1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/tenuredGeneration.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "services/memoryService.hpp"
  64 #include "services/runtimeService.hpp"
  65 
  66 // statics
  67 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  68 bool CMSCollector::_full_gc_requested = false;
  69 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  70 
  71 //////////////////////////////////////////////////////////////////
  72 // In support of CMS/VM thread synchronization
  73 //////////////////////////////////////////////////////////////////
  74 // We split use of the CGC_lock into 2 "levels".
  75 // The low-level locking is of the usual CGC_lock monitor. We introduce
  76 // a higher level "token" (hereafter "CMS token") built on top of the
  77 // low level monitor (hereafter "CGC lock").
  78 // The token-passing protocol gives priority to the VM thread. The
  79 // CMS-lock doesn't provide any fairness guarantees, but clients
  80 // should ensure that it is only held for very short, bounded
  81 // durations.
  82 //
  83 // When either of the CMS thread or the VM thread is involved in
  84 // collection operations during which it does not want the other
  85 // thread to interfere, it obtains the CMS token.
  86 //
  87 // If either thread tries to get the token while the other has
  88 // it, that thread waits. However, if the VM thread and CMS thread
  89 // both want the token, then the VM thread gets priority while the
  90 // CMS thread waits. This ensures, for instance, that the "concurrent"
  91 // phases of the CMS thread's work do not block out the VM thread
  92 // for long periods of time as the CMS thread continues to hog
  93 // the token. (See bug 4616232).
  94 //
  95 // The baton-passing functions are, however, controlled by the
  96 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  97 // and here the low-level CMS lock, not the high level token,
  98 // ensures mutual exclusion.
  99 //
 100 // Two important conditions that we have to satisfy:
 101 // 1. if a thread does a low-level wait on the CMS lock, then it
 102 //    relinquishes the CMS token if it were holding that token
 103 //    when it acquired the low-level CMS lock.
 104 // 2. any low-level notifications on the low-level lock
 105 //    should only be sent when a thread has relinquished the token.
 106 //
 107 // In the absence of either property, we'd have potential deadlock.
 108 //
 109 // We protect each of the CMS (concurrent and sequential) phases
 110 // with the CMS _token_, not the CMS _lock_.
 111 //
 112 // The only code protected by CMS lock is the token acquisition code
 113 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 114 // baton-passing code.
 115 //
 116 // Unfortunately, i couldn't come up with a good abstraction to factor and
 117 // hide the naked CGC_lock manipulation in the baton-passing code
 118 // further below. That's something we should try to do. Also, the proof
 119 // of correctness of this 2-level locking scheme is far from obvious,
 120 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 121 // that there may be a theoretical possibility of delay/starvation in the
 122 // low-level lock/wait/notify scheme used for the baton-passing because of
 123 // potential interference with the priority scheme embodied in the
 124 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 125 // invocation further below and marked with "XXX 20011219YSR".
 126 // Indeed, as we note elsewhere, this may become yet more slippery
 127 // in the presence of multiple CMS and/or multiple VM threads. XXX
 128 
 129 class CMSTokenSync: public StackObj {
 130  private:
 131   bool _is_cms_thread;
 132  public:
 133   CMSTokenSync(bool is_cms_thread):
 134     _is_cms_thread(is_cms_thread) {
 135     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 136            "Incorrect argument to constructor");
 137     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 138   }
 139 
 140   ~CMSTokenSync() {
 141     assert(_is_cms_thread ?
 142              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 143              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 144           "Incorrect state");
 145     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 146   }
 147 };
 148 
 149 // Convenience class that does a CMSTokenSync, and then acquires
 150 // upto three locks.
 151 class CMSTokenSyncWithLocks: public CMSTokenSync {
 152  private:
 153   // Note: locks are acquired in textual declaration order
 154   // and released in the opposite order
 155   MutexLockerEx _locker1, _locker2, _locker3;
 156  public:
 157   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 158                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 159     CMSTokenSync(is_cms_thread),
 160     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 161     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 162     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 163   { }
 164 };
 165 
 166 
 167 // Wrapper class to temporarily disable icms during a foreground cms collection.
 168 class ICMSDisabler: public StackObj {
 169  public:
 170   // The ctor disables icms and wakes up the thread so it notices the change;
 171   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 172   // CMSIncrementalMode.
 173   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 174   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 175 };
 176 
 177 //////////////////////////////////////////////////////////////////
 178 //  Concurrent Mark-Sweep Generation /////////////////////////////
 179 //////////////////////////////////////////////////////////////////
 180 
 181 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 182 
 183 // This struct contains per-thread things necessary to support parallel
 184 // young-gen collection.
 185 class CMSParGCThreadState: public CHeapObj<mtGC> {
 186  public:
 187   CFLS_LAB lab;
 188   PromotionInfo promo;
 189 
 190   // Constructor.
 191   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 192     promo.setSpace(cfls);
 193   }
 194 };
 195 
 196 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 197      ReservedSpace rs, size_t initial_byte_size, int level,
 198      CardTableRS* ct, bool use_adaptive_freelists,
 199      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 200   CardGeneration(rs, initial_byte_size, level, ct),
 201   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 202   _debug_collection_type(Concurrent_collection_type),
 203   _did_compact(false)
 204 {
 205   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 206   HeapWord* end    = (HeapWord*) _virtual_space.high();
 207 
 208   _direct_allocated_words = 0;
 209   NOT_PRODUCT(
 210     _numObjectsPromoted = 0;
 211     _numWordsPromoted = 0;
 212     _numObjectsAllocated = 0;
 213     _numWordsAllocated = 0;
 214   )
 215 
 216   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 217                                            use_adaptive_freelists,
 218                                            dictionaryChoice);
 219   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 220   if (_cmsSpace == NULL) {
 221     vm_exit_during_initialization(
 222       "CompactibleFreeListSpace allocation failure");
 223   }
 224   _cmsSpace->_gen = this;
 225 
 226   _gc_stats = new CMSGCStats();
 227 
 228   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 229   // offsets match. The ability to tell free chunks from objects
 230   // depends on this property.
 231   debug_only(
 232     FreeChunk* junk = NULL;
 233     assert(UseCompressedClassPointers ||
 234            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 235            "Offset of FreeChunk::_prev within FreeChunk must match"
 236            "  that of OopDesc::_klass within OopDesc");
 237   )
 238   if (CollectedHeap::use_parallel_gc_threads()) {
 239     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 240     _par_gc_thread_states =
 241       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 242     if (_par_gc_thread_states == NULL) {
 243       vm_exit_during_initialization("Could not allocate par gc structs");
 244     }
 245     for (uint i = 0; i < ParallelGCThreads; i++) {
 246       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 247       if (_par_gc_thread_states[i] == NULL) {
 248         vm_exit_during_initialization("Could not allocate par gc structs");
 249       }
 250     }
 251   } else {
 252     _par_gc_thread_states = NULL;
 253   }
 254   _incremental_collection_failed = false;
 255   // The "dilatation_factor" is the expansion that can occur on
 256   // account of the fact that the minimum object size in the CMS
 257   // generation may be larger than that in, say, a contiguous young
 258   //  generation.
 259   // Ideally, in the calculation below, we'd compute the dilatation
 260   // factor as: MinChunkSize/(promoting_gen's min object size)
 261   // Since we do not have such a general query interface for the
 262   // promoting generation, we'll instead just use the minimum
 263   // object size (which today is a header's worth of space);
 264   // note that all arithmetic is in units of HeapWords.
 265   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 266   assert(_dilatation_factor >= 1.0, "from previous assert");
 267 }
 268 
 269 
 270 // The field "_initiating_occupancy" represents the occupancy percentage
 271 // at which we trigger a new collection cycle.  Unless explicitly specified
 272 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 273 // is calculated by:
 274 //
 275 //   Let "f" be MinHeapFreeRatio in
 276 //
 277 //    _initiating_occupancy = 100-f +
 278 //                           f * (CMSTriggerRatio/100)
 279 //   where CMSTriggerRatio is the argument "tr" below.
 280 //
 281 // That is, if we assume the heap is at its desired maximum occupancy at the
 282 // end of a collection, we let CMSTriggerRatio of the (purported) free
 283 // space be allocated before initiating a new collection cycle.
 284 //
 285 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 286   assert(io <= 100 && tr <= 100, "Check the arguments");
 287   if (io >= 0) {
 288     _initiating_occupancy = (double)io / 100.0;
 289   } else {
 290     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 291                              (double)(tr * MinHeapFreeRatio) / 100.0)
 292                             / 100.0;
 293   }
 294 }
 295 
 296 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 297   assert(collector() != NULL, "no collector");
 298   collector()->ref_processor_init();
 299 }
 300 
 301 void CMSCollector::ref_processor_init() {
 302   if (_ref_processor == NULL) {
 303     // Allocate and initialize a reference processor
 304     _ref_processor =
 305       new ReferenceProcessor(_span,                               // span
 306                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 307                              (int) ParallelGCThreads,             // mt processing degree
 308                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 309                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 310                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 311                              &_is_alive_closure,                  // closure for liveness info
 312                              false);                              // next field updates do not need write barrier
 313     // Initialize the _ref_processor field of CMSGen
 314     _cmsGen->set_ref_processor(_ref_processor);
 315 
 316   }
 317 }
 318 
 319 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 320   GenCollectedHeap* gch = GenCollectedHeap::heap();
 321   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 322     "Wrong type of heap");
 323   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 324     gch->gen_policy()->size_policy();
 325   assert(sp->is_gc_cms_adaptive_size_policy(),
 326     "Wrong type of size policy");
 327   return sp;
 328 }
 329 
 330 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 331   CMSGCAdaptivePolicyCounters* results =
 332     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 333   assert(
 334     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 335     "Wrong gc policy counter kind");
 336   return results;
 337 }
 338 
 339 
 340 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 341 
 342   const char* gen_name = "old";
 343 
 344   // Generation Counters - generation 1, 1 subspace
 345   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 346 
 347   _space_counters = new GSpaceCounters(gen_name, 0,
 348                                        _virtual_space.reserved_size(),
 349                                        this, _gen_counters);
 350 }
 351 
 352 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 353   _cms_gen(cms_gen)
 354 {
 355   assert(alpha <= 100, "bad value");
 356   _saved_alpha = alpha;
 357 
 358   // Initialize the alphas to the bootstrap value of 100.
