1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/tenuredGeneration.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "services/memoryService.hpp"
  64 #include "services/runtimeService.hpp"
  65 
  66 // statics
  67 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  68 bool CMSCollector::_full_gc_requested = false;
  69 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  70 
  71 //////////////////////////////////////////////////////////////////
  72 // In support of CMS/VM thread synchronization
  73 //////////////////////////////////////////////////////////////////
  74 // We split use of the CGC_lock into 2 "levels".
  75 // The low-level locking is of the usual CGC_lock monitor. We introduce
  76 // a higher level "token" (hereafter "CMS token") built on top of the
  77 // low level monitor (hereafter "CGC lock").
  78 // The token-passing protocol gives priority to the VM thread. The
  79 // CMS-lock doesn't provide any fairness guarantees, but clients
  80 // should ensure that it is only held for very short, bounded
  81 // durations.
  82 //
  83 // When either of the CMS thread or the VM thread is involved in
  84 // collection operations during which it does not want the other
  85 // thread to interfere, it obtains the CMS token.
  86 //
  87 // If either thread tries to get the token while the other has
  88 // it, that thread waits. However, if the VM thread and CMS thread
  89 // both want the token, then the VM thread gets priority while the
  90 // CMS thread waits. This ensures, for instance, that the "concurrent"
  91 // phases of the CMS thread's work do not block out the VM thread
  92 // for long periods of time as the CMS thread continues to hog
  93 // the token. (See bug 4616232).
  94 //
  95 // The baton-passing functions are, however, controlled by the
  96 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  97 // and here the low-level CMS lock, not the high level token,
  98 // ensures mutual exclusion.
  99 //
 100 // Two important conditions that we have to satisfy:
 101 // 1. if a thread does a low-level wait on the CMS lock, then it
 102 //    relinquishes the CMS token if it were holding that token
 103 //    when it acquired the low-level CMS lock.
 104 // 2. any low-level notifications on the low-level lock
 105 //    should only be sent when a thread has relinquished the token.
 106 //
 107 // In the absence of either property, we'd have potential deadlock.
 108 //
 109 // We protect each of the CMS (concurrent and sequential) phases
 110 // with the CMS _token_, not the CMS _lock_.
 111 //
 112 // The only code protected by CMS lock is the token acquisition code
 113 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 114 // baton-passing code.
 115 //
 116 // Unfortunately, i couldn't come up with a good abstraction to factor and
 117 // hide the naked CGC_lock manipulation in the baton-passing code
 118 // further below. That's something we should try to do. Also, the proof
 119 // of correctness of this 2-level locking scheme is far from obvious,
 120 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 121 // that there may be a theoretical possibility of delay/starvation in the
 122 // low-level lock/wait/notify scheme used for the baton-passing because of
 123 // potential interference with the priority scheme embodied in the
 124 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 125 // invocation further below and marked with "XXX 20011219YSR".
 126 // Indeed, as we note elsewhere, this may become yet more slippery
 127 // in the presence of multiple CMS and/or multiple VM threads. XXX
 128 
 129 class CMSTokenSync: public StackObj {
 130  private:
 131   bool _is_cms_thread;
 132  public:
 133   CMSTokenSync(bool is_cms_thread):
 134     _is_cms_thread(is_cms_thread) {
 135     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 136            "Incorrect argument to constructor");
 137     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 138   }
 139 
 140   ~CMSTokenSync() {
 141     assert(_is_cms_thread ?
 142              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 143              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 144           "Incorrect state");
 145     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 146   }
 147 };
 148 
 149 // Convenience class that does a CMSTokenSync, and then acquires
 150 // upto three locks.
 151 class CMSTokenSyncWithLocks: public CMSTokenSync {
 152  private:
 153   // Note: locks are acquired in textual declaration order
 154   // and released in the opposite order
 155   MutexLockerEx _locker1, _locker2, _locker3;
 156  public:
 157   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 158                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 159     CMSTokenSync(is_cms_thread),
 160     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 161     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 162     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 163   { }
 164 };
 165 
 166 
 167 // Wrapper class to temporarily disable icms during a foreground cms collection.
 168 class ICMSDisabler: public StackObj {
 169  public:
 170   // The ctor disables icms and wakes up the thread so it notices the change;
 171   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 172   // CMSIncrementalMode.
 173   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 174   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 175 };
 176 
 177 //////////////////////////////////////////////////////////////////
 178 //  Concurrent Mark-Sweep Generation /////////////////////////////
 179 //////////////////////////////////////////////////////////////////
 180 
 181 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 182 
 183 // This struct contains per-thread things necessary to support parallel
 184 // young-gen collection.
 185 class CMSParGCThreadState: public CHeapObj<mtGC> {
 186  public:
 187   CFLS_LAB lab;
 188   PromotionInfo promo;
 189 
 190   // Constructor.
 191   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 192     promo.setSpace(cfls);
 193   }
 194 };
 195 
 196 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 197      ReservedSpace rs, size_t initial_byte_size, int level,
 198      CardTableRS* ct, bool use_adaptive_freelists,
 199      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 200   CardGeneration(rs, initial_byte_size, level, ct),
 201   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 202   _debug_collection_type(Concurrent_collection_type),
 203   _did_compact(false)
 204 {
 205   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 206   HeapWord* end    = (HeapWord*) _virtual_space.high();
 207 
 208   _direct_allocated_words = 0;
 209   NOT_PRODUCT(
 210     _numObjectsPromoted = 0;
 211     _numWordsPromoted = 0;
 212     _numObjectsAllocated = 0;
 213     _numWordsAllocated = 0;
 214   )
 215 
 216   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 217                                            use_adaptive_freelists,
 218                                            dictionaryChoice);
 219   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 220   if (_cmsSpace == NULL) {
 221     vm_exit_during_initialization(
 222       "CompactibleFreeListSpace allocation failure");
 223   }
 224   _cmsSpace->_gen = this;
 225 
 226   _gc_stats = new CMSGCStats();
 227 
 228   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 229   // offsets match. The ability to tell free chunks from objects
 230   // depends on this property.
 231   debug_only(
 232     FreeChunk* junk = NULL;
 233     assert(UseCompressedClassPointers ||
 234            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 235            "Offset of FreeChunk::_prev within FreeChunk must match"
 236            "  that of OopDesc::_klass within OopDesc");
 237   )
 238   if (CollectedHeap::use_parallel_gc_threads()) {
 239     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 240     _par_gc_thread_states =
 241       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 242     if (_par_gc_thread_states == NULL) {
 243       vm_exit_during_initialization("Could not allocate par gc structs");
 244     }
 245     for (uint i = 0; i < ParallelGCThreads; i++) {
 246       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 247       if (_par_gc_thread_states[i] == NULL) {
 248         vm_exit_during_initialization("Could not allocate par gc structs");
 249       }
 250     }
 251   } else {
 252     _par_gc_thread_states = NULL;
 253   }
 254   _incremental_collection_failed = false;
 255   // The "dilatation_factor" is the expansion that can occur on
 256   // account of the fact that the minimum object size in the CMS
 257   // generation may be larger than that in, say, a contiguous young
 258   //  generation.
 259   // Ideally, in the calculation below, we'd compute the dilatation
 260   // factor as: MinChunkSize/(promoting_gen's min object size)
 261   // Since we do not have such a general query interface for the
 262   // promoting generation, we'll instead just use the minimum
 263   // object size (which today is a header's worth of space);
 264   // note that all arithmetic is in units of HeapWords.
 265   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 266   assert(_dilatation_factor >= 1.0, "from previous assert");
 267 }
 268 
 269 
 270 // The field "_initiating_occupancy" represents the occupancy percentage
 271 // at which we trigger a new collection cycle.  Unless explicitly specified
 272 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 273 // is calculated by:
 274 //
 275 //   Let "f" be MinHeapFreeRatio in
 276 //
 277 //    _initiating_occupancy = 100-f +
 278 //                           f * (CMSTriggerRatio/100)
 279 //   where CMSTriggerRatio is the argument "tr" below.
 280 //
 281 // That is, if we assume the heap is at its desired maximum occupancy at the
 282 // end of a collection, we let CMSTriggerRatio of the (purported) free
 283 // space be allocated before initiating a new collection cycle.
 284 //
 285 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 286   assert(io <= 100 && tr <= 100, "Check the arguments");
 287   if (io >= 0) {
 288     _initiating_occupancy = (double)io / 100.0;
 289   } else {
 290     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 291                              (double)(tr * MinHeapFreeRatio) / 100.0)
 292                             / 100.0;
 293   }
 294 }
 295 
 296 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 297   assert(collector() != NULL, "no collector");
 298   collector()->ref_processor_init();
 299 }
 300 
 301 void CMSCollector::ref_processor_init() {
 302   if (_ref_processor == NULL) {
 303     // Allocate and initialize a reference processor
 304     _ref_processor =
 305       new ReferenceProcessor(_span,                               // span
 306                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 307                              (int) ParallelGCThreads,             // mt processing degree
 308                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 309                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 310                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 311                              &_is_alive_closure,                  // closure for liveness info
 312                              false);                              // next field updates do not need write barrier
 313     // Initialize the _ref_processor field of CMSGen
 314     _cmsGen->set_ref_processor(_ref_processor);
 315 
 316   }
 317 }
 318 
 319 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 320   GenCollectedHeap* gch = GenCollectedHeap::heap();
 321   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 322     "Wrong type of heap");
 323   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 324     gch->gen_policy()->size_policy();
 325   assert(sp->is_gc_cms_adaptive_size_policy(),
 326     "Wrong type of size policy");
 327   return sp;
 328 }
 329 
 330 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 331   CMSGCAdaptivePolicyCounters* results =
 332     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 333   assert(
 334     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 335     "Wrong gc policy counter kind");
 336   return results;
 337 }
 338 
 339 
 340 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 341 
 342   const char* gen_name = "old";
 343 
 344   // Generation Counters - generation 1, 1 subspace
 345   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 346 
 347   _space_counters = new GSpaceCounters(gen_name, 0,
 348                                        _virtual_space.reserved_size(),
 349                                        this, _gen_counters);
 350 }
 351 
 352 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 353   _cms_gen(cms_gen)
 354 {
 355   assert(alpha <= 100, "bad value");
 356   _saved_alpha = alpha;
 357 
 358   // Initialize the alphas to the bootstrap value of 100.
 359   _gc0_alpha = _cms_alpha = 100;
 360 
 361   _cms_begin_time.update();
 362   _cms_end_time.update();
 363 
 364   _gc0_duration = 0.0;
 365   _gc0_period = 0.0;
 366   _gc0_promoted = 0;
 367 
 368   _cms_duration = 0.0;
 369   _cms_period = 0.0;
 370   _cms_allocated = 0;
 371 
 372   _cms_used_at_gc0_begin = 0;
 373   _cms_used_at_gc0_end = 0;
 374   _allow_duty_cycle_reduction = false;
 375   _valid_bits = 0;
 376   _icms_duty_cycle = CMSIncrementalDutyCycle;
 377 }
 378 
 379 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 380   // TBD: CR 6909490
 381   return 1.0;
 382 }
 383 
 384 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 385 }
 386 
 387 // If promotion failure handling is on use
 388 // the padded average size of the promotion for each
 389 // young generation collection.
 390 double CMSStats::time_until_cms_gen_full() const {
 391   size_t cms_free = _cms_gen->cmsSpace()->free();
 392   GenCollectedHeap* gch = GenCollectedHeap::heap();
 393   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 394                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 395   if (cms_free > expected_promotion) {
 396     // Start a cms collection if there isn't enough space to promote
 397     // for the next minor collection.  Use the padded average as
 398     // a safety factor.
 399     cms_free -= expected_promotion;
 400 
 401     // Adjust by the safety factor.
 402     double cms_free_dbl = (double)cms_free;
 403     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 404     // Apply a further correction factor which tries to adjust
 405     // for recent occurance of concurrent mode failures.
 406     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 407     cms_free_dbl = cms_free_dbl * cms_adjustment;
 408 
 409     if (PrintGCDetails && Verbose) {
 410       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 411         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 412         cms_free, expected_promotion);
 413       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 414         cms_free_dbl, cms_consumption_rate() + 1.0);
 415     }
 416     // Add 1 in case the consumption rate goes to zero.
 417     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 418   }
 419   return 0.0;
 420 }
 421 
 422 // Compare the duration of the cms collection to the
 423 // time remaining before the cms generation is empty.
 424 // Note that the time from the start of the cms collection
 425 // to the start of the cms sweep (less than the total
 426 // duration of the cms collection) can be used.  This
 427 // has been tried and some applications experienced
 428 // promotion failures early in execution.  This was
 429 // possibly because the averages were not accurate
 430 // enough at the beginning.
 431 double CMSStats::time_until_cms_start() const {
 432   // We add "gc0_period" to the "work" calculation
 433   // below because this query is done (mostly) at the
 434   // end of a scavenge, so we need to conservatively
 435   // account for that much possible delay
 436   // in the query so as to avoid concurrent mode failures
 437   // due to starting the collection just a wee bit too
 438   // late.
 439   double work = cms_duration() + gc0_period();
 440   double deadline = time_until_cms_gen_full();
 441   // If a concurrent mode failure occurred recently, we want to be
 442   // more conservative and halve our expected time_until_cms_gen_full()
 443   if (work > deadline) {
 444     if (Verbose && PrintGCDetails) {
 445       gclog_or_tty->print(
 446         " CMSCollector: collect because of anticipated promotion "
 447         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 448         gc0_period(), time_until_cms_gen_full());
 449     }
 450     return 0.0;
 451   }
 452   return work - deadline;
 453 }
 454 
 455 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 456 // amount of change to prevent wild oscillation.
 457 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 458                                               unsigned int new_duty_cycle) {
 459   assert(old_duty_cycle <= 100, "bad input value");
 460   assert(new_duty_cycle <= 100, "bad input value");
 461 
 462   // Note:  use subtraction with caution since it may underflow (values are
 463   // unsigned).  Addition is safe since we're in the range 0-100.
 464   unsigned int damped_duty_cycle = new_duty_cycle;
 465   if (new_duty_cycle < old_duty_cycle) {
 466     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 467     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 468       damped_duty_cycle = old_duty_cycle - largest_delta;
 469     }
 470   } else if (new_duty_cycle > old_duty_cycle) {
 471     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 472     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 473       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 474     }
 475   }
 476   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 477 
 478   if (CMSTraceIncrementalPacing) {
 479     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 480                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 481   }
 482   return damped_duty_cycle;
 483 }
 484 
 485 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 486   assert(CMSIncrementalPacing && valid(),
 487          "should be handled in icms_update_duty_cycle()");
 488 
 489   double cms_time_so_far = cms_timer().seconds();
 490   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 491   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 492 
 493   // Avoid division by 0.
 494   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 495   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 496 
 497   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 498   if (new_duty_cycle > _icms_duty_cycle) {
 499     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 500     if (new_duty_cycle > 2) {
 501       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 502                                                 new_duty_cycle);
 503     }
 504   } else if (_allow_duty_cycle_reduction) {
 505     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 506     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 507     // Respect the minimum duty cycle.
 508     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 509     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 510   }
 511 
 512   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 513     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 514   }
 515 
 516   _allow_duty_cycle_reduction = false;
 517   return _icms_duty_cycle;
 518 }
 519 
 520 #ifndef PRODUCT
 521 void CMSStats::print_on(outputStream *st) const {
 522   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 523   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 524                gc0_duration(), gc0_period(), gc0_promoted());
 525   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 526             cms_duration(), cms_duration_per_mb(),
 527             cms_period(), cms_allocated());
 528   st->print(",cms_since_beg=%g,cms_since_end=%g",
 529             cms_time_since_begin(), cms_time_since_end());
 530   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 531             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 532   if (CMSIncrementalMode) {
 533     st->print(",dc=%d", icms_duty_cycle());
 534   }
 535 
 536   if (valid()) {
 537     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 538               promotion_rate(), cms_allocation_rate());
 539     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 540               cms_consumption_rate(), time_until_cms_gen_full());
 541   }
 542   st->print(" ");
 543 }
 544 #endif // #ifndef PRODUCT
 545 
 546 CMSCollector::CollectorState CMSCollector::_collectorState =
 547                              CMSCollector::Idling;
 548 bool CMSCollector::_foregroundGCIsActive = false;
 549 bool CMSCollector::_foregroundGCShouldWait = false;
 550 
 551 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 552                            CardTableRS*                   ct,
 553                            ConcurrentMarkSweepPolicy*     cp):
 554   _cmsGen(cmsGen),
 555   _ct(ct),
 556   _ref_processor(NULL),    // will be set later
 557   _conc_workers(NULL),     // may be set later
 558   _abort_preclean(false),
 559   _start_sampling(false),
 560   _between_prologue_and_epilogue(false),
 561   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 562   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 563                  -1 /* lock-free */, "No_lock" /* dummy */),
 564   _modUnionClosure(&_modUnionTable),
 565   _modUnionClosurePar(&_modUnionTable),
 566   // Adjust my span to cover old (cms) gen
 567   _span(cmsGen->reserved()),
 568   // Construct the is_alive_closure with _span & markBitMap
 569   _is_alive_closure(_span, &_markBitMap),
 570   _restart_addr(NULL),
 571   _overflow_list(NULL),
 572   _stats(cmsGen),
 573   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 574   _eden_chunk_array(NULL),     // may be set in ctor body
 575   _eden_chunk_capacity(0),     // -- ditto --
 576   _eden_chunk_index(0),        // -- ditto --
 577   _survivor_plab_array(NULL),  // -- ditto --
 578   _survivor_chunk_array(NULL), // -- ditto --
 579   _survivor_chunk_capacity(0), // -- ditto --
 580   _survivor_chunk_index(0),    // -- ditto --
 581   _ser_pmc_preclean_ovflw(0),
 582   _ser_kac_preclean_ovflw(0),
 583   _ser_pmc_remark_ovflw(0),
 584   _par_pmc_remark_ovflw(0),
 585   _ser_kac_ovflw(0),
 586   _par_kac_ovflw(0),
 587 #ifndef PRODUCT
 588   _num_par_pushes(0),
 589 #endif
 590   _collection_count_start(0),
 591   _verifying(false),
 592   _icms_start_limit(NULL),
 593   _icms_stop_limit(NULL),
 594   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 595   _completed_initialization(false),
 596   _collector_policy(cp),
 597   _should_unload_classes(CMSClassUnloadingEnabled),
 598   _concurrent_cycles_since_last_unload(0),
 599   _roots_scanning_options(SharedHeap::SO_None),
 600   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 601   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 602   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 603   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 604   _cms_start_registered(false)
 605 {
 606   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 607     ExplicitGCInvokesConcurrent = true;
 608   }
 609   // Now expand the span and allocate the collection support structures
 610   // (MUT, marking bit map etc.) to cover both generations subject to
 611   // collection.
 612 
 613   // For use by dirty card to oop closures.
 614   _cmsGen->cmsSpace()->set_collector(this);
 615 
 616   // Allocate MUT and marking bit map
 617   {
 618     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 619     if (!_markBitMap.allocate(_span)) {
 620       warning("Failed to allocate CMS Bit Map");
 621       return;
 622     }
 623     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 624   }
 625   {
 626     _modUnionTable.allocate(_span);
 627     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 628   }
 629 
 630   if (!_markStack.allocate(MarkStackSize)) {
 631     warning("Failed to allocate CMS Marking Stack");
 632     return;
 633   }
 634 
 635   // Support for multi-threaded concurrent phases
 636   if (CMSConcurrentMTEnabled) {
 637     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 638       // just for now
 639       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 640     }
 641     if (ConcGCThreads > 1) {
 642       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 643                                  ConcGCThreads, true);
 644       if (_conc_workers == NULL) {
 645         warning("GC/CMS: _conc_workers allocation failure: "
 646               "forcing -CMSConcurrentMTEnabled");
 647         CMSConcurrentMTEnabled = false;
 648       } else {
 649         _conc_workers->initialize_workers();
 650       }
 651     } else {
 652       CMSConcurrentMTEnabled = false;
 653     }
 654   }
 655   if (!CMSConcurrentMTEnabled) {
 656     ConcGCThreads = 0;
 657   } else {
 658     // Turn off CMSCleanOnEnter optimization temporarily for
 659     // the MT case where it's not fixed yet; see 6178663.
 660     CMSCleanOnEnter = false;
 661   }
 662   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 663          "Inconsistency");
 664 
 665   // Parallel task queues; these are shared for the
 666   // concurrent and stop-world phases of CMS, but
 667   // are not shared with parallel scavenge (ParNew).
 668   {
 669     uint i;
 670     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 671 
 672     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 673          || ParallelRefProcEnabled)
 674         && num_queues > 0) {
 675       _task_queues = new OopTaskQueueSet(num_queues);
 676       if (_task_queues == NULL) {
 677         warning("task_queues allocation failure.");
 678         return;
 679       }
 680       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 681       if (_hash_seed == NULL) {
 682         warning("_hash_seed array allocation failure");
 683         return;
 684       }
 685 
 686       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 687       for (i = 0; i < num_queues; i++) {
 688         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 689         if (q == NULL) {
 690           warning("work_queue allocation failure.");
 691           return;
 692         }
 693         _task_queues->register_queue(i, q);
 694       }
 695       for (i = 0; i < num_queues; i++) {
 696         _task_queues->queue(i)->initialize();
 697         _hash_seed[i] = 17;  // copied from ParNew
 698       }
 699     }
 700   }
 701 
 702   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 703 
 704   // Clip CMSBootstrapOccupancy between 0 and 100.
 705   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 706 
 707   _full_gcs_since_conc_gc = 0;
 708 
 709   // Now tell CMS generations the identity of their collector
 710   ConcurrentMarkSweepGeneration::set_collector(this);
 711 
 712   // Create & start a CMS thread for this CMS collector
 713   _cmsThread = ConcurrentMarkSweepThread::start(this);
 714   assert(cmsThread() != NULL, "CMS Thread should have been created");
 715   assert(cmsThread()->collector() == this,
 716          "CMS Thread should refer to this gen");
 717   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 718 
 719   // Support for parallelizing young gen rescan
 720   GenCollectedHeap* gch = GenCollectedHeap::heap();
 721   _young_gen = gch->prev_gen(_cmsGen);
 722   if (gch->supports_inline_contig_alloc()) {
 723     _top_addr = gch->top_addr();
 724     _end_addr = gch->end_addr();
 725     assert(_young_gen != NULL, "no _young_gen");
 726     _eden_chunk_index = 0;
 727     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 728     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 729     if (_eden_chunk_array == NULL) {
 730       _eden_chunk_capacity = 0;
 731       warning("GC/CMS: _eden_chunk_array allocation failure");
 732     }
 733   }
 734   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 735 
 736   // Support for parallelizing survivor space rescan
 737   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 738     const size_t max_plab_samples =
 739       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 740 
 741     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 742     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 743     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 744     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 745         || _cursor == NULL) {
 746       warning("Failed to allocate survivor plab/chunk array");
 747       if (_survivor_plab_array  != NULL) {
 748         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 749         _survivor_plab_array = NULL;
 750       }
 751       if (_survivor_chunk_array != NULL) {
 752         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 753         _survivor_chunk_array = NULL;
 754       }
 755       if (_cursor != NULL) {
 756         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 757         _cursor = NULL;
 758       }
 759     } else {
 760       _survivor_chunk_capacity = 2*max_plab_samples;
 761       for (uint i = 0; i < ParallelGCThreads; i++) {
 762         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 763         if (vec == NULL) {
 764           warning("Failed to allocate survivor plab array");
 765           for (int j = i; j > 0; j--) {
 766             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 767           }
 768           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 769           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 770           _survivor_plab_array = NULL;
 771           _survivor_chunk_array = NULL;
 772           _survivor_chunk_capacity = 0;
 773           break;
 774         } else {
 775           ChunkArray* cur =
 776             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 777                                                         max_plab_samples);
 778           assert(cur->end() == 0, "Should be 0");
 779           assert(cur->array() == vec, "Should be vec");
 780           assert(cur->capacity() == max_plab_samples, "Error");
 781         }
 782       }
 783     }
 784   }
 785   assert(   (   _survivor_plab_array  != NULL
 786              && _survivor_chunk_array != NULL)
 787          || (   _survivor_chunk_capacity == 0
 788              && _survivor_chunk_index == 0),
 789          "Error");
 790 
 791   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 792   _gc_counters = new CollectorCounters("CMS", 1);
 793   _completed_initialization = true;
 794   _inter_sweep_timer.start();  // start of time
 795 }
 796 
 797 const char* ConcurrentMarkSweepGeneration::name() const {
 798   return "concurrent mark-sweep generation";
 799 }
 800 void ConcurrentMarkSweepGeneration::update_counters() {
 801   if (UsePerfData) {
 802     _space_counters->update_all();
 803     _gen_counters->update_all();
 804   }
 805 }
 806 
 807 // this is an optimized version of update_counters(). it takes the
 808 // used value as a parameter rather than computing it.
 809 //
 810 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 811   if (UsePerfData) {
 812     _space_counters->update_used(used);
 813     _space_counters->update_capacity();
 814     _gen_counters->update_all();
 815   }
 816 }
 817 
 818 void ConcurrentMarkSweepGeneration::print() const {
 819   Generation::print();
 820   cmsSpace()->print();
 821 }
 822 
 823 #ifndef PRODUCT
 824 void ConcurrentMarkSweepGeneration::print_statistics() {
 825   cmsSpace()->printFLCensus(0);
 826 }
 827 #endif
 828 
 829 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 830   GenCollectedHeap* gch = GenCollectedHeap::heap();
 831   if (PrintGCDetails) {
 832     if (Verbose) {
 833       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 834         level(), short_name(), s, used(), capacity());
 835     } else {
 836       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 837         level(), short_name(), s, used() / K, capacity() / K);
 838     }
 839   }
 840   if (Verbose) {
 841     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 842               gch->used(), gch->capacity());
 843   } else {
 844     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 845               gch->used() / K, gch->capacity() / K);
 846   }
 847 }
 848 
 849 size_t
 850 ConcurrentMarkSweepGeneration::contiguous_available() const {
 851   // dld proposes an improvement in precision here. If the committed
 852   // part of the space ends in a free block we should add that to
 853   // uncommitted size in the calculation below. Will make this
 854   // change later, staying with the approximation below for the
 855   // time being. -- ysr.
 856   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 857 }
 858 
 859 size_t
 860 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 861   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 862 }
 863 
 864 size_t ConcurrentMarkSweepGeneration::max_available() const {
 865   return free() + _virtual_space.uncommitted_size();
 866 }
 867 
 868 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 869   size_t available = max_available();
 870   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 871   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 872   if (Verbose && PrintGCDetails) {
 873     gclog_or_tty->print_cr(
 874       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 875       "max_promo("SIZE_FORMAT")",
 876       res? "":" not", available, res? ">=":"<",
 877       av_promo, max_promotion_in_bytes);
 878   }
 879   return res;
 880 }
 881 
 882 // At a promotion failure dump information on block layout in heap
 883 // (cms old generation).
 884 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 885   if (CMSDumpAtPromotionFailure) {
 886     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 887   }
 888 }
 889 
 890 CompactibleSpace*
 891 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 892   return _cmsSpace;
 893 }
 894 
 895 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 896   // Clear the promotion information.  These pointers can be adjusted
 897   // along with all the other pointers into the heap but
 898   // compaction is expected to be a rare event with
 899   // a heap using cms so don't do it without seeing the need.
 900   if (CollectedHeap::use_parallel_gc_threads()) {
 901     for (uint i = 0; i < ParallelGCThreads; i++) {
 902       _par_gc_thread_states[i]->promo.reset();
 903     }
 904   }
 905 }
 906 
 907 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 908   blk->do_space(_cmsSpace);
 909 }
 910 
 911 void ConcurrentMarkSweepGeneration::compute_new_size() {
 912   assert_locked_or_safepoint(Heap_lock);
 913 
 914   // If incremental collection failed, we just want to expand
 915   // to the limit.
 916   if (incremental_collection_failed()) {
 917     clear_incremental_collection_failed();
 918     grow_to_reserved();
 919     return;
 920   }
 921 
 922   // The heap has been compacted but not reset yet.
 923   // Any metric such as free() or used() will be incorrect.
 924 
 925   CardGeneration::compute_new_size();
 926 
 927   // Reset again after a possible resizing
 928   if (did_compact()) {
 929     cmsSpace()->reset_after_compaction();
 930   }
 931 }
 932 
 933 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 934   assert_locked_or_safepoint(Heap_lock);
 935 
 936   // If incremental collection failed, we just want to expand
 937   // to the limit.
 938   if (incremental_collection_failed()) {
 939     clear_incremental_collection_failed();
 940     grow_to_reserved();
 941     return;
 942   }
 943 
 944   double free_percentage = ((double) free()) / capacity();
 945   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 946   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 947 
 948   // compute expansion delta needed for reaching desired free percentage
 949   if (free_percentage < desired_free_percentage) {
 950     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 951     assert(desired_capacity >= capacity(), "invalid expansion size");
 952     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 953     if (PrintGCDetails && Verbose) {
 954       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 955       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 956       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 957       gclog_or_tty->print_cr("  Desired free fraction %f",
 958         desired_free_percentage);
 959       gclog_or_tty->print_cr("  Maximum free fraction %f",
 960         maximum_free_percentage);
 961       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 962       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 963         desired_capacity/1000);
 964       int prev_level = level() - 1;
 965       if (prev_level >= 0) {
 966         size_t prev_size = 0;
 967         GenCollectedHeap* gch = GenCollectedHeap::heap();
 968         Generation* prev_gen = gch->_gens[prev_level];
 969         prev_size = prev_gen->capacity();
 970           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 971                                  prev_size/1000);
 972       }
 973       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 974         unsafe_max_alloc_nogc()/1000);
 975       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 976         contiguous_available()/1000);
 977       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 978         expand_bytes);
 979     }
 980     // safe if expansion fails
 981     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 982     if (PrintGCDetails && Verbose) {
 983       gclog_or_tty->print_cr("  Expanded free fraction %f",
 984         ((double) free()) / capacity());
 985     }
 986   } else {
 987     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 988     assert(desired_capacity <= capacity(), "invalid expansion size");
 989     size_t shrink_bytes = capacity() - desired_capacity;
 990     // Don't shrink unless the delta is greater than the minimum shrink we want
 991     if (shrink_bytes >= MinHeapDeltaBytes) {
 992       shrink_free_list_by(shrink_bytes);
 993     }
 994   }
 995 }
 996 
 997 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 998   return cmsSpace()->freelistLock();
 999 }
1000 
1001 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1002                                                   bool   tlab) {
1003   CMSSynchronousYieldRequest yr;
1004   MutexLockerEx x(freelistLock(),
1005                   Mutex::_no_safepoint_check_flag);
1006   return have_lock_and_allocate(size, tlab);
1007 }
1008 
1009 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1010                                                   bool   tlab /* ignored */) {
1011   assert_lock_strong(freelistLock());
1012   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1013   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1014   // Allocate the object live (grey) if the background collector has
1015   // started marking. This is necessary because the marker may
1016   // have passed this address and consequently this object will
1017   // not otherwise be greyed and would be incorrectly swept up.
1018   // Note that if this object contains references, the writing
1019   // of those references will dirty the card containing this object
1020   // allowing the object to be blackened (and its references scanned)
1021   // either during a preclean phase or at the final checkpoint.
1022   if (res != NULL) {
1023     // We may block here with an uninitialized object with
1024     // its mark-bit or P-bits not yet set. Such objects need
1025     // to be safely navigable by block_start().
1026     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1027     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1028     collector()->direct_allocated(res, adjustedSize);
1029     _direct_allocated_words += adjustedSize;
1030     // allocation counters
1031     NOT_PRODUCT(
1032       _numObjectsAllocated++;
1033       _numWordsAllocated += (int)adjustedSize;
1034     )
1035   }
1036   return res;
1037 }
1038 
1039 // In the case of direct allocation by mutators in a generation that
1040 // is being concurrently collected, the object must be allocated
1041 // live (grey) if the background collector has started marking.
1042 // This is necessary because the marker may
1043 // have passed this address and consequently this object will
1044 // not otherwise be greyed and would be incorrectly swept up.
1045 // Note that if this object contains references, the writing
1046 // of those references will dirty the card containing this object
1047 // allowing the object to be blackened (and its references scanned)
1048 // either during a preclean phase or at the final checkpoint.
1049 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1050   assert(_markBitMap.covers(start, size), "Out of bounds");
1051   if (_collectorState >= Marking) {
1052     MutexLockerEx y(_markBitMap.lock(),
1053                     Mutex::_no_safepoint_check_flag);
1054     // [see comments preceding SweepClosure::do_blk() below for details]
1055     //
1056     // Can the P-bits be deleted now?  JJJ
1057     //
1058     // 1. need to mark the object as live so it isn't collected
1059     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1060     // 3. need to mark the end of the object so marking, precleaning or sweeping
1061     //    can skip over uninitialized or unparsable objects. An allocated
1062     //    object is considered uninitialized for our purposes as long as
1063     //    its klass word is NULL.  All old gen objects are parsable
1064     //    as soon as they are initialized.)
1065     _markBitMap.mark(start);          // object is live
1066     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1067     _markBitMap.mark(start + size - 1);
1068                                       // mark end of object
1069   }
1070   // check that oop looks uninitialized
1071   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1072 }
1073 
1074 void CMSCollector::promoted(bool par, HeapWord* start,
1075                             bool is_obj_array, size_t obj_size) {
1076   assert(_markBitMap.covers(start), "Out of bounds");
1077   // See comment in direct_allocated() about when objects should
1078   // be allocated live.
1079   if (_collectorState >= Marking) {
1080     // we already hold the marking bit map lock, taken in
1081     // the prologue
1082     if (par) {
1083       _markBitMap.par_mark(start);
1084     } else {
1085       _markBitMap.mark(start);
1086     }
1087     // We don't need to mark the object as uninitialized (as
1088     // in direct_allocated above) because this is being done with the
1089     // world stopped and the object will be initialized by the
1090     // time the marking, precleaning or sweeping get to look at it.
1091     // But see the code for copying objects into the CMS generation,
1092     // where we need to ensure that concurrent readers of the
1093     // block offset table are able to safely navigate a block that
1094     // is in flux from being free to being allocated (and in
1095     // transition while being copied into) and subsequently
1096     // becoming a bona-fide object when the copy/promotion is complete.
1097     assert(SafepointSynchronize::is_at_safepoint(),
1098            "expect promotion only at safepoints");
1099 
1100     if (_collectorState < Sweeping) {
1101       // Mark the appropriate cards in the modUnionTable, so that
1102       // this object gets scanned before the sweep. If this is
1103       // not done, CMS generation references in the object might
1104       // not get marked.
1105       // For the case of arrays, which are otherwise precisely
1106       // marked, we need to dirty the entire array, not just its head.
1107       if (is_obj_array) {
1108         // The [par_]mark_range() method expects mr.end() below to
1109         // be aligned to the granularity of a bit's representation
1110         // in the heap. In the case of the MUT below, that's a
1111         // card size.
1112         MemRegion mr(start,
1113                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1114                         CardTableModRefBS::card_size /* bytes */));
1115         if (par) {
1116           _modUnionTable.par_mark_range(mr);
1117         } else {
1118           _modUnionTable.mark_range(mr);
1119         }
1120       } else {  // not an obj array; we can just mark the head
1121         if (par) {
1122           _modUnionTable.par_mark(start);
1123         } else {
1124           _modUnionTable.mark(start);
1125         }
1126       }
1127     }
1128   }
1129 }
1130 
1131 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1132 {
1133   size_t delta = pointer_delta(addr, space->bottom());
1134   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1135 }
1136 
1137 void CMSCollector::icms_update_allocation_limits()
1138 {
1139   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1140   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1141 
1142   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1143   if (CMSTraceIncrementalPacing) {
1144     stats().print();
1145   }
1146 
1147   assert(duty_cycle <= 100, "invalid duty cycle");
1148   if (duty_cycle != 0) {
1149     // The duty_cycle is a percentage between 0 and 100; convert to words and
1150     // then compute the offset from the endpoints of the space.
1151     size_t free_words = eden->free() / HeapWordSize;
1152     double free_words_dbl = (double)free_words;
1153     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1154     size_t offset_words = (free_words - duty_cycle_words) / 2;
1155 
1156     _icms_start_limit = eden->top() + offset_words;
1157     _icms_stop_limit = eden->end() - offset_words;
1158 
1159     // The limits may be adjusted (shifted to the right) by
1160     // CMSIncrementalOffset, to allow the application more mutator time after a
1161     // young gen gc (when all mutators were stopped) and before CMS starts and
1162     // takes away one or more cpus.
1163     if (CMSIncrementalOffset != 0) {
1164       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1165       size_t adjustment = (size_t)adjustment_dbl;
1166       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1167       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1168         _icms_start_limit += adjustment;
1169         _icms_stop_limit = tmp_stop;
1170       }
1171     }
1172   }
1173   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1174     _icms_start_limit = _icms_stop_limit = eden->end();
1175   }
1176 
1177   // Install the new start limit.
1178   eden->set_soft_end(_icms_start_limit);
1179 
1180   if (CMSTraceIncrementalMode) {
1181     gclog_or_tty->print(" icms alloc limits:  "
1182                            PTR_FORMAT "," PTR_FORMAT
1183                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1184                            _icms_start_limit, _icms_stop_limit,
1185                            percent_of_space(eden, _icms_start_limit),
1186                            percent_of_space(eden, _icms_stop_limit));
1187     if (Verbose) {
1188       gclog_or_tty->print("eden:  ");
1189       eden->print_on(gclog_or_tty);
1190     }
1191   }
1192 }
1193 
1194 // Any changes here should try to maintain the invariant
1195 // that if this method is called with _icms_start_limit
1196 // and _icms_stop_limit both NULL, then it should return NULL
1197 // and not notify the icms thread.
1198 HeapWord*
1199 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1200                                        size_t word_size)
1201 {
1202   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1203   // nop.
1204   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1205     if (top <= _icms_start_limit) {
1206       if (CMSTraceIncrementalMode) {
1207         space->print_on(gclog_or_tty);
1208         gclog_or_tty->stamp();
1209         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1210                                ", new limit=" PTR_FORMAT
1211                                " (" SIZE_FORMAT "%%)",
1212                                top, _icms_stop_limit,
1213                                percent_of_space(space, _icms_stop_limit));
1214       }
1215       ConcurrentMarkSweepThread::start_icms();
1216       assert(top < _icms_stop_limit, "Tautology");
1217       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1218         return _icms_stop_limit;
1219       }
1220 
1221       // The allocation will cross both the _start and _stop limits, so do the
1222       // stop notification also and return end().
1223       if (CMSTraceIncrementalMode) {
1224         space->print_on(gclog_or_tty);
1225         gclog_or_tty->stamp();
1226         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1227                                ", new limit=" PTR_FORMAT
1228                                " (" SIZE_FORMAT "%%)",
1229                                top, space->end(),
1230                                percent_of_space(space, space->end()));
1231       }
1232       ConcurrentMarkSweepThread::stop_icms();
1233       return space->end();
1234     }
1235 
1236     if (top <= _icms_stop_limit) {
1237       if (CMSTraceIncrementalMode) {
1238         space->print_on(gclog_or_tty);
1239         gclog_or_tty->stamp();
1240         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1241                                ", new limit=" PTR_FORMAT
1242                                " (" SIZE_FORMAT "%%)",
1243                                top, space->end(),
1244                                percent_of_space(space, space->end()));
1245       }
1246       ConcurrentMarkSweepThread::stop_icms();
1247       return space->end();
1248     }
1249 
1250     if (CMSTraceIncrementalMode) {
1251       space->print_on(gclog_or_tty);
1252       gclog_or_tty->stamp();
1253       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1254                              ", new limit=" PTR_FORMAT,
1255                              top, NULL);
1256     }
1257   }
1258 
1259   return NULL;
1260 }
1261 
1262 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1264   // allocate, copy and if necessary update promoinfo --
1265   // delegate to underlying space.
1266   assert_lock_strong(freelistLock());
1267 
1268 #ifndef PRODUCT
1269   if (Universe::heap()->promotion_should_fail()) {
1270     return NULL;
1271   }
1272 #endif  // #ifndef PRODUCT
1273 
1274   oop res = _cmsSpace->promote(obj, obj_size);
1275   if (res == NULL) {
1276     // expand and retry
1277     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1278     expand(s*HeapWordSize, MinHeapDeltaBytes,
1279       CMSExpansionCause::_satisfy_promotion);
1280     // Since there's currently no next generation, we don't try to promote
1281     // into a more senior generation.
1282     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1283                                "is made to pass on a possibly failing "
1284                                "promotion to next generation");
1285     res = _cmsSpace->promote(obj, obj_size);
1286   }
1287   if (res != NULL) {
1288     // See comment in allocate() about when objects should
1289     // be allocated live.
1290     assert(obj->is_oop(), "Will dereference klass pointer below");
1291     collector()->promoted(false,           // Not parallel
1292                           (HeapWord*)res, obj->is_objArray(), obj_size);
1293     // promotion counters
1294     NOT_PRODUCT(
1295       _numObjectsPromoted++;
1296       _numWordsPromoted +=
1297         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1298     )
1299   }
1300   return res;
1301 }
1302 
1303 
1304 HeapWord*
1305 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1306                                              HeapWord* top,
1307                                              size_t word_sz)
1308 {
1309   return collector()->allocation_limit_reached(space, top, word_sz);
1310 }
1311 
1312 // IMPORTANT: Notes on object size recognition in CMS.
