245           ptr = NotNull;
3246       }
3247       return make( ptr, this_klass, this_xk, o, off, instance_id );
3248     } // Else classes are not equal
3249 
3250     // Since klasses are different, we require a LCA in the Java
3251     // class hierarchy - which means we have to fall to at least NotNull.
3252     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3253       ptr = NotNull;
3254     instance_id = InstanceBot;
3255 
3256     // Now we find the LCA of Java classes
3257     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3258     return make( ptr, k, false, NULL, off, instance_id );
3259   } // End of case InstPtr
3260 
3261   } // End of switch
3262   return this;                  // Return the double constant
3263 }
3264 
3265 
3266 //------------------------java_mirror_type--------------------------------------
3267 ciType* TypeInstPtr::java_mirror_type() const {
3268   // must be a singleton type
3269   if( const_oop() == NULL )  return NULL;
3270 
3271   // must be of type java.lang.Class
3272   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3273 
3274   return const_oop()->as_instance()->java_mirror_type();
3275 }
3276 
3277 
3278 //------------------------------xdual------------------------------------------
3279 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3280 // inheritance mechanism.
3281 const Type *TypeInstPtr::xdual() const {
3282   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
3283 }
3284 
3285 //------------------------------eq---------------------------------------------
3286 // Structural equality check for Type representations
3287 bool TypeInstPtr::eq( const Type *t ) const {
3288   const TypeInstPtr *p = t->is_instptr();
3289   return
3290     klass()->equals(p->klass()) &&
3291     TypeOopPtr::eq(p);          // Check sub-type stuff
3292 }
3293 
3294 //------------------------------hash-------------------------------------------
3295 // Type-specific hashing function.
3296 int TypeInstPtr::hash(void) const {
3297   int hash = klass()->hash() + TypeOopPtr::hash();
3298   return hash;
3299 }
3300 
3301 //------------------------------dump2------------------------------------------
3302 // Dump oop Type
3303 #ifndef PRODUCT
3304 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3305   // Print the name of the klass.
3306   klass()->print_name_on(st);
3307 
3308   switch( _ptr ) {
3309   case Constant:
3310     // TO DO: Make CI print the hex address of the underlying oop.
3311     if (WizardMode || Verbose) {
3312       const_oop()->print_oop(st);
3313     }
3314   case BotPTR:
3315     if (!WizardMode && !Verbose) {
3316       if( _klass_is_exact ) st->print(":exact");
3317       break;
3318     }
3319   case TopPTR:
3320   case AnyNull:
3321   case NotNull:
3322     st->print(":%s", ptr_msg[_ptr]);
3323     if( _klass_is_exact ) st->print(":exact");
3324     break;
3325   }
3326 
3327   if( _offset ) {               // Dump offset, if any
3328     if( _offset == OffsetBot )      st->print("+any");
3329     else if( _offset == OffsetTop ) st->print("+unknown");
3330     else st->print("+%d", _offset);
3331   }
3332 
3333   st->print(" *");
3334   if (_instance_id == InstanceTop)
3335     st->print(",iid=top");
3336   else if (_instance_id != InstanceBot)
3337     st->print(",iid=%d",_instance_id);
3338 }
3339 #endif
3340 
3341 //------------------------------add_offset-------------------------------------
3342 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
3343   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
3344 }
3345 
3346 //=============================================================================
3347 // Convenience common pre-built types.
3348 const TypeAryPtr *TypeAryPtr::RANGE;
3349 const TypeAryPtr *TypeAryPtr::OOPS;
3350 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3351 const TypeAryPtr *TypeAryPtr::BYTES;
3352 const TypeAryPtr *TypeAryPtr::SHORTS;
3353 const TypeAryPtr *TypeAryPtr::CHARS;
3354 const TypeAryPtr *TypeAryPtr::INTS;
3355 const TypeAryPtr *TypeAryPtr::LONGS;
3356 const TypeAryPtr *TypeAryPtr::FLOATS;
3357 const TypeAryPtr *TypeAryPtr::DOUBLES;
3358 
3359 //------------------------------make-------------------------------------------
3360 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3361   assert(!(k == NULL && ary->_elem->isa_int()),
3362          "integral arrays must be pre-equipped with a class");
3363   if (!xk)  xk = ary->ary_must_be_exact();
3364   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3365   if (!UseExactTypes)  xk = (ptr == Constant);
3366   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false))->hashcons();
3367 }
3368 
3369 //------------------------------make-------------------------------------------
3370 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, bool is_autobox_cache) {
3371   assert(!(k == NULL && ary->_elem->isa_int()),
3372          "integral arrays must be pre-equipped with a class");
3373   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3374   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3375   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3376   if (!UseExactTypes)  xk = (ptr == Constant);
3377   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache))->hashcons();
3378 }
3379 
3380 //------------------------------cast_to_ptr_type-------------------------------
3381 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3382   if( ptr == _ptr ) return this;
3383   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
3384 }
3385 
3386 
3387 //-----------------------------cast_to_exactness-------------------------------
3388 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3389   if( klass_is_exact == _klass_is_exact ) return this;
3390   if (!UseExactTypes)  return this;
3391   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3392   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
3393 }
3394 
3395 //-----------------------------cast_to_instance_id----------------------------
3396 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3397   if( instance_id == _instance_id ) return this;
3398   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
3399 }
3400 
3401 //-----------------------------narrow_size_type-------------------------------
3402 // Local cache for arrayOopDesc::max_array_length(etype),
3403 // which is kind of slow (and cached elsewhere by other users).