 359   _gc0_alpha = _cms_alpha = 100;
 360 
 361   _cms_begin_time.update();
 362   _cms_end_time.update();
 363 
 364   _gc0_duration = 0.0;
 365   _gc0_period = 0.0;
 366   _gc0_promoted = 0;
 367 
 368   _cms_duration = 0.0;
 369   _cms_period = 0.0;
 370   _cms_allocated = 0;
 371 
 372   _cms_used_at_gc0_begin = 0;
 373   _cms_used_at_gc0_end = 0;
 374   _allow_duty_cycle_reduction = false;
 375   _valid_bits = 0;
 376   _icms_duty_cycle = CMSIncrementalDutyCycle;
 377 }
 378 
 379 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 380   // TBD: CR 6909490
 381   return 1.0;
 382 }
 383 
 384 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 385 }
 386 
 387 // If promotion failure handling is on use
 388 // the padded average size of the promotion for each
 389 // young generation collection.
 390 double CMSStats::time_until_cms_gen_full() const {
 391   size_t cms_free = _cms_gen->cmsSpace()->free();
 392   GenCollectedHeap* gch = GenCollectedHeap::heap();
 393   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 394                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 395   if (cms_free > expected_promotion) {
 396     // Start a cms collection if there isn't enough space to promote
 397     // for the next minor collection.  Use the padded average as
 398     // a safety factor.
 399     cms_free -= expected_promotion;
 400 
 401     // Adjust by the safety factor.
 402     double cms_free_dbl = (double)cms_free;
 403     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 404     // Apply a further correction factor which tries to adjust
 405     // for recent occurance of concurrent mode failures.
 406     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 407     cms_free_dbl = cms_free_dbl * cms_adjustment;
 408 
 409     if (PrintGCDetails && Verbose) {
 410       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 411         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 412         cms_free, expected_promotion);
 413       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 414         cms_free_dbl, cms_consumption_rate() + 1.0);
 415     }
 416     // Add 1 in case the consumption rate goes to zero.
 417     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 418   }
 419   return 0.0;
 420 }
 421 
 422 // Compare the duration of the cms collection to the
 423 // time remaining before the cms generation is empty.
 424 // Note that the time from the start of the cms collection
 425 // to the start of the cms sweep (less than the total
 426 // duration of the cms collection) can be used.  This
 427 // has been tried and some applications experienced
 428 // promotion failures early in execution.  This was
 429 // possibly because the averages were not accurate
 430 // enough at the beginning.
 431 double CMSStats::time_until_cms_start() const {
 432   // We add "gc0_period" to the "work" calculation
 433   // below because this query is done (mostly) at the
 434   // end of a scavenge, so we need to conservatively
 435   // account for that much possible delay
 436   // in the query so as to avoid concurrent mode failures
 437   // due to starting the collection just a wee bit too
 438   // late.
 439   double work = cms_duration() + gc0_period();
 440   double deadline = time_until_cms_gen_full();
 441   // If a concurrent mode failure occurred recently, we want to be
 442   // more conservative and halve our expected time_until_cms_gen_full()
 443   if (work > deadline) {
 444     if (Verbose && PrintGCDetails) {
 445       gclog_or_tty->print(
 446         " CMSCollector: collect because of anticipated promotion "
 447         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 448         gc0_period(), time_until_cms_gen_full());
 449     }
 450     return 0.0;
 451   }
 452   return work - deadline;
 453 }
 454 
 455 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 456 // amount of change to prevent wild oscillation.
 457 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 458                                               unsigned int new_duty_cycle) {
 459   assert(old_duty_cycle <= 100, "bad input value");
 460   assert(new_duty_cycle <= 100, "bad input value");
 461 
 462   // Note:  use subtraction with caution since it may underflow (values are
 463   // unsigned).  Addition is safe since we're in the range 0-100.
 464   unsigned int damped_duty_cycle = new_duty_cycle;
 465   if (new_duty_cycle < old_duty_cycle) {
 466     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 467     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 468       damped_duty_cycle = old_duty_cycle - largest_delta;
 469     }
 470   } else if (new_duty_cycle > old_duty_cycle) {
 471     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 472     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 473       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 474     }
 475   }
 476   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 477 
 478   if (CMSTraceIncrementalPacing) {
 479     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 480                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 481   }
 482   return damped_duty_cycle;
 483 }
 484 
 485 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 486   assert(CMSIncrementalPacing && valid(),
 487          "should be handled in icms_update_duty_cycle()");
 488 
 489   double cms_time_so_far = cms_timer().seconds();
 490   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 491   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 492 
 493   // Avoid division by 0.
 494   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 495   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 496 
 497   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 498   if (new_duty_cycle > _icms_duty_cycle) {
 499     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 500     if (new_duty_cycle > 2) {
 501       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 502                                                 new_duty_cycle);
 503     }
 504   } else if (_allow_duty_cycle_reduction) {
 505     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 506     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 507     // Respect the minimum duty cycle.
 508     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 509     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 510   }
 511 
 512   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 513     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 514   }
 515 
 516   _allow_duty_cycle_reduction = false;
 517   return _icms_duty_cycle;
 518 }
 519 
 520 #ifndef PRODUCT
 521 void CMSStats::print_on(outputStream *st) const {
 522   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 523   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 524                gc0_duration(), gc0_period(), gc0_promoted());
 525   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 526             cms_duration(), cms_duration_per_mb(),
 527             cms_period(), cms_allocated());
 528   st->print(",cms_since_beg=%g,cms_since_end=%g",
 529             cms_time_since_begin(), cms_time_since_end());
 530   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 531             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 532   if (CMSIncrementalMode) {
 533     st->print(",dc=%d", icms_duty_cycle());
 534   }
 535 
 536   if (valid()) {
 537     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 538               promotion_rate(), cms_allocation_rate());
 539     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 540               cms_consumption_rate(), time_until_cms_gen_full());
 541   }
 542   st->print(" ");
 543 }
 544 #endif // #ifndef PRODUCT
 545 
 546 CMSCollector::CollectorState CMSCollector::_collectorState =
 547                              CMSCollector::Idling;
 548 bool CMSCollector::_foregroundGCIsActive = false;
 549 bool CMSCollector::_foregroundGCShouldWait = false;
 550 
 551 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 552                            CardTableRS*                   ct,
 553                            ConcurrentMarkSweepPolicy*     cp):
 554   _cmsGen(cmsGen),
 555   _ct(ct),
 556   _ref_processor(NULL),    // will be set later
 557   _conc_workers(NULL),     // may be set later
 558   _abort_preclean(false),
 559   _start_sampling(false),
 560   _between_prologue_and_epilogue(false),
 561   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 562   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 563                  -1 /* lock-free */, "No_lock" /* dummy */),
 564   _modUnionClosure(&_modUnionTable),
 565   _modUnionClosurePar(&_modUnionTable),
 566   // Adjust my span to cover old (cms) gen
 567   _span(cmsGen->reserved()),
 568   // Construct the is_alive_closure with _span & markBitMap
 569   _is_alive_closure(_span, &_markBitMap),
 570   _restart_addr(NULL),
 571   _overflow_list(NULL),
 572   _stats(cmsGen),
 573   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 574   _eden_chunk_array(NULL),     // may be set in ctor body
 575   _eden_chunk_capacity(0),     // -- ditto --
 576   _eden_chunk_index(0),        // -- ditto --
 577   _survivor_plab_array(NULL),  // -- ditto --
 578   _survivor_chunk_array(NULL), // -- ditto --
 579   _survivor_chunk_capacity(0), // -- ditto --
 580   _survivor_chunk_index(0),    // -- ditto --
 581   _ser_pmc_preclean_ovflw(0),
 582   _ser_kac_preclean_ovflw(0),
 583   _ser_pmc_remark_ovflw(0),
 584   _par_pmc_remark_ovflw(0),
 585   _ser_kac_ovflw(0),
 586   _par_kac_ovflw(0),
 587 #ifndef PRODUCT
 588   _num_par_pushes(0),
 589 #endif
 590   _collection_count_start(0),
 591   _verifying(false),
 592   _icms_start_limit(NULL),
 593   _icms_stop_limit(NULL),
 594   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 595   _completed_initialization(false),
 596   _collector_policy(cp),
 597   _should_unload_classes(CMSClassUnloadingEnabled),
 598   _concurrent_cycles_since_last_unload(0),
 599   _roots_scanning_options(SharedHeap::SO_None),
 600   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 601   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 602   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 603   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 604   _cms_start_registered(false)
 605 {
 606   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 607     ExplicitGCInvokesConcurrent = true;
 608   }
 609   // Now expand the span and allocate the collection support structures
 610   // (MUT, marking bit map etc.) to cover both generations subject to
 611   // collection.
 612 
 613   // For use by dirty card to oop closures.
 614   _cmsGen->cmsSpace()->set_collector(this);
 615 
 616   // Allocate MUT and marking bit map
 617   {
 618     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 619     if (!_markBitMap.allocate(_span)) {
 620       warning("Failed to allocate CMS Bit Map");
 621       return;
 622     }
 623     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 624   }
 625   {
 626     _modUnionTable.allocate(_span);
 627     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 628   }
 629 
 630   if (!_markStack.allocate(MarkStackSize)) {
 631     warning("Failed to allocate CMS Marking Stack");
 632     return;
 633   }
 634 
 635   // Support for multi-threaded concurrent phases
 636   if (CMSConcurrentMTEnabled) {
 637     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 638       // just for now
 639       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 640     }
 641     if (ConcGCThreads > 1) {
 642       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 643                                  ConcGCThreads, true);
 644       if (_conc_workers == NULL) {
 645         warning("GC/CMS: _conc_workers allocation failure: "
 646               "forcing -CMSConcurrentMTEnabled");
 647         CMSConcurrentMTEnabled = false;
 648       } else {
 649         _conc_workers->initialize_workers();
 650       }
 651     } else {
 652       CMSConcurrentMTEnabled = false;
 653     }
 654   }
 655   if (!CMSConcurrentMTEnabled) {
 656     ConcGCThreads = 0;
 657   } else {
 658     // Turn off CMSCleanOnEnter optimization temporarily for
 659     // the MT case where it's not fixed yet; see 6178663.