1313 // ---------------------------------------------------
1314 // A block of storage in the CMS generation is always in
1315 // one of three states. A free block (FREE), an allocated
1316 // object (OBJECT) whose size() method reports the correct size,
1317 // and an intermediate state (TRANSIENT) in which its size cannot
1318 // be accurately determined.
1319 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1320 // -----------------------------------------------------
1321 // FREE:      klass_word & 1 == 1; mark_word holds block size
1322 //
1323 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1324 //            obj->size() computes correct size
1325 //
1326 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1327 //
1328 // STATE IDENTIFICATION: (64 bit+COOPS)
1329 // ------------------------------------
1330 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1331 //
1332 // OBJECT:    klass_word installed; klass_word != 0;
1333 //            obj->size() computes correct size
1334 //
1335 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1336 //
1337 //
1338 // STATE TRANSITION DIAGRAM
1339 //
1340 //        mut / parnew                     mut  /  parnew
1341 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1342 //  ^                                                                   |
1343 //  |------------------------ DEAD <------------------------------------|
1344 //         sweep                            mut
1345 //
1346 // While a block is in TRANSIENT state its size cannot be determined
1347 // so readers will either need to come back later or stall until
1348 // the size can be determined. Note that for the case of direct
1349 // allocation, P-bits, when available, may be used to determine the
1350 // size of an object that may not yet have been initialized.
1351 
1352 // Things to support parallel young-gen collection.
1353 oop
1354 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1355                                            oop old, markOop m,
1356                                            size_t word_sz) {
1357 #ifndef PRODUCT
1358   if (Universe::heap()->promotion_should_fail()) {
1359     return NULL;
1360   }
1361 #endif  // #ifndef PRODUCT
1362 
1363   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1364   PromotionInfo* promoInfo = &ps->promo;
1365   // if we are tracking promotions, then first ensure space for
1366   // promotion (including spooling space for saving header if necessary).
1367   // then allocate and copy, then track promoted info if needed.
1368   // When tracking (see PromotionInfo::track()), the mark word may
1369   // be displaced and in this case restoration of the mark word
1370   // occurs in the (oop_since_save_marks_)iterate phase.
1371   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1372     // Out of space for allocating spooling buffers;
1373     // try expanding and allocating spooling buffers.
1374     if (!expand_and_ensure_spooling_space(promoInfo)) {
1375       return NULL;
1376     }
1377   }
1378   assert(promoInfo->has_spooling_space(), "Control point invariant");
1379   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1380   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1381   if (obj_ptr == NULL) {
1382      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1383      if (obj_ptr == NULL) {
1384        return NULL;
1385      }
1386   }
1387   oop obj = oop(obj_ptr);
1388   OrderAccess::storestore();
1389   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1390   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1391   // IMPORTANT: See note on object initialization for CMS above.
1392   // Otherwise, copy the object.  Here we must be careful to insert the
1393   // klass pointer last, since this marks the block as an allocated object.
1394   // Except with compressed oops it's the mark word.
1395   HeapWord* old_ptr = (HeapWord*)old;
1396   // Restore the mark word copied above.
1397   obj->set_mark(m);
1398   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1399   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1400   OrderAccess::storestore();
1401 
1402   if (UseCompressedClassPointers) {
1403     // Copy gap missed by (aligned) header size calculation below
1404     obj->set_klass_gap(old->klass_gap());
1405   }
1406   if (word_sz > (size_t)oopDesc::header_size()) {
1407     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1408                                  obj_ptr + oopDesc::header_size(),
1409                                  word_sz - oopDesc::header_size());
1410   }
1411 
1412   // Now we can track the promoted object, if necessary.  We take care
1413   // to delay the transition from uninitialized to full object
1414   // (i.e., insertion of klass pointer) until after, so that it
1415   // atomically becomes a promoted object.
1416   if (promoInfo->tracking()) {
1417     promoInfo->track((PromotedObject*)obj, old->klass());
1418   }
1419   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1420   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1421   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1422 
1423   // Finally, install the klass pointer (this should be volatile).
1424   OrderAccess::storestore();
1425   obj->set_klass(old->klass());
1426   // We should now be able to calculate the right size for this object
1427   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1428 
1429   collector()->promoted(true,          // parallel
1430                         obj_ptr, old->is_objArray(), word_sz);
1431 
1432   NOT_PRODUCT(
1433     Atomic::inc_ptr(&_numObjectsPromoted);
1434     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1435   )
1436 
1437   return obj;
1438 }
1439 
1440 void
1441 ConcurrentMarkSweepGeneration::
1442 par_promote_alloc_undo(int thread_num,
1443                        HeapWord* obj, size_t word_sz) {
1444   // CMS does not support promotion undo.
1445   ShouldNotReachHere();
1446 }
1447 
1448 void
1449 ConcurrentMarkSweepGeneration::
1450 par_promote_alloc_done(int thread_num) {
1451   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1452   ps->lab.retire(thread_num);
1453 }
1454 
1455 void
1456 ConcurrentMarkSweepGeneration::
1457 par_oop_since_save_marks_iterate_done(int thread_num) {
1458   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1459   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1460   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1461 }
1462 
1463 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1464                                                    size_t size,
1465                                                    bool   tlab)
1466 {
1467   // We allow a STW collection only if a full
1468   // collection was requested.
1469   return full || should_allocate(size, tlab); // FIX ME !!!
1470   // This and promotion failure handling are connected at the
1471   // hip and should be fixed by untying them.
1472 }
1473 
1474 bool CMSCollector::shouldConcurrentCollect() {
1475   if (_full_gc_requested) {
1476     if (Verbose && PrintGCDetails) {
1477       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1478                              " gc request (or gc_locker)");
1479     }
1480     return true;
1481   }
1482 
1483   // For debugging purposes, change the type of collection.
1484   // If the rotation is not on the concurrent collection
1485   // type, don't start a concurrent collection.
1486   NOT_PRODUCT(
1487     if (RotateCMSCollectionTypes &&
1488         (_cmsGen->debug_collection_type() !=
1489           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1490       assert(_cmsGen->debug_collection_type() !=
1491         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1492         "Bad cms collection type");
1493       return false;
1494     }
1495   )
1496 
1497   FreelistLocker x(this);
1498   // ------------------------------------------------------------------
1499   // Print out lots of information which affects the initiation of
1500   // a collection.
1501   if (PrintCMSInitiationStatistics && stats().valid()) {
1502     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1503     gclog_or_tty->stamp();
1504     gclog_or_tty->print_cr("");
1505     stats().print_on(gclog_or_tty);
1506     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1507       stats().time_until_cms_gen_full());
1508     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1509     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1510                            _cmsGen->contiguous_available());
1511     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1512     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1513     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1514     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1515     gclog_or_tty->print_cr("metadata initialized %d",
1516       MetaspaceGC::should_concurrent_collect());
1517   }
1518   // ------------------------------------------------------------------
1519 
1520   // If the estimated time to complete a cms collection (cms_duration())
1521   // is less than the estimated time remaining until the cms generation
1522   // is full, start a collection.
1523   if (!UseCMSInitiatingOccupancyOnly) {
1524     if (stats().valid()) {
1525       if (stats().time_until_cms_start() == 0.0) {
1526         return true;
1527       }
1528     } else {
1529       // We want to conservatively collect somewhat early in order
1530       // to try and "bootstrap" our CMS/promotion statistics;
1531       // this branch will not fire after the first successful CMS
1532       // collection because the stats should then be valid.
1533       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1534         if (Verbose && PrintGCDetails) {
1535           gclog_or_tty->print_cr(
1536             " CMSCollector: collect for bootstrapping statistics:"
1537             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1538             _bootstrap_occupancy);
1539         }
1540         return true;
1541       }
1542     }
1543   }
1544 
1545   // Otherwise, we start a collection cycle if
1546   // old gen want a collection cycle started. Each may use
1547   // an appropriate criterion for making this decision.
1548   // XXX We need to make sure that the gen expansion
1549   // criterion dovetails well with this. XXX NEED TO FIX THIS
1550   if (_cmsGen->should_concurrent_collect()) {
1551     if (Verbose && PrintGCDetails) {
1552       gclog_or_tty->print_cr("CMS old gen initiated");
1553     }
1554     return true;
1555   }
1556 
1557   // We start a collection if we believe an incremental collection may fail;
1558   // this is not likely to be productive in practice because it's probably too
1559   // late anyway.
1560   GenCollectedHeap* gch = GenCollectedHeap::heap();
1561   assert(gch->collector_policy()->is_two_generation_policy(),
1562          "You may want to check the correctness of the following");
1563   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1564     if (Verbose && PrintGCDetails) {
1565       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1566     }
1567     return true;
1568   }
1569 
1570   if (MetaspaceGC::should_concurrent_collect()) {
1571       if (Verbose && PrintGCDetails) {
1572       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1573       }
1574       return true;
1575     }
1576 
1577   return false;
1578 }
1579 
1580 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1581 
1582 // Clear _expansion_cause fields of constituent generations
1583 void CMSCollector::clear_expansion_cause() {
1584   _cmsGen->clear_expansion_cause();
1585 }
1586 
1587 // We should be conservative in starting a collection cycle.  To
1588 // start too eagerly runs the risk of collecting too often in the
1589 // extreme.  To collect too rarely falls back on full collections,
1590 // which works, even if not optimum in terms of concurrent work.
1591 // As a work around for too eagerly collecting, use the flag
1592 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1593 // giving the user an easily understandable way of controlling the
1594 // collections.
1595 // We want to start a new collection cycle if any of the following
1596 // conditions hold:
1597 // . our current occupancy exceeds the configured initiating occupancy
1598 //   for this generation, or
1599 // . we recently needed to expand this space and have not, since that
1600 //   expansion, done a collection of this generation, or
1601 // . the underlying space believes that it may be a good idea to initiate
1602 //   a concurrent collection (this may be based on criteria such as the
1603 //   following: the space uses linear allocation and linear allocation is
1604 //   going to fail, or there is believed to be excessive fragmentation in
1605 //   the generation, etc... or ...
1606 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1607 //   the case of the old generation; see CR 6543076):
1608 //   we may be approaching a point at which allocation requests may fail because
1609 //   we will be out of sufficient free space given allocation rate estimates.]
1610 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1611 
1612   assert_lock_strong(freelistLock());
1613   if (occupancy() > initiating_occupancy()) {
1614     if (PrintGCDetails && Verbose) {
1615       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1616         short_name(), occupancy(), initiating_occupancy());
1617     }
1618     return true;
1619   }
1620   if (UseCMSInitiatingOccupancyOnly) {
1621     return false;
1622   }
1623   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1624     if (PrintGCDetails && Verbose) {
1625       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1626         short_name());
1627     }
1628     return true;
1629   }
1630   if (_cmsSpace->should_concurrent_collect()) {
1631     if (PrintGCDetails && Verbose) {
1632       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1633         short_name());
1634     }
1635     return true;
1636   }
1637   return false;
1638 }
1639 
1640 void ConcurrentMarkSweepGeneration::collect(bool   full,
1641                                             bool   clear_all_soft_refs,
1642                                             size_t size,
1643                                             bool   tlab)
1644 {
1645   collector()->collect(full, clear_all_soft_refs, size, tlab);
1646 }
1647 
1648 void CMSCollector::collect(bool   full,
1649                            bool   clear_all_soft_refs,
1650                            size_t size,
1651                            bool   tlab)
1652 {
1653   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1654     // For debugging purposes skip the collection if the state
1655     // is not currently idle
1656     if (TraceCMSState) {
1657       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1658         Thread::current(), full, _collectorState);
1659     }
1660     return;
1661   }
1662 
1663   // The following "if" branch is present for defensive reasons.
1664   // In the current uses of this interface, it can be replaced with:
1665   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1666   // But I am not placing that assert here to allow future
1667   // generality in invoking this interface.
1668   if (GC_locker::is_active()) {
1669     // A consistency test for GC_locker
1670     assert(GC_locker::needs_gc(), "Should have been set already");
1671     // Skip this foreground collection, instead
1672     // expanding the heap if necessary.
1673     // Need the free list locks for the call to free() in compute_new_size()
1674     compute_new_size();
1675     return;
1676   }
1677   acquire_control_and_collect(full, clear_all_soft_refs);
1678   _full_gcs_since_conc_gc++;
1679 }
1680 
1681 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1682   GenCollectedHeap* gch = GenCollectedHeap::heap();
1683   unsigned int gc_count = gch->total_full_collections();
1684   if (gc_count == full_gc_count) {
1685     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1686     _full_gc_requested = true;
1687     _full_gc_cause = cause;
1688     CGC_lock->notify();   // nudge CMS thread
1689   } else {
1690     assert(gc_count > full_gc_count, "Error: causal loop");
1691   }
1692 }
1693 
1694 bool CMSCollector::is_external_interruption() {
1695   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1696   return GCCause::is_user_requested_gc(cause) ||
1697          GCCause::is_serviceability_requested_gc(cause);
1698 }
1699 
1700 void CMSCollector::report_concurrent_mode_interruption() {
1701   if (is_external_interruption()) {
1702     if (PrintGCDetails) {
1703       gclog_or_tty->print(" (concurrent mode interrupted)");
1704     }
1705   } else {
1706     if (PrintGCDetails) {
1707       gclog_or_tty->print(" (concurrent mode failure)");
1708     }
1709     _gc_tracer_cm->report_concurrent_mode_failure();
1710   }
1711 }
1712 
1713 
1714 // The foreground and background collectors need to coordinate in order
1715 // to make sure that they do not mutually interfere with CMS collections.
1716 // When a background collection is active,
1717 // the foreground collector may need to take over (preempt) and
1718 // synchronously complete an ongoing collection. Depending on the
1719 // frequency of the background collections and the heap usage
1720 // of the application, this preemption can be seldom or frequent.
1721 // There are only certain
1722 // points in the background collection that the "collection-baton"
1723 // can be passed to the foreground collector.
1724 //
1725 // The foreground collector will wait for the baton before
1726 // starting any part of the collection.  The foreground collector
1727 // will only wait at one location.
1728 //
1729 // The background collector will yield the baton before starting a new
1730 // phase of the collection (e.g., before initial marking, marking from roots,
1731 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1732 // of the loop which switches the phases. The background collector does some
1733 // of the phases (initial mark, final re-mark) with the world stopped.
1734 // Because of locking involved in stopping the world,
1735 // the foreground collector should not block waiting for the background
1736 // collector when it is doing a stop-the-world phase.  The background
1737 // collector will yield the baton at an additional point just before
1738 // it enters a stop-the-world phase.  Once the world is stopped, the
1739 // background collector checks the phase of the collection.  If the
1740 // phase has not changed, it proceeds with the collection.  If the
1741 // phase has changed, it skips that phase of the collection.  See
1742 // the comments on the use of the Heap_lock in collect_in_background().
1743 //
1744 // Variable used in baton passing.
1745 //   _foregroundGCIsActive - Set to true by the foreground collector when
1746 //      it wants the baton.  The foreground clears it when it has finished
1747 //      the collection.
1748 //   _foregroundGCShouldWait - Set to true by the background collector
1749 //        when it is running.  The foreground collector waits while
1750 //      _foregroundGCShouldWait is true.
1751 //  CGC_lock - monitor used to protect access to the above variables
1752 //      and to notify the foreground and background collectors.
1753 //  _collectorState - current state of the CMS collection.
1754 //
1755 // The foreground collector
1756 //   acquires the CGC_lock
1757 //   sets _foregroundGCIsActive
1758 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1759 //     various locks acquired in preparation for the collection
1760 //     are released so as not to block the background collector
1761 //     that is in the midst of a collection
1762 //   proceeds with the collection
1763 //   clears _foregroundGCIsActive
1764 //   returns
1765 //
1766 // The background collector in a loop iterating on the phases of the
1767 //      collection
1768 //   acquires the CGC_lock
1769 //   sets _foregroundGCShouldWait
1770 //   if _foregroundGCIsActive is set
1771 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1772 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1773 //     and exits the loop.
1774 //   otherwise
1775 //     proceed with that phase of the collection
1776 //     if the phase is a stop-the-world phase,
1777 //       yield the baton once more just before enqueueing
1778 //       the stop-world CMS operation (executed by the VM thread).
1779 //   returns after all phases of the collection are done
1780 //
1781 
1782 void CMSCollector::acquire_control_and_collect(bool full,
1783         bool clear_all_soft_refs) {
1784   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1785   assert(!Thread::current()->is_ConcurrentGC_thread(),
1786          "shouldn't try to acquire control from self!");
1787 
1788   // Start the protocol for acquiring control of the
1789   // collection from the background collector (aka CMS thread).
1790   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1791          "VM thread should have CMS token");
1792   // Remember the possibly interrupted state of an ongoing
1793   // concurrent collection
1794   CollectorState first_state = _collectorState;
1795 
1796   // Signal to a possibly ongoing concurrent collection that
1797   // we want to do a foreground collection.
1798   _foregroundGCIsActive = true;
1799 
1800   // Disable incremental mode during a foreground collection.
1801   ICMSDisabler icms_disabler;
1802 
1803   // release locks and wait for a notify from the background collector
1804   // releasing the locks in only necessary for phases which
1805   // do yields to improve the granularity of the collection.
1806   assert_lock_strong(bitMapLock());
1807   // We need to lock the Free list lock for the space that we are
1808   // currently collecting.
1809   assert(haveFreelistLocks(), "Must be holding free list locks");
1810   bitMapLock()->unlock();
1811   releaseFreelistLocks();
1812   {
1813     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1814     if (_foregroundGCShouldWait) {
1815       // We are going to be waiting for action for the CMS thread;
1816       // it had better not be gone (for instance at shutdown)!
1817       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1818              "CMS thread must be running");
1819       // Wait here until the background collector gives us the go-ahead
1820       ConcurrentMarkSweepThread::clear_CMS_flag(
1821         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1822       // Get a possibly blocked CMS thread going:
1823       //   Note that we set _foregroundGCIsActive true above,
1824       //   without protection of the CGC_lock.
1825       CGC_lock->notify();
1826       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1827              "Possible deadlock");
1828       while (_foregroundGCShouldWait) {
1829         // wait for notification
1830         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1831         // Possibility of delay/starvation here, since CMS token does
1832         // not know to give priority to VM thread? Actually, i think
1833         // there wouldn't be any delay/starvation, but the proof of
1834         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1835       }
1836       ConcurrentMarkSweepThread::set_CMS_flag(
1837         ConcurrentMarkSweepThread::CMS_vm_has_token);
1838     }
1839   }
1840   // The CMS_token is already held.  Get back the other locks.
1841   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1842          "VM thread should have CMS token");
1843   getFreelistLocks();
1844   bitMapLock()->lock_without_safepoint_check();
1845   if (TraceCMSState) {
1846     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1847       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1848     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1849   }
1850 
1851   // Check if we need to do a compaction, or if not, whether
1852   // we need to start the mark-sweep from scratch.
1853   bool should_compact    = false;
1854   bool should_start_over = false;
1855   decide_foreground_collection_type(clear_all_soft_refs,
1856     &should_compact, &should_start_over);
1857 
1858 NOT_PRODUCT(
1859   if (RotateCMSCollectionTypes) {
1860     if (_cmsGen->debug_collection_type() ==
1861         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1862       should_compact = true;
1863     } else if (_cmsGen->debug_collection_type() ==
1864                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1865       should_compact = false;
1866     }
1867   }
1868 )
1869 
1870   if (first_state > Idling) {
1871     report_concurrent_mode_interruption();
1872   }
1873 
1874   set_did_compact(should_compact);
1875   if (should_compact) {
1876     // If the collection is being acquired from the background
1877     // collector, there may be references on the discovered
1878     // references lists that have NULL referents (being those
1879     // that were concurrently cleared by a mutator) or
1880     // that are no longer active (having been enqueued concurrently
1881     // by the mutator).
1882     // Scrub the list of those references because Mark-Sweep-Compact
1883     // code assumes referents are not NULL and that all discovered
1884     // Reference objects are active.
1885     ref_processor()->clean_up_discovered_references();
1886 
1887     if (first_state > Idling) {
1888       save_heap_summary();
1889     }
1890 
1891     do_compaction_work(clear_all_soft_refs);
1892 
1893     // Has the GC time limit been exceeded?
1894     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1895     size_t max_eden_size = young_gen->max_capacity() -
1896                            young_gen->to()->capacity() -
1897                            young_gen->from()->capacity();
1898     GenCollectedHeap* gch = GenCollectedHeap::heap();
1899     GCCause::Cause gc_cause = gch->gc_cause();
1900     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1901                                            young_gen->eden()->used(),
1902                                            _cmsGen->max_capacity(),
1903                                            max_eden_size,
1904                                            full,
1905                                            gc_cause,
1906                                            gch->collector_policy());
1907   } else {
1908     do_mark_sweep_work(clear_all_soft_refs, first_state,
1909       should_start_over);
1910   }
1911   // Reset the expansion cause, now that we just completed
1912   // a collection cycle.
1913   clear_expansion_cause();
1914   _foregroundGCIsActive = false;
1915   return;
1916 }
1917 
1918 // Resize the tenured generation
1919 // after obtaining the free list locks for the
1920 // two generations.
1921 void CMSCollector::compute_new_size() {
1922   assert_locked_or_safepoint(Heap_lock);
1923   FreelistLocker z(this);
1924   MetaspaceGC::compute_new_size();
1925   _cmsGen->compute_new_size_free_list();
1926 }
1927 
1928 // A work method used by foreground collection to determine
1929 // what type of collection (compacting or not, continuing or fresh)
1930 // it should do.
1931 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1932 // and CMSCompactWhenClearAllSoftRefs the default in the future
1933 // and do away with the flags after a suitable period.
1934 void CMSCollector::decide_foreground_collection_type(
1935   bool clear_all_soft_refs, bool* should_compact,
1936   bool* should_start_over) {
1937   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1938   // flag is set, and we have either requested a System.gc() or
1939   // the number of full gc's since the last concurrent cycle
1940   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1941   // or if an incremental collection has failed
1942   GenCollectedHeap* gch = GenCollectedHeap::heap();
1943   assert(gch->collector_policy()->is_two_generation_policy(),
1944          "You may want to check the correctness of the following");
1945   // Inform cms gen if this was due to partial collection failing.
1946   // The CMS gen may use this fact to determine its expansion policy.
1947   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1948     assert(!_cmsGen->incremental_collection_failed(),
1949            "Should have been noticed, reacted to and cleared");
1950     _cmsGen->set_incremental_collection_failed();
1951   }
1952   *should_compact =
1953     UseCMSCompactAtFullCollection &&
1954     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1955      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1956      gch->incremental_collection_will_fail(true /* consult_young */));
1957   *should_start_over = false;
1958   if (clear_all_soft_refs && !*should_compact) {
1959     // We are about to do a last ditch collection attempt
1960     // so it would normally make sense to do a compaction
1961     // to reclaim as much space as possible.
1962     if (CMSCompactWhenClearAllSoftRefs) {
1963       // Default: The rationale is that in this case either
1964       // we are past the final marking phase, in which case
1965       // we'd have to start over, or so little has been done
1966       // that there's little point in saving that work. Compaction
1967       // appears to be the sensible choice in either case.
1968       *should_compact = true;
1969     } else {
1970       // We have been asked to clear all soft refs, but not to
1971       // compact. Make sure that we aren't past the final checkpoint
1972       // phase, for that is where we process soft refs. If we are already
1973       // past that phase, we'll need to redo the refs discovery phase and
1974       // if necessary clear soft refs that weren't previously
1975       // cleared. We do so by remembering the phase in which
1976       // we came in, and if we are past the refs processing
1977       // phase, we'll choose to just redo the mark-sweep
1978       // collection from scratch.
1979       if (_collectorState > FinalMarking) {
1980         // We are past the refs processing phase;
1981         // start over and do a fresh synchronous CMS cycle
1982         _collectorState = Resetting; // skip to reset to start new cycle
1983         reset(false /* == !asynch */);
1984         *should_start_over = true;
1985       } // else we can continue a possibly ongoing current cycle
1986     }
1987   }
1988 }
1989 
1990 // A work method used by the foreground collector to do
1991 // a mark-sweep-compact.
1992 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1993   GenCollectedHeap* gch = GenCollectedHeap::heap();
1994 
1995   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1996   gc_timer->register_gc_start();
1997 
1998   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1999   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2000 
2001   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
2002   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2003     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2004       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2005   }
2006 
2007   // Sample collection interval time and reset for collection pause.
2008   if (UseAdaptiveSizePolicy) {
2009     size_policy()->msc_collection_begin();
2010   }
2011 
2012   // Temporarily widen the span of the weak reference processing to
2013   // the entire heap.
2014   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2015   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2016   // Temporarily, clear the "is_alive_non_header" field of the
2017   // reference processor.
2018   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2019   // Temporarily make reference _processing_ single threaded (non-MT).
2020   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2021   // Temporarily make refs discovery atomic
2022   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2023   // Temporarily make reference _discovery_ single threaded (non-MT)
2024   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2025 
2026   ref_processor()->set_enqueuing_is_done(false);
2027   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2028   ref_processor()->setup_policy(clear_all_soft_refs);
2029   // If an asynchronous collection finishes, the _modUnionTable is
2030   // all clear.  If we are assuming the collection from an asynchronous
2031   // collection, clear the _modUnionTable.
2032   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2033     "_modUnionTable should be clear if the baton was not passed");
2034   _modUnionTable.clear_all();
2035   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2036     "mod union for klasses should be clear if the baton was passed");
2037   _ct->klass_rem_set()->clear_mod_union();
2038 
2039   // We must adjust the allocation statistics being maintained
2040   // in the free list space. We do so by reading and clearing
2041   // the sweep timer and updating the block flux rate estimates below.
2042   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2043   if (_inter_sweep_timer.is_active()) {
2044     _inter_sweep_timer.stop();
2045     // Note that we do not use this sample to update the _inter_sweep_estimate.
2046     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2047                                             _inter_sweep_estimate.padded_average(),
2048                                             _intra_sweep_estimate.padded_average());
2049   }
2050 
2051   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2052     ref_processor(), clear_all_soft_refs);
2053   #ifdef ASSERT
2054     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2055     size_t free_size = cms_space->free();
2056     assert(free_size ==
2057            pointer_delta(cms_space->end(), cms_space->compaction_top())
2058            * HeapWordSize,
2059       "All the free space should be compacted into one chunk at top");
2060     assert(cms_space->dictionary()->total_chunk_size(
2061                                       debug_only(cms_space->freelistLock())) == 0 ||
2062            cms_space->totalSizeInIndexedFreeLists() == 0,
2063       "All the free space should be in a single chunk");
2064     size_t num = cms_space->totalCount();
2065     assert((free_size == 0 && num == 0) ||
2066            (free_size > 0  && (num == 1 || num == 2)),
2067          "There should be at most 2 free chunks after compaction");
2068   #endif // ASSERT
2069   _collectorState = Resetting;
2070   assert(_restart_addr == NULL,
2071          "Should have been NULL'd before baton was passed");
2072   reset(false /* == !asynch */);
2073   _cmsGen->reset_after_compaction();
2074   _concurrent_cycles_since_last_unload = 0;
2075 
2076   // Clear any data recorded in the PLAB chunk arrays.
2077   if (_survivor_plab_array != NULL) {
2078     reset_survivor_plab_arrays();
2079   }
2080 
2081   // Adjust the per-size allocation stats for the next epoch.
2082   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2083   // Restart the "inter sweep timer" for the next epoch.
2084   _inter_sweep_timer.reset();
2085   _inter_sweep_timer.start();
2086 
2087   // Sample collection pause time and reset for collection interval.
2088   if (UseAdaptiveSizePolicy) {
2089     size_policy()->msc_collection_end(gch->gc_cause());
2090   }
2091 
2092   gc_timer->register_gc_end();
2093 
2094   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2095 
2096   // For a mark-sweep-compact, compute_new_size() will be called
2097   // in the heap's do_collection() method.
2098 }
2099 
2100 // A work method used by the foreground collector to do
2101 // a mark-sweep, after taking over from a possibly on-going
2102 // concurrent mark-sweep collection.
2103 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2104   CollectorState first_state, bool should_start_over) {
2105   if (PrintGC && Verbose) {
2106     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2107       "collector with count %d",
2108       _full_gcs_since_conc_gc);
2109   }
2110   switch (_collectorState) {
2111     case Idling:
2112       if (first_state == Idling || should_start_over) {
2113         // The background GC was not active, or should
2114         // restarted from scratch;  start the cycle.
2115         _collectorState = InitialMarking;
2116       }
2117       // If first_state was not Idling, then a background GC
2118       // was in progress and has now finished.  No need to do it
2119       // again.  Leave the state as Idling.
2120       break;
2121     case Precleaning:
2122       // In the foreground case don't do the precleaning since
2123       // it is not done concurrently and there is extra work
2124       // required.
2125       _collectorState = FinalMarking;
2126   }
2127   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2128 
2129   // For a mark-sweep, compute_new_size() will be called
2130   // in the heap's do_collection() method.
2131 }
2132 
2133 
2134 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2135   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2136   EdenSpace* eden_space = dng->eden();
2137   ContiguousSpace* from_space = dng->from();
2138   ContiguousSpace* to_space   = dng->to();
2139   // Eden
2140   if (_eden_chunk_array != NULL) {
2141     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2142                            eden_space->bottom(), eden_space->top(),
2143                            eden_space->end(), eden_space->capacity());
2144     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2145                            "_eden_chunk_capacity=" SIZE_FORMAT,
2146                            _eden_chunk_index, _eden_chunk_capacity);
2147     for (size_t i = 0; i < _eden_chunk_index; i++) {
2148       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2149                              i, _eden_chunk_array[i]);
2150     }
2151   }
2152   // Survivor
2153   if (_survivor_chunk_array != NULL) {
2154     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2155                            from_space->bottom(), from_space->top(),
2156                            from_space->end(), from_space->capacity());
2157     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2158                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2159                            _survivor_chunk_index, _survivor_chunk_capacity);
2160     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2161       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2162                              i, _survivor_chunk_array[i]);
2163     }
2164   }
2165 }
2166 
2167 void CMSCollector::getFreelistLocks() const {
2168   // Get locks for all free lists in all generations that this
2169   // collector is responsible for
2170   _cmsGen->freelistLock()->lock_without_safepoint_check();
2171 }
2172 
2173 void CMSCollector::releaseFreelistLocks() const {
2174   // Release locks for all free lists in all generations that this
2175   // collector is responsible for
2176   _cmsGen->freelistLock()->unlock();
2177 }
2178 
2179 bool CMSCollector::haveFreelistLocks() const {
2180   // Check locks for all free lists in all generations that this
2181   // collector is responsible for
2182   assert_lock_strong(_cmsGen->freelistLock());
2183   PRODUCT_ONLY(ShouldNotReachHere());
2184   return true;
2185 }
2186 
2187 // A utility class that is used by the CMS collector to
2188 // temporarily "release" the foreground collector from its
2189 // usual obligation to wait for the background collector to
2190 // complete an ongoing phase before proceeding.
2191 class ReleaseForegroundGC: public StackObj {
2192  private:
2193   CMSCollector* _c;
2194  public:
2195   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2196     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2197     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2198     // allow a potentially blocked foreground collector to proceed
2199     _c->_foregroundGCShouldWait = false;
2200     if (_c->_foregroundGCIsActive) {
2201       CGC_lock->notify();
2202     }
2203     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2204            "Possible deadlock");
2205   }
2206 
2207   ~ReleaseForegroundGC() {
2208     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2209     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2210     _c->_foregroundGCShouldWait = true;
2211   }
2212 };
2213 
2214 // There are separate collect_in_background and collect_in_foreground because of
2215 // the different locking requirements of the background collector and the
2216 // foreground collector.  There was originally an attempt to share
2217 // one "collect" method between the background collector and the foreground
2218 // collector but the if-then-else required made it cleaner to have
2219 // separate methods.
2220 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2221   assert(Thread::current()->is_ConcurrentGC_thread(),
2222     "A CMS asynchronous collection is only allowed on a CMS thread.");
2223 
2224   GenCollectedHeap* gch = GenCollectedHeap::heap();
2225   {
2226     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2227     MutexLockerEx hl(Heap_lock, safepoint_check);
2228     FreelistLocker fll(this);
2229     MutexLockerEx x(CGC_lock, safepoint_check);
2230     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2231       // The foreground collector is active or we're
2232       // not using asynchronous collections.  Skip this
2233       // background collection.
2234       assert(!_foregroundGCShouldWait, "Should be clear");
2235       return;
2236     } else {
2237       assert(_collectorState == Idling, "Should be idling before start.");
2238       _collectorState = InitialMarking;
2239       register_gc_start(cause);
2240       // Reset the expansion cause, now that we are about to begin
2241       // a new cycle.
2242       clear_expansion_cause();
2243 
2244       // Clear the MetaspaceGC flag since a concurrent collection
2245       // is starting but also clear it after the collection.
2246       MetaspaceGC::set_should_concurrent_collect(false);
2247     }
2248     // Decide if we want to enable class unloading as part of the
2249     // ensuing concurrent GC cycle.
2250     update_should_unload_classes();
2251     _full_gc_requested = false;           // acks all outstanding full gc requests
2252     _full_gc_cause = GCCause::_no_gc;
2253     // Signal that we are about to start a collection
2254     gch->increment_total_full_collections();  // ... starting a collection cycle
2255     _collection_count_start = gch->total_full_collections();
2256   }
2257 
2258   // Used for PrintGC
2259   size_t prev_used;
2260   if (PrintGC && Verbose) {
2261     prev_used = _cmsGen->used(); // XXXPERM
2262   }
2263 
2264   // The change of the collection state is normally done at this level;
2265   // the exceptions are phases that are executed while the world is
2266   // stopped.  For those phases the change of state is done while the
2267   // world is stopped.  For baton passing purposes this allows the
2268   // background collector to finish the phase and change state atomically.
2269   // The foreground collector cannot wait on a phase that is done
2270   // while the world is stopped because the foreground collector already
2271   // has the world stopped and would deadlock.
2272   while (_collectorState != Idling) {
2273     if (TraceCMSState) {
2274       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2275         Thread::current(), _collectorState);
2276     }
2277     // The foreground collector
2278     //   holds the Heap_lock throughout its collection.
2279     //   holds the CMS token (but not the lock)
2280     //     except while it is waiting for the background collector to yield.
2281     //
2282     // The foreground collector should be blocked (not for long)
2283     //   if the background collector is about to start a phase
2284     //   executed with world stopped.  If the background
2285     //   collector has already started such a phase, the
2286     //   foreground collector is blocked waiting for the
2287     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2288     //   are executed in the VM thread.
2289     //
2290     // The locking order is
2291     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2292     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2293     //   CMS token  (claimed in
2294     //                stop_world_and_do() -->
2295     //                  safepoint_synchronize() -->
2296     //                    CMSThread::synchronize())
2297 
2298     {
2299       // Check if the FG collector wants us to yield.
2300       CMSTokenSync x(true); // is cms thread
2301       if (waitForForegroundGC()) {
2302         // We yielded to a foreground GC, nothing more to be
2303         // done this round.
2304         assert(_foregroundGCShouldWait == false, "We set it to false in "
2305                "waitForForegroundGC()");
2306         if (TraceCMSState) {
2307           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2308             " exiting collection CMS state %d",
2309             Thread::current(), _collectorState);
2310         }
2311         return;
2312       } else {
2313         // The background collector can run but check to see if the
2314         // foreground collector has done a collection while the
2315         // background collector was waiting to get the CGC_lock
2316         // above.  If yes, break so that _foregroundGCShouldWait
2317         // is cleared before returning.
2318         if (_collectorState == Idling) {
2319           break;
2320         }
2321       }
2322     }
2323 
2324     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2325       "should be waiting");
2326 
2327     switch (_collectorState) {
2328       case InitialMarking:
2329         {
2330           ReleaseForegroundGC x(this);
2331           stats().record_cms_begin();
2332           VM_CMS_Initial_Mark initial_mark_op(this);
2333           VMThread::execute(&initial_mark_op);
2334         }
2335         // The collector state may be any legal state at this point
2336         // since the background collector may have yielded to the
2337         // foreground collector.
2338         break;
2339       case Marking:
2340         // initial marking in checkpointRootsInitialWork has been completed
2341         if (markFromRoots(true)) { // we were successful
2342           assert(_collectorState == Precleaning, "Collector state should "
2343             "have changed");
2344         } else {
2345           assert(_foregroundGCIsActive, "Internal state inconsistency");
2346         }
2347         break;
2348       case Precleaning:
2349         if (UseAdaptiveSizePolicy) {
2350           size_policy()->concurrent_precleaning_begin();
2351         }
2352         // marking from roots in markFromRoots has been completed
2353         preclean();
2354         if (UseAdaptiveSizePolicy) {
2355           size_policy()->concurrent_precleaning_end();
2356         }
2357         assert(_collectorState == AbortablePreclean ||
2358                _collectorState == FinalMarking,
2359                "Collector state should have changed");
2360         break;
2361       case AbortablePreclean:
2362         if (UseAdaptiveSizePolicy) {
2363         size_policy()->concurrent_phases_resume();
2364         }
2365         abortable_preclean();
2366         if (UseAdaptiveSizePolicy) {
2367           size_policy()->concurrent_precleaning_end();
2368         }
2369         assert(_collectorState == FinalMarking, "Collector state should "
2370           "have changed");
2371         break;
2372       case FinalMarking:
2373         {
2374           ReleaseForegroundGC x(this);
2375 
2376           VM_CMS_Final_Remark final_remark_op(this);
2377           VMThread::execute(&final_remark_op);
2378         }
2379         assert(_foregroundGCShouldWait, "block post-condition");
2380         break;
2381       case Sweeping:
2382         if (UseAdaptiveSizePolicy) {
2383           size_policy()->concurrent_sweeping_begin();
2384         }
2385         // final marking in checkpointRootsFinal has been completed
2386         sweep(true);
2387         assert(_collectorState == Resizing, "Collector state change "
2388           "to Resizing must be done under the free_list_lock");
2389         _full_gcs_since_conc_gc = 0;
2390 
2391         // Stop the timers for adaptive size policy for the concurrent phases
2392         if (UseAdaptiveSizePolicy) {
2393           size_policy()->concurrent_sweeping_end();
2394           size_policy()->concurrent_phases_end(gch->gc_cause(),
2395                                              gch->prev_gen(_cmsGen)->capacity(),
2396                                              _cmsGen->free());
2397         }
2398 
2399       case Resizing: {
2400         // Sweeping has been completed...
2401         // At this point the background collection has completed.
2402         // Don't move the call to compute_new_size() down
2403         // into code that might be executed if the background
2404         // collection was preempted.
2405         {
2406           ReleaseForegroundGC x(this);   // unblock FG collection
2407           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2408           CMSTokenSync        z(true);   // not strictly needed.
2409           if (_collectorState == Resizing) {
2410             compute_new_size();
2411             save_heap_summary();
2412             _collectorState = Resetting;
2413           } else {
2414             assert(_collectorState == Idling, "The state should only change"
2415                    " because the foreground collector has finished the collection");
2416           }
2417         }
2418         break;
2419       }
2420       case Resetting:
2421         // CMS heap resizing has been completed
2422         reset(true);
2423         assert(_collectorState == Idling, "Collector state should "
2424           "have changed");
2425 
2426         MetaspaceGC::set_should_concurrent_collect(false);
2427 
2428         stats().record_cms_end();
2429         // Don't move the concurrent_phases_end() and compute_new_size()
2430         // calls to here because a preempted background collection
2431         // has it's state set to "Resetting".
2432         break;
2433       case Idling:
2434       default:
2435         ShouldNotReachHere();
2436         break;
2437     }
2438     if (TraceCMSState) {
2439       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2440         Thread::current(), _collectorState);
2441     }
2442     assert(_foregroundGCShouldWait, "block post-condition");
2443   }
2444 
2445   // Should this be in gc_epilogue?
2446   collector_policy()->counters()->update_counters();
2447 
2448   {
2449     // Clear _foregroundGCShouldWait and, in the event that the
2450     // foreground collector is waiting, notify it, before
2451     // returning.