3404 static jint max_array_length_cache[T_CONFLICT+1];
3405 static jint max_array_length(BasicType etype) {
3406   jint& cache = max_array_length_cache[etype];
3407   jint res = cache;
3408   if (res == 0) {
3409     switch (etype) {
3410     case T_NARROWOOP:
3411       etype = T_OBJECT;
3412       break;
3413     case T_NARROWKLASS:
3414     case T_CONFLICT:
3415     case T_ILLEGAL:
3416     case T_VOID:
3417       etype = T_BYTE;           // will produce conservatively high value
3418     }
3419     cache = res = arrayOopDesc::max_array_length(etype);
3420   }
3421   return res;
3422 }
3423 
3424 // Narrow the given size type to the index range for the given array base type.
3425 // Return NULL if the resulting int type becomes empty.
3426 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3427   jint hi = size->_hi;
3428   jint lo = size->_lo;
3429   jint min_lo = 0;
3430   jint max_hi = max_array_length(elem()->basic_type());
3431   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3432   bool chg = false;
3433   if (lo < min_lo) {
3434     lo = min_lo;
3435     if (size->is_con()) {
3436       hi = lo;
3437     }
3438     chg = true;
3439   }
3440   if (hi > max_hi) {
3441     hi = max_hi;
3442     if (size->is_con()) {
3443       lo = hi;
3444     }
3445     chg = true;
3446   }
3447   // Negative length arrays will produce weird intermediate dead fast-path code
3448   if (lo > hi)
3449     return TypeInt::ZERO;
3450   if (!chg)
3451     return size;
3452   return TypeInt::make(lo, hi, Type::WidenMin);
3453 }
3454 
3455 //-------------------------------cast_to_size----------------------------------
3456 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3457   assert(new_size != NULL, "");
3458   new_size = narrow_size_type(new_size);
3459   if (new_size == size())  return this;
3460   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
3461   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3462 }
3463 
3464 
3465 //------------------------------eq---------------------------------------------
3466 // Structural equality check for Type representations
3467 bool TypeAryPtr::eq( const Type *t ) const {
3468   const TypeAryPtr *p = t->is_aryptr();
3469   return
3470     _ary == p->_ary &&  // Check array
3471     TypeOopPtr::eq(p);  // Check sub-parts
3472 }
3473 
3474 //------------------------------hash-------------------------------------------
3475 // Type-specific hashing function.
3476 int TypeAryPtr::hash(void) const {
3477   return (intptr_t)_ary + TypeOopPtr::hash();
3478 }
3479 
3480 //------------------------------meet-------------------------------------------
3481 // Compute the MEET of two types.  It returns a new Type object.
3482 const Type *TypeAryPtr::xmeet( const Type *t ) const {
3483   // Perform a fast test for common case; meeting the same types together.
3484   if( this == t ) return this;  // Meeting same type-rep?
3485   // Current "this->_base" is Pointer
3486   switch (t->base()) {          // switch on original type
3487 
3488   // Mixing ints & oops happens when javac reuses local variables
3489   case Int:
3490   case Long:
3491   case FloatTop:
3492   case FloatCon:
3493   case FloatBot:
3494   case DoubleTop:
3495   case DoubleCon:
3496   case DoubleBot:
3497   case NarrowOop:
3498   case NarrowKlass:
3499   case Bottom:                  // Ye Olde Default
3500     return Type::BOTTOM;
3501   case Top:
3502     return this;
3503 
3504   default:                      // All else is a mistake
3505     typerr(t);
3506 
3507   case OopPtr: {                // Meeting to OopPtrs
3508     // Found a OopPtr type vs self-AryPtr type
3509     const TypeOopPtr *tp = t->is_oopptr();
3510     int offset = meet_offset(tp->offset());
3511     PTR ptr = meet_ptr(tp->ptr());
3512     switch (tp->ptr()) {
3513     case TopPTR:
3514     case AnyNull: {
3515       int instance_id = meet_instance_id(InstanceTop);
3516       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3517                   _ary, _klass, _klass_is_exact, offset, instance_id);
3518     }
3519     case BotPTR:
3520     case NotNull: {
3521       int instance_id = meet_instance_id(tp->instance_id());
3522       return TypeOopPtr::make(ptr, offset, instance_id);
3523     }
3524     default: ShouldNotReachHere();
3525     }
3526   }
3527 
3528   case AnyPtr: {                // Meeting two AnyPtrs
3529     // Found an AnyPtr type vs self-AryPtr type
3530     const TypePtr *tp = t->is_ptr();
3531     int offset = meet_offset(tp->offset());
3532     PTR ptr = meet_ptr(tp->ptr());
3533     switch (tp->ptr()) {
3534     case TopPTR:
3535       return this;
3536     case BotPTR:
3537     case NotNull:
3538       return TypePtr::make(AnyPtr, ptr, offset);
3539     case Null:
3540       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3541       // else fall through to AnyNull
3542     case AnyNull: {
3543       int instance_id = meet_instance_id(InstanceTop);
3544       return make( ptr, (ptr == Constant ? const_oop() : NULL),
3545                   _ary, _klass, _klass_is_exact, offset, instance_id);
3546     }
3547     default: ShouldNotReachHere();
3548     }
3549   }
3550 
3551   case MetadataPtr:
3552   case KlassPtr:
3553   case RawPtr: return TypePtr::BOTTOM;
3554 
3555   case AryPtr: {                // Meeting 2 references?
3556     const TypeAryPtr *tap = t->is_aryptr();
3557     int off = meet_offset(tap->offset());
3558     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
3559     PTR ptr = meet_ptr(tap->ptr());
3560     int instance_id = meet_instance_id(tap->instance_id());
3561     ciKlass* lazy_klass = NULL;
3562     if (tary->_elem->isa_int()) {
3563       // Integral array element types have irrelevant lattice relations.