 660     CMSCleanOnEnter = false;
 661   }
 662   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 663          "Inconsistency");
 664 
 665   // Parallel task queues; these are shared for the
 666   // concurrent and stop-world phases of CMS, but
 667   // are not shared with parallel scavenge (ParNew).
 668   {
 669     uint i;
 670     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 671 
 672     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 673          || ParallelRefProcEnabled)
 674         && num_queues > 0) {
 675       _task_queues = new OopTaskQueueSet(num_queues);
 676       if (_task_queues == NULL) {
 677         warning("task_queues allocation failure.");
 678         return;
 679       }
 680       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 681       if (_hash_seed == NULL) {
 682         warning("_hash_seed array allocation failure");
 683         return;
 684       }
 685 
 686       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 687       for (i = 0; i < num_queues; i++) {
 688         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 689         if (q == NULL) {
 690           warning("work_queue allocation failure.");
 691           return;
 692         }
 693         _task_queues->register_queue(i, q);
 694       }
 695       for (i = 0; i < num_queues; i++) {
 696         _task_queues->queue(i)->initialize();
 697         _hash_seed[i] = 17;  // copied from ParNew
 698       }
 699     }
 700   }
 701 
 702   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 703 
 704   // Clip CMSBootstrapOccupancy between 0 and 100.
 705   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 706 
 707   _full_gcs_since_conc_gc = 0;
 708 
 709   // Now tell CMS generations the identity of their collector
 710   ConcurrentMarkSweepGeneration::set_collector(this);
 711 
 712   // Create & start a CMS thread for this CMS collector
 713   _cmsThread = ConcurrentMarkSweepThread::start(this);
 714   assert(cmsThread() != NULL, "CMS Thread should have been created");
 715   assert(cmsThread()->collector() == this,
 716          "CMS Thread should refer to this gen");
 717   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 718 
 719   // Support for parallelizing young gen rescan
 720   GenCollectedHeap* gch = GenCollectedHeap::heap();
 721   _young_gen = gch->prev_gen(_cmsGen);
 722   if (gch->supports_inline_contig_alloc()) {
 723     _top_addr = gch->top_addr();
 724     _end_addr = gch->end_addr();
 725     assert(_young_gen != NULL, "no _young_gen");
 726     _eden_chunk_index = 0;
 727     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 728     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 729     if (_eden_chunk_array == NULL) {
 730       _eden_chunk_capacity = 0;
 731       warning("GC/CMS: _eden_chunk_array allocation failure");
 732     }
 733   }
 734   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 735 
 736   // Support for parallelizing survivor space rescan
 737   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 738     const size_t max_plab_samples =
 739       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 740 
 741     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 742     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 743     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 744     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 745         || _cursor == NULL) {
 746       warning("Failed to allocate survivor plab/chunk array");
 747       if (_survivor_plab_array  != NULL) {
 748         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 749         _survivor_plab_array = NULL;
 750       }
 751       if (_survivor_chunk_array != NULL) {
 752         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 753         _survivor_chunk_array = NULL;
 754       }
 755       if (_cursor != NULL) {
 756         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 757         _cursor = NULL;
 758       }
 759     } else {
 760       _survivor_chunk_capacity = 2*max_plab_samples;
 761       for (uint i = 0; i < ParallelGCThreads; i++) {
 762         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 763         if (vec == NULL) {
 764           warning("Failed to allocate survivor plab array");
 765           for (int j = i; j > 0; j--) {
 766             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 767           }
 768           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 769           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 770           _survivor_plab_array = NULL;
 771           _survivor_chunk_array = NULL;
 772           _survivor_chunk_capacity = 0;
 773           break;
 774         } else {
 775           ChunkArray* cur =
 776             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 777                                                         max_plab_samples);
 778           assert(cur->end() == 0, "Should be 0");
 779           assert(cur->array() == vec, "Should be vec");
 780           assert(cur->capacity() == max_plab_samples, "Error");
 781         }
 782       }
 783     }
 784   }
 785   assert(   (   _survivor_plab_array  != NULL
 786              && _survivor_chunk_array != NULL)
 787          || (   _survivor_chunk_capacity == 0
 788              && _survivor_chunk_index == 0),
 789          "Error");
 790 
 791   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 792   _gc_counters = new CollectorCounters("CMS", 1);
 793   _completed_initialization = true;
 794   _inter_sweep_timer.start();  // start of time
 795 }
 796 
 797 const char* ConcurrentMarkSweepGeneration::name() const {
 798   return "concurrent mark-sweep generation";
 799 }
 800 void ConcurrentMarkSweepGeneration::update_counters() {
 801   if (UsePerfData) {
 802     _space_counters->update_all();
 803     _gen_counters->update_all();
 804   }
 805 }
 806 
 807 // this is an optimized version of update_counters(). it takes the
 808 // used value as a parameter rather than computing it.
 809 //
 810 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 811   if (UsePerfData) {
 812     _space_counters->update_used(used);
 813     _space_counters->update_capacity();
 814     _gen_counters->update_all();
 815   }
 816 }
 817 
 818 void ConcurrentMarkSweepGeneration::print() const {
 819   Generation::print();
 820   cmsSpace()->print();
 821 }
 822 
 823 #ifndef PRODUCT
 824 void ConcurrentMarkSweepGeneration::print_statistics() {
 825   cmsSpace()->printFLCensus(0);
 826 }
 827 #endif
 828 
 829 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 830   GenCollectedHeap* gch = GenCollectedHeap::heap();
 831   if (PrintGCDetails) {
 832     if (Verbose) {
 833       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 834         level(), short_name(), s, used(), capacity());
 835     } else {
 836       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 837         level(), short_name(), s, used() / K, capacity() / K);
 838     }
 839   }
 840   if (Verbose) {
 841     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 842               gch->used(), gch->capacity());
 843   } else {
 844     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 845               gch->used() / K, gch->capacity() / K);
 846   }
 847 }
 848 
 849 size_t
 850 ConcurrentMarkSweepGeneration::contiguous_available() const {
 851   // dld proposes an improvement in precision here. If the committed
 852   // part of the space ends in a free block we should add that to
 853   // uncommitted size in the calculation below. Will make this
 854   // change later, staying with the approximation below for the
 855   // time being. -- ysr.
 856   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 857 }
 858 
 859 size_t
 860 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 861   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 862 }
 863 
 864 size_t ConcurrentMarkSweepGeneration::max_available() const {
 865   return free() + _virtual_space.uncommitted_size();
 866 }
 867 
 868 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 869   size_t available = max_available();
 870   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 871   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 872   if (Verbose && PrintGCDetails) {
 873     gclog_or_tty->print_cr(
 874       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 875       "max_promo("SIZE_FORMAT")",
 876       res? "":" not", available, res? ">=":"<",
 877       av_promo, max_promotion_in_bytes);
 878   }
 879   return res;
 880 }
 881 
 882 // At a promotion failure dump information on block layout in heap
 883 // (cms old generation).
 884 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 885   if (CMSDumpAtPromotionFailure) {
 886     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 887   }
 888 }
 889 
 890 CompactibleSpace*
 891 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 892   return _cmsSpace;
 893 }
 894 
 895 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 896   // Clear the promotion information.  These pointers can be adjusted
 897   // along with all the other pointers into the heap but
 898   // compaction is expected to be a rare event with
 899   // a heap using cms so don't do it without seeing the need.
 900   if (CollectedHeap::use_parallel_gc_threads()) {
 901     for (uint i = 0; i < ParallelGCThreads; i++) {
 902       _par_gc_thread_states[i]->promo.reset();
 903     }
 904   }
 905 }
 906 
 907 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 908   blk->do_space(_cmsSpace);
 909 }
 910 
 911 void ConcurrentMarkSweepGeneration::compute_new_size() {
 912   assert_locked_or_safepoint(Heap_lock);
 913 
 914   // If incremental collection failed, we just want to expand
 915   // to the limit.
 916   if (incremental_collection_failed()) {
 917     clear_incremental_collection_failed();
 918     grow_to_reserved();
 919     return;
 920   }
 921 
 922   // The heap has been compacted but not reset yet.
 923   // Any metric such as free() or used() will be incorrect.
 924 
 925   CardGeneration::compute_new_size();
 926 
 927   // Reset again after a possible resizing
 928   if (did_compact()) {
 929     cmsSpace()->reset_after_compaction();
 930   }
 931 }
 932 
 933 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 934   assert_locked_or_safepoint(Heap_lock);
 935 
 936   // If incremental collection failed, we just want to expand
 937   // to the limit.