2452     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2453     _foregroundGCShouldWait = false;
2454     if (_foregroundGCIsActive) {
2455       CGC_lock->notify();
2456     }
2457     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2458            "Possible deadlock");
2459   }
2460   if (TraceCMSState) {
2461     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2462       " exiting collection CMS state %d",
2463       Thread::current(), _collectorState);
2464   }
2465   if (PrintGC && Verbose) {
2466     _cmsGen->print_heap_change(prev_used);
2467   }
2468 }
2469 
2470 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2471   if (!_cms_start_registered) {
2472     register_gc_start(cause);
2473   }
2474 }
2475 
2476 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2477   _cms_start_registered = true;
2478   _gc_timer_cm->register_gc_start();
2479   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2480 }
2481 
2482 void CMSCollector::register_gc_end() {
2483   if (_cms_start_registered) {
2484     report_heap_summary(GCWhen::AfterGC);
2485 
2486     _gc_timer_cm->register_gc_end();
2487     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2488     _cms_start_registered = false;
2489   }
2490 }
2491 
2492 void CMSCollector::save_heap_summary() {
2493   GenCollectedHeap* gch = GenCollectedHeap::heap();
2494   _last_heap_summary = gch->create_heap_summary();
2495   _last_metaspace_summary = gch->create_metaspace_summary();
2496 
2497   for (int i = 0; i < Metaspace::MetadataTypeCount; i++) {
2498     Metaspace::MetadataType mdtype = (Metaspace::MetadataType) i;
2499     if (MetaspaceAux::has_chunk_free_list(mdtype)) {
2500       _last_metaspace_free_list_summaries[i] = MetaspaceAux::chunk_free_list_summary(mdtype);
2501     }
2502   }
2503 }
2504 
2505 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2506   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_metaspace_summary);
2507 
2508   for (int i = 0; i < Metaspace::MetadataTypeCount; i++) {
2509     Metaspace::MetadataType mdtype = (Metaspace::MetadataType) i;
2510     if (MetaspaceAux::has_chunk_free_list(mdtype)) {
2511       _gc_tracer_cm->report_metaspace_chunk_free_list_summary(when, mdtype,
2512         _last_metaspace_free_list_summaries[i]);
2513     }
2514   }
2515 }
2516 
2517 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2518   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2519          "Foreground collector should be waiting, not executing");
2520   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2521     "may only be done by the VM Thread with the world stopped");
2522   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2523          "VM thread should have CMS token");
2524 
2525   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2526     true, NULL);)
2527   if (UseAdaptiveSizePolicy) {
2528     size_policy()->ms_collection_begin();
2529   }
2530   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2531 
2532   HandleMark hm;  // Discard invalid handles created during verification
2533 
2534   if (VerifyBeforeGC &&
2535       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2536     Universe::verify();
2537   }
2538 
2539   // Snapshot the soft reference policy to be used in this collection cycle.
2540   ref_processor()->setup_policy(clear_all_soft_refs);
2541 
2542   // Decide if class unloading should be done
2543   update_should_unload_classes();
2544 
2545   bool init_mark_was_synchronous = false; // until proven otherwise
2546   while (_collectorState != Idling) {
2547     if (TraceCMSState) {
2548       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2549         Thread::current(), _collectorState);
2550     }
2551     switch (_collectorState) {
2552       case InitialMarking:
2553         register_foreground_gc_start(cause);
2554         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2555         checkpointRootsInitial(false);
2556         assert(_collectorState == Marking, "Collector state should have changed"
2557           " within checkpointRootsInitial()");
2558         break;
2559       case Marking:
2560         // initial marking in checkpointRootsInitialWork has been completed
2561         if (VerifyDuringGC &&
2562             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2563           Universe::verify("Verify before initial mark: ");
2564         }
2565         {
2566           bool res = markFromRoots(false);
2567           assert(res && _collectorState == FinalMarking, "Collector state should "
2568             "have changed");
2569           break;
2570         }
2571       case FinalMarking:
2572         if (VerifyDuringGC &&
2573             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2574           Universe::verify("Verify before re-mark: ");
2575         }
2576         checkpointRootsFinal(false, clear_all_soft_refs,
2577                              init_mark_was_synchronous);
2578         assert(_collectorState == Sweeping, "Collector state should not "
2579           "have changed within checkpointRootsFinal()");
2580         break;
2581       case Sweeping:
2582         // final marking in checkpointRootsFinal has been completed
2583         if (VerifyDuringGC &&
2584             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2585           Universe::verify("Verify before sweep: ");
2586         }
2587         sweep(false);
2588         assert(_collectorState == Resizing, "Incorrect state");
2589         break;
2590       case Resizing: {
2591         // Sweeping has been completed; the actual resize in this case
2592         // is done separately; nothing to be done in this state.
2593         _collectorState = Resetting;
2594         break;
2595       }
2596       case Resetting:
2597         // The heap has been resized.
2598         if (VerifyDuringGC &&
2599             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2600           Universe::verify("Verify before reset: ");
2601         }
2602         save_heap_summary();
2603         reset(false);
2604         assert(_collectorState == Idling, "Collector state should "
2605           "have changed");
2606         break;
2607       case Precleaning:
2608       case AbortablePreclean:
2609         // Elide the preclean phase
2610         _collectorState = FinalMarking;
2611         break;
2612       default:
2613         ShouldNotReachHere();
2614     }
2615     if (TraceCMSState) {
2616       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2617         Thread::current(), _collectorState);
2618     }
2619   }
2620 
2621   if (UseAdaptiveSizePolicy) {
2622     GenCollectedHeap* gch = GenCollectedHeap::heap();
2623     size_policy()->ms_collection_end(gch->gc_cause());
2624   }
2625 
2626   if (VerifyAfterGC &&
2627       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2628     Universe::verify();
2629   }
2630   if (TraceCMSState) {
2631     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2632       " exiting collection CMS state %d",
2633       Thread::current(), _collectorState);
2634   }
2635 }
2636 
2637 bool CMSCollector::waitForForegroundGC() {
2638   bool res = false;
2639   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2640          "CMS thread should have CMS token");
2641   // Block the foreground collector until the
2642   // background collectors decides whether to
2643   // yield.
2644   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2645   _foregroundGCShouldWait = true;
2646   if (_foregroundGCIsActive) {
2647     // The background collector yields to the
2648     // foreground collector and returns a value
2649     // indicating that it has yielded.  The foreground
2650     // collector can proceed.
2651     res = true;
2652     _foregroundGCShouldWait = false;
2653     ConcurrentMarkSweepThread::clear_CMS_flag(
2654       ConcurrentMarkSweepThread::CMS_cms_has_token);
2655     ConcurrentMarkSweepThread::set_CMS_flag(
2656       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2657     // Get a possibly blocked foreground thread going
2658     CGC_lock->notify();
2659     if (TraceCMSState) {
2660       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2661         Thread::current(), _collectorState);
2662     }
2663     while (_foregroundGCIsActive) {
2664       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2665     }
2666     ConcurrentMarkSweepThread::set_CMS_flag(
2667       ConcurrentMarkSweepThread::CMS_cms_has_token);
2668     ConcurrentMarkSweepThread::clear_CMS_flag(
2669       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2670   }
2671   if (TraceCMSState) {
2672     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2673       Thread::current(), _collectorState);
2674   }
2675   return res;
2676 }
2677 
2678 // Because of the need to lock the free lists and other structures in
2679 // the collector, common to all the generations that the collector is
2680 // collecting, we need the gc_prologues of individual CMS generations
2681 // delegate to their collector. It may have been simpler had the
2682 // current infrastructure allowed one to call a prologue on a
2683 // collector. In the absence of that we have the generation's
2684 // prologue delegate to the collector, which delegates back
2685 // some "local" work to a worker method in the individual generations
2686 // that it's responsible for collecting, while itself doing any
2687 // work common to all generations it's responsible for. A similar
2688 // comment applies to the  gc_epilogue()'s.
2689 // The role of the variable _between_prologue_and_epilogue is to
2690 // enforce the invocation protocol.
2691 void CMSCollector::gc_prologue(bool full) {
2692   // Call gc_prologue_work() for the CMSGen
2693   // we are responsible for.
2694 
2695   // The following locking discipline assumes that we are only called
2696   // when the world is stopped.
2697   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2698 
2699   // The CMSCollector prologue must call the gc_prologues for the
2700   // "generations" that it's responsible
2701   // for.
2702 
2703   assert(   Thread::current()->is_VM_thread()
2704          || (   CMSScavengeBeforeRemark
2705              && Thread::current()->is_ConcurrentGC_thread()),
2706          "Incorrect thread type for prologue execution");
2707 
2708   if (_between_prologue_and_epilogue) {
2709     // We have already been invoked; this is a gc_prologue delegation
2710     // from yet another CMS generation that we are responsible for, just
2711     // ignore it since all relevant work has already been done.
2712     return;
2713   }
2714 
2715   // set a bit saying prologue has been called; cleared in epilogue
2716   _between_prologue_and_epilogue = true;
2717   // Claim locks for common data structures, then call gc_prologue_work()
2718   // for each CMSGen.
2719 
2720   getFreelistLocks();   // gets free list locks on constituent spaces
2721   bitMapLock()->lock_without_safepoint_check();
2722 
2723   // Should call gc_prologue_work() for all cms gens we are responsible for
2724   bool duringMarking =    _collectorState >= Marking
2725                          && _collectorState < Sweeping;
2726 
2727   // The young collections clear the modified oops state, which tells if
2728   // there are any modified oops in the class. The remark phase also needs
2729   // that information. Tell the young collection to save the union of all
2730   // modified klasses.
2731   if (duringMarking) {
2732     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2733   }
2734 
2735   bool registerClosure = duringMarking;
2736 
2737   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2738                                                &_modUnionClosurePar
2739                                                : &_modUnionClosure;
2740   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2741 
2742   if (!full) {
2743     stats().record_gc0_begin();
2744   }
2745 }
2746 
2747 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2748 
2749   _capacity_at_prologue = capacity();
2750   _used_at_prologue = used();
2751 
2752   // Delegate to CMScollector which knows how to coordinate between
2753   // this and any other CMS generations that it is responsible for
2754   // collecting.
2755   collector()->gc_prologue(full);
2756 }
2757 
2758 // This is a "private" interface for use by this generation's CMSCollector.
2759 // Not to be called directly by any other entity (for instance,
2760 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2761 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2762   bool registerClosure, ModUnionClosure* modUnionClosure) {
2763   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2764   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2765     "Should be NULL");
2766   if (registerClosure) {
2767     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2768   }
2769   cmsSpace()->gc_prologue();
2770   // Clear stat counters
2771   NOT_PRODUCT(
2772     assert(_numObjectsPromoted == 0, "check");
2773     assert(_numWordsPromoted   == 0, "check");
2774     if (Verbose && PrintGC) {
2775       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2776                           SIZE_FORMAT" bytes concurrently",
2777       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2778     }
2779     _numObjectsAllocated = 0;
2780     _numWordsAllocated   = 0;
2781   )
2782 }
2783 
2784 void CMSCollector::gc_epilogue(bool full) {
2785   // The following locking discipline assumes that we are only called
2786   // when the world is stopped.
2787   assert(SafepointSynchronize::is_at_safepoint(),
2788          "world is stopped assumption");
2789 
2790   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2791   // if linear allocation blocks need to be appropriately marked to allow the
2792   // the blocks to be parsable. We also check here whether we need to nudge the
2793   // CMS collector thread to start a new cycle (if it's not already active).
2794   assert(   Thread::current()->is_VM_thread()
2795          || (   CMSScavengeBeforeRemark
2796              && Thread::current()->is_ConcurrentGC_thread()),
2797          "Incorrect thread type for epilogue execution");
2798 
2799   if (!_between_prologue_and_epilogue) {
2800     // We have already been invoked; this is a gc_epilogue delegation
2801     // from yet another CMS generation that we are responsible for, just
2802     // ignore it since all relevant work has already been done.
2803     return;
2804   }
2805   assert(haveFreelistLocks(), "must have freelist locks");
2806   assert_lock_strong(bitMapLock());
2807 
2808   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2809 
2810   _cmsGen->gc_epilogue_work(full);
2811 
2812   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2813     // in case sampling was not already enabled, enable it
2814     _start_sampling = true;
2815   }
2816   // reset _eden_chunk_array so sampling starts afresh
2817   _eden_chunk_index = 0;
2818 
2819   size_t cms_used   = _cmsGen->cmsSpace()->used();
2820 
2821   // update performance counters - this uses a special version of
2822   // update_counters() that allows the utilization to be passed as a
2823   // parameter, avoiding multiple calls to used().
2824   //
2825   _cmsGen->update_counters(cms_used);
2826 
2827   if (CMSIncrementalMode) {
2828     icms_update_allocation_limits();
2829   }
2830 
2831   bitMapLock()->unlock();
2832   releaseFreelistLocks();
2833 
2834   if (!CleanChunkPoolAsync) {
2835     Chunk::clean_chunk_pool();
2836   }
2837 
2838   set_did_compact(false);
2839   _between_prologue_and_epilogue = false;  // ready for next cycle
2840 }
2841 
2842 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2843   collector()->gc_epilogue(full);
2844 
2845   // Also reset promotion tracking in par gc thread states.
2846   if (CollectedHeap::use_parallel_gc_threads()) {
2847     for (uint i = 0; i < ParallelGCThreads; i++) {
2848       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2849     }
2850   }
2851 }
2852 
2853 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2854   assert(!incremental_collection_failed(), "Should have been cleared");
2855   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2856   cmsSpace()->gc_epilogue();
2857     // Print stat counters
2858   NOT_PRODUCT(
2859     assert(_numObjectsAllocated == 0, "check");
2860     assert(_numWordsAllocated == 0, "check");
2861     if (Verbose && PrintGC) {
2862       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2863                           SIZE_FORMAT" bytes",
2864                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2865     }
2866     _numObjectsPromoted = 0;
2867     _numWordsPromoted   = 0;
2868   )
2869 
2870   if (PrintGC && Verbose) {
2871     // Call down the chain in contiguous_available needs the freelistLock
2872     // so print this out before releasing the freeListLock.
2873     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2874                         contiguous_available());
2875   }
2876 }
2877 
2878 #ifndef PRODUCT
2879 bool CMSCollector::have_cms_token() {
2880   Thread* thr = Thread::current();
2881   if (thr->is_VM_thread()) {
2882     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2883   } else if (thr->is_ConcurrentGC_thread()) {
2884     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2885   } else if (thr->is_GC_task_thread()) {
2886     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2887            ParGCRareEvent_lock->owned_by_self();
2888   }
2889   return false;
2890 }
2891 #endif
2892 
2893 // Check reachability of the given heap address in CMS generation,
2894 // treating all other generations as roots.
2895 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2896   // We could "guarantee" below, rather than assert, but I'll
2897   // leave these as "asserts" so that an adventurous debugger
2898   // could try this in the product build provided some subset of
2899   // the conditions were met, provided they were interested in the
2900   // results and knew that the computation below wouldn't interfere
2901   // with other concurrent computations mutating the structures
2902   // being read or written.
2903   assert(SafepointSynchronize::is_at_safepoint(),
2904          "Else mutations in object graph will make answer suspect");
2905   assert(have_cms_token(), "Should hold cms token");
2906   assert(haveFreelistLocks(), "must hold free list locks");
2907   assert_lock_strong(bitMapLock());
2908 
2909   // Clear the marking bit map array before starting, but, just
2910   // for kicks, first report if the given address is already marked
2911   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2912                 _markBitMap.isMarked(addr) ? "" : " not");
2913 
2914   if (verify_after_remark()) {
2915     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2916     bool result = verification_mark_bm()->isMarked(addr);
2917     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2918                            result ? "IS" : "is NOT");
2919     return result;
2920   } else {
2921     gclog_or_tty->print_cr("Could not compute result");
2922     return false;
2923   }
2924 }
2925 
2926 
2927 void
2928 CMSCollector::print_on_error(outputStream* st) {
2929   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2930   if (collector != NULL) {
2931     CMSBitMap* bitmap = &collector->_markBitMap;
2932     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2933     bitmap->print_on_error(st, " Bits: ");
2934 
2935     st->cr();
2936 
2937     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2938     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2939     mut_bitmap->print_on_error(st, " Bits: ");
2940   }
2941 }
2942 
2943 ////////////////////////////////////////////////////////
2944 // CMS Verification Support
2945 ////////////////////////////////////////////////////////
2946 // Following the remark phase, the following invariant
2947 // should hold -- each object in the CMS heap which is
2948 // marked in markBitMap() should be marked in the verification_mark_bm().
2949 
2950 class VerifyMarkedClosure: public BitMapClosure {
2951   CMSBitMap* _marks;
2952   bool       _failed;
2953 
2954  public:
2955   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2956 
2957   bool do_bit(size_t offset) {
2958     HeapWord* addr = _marks->offsetToHeapWord(offset);
2959     if (!_marks->isMarked(addr)) {
2960       oop(addr)->print_on(gclog_or_tty);
2961       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2962       _failed = true;
2963     }
2964     return true;
2965   }
2966 
2967   bool failed() { return _failed; }
2968 };
2969 
2970 bool CMSCollector::verify_after_remark(bool silent) {
2971   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2972   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2973   static bool init = false;
2974 
2975   assert(SafepointSynchronize::is_at_safepoint(),
2976          "Else mutations in object graph will make answer suspect");
2977   assert(have_cms_token(),
2978          "Else there may be mutual interference in use of "
2979          " verification data structures");
2980   assert(_collectorState > Marking && _collectorState <= Sweeping,
2981          "Else marking info checked here may be obsolete");
2982   assert(haveFreelistLocks(), "must hold free list locks");
2983   assert_lock_strong(bitMapLock());
2984 
2985 
2986   // Allocate marking bit map if not already allocated
2987   if (!init) { // first time
2988     if (!verification_mark_bm()->allocate(_span)) {
2989       return false;
2990     }
2991     init = true;
2992   }
2993 
2994   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2995 
2996   // Turn off refs discovery -- so we will be tracing through refs.
2997   // This is as intended, because by this time
2998   // GC must already have cleared any refs that need to be cleared,
2999   // and traced those that need to be marked; moreover,
3000   // the marking done here is not going to interfere in any
3001   // way with the marking information used by GC.
3002   NoRefDiscovery no_discovery(ref_processor());
3003 
3004   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3005 
3006   // Clear any marks from a previous round
3007   verification_mark_bm()->clear_all();
3008   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
3009   verify_work_stacks_empty();
3010 
3011   GenCollectedHeap* gch = GenCollectedHeap::heap();
3012   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3013   // Update the saved marks which may affect the root scans.
3014   gch->save_marks();
3015 
3016   if (CMSRemarkVerifyVariant == 1) {
3017     // In this first variant of verification, we complete
3018     // all marking, then check if the new marks-vector is
3019     // a subset of the CMS marks-vector.
3020     verify_after_remark_work_1();
3021   } else if (CMSRemarkVerifyVariant == 2) {
3022     // In this second variant of verification, we flag an error
3023     // (i.e. an object reachable in the new marks-vector not reachable
3024     // in the CMS marks-vector) immediately, also indicating the
3025     // identify of an object (A) that references the unmarked object (B) --
3026     // presumably, a mutation to A failed to be picked up by preclean/remark?
3027     verify_after_remark_work_2();
3028   } else {
3029     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
3030             CMSRemarkVerifyVariant);
3031   }
3032   if (!silent) gclog_or_tty->print(" done] ");
3033   return true;
3034 }
3035 
3036 void CMSCollector::verify_after_remark_work_1() {
3037   ResourceMark rm;
3038   HandleMark  hm;
3039   GenCollectedHeap* gch = GenCollectedHeap::heap();
3040 
3041   // Get a clear set of claim bits for the strong roots processing to work with.
3042   ClassLoaderDataGraph::clear_claimed_marks();
3043 
3044   // Mark from roots one level into CMS
3045   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3046   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3047 
3048   gch->gen_process_strong_roots(_cmsGen->level(),
3049                                 true,   // younger gens are roots
3050                                 true,   // activate StrongRootsScope
3051                                 SharedHeap::ScanningOption(roots_scanning_options()),
3052                                 &notOlder,
3053                                 NULL,
3054                                 NULL); // SSS: Provide correct closure
3055 
3056   // Now mark from the roots
3057   MarkFromRootsClosure markFromRootsClosure(this, _span,
3058     verification_mark_bm(), verification_mark_stack(),
3059     false /* don't yield */, true /* verifying */);
3060   assert(_restart_addr == NULL, "Expected pre-condition");
3061   verification_mark_bm()->iterate(&markFromRootsClosure);
3062   while (_restart_addr != NULL) {
3063     // Deal with stack overflow: by restarting at the indicated
3064     // address.
3065     HeapWord* ra = _restart_addr;
3066     markFromRootsClosure.reset(ra);
3067     _restart_addr = NULL;
3068     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3069   }
3070   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3071   verify_work_stacks_empty();
3072 
3073   // Marking completed -- now verify that each bit marked in
3074   // verification_mark_bm() is also marked in markBitMap(); flag all
3075   // errors by printing corresponding objects.
3076   VerifyMarkedClosure vcl(markBitMap());
3077   verification_mark_bm()->iterate(&vcl);
3078   if (vcl.failed()) {
3079     gclog_or_tty->print("Verification failed");
3080     Universe::heap()->print_on(gclog_or_tty);
3081     fatal("CMS: failed marking verification after remark");
3082   }
3083 }
3084 
3085 class VerifyKlassOopsKlassClosure : public KlassClosure {
3086   class VerifyKlassOopsClosure : public OopClosure {
3087     CMSBitMap* _bitmap;
3088    public:
3089     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3090     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3091     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3092   } _oop_closure;
3093  public:
3094   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3095   void do_klass(Klass* k) {
3096     k->oops_do(&_oop_closure);
3097   }
3098 };
3099 
3100 void CMSCollector::verify_after_remark_work_2() {
3101   ResourceMark rm;
3102   HandleMark  hm;
3103   GenCollectedHeap* gch = GenCollectedHeap::heap();
3104 
3105   // Get a clear set of claim bits for the strong roots processing to work with.
3106   ClassLoaderDataGraph::clear_claimed_marks();
3107 
3108   // Mark from roots one level into CMS
3109   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3110                                      markBitMap());
3111   CMKlassClosure klass_closure(&notOlder);
3112 
3113   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3114   gch->gen_process_strong_roots(_cmsGen->level(),
3115                                 true,   // younger gens are roots
3116                                 true,   // activate StrongRootsScope
3117                                 SharedHeap::ScanningOption(roots_scanning_options()),
3118                                 &notOlder,
3119                                 NULL,
3120                                 &klass_closure);
3121 
3122   // Now mark from the roots
3123   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3124     verification_mark_bm(), markBitMap(), verification_mark_stack());
3125   assert(_restart_addr == NULL, "Expected pre-condition");
3126   verification_mark_bm()->iterate(&markFromRootsClosure);
3127   while (_restart_addr != NULL) {
3128     // Deal with stack overflow: by restarting at the indicated
3129     // address.
3130     HeapWord* ra = _restart_addr;
3131     markFromRootsClosure.reset(ra);
3132     _restart_addr = NULL;
3133     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3134   }
3135   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3136   verify_work_stacks_empty();
3137 
3138   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3139   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3140 
3141   // Marking completed -- now verify that each bit marked in
3142   // verification_mark_bm() is also marked in markBitMap(); flag all
3143   // errors by printing corresponding objects.
3144   VerifyMarkedClosure vcl(markBitMap());
3145   verification_mark_bm()->iterate(&vcl);
3146   assert(!vcl.failed(), "Else verification above should not have succeeded");
3147 }
3148 
3149 void ConcurrentMarkSweepGeneration::save_marks() {
3150   // delegate to CMS space
3151   cmsSpace()->save_marks();
3152   for (uint i = 0; i < ParallelGCThreads; i++) {
3153     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3154   }
3155 }
3156 
3157 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3158   return cmsSpace()->no_allocs_since_save_marks();
3159 }
3160 
3161 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3162                                                                 \
3163 void ConcurrentMarkSweepGeneration::                            \
3164 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3165   cl->set_generation(this);                                     \
3166   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3167   cl->reset_generation();                                       \
3168   save_marks();                                                 \
3169 }
3170 
3171 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3172 
3173 void
3174 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3175   cl->set_generation(this);
3176   younger_refs_in_space_iterate(_cmsSpace, cl);
3177   cl->reset_generation();
3178 }
3179 
3180 void
3181 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
3182   if (freelistLock()->owned_by_self()) {
3183     Generation::oop_iterate(mr, cl);
3184   } else {
3185     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3186     Generation::oop_iterate(mr, cl);
3187   }
3188 }
3189 
3190 void
3191 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3192   if (freelistLock()->owned_by_self()) {
3193     Generation::oop_iterate(cl);
3194   } else {
3195     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3196     Generation::oop_iterate(cl);
3197   }
3198 }
3199 
3200 void
3201 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3202   if (freelistLock()->owned_by_self()) {
3203     Generation::object_iterate(cl);
3204   } else {
3205     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3206     Generation::object_iterate(cl);
3207   }
3208 }
3209 
3210 void
3211 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3212   if (freelistLock()->owned_by_self()) {
3213     Generation::safe_object_iterate(cl);
3214   } else {
3215     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3216     Generation::safe_object_iterate(cl);
3217   }
3218 }
3219 
3220 void
3221 ConcurrentMarkSweepGeneration::post_compact() {
3222 }
3223 
3224 void
3225 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3226   // Fix the linear allocation blocks to look like free blocks.
3227 
3228   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3229   // are not called when the heap is verified during universe initialization and
3230   // at vm shutdown.
3231   if (freelistLock()->owned_by_self()) {
3232     cmsSpace()->prepare_for_verify();
3233   } else {
3234     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3235     cmsSpace()->prepare_for_verify();
3236   }
3237 }
3238 
3239 void
3240 ConcurrentMarkSweepGeneration::verify() {
3241   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3242   // are not called when the heap is verified during universe initialization and
3243   // at vm shutdown.
3244   if (freelistLock()->owned_by_self()) {
3245     cmsSpace()->verify();
3246   } else {
3247     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3248     cmsSpace()->verify();
3249   }
3250 }
3251 
3252 void CMSCollector::verify() {
3253   _cmsGen->verify();
3254 }
3255 
3256 #ifndef PRODUCT
3257 bool CMSCollector::overflow_list_is_empty() const {
3258   assert(_num_par_pushes >= 0, "Inconsistency");
3259   if (_overflow_list == NULL) {
3260     assert(_num_par_pushes == 0, "Inconsistency");
3261   }
3262   return _overflow_list == NULL;
3263 }
3264 
3265 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3266 // merely consolidate assertion checks that appear to occur together frequently.
3267 void CMSCollector::verify_work_stacks_empty() const {
3268   assert(_markStack.isEmpty(), "Marking stack should be empty");
3269   assert(overflow_list_is_empty(), "Overflow list should be empty");
3270 }
3271 
3272 void CMSCollector::verify_overflow_empty() const {
3273   assert(overflow_list_is_empty(), "Overflow list should be empty");
3274   assert(no_preserved_marks(), "No preserved marks");
3275 }
3276 #endif // PRODUCT
3277 
3278 // Decide if we want to enable class unloading as part of the
3279 // ensuing concurrent GC cycle. We will collect and
3280 // unload classes if it's the case that:
3281 // (1) an explicit gc request has been made and the flag
3282 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3283 // (2) (a) class unloading is enabled at the command line, and
3284 //     (b) old gen is getting really full
3285 // NOTE: Provided there is no change in the state of the heap between
3286 // calls to this method, it should have idempotent results. Moreover,
3287 // its results should be monotonically increasing (i.e. going from 0 to 1,
3288 // but not 1 to 0) between successive calls between which the heap was
3289 // not collected. For the implementation below, it must thus rely on
3290 // the property that concurrent_cycles_since_last_unload()
3291 // will not decrease unless a collection cycle happened and that
3292 // _cmsGen->is_too_full() are
3293 // themselves also monotonic in that sense. See check_monotonicity()
3294 // below.
3295 void CMSCollector::update_should_unload_classes() {
3296   _should_unload_classes = false;
3297   // Condition 1 above
3298   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3299     _should_unload_classes = true;
3300   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3301     // Disjuncts 2.b.(i,ii,iii) above
3302     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3303                               CMSClassUnloadingMaxInterval)
3304                            || _cmsGen->is_too_full();
3305   }
3306 }
3307 
3308 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3309   bool res = should_concurrent_collect();
3310   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3311   return res;
3312 }
3313 
3314 void CMSCollector::setup_cms_unloading_and_verification_state() {
3315   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3316                              || VerifyBeforeExit;
3317   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_AllCodeCache;
3318 
3319   // We set the proper root for this CMS cycle here.
3320   if (should_unload_classes()) {   // Should unload classes this cycle
3321     remove_root_scanning_option(SharedHeap::SO_AllClasses);
3322     add_root_scanning_option(SharedHeap::SO_SystemClasses);
3323     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3324     set_verifying(should_verify);    // Set verification state for this cycle
3325     return;                            // Nothing else needs to be done at this time
3326   }
3327 
3328   // Not unloading classes this cycle
3329   assert(!should_unload_classes(), "Inconsistency!");
3330   remove_root_scanning_option(SharedHeap::SO_SystemClasses);
3331   add_root_scanning_option(SharedHeap::SO_AllClasses);
3332 
3333   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3334     // Include symbols, strings and code cache elements to prevent their resurrection.
3335     add_root_scanning_option(rso);
3336     set_verifying(true);
3337   } else if (verifying() && !should_verify) {
3338     // We were verifying, but some verification flags got disabled.
3339     set_verifying(false);
3340     // Exclude symbols, strings and code cache elements from root scanning to
3341     // reduce IM and RM pauses.
3342     remove_root_scanning_option(rso);
3343   }
3344 }
3345 
3346 
3347 #ifndef PRODUCT
3348 HeapWord* CMSCollector::block_start(const void* p) const {
3349   const HeapWord* addr = (HeapWord*)p;
3350   if (_span.contains(p)) {
3351     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3352       return _cmsGen->cmsSpace()->block_start(p);
3353     }
3354   }
3355   return NULL;
3356 }
3357 #endif
3358 
3359 HeapWord*
3360 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3361                                                    bool   tlab,
3362                                                    bool   parallel) {
3363   CMSSynchronousYieldRequest yr;
3364   assert(!tlab, "Can't deal with TLAB allocation");
3365   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3366   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3367     CMSExpansionCause::_satisfy_allocation);
3368   if (GCExpandToAllocateDelayMillis > 0) {
3369     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3370   }
3371   return have_lock_and_allocate(word_size, tlab);
3372 }
3373 
3374 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3375 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3376 // to CardGeneration and share it...
3377 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3378   return CardGeneration::expand(bytes, expand_bytes);
3379 }
3380 
3381 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3382   CMSExpansionCause::Cause cause)
3383 {
3384 
3385   bool success = expand(bytes, expand_bytes);
3386 
3387   // remember why we expanded; this information is used
3388   // by shouldConcurrentCollect() when making decisions on whether to start
3389   // a new CMS cycle.
3390   if (success) {
3391     set_expansion_cause(cause);
3392     if (PrintGCDetails && Verbose) {
3393       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3394         CMSExpansionCause::to_string(cause));
3395     }
3396   }
3397 }
3398 
3399 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3400   HeapWord* res = NULL;
3401   MutexLocker x(ParGCRareEvent_lock);
3402   while (true) {
3403     // Expansion by some other thread might make alloc OK now:
3404     res = ps->lab.alloc(word_sz);
3405     if (res != NULL) return res;
3406     // If there's not enough expansion space available, give up.
3407     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3408       return NULL;
3409     }
3410     // Otherwise, we try expansion.
3411     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3412       CMSExpansionCause::_allocate_par_lab);
3413     // Now go around the loop and try alloc again;
3414     // A competing par_promote might beat us to the expansion space,
3415     // so we may go around the loop again if promotion fails again.
3416     if (GCExpandToAllocateDelayMillis > 0) {
3417       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3418     }
3419   }
3420 }
3421 
3422 
3423 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3424   PromotionInfo* promo) {
3425   MutexLocker x(ParGCRareEvent_lock);
3426   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3427   while (true) {
3428     // Expansion by some other thread might make alloc OK now:
3429     if (promo->ensure_spooling_space()) {
3430       assert(promo->has_spooling_space(),
3431              "Post-condition of successful ensure_spooling_space()");
3432       return true;
3433     }
3434     // If there's not enough expansion space available, give up.
3435     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3436       return false;
3437     }
3438     // Otherwise, we try expansion.
3439     expand(refill_size_bytes, MinHeapDeltaBytes,
3440       CMSExpansionCause::_allocate_par_spooling_space);
3441     // Now go around the loop and try alloc again;
3442     // A competing allocation might beat us to the expansion space,
3443     // so we may go around the loop again if allocation fails again.
3444     if (GCExpandToAllocateDelayMillis > 0) {
3445       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3446     }
3447   }
3448 }
3449 
3450 
3451 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3452   assert_locked_or_safepoint(ExpandHeap_lock);
3453   // Shrink committed space
3454   _virtual_space.shrink_by(bytes);
3455   // Shrink space; this also shrinks the space's BOT
3456   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3457   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3458   // Shrink the shared block offset array
3459   _bts->resize(new_word_size);
3460   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3461   // Shrink the card table
3462   Universe::heap()->barrier_set()->resize_covered_region(mr);
3463 
3464   if (Verbose && PrintGC) {
3465     size_t new_mem_size = _virtual_space.committed_size();
3466     size_t old_mem_size = new_mem_size + bytes;
3467     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3468                   name(), old_mem_size/K, new_mem_size/K);
3469   }
3470 }
3471 
3472 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3473   assert_locked_or_safepoint(Heap_lock);
3474   size_t size = ReservedSpace::page_align_size_down(bytes);
3475   // Only shrink if a compaction was done so that all the free space
3476   // in the generation is in a contiguous block at the end.
3477   if (size > 0 && did_compact()) {
3478     shrink_by(size);
3479   }
3480 }
3481 
3482 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3483   assert_locked_or_safepoint(Heap_lock);
3484   bool result = _virtual_space.expand_by(bytes);
3485   if (result) {
3486     size_t new_word_size =
3487       heap_word_size(_virtual_space.committed_size());
3488     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3489     _bts->resize(new_word_size);  // resize the block offset shared array
3490     Universe::heap()->barrier_set()->resize_covered_region(mr);
3491     // Hmmmm... why doesn't CFLS::set_end verify locking?
3492     // This is quite ugly; FIX ME XXX
3493     _cmsSpace->assert_locked(freelistLock());
3494     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3495 
3496     // update the space and generation capacity counters
3497     if (UsePerfData) {
3498       _space_counters->update_capacity();
3499       _gen_counters->update_all();
3500     }
3501 
3502     if (Verbose && PrintGC) {
3503       size_t new_mem_size = _virtual_space.committed_size();
3504       size_t old_mem_size = new_mem_size - bytes;
3505       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3506                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3507     }
3508   }
3509   return result;
3510 }
3511 
3512 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3513   assert_locked_or_safepoint(Heap_lock);
3514   bool success = true;
3515   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3516   if (remaining_bytes > 0) {
3517     success = grow_by(remaining_bytes);
3518     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3519   }
3520   return success;
3521 }
3522 
3523 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3524   assert_locked_or_safepoint(Heap_lock);
3525   assert_lock_strong(freelistLock());
3526   if (PrintGCDetails && Verbose) {
3527     warning("Shrinking of CMS not yet implemented");
3528   }
3529   return;
3530 }
3531 
3532 
3533 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3534 // phases.
3535 class CMSPhaseAccounting: public StackObj {
3536  public:
3537   CMSPhaseAccounting(CMSCollector *collector,
3538                      const char *phase,
3539                      bool print_cr = true);
3540   ~CMSPhaseAccounting();
3541 
3542  private:
3543   CMSCollector *_collector;
3544   const char *_phase;
3545   elapsedTimer _wallclock;
3546   bool _print_cr;
3547 
3548  public:
3549   // Not MT-safe; so do not pass around these StackObj's
3550   // where they may be accessed by other threads.
3551   jlong wallclock_millis() {
3552     assert(_wallclock.is_active(), "Wall clock should not stop");
3553     _wallclock.stop();  // to record time
3554     jlong ret = _wallclock.milliseconds();
3555     _wallclock.start(); // restart
3556     return ret;
3557   }
3558 };
3559 
3560 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3561                                        const char *phase,
3562                                        bool print_cr) :
3563   _collector(collector), _phase(phase), _print_cr(print_cr) {
3564 
3565   if (PrintCMSStatistics != 0) {
3566     _collector->resetYields();
3567   }
3568   if (PrintGCDetails) {
3569     gclog_or_tty->date_stamp(PrintGCDateStamps);
3570     gclog_or_tty->stamp(PrintGCTimeStamps);
3571     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3572       _collector->cmsGen()->short_name(), _phase);
3573   }
3574   _collector->resetTimer();
3575   _wallclock.start();
3576   _collector->startTimer();
3577 }
3578 
3579 CMSPhaseAccounting::~CMSPhaseAccounting() {
3580   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3581   _collector->stopTimer();
3582   _wallclock.stop();
3583   if (PrintGCDetails) {
3584     gclog_or_tty->date_stamp(PrintGCDateStamps);
3585     gclog_or_tty->stamp(PrintGCTimeStamps);
3586     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3587                  _collector->cmsGen()->short_name(),
3588                  _phase, _collector->timerValue(), _wallclock.seconds());
3589     if (_print_cr) {
3590       gclog_or_tty->print_cr("");
3591     }
3592     if (PrintCMSStatistics != 0) {
3593       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3594                     _collector->yields());
3595     }
3596   }
3597 }
3598 
3599 // CMS work
3600 
3601 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3602 class CMSParMarkTask : public AbstractGangTask {
3603  protected:
3604   CMSCollector*     _collector;
3605   int               _n_workers;
3606   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3607       AbstractGangTask(name),
3608       _collector(collector),
3609       _n_workers(n_workers) {}
3610   // Work method in support of parallel rescan ... of young gen spaces
3611   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3612                              ContiguousSpace* space,
3613                              HeapWord** chunk_array, size_t chunk_top);
3614   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3615 };
3616 
3617 // Parallel initial mark task
3618 class CMSParInitialMarkTask: public CMSParMarkTask {
3619  public:
3620   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3621       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3622                      collector, n_workers) {}
3623   void work(uint worker_id);
3624 };
3625 
3626 // Checkpoint the roots into this generation from outside
3627 // this generation. [Note this initial checkpoint need only
3628 // be approximate -- we'll do a catch up phase subsequently.]
3629 void CMSCollector::checkpointRootsInitial(bool asynch) {
3630   assert(_collectorState == InitialMarking, "Wrong collector state");
3631   check_correct_thread_executing();
3632   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3633 
3634   save_heap_summary();
3635   report_heap_summary(GCWhen::BeforeGC);
3636 
3637   ReferenceProcessor* rp = ref_processor();
3638   SpecializationStats::clear();
3639   assert(_restart_addr == NULL, "Control point invariant");
3640   if (asynch) {
3641     // acquire locks for subsequent manipulations
3642     MutexLockerEx x(bitMapLock(),
3643                     Mutex::_no_safepoint_check_flag);
3644     checkpointRootsInitialWork(asynch);
3645     // enable ("weak") refs discovery
3646     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3647     _collectorState = Marking;
3648   } else {
3649     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3650     // which recognizes if we are a CMS generation, and doesn't try to turn on
3651     // discovery; verify that they aren't meddling.
3652     assert(!rp->discovery_is_atomic(),
3653            "incorrect setting of discovery predicate");
3654     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3655            "ref discovery for this generation kind");
3656     // already have locks
3657     checkpointRootsInitialWork(asynch);
3658     // now enable ("weak") refs discovery
3659     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3660     _collectorState = Marking;
3661   }
3662   SpecializationStats::print();
3663 }
3664 
3665 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3666   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3667   assert(_collectorState == InitialMarking, "just checking");
3668 
3669   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3670   // precede our marking with a collection of all
3671   // younger generations to keep floating garbage to a minimum.
3672   // XXX: we won't do this for now -- it's an optimization to be done later.
3673 
3674   // already have locks
3675   assert_lock_strong(bitMapLock());
3676   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3677 
3678   // Setup the verification and class unloading state for this
3679   // CMS collection cycle.
3680   setup_cms_unloading_and_verification_state();
3681 
3682   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3683     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3684   if (UseAdaptiveSizePolicy) {
3685     size_policy()->checkpoint_roots_initial_begin();
3686   }
3687 
3688   // Reset all the PLAB chunk arrays if necessary.
3689   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3690     reset_survivor_plab_arrays();
3691   }
3692 
3693   ResourceMark rm;
3694   HandleMark  hm;
3695 
3696   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3697   GenCollectedHeap* gch = GenCollectedHeap::heap();
3698 
3699   verify_work_stacks_empty();
3700   verify_overflow_empty();
3701 
3702   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3703   // Update the saved marks which may affect the root scans.
3704   gch->save_marks();
3705 
3706   // weak reference processing has not started yet.
3707   ref_processor()->set_enqueuing_is_done(false);
3708 
3709   // Need to remember all newly created CLDs,
3710   // so that we can guarantee that the remark finds them.
3711   ClassLoaderDataGraph::remember_new_clds(true);
3712 
3713   // Whenever a CLD is found, it will be claimed before proceeding to mark
3714   // the klasses. The claimed marks need to be cleared before marking starts.
3715   ClassLoaderDataGraph::clear_claimed_marks();
3716 
3717   if (CMSPrintEdenSurvivorChunks) {
3718     print_eden_and_survivor_chunk_arrays();
3719   }
3720 
3721   {
3722     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3723     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3724       // The parallel version.
3725       FlexibleWorkGang* workers = gch->workers();
3726       assert(workers != NULL, "Need parallel worker threads.");
3727       int n_workers = workers->active_workers();
3728       CMSParInitialMarkTask tsk(this, n_workers);
3729       gch->set_par_threads(n_workers);
3730       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3731       if (n_workers > 1) {
3732         GenCollectedHeap::StrongRootsScope srs(gch);
3733         workers->run_task(&tsk);
3734       } else {
3735         GenCollectedHeap::StrongRootsScope srs(gch);
3736         tsk.work(0);
3737       }
3738       gch->set_par_threads(0);
3739     } else {
3740       // The serial version.