3564       // It is the klass that determines array layout, not the element type.
3565       if (_klass == NULL)
3566         lazy_klass = tap->_klass;
3567       else if (tap->_klass == NULL || tap->_klass == _klass) {
3568         lazy_klass = _klass;
3569       } else {
3570         // Something like byte[int+] meets char[int+].
3571         // This must fall to bottom, not (int[-128..65535])[int+].
3572         instance_id = InstanceBot;
3573         tary = TypeAry::make(Type::BOTTOM, tary->_size);
3574       }
3575     } else // Non integral arrays.
3576     // Must fall to bottom if exact klasses in upper lattice
3577     // are not equal or super klass is exact.
3578     if ( above_centerline(ptr) && klass() != tap->klass() &&
3579          // meet with top[] and bottom[] are processed further down:
3580          tap ->_klass != NULL  && this->_klass != NULL   &&
3581          // both are exact and not equal:
3582         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
3583          // 'tap'  is exact and super or unrelated:
3584          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3585          // 'this' is exact and super or unrelated:
3586          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3587       tary = TypeAry::make(Type::BOTTOM, tary->_size);
3588       return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
3589     }
3590 
3591     bool xk = false;
3592     switch (tap->ptr()) {
3593     case AnyNull:
3594     case TopPTR:
3595       // Compute new klass on demand, do not use tap->_klass
3596       xk = (tap->_klass_is_exact | this->_klass_is_exact);
3597       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
3598     case Constant: {
3599       ciObject* o = const_oop();
3600       if( _ptr == Constant ) {
3601         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3602           xk = (klass() == tap->klass());
3603           ptr = NotNull;
3604           o = NULL;
3605           instance_id = InstanceBot;
3606         } else {
3607           xk = true;
3608         }
3609       } else if( above_centerline(_ptr) ) {
3610         o = tap->const_oop();
3611         xk = true;
3612       } else {
3613         // Only precise for identical arrays
3614         xk = this->_klass_is_exact && (klass() == tap->klass());
3615       }
3616       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
3617     }
3618     case NotNull:
3619     case BotPTR:
3620       // Compute new klass on demand, do not use tap->_klass
3621       if (above_centerline(this->_ptr))
3622             xk = tap->_klass_is_exact;
3623       else if (above_centerline(tap->_ptr))
3624             xk = this->_klass_is_exact;
3625       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3626               (klass() == tap->klass()); // Only precise for identical arrays
3627       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
3628     default: ShouldNotReachHere();
3629     }
3630   }
3631 
3632   // All arrays inherit from Object class
3633   case InstPtr: {
3634     const TypeInstPtr *tp = t->is_instptr();
3635     int offset = meet_offset(tp->offset());
3636     PTR ptr = meet_ptr(tp->ptr());
3637     int instance_id = meet_instance_id(tp->instance_id());
3638     switch (ptr) {
3639     case TopPTR:
3640     case AnyNull:                // Fall 'down' to dual of object klass
3641       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3642         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
3643       } else {
3644         // cannot subclass, so the meet has to fall badly below the centerline
3645         ptr = NotNull;
3646         instance_id = InstanceBot;
3647         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3648       }
3649     case Constant:
3650     case NotNull:
3651     case BotPTR:                // Fall down to object klass
3652       // LCA is object_klass, but if we subclass from the top we can do better
3653       if (above_centerline(tp->ptr())) {
3654         // If 'tp'  is above the centerline and it is Object class
3655         // then we can subclass in the Java class hierarchy.
3656         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3657           // that is, my array type is a subtype of 'tp' klass
3658           return make( ptr, (ptr == Constant ? const_oop() : NULL),
3659                        _ary, _klass, _klass_is_exact, offset, instance_id );
3660         }
3661       }
3662       // The other case cannot happen, since t cannot be a subtype of an array.
3663       // The meet falls down to Object class below centerline.
3664       if( ptr == Constant )
3665          ptr = NotNull;
3666       instance_id = InstanceBot;
3667       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3668     default: typerr(t);
3669     }
3670   }
3671   }
3672   return this;                  // Lint noise
3673 }
3674 
3675 //------------------------------xdual------------------------------------------
3676 // Dual: compute field-by-field dual
3677 const Type *TypeAryPtr::xdual() const {
3678   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache() );
3679 }
3680 
3681 //----------------------interface_vs_oop---------------------------------------
3682 #ifdef ASSERT
3683 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3684   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3685   if (t_aryptr) {
3686     return _ary->interface_vs_oop(t_aryptr->_ary);
3687   }
3688   return false;
3689 }
3690 #endif
3691 
3692 //------------------------------dump2------------------------------------------
3693 #ifndef PRODUCT
3694 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3695   _ary->dump2(d,depth,st);
3696   switch( _ptr ) {
3697   case Constant:
3698     const_oop()->print(st);
3699     break;
3700   case BotPTR:
3701     if (!WizardMode && !Verbose) {
3702       if( _klass_is_exact ) st->print(":exact");
3703       break;
3704     }
3705   case TopPTR:
3706   case AnyNull:
3707   case NotNull:
3708     st->print(":%s", ptr_msg[_ptr]);
3709     if( _klass_is_exact ) st->print(":exact");
3710     break;
3711   }
3712 
3713   if( _offset != 0 ) {
3714     int header_size = objArrayOopDesc::header_size() * wordSize;
3715     if( _offset == OffsetTop )       st->print("+undefined");
3716     else if( _offset == OffsetBot )  st->print("+any");
3717     else if( _offset < header_size ) st->print("+%d", _offset);
3718     else {
3719       BasicType basic_elem_type = elem()->basic_type();
3720       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3721       int elem_size = type2aelembytes(basic_elem_type);
3722       st->print("[%d]", (_offset - array_base)/elem_size);
3723     }
3724   }
3725   st->print(" *");
3726   if (_instance_id == InstanceTop)
3727     st->print(",iid=top");
3728   else if (_instance_id != InstanceBot)
3729     st->print(",iid=%d",_instance_id);
3730 }
3731 #endif
3732 
3733 bool TypeAryPtr::empty(void) const {
3734   if (_ary->empty())       return true;
3735   return TypeOopPtr::empty();
3736 }
3737 
3738 //------------------------------add_offset-------------------------------------
3739 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
3740   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
3741 }
3742 
3743 
3744 //=============================================================================
3745 
3746 //------------------------------hash-------------------------------------------
3747 // Type-specific hashing function.