 938   if (incremental_collection_failed()) {
 939     clear_incremental_collection_failed();
 940     grow_to_reserved();
 941     return;
 942   }
 943 
 944   double free_percentage = ((double) free()) / capacity();
 945   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 946   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 947 
 948   // compute expansion delta needed for reaching desired free percentage
 949   if (free_percentage < desired_free_percentage) {
 950     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 951     assert(desired_capacity >= capacity(), "invalid expansion size");
 952     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 953     if (PrintGCDetails && Verbose) {
 954       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 955       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 956       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 957       gclog_or_tty->print_cr("  Desired free fraction %f",
 958         desired_free_percentage);
 959       gclog_or_tty->print_cr("  Maximum free fraction %f",
 960         maximum_free_percentage);
 961       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 962       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 963         desired_capacity/1000);
 964       int prev_level = level() - 1;
 965       if (prev_level >= 0) {
 966         size_t prev_size = 0;
 967         GenCollectedHeap* gch = GenCollectedHeap::heap();
 968         Generation* prev_gen = gch->_gens[prev_level];
 969         prev_size = prev_gen->capacity();
 970           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 971                                  prev_size/1000);
 972       }
 973       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 974         unsafe_max_alloc_nogc()/1000);
 975       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 976         contiguous_available()/1000);
 977       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 978         expand_bytes);
 979     }
 980     // safe if expansion fails
 981     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 982     if (PrintGCDetails && Verbose) {
 983       gclog_or_tty->print_cr("  Expanded free fraction %f",
 984         ((double) free()) / capacity());
 985     }
 986   } else {
 987     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 988     assert(desired_capacity <= capacity(), "invalid expansion size");
 989     size_t shrink_bytes = capacity() - desired_capacity;
 990     // Don't shrink unless the delta is greater than the minimum shrink we want
 991     if (shrink_bytes >= MinHeapDeltaBytes) {
 992       shrink_free_list_by(shrink_bytes);
 993     }
 994   }
 995 }
 996 
 997 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 998   return cmsSpace()->freelistLock();
 999 }
1000 
1001 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1002                                                   bool   tlab) {
1003   CMSSynchronousYieldRequest yr;
1004   MutexLockerEx x(freelistLock(),
1005                   Mutex::_no_safepoint_check_flag);
1006   return have_lock_and_allocate(size, tlab);
1007 }
1008 
1009 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1010                                                   bool   tlab /* ignored */) {
1011   assert_lock_strong(freelistLock());
1012   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1013   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1014   // Allocate the object live (grey) if the background collector has
1015   // started marking. This is necessary because the marker may
1016   // have passed this address and consequently this object will
1017   // not otherwise be greyed and would be incorrectly swept up.
1018   // Note that if this object contains references, the writing
1019   // of those references will dirty the card containing this object
1020   // allowing the object to be blackened (and its references scanned)
1021   // either during a preclean phase or at the final checkpoint.
1022   if (res != NULL) {
1023     // We may block here with an uninitialized object with
1024     // its mark-bit or P-bits not yet set. Such objects need
1025     // to be safely navigable by block_start().
1026     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1027     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1028     collector()->direct_allocated(res, adjustedSize);
1029     _direct_allocated_words += adjustedSize;
1030     // allocation counters
1031     NOT_PRODUCT(
1032       _numObjectsAllocated++;
1033       _numWordsAllocated += (int)adjustedSize;
1034     )
1035   }
1036   return res;
1037 }
1038 
1039 // In the case of direct allocation by mutators in a generation that
1040 // is being concurrently collected, the object must be allocated
1041 // live (grey) if the background collector has started marking.
1042 // This is necessary because the marker may
1043 // have passed this address and consequently this object will
1044 // not otherwise be greyed and would be incorrectly swept up.
1045 // Note that if this object contains references, the writing
1046 // of those references will dirty the card containing this object
1047 // allowing the object to be blackened (and its references scanned)
1048 // either during a preclean phase or at the final checkpoint.
1049 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1050   assert(_markBitMap.covers(start, size), "Out of bounds");
1051   if (_collectorState >= Marking) {
1052     MutexLockerEx y(_markBitMap.lock(),
1053                     Mutex::_no_safepoint_check_flag);
1054     // [see comments preceding SweepClosure::do_blk() below for details]
1055     //
1056     // Can the P-bits be deleted now?  JJJ
1057     //
1058     // 1. need to mark the object as live so it isn't collected
1059     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1060     // 3. need to mark the end of the object so marking, precleaning or sweeping
1061     //    can skip over uninitialized or unparsable objects. An allocated
1062     //    object is considered uninitialized for our purposes as long as
1063     //    its klass word is NULL.  All old gen objects are parsable
1064     //    as soon as they are initialized.)
1065     _markBitMap.mark(start);          // object is live
1066     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1067     _markBitMap.mark(start + size - 1);
1068                                       // mark end of object
1069   }
1070   // check that oop looks uninitialized
1071   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1072 }
1073 
1074 void CMSCollector::promoted(bool par, HeapWord* start,
1075                             bool is_obj_array, size_t obj_size) {
1076   assert(_markBitMap.covers(start), "Out of bounds");
1077   // See comment in direct_allocated() about when objects should
1078   // be allocated live.
1079   if (_collectorState >= Marking) {
1080     // we already hold the marking bit map lock, taken in
1081     // the prologue
1082     if (par) {
1083       _markBitMap.par_mark(start);
1084     } else {
1085       _markBitMap.mark(start);
1086     }
1087     // We don't need to mark the object as uninitialized (as
1088     // in direct_allocated above) because this is being done with the
1089     // world stopped and the object will be initialized by the
1090     // time the marking, precleaning or sweeping get to look at it.
1091     // But see the code for copying objects into the CMS generation,
1092     // where we need to ensure that concurrent readers of the
1093     // block offset table are able to safely navigate a block that
1094     // is in flux from being free to being allocated (and in
1095     // transition while being copied into) and subsequently
1096     // becoming a bona-fide object when the copy/promotion is complete.
1097     assert(SafepointSynchronize::is_at_safepoint(),
1098            "expect promotion only at safepoints");
1099 
1100     if (_collectorState < Sweeping) {
1101       // Mark the appropriate cards in the modUnionTable, so that
1102       // this object gets scanned before the sweep. If this is
1103       // not done, CMS generation references in the object might
1104       // not get marked.
1105       // For the case of arrays, which are otherwise precisely
1106       // marked, we need to dirty the entire array, not just its head.
1107       if (is_obj_array) {
1108         // The [par_]mark_range() method expects mr.end() below to
1109         // be aligned to the granularity of a bit's representation
1110         // in the heap. In the case of the MUT below, that's a
1111         // card size.
1112         MemRegion mr(start,
1113                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1114                         CardTableModRefBS::card_size /* bytes */));
1115         if (par) {
1116           _modUnionTable.par_mark_range(mr);
1117         } else {
1118           _modUnionTable.mark_range(mr);
1119         }
1120       } else {  // not an obj array; we can just mark the head
1121         if (par) {
1122           _modUnionTable.par_mark(start);
1123         } else {
1124           _modUnionTable.mark(start);
1125         }
1126       }
1127     }
1128   }
1129 }
1130 
1131 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1132 {
1133   size_t delta = pointer_delta(addr, space->bottom());
1134   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1135 }
1136 
1137 void CMSCollector::icms_update_allocation_limits()
1138 {
1139   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1140   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1141 
1142   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1143   if (CMSTraceIncrementalPacing) {
1144     stats().print();
1145   }
1146 
1147   assert(duty_cycle <= 100, "invalid duty cycle");
1148   if (duty_cycle != 0) {
1149     // The duty_cycle is a percentage between 0 and 100; convert to words and
1150     // then compute the offset from the endpoints of the space.
1151     size_t free_words = eden->free() / HeapWordSize;
1152     double free_words_dbl = (double)free_words;
1153     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1154     size_t offset_words = (free_words - duty_cycle_words) / 2;
1155 
1156     _icms_start_limit = eden->top() + offset_words;
1157     _icms_stop_limit = eden->end() - offset_words;
1158 
1159     // The limits may be adjusted (shifted to the right) by
1160     // CMSIncrementalOffset, to allow the application more mutator time after a
1161     // young gen gc (when all mutators were stopped) and before CMS starts and
1162     // takes away one or more cpus.
1163     if (CMSIncrementalOffset != 0) {
1164       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1165       size_t adjustment = (size_t)adjustment_dbl;
1166       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1167       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1168         _icms_start_limit += adjustment;
1169         _icms_stop_limit = tmp_stop;
1170       }
1171     }
1172   }
1173   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1174     _icms_start_limit = _icms_stop_limit = eden->end();
1175   }
1176 
1177   // Install the new start limit.
1178   eden->set_soft_end(_icms_start_limit);
1179 
1180   if (CMSTraceIncrementalMode) {
1181     gclog_or_tty->print(" icms alloc limits:  "
1182                            PTR_FORMAT "," PTR_FORMAT
1183                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1184                            _icms_start_limit, _icms_stop_limit,
1185                            percent_of_space(eden, _icms_start_limit),
1186                            percent_of_space(eden, _icms_stop_limit));
1187     if (Verbose) {
1188       gclog_or_tty->print("eden:  ");
1189       eden->print_on(gclog_or_tty);
1190     }
1191   }
1192 }
1193 
1194 // Any changes here should try to maintain the invariant
1195 // that if this method is called with _icms_start_limit
1196 // and _icms_stop_limit both NULL, then it should return NULL
1197 // and not notify the icms thread.
1198 HeapWord*
1199 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1200                                        size_t word_size)
1201 {
1202   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1203   // nop.
1204   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1205     if (top <= _icms_start_limit) {
1206       if (CMSTraceIncrementalMode) {
1207         space->print_on(gclog_or_tty);
1208         gclog_or_tty->stamp();
1209         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1210                                ", new limit=" PTR_FORMAT
1211                                " (" SIZE_FORMAT "%%)",
1212                                top, _icms_stop_limit,
1213                                percent_of_space(space, _icms_stop_limit));
1214       }
1215       ConcurrentMarkSweepThread::start_icms();
1216       assert(top < _icms_stop_limit, "Tautology");
1217       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1218         return _icms_stop_limit;
1219       }
1220 
1221       // The allocation will cross both the _start and _stop limits, so do the
1222       // stop notification also and return end().
1223       if (CMSTraceIncrementalMode) {
1224         space->print_on(gclog_or_tty);
1225         gclog_or_tty->stamp();
1226         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1227                                ", new limit=" PTR_FORMAT
1228                                " (" SIZE_FORMAT "%%)",
1229                                top, space->end(),
1230                                percent_of_space(space, space->end()));
1231       }
1232       ConcurrentMarkSweepThread::stop_icms();
1233       return space->end();
1234     }
1235 
1236     if (top <= _icms_stop_limit) {
1237       if (CMSTraceIncrementalMode) {
1238         space->print_on(gclog_or_tty);
1239         gclog_or_tty->stamp();
1240         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1241                                ", new limit=" PTR_FORMAT
1242                                " (" SIZE_FORMAT "%%)",
1243                                top, space->end(),
1244                                percent_of_space(space, space->end()));
1245       }
1246       ConcurrentMarkSweepThread::stop_icms();
1247       return space->end();
1248     }
1249 
1250     if (CMSTraceIncrementalMode) {
1251       space->print_on(gclog_or_tty);
1252       gclog_or_tty->stamp();
1253       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1254                              ", new limit=" PTR_FORMAT,
1255                              top, NULL);
1256     }
1257   }
1258 
1259   return NULL;
1260 }
1261 
1262 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1264   // allocate, copy and if necessary update promoinfo --
1265   // delegate to underlying space.