3741       CMKlassClosure klass_closure(&notOlder);
3742       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3743       gch->gen_process_strong_roots(_cmsGen->level(),
3744                                     true,   // younger gens are roots
3745                                     true,   // activate StrongRootsScope
3746                                     SharedHeap::ScanningOption(roots_scanning_options()),
3747                                     &notOlder,
3748                                     NULL,
3749                                     &klass_closure);
3750     }
3751   }
3752 
3753   // Clear mod-union table; it will be dirtied in the prologue of
3754   // CMS generation per each younger generation collection.
3755 
3756   assert(_modUnionTable.isAllClear(),
3757        "Was cleared in most recent final checkpoint phase"
3758        " or no bits are set in the gc_prologue before the start of the next "
3759        "subsequent marking phase.");
3760 
3761   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3762 
3763   // Save the end of the used_region of the constituent generations
3764   // to be used to limit the extent of sweep in each generation.
3765   save_sweep_limits();
3766   if (UseAdaptiveSizePolicy) {
3767     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3768   }
3769   verify_overflow_empty();
3770 }
3771 
3772 bool CMSCollector::markFromRoots(bool asynch) {
3773   // we might be tempted to assert that:
3774   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3775   //        "inconsistent argument?");
3776   // However that wouldn't be right, because it's possible that
3777   // a safepoint is indeed in progress as a younger generation
3778   // stop-the-world GC happens even as we mark in this generation.
3779   assert(_collectorState == Marking, "inconsistent state?");
3780   check_correct_thread_executing();
3781   verify_overflow_empty();
3782 
3783   bool res;
3784   if (asynch) {
3785 
3786     // Start the timers for adaptive size policy for the concurrent phases
3787     // Do it here so that the foreground MS can use the concurrent
3788     // timer since a foreground MS might has the sweep done concurrently
3789     // or STW.
3790     if (UseAdaptiveSizePolicy) {
3791       size_policy()->concurrent_marking_begin();
3792     }
3793 
3794     // Weak ref discovery note: We may be discovering weak
3795     // refs in this generation concurrent (but interleaved) with
3796     // weak ref discovery by a younger generation collector.
3797 
3798     CMSTokenSyncWithLocks ts(true, bitMapLock());
3799     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3800     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3801     res = markFromRootsWork(asynch);
3802     if (res) {
3803       _collectorState = Precleaning;
3804     } else { // We failed and a foreground collection wants to take over
3805       assert(_foregroundGCIsActive, "internal state inconsistency");
3806       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3807       if (PrintGCDetails) {
3808         gclog_or_tty->print_cr("bailing out to foreground collection");
3809       }
3810     }
3811     if (UseAdaptiveSizePolicy) {
3812       size_policy()->concurrent_marking_end();
3813     }
3814   } else {
3815     assert(SafepointSynchronize::is_at_safepoint(),
3816            "inconsistent with asynch == false");
3817     if (UseAdaptiveSizePolicy) {
3818       size_policy()->ms_collection_marking_begin();
3819     }
3820     // already have locks
3821     res = markFromRootsWork(asynch);
3822     _collectorState = FinalMarking;
3823     if (UseAdaptiveSizePolicy) {
3824       GenCollectedHeap* gch = GenCollectedHeap::heap();
3825       size_policy()->ms_collection_marking_end(gch->gc_cause());
3826     }
3827   }
3828   verify_overflow_empty();
3829   return res;
3830 }
3831 
3832 bool CMSCollector::markFromRootsWork(bool asynch) {
3833   // iterate over marked bits in bit map, doing a full scan and mark
3834   // from these roots using the following algorithm:
3835   // . if oop is to the right of the current scan pointer,
3836   //   mark corresponding bit (we'll process it later)
3837   // . else (oop is to left of current scan pointer)
3838   //   push oop on marking stack
3839   // . drain the marking stack
3840 
3841   // Note that when we do a marking step we need to hold the
3842   // bit map lock -- recall that direct allocation (by mutators)
3843   // and promotion (by younger generation collectors) is also
3844   // marking the bit map. [the so-called allocate live policy.]
3845   // Because the implementation of bit map marking is not
3846   // robust wrt simultaneous marking of bits in the same word,
3847   // we need to make sure that there is no such interference
3848   // between concurrent such updates.
3849 
3850   // already have locks
3851   assert_lock_strong(bitMapLock());
3852 
3853   verify_work_stacks_empty();
3854   verify_overflow_empty();
3855   bool result = false;
3856   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3857     result = do_marking_mt(asynch);
3858   } else {
3859     result = do_marking_st(asynch);
3860   }
3861   return result;
3862 }
3863 
3864 // Forward decl
3865 class CMSConcMarkingTask;
3866 
3867 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3868   CMSCollector*       _collector;
3869   CMSConcMarkingTask* _task;
3870  public:
3871   virtual void yield();
3872 
3873   // "n_threads" is the number of threads to be terminated.
3874   // "queue_set" is a set of work queues of other threads.
3875   // "collector" is the CMS collector associated with this task terminator.
3876   // "yield" indicates whether we need the gang as a whole to yield.
3877   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3878     ParallelTaskTerminator(n_threads, queue_set),
3879     _collector(collector) { }
3880 
3881   void set_task(CMSConcMarkingTask* task) {
3882     _task = task;
3883   }
3884 };
3885 
3886 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3887   CMSConcMarkingTask* _task;
3888  public:
3889   bool should_exit_termination();
3890   void set_task(CMSConcMarkingTask* task) {
3891     _task = task;
3892   }
3893 };
3894 
3895 // MT Concurrent Marking Task
3896 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3897   CMSCollector* _collector;
3898   int           _n_workers;                  // requested/desired # workers
3899   bool          _asynch;
3900   bool          _result;
3901   CompactibleFreeListSpace*  _cms_space;
3902   char          _pad_front[64];   // padding to ...
3903   HeapWord*     _global_finger;   // ... avoid sharing cache line
3904   char          _pad_back[64];
3905   HeapWord*     _restart_addr;
3906 
3907   //  Exposed here for yielding support
3908   Mutex* const _bit_map_lock;
3909 
3910   // The per thread work queues, available here for stealing
3911   OopTaskQueueSet*  _task_queues;
3912 
3913   // Termination (and yielding) support
3914   CMSConcMarkingTerminator _term;
3915   CMSConcMarkingTerminatorTerminator _term_term;
3916 
3917  public:
3918   CMSConcMarkingTask(CMSCollector* collector,
3919                  CompactibleFreeListSpace* cms_space,
3920                  bool asynch,
3921                  YieldingFlexibleWorkGang* workers,
3922                  OopTaskQueueSet* task_queues):
3923     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3924     _collector(collector),
3925     _cms_space(cms_space),
3926     _asynch(asynch), _n_workers(0), _result(true),
3927     _task_queues(task_queues),
3928     _term(_n_workers, task_queues, _collector),
3929     _bit_map_lock(collector->bitMapLock())
3930   {
3931     _requested_size = _n_workers;
3932     _term.set_task(this);
3933     _term_term.set_task(this);
3934     _restart_addr = _global_finger = _cms_space->bottom();
3935   }
3936 
3937 
3938   OopTaskQueueSet* task_queues()  { return _task_queues; }
3939 
3940   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3941 
3942   HeapWord** global_finger_addr() { return &_global_finger; }
3943 
3944   CMSConcMarkingTerminator* terminator() { return &_term; }
3945 
3946   virtual void set_for_termination(int active_workers) {
3947     terminator()->reset_for_reuse(active_workers);
3948   }
3949 
3950   void work(uint worker_id);
3951   bool should_yield() {
3952     return    ConcurrentMarkSweepThread::should_yield()
3953            && !_collector->foregroundGCIsActive()
3954            && _asynch;
3955   }
3956 
3957   virtual void coordinator_yield();  // stuff done by coordinator
3958   bool result() { return _result; }
3959 
3960   void reset(HeapWord* ra) {
3961     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3962     _restart_addr = _global_finger = ra;
3963     _term.reset_for_reuse();
3964   }
3965 
3966   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3967                                            OopTaskQueue* work_q);
3968 
3969  private:
3970   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3971   void do_work_steal(int i);
3972   void bump_global_finger(HeapWord* f);
3973 };
3974 
3975 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3976   assert(_task != NULL, "Error");
3977   return _task->yielding();
3978   // Note that we do not need the disjunct || _task->should_yield() above
3979   // because we want terminating threads to yield only if the task
3980   // is already in the midst of yielding, which happens only after at least one
3981   // thread has yielded.
3982 }
3983 
3984 void CMSConcMarkingTerminator::yield() {
3985   if (_task->should_yield()) {
3986     _task->yield();
3987   } else {
3988     ParallelTaskTerminator::yield();
3989   }
3990 }
3991 
3992 ////////////////////////////////////////////////////////////////
3993 // Concurrent Marking Algorithm Sketch
3994 ////////////////////////////////////////////////////////////////
3995 // Until all tasks exhausted (both spaces):
3996 // -- claim next available chunk
3997 // -- bump global finger via CAS
3998 // -- find first object that starts in this chunk
3999 //    and start scanning bitmap from that position
4000 // -- scan marked objects for oops
4001 // -- CAS-mark target, and if successful:
4002 //    . if target oop is above global finger (volatile read)
4003 //      nothing to do
4004 //    . if target oop is in chunk and above local finger
4005 //        then nothing to do
4006 //    . else push on work-queue
4007 // -- Deal with possible overflow issues:
4008 //    . local work-queue overflow causes stuff to be pushed on
4009 //      global (common) overflow queue
4010 //    . always first empty local work queue
4011 //    . then get a batch of oops from global work queue if any
4012 //    . then do work stealing
4013 // -- When all tasks claimed (both spaces)
4014 //    and local work queue empty,
4015 //    then in a loop do:
4016 //    . check global overflow stack; steal a batch of oops and trace
4017 //    . try to steal from other threads oif GOS is empty
4018 //    . if neither is available, offer termination
4019 // -- Terminate and return result
4020 //
4021 void CMSConcMarkingTask::work(uint worker_id) {
4022   elapsedTimer _timer;
4023   ResourceMark rm;
4024   HandleMark hm;
4025 
4026   DEBUG_ONLY(_collector->verify_overflow_empty();)
4027 
4028   // Before we begin work, our work queue should be empty
4029   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
4030   // Scan the bitmap covering _cms_space, tracing through grey objects.
4031   _timer.start();
4032   do_scan_and_mark(worker_id, _cms_space);
4033   _timer.stop();
4034   if (PrintCMSStatistics != 0) {
4035     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
4036       worker_id, _timer.seconds());
4037       // XXX: need xxx/xxx type of notation, two timers
4038   }
4039 
4040   // ... do work stealing
4041   _timer.reset();
4042   _timer.start();
4043   do_work_steal(worker_id);
4044   _timer.stop();
4045   if (PrintCMSStatistics != 0) {
4046     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
4047       worker_id, _timer.seconds());
4048       // XXX: need xxx/xxx type of notation, two timers
4049   }
4050   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
4051   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
4052   // Note that under the current task protocol, the
4053   // following assertion is true even of the spaces
4054   // expanded since the completion of the concurrent
4055   // marking. XXX This will likely change under a strict
4056   // ABORT semantics.
4057   // After perm removal the comparison was changed to
4058   // greater than or equal to from strictly greater than.
4059   // Before perm removal the highest address sweep would
4060   // have been at the end of perm gen but now is at the
4061   // end of the tenured gen.
4062   assert(_global_finger >=  _cms_space->end(),
4063          "All tasks have been completed");
4064   DEBUG_ONLY(_collector->verify_overflow_empty();)
4065 }
4066 
4067 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
4068   HeapWord* read = _global_finger;
4069   HeapWord* cur  = read;
4070   while (f > read) {
4071     cur = read;
4072     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4073     if (cur == read) {
4074       // our cas succeeded
4075       assert(_global_finger >= f, "protocol consistency");
4076       break;
4077     }
4078   }
4079 }
4080 
4081 // This is really inefficient, and should be redone by
4082 // using (not yet available) block-read and -write interfaces to the
4083 // stack and the work_queue. XXX FIX ME !!!
4084 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4085                                                       OopTaskQueue* work_q) {
4086   // Fast lock-free check
4087   if (ovflw_stk->length() == 0) {
4088     return false;
4089   }
4090   assert(work_q->size() == 0, "Shouldn't steal");
4091   MutexLockerEx ml(ovflw_stk->par_lock(),
4092                    Mutex::_no_safepoint_check_flag);
4093   // Grab up to 1/4 the size of the work queue
4094   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4095                     (size_t)ParGCDesiredObjsFromOverflowList);
4096   num = MIN2(num, ovflw_stk->length());
4097   for (int i = (int) num; i > 0; i--) {
4098     oop cur = ovflw_stk->pop();
4099     assert(cur != NULL, "Counted wrong?");
4100     work_q->push(cur);
4101   }
4102   return num > 0;
4103 }
4104 
4105 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4106   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4107   int n_tasks = pst->n_tasks();
4108   // We allow that there may be no tasks to do here because
4109   // we are restarting after a stack overflow.
4110   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4111   uint nth_task = 0;
4112 
4113   HeapWord* aligned_start = sp->bottom();
4114   if (sp->used_region().contains(_restart_addr)) {
4115     // Align down to a card boundary for the start of 0th task
4116     // for this space.
4117     aligned_start =
4118       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4119                                  CardTableModRefBS::card_size);
4120   }
4121 
4122   size_t chunk_size = sp->marking_task_size();
4123   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4124     // Having claimed the nth task in this space,
4125     // compute the chunk that it corresponds to:
4126     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4127                                aligned_start + (nth_task+1)*chunk_size);
4128     // Try and bump the global finger via a CAS;
4129     // note that we need to do the global finger bump
4130     // _before_ taking the intersection below, because
4131     // the task corresponding to that region will be
4132     // deemed done even if the used_region() expands
4133     // because of allocation -- as it almost certainly will
4134     // during start-up while the threads yield in the
4135     // closure below.
4136     HeapWord* finger = span.end();
4137     bump_global_finger(finger);   // atomically
4138     // There are null tasks here corresponding to chunks
4139     // beyond the "top" address of the space.
4140     span = span.intersection(sp->used_region());
4141     if (!span.is_empty()) {  // Non-null task
4142       HeapWord* prev_obj;
4143       assert(!span.contains(_restart_addr) || nth_task == 0,
4144              "Inconsistency");
4145       if (nth_task == 0) {
4146         // For the 0th task, we'll not need to compute a block_start.
4147         if (span.contains(_restart_addr)) {
4148           // In the case of a restart because of stack overflow,
4149           // we might additionally skip a chunk prefix.
4150           prev_obj = _restart_addr;
4151         } else {
4152           prev_obj = span.start();
4153         }
4154       } else {
4155         // We want to skip the first object because
4156         // the protocol is to scan any object in its entirety
4157         // that _starts_ in this span; a fortiori, any
4158         // object starting in an earlier span is scanned
4159         // as part of an earlier claimed task.
4160         // Below we use the "careful" version of block_start
4161         // so we do not try to navigate uninitialized objects.
4162         prev_obj = sp->block_start_careful(span.start());
4163         // Below we use a variant of block_size that uses the
4164         // Printezis bits to avoid waiting for allocated
4165         // objects to become initialized/parsable.
4166         while (prev_obj < span.start()) {
4167           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4168           if (sz > 0) {
4169             prev_obj += sz;
4170           } else {
4171             // In this case we may end up doing a bit of redundant
4172             // scanning, but that appears unavoidable, short of
4173             // locking the free list locks; see bug 6324141.
4174             break;
4175           }
4176         }
4177       }
4178       if (prev_obj < span.end()) {
4179         MemRegion my_span = MemRegion(prev_obj, span.end());
4180         // Do the marking work within a non-empty span --
4181         // the last argument to the constructor indicates whether the
4182         // iteration should be incremental with periodic yields.
4183         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4184                                     &_collector->_markBitMap,
4185                                     work_queue(i),
4186                                     &_collector->_markStack,
4187                                     _asynch);
4188         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4189       } // else nothing to do for this task
4190     }   // else nothing to do for this task
4191   }
4192   // We'd be tempted to assert here that since there are no
4193   // more tasks left to claim in this space, the global_finger
4194   // must exceed space->top() and a fortiori space->end(). However,
4195   // that would not quite be correct because the bumping of
4196   // global_finger occurs strictly after the claiming of a task,
4197   // so by the time we reach here the global finger may not yet
4198   // have been bumped up by the thread that claimed the last
4199   // task.
4200   pst->all_tasks_completed();
4201 }
4202 
4203 class Par_ConcMarkingClosure: public CMSOopClosure {
4204  private:
4205   CMSCollector* _collector;
4206   CMSConcMarkingTask* _task;
4207   MemRegion     _span;
4208   CMSBitMap*    _bit_map;
4209   CMSMarkStack* _overflow_stack;
4210   OopTaskQueue* _work_queue;
4211  protected:
4212   DO_OOP_WORK_DEFN
4213  public:
4214   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4215                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4216     CMSOopClosure(collector->ref_processor()),
4217     _collector(collector),
4218     _task(task),
4219     _span(collector->_span),
4220     _work_queue(work_queue),
4221     _bit_map(bit_map),
4222     _overflow_stack(overflow_stack)
4223   { }
4224   virtual void do_oop(oop* p);
4225   virtual void do_oop(narrowOop* p);
4226 
4227   void trim_queue(size_t max);
4228   void handle_stack_overflow(HeapWord* lost);
4229   void do_yield_check() {
4230     if (_task->should_yield()) {
4231       _task->yield();
4232     }
4233   }
4234 };
4235 
4236 // Grey object scanning during work stealing phase --
4237 // the salient assumption here is that any references
4238 // that are in these stolen objects being scanned must
4239 // already have been initialized (else they would not have
4240 // been published), so we do not need to check for
4241 // uninitialized objects before pushing here.
4242 void Par_ConcMarkingClosure::do_oop(oop obj) {
4243   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4244   HeapWord* addr = (HeapWord*)obj;
4245   // Check if oop points into the CMS generation
4246   // and is not marked
4247   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4248     // a white object ...
4249     // If we manage to "claim" the object, by being the
4250     // first thread to mark it, then we push it on our
4251     // marking stack
4252     if (_bit_map->par_mark(addr)) {     // ... now grey
4253       // push on work queue (grey set)
4254       bool simulate_overflow = false;
4255       NOT_PRODUCT(
4256         if (CMSMarkStackOverflowALot &&
4257             _collector->simulate_overflow()) {
4258           // simulate a stack overflow
4259           simulate_overflow = true;
4260         }
4261       )
4262       if (simulate_overflow ||
4263           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4264         // stack overflow
4265         if (PrintCMSStatistics != 0) {
4266           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4267                                  SIZE_FORMAT, _overflow_stack->capacity());
4268         }
4269         // We cannot assert that the overflow stack is full because
4270         // it may have been emptied since.
4271         assert(simulate_overflow ||
4272                _work_queue->size() == _work_queue->max_elems(),
4273               "Else push should have succeeded");
4274         handle_stack_overflow(addr);
4275       }
4276     } // Else, some other thread got there first
4277     do_yield_check();
4278   }
4279 }
4280 
4281 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4282 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4283 
4284 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4285   while (_work_queue->size() > max) {
4286     oop new_oop;
4287     if (_work_queue->pop_local(new_oop)) {
4288       assert(new_oop->is_oop(), "Should be an oop");
4289       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4290       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4291       new_oop->oop_iterate(this);  // do_oop() above
4292       do_yield_check();
4293     }
4294   }
4295 }
4296 
4297 // Upon stack overflow, we discard (part of) the stack,
4298 // remembering the least address amongst those discarded
4299 // in CMSCollector's _restart_address.
4300 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4301   // We need to do this under a mutex to prevent other
4302   // workers from interfering with the work done below.
4303   MutexLockerEx ml(_overflow_stack->par_lock(),
4304                    Mutex::_no_safepoint_check_flag);
4305   // Remember the least grey address discarded
4306   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4307   _collector->lower_restart_addr(ra);
4308   _overflow_stack->reset();  // discard stack contents
4309   _overflow_stack->expand(); // expand the stack if possible
4310 }
4311 
4312 
4313 void CMSConcMarkingTask::do_work_steal(int i) {
4314   OopTaskQueue* work_q = work_queue(i);
4315   oop obj_to_scan;
4316   CMSBitMap* bm = &(_collector->_markBitMap);
4317   CMSMarkStack* ovflw = &(_collector->_markStack);
4318   int* seed = _collector->hash_seed(i);
4319   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4320   while (true) {
4321     cl.trim_queue(0);
4322     assert(work_q->size() == 0, "Should have been emptied above");
4323     if (get_work_from_overflow_stack(ovflw, work_q)) {
4324       // Can't assert below because the work obtained from the
4325       // overflow stack may already have been stolen from us.
4326       // assert(work_q->size() > 0, "Work from overflow stack");
4327       continue;
4328     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4329       assert(obj_to_scan->is_oop(), "Should be an oop");
4330       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4331       obj_to_scan->oop_iterate(&cl);
4332     } else if (terminator()->offer_termination(&_term_term)) {
4333       assert(work_q->size() == 0, "Impossible!");
4334       break;
4335     } else if (yielding() || should_yield()) {
4336       yield();
4337     }
4338   }
4339 }
4340 
4341 // This is run by the CMS (coordinator) thread.
4342 void CMSConcMarkingTask::coordinator_yield() {
4343   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4344          "CMS thread should hold CMS token");
4345   // First give up the locks, then yield, then re-lock
4346   // We should probably use a constructor/destructor idiom to
4347   // do this unlock/lock or modify the MutexUnlocker class to
4348   // serve our purpose. XXX
4349   assert_lock_strong(_bit_map_lock);
4350   _bit_map_lock->unlock();
4351   ConcurrentMarkSweepThread::desynchronize(true);
4352   ConcurrentMarkSweepThread::acknowledge_yield_request();
4353   _collector->stopTimer();
4354   if (PrintCMSStatistics != 0) {
4355     _collector->incrementYields();
4356   }
4357   _collector->icms_wait();
4358 
4359   // It is possible for whichever thread initiated the yield request
4360   // not to get a chance to wake up and take the bitmap lock between
4361   // this thread releasing it and reacquiring it. So, while the
4362   // should_yield() flag is on, let's sleep for a bit to give the
4363   // other thread a chance to wake up. The limit imposed on the number
4364   // of iterations is defensive, to avoid any unforseen circumstances
4365   // putting us into an infinite loop. Since it's always been this
4366   // (coordinator_yield()) method that was observed to cause the
4367   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4368   // which is by default non-zero. For the other seven methods that
4369   // also perform the yield operation, as are using a different
4370   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4371   // can enable the sleeping for those methods too, if necessary.
4372   // See 6442774.
4373   //
4374   // We really need to reconsider the synchronization between the GC
4375   // thread and the yield-requesting threads in the future and we
4376   // should really use wait/notify, which is the recommended
4377   // way of doing this type of interaction. Additionally, we should
4378   // consolidate the eight methods that do the yield operation and they
4379   // are almost identical into one for better maintainability and
4380   // readability. See 6445193.
4381   //
4382   // Tony 2006.06.29
4383   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4384                    ConcurrentMarkSweepThread::should_yield() &&
4385                    !CMSCollector::foregroundGCIsActive(); ++i) {
4386     os::sleep(Thread::current(), 1, false);
4387     ConcurrentMarkSweepThread::acknowledge_yield_request();
4388   }
4389 
4390   ConcurrentMarkSweepThread::synchronize(true);
4391   _bit_map_lock->lock_without_safepoint_check();
4392   _collector->startTimer();
4393 }
4394 
4395 bool CMSCollector::do_marking_mt(bool asynch) {
4396   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4397   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4398                                        conc_workers()->total_workers(),
4399                                        conc_workers()->active_workers(),
4400                                        Threads::number_of_non_daemon_threads());
4401   conc_workers()->set_active_workers(num_workers);
4402 
4403   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4404 
4405   CMSConcMarkingTask tsk(this,
4406                          cms_space,
4407                          asynch,
4408                          conc_workers(),
4409                          task_queues());
4410 
4411   // Since the actual number of workers we get may be different
4412   // from the number we requested above, do we need to do anything different
4413   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4414   // class?? XXX
4415   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4416 
4417   // Refs discovery is already non-atomic.
4418   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4419   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4420   conc_workers()->start_task(&tsk);
4421   while (tsk.yielded()) {
4422     tsk.coordinator_yield();
4423     conc_workers()->continue_task(&tsk);
4424   }
4425   // If the task was aborted, _restart_addr will be non-NULL
4426   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4427   while (_restart_addr != NULL) {
4428     // XXX For now we do not make use of ABORTED state and have not
4429     // yet implemented the right abort semantics (even in the original
4430     // single-threaded CMS case). That needs some more investigation
4431     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4432     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4433     // If _restart_addr is non-NULL, a marking stack overflow
4434     // occurred; we need to do a fresh marking iteration from the
4435     // indicated restart address.
4436     if (_foregroundGCIsActive && asynch) {
4437       // We may be running into repeated stack overflows, having
4438       // reached the limit of the stack size, while making very
4439       // slow forward progress. It may be best to bail out and
4440       // let the foreground collector do its job.
4441       // Clear _restart_addr, so that foreground GC
4442       // works from scratch. This avoids the headache of
4443       // a "rescan" which would otherwise be needed because
4444       // of the dirty mod union table & card table.
4445       _restart_addr = NULL;
4446       return false;
4447     }
4448     // Adjust the task to restart from _restart_addr
4449     tsk.reset(_restart_addr);
4450     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4451                   _restart_addr);
4452     _restart_addr = NULL;
4453     // Get the workers going again
4454     conc_workers()->start_task(&tsk);
4455     while (tsk.yielded()) {
4456       tsk.coordinator_yield();
4457       conc_workers()->continue_task(&tsk);
4458     }
4459   }
4460   assert(tsk.completed(), "Inconsistency");
4461   assert(tsk.result() == true, "Inconsistency");
4462   return true;
4463 }
4464 
4465 bool CMSCollector::do_marking_st(bool asynch) {
4466   ResourceMark rm;
4467   HandleMark   hm;
4468 
4469   // Temporarily make refs discovery single threaded (non-MT)
4470   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4471   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4472     &_markStack, CMSYield && asynch);
4473   // the last argument to iterate indicates whether the iteration
4474   // should be incremental with periodic yields.
4475   _markBitMap.iterate(&markFromRootsClosure);
4476   // If _restart_addr is non-NULL, a marking stack overflow
4477   // occurred; we need to do a fresh iteration from the
4478   // indicated restart address.
4479   while (_restart_addr != NULL) {
4480     if (_foregroundGCIsActive && asynch) {
4481       // We may be running into repeated stack overflows, having
4482       // reached the limit of the stack size, while making very
4483       // slow forward progress. It may be best to bail out and
4484       // let the foreground collector do its job.
4485       // Clear _restart_addr, so that foreground GC
4486       // works from scratch. This avoids the headache of
4487       // a "rescan" which would otherwise be needed because
4488       // of the dirty mod union table & card table.
4489       _restart_addr = NULL;
4490       return false;  // indicating failure to complete marking
4491     }
4492     // Deal with stack overflow:
4493     // we restart marking from _restart_addr
4494     HeapWord* ra = _restart_addr;
4495     markFromRootsClosure.reset(ra);
4496     _restart_addr = NULL;
4497     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4498   }
4499   return true;
4500 }
4501 
4502 void CMSCollector::preclean() {
4503   check_correct_thread_executing();
4504   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4505   verify_work_stacks_empty();
4506   verify_overflow_empty();
4507   _abort_preclean = false;
4508   if (CMSPrecleaningEnabled) {
4509     if (!CMSEdenChunksRecordAlways) {
4510       _eden_chunk_index = 0;
4511     }
4512     size_t used = get_eden_used();
4513     size_t capacity = get_eden_capacity();
4514     // Don't start sampling unless we will get sufficiently
4515     // many samples.
4516     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4517                 * CMSScheduleRemarkEdenPenetration)) {
4518       _start_sampling = true;
4519     } else {
4520       _start_sampling = false;
4521     }
4522     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4523     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4524     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4525   }
4526   CMSTokenSync x(true); // is cms thread
4527   if (CMSPrecleaningEnabled) {
4528     sample_eden();
4529     _collectorState = AbortablePreclean;
4530   } else {
4531     _collectorState = FinalMarking;
4532   }
4533   verify_work_stacks_empty();
4534   verify_overflow_empty();
4535 }
4536 
4537 // Try and schedule the remark such that young gen
4538 // occupancy is CMSScheduleRemarkEdenPenetration %.
4539 void CMSCollector::abortable_preclean() {
4540   check_correct_thread_executing();
4541   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4542   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4543 
4544   // If Eden's current occupancy is below this threshold,
4545   // immediately schedule the remark; else preclean
4546   // past the next scavenge in an effort to
4547   // schedule the pause as described above. By choosing
4548   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4549   // we will never do an actual abortable preclean cycle.
4550   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4551     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4552     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4553     // We need more smarts in the abortable preclean
4554     // loop below to deal with cases where allocation
4555     // in young gen is very very slow, and our precleaning
4556     // is running a losing race against a horde of
4557     // mutators intent on flooding us with CMS updates
4558     // (dirty cards).
4559     // One, admittedly dumb, strategy is to give up
4560     // after a certain number of abortable precleaning loops
4561     // or after a certain maximum time. We want to make
4562     // this smarter in the next iteration.
4563     // XXX FIX ME!!! YSR
4564     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4565     while (!(should_abort_preclean() ||
4566              ConcurrentMarkSweepThread::should_terminate())) {
4567       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4568       cumworkdone += workdone;
4569       loops++;
4570       // Voluntarily terminate abortable preclean phase if we have
4571       // been at it for too long.
4572       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4573           loops >= CMSMaxAbortablePrecleanLoops) {
4574         if (PrintGCDetails) {
4575           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4576         }
4577         break;
4578       }
4579       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4580         if (PrintGCDetails) {
4581           gclog_or_tty->print(" CMS: abort preclean due to time ");
4582         }
4583         break;
4584       }
4585       // If we are doing little work each iteration, we should
4586       // take a short break.
4587       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4588         // Sleep for some time, waiting for work to accumulate
4589         stopTimer();
4590         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4591         startTimer();
4592         waited++;
4593       }
4594     }
4595     if (PrintCMSStatistics > 0) {
4596       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4597                           loops, waited, cumworkdone);
4598     }
4599   }
4600   CMSTokenSync x(true); // is cms thread
4601   if (_collectorState != Idling) {
4602     assert(_collectorState == AbortablePreclean,
4603            "Spontaneous state transition?");
4604     _collectorState = FinalMarking;
4605   } // Else, a foreground collection completed this CMS cycle.
4606   return;
4607 }
4608 
4609 // Respond to an Eden sampling opportunity
4610 void CMSCollector::sample_eden() {
4611   // Make sure a young gc cannot sneak in between our
4612   // reading and recording of a sample.
4613   assert(Thread::current()->is_ConcurrentGC_thread(),
4614          "Only the cms thread may collect Eden samples");
4615   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4616          "Should collect samples while holding CMS token");
4617   if (!_start_sampling) {
4618     return;
4619   }
4620   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4621   // is populated by the young generation.
4622   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4623     if (_eden_chunk_index < _eden_chunk_capacity) {
4624       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4625       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4626              "Unexpected state of Eden");
4627       // We'd like to check that what we just sampled is an oop-start address;
4628       // however, we cannot do that here since the object may not yet have been
4629       // initialized. So we'll instead do the check when we _use_ this sample
4630       // later.
4631       if (_eden_chunk_index == 0 ||
4632           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4633                          _eden_chunk_array[_eden_chunk_index-1])
4634            >= CMSSamplingGrain)) {
4635         _eden_chunk_index++;  // commit sample
4636       }
4637     }
4638   }
4639   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4640     size_t used = get_eden_used();
4641     size_t capacity = get_eden_capacity();
4642     assert(used <= capacity, "Unexpected state of Eden");
4643     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4644       _abort_preclean = true;
4645     }
4646   }
4647 }
4648 
4649 
4650 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4651   assert(_collectorState == Precleaning ||
4652          _collectorState == AbortablePreclean, "incorrect state");
4653   ResourceMark rm;
4654   HandleMark   hm;
4655 
4656   // Precleaning is currently not MT but the reference processor
4657   // may be set for MT.  Disable it temporarily here.
4658   ReferenceProcessor* rp = ref_processor();
4659   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4660 
4661   // Do one pass of scrubbing the discovered reference lists
4662   // to remove any reference objects with strongly-reachable
4663   // referents.
4664   if (clean_refs) {
4665     CMSPrecleanRefsYieldClosure yield_cl(this);
4666     assert(rp->span().equals(_span), "Spans should be equal");
4667     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4668                                    &_markStack, true /* preclean */);
4669     CMSDrainMarkingStackClosure complete_trace(this,
4670                                    _span, &_markBitMap, &_markStack,
4671                                    &keep_alive, true /* preclean */);
4672 
4673     // We don't want this step to interfere with a young
4674     // collection because we don't want to take CPU
4675     // or memory bandwidth away from the young GC threads
4676     // (which may be as many as there are CPUs).
4677     // Note that we don't need to protect ourselves from
4678     // interference with mutators because they can't
4679     // manipulate the discovered reference lists nor affect
4680     // the computed reachability of the referents, the
4681     // only properties manipulated by the precleaning
4682     // of these reference lists.
4683     stopTimer();
4684     CMSTokenSyncWithLocks x(true /* is cms thread */,
4685                             bitMapLock());
4686     startTimer();
4687     sample_eden();
4688 
4689     // The following will yield to allow foreground
4690     // collection to proceed promptly. XXX YSR:
4691     // The code in this method may need further
4692     // tweaking for better performance and some restructuring
4693     // for cleaner interfaces.
4694     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4695     rp->preclean_discovered_references(
4696           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4697           gc_timer);
4698   }
4699 
4700   if (clean_survivor) {  // preclean the active survivor space(s)
4701     assert(_young_gen->kind() == Generation::DefNew ||
4702            _young_gen->kind() == Generation::ParNew ||
4703            _young_gen->kind() == Generation::ASParNew,
4704          "incorrect type for cast");
4705     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4706     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4707                              &_markBitMap, &_modUnionTable,
4708                              &_markStack, true /* precleaning phase */);
4709     stopTimer();
4710     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4711                              bitMapLock());
4712     startTimer();
4713     unsigned int before_count =
4714       GenCollectedHeap::heap()->total_collections();
4715     SurvivorSpacePrecleanClosure
4716       sss_cl(this, _span, &_markBitMap, &_markStack,
4717              &pam_cl, before_count, CMSYield);
4718     dng->from()->object_iterate_careful(&sss_cl);
4719     dng->to()->object_iterate_careful(&sss_cl);
4720   }
4721   MarkRefsIntoAndScanClosure
4722     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4723              &_markStack, this, CMSYield,
4724              true /* precleaning phase */);
4725   // CAUTION: The following closure has persistent state that may need to
4726   // be reset upon a decrease in the sequence of addresses it
4727   // processes.
4728   ScanMarkedObjectsAgainCarefullyClosure
4729     smoac_cl(this, _span,
4730       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4731 
4732   // Preclean dirty cards in ModUnionTable and CardTable using
4733   // appropriate convergence criterion;
4734   // repeat CMSPrecleanIter times unless we find that
4735   // we are losing.
4736   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4737   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4738          "Bad convergence multiplier");
4739   assert(CMSPrecleanThreshold >= 100,
4740          "Unreasonably low CMSPrecleanThreshold");
4741 
4742   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4743   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4744        numIter < CMSPrecleanIter;
4745        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4746     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4747     if (Verbose && PrintGCDetails) {
4748       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4749     }
4750     // Either there are very few dirty cards, so re-mark
4751     // pause will be small anyway, or our pre-cleaning isn't
4752     // that much faster than the rate at which cards are being
4753     // dirtied, so we might as well stop and re-mark since
4754     // precleaning won't improve our re-mark time by much.
4755     if (curNumCards <= CMSPrecleanThreshold ||
4756         (numIter > 0 &&
4757          (curNumCards * CMSPrecleanDenominator >
4758          lastNumCards * CMSPrecleanNumerator))) {
4759       numIter++;
4760       cumNumCards += curNumCards;
4761       break;
4762     }
4763   }
4764 
4765   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4766 
4767   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4768   cumNumCards += curNumCards;
4769   if (PrintGCDetails && PrintCMSStatistics != 0) {
4770     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4771                   curNumCards, cumNumCards, numIter);
4772   }
4773   return cumNumCards;   // as a measure of useful work done
4774 }
4775 
4776 // PRECLEANING NOTES:
4777 // Precleaning involves:
4778 // . reading the bits of the modUnionTable and clearing the set bits.
4779 // . For the cards corresponding to the set bits, we scan the
4780 //   objects on those cards. This means we need the free_list_lock
4781 //   so that we can safely iterate over the CMS space when scanning
4782 //   for oops.
4783 // . When we scan the objects, we'll be both reading and setting
4784 //   marks in the marking bit map, so we'll need the marking bit map.
4785 // . For protecting _collector_state transitions, we take the CGC_lock.
4786 //   Note that any races in the reading of of card table entries by the
4787 //   CMS thread on the one hand and the clearing of those entries by the
4788 //   VM thread or the setting of those entries by the mutator threads on the
4789 //   other are quite benign. However, for efficiency it makes sense to keep
4790 //   the VM thread from racing with the CMS thread while the latter is
4791 //   dirty card info to the modUnionTable. We therefore also use the
4792 //   CGC_lock to protect the reading of the card table and the mod union
4793 //   table by the CM thread.
4794 // . We run concurrently with mutator updates, so scanning
4795 //   needs to be done carefully  -- we should not try to scan
4796 //   potentially uninitialized objects.
4797 //
4798 // Locking strategy: While holding the CGC_lock, we scan over and
4799 // reset a maximal dirty range of the mod union / card tables, then lock
4800 // the free_list_lock and bitmap lock to do a full marking, then
4801 // release these locks; and repeat the cycle. This allows for a
4802 // certain amount of fairness in the sharing of these locks between
4803 // the CMS collector on the one hand, and the VM thread and the
4804 // mutators on the other.
4805 
4806 // NOTE: preclean_mod_union_table() and preclean_card_table()
4807 // further below are largely identical; if you need to modify
4808 // one of these methods, please check the other method too.
4809 
4810 size_t CMSCollector::preclean_mod_union_table(
4811   ConcurrentMarkSweepGeneration* gen,
4812   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4813   verify_work_stacks_empty();
4814   verify_overflow_empty();
4815 
4816   // strategy: starting with the first card, accumulate contiguous
4817   // ranges of dirty cards; clear these cards, then scan the region
4818   // covered by these cards.
4819 
4820   // Since all of the MUT is committed ahead, we can just use
4821   // that, in case the generations expand while we are precleaning.
4822   // It might also be fine to just use the committed part of the
4823   // generation, but we might potentially miss cards when the
4824   // generation is rapidly expanding while we are in the midst
4825   // of precleaning.
4826   HeapWord* startAddr = gen->reserved().start();
4827   HeapWord* endAddr   = gen->reserved().end();
4828 
4829   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4830 
4831   size_t numDirtyCards, cumNumDirtyCards;
4832   HeapWord *nextAddr, *lastAddr;
4833   for (cumNumDirtyCards = numDirtyCards = 0,
4834        nextAddr = lastAddr = startAddr;
4835        nextAddr < endAddr;
4836        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4837 
4838     ResourceMark rm;
4839     HandleMark   hm;
4840 
4841     MemRegion dirtyRegion;
4842     {
4843       stopTimer();
4844       // Potential yield point
4845       CMSTokenSync ts(true);
4846       startTimer();
4847       sample_eden();
4848       // Get dirty region starting at nextOffset (inclusive),
4849       // simultaneously clearing it.
4850       dirtyRegion =
4851         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4852       assert(dirtyRegion.start() >= nextAddr,
4853              "returned region inconsistent?");
4854     }
4855     // Remember where the next search should begin.
4856     // The returned region (if non-empty) is a right open interval,
4857     // so lastOffset is obtained from the right end of that
4858     // interval.
4859     lastAddr = dirtyRegion.end();
4860     // Should do something more transparent and less hacky XXX
4861     numDirtyCards =
4862       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4863 
4864     // We'll scan the cards in the dirty region (with periodic
4865     // yields for foreground GC as needed).
4866     if (!dirtyRegion.is_empty()) {
4867       assert(numDirtyCards > 0, "consistency check");
4868       HeapWord* stop_point = NULL;
4869       stopTimer();
4870       // Potential yield point
4871       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4872                                bitMapLock());
4873       startTimer();
4874       {
4875         verify_work_stacks_empty();
4876         verify_overflow_empty();
4877         sample_eden();
4878         stop_point =
4879           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4880       }
4881       if (stop_point != NULL) {
4882         // The careful iteration stopped early either because it found an
4883         // uninitialized object, or because we were in the midst of an
4884         // "abortable preclean", which should now be aborted. Redirty
4885         // the bits corresponding to the partially-scanned or unscanned
4886         // cards. We'll either restart at the next block boundary or
4887         // abort the preclean.