3748 int TypeNarrowPtr::hash(void) const {
3749   return _ptrtype->hash() + 7;
3750 }
3751 
3752 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
3753   return _ptrtype->singleton();
3754 }
3755 
3756 bool TypeNarrowPtr::empty(void) const {
3757   return _ptrtype->empty();
3758 }
3759 
3760 intptr_t TypeNarrowPtr::get_con() const {
3761   return _ptrtype->get_con();
3762 }
3763 
3764 bool TypeNarrowPtr::eq( const Type *t ) const {
3765   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
3766   if (tc != NULL) {
3767     if (_ptrtype->base() != tc->_ptrtype->base()) {
3768       return false;
3769     }
3770     return tc->_ptrtype->eq(_ptrtype);
3771   }
3772   return false;
3773 }
3774 
3775 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
3776   const TypePtr* odual = _ptrtype->dual()->is_ptr();
3777   return make_same_narrowptr(odual);
3778 }
3779 
3780 
3781 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
3782   if (isa_same_narrowptr(kills)) {
3783     const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
3784     if (ft->empty())
3785       return Type::TOP;           // Canonical empty value
3786     if (ft->isa_ptr()) {
3787       return make_hash_same_narrowptr(ft->isa_ptr());
3788     }
3789     return ft;
3790   } else if (kills->isa_ptr()) {
3791     const Type* ft = _ptrtype->join(kills);
3792     if (ft->empty())
3793       return Type::TOP;           // Canonical empty value
3794     return ft;
3795   } else {
3796     return Type::TOP;
3797   }
3798 }
3799 
3800 //------------------------------xmeet------------------------------------------
3801 // Compute the MEET of two types.  It returns a new Type object.
3802 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
3803   // Perform a fast test for common case; meeting the same types together.
3804   if( this == t ) return this;  // Meeting same type-rep?
3805 
3806   if (t->base() == base()) {
3807     const Type* result = _ptrtype->xmeet(t->make_ptr());
3808     if (result->isa_ptr()) {
3809       return make_hash_same_narrowptr(result->is_ptr());
3810     }
3811     return result;
3812   }
3813 
3814   // Current "this->_base" is NarrowKlass or NarrowOop
3815   switch (t->base()) {          // switch on original type
3816 
3817   case Int:                     // Mixing ints & oops happens when javac
3818   case Long:                    // reuses local variables
3819   case FloatTop:
3820   case FloatCon:
3821   case FloatBot:
3822   case DoubleTop:
3823   case DoubleCon:
3824   case DoubleBot:
3825   case AnyPtr:
3826   case RawPtr:
3827   case OopPtr:
3828   case InstPtr:
3829   case AryPtr:
3830   case MetadataPtr:
3831   case KlassPtr:
3832   case NarrowOop:
3833   case NarrowKlass:
3834 
3835   case Bottom:                  // Ye Olde Default
3836     return Type::BOTTOM;
3837   case Top:
3838     return this;
3839 
3840   default:                      // All else is a mistake
3841     typerr(t);
3842 
3843   } // End of switch
3844 
3845   return this;
3846 }
3847 
3848 #ifndef PRODUCT
3849 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
3850   _ptrtype->dump2(d, depth, st);
3851 }
3852 #endif
3853 
3854 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
3855 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
3856 
3857 
3858 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
3859   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
3860 }
3861 
3862 
3863 #ifndef PRODUCT
3864 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
3865   st->print("narrowoop: ");
3866   TypeNarrowPtr::dump2(d, depth, st);
3867 }
3868 #endif
3869 
3870 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
3871 
3872 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
3873   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
3874 }
3875 
3876 #ifndef PRODUCT
3877 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
3878   st->print("narrowklass: ");
3879   TypeNarrowPtr::dump2(d, depth, st);
3880 }
3881 #endif
3882 
3883 
3884 //------------------------------eq---------------------------------------------
3885 // Structural equality check for Type representations
3886 bool TypeMetadataPtr::eq( const Type *t ) const {
3887   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
3888   ciMetadata* one = metadata();
3889   ciMetadata* two = a->metadata();
3890   if (one == NULL || two == NULL) {
3891     return (one == two) && TypePtr::eq(t);
3892   } else {
3893     return one->equals(two) && TypePtr::eq(t);
3894   }
3895 }
3896 
3897 //------------------------------hash-------------------------------------------
3898 // Type-specific hashing function.