1266   assert_lock_strong(freelistLock());
1267 
1268 #ifndef PRODUCT
1269   if (Universe::heap()->promotion_should_fail()) {
1270     return NULL;
1271   }
1272 #endif  // #ifndef PRODUCT
1273 
1274   oop res = _cmsSpace->promote(obj, obj_size);
1275   if (res == NULL) {
1276     // expand and retry
1277     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1278     expand(s*HeapWordSize, MinHeapDeltaBytes,
1279       CMSExpansionCause::_satisfy_promotion);
1280     // Since there's currently no next generation, we don't try to promote
1281     // into a more senior generation.
1282     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1283                                "is made to pass on a possibly failing "
1284                                "promotion to next generation");
1285     res = _cmsSpace->promote(obj, obj_size);
1286   }
1287   if (res != NULL) {
1288     // See comment in allocate() about when objects should
1289     // be allocated live.
1290     assert(obj->is_oop(), "Will dereference klass pointer below");
1291     collector()->promoted(false,           // Not parallel
1292                           (HeapWord*)res, obj->is_objArray(), obj_size);
1293     // promotion counters
1294     NOT_PRODUCT(
1295       _numObjectsPromoted++;
1296       _numWordsPromoted +=
1297         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1298     )
1299   }
1300   return res;
1301 }
1302 
1303 
1304 HeapWord*
1305 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1306                                              HeapWord* top,
1307                                              size_t word_sz)
1308 {
1309   return collector()->allocation_limit_reached(space, top, word_sz);
1310 }
1311 
1312 // IMPORTANT: Notes on object size recognition in CMS.
1313 // ---------------------------------------------------
1314 // A block of storage in the CMS generation is always in
1315 // one of three states. A free block (FREE), an allocated
1316 // object (OBJECT) whose size() method reports the correct size,
1317 // and an intermediate state (TRANSIENT) in which its size cannot
1318 // be accurately determined.
1319 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1320 // -----------------------------------------------------
1321 // FREE:      klass_word & 1 == 1; mark_word holds block size
1322 //
1323 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1324 //            obj->size() computes correct size
1325 //
1326 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1327 //
1328 // STATE IDENTIFICATION: (64 bit+COOPS)
1329 // ------------------------------------
1330 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1331 //
1332 // OBJECT:    klass_word installed; klass_word != 0;
1333 //            obj->size() computes correct size
1334 //
1335 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1336 //
1337 //
1338 // STATE TRANSITION DIAGRAM
1339 //
1340 //        mut / parnew                     mut  /  parnew
1341 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1342 //  ^                                                                   |
1343 //  |------------------------ DEAD <------------------------------------|
1344 //         sweep                            mut
1345 //
1346 // While a block is in TRANSIENT state its size cannot be determined
1347 // so readers will either need to come back later or stall until
1348 // the size can be determined. Note that for the case of direct
1349 // allocation, P-bits, when available, may be used to determine the
1350 // size of an object that may not yet have been initialized.
1351 
1352 // Things to support parallel young-gen collection.
1353 oop
1354 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1355                                            oop old, markOop m,
1356                                            size_t word_sz) {
1357 #ifndef PRODUCT
1358   if (Universe::heap()->promotion_should_fail()) {
1359     return NULL;
1360   }
1361 #endif  // #ifndef PRODUCT
1362 
1363   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1364   PromotionInfo* promoInfo = &ps->promo;
1365   // if we are tracking promotions, then first ensure space for
1366   // promotion (including spooling space for saving header if necessary).
1367   // then allocate and copy, then track promoted info if needed.
1368   // When tracking (see PromotionInfo::track()), the mark word may
1369   // be displaced and in this case restoration of the mark word
1370   // occurs in the (oop_since_save_marks_)iterate phase.
1371   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1372     // Out of space for allocating spooling buffers;
1373     // try expanding and allocating spooling buffers.
1374     if (!expand_and_ensure_spooling_space(promoInfo)) {
1375       return NULL;
1376     }
1377   }
1378   assert(promoInfo->has_spooling_space(), "Control point invariant");
1379   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1380   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1381   if (obj_ptr == NULL) {
1382      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1383      if (obj_ptr == NULL) {
1384        return NULL;
1385      }
1386   }
1387   oop obj = oop(obj_ptr);
1388   OrderAccess::storestore();
1389   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1390   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1391   // IMPORTANT: See note on object initialization for CMS above.
1392   // Otherwise, copy the object.  Here we must be careful to insert the
1393   // klass pointer last, since this marks the block as an allocated object.
1394   // Except with compressed oops it's the mark word.
1395   HeapWord* old_ptr = (HeapWord*)old;
1396   // Restore the mark word copied above.
1397   obj->set_mark(m);
1398   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1399   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1400   OrderAccess::storestore();
1401 
1402   if (UseCompressedClassPointers) {
1403     // Copy gap missed by (aligned) header size calculation below
1404     obj->set_klass_gap(old->klass_gap());
1405   }
1406   if (word_sz > (size_t)oopDesc::header_size()) {
1407     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1408                                  obj_ptr + oopDesc::header_size(),
1409                                  word_sz - oopDesc::header_size());
1410   }
1411 
1412   // Now we can track the promoted object, if necessary.  We take care
1413   // to delay the transition from uninitialized to full object
1414   // (i.e., insertion of klass pointer) until after, so that it
1415   // atomically becomes a promoted object.
1416   if (promoInfo->tracking()) {
1417     promoInfo->track((PromotedObject*)obj, old->klass());
1418   }
1419   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1420   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1421   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1422 
1423   // Finally, install the klass pointer (this should be volatile).
1424   OrderAccess::storestore();
1425   obj->set_klass(old->klass());
1426   // We should now be able to calculate the right size for this object
1427   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1428 
1429   collector()->promoted(true,          // parallel
1430                         obj_ptr, old->is_objArray(), word_sz);
1431 
1432   NOT_PRODUCT(
1433     Atomic::inc_ptr(&_numObjectsPromoted);
1434     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1435   )
1436 
1437   return obj;
1438 }
1439 
1440 void
1441 ConcurrentMarkSweepGeneration::
1442 par_promote_alloc_undo(int thread_num,
1443                        HeapWord* obj, size_t word_sz) {
1444   // CMS does not support promotion undo.
1445   ShouldNotReachHere();
1446 }
1447 
1448 void
1449 ConcurrentMarkSweepGeneration::
1450 par_promote_alloc_done(int thread_num) {
1451   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1452   ps->lab.retire(thread_num);
1453 }
1454 
1455 void
1456 ConcurrentMarkSweepGeneration::
1457 par_oop_since_save_marks_iterate_done(int thread_num) {
1458   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1459   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1460   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1461 }
1462 
1463 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1464                                                    size_t size,
1465                                                    bool   tlab)
1466 {
1467   // We allow a STW collection only if a full
1468   // collection was requested.
1469   return full || should_allocate(size, tlab); // FIX ME !!!
1470   // This and promotion failure handling are connected at the
1471   // hip and should be fixed by untying them.
1472 }
1473 
1474 bool CMSCollector::shouldConcurrentCollect() {
1475   if (_full_gc_requested) {
1476     if (Verbose && PrintGCDetails) {
1477       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1478                              " gc request (or gc_locker)");
1479     }
1480     return true;
1481   }
1482 
1483   // For debugging purposes, change the type of collection.
1484   // If the rotation is not on the concurrent collection
1485   // type, don't start a concurrent collection.
1486   NOT_PRODUCT(
1487     if (RotateCMSCollectionTypes &&
1488         (_cmsGen->debug_collection_type() !=
1489           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1490       assert(_cmsGen->debug_collection_type() !=
1491         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1492         "Bad cms collection type");
1493       return false;
1494     }
1495   )
1496 
1497   FreelistLocker x(this);
1498   // ------------------------------------------------------------------
1499   // Print out lots of information which affects the initiation of
1500   // a collection.
1501   if (PrintCMSInitiationStatistics && stats().valid()) {
1502     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1503     gclog_or_tty->stamp();
1504     gclog_or_tty->print_cr("");
1505     stats().print_on(gclog_or_tty);
1506     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1507       stats().time_until_cms_gen_full());
1508     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1509     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1510                            _cmsGen->contiguous_available());
1511     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1512     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1513     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1514     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1515     gclog_or_tty->print_cr("metadata initialized %d",
1516       MetaspaceGC::should_concurrent_collect());
1517   }
1518   // ------------------------------------------------------------------
1519 
1520   // If the estimated time to complete a cms collection (cms_duration())
1521   // is less than the estimated time remaining until the cms generation
1522   // is full, start a collection.
1523   if (!UseCMSInitiatingOccupancyOnly) {
1524     if (stats().valid()) {
1525       if (stats().time_until_cms_start() == 0.0) {
1526         return true;
1527       }
1528     } else {
1529       // We want to conservatively collect somewhat early in order
1530       // to try and "bootstrap" our CMS/promotion statistics;
1531       // this branch will not fire after the first successful CMS
1532       // collection because the stats should then be valid.
1533       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1534         if (Verbose && PrintGCDetails) {
1535           gclog_or_tty->print_cr(
1536             " CMSCollector: collect for bootstrapping statistics:"
1537             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1538             _bootstrap_occupancy);
1539         }
1540         return true;
1541       }
1542     }
1543   }
1544 
1545   // Otherwise, we start a collection cycle if
1546   // old gen want a collection cycle started. Each may use
1547   // an appropriate criterion for making this decision.
1548   // XXX We need to make sure that the gen expansion
1549   // criterion dovetails well with this. XXX NEED TO FIX THIS
1550   if (_cmsGen->should_concurrent_collect()) {
1551     if (Verbose && PrintGCDetails) {
1552       gclog_or_tty->print_cr("CMS old gen initiated");
1553     }
1554     return true;
1555   }
1556 
1557   // We start a collection if we believe an incremental collection may fail;
1558   // this is not likely to be productive in practice because it's probably too
1559   // late anyway.