4888         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4889                "Should only be AbortablePreclean.");
4890         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4891         if (should_abort_preclean()) {
4892           break; // out of preclean loop
4893         } else {
4894           // Compute the next address at which preclean should pick up;
4895           // might need bitMapLock in order to read P-bits.
4896           lastAddr = next_card_start_after_block(stop_point);
4897         }
4898       }
4899     } else {
4900       assert(lastAddr == endAddr, "consistency check");
4901       assert(numDirtyCards == 0, "consistency check");
4902       break;
4903     }
4904   }
4905   verify_work_stacks_empty();
4906   verify_overflow_empty();
4907   return cumNumDirtyCards;
4908 }
4909 
4910 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4911 // below are largely identical; if you need to modify
4912 // one of these methods, please check the other method too.
4913 
4914 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4915   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4916   // strategy: it's similar to precleamModUnionTable above, in that
4917   // we accumulate contiguous ranges of dirty cards, mark these cards
4918   // precleaned, then scan the region covered by these cards.
4919   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4920   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4921 
4922   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4923 
4924   size_t numDirtyCards, cumNumDirtyCards;
4925   HeapWord *lastAddr, *nextAddr;
4926 
4927   for (cumNumDirtyCards = numDirtyCards = 0,
4928        nextAddr = lastAddr = startAddr;
4929        nextAddr < endAddr;
4930        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4931 
4932     ResourceMark rm;
4933     HandleMark   hm;
4934 
4935     MemRegion dirtyRegion;
4936     {
4937       // See comments in "Precleaning notes" above on why we
4938       // do this locking. XXX Could the locking overheads be
4939       // too high when dirty cards are sparse? [I don't think so.]
4940       stopTimer();
4941       CMSTokenSync x(true); // is cms thread
4942       startTimer();
4943       sample_eden();
4944       // Get and clear dirty region from card table
4945       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4946                                     MemRegion(nextAddr, endAddr),
4947                                     true,
4948                                     CardTableModRefBS::precleaned_card_val());
4949 
4950       assert(dirtyRegion.start() >= nextAddr,
4951              "returned region inconsistent?");
4952     }
4953     lastAddr = dirtyRegion.end();
4954     numDirtyCards =
4955       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4956 
4957     if (!dirtyRegion.is_empty()) {
4958       stopTimer();
4959       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4960       startTimer();
4961       sample_eden();
4962       verify_work_stacks_empty();
4963       verify_overflow_empty();
4964       HeapWord* stop_point =
4965         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4966       if (stop_point != NULL) {
4967         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4968                "Should only be AbortablePreclean.");
4969         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4970         if (should_abort_preclean()) {
4971           break; // out of preclean loop
4972         } else {
4973           // Compute the next address at which preclean should pick up.
4974           lastAddr = next_card_start_after_block(stop_point);
4975         }
4976       }
4977     } else {
4978       break;
4979     }
4980   }
4981   verify_work_stacks_empty();
4982   verify_overflow_empty();
4983   return cumNumDirtyCards;
4984 }
4985 
4986 class PrecleanKlassClosure : public KlassClosure {
4987   CMKlassClosure _cm_klass_closure;
4988  public:
4989   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4990   void do_klass(Klass* k) {
4991     if (k->has_accumulated_modified_oops()) {
4992       k->clear_accumulated_modified_oops();
4993 
4994       _cm_klass_closure.do_klass(k);
4995     }
4996   }
4997 };
4998 
4999 // The freelist lock is needed to prevent asserts, is it really needed?
5000 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
5001 
5002   cl->set_freelistLock(freelistLock);
5003 
5004   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
5005 
5006   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
5007   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
5008   PrecleanKlassClosure preclean_klass_closure(cl);
5009   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
5010 
5011   verify_work_stacks_empty();
5012   verify_overflow_empty();
5013 }
5014 
5015 void CMSCollector::checkpointRootsFinal(bool asynch,
5016   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5017   assert(_collectorState == FinalMarking, "incorrect state transition?");
5018   check_correct_thread_executing();
5019   // world is stopped at this checkpoint
5020   assert(SafepointSynchronize::is_at_safepoint(),
5021          "world should be stopped");
5022   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5023 
5024   verify_work_stacks_empty();
5025   verify_overflow_empty();
5026 
5027   SpecializationStats::clear();
5028   if (PrintGCDetails) {
5029     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
5030                         _young_gen->used() / K,
5031                         _young_gen->capacity() / K);
5032   }
5033   if (asynch) {
5034     if (CMSScavengeBeforeRemark) {
5035       GenCollectedHeap* gch = GenCollectedHeap::heap();
5036       // Temporarily set flag to false, GCH->do_collection will
5037       // expect it to be false and set to true
5038       FlagSetting fl(gch->_is_gc_active, false);
5039       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
5040         PrintGCDetails && Verbose, true, _gc_timer_cm);)
5041       int level = _cmsGen->level() - 1;
5042       if (level >= 0) {
5043         gch->do_collection(true,        // full (i.e. force, see below)
5044                            false,       // !clear_all_soft_refs
5045                            0,           // size
5046                            false,       // is_tlab
5047                            level        // max_level
5048                           );
5049       }
5050     }
5051     FreelistLocker x(this);
5052     MutexLockerEx y(bitMapLock(),
5053                     Mutex::_no_safepoint_check_flag);
5054     assert(!init_mark_was_synchronous, "but that's impossible!");
5055     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
5056   } else {
5057     // already have all the locks
5058     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
5059                              init_mark_was_synchronous);
5060   }
5061   verify_work_stacks_empty();
5062   verify_overflow_empty();
5063   SpecializationStats::print();
5064 }
5065 
5066 void CMSCollector::checkpointRootsFinalWork(bool asynch,
5067   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5068 
5069   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
5070 
5071   assert(haveFreelistLocks(), "must have free list locks");
5072   assert_lock_strong(bitMapLock());
5073 
5074   if (UseAdaptiveSizePolicy) {
5075     size_policy()->checkpoint_roots_final_begin();
5076   }
5077 
5078   ResourceMark rm;
5079   HandleMark   hm;
5080 
5081   GenCollectedHeap* gch = GenCollectedHeap::heap();
5082 
5083   if (should_unload_classes()) {
5084     CodeCache::gc_prologue();
5085   }
5086   assert(haveFreelistLocks(), "must have free list locks");
5087   assert_lock_strong(bitMapLock());
5088 
5089   if (!init_mark_was_synchronous) {
5090     // We might assume that we need not fill TLAB's when
5091     // CMSScavengeBeforeRemark is set, because we may have just done
5092     // a scavenge which would have filled all TLAB's -- and besides
5093     // Eden would be empty. This however may not always be the case --
5094     // for instance although we asked for a scavenge, it may not have
5095     // happened because of a JNI critical section. We probably need
5096     // a policy for deciding whether we can in that case wait until
5097     // the critical section releases and then do the remark following
5098     // the scavenge, and skip it here. In the absence of that policy,
5099     // or of an indication of whether the scavenge did indeed occur,
5100     // we cannot rely on TLAB's having been filled and must do
5101     // so here just in case a scavenge did not happen.
5102     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5103     // Update the saved marks which may affect the root scans.
5104     gch->save_marks();
5105 
5106     if (CMSPrintEdenSurvivorChunks) {
5107       print_eden_and_survivor_chunk_arrays();
5108     }
5109 
5110     {
5111       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5112 
5113       // Note on the role of the mod union table:
5114       // Since the marker in "markFromRoots" marks concurrently with
5115       // mutators, it is possible for some reachable objects not to have been
5116       // scanned. For instance, an only reference to an object A was
5117       // placed in object B after the marker scanned B. Unless B is rescanned,
5118       // A would be collected. Such updates to references in marked objects
5119       // are detected via the mod union table which is the set of all cards
5120       // dirtied since the first checkpoint in this GC cycle and prior to
5121       // the most recent young generation GC, minus those cleaned up by the
5122       // concurrent precleaning.
5123       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5124         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
5125         do_remark_parallel();
5126       } else {
5127         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5128                     _gc_timer_cm);
5129         do_remark_non_parallel();
5130       }
5131     }
5132   } else {
5133     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5134     // The initial mark was stop-world, so there's no rescanning to
5135     // do; go straight on to the next step below.
5136   }
5137   verify_work_stacks_empty();
5138   verify_overflow_empty();
5139 
5140   {
5141     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
5142     refProcessingWork(asynch, clear_all_soft_refs);
5143   }
5144   verify_work_stacks_empty();
5145   verify_overflow_empty();
5146 
5147   if (should_unload_classes()) {
5148     CodeCache::gc_epilogue();
5149   }
5150   JvmtiExport::gc_epilogue();
5151 
5152   // If we encountered any (marking stack / work queue) overflow
5153   // events during the current CMS cycle, take appropriate
5154   // remedial measures, where possible, so as to try and avoid
5155   // recurrence of that condition.
5156   assert(_markStack.isEmpty(), "No grey objects");
5157   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5158                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5159   if (ser_ovflw > 0) {
5160     if (PrintCMSStatistics != 0) {
5161       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5162         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5163         ", kac_preclean="SIZE_FORMAT")",
5164         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5165         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5166     }
5167     _markStack.expand();
5168     _ser_pmc_remark_ovflw = 0;
5169     _ser_pmc_preclean_ovflw = 0;
5170     _ser_kac_preclean_ovflw = 0;
5171     _ser_kac_ovflw = 0;
5172   }
5173   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5174     if (PrintCMSStatistics != 0) {
5175       gclog_or_tty->print_cr("Work queue overflow (benign) "
5176         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5177         _par_pmc_remark_ovflw, _par_kac_ovflw);
5178     }
5179     _par_pmc_remark_ovflw = 0;
5180     _par_kac_ovflw = 0;
5181   }
5182   if (PrintCMSStatistics != 0) {
5183      if (_markStack._hit_limit > 0) {
5184        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5185                               _markStack._hit_limit);
5186      }
5187      if (_markStack._failed_double > 0) {
5188        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5189                               " current capacity "SIZE_FORMAT,
5190                               _markStack._failed_double,
5191                               _markStack.capacity());
5192      }
5193   }
5194   _markStack._hit_limit = 0;
5195   _markStack._failed_double = 0;
5196 
5197   if ((VerifyAfterGC || VerifyDuringGC) &&
5198       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5199     verify_after_remark();
5200   }
5201 
5202   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5203 
5204   // Change under the freelistLocks.
5205   _collectorState = Sweeping;
5206   // Call isAllClear() under bitMapLock
5207   assert(_modUnionTable.isAllClear(),
5208       "Should be clear by end of the final marking");
5209   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5210       "Should be clear by end of the final marking");
5211   if (UseAdaptiveSizePolicy) {
5212     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5213   }
5214 }
5215 
5216 void CMSParInitialMarkTask::work(uint worker_id) {
5217   elapsedTimer _timer;
5218   ResourceMark rm;
5219   HandleMark   hm;
5220 
5221   // ---------- scan from roots --------------
5222   _timer.start();
5223   GenCollectedHeap* gch = GenCollectedHeap::heap();
5224   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5225   CMKlassClosure klass_closure(&par_mri_cl);
5226 
5227   // ---------- young gen roots --------------
5228   {
5229     work_on_young_gen_roots(worker_id, &par_mri_cl);
5230     _timer.stop();
5231     if (PrintCMSStatistics != 0) {
5232       gclog_or_tty->print_cr(
5233         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5234         worker_id, _timer.seconds());
5235     }
5236   }
5237 
5238   // ---------- remaining roots --------------
5239   _timer.reset();
5240   _timer.start();
5241   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5242                                 false,     // yg was scanned above
5243                                 false,     // this is parallel code
5244                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5245                                 &par_mri_cl,
5246                                 NULL,
5247                                 &klass_closure);
5248   assert(_collector->should_unload_classes()
5249          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5250          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5251   _timer.stop();
5252   if (PrintCMSStatistics != 0) {
5253     gclog_or_tty->print_cr(
5254       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5255       worker_id, _timer.seconds());
5256   }
5257 }
5258 
5259 // Parallel remark task
5260 class CMSParRemarkTask: public CMSParMarkTask {
5261   CompactibleFreeListSpace* _cms_space;
5262 
5263   // The per-thread work queues, available here for stealing.
5264   OopTaskQueueSet*       _task_queues;
5265   ParallelTaskTerminator _term;
5266 
5267  public:
5268   // A value of 0 passed to n_workers will cause the number of
5269   // workers to be taken from the active workers in the work gang.
5270   CMSParRemarkTask(CMSCollector* collector,
5271                    CompactibleFreeListSpace* cms_space,
5272                    int n_workers, FlexibleWorkGang* workers,
5273                    OopTaskQueueSet* task_queues):
5274     CMSParMarkTask("Rescan roots and grey objects in parallel",
5275                    collector, n_workers),
5276     _cms_space(cms_space),
5277     _task_queues(task_queues),
5278     _term(n_workers, task_queues) { }
5279 
5280   OopTaskQueueSet* task_queues() { return _task_queues; }
5281 
5282   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5283 
5284   ParallelTaskTerminator* terminator() { return &_term; }
5285   int n_workers() { return _n_workers; }
5286 
5287   void work(uint worker_id);
5288 
5289  private:
5290   // ... of  dirty cards in old space
5291   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5292                                   Par_MarkRefsIntoAndScanClosure* cl);
5293 
5294   // ... work stealing for the above
5295   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5296 };
5297 
5298 class RemarkKlassClosure : public KlassClosure {
5299   CMKlassClosure _cm_klass_closure;
5300  public:
5301   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5302   void do_klass(Klass* k) {
5303     // Check if we have modified any oops in the Klass during the concurrent marking.
5304     if (k->has_accumulated_modified_oops()) {
5305       k->clear_accumulated_modified_oops();
5306 
5307       // We could have transfered the current modified marks to the accumulated marks,
5308       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5309     } else if (k->has_modified_oops()) {
5310       // Don't clear anything, this info is needed by the next young collection.
5311     } else {
5312       // No modified oops in the Klass.
5313       return;
5314     }
5315 
5316     // The klass has modified fields, need to scan the klass.
5317     _cm_klass_closure.do_klass(k);
5318   }
5319 };
5320 
5321 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5322   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5323   EdenSpace* eden_space = dng->eden();
5324   ContiguousSpace* from_space = dng->from();
5325   ContiguousSpace* to_space   = dng->to();
5326 
5327   HeapWord** eca = _collector->_eden_chunk_array;
5328   size_t     ect = _collector->_eden_chunk_index;
5329   HeapWord** sca = _collector->_survivor_chunk_array;
5330   size_t     sct = _collector->_survivor_chunk_index;
5331 
5332   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5333   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5334 
5335   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5336   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5337   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5338 }
5339 
5340 // work_queue(i) is passed to the closure
5341 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5342 // also is passed to do_dirty_card_rescan_tasks() and to
5343 // do_work_steal() to select the i-th task_queue.
5344 
5345 void CMSParRemarkTask::work(uint worker_id) {
5346   elapsedTimer _timer;
5347   ResourceMark rm;
5348   HandleMark   hm;
5349 
5350   // ---------- rescan from roots --------------
5351   _timer.start();
5352   GenCollectedHeap* gch = GenCollectedHeap::heap();
5353   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5354     _collector->_span, _collector->ref_processor(),
5355     &(_collector->_markBitMap),
5356     work_queue(worker_id));
5357 
5358   // Rescan young gen roots first since these are likely
5359   // coarsely partitioned and may, on that account, constitute
5360   // the critical path; thus, it's best to start off that
5361   // work first.
5362   // ---------- young gen roots --------------
5363   {
5364     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5365     _timer.stop();
5366     if (PrintCMSStatistics != 0) {
5367       gclog_or_tty->print_cr(
5368         "Finished young gen rescan work in %dth thread: %3.3f sec",
5369         worker_id, _timer.seconds());
5370     }
5371   }
5372 
5373   // ---------- remaining roots --------------
5374   _timer.reset();
5375   _timer.start();
5376   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5377                                 false,     // yg was scanned above
5378                                 false,     // this is parallel code
5379                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5380                                 &par_mrias_cl,
5381                                 NULL,
5382                                 NULL);     // The dirty klasses will be handled below
5383   assert(_collector->should_unload_classes()
5384          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5385          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5386   _timer.stop();
5387   if (PrintCMSStatistics != 0) {
5388     gclog_or_tty->print_cr(
5389       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5390       worker_id, _timer.seconds());
5391   }
5392 
5393   // ---------- unhandled CLD scanning ----------
5394   if (worker_id == 0) { // Single threaded at the moment.
5395     _timer.reset();
5396     _timer.start();
5397 
5398     // Scan all new class loader data objects and new dependencies that were
5399     // introduced during concurrent marking.
5400     ResourceMark rm;
5401     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5402     for (int i = 0; i < array->length(); i++) {
5403       par_mrias_cl.do_class_loader_data(array->at(i));
5404     }
5405 
5406     // We don't need to keep track of new CLDs anymore.
5407     ClassLoaderDataGraph::remember_new_clds(false);
5408 
5409     _timer.stop();
5410     if (PrintCMSStatistics != 0) {
5411       gclog_or_tty->print_cr(
5412           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5413           worker_id, _timer.seconds());
5414     }
5415   }
5416 
5417   // ---------- dirty klass scanning ----------
5418   if (worker_id == 0) { // Single threaded at the moment.
5419     _timer.reset();
5420     _timer.start();
5421 
5422     // Scan all classes that was dirtied during the concurrent marking phase.
5423     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5424     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5425 
5426     _timer.stop();
5427     if (PrintCMSStatistics != 0) {
5428       gclog_or_tty->print_cr(
5429           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5430           worker_id, _timer.seconds());
5431     }
5432   }
5433 
5434   // We might have added oops to ClassLoaderData::_handles during the
5435   // concurrent marking phase. These oops point to newly allocated objects
5436   // that are guaranteed to be kept alive. Either by the direct allocation
5437   // code, or when the young collector processes the strong roots. Hence,
5438   // we don't have to revisit the _handles block during the remark phase.
5439 
5440   // ---------- rescan dirty cards ------------
5441   _timer.reset();
5442   _timer.start();
5443 
5444   // Do the rescan tasks for each of the two spaces
5445   // (cms_space) in turn.
5446   // "worker_id" is passed to select the task_queue for "worker_id"
5447   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5448   _timer.stop();
5449   if (PrintCMSStatistics != 0) {
5450     gclog_or_tty->print_cr(
5451       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5452       worker_id, _timer.seconds());
5453   }
5454 
5455   // ---------- steal work from other threads ...
5456   // ---------- ... and drain overflow list.
5457   _timer.reset();
5458   _timer.start();
5459   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5460   _timer.stop();
5461   if (PrintCMSStatistics != 0) {
5462     gclog_or_tty->print_cr(
5463       "Finished work stealing in %dth thread: %3.3f sec",
5464       worker_id, _timer.seconds());
5465   }
5466 }
5467 
5468 // Note that parameter "i" is not used.
5469 void
5470 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5471   OopsInGenClosure* cl, ContiguousSpace* space,
5472   HeapWord** chunk_array, size_t chunk_top) {
5473   // Until all tasks completed:
5474   // . claim an unclaimed task
5475   // . compute region boundaries corresponding to task claimed
5476   //   using chunk_array
5477   // . par_oop_iterate(cl) over that region
5478 
5479   ResourceMark rm;
5480   HandleMark   hm;
5481 
5482   SequentialSubTasksDone* pst = space->par_seq_tasks();
5483 
5484   uint nth_task = 0;
5485   uint n_tasks  = pst->n_tasks();
5486 
5487   if (n_tasks > 0) {
5488     assert(pst->valid(), "Uninitialized use?");
5489     HeapWord *start, *end;
5490     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5491       // We claimed task # nth_task; compute its boundaries.
5492       if (chunk_top == 0) {  // no samples were taken
5493         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5494         start = space->bottom();
5495         end   = space->top();
5496       } else if (nth_task == 0) {
5497         start = space->bottom();
5498         end   = chunk_array[nth_task];
5499       } else if (nth_task < (uint)chunk_top) {
5500         assert(nth_task >= 1, "Control point invariant");
5501         start = chunk_array[nth_task - 1];
5502         end   = chunk_array[nth_task];
5503       } else {
5504         assert(nth_task == (uint)chunk_top, "Control point invariant");
5505         start = chunk_array[chunk_top - 1];
5506         end   = space->top();
5507       }
5508       MemRegion mr(start, end);
5509       // Verify that mr is in space
5510       assert(mr.is_empty() || space->used_region().contains(mr),
5511              "Should be in space");
5512       // Verify that "start" is an object boundary
5513       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5514              "Should be an oop");
5515       space->par_oop_iterate(mr, cl);
5516     }
5517     pst->all_tasks_completed();
5518   }
5519 }
5520 
5521 void
5522 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5523   CompactibleFreeListSpace* sp, int i,
5524   Par_MarkRefsIntoAndScanClosure* cl) {
5525   // Until all tasks completed:
5526   // . claim an unclaimed task
5527   // . compute region boundaries corresponding to task claimed
5528   // . transfer dirty bits ct->mut for that region
5529   // . apply rescanclosure to dirty mut bits for that region
5530 
5531   ResourceMark rm;
5532   HandleMark   hm;
5533 
5534   OopTaskQueue* work_q = work_queue(i);
5535   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5536   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5537   // CAUTION: This closure has state that persists across calls to
5538   // the work method dirty_range_iterate_clear() in that it has
5539   // embedded in it a (subtype of) UpwardsObjectClosure. The
5540   // use of that state in the embedded UpwardsObjectClosure instance
5541   // assumes that the cards are always iterated (even if in parallel
5542   // by several threads) in monotonically increasing order per each
5543   // thread. This is true of the implementation below which picks
5544   // card ranges (chunks) in monotonically increasing order globally
5545   // and, a-fortiori, in monotonically increasing order per thread
5546   // (the latter order being a subsequence of the former).
5547   // If the work code below is ever reorganized into a more chaotic
5548   // work-partitioning form than the current "sequential tasks"
5549   // paradigm, the use of that persistent state will have to be
5550   // revisited and modified appropriately. See also related
5551   // bug 4756801 work on which should examine this code to make
5552   // sure that the changes there do not run counter to the
5553   // assumptions made here and necessary for correctness and
5554   // efficiency. Note also that this code might yield inefficient
5555   // behavior in the case of very large objects that span one or
5556   // more work chunks. Such objects would potentially be scanned
5557   // several times redundantly. Work on 4756801 should try and
5558   // address that performance anomaly if at all possible. XXX
5559   MemRegion  full_span  = _collector->_span;
5560   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5561   MarkFromDirtyCardsClosure
5562     greyRescanClosure(_collector, full_span, // entire span of interest
5563                       sp, bm, work_q, cl);
5564 
5565   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5566   assert(pst->valid(), "Uninitialized use?");
5567   uint nth_task = 0;
5568   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5569   MemRegion span = sp->used_region();
5570   HeapWord* start_addr = span.start();
5571   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5572                                            alignment);
5573   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5574   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5575          start_addr, "Check alignment");
5576   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5577          chunk_size, "Check alignment");
5578 
5579   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5580     // Having claimed the nth_task, compute corresponding mem-region,
5581     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
5582     // The alignment restriction ensures that we do not need any
5583     // synchronization with other gang-workers while setting or
5584     // clearing bits in thus chunk of the MUT.
5585     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5586                                     start_addr + (nth_task+1)*chunk_size);
5587     // The last chunk's end might be way beyond end of the
5588     // used region. In that case pull back appropriately.
5589     if (this_span.end() > end_addr) {
5590       this_span.set_end(end_addr);
5591       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5592     }
5593     // Iterate over the dirty cards covering this chunk, marking them
5594     // precleaned, and setting the corresponding bits in the mod union
5595     // table. Since we have been careful to partition at Card and MUT-word
5596     // boundaries no synchronization is needed between parallel threads.
5597     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5598                                                  &modUnionClosure);
5599 
5600     // Having transferred these marks into the modUnionTable,
5601     // rescan the marked objects on the dirty cards in the modUnionTable.
5602     // Even if this is at a synchronous collection, the initial marking
5603     // may have been done during an asynchronous collection so there
5604     // may be dirty bits in the mod-union table.
5605     _collector->_modUnionTable.dirty_range_iterate_clear(
5606                   this_span, &greyRescanClosure);
5607     _collector->_modUnionTable.verifyNoOneBitsInRange(
5608                                  this_span.start(),
5609                                  this_span.end());
5610   }
5611   pst->all_tasks_completed();  // declare that i am done
5612 }
5613 
5614 // . see if we can share work_queues with ParNew? XXX
5615 void
5616 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5617                                 int* seed) {
5618   OopTaskQueue* work_q = work_queue(i);
5619   NOT_PRODUCT(int num_steals = 0;)
5620   oop obj_to_scan;
5621   CMSBitMap* bm = &(_collector->_markBitMap);
5622 
5623   while (true) {
5624     // Completely finish any left over work from (an) earlier round(s)
5625     cl->trim_queue(0);
5626     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5627                                          (size_t)ParGCDesiredObjsFromOverflowList);
5628     // Now check if there's any work in the overflow list
5629     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5630     // only affects the number of attempts made to get work from the
5631     // overflow list and does not affect the number of workers.  Just
5632     // pass ParallelGCThreads so this behavior is unchanged.
5633     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5634                                                 work_q,
5635                                                 ParallelGCThreads)) {
5636       // found something in global overflow list;
5637       // not yet ready to go stealing work from others.
5638       // We'd like to assert(work_q->size() != 0, ...)
5639       // because we just took work from the overflow list,
5640       // but of course we can't since all of that could have
5641       // been already stolen from us.
5642       // "He giveth and He taketh away."
5643       continue;
5644     }
5645     // Verify that we have no work before we resort to stealing
5646     assert(work_q->size() == 0, "Have work, shouldn't steal");
5647     // Try to steal from other queues that have work
5648     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5649       NOT_PRODUCT(num_steals++;)
5650       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5651       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5652       // Do scanning work
5653       obj_to_scan->oop_iterate(cl);
5654       // Loop around, finish this work, and try to steal some more
5655     } else if (terminator()->offer_termination()) {
5656         break;  // nirvana from the infinite cycle
5657     }
5658   }
5659   NOT_PRODUCT(
5660     if (PrintCMSStatistics != 0) {
5661       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5662     }
5663   )
5664   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5665          "Else our work is not yet done");
5666 }
5667 
5668 // Record object boundaries in _eden_chunk_array by sampling the eden
5669 // top in the slow-path eden object allocation code path and record
5670 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5671 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5672 // sampling in sample_eden() that activates during the part of the
5673 // preclean phase.
5674 void CMSCollector::sample_eden_chunk() {
5675   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5676     if (_eden_chunk_lock->try_lock()) {
5677       // Record a sample. This is the critical section. The contents
5678       // of the _eden_chunk_array have to be non-decreasing in the
5679       // address order.
5680       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5681       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5682              "Unexpected state of Eden");
5683       if (_eden_chunk_index == 0 ||
5684           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5685            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5686                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5687         _eden_chunk_index++;  // commit sample
5688       }
5689       _eden_chunk_lock->unlock();
5690     }
5691   }
5692 }
5693 
5694 // Return a thread-local PLAB recording array, as appropriate.
5695 void* CMSCollector::get_data_recorder(int thr_num) {
5696   if (_survivor_plab_array != NULL &&
5697       (CMSPLABRecordAlways ||
5698        (_collectorState > Marking && _collectorState < FinalMarking))) {
5699     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5700     ChunkArray* ca = &_survivor_plab_array[thr_num];
5701     ca->reset();   // clear it so that fresh data is recorded
5702     return (void*) ca;
5703   } else {
5704     return NULL;
5705   }
5706 }
5707 
5708 // Reset all the thread-local PLAB recording arrays
5709 void CMSCollector::reset_survivor_plab_arrays() {
5710   for (uint i = 0; i < ParallelGCThreads; i++) {
5711     _survivor_plab_array[i].reset();
5712   }
5713 }
5714 
5715 // Merge the per-thread plab arrays into the global survivor chunk
5716 // array which will provide the partitioning of the survivor space
5717 // for CMS initial scan and rescan.
5718 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5719                                               int no_of_gc_threads) {
5720   assert(_survivor_plab_array  != NULL, "Error");
5721   assert(_survivor_chunk_array != NULL, "Error");
5722   assert(_collectorState == FinalMarking ||
5723          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5724   for (int j = 0; j < no_of_gc_threads; j++) {
5725     _cursor[j] = 0;
5726   }
5727   HeapWord* top = surv->top();
5728   size_t i;
5729   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5730     HeapWord* min_val = top;          // Higher than any PLAB address
5731     uint      min_tid = 0;            // position of min_val this round
5732     for (int j = 0; j < no_of_gc_threads; j++) {
5733       ChunkArray* cur_sca = &_survivor_plab_array[j];
5734       if (_cursor[j] == cur_sca->end()) {
5735         continue;
5736       }
5737       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5738       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5739       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5740       if (cur_val < min_val) {
5741         min_tid = j;
5742         min_val = cur_val;
5743       } else {
5744         assert(cur_val < top, "All recorded addresses should be less");
5745       }
5746     }
5747     // At this point min_val and min_tid are respectively
5748     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5749     // and the thread (j) that witnesses that address.
5750     // We record this address in the _survivor_chunk_array[i]
5751     // and increment _cursor[min_tid] prior to the next round i.
5752     if (min_val == top) {
5753       break;
5754     }
5755     _survivor_chunk_array[i] = min_val;
5756     _cursor[min_tid]++;
5757   }
5758   // We are all done; record the size of the _survivor_chunk_array
5759   _survivor_chunk_index = i; // exclusive: [0, i)
5760   if (PrintCMSStatistics > 0) {
5761     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5762   }
5763   // Verify that we used up all the recorded entries
5764   #ifdef ASSERT
5765     size_t total = 0;
5766     for (int j = 0; j < no_of_gc_threads; j++) {
5767       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5768       total += _cursor[j];
5769     }
5770     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5771     // Check that the merged array is in sorted order
5772     if (total > 0) {
5773       for (size_t i = 0; i < total - 1; i++) {
5774         if (PrintCMSStatistics > 0) {
5775           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5776                               i, _survivor_chunk_array[i]);
5777         }
5778         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5779                "Not sorted");
5780       }
5781     }
5782   #endif // ASSERT
5783 }
5784 
5785 // Set up the space's par_seq_tasks structure for work claiming
5786 // for parallel initial scan and rescan of young gen.
5787 // See ParRescanTask where this is currently used.
5788 void
5789 CMSCollector::
5790 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5791   assert(n_threads > 0, "Unexpected n_threads argument");
5792   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5793 
5794   // Eden space
5795   if (!dng->eden()->is_empty()) {
5796     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5797     assert(!pst->valid(), "Clobbering existing data?");
5798     // Each valid entry in [0, _eden_chunk_index) represents a task.
5799     size_t n_tasks = _eden_chunk_index + 1;
5800     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5801     // Sets the condition for completion of the subtask (how many threads
5802     // need to finish in order to be done).
5803     pst->set_n_threads(n_threads);
5804     pst->set_n_tasks((int)n_tasks);
5805   }
5806 
5807   // Merge the survivor plab arrays into _survivor_chunk_array
5808   if (_survivor_plab_array != NULL) {
5809     merge_survivor_plab_arrays(dng->from(), n_threads);
5810   } else {
5811     assert(_survivor_chunk_index == 0, "Error");
5812   }
5813 
5814   // To space
5815   {
5816     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5817     assert(!pst->valid(), "Clobbering existing data?");
5818     // Sets the condition for completion of the subtask (how many threads
5819     // need to finish in order to be done).
5820     pst->set_n_threads(n_threads);
5821     pst->set_n_tasks(1);
5822     assert(pst->valid(), "Error");
5823   }
5824 
5825   // From space
5826   {
5827     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5828     assert(!pst->valid(), "Clobbering existing data?");
5829     size_t n_tasks = _survivor_chunk_index + 1;
5830     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5831     // Sets the condition for completion of the subtask (how many threads
5832     // need to finish in order to be done).
5833     pst->set_n_threads(n_threads);
5834     pst->set_n_tasks((int)n_tasks);
5835     assert(pst->valid(), "Error");
5836   }
5837 }
5838 
5839 // Parallel version of remark
5840 void CMSCollector::do_remark_parallel() {
5841   GenCollectedHeap* gch = GenCollectedHeap::heap();
5842   FlexibleWorkGang* workers = gch->workers();
5843   assert(workers != NULL, "Need parallel worker threads.");
5844   // Choose to use the number of GC workers most recently set
5845   // into "active_workers".  If active_workers is not set, set it
5846   // to ParallelGCThreads.
5847   int n_workers = workers->active_workers();
5848   if (n_workers == 0) {
5849     assert(n_workers > 0, "Should have been set during scavenge");
5850     n_workers = ParallelGCThreads;
5851     workers->set_active_workers(n_workers);
5852   }
5853   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5854 
5855   CMSParRemarkTask tsk(this,
5856     cms_space,
5857     n_workers, workers, task_queues());
5858 
5859   // Set up for parallel process_strong_roots work.
5860   gch->set_par_threads(n_workers);
5861   // We won't be iterating over the cards in the card table updating
5862   // the younger_gen cards, so we shouldn't call the following else
5863   // the verification code as well as subsequent younger_refs_iterate
5864   // code would get confused. XXX
5865   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5866 
5867   // The young gen rescan work will not be done as part of
5868   // process_strong_roots (which currently doesn't knw how to
5869   // parallelize such a scan), but rather will be broken up into
5870   // a set of parallel tasks (via the sampling that the [abortable]
5871   // preclean phase did of EdenSpace, plus the [two] tasks of
5872   // scanning the [two] survivor spaces. Further fine-grain
5873   // parallelization of the scanning of the survivor spaces
5874   // themselves, and of precleaning of the younger gen itself
5875   // is deferred to the future.
5876   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5877 
5878   // The dirty card rescan work is broken up into a "sequence"
5879   // of parallel tasks (per constituent space) that are dynamically
5880   // claimed by the parallel threads.
5881   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5882 
5883   // It turns out that even when we're using 1 thread, doing the work in a
5884   // separate thread causes wide variance in run times.  We can't help this
5885   // in the multi-threaded case, but we special-case n=1 here to get
5886   // repeatable measurements of the 1-thread overhead of the parallel code.
5887   if (n_workers > 1) {
5888     // Make refs discovery MT-safe, if it isn't already: it may not
5889     // necessarily be so, since it's possible that we are doing
5890     // ST marking.
5891     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5892     GenCollectedHeap::StrongRootsScope srs(gch);
5893     workers->run_task(&tsk);
5894   } else {
5895     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5896     GenCollectedHeap::StrongRootsScope srs(gch);
5897     tsk.work(0);
5898   }
5899 
5900   gch->set_par_threads(0);  // 0 ==> non-parallel.
5901   // restore, single-threaded for now, any preserved marks
5902   // as a result of work_q overflow
5903   restore_preserved_marks_if_any();
5904 }
5905 
5906 // Non-parallel version of remark
5907 void CMSCollector::do_remark_non_parallel() {
5908   ResourceMark rm;
5909   HandleMark   hm;
5910   GenCollectedHeap* gch = GenCollectedHeap::heap();
5911   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5912 
5913   MarkRefsIntoAndScanClosure
5914     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5915              &_markStack, this,
5916              false /* should_yield */, false /* not precleaning */);
5917   MarkFromDirtyCardsClosure
5918     markFromDirtyCardsClosure(this, _span,
5919                               NULL,  // space is set further below
5920                               &_markBitMap, &_markStack, &mrias_cl);
5921   {
5922     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5923     // Iterate over the dirty cards, setting the corresponding bits in the
5924     // mod union table.
5925     {
5926       ModUnionClosure modUnionClosure(&_modUnionTable);
5927       _ct->ct_bs()->dirty_card_iterate(
5928                       _cmsGen->used_region(),
5929                       &modUnionClosure);
5930     }
5931     // Having transferred these marks into the modUnionTable, we just need
5932     // to rescan the marked objects on the dirty cards in the modUnionTable.
5933     // The initial marking may have been done during an asynchronous
5934     // collection so there may be dirty bits in the mod-union table.
5935     const int alignment =
5936       CardTableModRefBS::card_size * BitsPerWord;
5937     {
5938       // ... First handle dirty cards in CMS gen
5939       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5940       MemRegion ur = _cmsGen->used_region();
5941       HeapWord* lb = ur.start();
5942       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5943       MemRegion cms_span(lb, ub);
5944       _modUnionTable.dirty_range_iterate_clear(cms_span,
5945                                                &markFromDirtyCardsClosure);
5946       verify_work_stacks_empty();
5947       if (PrintCMSStatistics != 0) {
5948         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5949           markFromDirtyCardsClosure.num_dirty_cards());
5950       }
5951     }
5952   }
5953   if (VerifyDuringGC &&
5954       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5955     HandleMark hm;  // Discard invalid handles created during verification
5956     Universe::verify();
5957   }
5958   {
5959     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5960 
5961     verify_work_stacks_empty();
5962 
5963     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5964     GenCollectedHeap::StrongRootsScope srs(gch);
5965     gch->gen_process_strong_roots(_cmsGen->level(),
5966                                   true,  // younger gens as roots
5967                                   false, // use the local StrongRootsScope
5968                                   SharedHeap::ScanningOption(roots_scanning_options()),
5969                                   &mrias_cl,
5970                                   NULL,
5971                                   NULL);  // The dirty klasses will be handled below
5972 
5973     assert(should_unload_classes()
5974            || (roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5975            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5976   }
5977 
5978   {
5979     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5980 
5981     verify_work_stacks_empty();
5982 
5983     // Scan all class loader data objects that might have been introduced
5984     // during concurrent marking.
5985     ResourceMark rm;
5986     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5987     for (int i = 0; i < array->length(); i++) {
5988       mrias_cl.do_class_loader_data(array->at(i));
5989     }
5990 
5991     // We don't need to keep track of new CLDs anymore.
5992     ClassLoaderDataGraph::remember_new_clds(false);
5993 
5994     verify_work_stacks_empty();
5995   }
5996 
5997   {
5998     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5999 
6000     verify_work_stacks_empty();
6001 
6002     RemarkKlassClosure remark_klass_closure(&mrias_cl);
6003     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
6004 
6005     verify_work_stacks_empty();
6006   }
6007 
6008   // We might have added oops to ClassLoaderData::_handles during the
6009   // concurrent marking phase. These oops point to newly allocated objects
6010   // that are guaranteed to be kept alive. Either by the direct allocation
6011   // code, or when the young collector processes the strong roots. Hence,
6012   // we don't have to revisit the _handles block during the remark phase.
6013 
6014   verify_work_stacks_empty();
6015   // Restore evacuated mark words, if any, used for overflow list links
6016   if (!CMSOverflowEarlyRestoration) {
6017     restore_preserved_marks_if_any();
6018   }
6019   verify_overflow_empty();
6020 }
6021 
6022 ////////////////////////////////////////////////////////
6023 // Parallel Reference Processing Task Proxy Class
6024 ////////////////////////////////////////////////////////
6025 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
6026   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
6027   CMSCollector*          _collector;
6028   CMSBitMap*             _mark_bit_map;
6029   const MemRegion        _span;
6030   ProcessTask&           _task;
6031 
6032 public:
6033   CMSRefProcTaskProxy(ProcessTask&     task,
6034                       CMSCollector*    collector,
6035                       const MemRegion& span,
6036                       CMSBitMap*       mark_bit_map,
6037                       AbstractWorkGang* workers,
6038                       OopTaskQueueSet* task_queues):
6039     // XXX Should superclass AGTWOQ also know about AWG since it knows
6040     // about the task_queues used by the AWG? Then it could initialize
6041     // the terminator() object. See 6984287. The set_for_termination()
6042     // below is a temporary band-aid for the regression in 6984287.
6043     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
6044       task_queues),
6045     _task(task),
6046     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
6047   {
6048     assert(_collector->_span.equals(_span) && !_span.is_empty(),
6049            "Inconsistency in _span");
6050     set_for_termination(workers->active_workers());
6051   }
6052 
6053   OopTaskQueueSet* task_queues() { return queues(); }
6054 
6055   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
6056 
6057   void do_work_steal(int i,
6058                      CMSParDrainMarkingStackClosure* drain,
6059                      CMSParKeepAliveClosure* keep_alive,
6060                      int* seed);
6061 
6062   virtual void work(uint worker_id);
6063 };
6064 
6065 void CMSRefProcTaskProxy::work(uint worker_id) {
6066   assert(_collector->_span.equals(_span), "Inconsistency in _span");
6067   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
6068                                         _mark_bit_map,
6069                                         work_queue(worker_id));
6070   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
6071                                                  _mark_bit_map,
6072                                                  work_queue(worker_id));
6073   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
6074   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
6075   if (_task.marks_oops_alive()) {
6076     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6077                   _collector->hash_seed(worker_id));
6078   }
6079   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6080   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6081 }
6082 
6083 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6084   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6085   EnqueueTask& _task;
6086 
6087 public:
6088   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6089     : AbstractGangTask("Enqueue reference objects in parallel"),
6090       _task(task)
6091   { }
6092 
6093   virtual void work(uint worker_id)
6094   {
6095     _task.work(worker_id);
6096   }
6097 };
6098 
6099 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6100   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6101    _span(span),
6102    _bit_map(bit_map),
6103    _work_queue(work_queue),
6104    _mark_and_push(collector, span, bit_map, work_queue),
6105    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6106                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6107 { }
6108 
6109 // . see if we can share work_queues with ParNew? XXX
6110 void CMSRefProcTaskProxy::do_work_steal(int i,
6111   CMSParDrainMarkingStackClosure* drain,
6112   CMSParKeepAliveClosure* keep_alive,
6113   int* seed) {
6114   OopTaskQueue* work_q = work_queue(i);
6115   NOT_PRODUCT(int num_steals = 0;)
6116   oop obj_to_scan;
6117 
6118   while (true) {
6119     // Completely finish any left over work from (an) earlier round(s)
6120     drain->trim_queue(0);
6121     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6122                                          (size_t)ParGCDesiredObjsFromOverflowList);
6123     // Now check if there's any work in the overflow list
6124     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6125     // only affects the number of attempts made to get work from the
6126     // overflow list and does not affect the number of workers.  Just
6127     // pass ParallelGCThreads so this behavior is unchanged.