3899 int TypeMetadataPtr::hash(void) const {
3900   return
3901     (metadata() ? metadata()->hash() : 0) +
3902     TypePtr::hash();
3903 }
3904 
3905 //------------------------------singleton--------------------------------------
3906 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3907 // constants
3908 bool TypeMetadataPtr::singleton(void) const {
3909   // detune optimizer to not generate constant metadta + constant offset as a constant!
3910   // TopPTR, Null, AnyNull, Constant are all singletons
3911   return (_offset == 0) && !below_centerline(_ptr);
3912 }
3913 
3914 //------------------------------add_offset-------------------------------------
3915 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
3916   return make( _ptr, _metadata, xadd_offset(offset));
3917 }
3918 
3919 //-----------------------------filter------------------------------------------
3920 // Do not allow interface-vs.-noninterface joins to collapse to top.
3921 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
3922   const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
3923   if (ft == NULL || ft->empty())
3924     return Type::TOP;           // Canonical empty value
3925   return ft;
3926 }
3927 
3928  //------------------------------get_con----------------------------------------
3929 intptr_t TypeMetadataPtr::get_con() const {
3930   assert( _ptr == Null || _ptr == Constant, "" );
3931   assert( _offset >= 0, "" );
3932 
3933   if (_offset != 0) {
3934     // After being ported to the compiler interface, the compiler no longer
3935     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3936     // to a handle at compile time.  This handle is embedded in the generated
3937     // code and dereferenced at the time the nmethod is made.  Until that time,
3938     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3939     // have access to the addresses!).  This does not seem to currently happen,
3940     // but this assertion here is to help prevent its occurence.
3941     tty->print_cr("Found oop constant with non-zero offset");
3942     ShouldNotReachHere();
3943   }
3944 
3945   return (intptr_t)metadata()->constant_encoding();
3946 }
3947 
3948 //------------------------------cast_to_ptr_type-------------------------------
3949 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
3950   if( ptr == _ptr ) return this;
3951   return make(ptr, metadata(), _offset);
3952 }
3953 
3954 //------------------------------meet-------------------------------------------
3955 // Compute the MEET of two types.  It returns a new Type object.
3956 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
3957   // Perform a fast test for common case; meeting the same types together.
3958   if( this == t ) return this;  // Meeting same type-rep?
3959 
3960   // Current "this->_base" is OopPtr
3961   switch (t->base()) {          // switch on original type
3962 
3963   case Int:                     // Mixing ints & oops happens when javac
3964   case Long:                    // reuses local variables
3965   case FloatTop:
3966   case FloatCon:
3967   case FloatBot:
3968   case DoubleTop:
3969   case DoubleCon:
3970   case DoubleBot:
3971   case NarrowOop:
3972   case NarrowKlass:
3973   case Bottom:                  // Ye Olde Default
3974     return Type::BOTTOM;
3975   case Top:
3976     return this;
3977 
3978   default:                      // All else is a mistake
3979     typerr(t);
3980 
3981   case AnyPtr: {
3982     // Found an AnyPtr type vs self-OopPtr type
3983     const TypePtr *tp = t->is_ptr();
3984     int offset = meet_offset(tp->offset());
3985     PTR ptr = meet_ptr(tp->ptr());
3986     switch (tp->ptr()) {
3987     case Null:
3988       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
3989       // else fall through:
3990     case TopPTR:
3991     case AnyNull: {
3992       return make(ptr, NULL, offset);
3993     }
3994     case BotPTR:
3995     case NotNull:
3996       return TypePtr::make(AnyPtr, ptr, offset);
3997     default: typerr(t);
3998     }
3999   }
4000 
4001   case RawPtr:
4002   case KlassPtr:
4003   case OopPtr:
4004   case InstPtr:
4005   case AryPtr:
4006     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4007 
4008   case MetadataPtr: {
4009     const TypeMetadataPtr *tp = t->is_metadataptr();
4010     int offset = meet_offset(tp->offset());
4011     PTR tptr = tp->ptr();
4012     PTR ptr = meet_ptr(tptr);
4013     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4014     if (tptr == TopPTR || _ptr == TopPTR ||
4015         metadata()->equals(tp->metadata())) {
4016       return make(ptr, md, offset);
4017     }
4018     // metadata is different
4019     if( ptr == Constant ) {  // Cannot be equal constants, so...
4020       if( tptr == Constant && _ptr != Constant)  return t;
4021       if( _ptr == Constant && tptr != Constant)  return this;
4022       ptr = NotNull;            // Fall down in lattice
4023     }
4024     return make(ptr, NULL, offset);
4025     break;
4026   }
4027   } // End of switch
4028   return this;                  // Return the double constant
4029 }
4030 
4031 
4032 //------------------------------xdual------------------------------------------
4033 // Dual of a pure metadata pointer.
4034 const Type *TypeMetadataPtr::xdual() const {
4035   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4036 }
4037 
4038 //------------------------------dump2------------------------------------------
4039 #ifndef PRODUCT
4040 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4041   st->print("metadataptr:%s", ptr_msg[_ptr]);
4042   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4043   switch( _offset ) {
4044   case OffsetTop: st->print("+top"); break;
4045   case OffsetBot: st->print("+any"); break;
4046   case         0: break;
4047   default:        st->print("+%d",_offset); break;
4048   }
4049 }
4050 #endif
4051 
4052 
4053 //=============================================================================
4054 // Convenience common pre-built type.
4055 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4056 
4057 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4058   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4059 }
4060 
4061 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4062   return make(Constant, m, 0);
4063 }
4064 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4065   return make(Constant, m, 0);
4066 }
4067 
4068 //------------------------------make-------------------------------------------
4069 // Create a meta data constant
4070 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4071   assert(m == NULL || !m->is_klass(), "wrong type");
4072   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4073 }
4074 
4075 
4076 //=============================================================================
4077 // Convenience common pre-built types.