1560   GenCollectedHeap* gch = GenCollectedHeap::heap();
1561   assert(gch->collector_policy()->is_two_generation_policy(),
1562          "You may want to check the correctness of the following");
1563   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1564     if (Verbose && PrintGCDetails) {
1565       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1566     }
1567     return true;
1568   }
1569 
1570   if (MetaspaceGC::should_concurrent_collect()) {
1571       if (Verbose && PrintGCDetails) {
1572       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1573       }
1574       return true;
1575     }
1576 
1577   return false;
1578 }
1579 
1580 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1581 
1582 // Clear _expansion_cause fields of constituent generations
1583 void CMSCollector::clear_expansion_cause() {
1584   _cmsGen->clear_expansion_cause();
1585 }
1586 
1587 // We should be conservative in starting a collection cycle.  To
1588 // start too eagerly runs the risk of collecting too often in the
1589 // extreme.  To collect too rarely falls back on full collections,
1590 // which works, even if not optimum in terms of concurrent work.
1591 // As a work around for too eagerly collecting, use the flag
1592 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1593 // giving the user an easily understandable way of controlling the
1594 // collections.
1595 // We want to start a new collection cycle if any of the following
1596 // conditions hold:
1597 // . our current occupancy exceeds the configured initiating occupancy
1598 //   for this generation, or
1599 // . we recently needed to expand this space and have not, since that
1600 //   expansion, done a collection of this generation, or
1601 // . the underlying space believes that it may be a good idea to initiate
1602 //   a concurrent collection (this may be based on criteria such as the
1603 //   following: the space uses linear allocation and linear allocation is
1604 //   going to fail, or there is believed to be excessive fragmentation in
1605 //   the generation, etc... or ...
1606 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1607 //   the case of the old generation; see CR 6543076):
1608 //   we may be approaching a point at which allocation requests may fail because
1609 //   we will be out of sufficient free space given allocation rate estimates.]
1610 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1611 
1612   assert_lock_strong(freelistLock());
1613   if (occupancy() > initiating_occupancy()) {
1614     if (PrintGCDetails && Verbose) {
1615       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1616         short_name(), occupancy(), initiating_occupancy());
1617     }
1618     return true;
1619   }
1620   if (UseCMSInitiatingOccupancyOnly) {
1621     return false;
1622   }
1623   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1624     if (PrintGCDetails && Verbose) {
1625       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1626         short_name());
1627     }
1628     return true;
1629   }
1630   if (_cmsSpace->should_concurrent_collect()) {
1631     if (PrintGCDetails && Verbose) {
1632       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1633         short_name());
1634     }
1635     return true;
1636   }
1637   return false;
1638 }
1639 
1640 void ConcurrentMarkSweepGeneration::collect(bool   full,
1641                                             bool   clear_all_soft_refs,
1642                                             size_t size,
1643                                             bool   tlab)
1644 {
1645   collector()->collect(full, clear_all_soft_refs, size, tlab);
1646 }
1647 
1648 void CMSCollector::collect(bool   full,
1649                            bool   clear_all_soft_refs,
1650                            size_t size,
1651                            bool   tlab)
1652 {
1653   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1654     // For debugging purposes skip the collection if the state
1655     // is not currently idle
1656     if (TraceCMSState) {
1657       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1658         Thread::current(), full, _collectorState);
1659     }
1660     return;
1661   }
1662 
1663   // The following "if" branch is present for defensive reasons.
1664   // In the current uses of this interface, it can be replaced with:
1665   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1666   // But I am not placing that assert here to allow future
1667   // generality in invoking this interface.
1668   if (GC_locker::is_active()) {
1669     // A consistency test for GC_locker
1670     assert(GC_locker::needs_gc(), "Should have been set already");
1671     // Skip this foreground collection, instead
1672     // expanding the heap if necessary.
1673     // Need the free list locks for the call to free() in compute_new_size()
1674     compute_new_size();
1675     return;
1676   }
1677   acquire_control_and_collect(full, clear_all_soft_refs);
1678   _full_gcs_since_conc_gc++;
1679 }
1680 
1681 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1682   GenCollectedHeap* gch = GenCollectedHeap::heap();
1683   unsigned int gc_count = gch->total_full_collections();
1684   if (gc_count == full_gc_count) {
1685     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1686     _full_gc_requested = true;
1687     _full_gc_cause = cause;
1688     CGC_lock->notify();   // nudge CMS thread
1689   } else {
1690     assert(gc_count > full_gc_count, "Error: causal loop");
1691   }
1692 }
1693 
1694 bool CMSCollector::is_external_interruption() {
1695   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1696   return GCCause::is_user_requested_gc(cause) ||
1697          GCCause::is_serviceability_requested_gc(cause);
1698 }
1699 
1700 void CMSCollector::report_concurrent_mode_interruption() {
1701   if (is_external_interruption()) {
1702     if (PrintGCDetails) {
1703       gclog_or_tty->print(" (concurrent mode interrupted)");
1704     }
1705   } else {
1706     if (PrintGCDetails) {
1707       gclog_or_tty->print(" (concurrent mode failure)");
1708     }
1709     _gc_tracer_cm->report_concurrent_mode_failure();
1710   }
1711 }
1712 
1713 
1714 // The foreground and background collectors need to coordinate in order
1715 // to make sure that they do not mutually interfere with CMS collections.
1716 // When a background collection is active,
1717 // the foreground collector may need to take over (preempt) and
1718 // synchronously complete an ongoing collection. Depending on the
1719 // frequency of the background collections and the heap usage
1720 // of the application, this preemption can be seldom or frequent.
1721 // There are only certain
1722 // points in the background collection that the "collection-baton"
1723 // can be passed to the foreground collector.
1724 //
1725 // The foreground collector will wait for the baton before
1726 // starting any part of the collection.  The foreground collector
1727 // will only wait at one location.
1728 //
1729 // The background collector will yield the baton before starting a new
1730 // phase of the collection (e.g., before initial marking, marking from roots,
1731 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1732 // of the loop which switches the phases. The background collector does some
1733 // of the phases (initial mark, final re-mark) with the world stopped.
1734 // Because of locking involved in stopping the world,
1735 // the foreground collector should not block waiting for the background
1736 // collector when it is doing a stop-the-world phase.  The background
1737 // collector will yield the baton at an additional point just before
1738 // it enters a stop-the-world phase.  Once the world is stopped, the
1739 // background collector checks the phase of the collection.  If the
1740 // phase has not changed, it proceeds with the collection.  If the
1741 // phase has changed, it skips that phase of the collection.  See
1742 // the comments on the use of the Heap_lock in collect_in_background().
1743 //
1744 // Variable used in baton passing.
1745 //   _foregroundGCIsActive - Set to true by the foreground collector when
1746 //      it wants the baton.  The foreground clears it when it has finished
1747 //      the collection.
1748 //   _foregroundGCShouldWait - Set to true by the background collector
1749 //        when it is running.  The foreground collector waits while
1750 //      _foregroundGCShouldWait is true.
1751 //  CGC_lock - monitor used to protect access to the above variables
1752 //      and to notify the foreground and background collectors.
1753 //  _collectorState - current state of the CMS collection.
1754 //
1755 // The foreground collector
1756 //   acquires the CGC_lock
1757 //   sets _foregroundGCIsActive
1758 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1759 //     various locks acquired in preparation for the collection
1760 //     are released so as not to block the background collector
1761 //     that is in the midst of a collection
1762 //   proceeds with the collection
1763 //   clears _foregroundGCIsActive
1764 //   returns
1765 //
1766 // The background collector in a loop iterating on the phases of the
1767 //      collection
1768 //   acquires the CGC_lock
1769 //   sets _foregroundGCShouldWait
1770 //   if _foregroundGCIsActive is set
1771 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1772 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1773 //     and exits the loop.
1774 //   otherwise
1775 //     proceed with that phase of the collection
1776 //     if the phase is a stop-the-world phase,
1777 //       yield the baton once more just before enqueueing
1778 //       the stop-world CMS operation (executed by the VM thread).
1779 //   returns after all phases of the collection are done
1780 //
1781 
1782 void CMSCollector::acquire_control_and_collect(bool full,
1783         bool clear_all_soft_refs) {
1784   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1785   assert(!Thread::current()->is_ConcurrentGC_thread(),
1786          "shouldn't try to acquire control from self!");
1787 
1788   // Start the protocol for acquiring control of the
1789   // collection from the background collector (aka CMS thread).
1790   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1791          "VM thread should have CMS token");
1792   // Remember the possibly interrupted state of an ongoing
1793   // concurrent collection
1794   CollectorState first_state = _collectorState;
1795 
1796   // Signal to a possibly ongoing concurrent collection that
1797   // we want to do a foreground collection.
1798   _foregroundGCIsActive = true;
1799 
1800   // Disable incremental mode during a foreground collection.
1801   ICMSDisabler icms_disabler;
1802 
1803   // release locks and wait for a notify from the background collector
1804   // releasing the locks in only necessary for phases which
1805   // do yields to improve the granularity of the collection.
1806   assert_lock_strong(bitMapLock());
1807   // We need to lock the Free list lock for the space that we are
1808   // currently collecting.
1809   assert(haveFreelistLocks(), "Must be holding free list locks");
1810   bitMapLock()->unlock();
1811   releaseFreelistLocks();
1812   {
1813     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1814     if (_foregroundGCShouldWait) {
1815       // We are going to be waiting for action for the CMS thread;
1816       // it had better not be gone (for instance at shutdown)!
1817       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1818              "CMS thread must be running");
1819       // Wait here until the background collector gives us the go-ahead
1820       ConcurrentMarkSweepThread::clear_CMS_flag(
1821         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1822       // Get a possibly blocked CMS thread going:
1823       //   Note that we set _foregroundGCIsActive true above,
1824       //   without protection of the CGC_lock.