6128     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6129                                                 work_q,
6130                                                 ParallelGCThreads)) {
6131       // Found something in global overflow list;
6132       // not yet ready to go stealing work from others.
6133       // We'd like to assert(work_q->size() != 0, ...)
6134       // because we just took work from the overflow list,
6135       // but of course we can't, since all of that might have
6136       // been already stolen from us.
6137       continue;
6138     }
6139     // Verify that we have no work before we resort to stealing
6140     assert(work_q->size() == 0, "Have work, shouldn't steal");
6141     // Try to steal from other queues that have work
6142     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6143       NOT_PRODUCT(num_steals++;)
6144       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6145       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6146       // Do scanning work
6147       obj_to_scan->oop_iterate(keep_alive);
6148       // Loop around, finish this work, and try to steal some more
6149     } else if (terminator()->offer_termination()) {
6150       break;  // nirvana from the infinite cycle
6151     }
6152   }
6153   NOT_PRODUCT(
6154     if (PrintCMSStatistics != 0) {
6155       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6156     }
6157   )
6158 }
6159 
6160 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6161 {
6162   GenCollectedHeap* gch = GenCollectedHeap::heap();
6163   FlexibleWorkGang* workers = gch->workers();
6164   assert(workers != NULL, "Need parallel worker threads.");
6165   CMSRefProcTaskProxy rp_task(task, &_collector,
6166                               _collector.ref_processor()->span(),
6167                               _collector.markBitMap(),
6168                               workers, _collector.task_queues());
6169   workers->run_task(&rp_task);
6170 }
6171 
6172 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6173 {
6174 
6175   GenCollectedHeap* gch = GenCollectedHeap::heap();
6176   FlexibleWorkGang* workers = gch->workers();
6177   assert(workers != NULL, "Need parallel worker threads.");
6178   CMSRefEnqueueTaskProxy enq_task(task);
6179   workers->run_task(&enq_task);
6180 }
6181 
6182 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6183 
6184   ResourceMark rm;
6185   HandleMark   hm;
6186 
6187   ReferenceProcessor* rp = ref_processor();
6188   assert(rp->span().equals(_span), "Spans should be equal");
6189   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6190   // Process weak references.
6191   rp->setup_policy(clear_all_soft_refs);
6192   verify_work_stacks_empty();
6193 
6194   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6195                                           &_markStack, false /* !preclean */);
6196   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6197                                 _span, &_markBitMap, &_markStack,
6198                                 &cmsKeepAliveClosure, false /* !preclean */);
6199   {
6200     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
6201 
6202     ReferenceProcessorStats stats;
6203     if (rp->processing_is_mt()) {
6204       // Set the degree of MT here.  If the discovery is done MT, there
6205       // may have been a different number of threads doing the discovery
6206       // and a different number of discovered lists may have Ref objects.
6207       // That is OK as long as the Reference lists are balanced (see
6208       // balance_all_queues() and balance_queues()).
6209       GenCollectedHeap* gch = GenCollectedHeap::heap();
6210       int active_workers = ParallelGCThreads;
6211       FlexibleWorkGang* workers = gch->workers();
6212       if (workers != NULL) {
6213         active_workers = workers->active_workers();
6214         // The expectation is that active_workers will have already
6215         // been set to a reasonable value.  If it has not been set,
6216         // investigate.
6217         assert(active_workers > 0, "Should have been set during scavenge");
6218       }
6219       rp->set_active_mt_degree(active_workers);
6220       CMSRefProcTaskExecutor task_executor(*this);
6221       stats = rp->process_discovered_references(&_is_alive_closure,
6222                                         &cmsKeepAliveClosure,
6223                                         &cmsDrainMarkingStackClosure,
6224                                         &task_executor,
6225                                         _gc_timer_cm);
6226     } else {
6227       stats = rp->process_discovered_references(&_is_alive_closure,
6228                                         &cmsKeepAliveClosure,
6229                                         &cmsDrainMarkingStackClosure,
6230                                         NULL,
6231                                         _gc_timer_cm);
6232     }
6233     _gc_tracer_cm->report_gc_reference_stats(stats);
6234 
6235   }
6236 
6237   // This is the point where the entire marking should have completed.
6238   verify_work_stacks_empty();
6239 
6240   if (should_unload_classes()) {
6241     {
6242       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
6243 
6244       // Unload classes and purge the SystemDictionary.
6245       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6246 
6247       // Unload nmethods.
6248       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6249 
6250       // Prune dead klasses from subklass/sibling/implementor lists.
6251       Klass::clean_weak_klass_links(&_is_alive_closure);
6252     }
6253 
6254     {
6255       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
6256       // Clean up unreferenced symbols in symbol table.
6257       SymbolTable::unlink();
6258     }
6259   }
6260 
6261   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
6262   // Need to check if we really scanned the StringTable.
6263   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
6264     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
6265     // Delete entries for dead interned strings.
6266     StringTable::unlink(&_is_alive_closure);
6267   }
6268 
6269   // Restore any preserved marks as a result of mark stack or
6270   // work queue overflow
6271   restore_preserved_marks_if_any();  // done single-threaded for now
6272 
6273   rp->set_enqueuing_is_done(true);
6274   if (rp->processing_is_mt()) {
6275     rp->balance_all_queues();
6276     CMSRefProcTaskExecutor task_executor(*this);
6277     rp->enqueue_discovered_references(&task_executor);
6278   } else {
6279     rp->enqueue_discovered_references(NULL);
6280   }
6281   rp->verify_no_references_recorded();
6282   assert(!rp->discovery_enabled(), "should have been disabled");
6283 }
6284 
6285 #ifndef PRODUCT
6286 void CMSCollector::check_correct_thread_executing() {
6287   Thread* t = Thread::current();
6288   // Only the VM thread or the CMS thread should be here.
6289   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6290          "Unexpected thread type");
6291   // If this is the vm thread, the foreground process
6292   // should not be waiting.  Note that _foregroundGCIsActive is
6293   // true while the foreground collector is waiting.
6294   if (_foregroundGCShouldWait) {
6295     // We cannot be the VM thread
6296     assert(t->is_ConcurrentGC_thread(),
6297            "Should be CMS thread");
6298   } else {
6299     // We can be the CMS thread only if we are in a stop-world
6300     // phase of CMS collection.
6301     if (t->is_ConcurrentGC_thread()) {
6302       assert(_collectorState == InitialMarking ||
6303              _collectorState == FinalMarking,
6304              "Should be a stop-world phase");
6305       // The CMS thread should be holding the CMS_token.
6306       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6307              "Potential interference with concurrently "
6308              "executing VM thread");
6309     }
6310   }
6311 }
6312 #endif
6313 
6314 void CMSCollector::sweep(bool asynch) {
6315   assert(_collectorState == Sweeping, "just checking");
6316   check_correct_thread_executing();
6317   verify_work_stacks_empty();
6318   verify_overflow_empty();
6319   increment_sweep_count();
6320   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6321 
6322   _inter_sweep_timer.stop();
6323   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6324   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6325 
6326   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6327   _intra_sweep_timer.reset();
6328   _intra_sweep_timer.start();
6329   if (asynch) {
6330     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6331     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6332     // First sweep the old gen
6333     {
6334       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6335                                bitMapLock());
6336       sweepWork(_cmsGen, asynch);
6337     }
6338 
6339     // Update Universe::_heap_*_at_gc figures.
6340     // We need all the free list locks to make the abstract state
6341     // transition from Sweeping to Resetting. See detailed note
6342     // further below.
6343     {
6344       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6345       // Update heap occupancy information which is used as
6346       // input to soft ref clearing policy at the next gc.
6347       Universe::update_heap_info_at_gc();
6348       _collectorState = Resizing;
6349     }
6350   } else {
6351     // already have needed locks
6352     sweepWork(_cmsGen,  asynch);
6353     // Update heap occupancy information which is used as
6354     // input to soft ref clearing policy at the next gc.
6355     Universe::update_heap_info_at_gc();
6356     _collectorState = Resizing;
6357   }
6358   verify_work_stacks_empty();
6359   verify_overflow_empty();
6360 
6361   if (should_unload_classes()) {
6362     ClassLoaderDataGraph::purge();
6363   }
6364 
6365   _intra_sweep_timer.stop();
6366   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6367 
6368   _inter_sweep_timer.reset();
6369   _inter_sweep_timer.start();
6370 
6371   // We need to use a monotonically non-decreasing time in ms
6372   // or we will see time-warp warnings and os::javaTimeMillis()
6373   // does not guarantee monotonicity.
6374   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6375   update_time_of_last_gc(now);
6376 
6377   // NOTE on abstract state transitions:
6378   // Mutators allocate-live and/or mark the mod-union table dirty
6379   // based on the state of the collection.  The former is done in
6380   // the interval [Marking, Sweeping] and the latter in the interval
6381   // [Marking, Sweeping).  Thus the transitions into the Marking state
6382   // and out of the Sweeping state must be synchronously visible
6383   // globally to the mutators.
6384   // The transition into the Marking state happens with the world
6385   // stopped so the mutators will globally see it.  Sweeping is
6386   // done asynchronously by the background collector so the transition
6387   // from the Sweeping state to the Resizing state must be done
6388   // under the freelistLock (as is the check for whether to
6389   // allocate-live and whether to dirty the mod-union table).
6390   assert(_collectorState == Resizing, "Change of collector state to"
6391     " Resizing must be done under the freelistLocks (plural)");
6392 
6393   // Now that sweeping has been completed, we clear
6394   // the incremental_collection_failed flag,
6395   // thus inviting a younger gen collection to promote into
6396   // this generation. If such a promotion may still fail,
6397   // the flag will be set again when a young collection is
6398   // attempted.
6399   GenCollectedHeap* gch = GenCollectedHeap::heap();
6400   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6401   gch->update_full_collections_completed(_collection_count_start);
6402 }
6403 
6404 // FIX ME!!! Looks like this belongs in CFLSpace, with
6405 // CMSGen merely delegating to it.
6406 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6407   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6408   HeapWord*  minAddr        = _cmsSpace->bottom();
6409   HeapWord*  largestAddr    =
6410     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6411   if (largestAddr == NULL) {
6412     // The dictionary appears to be empty.  In this case
6413     // try to coalesce at the end of the heap.
6414     largestAddr = _cmsSpace->end();
6415   }
6416   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6417   size_t nearLargestOffset =
6418     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6419   if (PrintFLSStatistics != 0) {
6420     gclog_or_tty->print_cr(
6421       "CMS: Large Block: " PTR_FORMAT ";"
6422       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6423       largestAddr,
6424       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6425   }
6426   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6427 }
6428 
6429 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6430   return addr >= _cmsSpace->nearLargestChunk();
6431 }
6432 
6433 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6434   return _cmsSpace->find_chunk_at_end();
6435 }
6436 
6437 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6438                                                     bool full) {
6439   // The next lower level has been collected.  Gather any statistics
6440   // that are of interest at this point.
6441   if (!full && (current_level + 1) == level()) {
6442     // Gather statistics on the young generation collection.
6443     collector()->stats().record_gc0_end(used());
6444   }
6445 }
6446 
6447 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6448   GenCollectedHeap* gch = GenCollectedHeap::heap();
6449   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6450     "Wrong type of heap");
6451   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6452     gch->gen_policy()->size_policy();
6453   assert(sp->is_gc_cms_adaptive_size_policy(),
6454     "Wrong type of size policy");
6455   return sp;
6456 }
6457 
6458 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6459   if (PrintGCDetails && Verbose) {
6460     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6461   }
6462   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6463   _debug_collection_type =
6464     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6465   if (PrintGCDetails && Verbose) {
6466     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6467   }
6468 }
6469 
6470 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6471   bool asynch) {
6472   // We iterate over the space(s) underlying this generation,
6473   // checking the mark bit map to see if the bits corresponding
6474   // to specific blocks are marked or not. Blocks that are
6475   // marked are live and are not swept up. All remaining blocks
6476   // are swept up, with coalescing on-the-fly as we sweep up
6477   // contiguous free and/or garbage blocks:
6478   // We need to ensure that the sweeper synchronizes with allocators
6479   // and stop-the-world collectors. In particular, the following
6480   // locks are used:
6481   // . CMS token: if this is held, a stop the world collection cannot occur
6482   // . freelistLock: if this is held no allocation can occur from this
6483   //                 generation by another thread
6484   // . bitMapLock: if this is held, no other thread can access or update
6485   //
6486 
6487   // Note that we need to hold the freelistLock if we use
6488   // block iterate below; else the iterator might go awry if
6489   // a mutator (or promotion) causes block contents to change
6490   // (for instance if the allocator divvies up a block).
6491   // If we hold the free list lock, for all practical purposes
6492   // young generation GC's can't occur (they'll usually need to
6493   // promote), so we might as well prevent all young generation
6494   // GC's while we do a sweeping step. For the same reason, we might
6495   // as well take the bit map lock for the entire duration
6496 
6497   // check that we hold the requisite locks
6498   assert(have_cms_token(), "Should hold cms token");
6499   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6500          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6501         "Should possess CMS token to sweep");
6502   assert_lock_strong(gen->freelistLock());
6503   assert_lock_strong(bitMapLock());
6504 
6505   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6506   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6507   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6508                                       _inter_sweep_estimate.padded_average(),
6509                                       _intra_sweep_estimate.padded_average());
6510   gen->setNearLargestChunk();
6511 
6512   {
6513     SweepClosure sweepClosure(this, gen, &_markBitMap,
6514                             CMSYield && asynch);
6515     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6516     // We need to free-up/coalesce garbage/blocks from a
6517     // co-terminal free run. This is done in the SweepClosure
6518     // destructor; so, do not remove this scope, else the
6519     // end-of-sweep-census below will be off by a little bit.
6520   }
6521   gen->cmsSpace()->sweep_completed();
6522   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6523   if (should_unload_classes()) {                // unloaded classes this cycle,
6524     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6525   } else {                                      // did not unload classes,
6526     _concurrent_cycles_since_last_unload++;     // ... increment count
6527   }
6528 }
6529 
6530 // Reset CMS data structures (for now just the marking bit map)
6531 // preparatory for the next cycle.
6532 void CMSCollector::reset(bool asynch) {
6533   GenCollectedHeap* gch = GenCollectedHeap::heap();
6534   CMSAdaptiveSizePolicy* sp = size_policy();
6535   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6536   if (asynch) {
6537     CMSTokenSyncWithLocks ts(true, bitMapLock());
6538 
6539     // If the state is not "Resetting", the foreground  thread
6540     // has done a collection and the resetting.
6541     if (_collectorState != Resetting) {
6542       assert(_collectorState == Idling, "The state should only change"
6543         " because the foreground collector has finished the collection");
6544       return;
6545     }
6546 
6547     // Clear the mark bitmap (no grey objects to start with)
6548     // for the next cycle.
6549     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6550     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6551 
6552     HeapWord* curAddr = _markBitMap.startWord();
6553     while (curAddr < _markBitMap.endWord()) {
6554       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6555       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6556       _markBitMap.clear_large_range(chunk);
6557       if (ConcurrentMarkSweepThread::should_yield() &&
6558           !foregroundGCIsActive() &&
6559           CMSYield) {
6560         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6561                "CMS thread should hold CMS token");
6562         assert_lock_strong(bitMapLock());
6563         bitMapLock()->unlock();
6564         ConcurrentMarkSweepThread::desynchronize(true);
6565         ConcurrentMarkSweepThread::acknowledge_yield_request();
6566         stopTimer();
6567         if (PrintCMSStatistics != 0) {
6568           incrementYields();
6569         }
6570         icms_wait();
6571 
6572         // See the comment in coordinator_yield()
6573         for (unsigned i = 0; i < CMSYieldSleepCount &&
6574                          ConcurrentMarkSweepThread::should_yield() &&
6575                          !CMSCollector::foregroundGCIsActive(); ++i) {
6576           os::sleep(Thread::current(), 1, false);
6577           ConcurrentMarkSweepThread::acknowledge_yield_request();
6578         }
6579 
6580         ConcurrentMarkSweepThread::synchronize(true);
6581         bitMapLock()->lock_without_safepoint_check();
6582         startTimer();
6583       }
6584       curAddr = chunk.end();
6585     }
6586     // A successful mostly concurrent collection has been done.
6587     // Because only the full (i.e., concurrent mode failure) collections
6588     // are being measured for gc overhead limits, clean the "near" flag
6589     // and count.
6590     sp->reset_gc_overhead_limit_count();
6591     _collectorState = Idling;
6592   } else {
6593     // already have the lock
6594     assert(_collectorState == Resetting, "just checking");
6595     assert_lock_strong(bitMapLock());
6596     _markBitMap.clear_all();
6597     _collectorState = Idling;
6598   }
6599 
6600   // Stop incremental mode after a cycle completes, so that any future cycles
6601   // are triggered by allocation.
6602   stop_icms();
6603 
6604   NOT_PRODUCT(
6605     if (RotateCMSCollectionTypes) {
6606       _cmsGen->rotate_debug_collection_type();
6607     }
6608   )
6609 
6610   register_gc_end();
6611 }
6612 
6613 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6614   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6615   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6616   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6617   TraceCollectorStats tcs(counters());
6618 
6619   switch (op) {
6620     case CMS_op_checkpointRootsInitial: {
6621       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6622       checkpointRootsInitial(true);       // asynch
6623       if (PrintGC) {
6624         _cmsGen->printOccupancy("initial-mark");
6625       }
6626       break;
6627     }
6628     case CMS_op_checkpointRootsFinal: {
6629       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6630       checkpointRootsFinal(true,    // asynch
6631                            false,   // !clear_all_soft_refs
6632                            false);  // !init_mark_was_synchronous
6633       if (PrintGC) {
6634         _cmsGen->printOccupancy("remark");
6635       }
6636       break;
6637     }
6638     default:
6639       fatal("No such CMS_op");
6640   }
6641 }
6642 
6643 #ifndef PRODUCT
6644 size_t const CMSCollector::skip_header_HeapWords() {
6645   return FreeChunk::header_size();
6646 }
6647 
6648 // Try and collect here conditions that should hold when
6649 // CMS thread is exiting. The idea is that the foreground GC
6650 // thread should not be blocked if it wants to terminate
6651 // the CMS thread and yet continue to run the VM for a while
6652 // after that.
6653 void CMSCollector::verify_ok_to_terminate() const {
6654   assert(Thread::current()->is_ConcurrentGC_thread(),
6655          "should be called by CMS thread");
6656   assert(!_foregroundGCShouldWait, "should be false");
6657   // We could check here that all the various low-level locks
6658   // are not held by the CMS thread, but that is overkill; see
6659   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6660   // is checked.
6661 }
6662 #endif
6663 
6664 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6665    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6666           "missing Printezis mark?");
6667   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6668   size_t size = pointer_delta(nextOneAddr + 1, addr);
6669   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6670          "alignment problem");
6671   assert(size >= 3, "Necessary for Printezis marks to work");
6672   return size;
6673 }
6674 
6675 // A variant of the above (block_size_using_printezis_bits()) except
6676 // that we return 0 if the P-bits are not yet set.
6677 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6678   if (_markBitMap.isMarked(addr + 1)) {
6679     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6680     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6681     size_t size = pointer_delta(nextOneAddr + 1, addr);
6682     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6683            "alignment problem");
6684     assert(size >= 3, "Necessary for Printezis marks to work");
6685     return size;
6686   }
6687   return 0;
6688 }
6689 
6690 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6691   size_t sz = 0;
6692   oop p = (oop)addr;
6693   if (p->klass_or_null() != NULL) {
6694     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6695   } else {
6696     sz = block_size_using_printezis_bits(addr);
6697   }
6698   assert(sz > 0, "size must be nonzero");
6699   HeapWord* next_block = addr + sz;
6700   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6701                                              CardTableModRefBS::card_size);
6702   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6703          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6704          "must be different cards");
6705   return next_card;
6706 }
6707 
6708 
6709 // CMS Bit Map Wrapper /////////////////////////////////////////
6710 
6711 // Construct a CMS bit map infrastructure, but don't create the
6712 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6713 // further below.
6714 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6715   _bm(),
6716   _shifter(shifter),
6717   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6718 {
6719   _bmStartWord = 0;
6720   _bmWordSize  = 0;
6721 }
6722 
6723 bool CMSBitMap::allocate(MemRegion mr) {
6724   _bmStartWord = mr.start();
6725   _bmWordSize  = mr.word_size();
6726   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6727                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6728   if (!brs.is_reserved()) {
6729     warning("CMS bit map allocation failure");
6730     return false;
6731   }
6732   // For now we'll just commit all of the bit map up front.
6733   // Later on we'll try to be more parsimonious with swap.
6734   if (!_virtual_space.initialize(brs, brs.size())) {
6735     warning("CMS bit map backing store failure");
6736     return false;
6737   }
6738   assert(_virtual_space.committed_size() == brs.size(),
6739          "didn't reserve backing store for all of CMS bit map?");
6740   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6741   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6742          _bmWordSize, "inconsistency in bit map sizing");
6743   _bm.set_size(_bmWordSize >> _shifter);
6744 
6745   // bm.clear(); // can we rely on getting zero'd memory? verify below
6746   assert(isAllClear(),
6747          "Expected zero'd memory from ReservedSpace constructor");
6748   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6749          "consistency check");
6750   return true;
6751 }
6752 
6753 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6754   HeapWord *next_addr, *end_addr, *last_addr;
6755   assert_locked();
6756   assert(covers(mr), "out-of-range error");
6757   // XXX assert that start and end are appropriately aligned
6758   for (next_addr = mr.start(), end_addr = mr.end();
6759        next_addr < end_addr; next_addr = last_addr) {
6760     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6761     last_addr = dirty_region.end();
6762     if (!dirty_region.is_empty()) {
6763       cl->do_MemRegion(dirty_region);
6764     } else {
6765       assert(last_addr == end_addr, "program logic");
6766       return;
6767     }
6768   }
6769 }
6770 
6771 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6772   _bm.print_on_error(st, prefix);
6773 }
6774 
6775 #ifndef PRODUCT
6776 void CMSBitMap::assert_locked() const {
6777   CMSLockVerifier::assert_locked(lock());
6778 }
6779 
6780 bool CMSBitMap::covers(MemRegion mr) const {
6781   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6782   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6783          "size inconsistency");
6784   return (mr.start() >= _bmStartWord) &&
6785          (mr.end()   <= endWord());
6786 }
6787 
6788 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6789     return (start >= _bmStartWord && (start + size) <= endWord());
6790 }
6791 
6792 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6793   // verify that there are no 1 bits in the interval [left, right)
6794   FalseBitMapClosure falseBitMapClosure;
6795   iterate(&falseBitMapClosure, left, right);
6796 }
6797 
6798 void CMSBitMap::region_invariant(MemRegion mr)
6799 {
6800   assert_locked();
6801   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6802   assert(!mr.is_empty(), "unexpected empty region");
6803   assert(covers(mr), "mr should be covered by bit map");
6804   // convert address range into offset range
6805   size_t start_ofs = heapWordToOffset(mr.start());
6806   // Make sure that end() is appropriately aligned
6807   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6808                         (1 << (_shifter+LogHeapWordSize))),
6809          "Misaligned mr.end()");
6810   size_t end_ofs   = heapWordToOffset(mr.end());
6811   assert(end_ofs > start_ofs, "Should mark at least one bit");
6812 }
6813 
6814 #endif
6815 
6816 bool CMSMarkStack::allocate(size_t size) {
6817   // allocate a stack of the requisite depth
6818   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6819                    size * sizeof(oop)));
6820   if (!rs.is_reserved()) {
6821     warning("CMSMarkStack allocation failure");
6822     return false;
6823   }
6824   if (!_virtual_space.initialize(rs, rs.size())) {
6825     warning("CMSMarkStack backing store failure");
6826     return false;
6827   }
6828   assert(_virtual_space.committed_size() == rs.size(),
6829          "didn't reserve backing store for all of CMS stack?");
6830   _base = (oop*)(_virtual_space.low());
6831   _index = 0;
6832   _capacity = size;
6833   NOT_PRODUCT(_max_depth = 0);
6834   return true;
6835 }
6836 
6837 // XXX FIX ME !!! In the MT case we come in here holding a
6838 // leaf lock. For printing we need to take a further lock
6839 // which has lower rank. We need to recalibrate the two
6840 // lock-ranks involved in order to be able to print the
6841 // messages below. (Or defer the printing to the caller.
6842 // For now we take the expedient path of just disabling the
6843 // messages for the problematic case.)
6844 void CMSMarkStack::expand() {
6845   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6846   if (_capacity == MarkStackSizeMax) {
6847     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6848       // We print a warning message only once per CMS cycle.
6849       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6850     }
6851     return;
6852   }
6853   // Double capacity if possible
6854   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6855   // Do not give up existing stack until we have managed to
6856   // get the double capacity that we desired.
6857   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6858                    new_capacity * sizeof(oop)));
6859   if (rs.is_reserved()) {
6860     // Release the backing store associated with old stack
6861     _virtual_space.release();
6862     // Reinitialize virtual space for new stack
6863     if (!_virtual_space.initialize(rs, rs.size())) {
6864       fatal("Not enough swap for expanded marking stack");
6865     }
6866     _base = (oop*)(_virtual_space.low());
6867     _index = 0;
6868     _capacity = new_capacity;
6869   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6870     // Failed to double capacity, continue;
6871     // we print a detail message only once per CMS cycle.
6872     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6873             SIZE_FORMAT"K",
6874             _capacity / K, new_capacity / K);
6875   }
6876 }
6877 
6878 
6879 // Closures
6880 // XXX: there seems to be a lot of code  duplication here;
6881 // should refactor and consolidate common code.
6882 
6883 // This closure is used to mark refs into the CMS generation in
6884 // the CMS bit map. Called at the first checkpoint. This closure
6885 // assumes that we do not need to re-mark dirty cards; if the CMS
6886 // generation on which this is used is not an oldest
6887 // generation then this will lose younger_gen cards!
6888 
6889 MarkRefsIntoClosure::MarkRefsIntoClosure(
6890   MemRegion span, CMSBitMap* bitMap):
6891     _span(span),
6892     _bitMap(bitMap)
6893 {
6894     assert(_ref_processor == NULL, "deliberately left NULL");
6895     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6896 }
6897 
6898 void MarkRefsIntoClosure::do_oop(oop obj) {
6899   // if p points into _span, then mark corresponding bit in _markBitMap
6900   assert(obj->is_oop(), "expected an oop");
6901   HeapWord* addr = (HeapWord*)obj;
6902   if (_span.contains(addr)) {
6903     // this should be made more efficient
6904     _bitMap->mark(addr);
6905   }
6906 }
6907 
6908 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6909 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6910 
6911 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6912   MemRegion span, CMSBitMap* bitMap):
6913     _span(span),
6914     _bitMap(bitMap)
6915 {
6916     assert(_ref_processor == NULL, "deliberately left NULL");
6917     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6918 }
6919 
6920 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6921   // if p points into _span, then mark corresponding bit in _markBitMap
6922   assert(obj->is_oop(), "expected an oop");
6923   HeapWord* addr = (HeapWord*)obj;
6924   if (_span.contains(addr)) {
6925     // this should be made more efficient
6926     _bitMap->par_mark(addr);
6927   }
6928 }
6929 
6930 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6931 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6932 
6933 // A variant of the above, used for CMS marking verification.
6934 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6935   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6936     _span(span),
6937     _verification_bm(verification_bm),
6938     _cms_bm(cms_bm)
6939 {
6940     assert(_ref_processor == NULL, "deliberately left NULL");
6941     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6942 }
6943 
6944 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6945   // if p points into _span, then mark corresponding bit in _markBitMap
6946   assert(obj->is_oop(), "expected an oop");
6947   HeapWord* addr = (HeapWord*)obj;
6948   if (_span.contains(addr)) {
6949     _verification_bm->mark(addr);
6950     if (!_cms_bm->isMarked(addr)) {
6951       oop(addr)->print();
6952       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6953       fatal("... aborting");
6954     }
6955   }
6956 }
6957 
6958 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6959 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6960 
6961 //////////////////////////////////////////////////
6962 // MarkRefsIntoAndScanClosure
6963 //////////////////////////////////////////////////
6964 
6965 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6966                                                        ReferenceProcessor* rp,
6967                                                        CMSBitMap* bit_map,
6968                                                        CMSBitMap* mod_union_table,
6969                                                        CMSMarkStack*  mark_stack,
6970                                                        CMSCollector* collector,
6971                                                        bool should_yield,
6972                                                        bool concurrent_precleaning):
6973   _collector(collector),
6974   _span(span),
6975   _bit_map(bit_map),
6976   _mark_stack(mark_stack),
6977   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6978                       mark_stack, concurrent_precleaning),
6979   _yield(should_yield),
6980   _concurrent_precleaning(concurrent_precleaning),
6981   _freelistLock(NULL)
6982 {
6983   _ref_processor = rp;
6984   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6985 }
6986 
6987 // This closure is used to mark refs into the CMS generation at the
6988 // second (final) checkpoint, and to scan and transitively follow
6989 // the unmarked oops. It is also used during the concurrent precleaning
6990 // phase while scanning objects on dirty cards in the CMS generation.
6991 // The marks are made in the marking bit map and the marking stack is
6992 // used for keeping the (newly) grey objects during the scan.
6993 // The parallel version (Par_...) appears further below.
6994 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6995   if (obj != NULL) {
6996     assert(obj->is_oop(), "expected an oop");
6997     HeapWord* addr = (HeapWord*)obj;
6998     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6999     assert(_collector->overflow_list_is_empty(),
7000            "overflow list should be empty");
7001     if (_span.contains(addr) &&
7002         !_bit_map->isMarked(addr)) {
7003       // mark bit map (object is now grey)
7004       _bit_map->mark(addr);
7005       // push on marking stack (stack should be empty), and drain the
7006       // stack by applying this closure to the oops in the oops popped
7007       // from the stack (i.e. blacken the grey objects)
7008       bool res = _mark_stack->push(obj);
7009       assert(res, "Should have space to push on empty stack");
7010       do {
7011         oop new_oop = _mark_stack->pop();
7012         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7013         assert(_bit_map->isMarked((HeapWord*)new_oop),
7014                "only grey objects on this stack");
7015         // iterate over the oops in this oop, marking and pushing
7016         // the ones in CMS heap (i.e. in _span).
7017         new_oop->oop_iterate(&_pushAndMarkClosure);
7018         // check if it's time to yield
7019         do_yield_check();
7020       } while (!_mark_stack->isEmpty() ||
7021                (!_concurrent_precleaning && take_from_overflow_list()));
7022         // if marking stack is empty, and we are not doing this
7023         // during precleaning, then check the overflow list
7024     }
7025     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7026     assert(_collector->overflow_list_is_empty(),
7027            "overflow list was drained above");
7028     // We could restore evacuated mark words, if any, used for
7029     // overflow list links here because the overflow list is
7030     // provably empty here. That would reduce the maximum
7031     // size requirements for preserved_{oop,mark}_stack.
7032     // But we'll just postpone it until we are all done
7033     // so we can just stream through.
7034     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
7035       _collector->restore_preserved_marks_if_any();
7036       assert(_collector->no_preserved_marks(), "No preserved marks");
7037     }
7038     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
7039            "All preserved marks should have been restored above");
7040   }
7041 }
7042 
7043 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7044 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7045 
7046 void MarkRefsIntoAndScanClosure::do_yield_work() {
7047   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7048          "CMS thread should hold CMS token");
7049   assert_lock_strong(_freelistLock);
7050   assert_lock_strong(_bit_map->lock());
7051   // relinquish the free_list_lock and bitMaplock()
7052   _bit_map->lock()->unlock();
7053   _freelistLock->unlock();
7054   ConcurrentMarkSweepThread::desynchronize(true);
7055   ConcurrentMarkSweepThread::acknowledge_yield_request();
7056   _collector->stopTimer();
7057   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7058   if (PrintCMSStatistics != 0) {
7059     _collector->incrementYields();
7060   }
7061   _collector->icms_wait();
7062 
7063   // See the comment in coordinator_yield()
7064   for (unsigned i = 0;
7065        i < CMSYieldSleepCount &&
7066        ConcurrentMarkSweepThread::should_yield() &&
7067        !CMSCollector::foregroundGCIsActive();
7068        ++i) {
7069     os::sleep(Thread::current(), 1, false);
7070     ConcurrentMarkSweepThread::acknowledge_yield_request();
7071   }
7072 
7073   ConcurrentMarkSweepThread::synchronize(true);
7074   _freelistLock->lock_without_safepoint_check();
7075   _bit_map->lock()->lock_without_safepoint_check();
7076   _collector->startTimer();
7077 }
7078 
7079 ///////////////////////////////////////////////////////////
7080 // Par_MarkRefsIntoAndScanClosure: a parallel version of
7081 //                                 MarkRefsIntoAndScanClosure
7082 ///////////////////////////////////////////////////////////
7083 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
7084   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
7085   CMSBitMap* bit_map, OopTaskQueue* work_queue):
7086   _span(span),
7087   _bit_map(bit_map),
7088   _work_queue(work_queue),
7089   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7090                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7091   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7092 {
7093   _ref_processor = rp;
7094   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7095 }
7096 
7097 // This closure is used to mark refs into the CMS generation at the
7098 // second (final) checkpoint, and to scan and transitively follow
7099 // the unmarked oops. The marks are made in the marking bit map and
7100 // the work_queue is used for keeping the (newly) grey objects during
7101 // the scan phase whence they are also available for stealing by parallel
7102 // threads. Since the marking bit map is shared, updates are
7103 // synchronized (via CAS).
7104 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7105   if (obj != NULL) {
7106     // Ignore mark word because this could be an already marked oop
7107     // that may be chained at the end of the overflow list.
7108     assert(obj->is_oop(true), "expected an oop");
7109     HeapWord* addr = (HeapWord*)obj;
7110     if (_span.contains(addr) &&
7111         !_bit_map->isMarked(addr)) {
7112       // mark bit map (object will become grey):
7113       // It is possible for several threads to be
7114       // trying to "claim" this object concurrently;
7115       // the unique thread that succeeds in marking the
7116       // object first will do the subsequent push on
7117       // to the work queue (or overflow list).
7118       if (_bit_map->par_mark(addr)) {
7119         // push on work_queue (which may not be empty), and trim the
7120         // queue to an appropriate length by applying this closure to
7121         // the oops in the oops popped from the stack (i.e. blacken the
7122         // grey objects)
7123         bool res = _work_queue->push(obj);
7124         assert(res, "Low water mark should be less than capacity?");
7125         trim_queue(_low_water_mark);
7126       } // Else, another thread claimed the object
7127     }
7128   }
7129 }
7130 
7131 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7132 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7133 
7134 // This closure is used to rescan the marked objects on the dirty cards
7135 // in the mod union table and the card table proper.
7136 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7137   oop p, MemRegion mr) {
7138 
7139   size_t size = 0;
7140   HeapWord* addr = (HeapWord*)p;
7141   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7142   assert(_span.contains(addr), "we are scanning the CMS generation");
7143   // check if it's time to yield
7144   if (do_yield_check()) {
7145     // We yielded for some foreground stop-world work,
7146     // and we have been asked to abort this ongoing preclean cycle.
7147     return 0;
7148   }
7149   if (_bitMap->isMarked(addr)) {
7150     // it's marked; is it potentially uninitialized?
7151     if (p->klass_or_null() != NULL) {
7152         // an initialized object; ignore mark word in verification below
7153         // since we are running concurrent with mutators
7154         assert(p->is_oop(true), "should be an oop");
7155         if (p->is_objArray()) {
7156           // objArrays are precisely marked; restrict scanning
7157           // to dirty cards only.
7158           size = CompactibleFreeListSpace::adjustObjectSize(
7159                    p->oop_iterate(_scanningClosure, mr));
7160         } else {
7161           // A non-array may have been imprecisely marked; we need
7162           // to scan object in its entirety.
7163           size = CompactibleFreeListSpace::adjustObjectSize(
7164                    p->oop_iterate(_scanningClosure));
7165         }
7166         #ifdef ASSERT
7167           size_t direct_size =
7168             CompactibleFreeListSpace::adjustObjectSize(p->size());
7169           assert(size == direct_size, "Inconsistency in size");
7170           assert(size >= 3, "Necessary for Printezis marks to work");
7171           if (!_bitMap->isMarked(addr+1)) {
7172             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7173           } else {
7174             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7175             assert(_bitMap->isMarked(addr+size-1),
7176                    "inconsistent Printezis mark");
7177           }
7178         #endif // ASSERT
7179     } else {
7180       // An uninitialized object.
7181       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7182       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7183       size = pointer_delta(nextOneAddr + 1, addr);
7184       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7185              "alignment problem");
7186       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7187       // will dirty the card when the klass pointer is installed in the
7188       // object (signaling the completion of initialization).
7189     }
7190   } else {
7191     // Either a not yet marked object or an uninitialized object
7192     if (p->klass_or_null() == NULL) {
7193       // An uninitialized object, skip to the next card, since
7194       // we may not be able to read its P-bits yet.
7195       assert(size == 0, "Initial value");
7196     } else {
7197       // An object not (yet) reached by marking: we merely need to
7198       // compute its size so as to go look at the next block.
7199       assert(p->is_oop(true), "should be an oop");
7200       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7201     }
7202   }
7203   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7204   return size;
7205 }
7206 
7207 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7208   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7209          "CMS thread should hold CMS token");
7210   assert_lock_strong(_freelistLock);
7211   assert_lock_strong(_bitMap->lock());
7212   // relinquish the free_list_lock and bitMaplock()
7213   _bitMap->lock()->unlock();
7214   _freelistLock->unlock();
7215   ConcurrentMarkSweepThread::desynchronize(true);
7216   ConcurrentMarkSweepThread::acknowledge_yield_request();
7217   _collector->stopTimer();
7218   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7219   if (PrintCMSStatistics != 0) {
7220     _collector->incrementYields();
7221   }
7222   _collector->icms_wait();
7223 
7224   // See the comment in coordinator_yield()
7225   for (unsigned i = 0; i < CMSYieldSleepCount &&
7226                    ConcurrentMarkSweepThread::should_yield() &&
7227                    !CMSCollector::foregroundGCIsActive(); ++i) {
7228     os::sleep(Thread::current(), 1, false);
7229     ConcurrentMarkSweepThread::acknowledge_yield_request();
7230   }
7231 
7232   ConcurrentMarkSweepThread::synchronize(true);
7233   _freelistLock->lock_without_safepoint_check();
7234   _bitMap->lock()->lock_without_safepoint_check();
7235   _collector->startTimer();
7236 }
7237 
7238 
7239 //////////////////////////////////////////////////////////////////
7240 // SurvivorSpacePrecleanClosure
7241 //////////////////////////////////////////////////////////////////
7242 // This (single-threaded) closure is used to preclean the oops in
7243 // the survivor spaces.
7244 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7245 
7246   HeapWord* addr = (HeapWord*)p;
7247   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7248   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7249   assert(p->klass_or_null() != NULL, "object should be initialized");
7250   // an initialized object; ignore mark word in verification below
7251   // since we are running concurrent with mutators
7252   assert(p->is_oop(true), "should be an oop");
7253   // Note that we do not yield while we iterate over
7254   // the interior oops of p, pushing the relevant ones
7255   // on our marking stack.
7256   size_t size = p->oop_iterate(_scanning_closure);
7257   do_yield_check();
7258   // Observe that below, we do not abandon the preclean
7259   // phase as soon as we should; rather we empty the
7260   // marking stack before returning. This is to satisfy
7261   // some existing assertions. In general, it may be a
7262   // good idea to abort immediately and complete the marking
7263   // from the grey objects at a later time.
7264   while (!_mark_stack->isEmpty()) {
7265     oop new_oop = _mark_stack->pop();
7266     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7267     assert(_bit_map->isMarked((HeapWord*)new_oop),
7268            "only grey objects on this stack");
7269     // iterate over the oops in this oop, marking and pushing
7270     // the ones in CMS heap (i.e. in _span).