4078 
4079 // Not-null object klass or below
4080 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4081 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4082 
4083 //------------------------------TypeKlassPtr-----------------------------------
4084 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4085   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4086 }
4087 
4088 //------------------------------make-------------------------------------------
4089 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4090 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4091   assert( k != NULL, "Expect a non-NULL klass");
4092   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4093   TypeKlassPtr *r =
4094     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4095 
4096   return r;
4097 }
4098 
4099 //------------------------------eq---------------------------------------------
4100 // Structural equality check for Type representations
4101 bool TypeKlassPtr::eq( const Type *t ) const {
4102   const TypeKlassPtr *p = t->is_klassptr();
4103   return
4104     klass()->equals(p->klass()) &&
4105     TypePtr::eq(p);
4106 }
4107 
4108 //------------------------------hash-------------------------------------------
4109 // Type-specific hashing function.
4110 int TypeKlassPtr::hash(void) const {
4111   return klass()->hash() + TypePtr::hash();
4112 }
4113 
4114 //------------------------------singleton--------------------------------------
4115 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4116 // constants
4117 bool TypeKlassPtr::singleton(void) const {
4118   // detune optimizer to not generate constant klass + constant offset as a constant!
4119   // TopPTR, Null, AnyNull, Constant are all singletons
4120   return (_offset == 0) && !below_centerline(_ptr);
4121 }
4122 
4123 //----------------------compute_klass------------------------------------------
4124 // Compute the defining klass for this class
4125 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4126   // Compute _klass based on element type.
4127   ciKlass* k_ary = NULL;
4128   const TypeInstPtr *tinst;
4129   const TypeAryPtr *tary;
4130   const Type* el = elem();
4131   if (el->isa_narrowoop()) {
4132     el = el->make_ptr();
4133   }
4134 
4135   // Get element klass
4136   if ((tinst = el->isa_instptr()) != NULL) {
4137     // Compute array klass from element klass
4138     k_ary = ciObjArrayKlass::make(tinst->klass());
4139   } else if ((tary = el->isa_aryptr()) != NULL) {
4140     // Compute array klass from element klass
4141     ciKlass* k_elem = tary->klass();
4142     // If element type is something like bottom[], k_elem will be null.
4143     if (k_elem != NULL)
4144       k_ary = ciObjArrayKlass::make(k_elem);
4145   } else if ((el->base() == Type::Top) ||
4146              (el->base() == Type::Bottom)) {
4147     // element type of Bottom occurs from meet of basic type
4148     // and object; Top occurs when doing join on Bottom.
4149     // Leave k_ary at NULL.
4150   } else {
4151     // Cannot compute array klass directly from basic type,
4152     // since subtypes of TypeInt all have basic type T_INT.
4153 #ifdef ASSERT
4154     if (verify && el->isa_int()) {
4155       // Check simple cases when verifying klass.
4156       BasicType bt = T_ILLEGAL;
4157       if (el == TypeInt::BYTE) {
4158         bt = T_BYTE;
4159       } else if (el == TypeInt::SHORT) {
4160         bt = T_SHORT;
4161       } else if (el == TypeInt::CHAR) {
4162         bt = T_CHAR;
4163       } else if (el == TypeInt::INT) {
4164         bt = T_INT;
4165       } else {
4166         return _klass; // just return specified klass
4167       }
4168       return ciTypeArrayKlass::make(bt);
4169     }
4170 #endif
4171     assert(!el->isa_int(),
4172            "integral arrays must be pre-equipped with a class");
4173     // Compute array klass directly from basic type
4174     k_ary = ciTypeArrayKlass::make(el->basic_type());
4175   }
4176   return k_ary;
4177 }
4178 
4179 //------------------------------klass------------------------------------------
4180 // Return the defining klass for this class
4181 ciKlass* TypeAryPtr::klass() const {
4182   if( _klass ) return _klass;   // Return cached value, if possible
4183 
4184   // Oops, need to compute _klass and cache it
4185   ciKlass* k_ary = compute_klass();
4186 
4187   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4188     // The _klass field acts as a cache of the underlying
4189     // ciKlass for this array type.  In order to set the field,
4190     // we need to cast away const-ness.
4191     //
4192     // IMPORTANT NOTE: we *never* set the _klass field for the
4193     // type TypeAryPtr::OOPS.  This Type is shared between all
4194     // active compilations.  However, the ciKlass which represents
4195     // this Type is *not* shared between compilations, so caching
4196     // this value would result in fetching a dangling pointer.
4197     //
4198     // Recomputing the underlying ciKlass for each request is
4199     // a bit less efficient than caching, but calls to
4200     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4201     ((TypeAryPtr*)this)->_klass = k_ary;
4202     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4203         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4204       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4205     }
4206   }
4207   return k_ary;
4208 }
4209 
4210 
4211 //------------------------------add_offset-------------------------------------
4212 // Access internals of klass object
4213 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4214   return make( _ptr, klass(), xadd_offset(offset) );
4215 }
4216 
4217 //------------------------------cast_to_ptr_type-------------------------------
4218 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4219   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4220   if( ptr == _ptr ) return this;
4221   return make(ptr, _klass, _offset);
4222 }
4223 
4224 
4225 //-----------------------------cast_to_exactness-------------------------------
4226 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4227   if( klass_is_exact == _klass_is_exact ) return this;
4228   if (!UseExactTypes)  return this;
4229   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4230 }
4231 
4232 
4233 //-----------------------------as_instance_type--------------------------------
4234 // Corresponding type for an instance of the given class.