1825       CGC_lock->notify();
1826       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1827              "Possible deadlock");
1828       while (_foregroundGCShouldWait) {
1829         // wait for notification
1830         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1831         // Possibility of delay/starvation here, since CMS token does
1832         // not know to give priority to VM thread? Actually, i think
1833         // there wouldn't be any delay/starvation, but the proof of
1834         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1835       }
1836       ConcurrentMarkSweepThread::set_CMS_flag(
1837         ConcurrentMarkSweepThread::CMS_vm_has_token);
1838     }
1839   }
1840   // The CMS_token is already held.  Get back the other locks.
1841   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1842          "VM thread should have CMS token");
1843   getFreelistLocks();
1844   bitMapLock()->lock_without_safepoint_check();
1845   if (TraceCMSState) {
1846     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1847       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1848     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1849   }
1850 
1851   // Check if we need to do a compaction, or if not, whether
1852   // we need to start the mark-sweep from scratch.
1853   bool should_compact    = false;
1854   bool should_start_over = false;
1855   decide_foreground_collection_type(clear_all_soft_refs,
1856     &should_compact, &should_start_over);
1857 
1858 NOT_PRODUCT(
1859   if (RotateCMSCollectionTypes) {
1860     if (_cmsGen->debug_collection_type() ==
1861         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1862       should_compact = true;
1863     } else if (_cmsGen->debug_collection_type() ==
1864                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1865       should_compact = false;
1866     }
1867   }
1868 )
1869 
1870   if (first_state > Idling) {
1871     report_concurrent_mode_interruption();
1872   }
1873 
1874   set_did_compact(should_compact);
1875   if (should_compact) {
1876     // If the collection is being acquired from the background
1877     // collector, there may be references on the discovered
1878     // references lists that have NULL referents (being those
1879     // that were concurrently cleared by a mutator) or
1880     // that are no longer active (having been enqueued concurrently
1881     // by the mutator).
1882     // Scrub the list of those references because Mark-Sweep-Compact
1883     // code assumes referents are not NULL and that all discovered
1884     // Reference objects are active.
1885     ref_processor()->clean_up_discovered_references();
1886 
1887     if (first_state > Idling) {
1888       save_heap_summary();
1889     }
1890 
1891     do_compaction_work(clear_all_soft_refs);
1892 
1893     // Has the GC time limit been exceeded?
1894     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1895     size_t max_eden_size = young_gen->max_capacity() -
1896                            young_gen->to()->capacity() -
1897                            young_gen->from()->capacity();
1898     GenCollectedHeap* gch = GenCollectedHeap::heap();
1899     GCCause::Cause gc_cause = gch->gc_cause();
1900     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1901                                            young_gen->eden()->used(),
1902                                            _cmsGen->max_capacity(),
1903                                            max_eden_size,
1904                                            full,
1905                                            gc_cause,
1906                                            gch->collector_policy());
1907   } else {
1908     do_mark_sweep_work(clear_all_soft_refs, first_state,
1909       should_start_over);
1910   }
1911   // Reset the expansion cause, now that we just completed
1912   // a collection cycle.
1913   clear_expansion_cause();
1914   _foregroundGCIsActive = false;
1915   return;
1916 }
1917 
1918 // Resize the tenured generation
1919 // after obtaining the free list locks for the
1920 // two generations.
1921 void CMSCollector::compute_new_size() {
1922   assert_locked_or_safepoint(Heap_lock);
1923   FreelistLocker z(this);
1924   MetaspaceGC::compute_new_size();
1925   _cmsGen->compute_new_size_free_list();
1926 }
1927 
1928 // A work method used by foreground collection to determine
1929 // what type of collection (compacting or not, continuing or fresh)
1930 // it should do.
1931 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1932 // and CMSCompactWhenClearAllSoftRefs the default in the future
1933 // and do away with the flags after a suitable period.
1934 void CMSCollector::decide_foreground_collection_type(
1935   bool clear_all_soft_refs, bool* should_compact,
1936   bool* should_start_over) {
1937   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1938   // flag is set, and we have either requested a System.gc() or
1939   // the number of full gc's since the last concurrent cycle
1940   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1941   // or if an incremental collection has failed
1942   GenCollectedHeap* gch = GenCollectedHeap::heap();
1943   assert(gch->collector_policy()->is_two_generation_policy(),
1944          "You may want to check the correctness of the following");
1945   // Inform cms gen if this was due to partial collection failing.
1946   // The CMS gen may use this fact to determine its expansion policy.
1947   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1948     assert(!_cmsGen->incremental_collection_failed(),
1949            "Should have been noticed, reacted to and cleared");
1950     _cmsGen->set_incremental_collection_failed();
1951   }
1952   *should_compact =
1953     UseCMSCompactAtFullCollection &&
1954     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1955      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1956      gch->incremental_collection_will_fail(true /* consult_young */));
1957   *should_start_over = false;
1958   if (clear_all_soft_refs && !*should_compact) {
1959     // We are about to do a last ditch collection attempt
1960     // so it would normally make sense to do a compaction
1961     // to reclaim as much space as possible.
1962     if (CMSCompactWhenClearAllSoftRefs) {
1963       // Default: The rationale is that in this case either
1964       // we are past the final marking phase, in which case
1965       // we'd have to start over, or so little has been done
1966       // that there's little point in saving that work. Compaction
1967       // appears to be the sensible choice in either case.
1968       *should_compact = true;
1969     } else {
1970       // We have been asked to clear all soft refs, but not to
1971       // compact. Make sure that we aren't past the final checkpoint
1972       // phase, for that is where we process soft refs. If we are already
1973       // past that phase, we'll need to redo the refs discovery phase and
1974       // if necessary clear soft refs that weren't previously
1975       // cleared. We do so by remembering the phase in which
1976       // we came in, and if we are past the refs processing
1977       // phase, we'll choose to just redo the mark-sweep
1978       // collection from scratch.
1979       if (_collectorState > FinalMarking) {
1980         // We are past the refs processing phase;
1981         // start over and do a fresh synchronous CMS cycle
1982         _collectorState = Resetting; // skip to reset to start new cycle
1983         reset(false /* == !asynch */);
1984         *should_start_over = true;
1985       } // else we can continue a possibly ongoing current cycle
1986     }
1987   }
1988 }
1989 
1990 // A work method used by the foreground collector to do
1991 // a mark-sweep-compact.
1992 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1993   GenCollectedHeap* gch = GenCollectedHeap::heap();
1994 
1995   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1996   gc_timer->register_gc_start();
1997 
1998   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1999   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2000 
2001   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
2002   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2003     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2004       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2005   }
2006 
2007   // Sample collection interval time and reset for collection pause.
2008   if (UseAdaptiveSizePolicy) {
2009     size_policy()->msc_collection_begin();
2010   }
2011 
2012   // Temporarily widen the span of the weak reference processing to
2013   // the entire heap.
2014   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2015   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2016   // Temporarily, clear the "is_alive_non_header" field of the
2017   // reference processor.
2018   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2019   // Temporarily make reference _processing_ single threaded (non-MT).
2020   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2021   // Temporarily make refs discovery atomic
2022   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2023   // Temporarily make reference _discovery_ single threaded (non-MT)
2024   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2025 
2026   ref_processor()->set_enqueuing_is_done(false);
2027   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2028   ref_processor()->setup_policy(clear_all_soft_refs);
2029   // If an asynchronous collection finishes, the _modUnionTable is
2030   // all clear.  If we are assuming the collection from an asynchronous
2031   // collection, clear the _modUnionTable.
2032   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2033     "_modUnionTable should be clear if the baton was not passed");
2034   _modUnionTable.clear_all();
2035   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2036     "mod union for klasses should be clear if the baton was passed");
2037   _ct->klass_rem_set()->clear_mod_union();
2038 
2039   // We must adjust the allocation statistics being maintained
2040   // in the free list space. We do so by reading and clearing
2041   // the sweep timer and updating the block flux rate estimates below.
2042   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2043   if (_inter_sweep_timer.is_active()) {
2044     _inter_sweep_timer.stop();
2045     // Note that we do not use this sample to update the _inter_sweep_estimate.
2046     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2047                                             _inter_sweep_estimate.padded_average(),
2048                                             _intra_sweep_estimate.padded_average());
2049   }
2050 
2051   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2052     ref_processor(), clear_all_soft_refs);
2053   #ifdef ASSERT
2054     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2055     size_t free_size = cms_space->free();
2056     assert(free_size ==
2057            pointer_delta(cms_space->end(), cms_space->compaction_top())
2058            * HeapWordSize,
2059       "All the free space should be compacted into one chunk at top");
2060     assert(cms_space->dictionary()->total_chunk_size(
2061                                       debug_only(cms_space->freelistLock())) == 0 ||
2062            cms_space->totalSizeInIndexedFreeLists() == 0,
2063       "All the free space should be in a single chunk");
2064     size_t num = cms_space->totalCount();
2065     assert((free_size == 0 && num == 0) ||
2066            (free_size > 0  && (num == 1 || num == 2)),
2067          "There should be at most 2 free chunks after compaction");
2068   #endif // ASSERT
2069   _collectorState = Resetting;
2070   assert(_restart_addr == NULL,
2071          "Should have been NULL'd before baton was passed");
2072   reset(false /* == !asynch */);
2073   _cmsGen->reset_after_compaction();
2074   _concurrent_cycles_since_last_unload = 0;
2075 
2076   // Clear any data recorded in the PLAB chunk arrays.
2077   if (_survivor_plab_array != NULL) {
2078     reset_survivor_plab_arrays();
2079   }
2080 
2081   // Adjust the per-size allocation stats for the next epoch.
2082   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2083   // Restart the "inter sweep timer" for the next epoch.
2084   _inter_sweep_timer.reset();
2085   _inter_sweep_timer.start();
2086 
2087   // Sample collection pause time and reset for collection interval.
2088   if (UseAdaptiveSizePolicy) {
2089     size_policy()->msc_collection_end(gch->gc_cause());
2090   }
2091 
2092   gc_timer->register_gc_end();
2093 
2094   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2095 
2096   // For a mark-sweep-compact, compute_new_size() will be called
2097   // in the heap's do_collection() method.