7271     new_oop->oop_iterate(_scanning_closure);
7272     // check if it's time to yield
7273     do_yield_check();
7274   }
7275   unsigned int after_count =
7276     GenCollectedHeap::heap()->total_collections();
7277   bool abort = (_before_count != after_count) ||
7278                _collector->should_abort_preclean();
7279   return abort ? 0 : size;
7280 }
7281 
7282 void SurvivorSpacePrecleanClosure::do_yield_work() {
7283   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7284          "CMS thread should hold CMS token");
7285   assert_lock_strong(_bit_map->lock());
7286   // Relinquish the bit map lock
7287   _bit_map->lock()->unlock();
7288   ConcurrentMarkSweepThread::desynchronize(true);
7289   ConcurrentMarkSweepThread::acknowledge_yield_request();
7290   _collector->stopTimer();
7291   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7292   if (PrintCMSStatistics != 0) {
7293     _collector->incrementYields();
7294   }
7295   _collector->icms_wait();
7296 
7297   // See the comment in coordinator_yield()
7298   for (unsigned i = 0; i < CMSYieldSleepCount &&
7299                        ConcurrentMarkSweepThread::should_yield() &&
7300                        !CMSCollector::foregroundGCIsActive(); ++i) {
7301     os::sleep(Thread::current(), 1, false);
7302     ConcurrentMarkSweepThread::acknowledge_yield_request();
7303   }
7304 
7305   ConcurrentMarkSweepThread::synchronize(true);
7306   _bit_map->lock()->lock_without_safepoint_check();
7307   _collector->startTimer();
7308 }
7309 
7310 // This closure is used to rescan the marked objects on the dirty cards
7311 // in the mod union table and the card table proper. In the parallel
7312 // case, although the bitMap is shared, we do a single read so the
7313 // isMarked() query is "safe".
7314 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7315   // Ignore mark word because we are running concurrent with mutators
7316   assert(p->is_oop_or_null(true), "expected an oop or null");
7317   HeapWord* addr = (HeapWord*)p;
7318   assert(_span.contains(addr), "we are scanning the CMS generation");
7319   bool is_obj_array = false;
7320   #ifdef ASSERT
7321     if (!_parallel) {
7322       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7323       assert(_collector->overflow_list_is_empty(),
7324              "overflow list should be empty");
7325 
7326     }
7327   #endif // ASSERT
7328   if (_bit_map->isMarked(addr)) {
7329     // Obj arrays are precisely marked, non-arrays are not;
7330     // so we scan objArrays precisely and non-arrays in their
7331     // entirety.
7332     if (p->is_objArray()) {
7333       is_obj_array = true;
7334       if (_parallel) {
7335         p->oop_iterate(_par_scan_closure, mr);
7336       } else {
7337         p->oop_iterate(_scan_closure, mr);
7338       }
7339     } else {
7340       if (_parallel) {
7341         p->oop_iterate(_par_scan_closure);
7342       } else {
7343         p->oop_iterate(_scan_closure);
7344       }
7345     }
7346   }
7347   #ifdef ASSERT
7348     if (!_parallel) {
7349       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7350       assert(_collector->overflow_list_is_empty(),
7351              "overflow list should be empty");
7352 
7353     }
7354   #endif // ASSERT
7355   return is_obj_array;
7356 }
7357 
7358 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7359                         MemRegion span,
7360                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7361                         bool should_yield, bool verifying):
7362   _collector(collector),
7363   _span(span),
7364   _bitMap(bitMap),
7365   _mut(&collector->_modUnionTable),
7366   _markStack(markStack),
7367   _yield(should_yield),
7368   _skipBits(0)
7369 {
7370   assert(_markStack->isEmpty(), "stack should be empty");
7371   _finger = _bitMap->startWord();
7372   _threshold = _finger;
7373   assert(_collector->_restart_addr == NULL, "Sanity check");
7374   assert(_span.contains(_finger), "Out of bounds _finger?");
7375   DEBUG_ONLY(_verifying = verifying;)
7376 }
7377 
7378 void MarkFromRootsClosure::reset(HeapWord* addr) {
7379   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7380   assert(_span.contains(addr), "Out of bounds _finger?");
7381   _finger = addr;
7382   _threshold = (HeapWord*)round_to(
7383                  (intptr_t)_finger, CardTableModRefBS::card_size);
7384 }
7385 
7386 // Should revisit to see if this should be restructured for
7387 // greater efficiency.
7388 bool MarkFromRootsClosure::do_bit(size_t offset) {
7389   if (_skipBits > 0) {
7390     _skipBits--;
7391     return true;
7392   }
7393   // convert offset into a HeapWord*
7394   HeapWord* addr = _bitMap->startWord() + offset;
7395   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7396          "address out of range");
7397   assert(_bitMap->isMarked(addr), "tautology");
7398   if (_bitMap->isMarked(addr+1)) {
7399     // this is an allocated but not yet initialized object
7400     assert(_skipBits == 0, "tautology");
7401     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7402     oop p = oop(addr);
7403     if (p->klass_or_null() == NULL) {
7404       DEBUG_ONLY(if (!_verifying) {)
7405         // We re-dirty the cards on which this object lies and increase
7406         // the _threshold so that we'll come back to scan this object
7407         // during the preclean or remark phase. (CMSCleanOnEnter)
7408         if (CMSCleanOnEnter) {
7409           size_t sz = _collector->block_size_using_printezis_bits(addr);
7410           HeapWord* end_card_addr   = (HeapWord*)round_to(
7411                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7412           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7413           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7414           // Bump _threshold to end_card_addr; note that
7415           // _threshold cannot possibly exceed end_card_addr, anyhow.
7416           // This prevents future clearing of the card as the scan proceeds
7417           // to the right.
7418           assert(_threshold <= end_card_addr,
7419                  "Because we are just scanning into this object");
7420           if (_threshold < end_card_addr) {
7421             _threshold = end_card_addr;
7422           }
7423           if (p->klass_or_null() != NULL) {
7424             // Redirty the range of cards...
7425             _mut->mark_range(redirty_range);
7426           } // ...else the setting of klass will dirty the card anyway.
7427         }
7428       DEBUG_ONLY(})
7429       return true;
7430     }
7431   }
7432   scanOopsInOop(addr);
7433   return true;
7434 }
7435 
7436 // We take a break if we've been at this for a while,
7437 // so as to avoid monopolizing the locks involved.
7438 void MarkFromRootsClosure::do_yield_work() {
7439   // First give up the locks, then yield, then re-lock
7440   // We should probably use a constructor/destructor idiom to
7441   // do this unlock/lock or modify the MutexUnlocker class to
7442   // serve our purpose. XXX
7443   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7444          "CMS thread should hold CMS token");
7445   assert_lock_strong(_bitMap->lock());
7446   _bitMap->lock()->unlock();
7447   ConcurrentMarkSweepThread::desynchronize(true);
7448   ConcurrentMarkSweepThread::acknowledge_yield_request();
7449   _collector->stopTimer();
7450   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7451   if (PrintCMSStatistics != 0) {
7452     _collector->incrementYields();
7453   }
7454   _collector->icms_wait();
7455 
7456   // See the comment in coordinator_yield()
7457   for (unsigned i = 0; i < CMSYieldSleepCount &&
7458                        ConcurrentMarkSweepThread::should_yield() &&
7459                        !CMSCollector::foregroundGCIsActive(); ++i) {
7460     os::sleep(Thread::current(), 1, false);
7461     ConcurrentMarkSweepThread::acknowledge_yield_request();
7462   }
7463 
7464   ConcurrentMarkSweepThread::synchronize(true);
7465   _bitMap->lock()->lock_without_safepoint_check();
7466   _collector->startTimer();
7467 }
7468 
7469 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7470   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7471   assert(_markStack->isEmpty(),
7472          "should drain stack to limit stack usage");
7473   // convert ptr to an oop preparatory to scanning
7474   oop obj = oop(ptr);
7475   // Ignore mark word in verification below, since we
7476   // may be running concurrent with mutators.
7477   assert(obj->is_oop(true), "should be an oop");
7478   assert(_finger <= ptr, "_finger runneth ahead");
7479   // advance the finger to right end of this object
7480   _finger = ptr + obj->size();
7481   assert(_finger > ptr, "we just incremented it above");
7482   // On large heaps, it may take us some time to get through
7483   // the marking phase (especially if running iCMS). During
7484   // this time it's possible that a lot of mutations have
7485   // accumulated in the card table and the mod union table --
7486   // these mutation records are redundant until we have
7487   // actually traced into the corresponding card.
7488   // Here, we check whether advancing the finger would make
7489   // us cross into a new card, and if so clear corresponding
7490   // cards in the MUT (preclean them in the card-table in the
7491   // future).
7492 
7493   DEBUG_ONLY(if (!_verifying) {)
7494     // The clean-on-enter optimization is disabled by default,
7495     // until we fix 6178663.
7496     if (CMSCleanOnEnter && (_finger > _threshold)) {
7497       // [_threshold, _finger) represents the interval
7498       // of cards to be cleared  in MUT (or precleaned in card table).
7499       // The set of cards to be cleared is all those that overlap
7500       // with the interval [_threshold, _finger); note that
7501       // _threshold is always kept card-aligned but _finger isn't
7502       // always card-aligned.
7503       HeapWord* old_threshold = _threshold;
7504       assert(old_threshold == (HeapWord*)round_to(
7505               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7506              "_threshold should always be card-aligned");
7507       _threshold = (HeapWord*)round_to(
7508                      (intptr_t)_finger, CardTableModRefBS::card_size);
7509       MemRegion mr(old_threshold, _threshold);
7510       assert(!mr.is_empty(), "Control point invariant");
7511       assert(_span.contains(mr), "Should clear within span");
7512       _mut->clear_range(mr);
7513     }
7514   DEBUG_ONLY(})
7515   // Note: the finger doesn't advance while we drain
7516   // the stack below.
7517   PushOrMarkClosure pushOrMarkClosure(_collector,
7518                                       _span, _bitMap, _markStack,
7519                                       _finger, this);
7520   bool res = _markStack->push(obj);
7521   assert(res, "Empty non-zero size stack should have space for single push");
7522   while (!_markStack->isEmpty()) {
7523     oop new_oop = _markStack->pop();
7524     // Skip verifying header mark word below because we are
7525     // running concurrent with mutators.
7526     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7527     // now scan this oop's oops
7528     new_oop->oop_iterate(&pushOrMarkClosure);
7529     do_yield_check();
7530   }
7531   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7532 }
7533 
7534 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7535                        CMSCollector* collector, MemRegion span,
7536                        CMSBitMap* bit_map,
7537                        OopTaskQueue* work_queue,
7538                        CMSMarkStack*  overflow_stack,
7539                        bool should_yield):
7540   _collector(collector),
7541   _whole_span(collector->_span),
7542   _span(span),
7543   _bit_map(bit_map),
7544   _mut(&collector->_modUnionTable),
7545   _work_queue(work_queue),
7546   _overflow_stack(overflow_stack),
7547   _yield(should_yield),
7548   _skip_bits(0),
7549   _task(task)
7550 {
7551   assert(_work_queue->size() == 0, "work_queue should be empty");
7552   _finger = span.start();
7553   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7554   assert(_span.contains(_finger), "Out of bounds _finger?");
7555 }
7556 
7557 // Should revisit to see if this should be restructured for
7558 // greater efficiency.
7559 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7560   if (_skip_bits > 0) {
7561     _skip_bits--;
7562     return true;
7563   }
7564   // convert offset into a HeapWord*
7565   HeapWord* addr = _bit_map->startWord() + offset;
7566   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7567          "address out of range");
7568   assert(_bit_map->isMarked(addr), "tautology");
7569   if (_bit_map->isMarked(addr+1)) {
7570     // this is an allocated object that might not yet be initialized
7571     assert(_skip_bits == 0, "tautology");
7572     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7573     oop p = oop(addr);
7574     if (p->klass_or_null() == NULL) {
7575       // in the case of Clean-on-Enter optimization, redirty card
7576       // and avoid clearing card by increasing  the threshold.
7577       return true;
7578     }
7579   }
7580   scan_oops_in_oop(addr);
7581   return true;
7582 }
7583 
7584 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7585   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7586   // Should we assert that our work queue is empty or
7587   // below some drain limit?
7588   assert(_work_queue->size() == 0,
7589          "should drain stack to limit stack usage");
7590   // convert ptr to an oop preparatory to scanning
7591   oop obj = oop(ptr);
7592   // Ignore mark word in verification below, since we
7593   // may be running concurrent with mutators.
7594   assert(obj->is_oop(true), "should be an oop");
7595   assert(_finger <= ptr, "_finger runneth ahead");
7596   // advance the finger to right end of this object
7597   _finger = ptr + obj->size();
7598   assert(_finger > ptr, "we just incremented it above");
7599   // On large heaps, it may take us some time to get through
7600   // the marking phase (especially if running iCMS). During
7601   // this time it's possible that a lot of mutations have
7602   // accumulated in the card table and the mod union table --
7603   // these mutation records are redundant until we have
7604   // actually traced into the corresponding card.
7605   // Here, we check whether advancing the finger would make
7606   // us cross into a new card, and if so clear corresponding
7607   // cards in the MUT (preclean them in the card-table in the
7608   // future).
7609 
7610   // The clean-on-enter optimization is disabled by default,
7611   // until we fix 6178663.
7612   if (CMSCleanOnEnter && (_finger > _threshold)) {
7613     // [_threshold, _finger) represents the interval
7614     // of cards to be cleared  in MUT (or precleaned in card table).
7615     // The set of cards to be cleared is all those that overlap
7616     // with the interval [_threshold, _finger); note that
7617     // _threshold is always kept card-aligned but _finger isn't
7618     // always card-aligned.
7619     HeapWord* old_threshold = _threshold;
7620     assert(old_threshold == (HeapWord*)round_to(
7621             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7622            "_threshold should always be card-aligned");
7623     _threshold = (HeapWord*)round_to(
7624                    (intptr_t)_finger, CardTableModRefBS::card_size);
7625     MemRegion mr(old_threshold, _threshold);
7626     assert(!mr.is_empty(), "Control point invariant");
7627     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7628     _mut->clear_range(mr);
7629   }
7630 
7631   // Note: the local finger doesn't advance while we drain
7632   // the stack below, but the global finger sure can and will.
7633   HeapWord** gfa = _task->global_finger_addr();
7634   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7635                                       _span, _bit_map,
7636                                       _work_queue,
7637                                       _overflow_stack,
7638                                       _finger,
7639                                       gfa, this);
7640   bool res = _work_queue->push(obj);   // overflow could occur here
7641   assert(res, "Will hold once we use workqueues");
7642   while (true) {
7643     oop new_oop;
7644     if (!_work_queue->pop_local(new_oop)) {
7645       // We emptied our work_queue; check if there's stuff that can
7646       // be gotten from the overflow stack.
7647       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7648             _overflow_stack, _work_queue)) {
7649         do_yield_check();
7650         continue;
7651       } else {  // done
7652         break;
7653       }
7654     }
7655     // Skip verifying header mark word below because we are
7656     // running concurrent with mutators.
7657     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7658     // now scan this oop's oops
7659     new_oop->oop_iterate(&pushOrMarkClosure);
7660     do_yield_check();
7661   }
7662   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7663 }
7664 
7665 // Yield in response to a request from VM Thread or
7666 // from mutators.
7667 void Par_MarkFromRootsClosure::do_yield_work() {
7668   assert(_task != NULL, "sanity");
7669   _task->yield();
7670 }
7671 
7672 // A variant of the above used for verifying CMS marking work.
7673 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7674                         MemRegion span,
7675                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7676                         CMSMarkStack*  mark_stack):
7677   _collector(collector),
7678   _span(span),
7679   _verification_bm(verification_bm),
7680   _cms_bm(cms_bm),
7681   _mark_stack(mark_stack),
7682   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7683                       mark_stack)
7684 {
7685   assert(_mark_stack->isEmpty(), "stack should be empty");
7686   _finger = _verification_bm->startWord();
7687   assert(_collector->_restart_addr == NULL, "Sanity check");
7688   assert(_span.contains(_finger), "Out of bounds _finger?");
7689 }
7690 
7691 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7692   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7693   assert(_span.contains(addr), "Out of bounds _finger?");
7694   _finger = addr;
7695 }
7696 
7697 // Should revisit to see if this should be restructured for
7698 // greater efficiency.
7699 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7700   // convert offset into a HeapWord*
7701   HeapWord* addr = _verification_bm->startWord() + offset;
7702   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7703          "address out of range");
7704   assert(_verification_bm->isMarked(addr), "tautology");
7705   assert(_cms_bm->isMarked(addr), "tautology");
7706 
7707   assert(_mark_stack->isEmpty(),
7708          "should drain stack to limit stack usage");
7709   // convert addr to an oop preparatory to scanning
7710   oop obj = oop(addr);
7711   assert(obj->is_oop(), "should be an oop");
7712   assert(_finger <= addr, "_finger runneth ahead");
7713   // advance the finger to right end of this object
7714   _finger = addr + obj->size();
7715   assert(_finger > addr, "we just incremented it above");
7716   // Note: the finger doesn't advance while we drain
7717   // the stack below.
7718   bool res = _mark_stack->push(obj);
7719   assert(res, "Empty non-zero size stack should have space for single push");
7720   while (!_mark_stack->isEmpty()) {
7721     oop new_oop = _mark_stack->pop();
7722     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7723     // now scan this oop's oops
7724     new_oop->oop_iterate(&_pam_verify_closure);
7725   }
7726   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7727   return true;
7728 }
7729 
7730 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7731   CMSCollector* collector, MemRegion span,
7732   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7733   CMSMarkStack*  mark_stack):
7734   CMSOopClosure(collector->ref_processor()),
7735   _collector(collector),
7736   _span(span),
7737   _verification_bm(verification_bm),
7738   _cms_bm(cms_bm),
7739   _mark_stack(mark_stack)
7740 { }
7741 
7742 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7743 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7744 
7745 // Upon stack overflow, we discard (part of) the stack,
7746 // remembering the least address amongst those discarded
7747 // in CMSCollector's _restart_address.
7748 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7749   // Remember the least grey address discarded
7750   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7751   _collector->lower_restart_addr(ra);
7752   _mark_stack->reset();  // discard stack contents
7753   _mark_stack->expand(); // expand the stack if possible
7754 }
7755 
7756 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7757   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7758   HeapWord* addr = (HeapWord*)obj;
7759   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7760     // Oop lies in _span and isn't yet grey or black
7761     _verification_bm->mark(addr);            // now grey
7762     if (!_cms_bm->isMarked(addr)) {
7763       oop(addr)->print();
7764       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7765                              addr);
7766       fatal("... aborting");
7767     }
7768 
7769     if (!_mark_stack->push(obj)) { // stack overflow
7770       if (PrintCMSStatistics != 0) {
7771         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7772                                SIZE_FORMAT, _mark_stack->capacity());
7773       }
7774       assert(_mark_stack->isFull(), "Else push should have succeeded");
7775       handle_stack_overflow(addr);
7776     }
7777     // anything including and to the right of _finger
7778     // will be scanned as we iterate over the remainder of the
7779     // bit map
7780   }
7781 }
7782 
7783 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7784                      MemRegion span,
7785                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7786                      HeapWord* finger, MarkFromRootsClosure* parent) :
7787   CMSOopClosure(collector->ref_processor()),
7788   _collector(collector),
7789   _span(span),
7790   _bitMap(bitMap),
7791   _markStack(markStack),
7792   _finger(finger),
7793   _parent(parent)
7794 { }
7795 
7796 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7797                      MemRegion span,
7798                      CMSBitMap* bit_map,
7799                      OopTaskQueue* work_queue,
7800                      CMSMarkStack*  overflow_stack,
7801                      HeapWord* finger,
7802                      HeapWord** global_finger_addr,
7803                      Par_MarkFromRootsClosure* parent) :
7804   CMSOopClosure(collector->ref_processor()),
7805   _collector(collector),
7806   _whole_span(collector->_span),
7807   _span(span),
7808   _bit_map(bit_map),
7809   _work_queue(work_queue),
7810   _overflow_stack(overflow_stack),
7811   _finger(finger),
7812   _global_finger_addr(global_finger_addr),
7813   _parent(parent)
7814 { }
7815 
7816 // Assumes thread-safe access by callers, who are
7817 // responsible for mutual exclusion.
7818 void CMSCollector::lower_restart_addr(HeapWord* low) {
7819   assert(_span.contains(low), "Out of bounds addr");
7820   if (_restart_addr == NULL) {
7821     _restart_addr = low;
7822   } else {
7823     _restart_addr = MIN2(_restart_addr, low);
7824   }
7825 }
7826 
7827 // Upon stack overflow, we discard (part of) the stack,
7828 // remembering the least address amongst those discarded
7829 // in CMSCollector's _restart_address.
7830 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7831   // Remember the least grey address discarded
7832   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7833   _collector->lower_restart_addr(ra);
7834   _markStack->reset();  // discard stack contents
7835   _markStack->expand(); // expand the stack if possible
7836 }
7837 
7838 // Upon stack overflow, we discard (part of) the stack,
7839 // remembering the least address amongst those discarded
7840 // in CMSCollector's _restart_address.
7841 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7842   // We need to do this under a mutex to prevent other
7843   // workers from interfering with the work done below.
7844   MutexLockerEx ml(_overflow_stack->par_lock(),
7845                    Mutex::_no_safepoint_check_flag);
7846   // Remember the least grey address discarded
7847   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7848   _collector->lower_restart_addr(ra);
7849   _overflow_stack->reset();  // discard stack contents
7850   _overflow_stack->expand(); // expand the stack if possible
7851 }
7852 
7853 void CMKlassClosure::do_klass(Klass* k) {
7854   assert(_oop_closure != NULL, "Not initialized?");
7855   k->oops_do(_oop_closure);
7856 }
7857 
7858 void PushOrMarkClosure::do_oop(oop obj) {
7859   // Ignore mark word because we are running concurrent with mutators.
7860   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7861   HeapWord* addr = (HeapWord*)obj;
7862   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7863     // Oop lies in _span and isn't yet grey or black
7864     _bitMap->mark(addr);            // now grey
7865     if (addr < _finger) {
7866       // the bit map iteration has already either passed, or
7867       // sampled, this bit in the bit map; we'll need to
7868       // use the marking stack to scan this oop's oops.
7869       bool simulate_overflow = false;
7870       NOT_PRODUCT(
7871         if (CMSMarkStackOverflowALot &&
7872             _collector->simulate_overflow()) {
7873           // simulate a stack overflow
7874           simulate_overflow = true;
7875         }
7876       )
7877       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7878         if (PrintCMSStatistics != 0) {
7879           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7880                                  SIZE_FORMAT, _markStack->capacity());
7881         }
7882         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7883         handle_stack_overflow(addr);
7884       }
7885     }
7886     // anything including and to the right of _finger
7887     // will be scanned as we iterate over the remainder of the
7888     // bit map
7889     do_yield_check();
7890   }
7891 }
7892 
7893 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7894 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7895 
7896 void Par_PushOrMarkClosure::do_oop(oop obj) {
7897   // Ignore mark word because we are running concurrent with mutators.
7898   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7899   HeapWord* addr = (HeapWord*)obj;
7900   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7901     // Oop lies in _span and isn't yet grey or black
7902     // We read the global_finger (volatile read) strictly after marking oop
7903     bool res = _bit_map->par_mark(addr);    // now grey
7904     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7905     // Should we push this marked oop on our stack?
7906     // -- if someone else marked it, nothing to do
7907     // -- if target oop is above global finger nothing to do
7908     // -- if target oop is in chunk and above local finger
7909     //      then nothing to do
7910     // -- else push on work queue
7911     if (   !res       // someone else marked it, they will deal with it
7912         || (addr >= *gfa)  // will be scanned in a later task
7913         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7914       return;
7915     }
7916     // the bit map iteration has already either passed, or
7917     // sampled, this bit in the bit map; we'll need to
7918     // use the marking stack to scan this oop's oops.
7919     bool simulate_overflow = false;
7920     NOT_PRODUCT(
7921       if (CMSMarkStackOverflowALot &&
7922           _collector->simulate_overflow()) {
7923         // simulate a stack overflow
7924         simulate_overflow = true;
7925       }
7926     )
7927     if (simulate_overflow ||
7928         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7929       // stack overflow
7930       if (PrintCMSStatistics != 0) {
7931         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7932                                SIZE_FORMAT, _overflow_stack->capacity());
7933       }
7934       // We cannot assert that the overflow stack is full because
7935       // it may have been emptied since.
7936       assert(simulate_overflow ||
7937              _work_queue->size() == _work_queue->max_elems(),
7938             "Else push should have succeeded");
7939       handle_stack_overflow(addr);
7940     }
7941     do_yield_check();
7942   }
7943 }
7944 
7945 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7946 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7947 
7948 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7949                                        MemRegion span,
7950                                        ReferenceProcessor* rp,
7951                                        CMSBitMap* bit_map,
7952                                        CMSBitMap* mod_union_table,
7953                                        CMSMarkStack*  mark_stack,
7954                                        bool           concurrent_precleaning):
7955   CMSOopClosure(rp),
7956   _collector(collector),
7957   _span(span),
7958   _bit_map(bit_map),
7959   _mod_union_table(mod_union_table),
7960   _mark_stack(mark_stack),
7961   _concurrent_precleaning(concurrent_precleaning)
7962 {
7963   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7964 }
7965 
7966 // Grey object rescan during pre-cleaning and second checkpoint phases --
7967 // the non-parallel version (the parallel version appears further below.)
7968 void PushAndMarkClosure::do_oop(oop obj) {
7969   // Ignore mark word verification. If during concurrent precleaning,
7970   // the object monitor may be locked. If during the checkpoint
7971   // phases, the object may already have been reached by a  different
7972   // path and may be at the end of the global overflow list (so
7973   // the mark word may be NULL).
7974   assert(obj->is_oop_or_null(true /* ignore mark word */),
7975          "expected an oop or NULL");
7976   HeapWord* addr = (HeapWord*)obj;
7977   // Check if oop points into the CMS generation
7978   // and is not marked
7979   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7980     // a white object ...
7981     _bit_map->mark(addr);         // ... now grey
7982     // push on the marking stack (grey set)
7983     bool simulate_overflow = false;
7984     NOT_PRODUCT(
7985       if (CMSMarkStackOverflowALot &&
7986           _collector->simulate_overflow()) {
7987         // simulate a stack overflow
7988         simulate_overflow = true;
7989       }
7990     )
7991     if (simulate_overflow || !_mark_stack->push(obj)) {
7992       if (_concurrent_precleaning) {
7993          // During precleaning we can just dirty the appropriate card(s)
7994          // in the mod union table, thus ensuring that the object remains
7995          // in the grey set  and continue. In the case of object arrays
7996          // we need to dirty all of the cards that the object spans,
7997          // since the rescan of object arrays will be limited to the
7998          // dirty cards.
7999          // Note that no one can be interfering with us in this action
8000          // of dirtying the mod union table, so no locking or atomics
8001          // are required.
8002          if (obj->is_objArray()) {
8003            size_t sz = obj->size();
8004            HeapWord* end_card_addr = (HeapWord*)round_to(
8005                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
8006            MemRegion redirty_range = MemRegion(addr, end_card_addr);
8007            assert(!redirty_range.is_empty(), "Arithmetical tautology");
8008            _mod_union_table->mark_range(redirty_range);
8009          } else {
8010            _mod_union_table->mark(addr);
8011          }
8012          _collector->_ser_pmc_preclean_ovflw++;
8013       } else {
8014          // During the remark phase, we need to remember this oop
8015          // in the overflow list.
8016          _collector->push_on_overflow_list(obj);
8017          _collector->_ser_pmc_remark_ovflw++;
8018       }
8019     }
8020   }
8021 }
8022 
8023 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
8024                                                MemRegion span,
8025                                                ReferenceProcessor* rp,
8026                                                CMSBitMap* bit_map,
8027                                                OopTaskQueue* work_queue):
8028   CMSOopClosure(rp),
8029   _collector(collector),
8030   _span(span),
8031   _bit_map(bit_map),
8032   _work_queue(work_queue)
8033 {
8034   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
8035 }
8036 
8037 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
8038 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
8039 
8040 // Grey object rescan during second checkpoint phase --
8041 // the parallel version.
8042 void Par_PushAndMarkClosure::do_oop(oop obj) {
8043   // In the assert below, we ignore the mark word because
8044   // this oop may point to an already visited object that is
8045   // on the overflow stack (in which case the mark word has
8046   // been hijacked for chaining into the overflow stack --
8047   // if this is the last object in the overflow stack then
8048   // its mark word will be NULL). Because this object may
8049   // have been subsequently popped off the global overflow
8050   // stack, and the mark word possibly restored to the prototypical
8051   // value, by the time we get to examined this failing assert in
8052   // the debugger, is_oop_or_null(false) may subsequently start
8053   // to hold.
8054   assert(obj->is_oop_or_null(true),
8055          "expected an oop or NULL");
8056   HeapWord* addr = (HeapWord*)obj;
8057   // Check if oop points into the CMS generation
8058   // and is not marked
8059   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
8060     // a white object ...
8061     // If we manage to "claim" the object, by being the
8062     // first thread to mark it, then we push it on our
8063     // marking stack
8064     if (_bit_map->par_mark(addr)) {     // ... now grey
8065       // push on work queue (grey set)
8066       bool simulate_overflow = false;
8067       NOT_PRODUCT(
8068         if (CMSMarkStackOverflowALot &&
8069             _collector->par_simulate_overflow()) {
8070           // simulate a stack overflow
8071           simulate_overflow = true;
8072         }
8073       )
8074       if (simulate_overflow || !_work_queue->push(obj)) {
8075         _collector->par_push_on_overflow_list(obj);
8076         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
8077       }
8078     } // Else, some other thread got there first
8079   }
8080 }
8081 
8082 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
8083 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
8084 
8085 void CMSPrecleanRefsYieldClosure::do_yield_work() {
8086   Mutex* bml = _collector->bitMapLock();
8087   assert_lock_strong(bml);
8088   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8089          "CMS thread should hold CMS token");
8090 
8091   bml->unlock();
8092   ConcurrentMarkSweepThread::desynchronize(true);
8093 
8094   ConcurrentMarkSweepThread::acknowledge_yield_request();
8095 
8096   _collector->stopTimer();
8097   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8098   if (PrintCMSStatistics != 0) {
8099     _collector->incrementYields();
8100   }
8101   _collector->icms_wait();
8102 
8103   // See the comment in coordinator_yield()
8104   for (unsigned i = 0; i < CMSYieldSleepCount &&
8105                        ConcurrentMarkSweepThread::should_yield() &&
8106                        !CMSCollector::foregroundGCIsActive(); ++i) {
8107     os::sleep(Thread::current(), 1, false);
8108     ConcurrentMarkSweepThread::acknowledge_yield_request();
8109   }
8110 
8111   ConcurrentMarkSweepThread::synchronize(true);
8112   bml->lock();
8113 
8114   _collector->startTimer();
8115 }
8116 
8117 bool CMSPrecleanRefsYieldClosure::should_return() {
8118   if (ConcurrentMarkSweepThread::should_yield()) {
8119     do_yield_work();
8120   }
8121   return _collector->foregroundGCIsActive();
8122 }
8123 
8124 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8125   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8126          "mr should be aligned to start at a card boundary");
8127   // We'd like to assert:
8128   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8129   //        "mr should be a range of cards");
8130   // However, that would be too strong in one case -- the last
8131   // partition ends at _unallocated_block which, in general, can be
8132   // an arbitrary boundary, not necessarily card aligned.
8133   if (PrintCMSStatistics != 0) {
8134     _num_dirty_cards +=
8135          mr.word_size()/CardTableModRefBS::card_size_in_words;
8136   }
8137   _space->object_iterate_mem(mr, &_scan_cl);
8138 }
8139 
8140 SweepClosure::SweepClosure(CMSCollector* collector,
8141                            ConcurrentMarkSweepGeneration* g,
8142                            CMSBitMap* bitMap, bool should_yield) :
8143   _collector(collector),
8144   _g(g),
8145   _sp(g->cmsSpace()),
8146   _limit(_sp->sweep_limit()),
8147   _freelistLock(_sp->freelistLock()),
8148   _bitMap(bitMap),
8149   _yield(should_yield),
8150   _inFreeRange(false),           // No free range at beginning of sweep
8151   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8152   _lastFreeRangeCoalesced(false),
8153   _freeFinger(g->used_region().start())
8154 {
8155   NOT_PRODUCT(
8156     _numObjectsFreed = 0;
8157     _numWordsFreed   = 0;
8158     _numObjectsLive = 0;
8159     _numWordsLive = 0;
8160     _numObjectsAlreadyFree = 0;
8161     _numWordsAlreadyFree = 0;
8162     _last_fc = NULL;
8163 
8164     _sp->initializeIndexedFreeListArrayReturnedBytes();
8165     _sp->dictionary()->initialize_dict_returned_bytes();
8166   )
8167   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8168          "sweep _limit out of bounds");
8169   if (CMSTraceSweeper) {
8170     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8171                         _limit);
8172   }
8173 }
8174 
8175 void SweepClosure::print_on(outputStream* st) const {
8176   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8177                 _sp->bottom(), _sp->end());
8178   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8179   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8180   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8181   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8182                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8183 }
8184 
8185 #ifndef PRODUCT
8186 // Assertion checking only:  no useful work in product mode --
8187 // however, if any of the flags below become product flags,
8188 // you may need to review this code to see if it needs to be
8189 // enabled in product mode.
8190 SweepClosure::~SweepClosure() {
8191   assert_lock_strong(_freelistLock);
8192   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8193          "sweep _limit out of bounds");
8194   if (inFreeRange()) {
8195     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8196     print();
8197     ShouldNotReachHere();
8198   }
8199   if (Verbose && PrintGC) {
8200     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8201                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8202     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8203                            SIZE_FORMAT" bytes  "
8204       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8205       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8206       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8207     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8208                         * sizeof(HeapWord);
8209     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8210 
8211     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8212       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8213       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8214       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8215       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8216       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8217         indexListReturnedBytes);
8218       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8219         dict_returned_bytes);
8220     }
8221   }
8222   if (CMSTraceSweeper) {
8223     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8224                            _limit);
8225   }
8226 }
8227 #endif  // PRODUCT
8228 
8229 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8230     bool freeRangeInFreeLists) {
8231   if (CMSTraceSweeper) {
8232     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8233                freeFinger, freeRangeInFreeLists);
8234   }
8235   assert(!inFreeRange(), "Trampling existing free range");
8236   set_inFreeRange(true);
8237   set_lastFreeRangeCoalesced(false);
8238 
8239   set_freeFinger(freeFinger);
8240   set_freeRangeInFreeLists(freeRangeInFreeLists);
8241   if (CMSTestInFreeList) {
8242     if (freeRangeInFreeLists) {
8243       FreeChunk* fc = (FreeChunk*) freeFinger;
8244       assert(fc->is_free(), "A chunk on the free list should be free.");
8245       assert(fc->size() > 0, "Free range should have a size");
8246       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8247     }
8248   }
8249 }
8250 
8251 // Note that the sweeper runs concurrently with mutators. Thus,
8252 // it is possible for direct allocation in this generation to happen
8253 // in the middle of the sweep. Note that the sweeper also coalesces
8254 // contiguous free blocks. Thus, unless the sweeper and the allocator
8255 // synchronize appropriately freshly allocated blocks may get swept up.
8256 // This is accomplished by the sweeper locking the free lists while
8257 // it is sweeping. Thus blocks that are determined to be free are
8258 // indeed free. There is however one additional complication:
8259 // blocks that have been allocated since the final checkpoint and
8260 // mark, will not have been marked and so would be treated as
8261 // unreachable and swept up. To prevent this, the allocator marks
8262 // the bit map when allocating during the sweep phase. This leads,
8263 // however, to a further complication -- objects may have been allocated
8264 // but not yet initialized -- in the sense that the header isn't yet
8265 // installed. The sweeper can not then determine the size of the block
8266 // in order to skip over it. To deal with this case, we use a technique
8267 // (due to Printezis) to encode such uninitialized block sizes in the
8268 // bit map. Since the bit map uses a bit per every HeapWord, but the
8269 // CMS generation has a minimum object size of 3 HeapWords, it follows
8270 // that "normal marks" won't be adjacent in the bit map (there will
8271 // always be at least two 0 bits between successive 1 bits). We make use
8272 // of these "unused" bits to represent uninitialized blocks -- the bit
8273 // corresponding to the start of the uninitialized object and the next
8274 // bit are both set. Finally, a 1 bit marks the end of the object that
8275 // started with the two consecutive 1 bits to indicate its potentially
8276 // uninitialized state.
8277 
8278 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8279   FreeChunk* fc = (FreeChunk*)addr;
8280   size_t res;
8281 
8282   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8283   // than "addr == _limit" because although _limit was a block boundary when
8284   // we started the sweep, it may no longer be one because heap expansion
8285   // may have caused us to coalesce the block ending at the address _limit
8286   // with a newly expanded chunk (this happens when _limit was set to the
8287   // previous _end of the space), so we may have stepped past _limit:
8288   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8289   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8290     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8291            "sweep _limit out of bounds");
8292     assert(addr < _sp->end(), "addr out of bounds");
8293     // Flush any free range we might be holding as a single
8294     // coalesced chunk to the appropriate free list.
8295     if (inFreeRange()) {
8296       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8297              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8298       flush_cur_free_chunk(freeFinger(),
8299                            pointer_delta(addr, freeFinger()));
8300       if (CMSTraceSweeper) {
8301         gclog_or_tty->print("Sweep: last chunk: ");
8302         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8303                    "[coalesced:"SIZE_FORMAT"]\n",
8304                    freeFinger(), pointer_delta(addr, freeFinger()),
8305                    lastFreeRangeCoalesced());
8306       }
8307     }
8308 
8309     // help the iterator loop finish
8310     return pointer_delta(_sp->end(), addr);
8311   }
8312 
8313   assert(addr < _limit, "sweep invariant");
8314   // check if we should yield
8315   do_yield_check(addr);
8316   if (fc->is_free()) {
8317     // Chunk that is already free
8318     res = fc->size();
8319     do_already_free_chunk(fc);
8320     debug_only(_sp->verifyFreeLists());
8321     // If we flush the chunk at hand in lookahead_and_flush()
8322     // and it's coalesced with a preceding chunk, then the
8323     // process of "mangling" the payload of the coalesced block
8324     // will cause erasure of the size information from the
8325     // (erstwhile) header of all the coalesced blocks but the
8326     // first, so the first disjunct in the assert will not hold
8327     // in that specific case (in which case the second disjunct
8328     // will hold).
8329     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8330            "Otherwise the size info doesn't change at this step");
8331     NOT_PRODUCT(
8332       _numObjectsAlreadyFree++;
8333       _numWordsAlreadyFree += res;
8334     )
8335     NOT_PRODUCT(_last_fc = fc;)
8336   } else if (!_bitMap->isMarked(addr)) {
8337     // Chunk is fresh garbage
8338     res = do_garbage_chunk(fc);
8339     debug_only(_sp->verifyFreeLists());
8340     NOT_PRODUCT(
8341       _numObjectsFreed++;
8342       _numWordsFreed += res;
8343     )
8344   } else {
8345     // Chunk that is alive.
8346     res = do_live_chunk(fc);
8347     debug_only(_sp->verifyFreeLists());
8348     NOT_PRODUCT(
8349         _numObjectsLive++;
8350         _numWordsLive += res;
8351     )
8352   }
8353   return res;
8354 }
8355 
8356 // For the smart allocation, record following
8357 //  split deaths - a free chunk is removed from its free list because
8358 //      it is being split into two or more chunks.
8359 //  split birth - a free chunk is being added to its free list because
8360 //      a larger free chunk has been split and resulted in this free chunk.
8361 //  coal death - a free chunk is being removed from its free list because
8362 //      it is being coalesced into a large free chunk.
8363 //  coal birth - a free chunk is being added to its free list because
8364 //      it was created when two or more free chunks where coalesced into
8365 //      this free chunk.
8366 //
8367 // These statistics are used to determine the desired number of free
8368 // chunks of a given size.  The desired number is chosen to be relative
8369 // to the end of a CMS sweep.  The desired number at the end of a sweep
8370 // is the
8371 //      count-at-end-of-previous-sweep (an amount that was enough)
8372 //              - count-at-beginning-of-current-sweep  (the excess)
8373 //              + split-births  (gains in this size during interval)
8374 //              - split-deaths  (demands on this size during interval)
8375 // where the interval is from the end of one sweep to the end of the
8376 // next.
8377 //
8378 // When sweeping the sweeper maintains an accumulated chunk which is
8379 // the chunk that is made up of chunks that have been coalesced.  That
8380 // will be termed the left-hand chunk.  A new chunk of garbage that
8381 // is being considered for coalescing will be referred to as the
8382 // right-hand chunk.
8383 //
8384 // When making a decision on whether to coalesce a right-hand chunk with
8385 // the current left-hand chunk, the current count vs. the desired count
8386 // of the left-hand chunk is considered.  Also if the right-hand chunk
8387 // is near the large chunk at the end of the heap (see
8388 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8389 // left-hand chunk is coalesced.
8390 //
8391 // When making a decision about whether to split a chunk, the desired count
8392 // vs. the current count of the candidate to be split is also considered.
8393 // If the candidate is underpopulated (currently fewer chunks than desired)
8394 // a chunk of an overpopulated (currently more chunks than desired) size may
8395 // be chosen.  The "hint" associated with a free list, if non-null, points
8396 // to a free list which may be overpopulated.
8397 //
8398 
8399 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8400   const size_t size = fc->size();
8401   // Chunks that cannot be coalesced are not in the
8402   // free lists.