4235 // It will be NotNull, and exact if and only if the klass type is exact.
4236 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4237   ciKlass* k = klass();
4238   bool    xk = klass_is_exact();
4239   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4240   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4241   guarantee(toop != NULL, "need type for given klass");
4242   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4243   return toop->cast_to_exactness(xk)->is_oopptr();
4244 }
4245 
4246 
4247 //------------------------------xmeet------------------------------------------
4248 // Compute the MEET of two types, return a new Type object.
4249 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4250   // Perform a fast test for common case; meeting the same types together.
4251   if( this == t ) return this;  // Meeting same type-rep?
4252 
4253   // Current "this->_base" is Pointer
4254   switch (t->base()) {          // switch on original type
4255 
4256   case Int:                     // Mixing ints & oops happens when javac
4257   case Long:                    // reuses local variables
4258   case FloatTop:
4259   case FloatCon:
4260   case FloatBot:
4261   case DoubleTop:
4262   case DoubleCon:
4263   case DoubleBot:
4264   case NarrowOop:
4265   case NarrowKlass:
4266   case Bottom:                  // Ye Olde Default
4267     return Type::BOTTOM;
4268   case Top:
4269     return this;
4270 
4271   default:                      // All else is a mistake
4272     typerr(t);
4273 
4274   case AnyPtr: {                // Meeting to AnyPtrs
4275     // Found an AnyPtr type vs self-KlassPtr type
4276     const TypePtr *tp = t->is_ptr();
4277     int offset = meet_offset(tp->offset());
4278     PTR ptr = meet_ptr(tp->ptr());
4279     switch (tp->ptr()) {
4280     case TopPTR:
4281       return this;
4282     case Null:
4283       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4284     case AnyNull:
4285       return make( ptr, klass(), offset );
4286     case BotPTR:
4287     case NotNull:
4288       return TypePtr::make(AnyPtr, ptr, offset);
4289     default: typerr(t);
4290     }
4291   }
4292 
4293   case RawPtr:
4294   case MetadataPtr:
4295   case OopPtr:
4296   case AryPtr:                  // Meet with AryPtr
4297   case InstPtr:                 // Meet with InstPtr
4298     return TypePtr::BOTTOM;
4299 
4300   //
4301   //             A-top         }
4302   //           /   |   \       }  Tops
4303   //       B-top A-any C-top   }
4304   //          | /  |  \ |      }  Any-nulls
4305   //       B-any   |   C-any   }
4306   //          |    |    |
4307   //       B-con A-con C-con   } constants; not comparable across classes
4308   //          |    |    |
4309   //       B-not   |   C-not   }
4310   //          | \  |  / |      }  not-nulls
4311   //       B-bot A-not C-bot   }
4312   //           \   |   /       }  Bottoms
4313   //             A-bot         }
4314   //
4315 
4316   case KlassPtr: {  // Meet two KlassPtr types
4317     const TypeKlassPtr *tkls = t->is_klassptr();
4318     int  off     = meet_offset(tkls->offset());
4319     PTR  ptr     = meet_ptr(tkls->ptr());
4320 
4321     // Check for easy case; klasses are equal (and perhaps not loaded!)
4322     // If we have constants, then we created oops so classes are loaded
4323     // and we can handle the constants further down.  This case handles
4324     // not-loaded classes
4325     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4326       return make( ptr, klass(), off );
4327     }
4328 
4329     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4330     ciKlass* tkls_klass = tkls->klass();
4331     ciKlass* this_klass = this->klass();
4332     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4333     assert( this_klass->is_loaded(), "This class should have been loaded.");
4334 
4335     // If 'this' type is above the centerline and is a superclass of the
4336     // other, we can treat 'this' as having the same type as the other.
4337     if ((above_centerline(this->ptr())) &&
4338         tkls_klass->is_subtype_of(this_klass)) {
4339       this_klass = tkls_klass;
4340     }
4341     // If 'tinst' type is above the centerline and is a superclass of the
4342     // other, we can treat 'tinst' as having the same type as the other.
4343     if ((above_centerline(tkls->ptr())) &&
4344         this_klass->is_subtype_of(tkls_klass)) {
4345       tkls_klass = this_klass;
4346     }
4347 
4348     // Check for classes now being equal
4349     if (tkls_klass->equals(this_klass)) {
4350       // If the klasses are equal, the constants may still differ.  Fall to
4351       // NotNull if they do (neither constant is NULL; that is a special case
4352       // handled elsewhere).
4353       if( ptr == Constant ) {
4354         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4355             this->klass()->equals(tkls->klass()));
4356         else if (above_centerline(this->ptr()));
4357         else if (above_centerline(tkls->ptr()));
4358         else
4359           ptr = NotNull;
4360       }
4361       return make( ptr, this_klass, off );
4362     } // Else classes are not equal
4363 
4364     // Since klasses are different, we require the LCA in the Java
4365     // class hierarchy - which means we have to fall to at least NotNull.
4366     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4367       ptr = NotNull;
4368     // Now we find the LCA of Java classes
4369     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4370     return   make( ptr, k, off );
4371   } // End of case KlassPtr
4372 
4373   } // End of switch
4374   return this;                  // Return the double constant
4375 }
4376 
4377 //------------------------------xdual------------------------------------------
4378 // Dual: compute field-by-field dual
4379 const Type    *TypeKlassPtr::xdual() const {
4380   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4381 }
4382 
4383 //------------------------------get_con----------------------------------------
4384 intptr_t TypeKlassPtr::get_con() const {
4385   assert( _ptr == Null || _ptr == Constant, "" );
4386   assert( _offset >= 0, "" );
4387 
4388   if (_offset != 0) {
4389     // After being ported to the compiler interface, the compiler no longer
4390     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4391     // to a handle at compile time.  This handle is embedded in the generated
4392     // code and dereferenced at the time the nmethod is made.  Until that time,
4393     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4394     // have access to the addresses!).  This does not seem to currently happen,
4395     // but this assertion here is to help prevent its occurence.
4396     tty->print_cr("Found oop constant with non-zero offset");
4397     ShouldNotReachHere();
4398   }
4399 
4400   return (intptr_t)klass()->constant_encoding();
4401 }
4402 //------------------------------dump2------------------------------------------
4403 // Dump Klass Type
4404 #ifndef PRODUCT
4405 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4406   switch( _ptr ) {
4407   case Constant:
4408     st->print("precise ");
4409   case NotNull:
4410     {
4411       const char *name = klass()->name()->as_utf8();
4412       if( name ) {
4413         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4414       } else {
4415         ShouldNotReachHere();
4416       }
4417     }
4418   case BotPTR:
4419     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4420   case TopPTR:
4421   case AnyNull:
4422     st->print(":%s", ptr_msg[_ptr]);
4423     if( _klass_is_exact ) st->print(":exact");
4424     break;
4425   }
4426 
4427   if( _offset ) {               // Dump offset, if any
4428     if( _offset == OffsetBot )      { st->print("+any"); }
4429     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4430     else                            { st->print("+%d", _offset); }
4431   }
4432 
4433   st->print(" *");
4434 }
4435 #endif
4436 
4437 
4438 
4439 //=============================================================================
4440 // Convenience common pre-built types.
4441 
4442 //------------------------------make-------------------------------------------
4443 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4444   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4445 }
4446 
4447 //------------------------------make-------------------------------------------
4448 const TypeFunc *TypeFunc::make(ciMethod* method) {
4449   Compile* C = Compile::current();
4450   const TypeFunc* tf = C->last_tf(method); // check cache
4451   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4452   const TypeTuple *domain;
4453   if (method->is_static()) {
4454     domain = TypeTuple::make_domain(NULL, method->signature());
4455   } else {
4456     domain = TypeTuple::make_domain(method->holder(), method->signature());
4457   }
4458   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4459   tf = TypeFunc::make(domain, range);
4460   C->set_last_tf(method, tf);  // fill cache
4461   return tf;
4462 }
4463 
4464 //------------------------------meet-------------------------------------------
4465 // Compute the MEET of two types.  It returns a new Type object.
4466 const Type *TypeFunc::xmeet( const Type *t ) const {
4467   // Perform a fast test for common case; meeting the same types together.
4468   if( this == t ) return this;  // Meeting same type-rep?
4469 
4470   // Current "this->_base" is Func
4471   switch (t->base()) {          // switch on original type
4472 
4473   case Bottom:                  // Ye Olde Default
4474     return t;
4475 
4476   default:                      // All else is a mistake
4477     typerr(t);
4478 
4479   case Top:
4480     break;
4481   }
4482   return this;                  // Return the double constant
4483 }
4484 
4485 //------------------------------xdual------------------------------------------
4486 // Dual: compute field-by-field dual
4487 const Type *TypeFunc::xdual() const {
4488   return this;
4489 }
4490 
4491 //------------------------------eq---------------------------------------------
4492 // Structural equality check for Type representations
4493 bool TypeFunc::eq( const Type *t ) const {
4494   const TypeFunc *a = (const TypeFunc*)t;
4495   return _domain == a->_domain &&
4496     _range == a->_range;
4497 }
4498 
4499 //------------------------------hash-------------------------------------------
4500 // Type-specific hashing function.
4501 int TypeFunc::hash(void) const {
4502   return (intptr_t)_domain + (intptr_t)_range;
4503 }
4504 
4505 //------------------------------dump2------------------------------------------
4506 // Dump Function Type
4507 #ifndef PRODUCT
4508 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4509   if( _range->_cnt <= Parms )
4510     st->print("void");
4511   else {
4512     uint i;
4513     for (i = Parms; i < _range->_cnt-1; i++) {
4514       _range->field_at(i)->dump2(d,depth,st);
4515       st->print("/");
4516     }
4517     _range->field_at(i)->dump2(d,depth,st);
4518   }
4519   st->print(" ");
4520   st->print("( ");
4521   if( !depth || d[this] ) {     // Check for recursive dump
4522     st->print("...)");
4523     return;
4524   }
4525   d.Insert((void*)this,(void*)this);    // Stop recursion
4526   if (Parms < _domain->_cnt)
4527     _domain->field_at(Parms)->dump2(d,depth-1,st);
4528   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4529     st->print(", ");
4530     _domain->field_at(i)->dump2(d,depth-1,st);
4531   }
4532   st->print(" )");
4533 }
4534 #endif
4535 
4536 //------------------------------singleton--------------------------------------
4537 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4538 // constants (Ldi nodes).  Singletons are integer, float or double constants
4539 // or a single symbol.
4540 bool TypeFunc::singleton(void) const {
4541   return false;                 // Never a singleton
4542 }
4543 
4544 bool TypeFunc::empty(void) const {
4545   return false;                 // Never empty
4546 }
4547 
4548 
4549 BasicType TypeFunc::return_type() const{
4550   if (range()->cnt() == TypeFunc::Parms) {
4551     return T_VOID;
4552   }
4553   return range()->field_at(TypeFunc::Parms)->basic_type();
4554 }