8403   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8404     assert(_sp->verify_chunk_in_free_list(fc),
8405       "free chunk should be in free lists");
8406   }
8407   // a chunk that is already free, should not have been
8408   // marked in the bit map
8409   HeapWord* const addr = (HeapWord*) fc;
8410   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8411   // Verify that the bit map has no bits marked between
8412   // addr and purported end of this block.
8413   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8414 
8415   // Some chunks cannot be coalesced under any circumstances.
8416   // See the definition of cantCoalesce().
8417   if (!fc->cantCoalesce()) {
8418     // This chunk can potentially be coalesced.
8419     if (_sp->adaptive_freelists()) {
8420       // All the work is done in
8421       do_post_free_or_garbage_chunk(fc, size);
8422     } else {  // Not adaptive free lists
8423       // this is a free chunk that can potentially be coalesced by the sweeper;
8424       if (!inFreeRange()) {
8425         // if the next chunk is a free block that can't be coalesced
8426         // it doesn't make sense to remove this chunk from the free lists
8427         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8428         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8429         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8430             nextChunk->is_free()               &&     // ... which is free...
8431             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8432           // nothing to do
8433         } else {
8434           // Potentially the start of a new free range:
8435           // Don't eagerly remove it from the free lists.
8436           // No need to remove it if it will just be put
8437           // back again.  (Also from a pragmatic point of view
8438           // if it is a free block in a region that is beyond
8439           // any allocated blocks, an assertion will fail)
8440           // Remember the start of a free run.
8441           initialize_free_range(addr, true);
8442           // end - can coalesce with next chunk
8443         }
8444       } else {
8445         // the midst of a free range, we are coalescing
8446         print_free_block_coalesced(fc);
8447         if (CMSTraceSweeper) {
8448           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8449         }
8450         // remove it from the free lists
8451         _sp->removeFreeChunkFromFreeLists(fc);
8452         set_lastFreeRangeCoalesced(true);
8453         // If the chunk is being coalesced and the current free range is
8454         // in the free lists, remove the current free range so that it
8455         // will be returned to the free lists in its entirety - all
8456         // the coalesced pieces included.
8457         if (freeRangeInFreeLists()) {
8458           FreeChunk* ffc = (FreeChunk*) freeFinger();
8459           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8460             "Size of free range is inconsistent with chunk size.");
8461           if (CMSTestInFreeList) {
8462             assert(_sp->verify_chunk_in_free_list(ffc),
8463               "free range is not in free lists");
8464           }
8465           _sp->removeFreeChunkFromFreeLists(ffc);
8466           set_freeRangeInFreeLists(false);
8467         }
8468       }
8469     }
8470     // Note that if the chunk is not coalescable (the else arm
8471     // below), we unconditionally flush, without needing to do
8472     // a "lookahead," as we do below.
8473     if (inFreeRange()) lookahead_and_flush(fc, size);
8474   } else {
8475     // Code path common to both original and adaptive free lists.
8476 
8477     // cant coalesce with previous block; this should be treated
8478     // as the end of a free run if any
8479     if (inFreeRange()) {
8480       // we kicked some butt; time to pick up the garbage
8481       assert(freeFinger() < addr, "freeFinger points too high");
8482       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8483     }
8484     // else, nothing to do, just continue
8485   }
8486 }
8487 
8488 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8489   // This is a chunk of garbage.  It is not in any free list.
8490   // Add it to a free list or let it possibly be coalesced into
8491   // a larger chunk.
8492   HeapWord* const addr = (HeapWord*) fc;
8493   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8494 
8495   if (_sp->adaptive_freelists()) {
8496     // Verify that the bit map has no bits marked between
8497     // addr and purported end of just dead object.
8498     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8499 
8500     do_post_free_or_garbage_chunk(fc, size);
8501   } else {
8502     if (!inFreeRange()) {
8503       // start of a new free range
8504       assert(size > 0, "A free range should have a size");
8505       initialize_free_range(addr, false);
8506     } else {
8507       // this will be swept up when we hit the end of the
8508       // free range
8509       if (CMSTraceSweeper) {
8510         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8511       }
8512       // If the chunk is being coalesced and the current free range is
8513       // in the free lists, remove the current free range so that it
8514       // will be returned to the free lists in its entirety - all
8515       // the coalesced pieces included.
8516       if (freeRangeInFreeLists()) {
8517         FreeChunk* ffc = (FreeChunk*)freeFinger();
8518         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8519           "Size of free range is inconsistent with chunk size.");
8520         if (CMSTestInFreeList) {
8521           assert(_sp->verify_chunk_in_free_list(ffc),
8522             "free range is not in free lists");
8523         }
8524         _sp->removeFreeChunkFromFreeLists(ffc);
8525         set_freeRangeInFreeLists(false);
8526       }
8527       set_lastFreeRangeCoalesced(true);
8528     }
8529     // this will be swept up when we hit the end of the free range
8530 
8531     // Verify that the bit map has no bits marked between
8532     // addr and purported end of just dead object.
8533     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8534   }
8535   assert(_limit >= addr + size,
8536          "A freshly garbage chunk can't possibly straddle over _limit");
8537   if (inFreeRange()) lookahead_and_flush(fc, size);
8538   return size;
8539 }
8540 
8541 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8542   HeapWord* addr = (HeapWord*) fc;
8543   // The sweeper has just found a live object. Return any accumulated
8544   // left hand chunk to the free lists.
8545   if (inFreeRange()) {
8546     assert(freeFinger() < addr, "freeFinger points too high");
8547     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8548   }
8549 
8550   // This object is live: we'd normally expect this to be
8551   // an oop, and like to assert the following:
8552   // assert(oop(addr)->is_oop(), "live block should be an oop");
8553   // However, as we commented above, this may be an object whose
8554   // header hasn't yet been initialized.
8555   size_t size;
8556   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8557   if (_bitMap->isMarked(addr + 1)) {
8558     // Determine the size from the bit map, rather than trying to
8559     // compute it from the object header.
8560     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8561     size = pointer_delta(nextOneAddr + 1, addr);
8562     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8563            "alignment problem");
8564 
8565 #ifdef ASSERT
8566       if (oop(addr)->klass_or_null() != NULL) {
8567         // Ignore mark word because we are running concurrent with mutators
8568         assert(oop(addr)->is_oop(true), "live block should be an oop");
8569         assert(size ==
8570                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8571                "P-mark and computed size do not agree");
8572       }
8573 #endif
8574 
8575   } else {
8576     // This should be an initialized object that's alive.
8577     assert(oop(addr)->klass_or_null() != NULL,
8578            "Should be an initialized object");
8579     // Ignore mark word because we are running concurrent with mutators
8580     assert(oop(addr)->is_oop(true), "live block should be an oop");
8581     // Verify that the bit map has no bits marked between
8582     // addr and purported end of this block.
8583     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8584     assert(size >= 3, "Necessary for Printezis marks to work");
8585     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8586     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8587   }
8588   return size;
8589 }
8590 
8591 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8592                                                  size_t chunkSize) {
8593   // do_post_free_or_garbage_chunk() should only be called in the case
8594   // of the adaptive free list allocator.
8595   const bool fcInFreeLists = fc->is_free();
8596   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8597   assert((HeapWord*)fc <= _limit, "sweep invariant");
8598   if (CMSTestInFreeList && fcInFreeLists) {
8599     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8600   }
8601 
8602   if (CMSTraceSweeper) {
8603     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8604   }
8605 
8606   HeapWord* const fc_addr = (HeapWord*) fc;
8607 
8608   bool coalesce;
8609   const size_t left  = pointer_delta(fc_addr, freeFinger());
8610   const size_t right = chunkSize;
8611   switch (FLSCoalescePolicy) {
8612     // numeric value forms a coalition aggressiveness metric
8613     case 0:  { // never coalesce
8614       coalesce = false;
8615       break;
8616     }
8617     case 1: { // coalesce if left & right chunks on overpopulated lists
8618       coalesce = _sp->coalOverPopulated(left) &&
8619                  _sp->coalOverPopulated(right);
8620       break;
8621     }
8622     case 2: { // coalesce if left chunk on overpopulated list (default)
8623       coalesce = _sp->coalOverPopulated(left);
8624       break;
8625     }
8626     case 3: { // coalesce if left OR right chunk on overpopulated list
8627       coalesce = _sp->coalOverPopulated(left) ||
8628                  _sp->coalOverPopulated(right);
8629       break;
8630     }
8631     case 4: { // always coalesce
8632       coalesce = true;
8633       break;
8634     }
8635     default:
8636      ShouldNotReachHere();
8637   }
8638 
8639   // Should the current free range be coalesced?
8640   // If the chunk is in a free range and either we decided to coalesce above
8641   // or the chunk is near the large block at the end of the heap
8642   // (isNearLargestChunk() returns true), then coalesce this chunk.
8643   const bool doCoalesce = inFreeRange()
8644                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8645   if (doCoalesce) {
8646     // Coalesce the current free range on the left with the new
8647     // chunk on the right.  If either is on a free list,
8648     // it must be removed from the list and stashed in the closure.
8649     if (freeRangeInFreeLists()) {
8650       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8651       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8652         "Size of free range is inconsistent with chunk size.");
8653       if (CMSTestInFreeList) {
8654         assert(_sp->verify_chunk_in_free_list(ffc),
8655           "Chunk is not in free lists");
8656       }
8657       _sp->coalDeath(ffc->size());
8658       _sp->removeFreeChunkFromFreeLists(ffc);
8659       set_freeRangeInFreeLists(false);
8660     }
8661     if (fcInFreeLists) {
8662       _sp->coalDeath(chunkSize);
8663       assert(fc->size() == chunkSize,
8664         "The chunk has the wrong size or is not in the free lists");
8665       _sp->removeFreeChunkFromFreeLists(fc);
8666     }
8667     set_lastFreeRangeCoalesced(true);
8668     print_free_block_coalesced(fc);
8669   } else {  // not in a free range and/or should not coalesce
8670     // Return the current free range and start a new one.
8671     if (inFreeRange()) {
8672       // In a free range but cannot coalesce with the right hand chunk.
8673       // Put the current free range into the free lists.
8674       flush_cur_free_chunk(freeFinger(),
8675                            pointer_delta(fc_addr, freeFinger()));
8676     }
8677     // Set up for new free range.  Pass along whether the right hand
8678     // chunk is in the free lists.
8679     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8680   }
8681 }
8682 
8683 // Lookahead flush:
8684 // If we are tracking a free range, and this is the last chunk that
8685 // we'll look at because its end crosses past _limit, we'll preemptively
8686 // flush it along with any free range we may be holding on to. Note that
8687 // this can be the case only for an already free or freshly garbage
8688 // chunk. If this block is an object, it can never straddle
8689 // over _limit. The "straddling" occurs when _limit is set at
8690 // the previous end of the space when this cycle started, and
8691 // a subsequent heap expansion caused the previously co-terminal
8692 // free block to be coalesced with the newly expanded portion,
8693 // thus rendering _limit a non-block-boundary making it dangerous
8694 // for the sweeper to step over and examine.
8695 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8696   assert(inFreeRange(), "Should only be called if currently in a free range.");
8697   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8698   assert(_sp->used_region().contains(eob - 1),
8699          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8700                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8701                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8702                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8703   if (eob >= _limit) {
8704     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8705     if (CMSTraceSweeper) {
8706       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8707                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8708                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8709                              _limit, fc, eob, _sp->bottom(), _sp->end());
8710     }
8711     // Return the storage we are tracking back into the free lists.
8712     if (CMSTraceSweeper) {
8713       gclog_or_tty->print_cr("Flushing ... ");
8714     }
8715     assert(freeFinger() < eob, "Error");
8716     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8717   }
8718 }
8719 
8720 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8721   assert(inFreeRange(), "Should only be called if currently in a free range.");
8722   assert(size > 0,
8723     "A zero sized chunk cannot be added to the free lists.");
8724   if (!freeRangeInFreeLists()) {
8725     if (CMSTestInFreeList) {
8726       FreeChunk* fc = (FreeChunk*) chunk;
8727       fc->set_size(size);
8728       assert(!_sp->verify_chunk_in_free_list(fc),
8729         "chunk should not be in free lists yet");
8730     }
8731     if (CMSTraceSweeper) {
8732       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8733                     chunk, size);
8734     }
8735     // A new free range is going to be starting.  The current
8736     // free range has not been added to the free lists yet or
8737     // was removed so add it back.
8738     // If the current free range was coalesced, then the death
8739     // of the free range was recorded.  Record a birth now.
8740     if (lastFreeRangeCoalesced()) {
8741       _sp->coalBirth(size);
8742     }
8743     _sp->addChunkAndRepairOffsetTable(chunk, size,
8744             lastFreeRangeCoalesced());
8745   } else if (CMSTraceSweeper) {
8746     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8747   }
8748   set_inFreeRange(false);
8749   set_freeRangeInFreeLists(false);
8750 }
8751 
8752 // We take a break if we've been at this for a while,
8753 // so as to avoid monopolizing the locks involved.
8754 void SweepClosure::do_yield_work(HeapWord* addr) {
8755   // Return current free chunk being used for coalescing (if any)
8756   // to the appropriate freelist.  After yielding, the next
8757   // free block encountered will start a coalescing range of
8758   // free blocks.  If the next free block is adjacent to the
8759   // chunk just flushed, they will need to wait for the next
8760   // sweep to be coalesced.
8761   if (inFreeRange()) {
8762     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8763   }
8764 
8765   // First give up the locks, then yield, then re-lock.
8766   // We should probably use a constructor/destructor idiom to
8767   // do this unlock/lock or modify the MutexUnlocker class to
8768   // serve our purpose. XXX
8769   assert_lock_strong(_bitMap->lock());
8770   assert_lock_strong(_freelistLock);
8771   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8772          "CMS thread should hold CMS token");
8773   _bitMap->lock()->unlock();
8774   _freelistLock->unlock();
8775   ConcurrentMarkSweepThread::desynchronize(true);
8776   ConcurrentMarkSweepThread::acknowledge_yield_request();
8777   _collector->stopTimer();
8778   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8779   if (PrintCMSStatistics != 0) {
8780     _collector->incrementYields();
8781   }
8782   _collector->icms_wait();
8783 
8784   // See the comment in coordinator_yield()
8785   for (unsigned i = 0; i < CMSYieldSleepCount &&
8786                        ConcurrentMarkSweepThread::should_yield() &&
8787                        !CMSCollector::foregroundGCIsActive(); ++i) {
8788     os::sleep(Thread::current(), 1, false);
8789     ConcurrentMarkSweepThread::acknowledge_yield_request();
8790   }
8791 
8792   ConcurrentMarkSweepThread::synchronize(true);
8793   _freelistLock->lock();
8794   _bitMap->lock()->lock_without_safepoint_check();
8795   _collector->startTimer();
8796 }
8797 
8798 #ifndef PRODUCT
8799 // This is actually very useful in a product build if it can
8800 // be called from the debugger.  Compile it into the product
8801 // as needed.
8802 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8803   return debug_cms_space->verify_chunk_in_free_list(fc);
8804 }
8805 #endif
8806 
8807 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8808   if (CMSTraceSweeper) {
8809     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8810                            fc, fc->size());
8811   }
8812 }
8813 
8814 // CMSIsAliveClosure
8815 bool CMSIsAliveClosure::do_object_b(oop obj) {
8816   HeapWord* addr = (HeapWord*)obj;
8817   return addr != NULL &&
8818          (!_span.contains(addr) || _bit_map->isMarked(addr));
8819 }
8820 
8821 
8822 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8823                       MemRegion span,
8824                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8825                       bool cpc):
8826   _collector(collector),
8827   _span(span),
8828   _bit_map(bit_map),
8829   _mark_stack(mark_stack),
8830   _concurrent_precleaning(cpc) {
8831   assert(!_span.is_empty(), "Empty span could spell trouble");
8832 }
8833 
8834 
8835 // CMSKeepAliveClosure: the serial version
8836 void CMSKeepAliveClosure::do_oop(oop obj) {
8837   HeapWord* addr = (HeapWord*)obj;
8838   if (_span.contains(addr) &&
8839       !_bit_map->isMarked(addr)) {
8840     _bit_map->mark(addr);
8841     bool simulate_overflow = false;
8842     NOT_PRODUCT(
8843       if (CMSMarkStackOverflowALot &&
8844           _collector->simulate_overflow()) {
8845         // simulate a stack overflow
8846         simulate_overflow = true;
8847       }
8848     )
8849     if (simulate_overflow || !_mark_stack->push(obj)) {
8850       if (_concurrent_precleaning) {
8851         // We dirty the overflown object and let the remark
8852         // phase deal with it.
8853         assert(_collector->overflow_list_is_empty(), "Error");
8854         // In the case of object arrays, we need to dirty all of
8855         // the cards that the object spans. No locking or atomics
8856         // are needed since no one else can be mutating the mod union
8857         // table.
8858         if (obj->is_objArray()) {
8859           size_t sz = obj->size();
8860           HeapWord* end_card_addr =
8861             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8862           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8863           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8864           _collector->_modUnionTable.mark_range(redirty_range);
8865         } else {
8866           _collector->_modUnionTable.mark(addr);
8867         }
8868         _collector->_ser_kac_preclean_ovflw++;
8869       } else {
8870         _collector->push_on_overflow_list(obj);
8871         _collector->_ser_kac_ovflw++;
8872       }
8873     }
8874   }
8875 }
8876 
8877 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8878 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8879 
8880 // CMSParKeepAliveClosure: a parallel version of the above.
8881 // The work queues are private to each closure (thread),
8882 // but (may be) available for stealing by other threads.
8883 void CMSParKeepAliveClosure::do_oop(oop obj) {
8884   HeapWord* addr = (HeapWord*)obj;
8885   if (_span.contains(addr) &&
8886       !_bit_map->isMarked(addr)) {
8887     // In general, during recursive tracing, several threads
8888     // may be concurrently getting here; the first one to
8889     // "tag" it, claims it.
8890     if (_bit_map->par_mark(addr)) {
8891       bool res = _work_queue->push(obj);
8892       assert(res, "Low water mark should be much less than capacity");
8893       // Do a recursive trim in the hope that this will keep
8894       // stack usage lower, but leave some oops for potential stealers
8895       trim_queue(_low_water_mark);
8896     } // Else, another thread got there first
8897   }
8898 }
8899 
8900 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8901 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8902 
8903 void CMSParKeepAliveClosure::trim_queue(uint max) {
8904   while (_work_queue->size() > max) {
8905     oop new_oop;
8906     if (_work_queue->pop_local(new_oop)) {
8907       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8908       assert(_bit_map->isMarked((HeapWord*)new_oop),
8909              "no white objects on this stack!");
8910       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8911       // iterate over the oops in this oop, marking and pushing
8912       // the ones in CMS heap (i.e. in _span).
8913       new_oop->oop_iterate(&_mark_and_push);
8914     }
8915   }
8916 }
8917 
8918 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8919                                 CMSCollector* collector,
8920                                 MemRegion span, CMSBitMap* bit_map,
8921                                 OopTaskQueue* work_queue):
8922   _collector(collector),
8923   _span(span),
8924   _bit_map(bit_map),
8925   _work_queue(work_queue) { }
8926 
8927 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8928   HeapWord* addr = (HeapWord*)obj;
8929   if (_span.contains(addr) &&
8930       !_bit_map->isMarked(addr)) {
8931     if (_bit_map->par_mark(addr)) {
8932       bool simulate_overflow = false;
8933       NOT_PRODUCT(
8934         if (CMSMarkStackOverflowALot &&
8935             _collector->par_simulate_overflow()) {
8936           // simulate a stack overflow
8937           simulate_overflow = true;
8938         }
8939       )
8940       if (simulate_overflow || !_work_queue->push(obj)) {
8941         _collector->par_push_on_overflow_list(obj);
8942         _collector->_par_kac_ovflw++;
8943       }
8944     } // Else another thread got there already
8945   }
8946 }
8947 
8948 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8949 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8950 
8951 //////////////////////////////////////////////////////////////////
8952 //  CMSExpansionCause                /////////////////////////////
8953 //////////////////////////////////////////////////////////////////
8954 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8955   switch (cause) {
8956     case _no_expansion:
8957       return "No expansion";
8958     case _satisfy_free_ratio:
8959       return "Free ratio";
8960     case _satisfy_promotion:
8961       return "Satisfy promotion";
8962     case _satisfy_allocation:
8963       return "allocation";
8964     case _allocate_par_lab:
8965       return "Par LAB";
8966     case _allocate_par_spooling_space:
8967       return "Par Spooling Space";
8968     case _adaptive_size_policy:
8969       return "Ergonomics";
8970     default:
8971       return "unknown";
8972   }
8973 }
8974 
8975 void CMSDrainMarkingStackClosure::do_void() {
8976   // the max number to take from overflow list at a time
8977   const size_t num = _mark_stack->capacity()/4;
8978   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8979          "Overflow list should be NULL during concurrent phases");
8980   while (!_mark_stack->isEmpty() ||
8981          // if stack is empty, check the overflow list
8982          _collector->take_from_overflow_list(num, _mark_stack)) {
8983     oop obj = _mark_stack->pop();
8984     HeapWord* addr = (HeapWord*)obj;
8985     assert(_span.contains(addr), "Should be within span");
8986     assert(_bit_map->isMarked(addr), "Should be marked");
8987     assert(obj->is_oop(), "Should be an oop");
8988     obj->oop_iterate(_keep_alive);
8989   }
8990 }
8991 
8992 void CMSParDrainMarkingStackClosure::do_void() {
8993   // drain queue
8994   trim_queue(0);
8995 }
8996 
8997 // Trim our work_queue so its length is below max at return
8998 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8999   while (_work_queue->size() > max) {
9000     oop new_oop;
9001     if (_work_queue->pop_local(new_oop)) {
9002       assert(new_oop->is_oop(), "Expected an oop");
9003       assert(_bit_map->isMarked((HeapWord*)new_oop),
9004              "no white objects on this stack!");
9005       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
9006       // iterate over the oops in this oop, marking and pushing
9007       // the ones in CMS heap (i.e. in _span).
9008       new_oop->oop_iterate(&_mark_and_push);
9009     }
9010   }
9011 }
9012 
9013 ////////////////////////////////////////////////////////////////////
9014 // Support for Marking Stack Overflow list handling and related code
9015 ////////////////////////////////////////////////////////////////////
9016 // Much of the following code is similar in shape and spirit to the
9017 // code used in ParNewGC. We should try and share that code
9018 // as much as possible in the future.
9019 
9020 #ifndef PRODUCT
9021 // Debugging support for CMSStackOverflowALot
9022 
9023 // It's OK to call this multi-threaded;  the worst thing
9024 // that can happen is that we'll get a bunch of closely
9025 // spaced simulated overflows, but that's OK, in fact
9026 // probably good as it would exercise the overflow code
9027 // under contention.
9028 bool CMSCollector::simulate_overflow() {
9029   if (_overflow_counter-- <= 0) { // just being defensive
9030     _overflow_counter = CMSMarkStackOverflowInterval;
9031     return true;
9032   } else {
9033     return false;
9034   }
9035 }
9036 
9037 bool CMSCollector::par_simulate_overflow() {
9038   return simulate_overflow();
9039 }
9040 #endif
9041 
9042 // Single-threaded
9043 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
9044   assert(stack->isEmpty(), "Expected precondition");
9045   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
9046   size_t i = num;
9047   oop  cur = _overflow_list;
9048   const markOop proto = markOopDesc::prototype();
9049   NOT_PRODUCT(ssize_t n = 0;)
9050   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
9051     next = oop(cur->mark());
9052     cur->set_mark(proto);   // until proven otherwise
9053     assert(cur->is_oop(), "Should be an oop");
9054     bool res = stack->push(cur);
9055     assert(res, "Bit off more than can chew?");
9056     NOT_PRODUCT(n++;)
9057   }
9058   _overflow_list = cur;
9059 #ifndef PRODUCT
9060   assert(_num_par_pushes >= n, "Too many pops?");
9061   _num_par_pushes -=n;
9062 #endif
9063   return !stack->isEmpty();
9064 }
9065 
9066 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
9067 // (MT-safe) Get a prefix of at most "num" from the list.
9068 // The overflow list is chained through the mark word of
9069 // each object in the list. We fetch the entire list,
9070 // break off a prefix of the right size and return the
9071 // remainder. If other threads try to take objects from
9072 // the overflow list at that time, they will wait for
9073 // some time to see if data becomes available. If (and
9074 // only if) another thread places one or more object(s)
9075 // on the global list before we have returned the suffix
9076 // to the global list, we will walk down our local list
9077 // to find its end and append the global list to
9078 // our suffix before returning it. This suffix walk can
9079 // prove to be expensive (quadratic in the amount of traffic)
9080 // when there are many objects in the overflow list and
9081 // there is much producer-consumer contention on the list.
9082 // *NOTE*: The overflow list manipulation code here and
9083 // in ParNewGeneration:: are very similar in shape,
9084 // except that in the ParNew case we use the old (from/eden)
9085 // copy of the object to thread the list via its klass word.
9086 // Because of the common code, if you make any changes in
9087 // the code below, please check the ParNew version to see if
9088 // similar changes might be needed.
9089 // CR 6797058 has been filed to consolidate the common code.
9090 bool CMSCollector::par_take_from_overflow_list(size_t num,
9091                                                OopTaskQueue* work_q,
9092                                                int no_of_gc_threads) {
9093   assert(work_q->size() == 0, "First empty local work queue");
9094   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
9095   if (_overflow_list == NULL) {
9096     return false;
9097   }
9098   // Grab the entire list; we'll put back a suffix
9099   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9100   Thread* tid = Thread::current();
9101   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9102   // set to ParallelGCThreads.
9103   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9104   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9105   // If the list is busy, we spin for a short while,
9106   // sleeping between attempts to get the list.
9107   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9108     os::sleep(tid, sleep_time_millis, false);
9109     if (_overflow_list == NULL) {
9110       // Nothing left to take
9111       return false;
9112     } else if (_overflow_list != BUSY) {
9113       // Try and grab the prefix
9114       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9115     }
9116   }
9117   // If the list was found to be empty, or we spun long
9118   // enough, we give up and return empty-handed. If we leave
9119   // the list in the BUSY state below, it must be the case that
9120   // some other thread holds the overflow list and will set it
9121   // to a non-BUSY state in the future.
9122   if (prefix == NULL || prefix == BUSY) {
9123      // Nothing to take or waited long enough
9124      if (prefix == NULL) {
9125        // Write back the NULL in case we overwrote it with BUSY above
9126        // and it is still the same value.
9127        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9128      }
9129      return false;
9130   }
9131   assert(prefix != NULL && prefix != BUSY, "Error");
9132   size_t i = num;
9133   oop cur = prefix;
9134   // Walk down the first "num" objects, unless we reach the end.
9135   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9136   if (cur->mark() == NULL) {
9137     // We have "num" or fewer elements in the list, so there
9138     // is nothing to return to the global list.
9139     // Write back the NULL in lieu of the BUSY we wrote
9140     // above, if it is still the same value.
9141     if (_overflow_list == BUSY) {
9142       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9143     }
9144   } else {
9145     // Chop off the suffix and return it to the global list.
9146     assert(cur->mark() != BUSY, "Error");
9147     oop suffix_head = cur->mark(); // suffix will be put back on global list
9148     cur->set_mark(NULL);           // break off suffix
9149     // It's possible that the list is still in the empty(busy) state
9150     // we left it in a short while ago; in that case we may be
9151     // able to place back the suffix without incurring the cost
9152     // of a walk down the list.
9153     oop observed_overflow_list = _overflow_list;
9154     oop cur_overflow_list = observed_overflow_list;
9155     bool attached = false;
9156     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9157       observed_overflow_list =
9158         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9159       if (cur_overflow_list == observed_overflow_list) {
9160         attached = true;
9161         break;
9162       } else cur_overflow_list = observed_overflow_list;
9163     }
9164     if (!attached) {
9165       // Too bad, someone else sneaked in (at least) an element; we'll need
9166       // to do a splice. Find tail of suffix so we can prepend suffix to global
9167       // list.
9168       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9169       oop suffix_tail = cur;
9170       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9171              "Tautology");
9172       observed_overflow_list = _overflow_list;
9173       do {
9174         cur_overflow_list = observed_overflow_list;
9175         if (cur_overflow_list != BUSY) {
9176           // Do the splice ...
9177           suffix_tail->set_mark(markOop(cur_overflow_list));
9178         } else { // cur_overflow_list == BUSY
9179           suffix_tail->set_mark(NULL);
9180         }
9181         // ... and try to place spliced list back on overflow_list ...
9182         observed_overflow_list =
9183           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9184       } while (cur_overflow_list != observed_overflow_list);
9185       // ... until we have succeeded in doing so.
9186     }
9187   }
9188 
9189   // Push the prefix elements on work_q
9190   assert(prefix != NULL, "control point invariant");
9191   const markOop proto = markOopDesc::prototype();
9192   oop next;
9193   NOT_PRODUCT(ssize_t n = 0;)
9194   for (cur = prefix; cur != NULL; cur = next) {
9195     next = oop(cur->mark());
9196     cur->set_mark(proto);   // until proven otherwise
9197     assert(cur->is_oop(), "Should be an oop");
9198     bool res = work_q->push(cur);
9199     assert(res, "Bit off more than we can chew?");
9200     NOT_PRODUCT(n++;)
9201   }
9202 #ifndef PRODUCT
9203   assert(_num_par_pushes >= n, "Too many pops?");
9204   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9205 #endif
9206   return true;
9207 }
9208 
9209 // Single-threaded
9210 void CMSCollector::push_on_overflow_list(oop p) {
9211   NOT_PRODUCT(_num_par_pushes++;)
9212   assert(p->is_oop(), "Not an oop");
9213   preserve_mark_if_necessary(p);
9214   p->set_mark((markOop)_overflow_list);
9215   _overflow_list = p;
9216 }
9217 
9218 // Multi-threaded; use CAS to prepend to overflow list
9219 void CMSCollector::par_push_on_overflow_list(oop p) {
9220   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9221   assert(p->is_oop(), "Not an oop");
9222   par_preserve_mark_if_necessary(p);
9223   oop observed_overflow_list = _overflow_list;
9224   oop cur_overflow_list;
9225   do {
9226     cur_overflow_list = observed_overflow_list;
9227     if (cur_overflow_list != BUSY) {
9228       p->set_mark(markOop(cur_overflow_list));
9229     } else {
9230       p->set_mark(NULL);
9231     }
9232     observed_overflow_list =
9233       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9234   } while (cur_overflow_list != observed_overflow_list);
9235 }
9236 #undef BUSY
9237 
9238 // Single threaded
9239 // General Note on GrowableArray: pushes may silently fail
9240 // because we are (temporarily) out of C-heap for expanding
9241 // the stack. The problem is quite ubiquitous and affects
9242 // a lot of code in the JVM. The prudent thing for GrowableArray
9243 // to do (for now) is to exit with an error. However, that may
9244 // be too draconian in some cases because the caller may be
9245 // able to recover without much harm. For such cases, we
9246 // should probably introduce a "soft_push" method which returns
9247 // an indication of success or failure with the assumption that
9248 // the caller may be able to recover from a failure; code in
9249 // the VM can then be changed, incrementally, to deal with such
9250 // failures where possible, thus, incrementally hardening the VM
9251 // in such low resource situations.
9252 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9253   _preserved_oop_stack.push(p);
9254   _preserved_mark_stack.push(m);
9255   assert(m == p->mark(), "Mark word changed");
9256   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9257          "bijection");
9258 }
9259 
9260 // Single threaded
9261 void CMSCollector::preserve_mark_if_necessary(oop p) {
9262   markOop m = p->mark();
9263   if (m->must_be_preserved(p)) {
9264     preserve_mark_work(p, m);
9265   }
9266 }
9267 
9268 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9269   markOop m = p->mark();
9270   if (m->must_be_preserved(p)) {
9271     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9272     // Even though we read the mark word without holding
9273     // the lock, we are assured that it will not change
9274     // because we "own" this oop, so no other thread can
9275     // be trying to push it on the overflow list; see
9276     // the assertion in preserve_mark_work() that checks
9277     // that m == p->mark().
9278     preserve_mark_work(p, m);
9279   }
9280 }
9281 
9282 // We should be able to do this multi-threaded,
9283 // a chunk of stack being a task (this is
9284 // correct because each oop only ever appears
9285 // once in the overflow list. However, it's
9286 // not very easy to completely overlap this with
9287 // other operations, so will generally not be done
9288 // until all work's been completed. Because we
9289 // expect the preserved oop stack (set) to be small,
9290 // it's probably fine to do this single-threaded.
9291 // We can explore cleverer concurrent/overlapped/parallel
9292 // processing of preserved marks if we feel the
9293 // need for this in the future. Stack overflow should
9294 // be so rare in practice and, when it happens, its
9295 // effect on performance so great that this will
9296 // likely just be in the noise anyway.
9297 void CMSCollector::restore_preserved_marks_if_any() {
9298   assert(SafepointSynchronize::is_at_safepoint(),
9299          "world should be stopped");
9300   assert(Thread::current()->is_ConcurrentGC_thread() ||
9301          Thread::current()->is_VM_thread(),
9302          "should be single-threaded");
9303   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9304          "bijection");
9305 
9306   while (!_preserved_oop_stack.is_empty()) {
9307     oop p = _preserved_oop_stack.pop();
9308     assert(p->is_oop(), "Should be an oop");
9309     assert(_span.contains(p), "oop should be in _span");
9310     assert(p->mark() == markOopDesc::prototype(),
9311            "Set when taken from overflow list");
9312     markOop m = _preserved_mark_stack.pop();
9313     p->set_mark(m);
9314   }
9315   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9316          "stacks were cleared above");
9317 }
9318 
9319 #ifndef PRODUCT
9320 bool CMSCollector::no_preserved_marks() const {
9321   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9322 }
9323 #endif
9324 
9325 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9326 {
9327   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9328   CMSAdaptiveSizePolicy* size_policy =
9329     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9330   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9331     "Wrong type for size policy");
9332   return size_policy;
9333 }
9334 
9335 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9336                                            size_t desired_promo_size) {
9337   if (cur_promo_size < desired_promo_size) {
9338     size_t expand_bytes = desired_promo_size - cur_promo_size;
9339     if (PrintAdaptiveSizePolicy && Verbose) {
9340       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9341         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9342         expand_bytes);
9343     }
9344     expand(expand_bytes,
9345            MinHeapDeltaBytes,
9346            CMSExpansionCause::_adaptive_size_policy);
9347   } else if (desired_promo_size < cur_promo_size) {
9348     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9349     if (PrintAdaptiveSizePolicy && Verbose) {
9350       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9351         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9352         shrink_bytes);
9353     }
9354     shrink(shrink_bytes);
9355   }
9356 }
9357 
9358 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9359   GenCollectedHeap* gch = GenCollectedHeap::heap();
9360   CMSGCAdaptivePolicyCounters* counters =
9361     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9362   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9363     "Wrong kind of counters");
9364   return counters;
9365 }
9366 
9367 
9368 void ASConcurrentMarkSweepGeneration::update_counters() {
9369   if (UsePerfData) {
9370     _space_counters->update_all();
9371     _gen_counters->update_all();
9372     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9373     GenCollectedHeap* gch = GenCollectedHeap::heap();
9374     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9375     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9376       "Wrong gc statistics type");
9377     counters->update_counters(gc_stats_l);
9378   }
9379 }
9380 
9381 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9382   if (UsePerfData) {
9383     _space_counters->update_used(used);
9384     _space_counters->update_capacity();
9385     _gen_counters->update_all();
9386 
9387     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9388     GenCollectedHeap* gch = GenCollectedHeap::heap();
9389     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9390     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9391       "Wrong gc statistics type");
9392     counters->update_counters(gc_stats_l);
9393   }
9394 }
9395 
9396 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9397   assert_locked_or_safepoint(Heap_lock);
9398   assert_lock_strong(freelistLock());
9399   HeapWord* old_end = _cmsSpace->end();
9400   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9401   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9402   FreeChunk* chunk_at_end = find_chunk_at_end();
9403   if (chunk_at_end == NULL) {
9404     // No room to shrink
9405     if (PrintGCDetails && Verbose) {
9406       gclog_or_tty->print_cr("No room to shrink: old_end  "
9407         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9408         " chunk_at_end  " PTR_FORMAT,
9409         old_end, unallocated_start, chunk_at_end);
9410     }
9411     return;
9412   } else {
9413 
9414     // Find the chunk at the end of the space and determine
9415     // how much it can be shrunk.
9416     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9417     size_t aligned_shrinkable_size_in_bytes =
9418       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9419     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9420       "Inconsistent chunk at end of space");
9421     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9422     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9423 
9424     // Shrink the underlying space
9425     _virtual_space.shrink_by(bytes);
9426     if (PrintGCDetails && Verbose) {
9427       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9428         " desired_bytes " SIZE_FORMAT
9429         " shrinkable_size_in_bytes " SIZE_FORMAT
9430         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9431         "  bytes  " SIZE_FORMAT,
9432         desired_bytes, shrinkable_size_in_bytes,
9433         aligned_shrinkable_size_in_bytes, bytes);
9434       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9435         "  unallocated_start  " SIZE_FORMAT,
9436         old_end, unallocated_start);
9437     }
9438 
9439     // If the space did shrink (shrinking is not guaranteed),
9440     // shrink the chunk at the end by the appropriate amount.
9441     if (((HeapWord*)_virtual_space.high()) < old_end) {
9442       size_t new_word_size =
9443         heap_word_size(_virtual_space.committed_size());
9444 
9445       // Have to remove the chunk from the dictionary because it is changing
9446       // size and might be someplace elsewhere in the dictionary.
9447 
9448       // Get the chunk at end, shrink it, and put it
9449       // back.
9450       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9451       size_t word_size_change = word_size_before - new_word_size;
9452       size_t chunk_at_end_old_size = chunk_at_end->size();
9453       assert(chunk_at_end_old_size >= word_size_change,
9454         "Shrink is too large");
9455       chunk_at_end->set_size(chunk_at_end_old_size -
9456                           word_size_change);
9457       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9458         word_size_change);
9459 
9460       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9461 
9462       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9463       _bts->resize(new_word_size);  // resize the block offset shared array
9464       Universe::heap()->barrier_set()->resize_covered_region(mr);
9465       _cmsSpace->assert_locked();
9466       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9467 
9468       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9469 
9470       // update the space and generation capacity counters
9471       if (UsePerfData) {
9472         _space_counters->update_capacity();
9473         _gen_counters->update_all();
9474       }
9475 
9476       if (Verbose && PrintGCDetails) {
9477         size_t new_mem_size = _virtual_space.committed_size();
9478         size_t old_mem_size = new_mem_size + bytes;
9479         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9480                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9481       }
9482     }
9483 
9484     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9485       "Inconsistency at end of space");
9486     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9487       "Shrinking is inconsistent");
9488     return;
9489   }
9490 }
9491 // Transfer some number of overflown objects to usual marking
9492 // stack. Return true if some objects were transferred.
9493 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9494   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9495                     (size_t)ParGCDesiredObjsFromOverflowList);
9496 
9497   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9498   assert(_collector->overflow_list_is_empty() || res,
9499          "If list is not empty, we should have taken something");
9500   assert(!res || !_mark_stack->isEmpty(),
9501          "If we took something, it should now be on our stack");
9502   return res;
9503 }
9504 
9505 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9506   size_t res = _sp->block_size_no_stall(addr, _collector);
9507   if (_sp->block_is_obj(addr)) {
9508     if (_live_bit_map->isMarked(addr)) {
9509       // It can't have been dead in a previous cycle
9510       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9511     } else {
9512       _dead_bit_map->mark(addr);      // mark the dead object
9513     }
9514   }
9515   // Could be 0, if the block size could not be computed without stalling.
9516   return res;
9517 }
9518 
9519 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9520 
9521   switch (phase) {
9522     case CMSCollector::InitialMarking:
9523       initialize(true  /* fullGC */ ,
9524                  cause /* cause of the GC */,
9525                  true  /* recordGCBeginTime */,
9526                  true  /* recordPreGCUsage */,
9527                  false /* recordPeakUsage */,
9528                  false /* recordPostGCusage */,
9529                  true  /* recordAccumulatedGCTime */,
9530                  false /* recordGCEndTime */,
9531                  false /* countCollection */  );
9532       break;
9533 
9534     case CMSCollector::FinalMarking:
9535       initialize(true  /* fullGC */ ,
9536                  cause /* cause of the GC */,
9537                  false /* recordGCBeginTime */,
9538                  false /* recordPreGCUsage */,
9539                  false /* recordPeakUsage */,
9540                  false /* recordPostGCusage */,
9541                  true  /* recordAccumulatedGCTime */,
9542                  false /* recordGCEndTime */,
9543                  false /* countCollection */  );
9544       break;
9545 
9546     case CMSCollector::Sweeping:
9547       initialize(true  /* fullGC */ ,
9548                  cause /* cause of the GC */,
9549                  false /* recordGCBeginTime */,
9550                  false /* recordPreGCUsage */,
9551                  true  /* recordPeakUsage */,
9552                  true  /* recordPostGCusage */,
9553                  false /* recordAccumulatedGCTime */,
9554                  true  /* recordGCEndTime */,
9555                  true  /* countCollection */  );
9556       break;
9557 
9558     default:
9559       ShouldNotReachHere();
9560   }
9561 }