2098 }
2099 
2100 // A work method used by the foreground collector to do
2101 // a mark-sweep, after taking over from a possibly on-going
2102 // concurrent mark-sweep collection.
2103 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2104   CollectorState first_state, bool should_start_over) {
2105   if (PrintGC && Verbose) {
2106     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2107       "collector with count %d",
2108       _full_gcs_since_conc_gc);
2109   }
2110   switch (_collectorState) {
2111     case Idling:
2112       if (first_state == Idling || should_start_over) {
2113         // The background GC was not active, or should
2114         // restarted from scratch;  start the cycle.
2115         _collectorState = InitialMarking;
2116       }
2117       // If first_state was not Idling, then a background GC
2118       // was in progress and has now finished.  No need to do it
2119       // again.  Leave the state as Idling.
2120       break;
2121     case Precleaning:
2122       // In the foreground case don't do the precleaning since
2123       // it is not done concurrently and there is extra work
2124       // required.
2125       _collectorState = FinalMarking;
2126   }
2127   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2128 
2129   // For a mark-sweep, compute_new_size() will be called
2130   // in the heap's do_collection() method.
2131 }
2132 
2133 
2134 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2135   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2136   EdenSpace* eden_space = dng->eden();
2137   ContiguousSpace* from_space = dng->from();
2138   ContiguousSpace* to_space   = dng->to();
2139   // Eden
2140   if (_eden_chunk_array != NULL) {
2141     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2142                            eden_space->bottom(), eden_space->top(),
2143                            eden_space->end(), eden_space->capacity());
2144     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2145                            "_eden_chunk_capacity=" SIZE_FORMAT,
2146                            _eden_chunk_index, _eden_chunk_capacity);
2147     for (size_t i = 0; i < _eden_chunk_index; i++) {
2148       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2149                              i, _eden_chunk_array[i]);
2150     }
2151   }
2152   // Survivor
2153   if (_survivor_chunk_array != NULL) {
2154     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2155                            from_space->bottom(), from_space->top(),
2156                            from_space->end(), from_space->capacity());
2157     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2158                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2159                            _survivor_chunk_index, _survivor_chunk_capacity);
2160     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2161       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2162                              i, _survivor_chunk_array[i]);
2163     }
2164   }
2165 }
2166 
2167 void CMSCollector::getFreelistLocks() const {
2168   // Get locks for all free lists in all generations that this
2169   // collector is responsible for
2170   _cmsGen->freelistLock()->lock_without_safepoint_check();
2171 }
2172 
2173 void CMSCollector::releaseFreelistLocks() const {
2174   // Release locks for all free lists in all generations that this
2175   // collector is responsible for
2176   _cmsGen->freelistLock()->unlock();
2177 }
2178 
2179 bool CMSCollector::haveFreelistLocks() const {
2180   // Check locks for all free lists in all generations that this
2181   // collector is responsible for
2182   assert_lock_strong(_cmsGen->freelistLock());
2183   PRODUCT_ONLY(ShouldNotReachHere());
2184   return true;
2185 }
2186 
2187 // A utility class that is used by the CMS collector to
2188 // temporarily "release" the foreground collector from its
2189 // usual obligation to wait for the background collector to
2190 // complete an ongoing phase before proceeding.
2191 class ReleaseForegroundGC: public StackObj {
2192  private:
2193   CMSCollector* _c;
2194  public:
2195   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2196     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2197     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2198     // allow a potentially blocked foreground collector to proceed
2199     _c->_foregroundGCShouldWait = false;
2200     if (_c->_foregroundGCIsActive) {
2201       CGC_lock->notify();
2202     }
2203     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2204            "Possible deadlock");
2205   }
2206 
2207   ~ReleaseForegroundGC() {
2208     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2209     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2210     _c->_foregroundGCShouldWait = true;
2211   }
2212 };
2213 
2214 // There are separate collect_in_background and collect_in_foreground because of
2215 // the different locking requirements of the background collector and the
2216 // foreground collector.  There was originally an attempt to share
2217 // one "collect" method between the background collector and the foreground
2218 // collector but the if-then-else required made it cleaner to have
2219 // separate methods.
2220 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2221   assert(Thread::current()->is_ConcurrentGC_thread(),
2222     "A CMS asynchronous collection is only allowed on a CMS thread.");
2223 
2224   GenCollectedHeap* gch = GenCollectedHeap::heap();
2225   {
2226     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2227     MutexLockerEx hl(Heap_lock, safepoint_check);
2228     FreelistLocker fll(this);
2229     MutexLockerEx x(CGC_lock, safepoint_check);
2230     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2231       // The foreground collector is active or we're
2232       // not using asynchronous collections.  Skip this
2233       // background collection.
2234       assert(!_foregroundGCShouldWait, "Should be clear");
2235       return;
2236     } else {
2237       assert(_collectorState == Idling, "Should be idling before start.");
2238       _collectorState = InitialMarking;
2239       register_gc_start(cause);
2240       // Reset the expansion cause, now that we are about to begin
2241       // a new cycle.
2242       clear_expansion_cause();
2243 
2244       // Clear the MetaspaceGC flag since a concurrent collection
2245       // is starting but also clear it after the collection.
2246       MetaspaceGC::set_should_concurrent_collect(false);
2247     }
2248     // Decide if we want to enable class unloading as part of the
2249     // ensuing concurrent GC cycle.
2250     update_should_unload_classes();
2251     _full_gc_requested = false;           // acks all outstanding full gc requests
2252     _full_gc_cause = GCCause::_no_gc;
2253     // Signal that we are about to start a collection
2254     gch->increment_total_full_collections();  // ... starting a collection cycle
2255     _collection_count_start = gch->total_full_collections();
2256   }
2257 
2258   // Used for PrintGC
2259   size_t prev_used;
2260   if (PrintGC && Verbose) {
2261     prev_used = _cmsGen->used(); // XXXPERM
2262   }
2263 
2264   // The change of the collection state is normally done at this level;
2265   // the exceptions are phases that are executed while the world is
2266   // stopped.  For those phases the change of state is done while the
2267   // world is stopped.  For baton passing purposes this allows the
2268   // background collector to finish the phase and change state atomically.
2269   // The foreground collector cannot wait on a phase that is done
2270   // while the world is stopped because the foreground collector already
2271   // has the world stopped and would deadlock.
2272   while (_collectorState != Idling) {
2273     if (TraceCMSState) {
2274       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2275         Thread::current(), _collectorState);
2276     }
2277     // The foreground collector
2278     //   holds the Heap_lock throughout its collection.
2279     //   holds the CMS token (but not the lock)
2280     //     except while it is waiting for the background collector to yield.
2281     //
2282     // The foreground collector should be blocked (not for long)
2283     //   if the background collector is about to start a phase
2284     //   executed with world stopped.  If the background
2285     //   collector has already started such a phase, the
2286     //   foreground collector is blocked waiting for the
2287     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2288     //   are executed in the VM thread.
2289     //
2290     // The locking order is
2291     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2292     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2293     //   CMS token  (claimed in
2294     //                stop_world_and_do() -->
2295     //                  safepoint_synchronize() -->
2296     //                    CMSThread::synchronize())
2297 
2298     {
2299       // Check if the FG collector wants us to yield.
2300       CMSTokenSync x(true); // is cms thread
2301       if (waitForForegroundGC()) {
2302         // We yielded to a foreground GC, nothing more to be
2303         // done this round.
2304         assert(_foregroundGCShouldWait == false, "We set it to false in "
2305                "waitForForegroundGC()");
2306         if (TraceCMSState) {
2307           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2308             " exiting collection CMS state %d",
2309             Thread::current(), _collectorState);
2310         }
2311         return;
2312       } else {
2313         // The background collector can run but check to see if the
2314         // foreground collector has done a collection while the
2315         // background collector was waiting to get the CGC_lock
2316         // above.  If yes, break so that _foregroundGCShouldWait
2317         // is cleared before returning.
2318         if (_collectorState == Idling) {
2319           break;
2320         }
2321       }
2322     }
2323 
2324     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2325       "should be waiting");
2326 
2327     switch (_collectorState) {
2328       case InitialMarking:
2329         {
2330           ReleaseForegroundGC x(this);
2331           stats().record_cms_begin();
2332           VM_CMS_Initial_Mark initial_mark_op(this);
2333           VMThread::execute(&initial_mark_op);
2334         }
2335         // The collector state may be any legal state at this point
2336         // since the background collector may have yielded to the
2337         // foreground collector.
2338         break;
2339       case Marking:
2340         // initial marking in checkpointRootsInitialWork has been completed
2341         if (markFromRoots(true)) { // we were successful
2342           assert(_collectorState == Precleaning, "Collector state should "
2343             "have changed");
2344         } else {
2345           assert(_foregroundGCIsActive, "Internal state inconsistency");
2346         }
2347         break;
2348       case Precleaning:
2349         if (UseAdaptiveSizePolicy) {
2350           size_policy()->concurrent_precleaning_begin();
2351         }
2352         // marking from roots in markFromRoots has been completed
2353         preclean();
2354         if (UseAdaptiveSizePolicy) {
2355           size_policy()->concurrent_precleaning_end();
2356         }
2357         assert(_collectorState == AbortablePreclean ||
2358                _collectorState == FinalMarking,
2359                "Collector state should have changed");
2360         break;
2361       case AbortablePreclean:
2362         if (UseAdaptiveSizePolicy) {
2363         size_policy()->concurrent_phases_resume();
2364         }
2365         abortable_preclean();
2366         if (UseAdaptiveSizePolicy) {
2367           size_policy()->concurrent_precleaning_end();
2368         }
2369         assert(_collectorState == FinalMarking, "Collector state should "
2370           "have changed");
2371         break;
2372       case FinalMarking:
2373         {
2374           ReleaseForegroundGC x(this);
2375 
2376           VM_CMS_Final_Remark final_remark_op(this);
2377           VMThread::execute(&final_remark_op);
2378         }
2379         assert(_foregroundGCShouldWait, "block post-condition");
2380         break;
2381       case Sweeping:
2382         if (UseAdaptiveSizePolicy) {
2383           size_policy()->concurrent_sweeping_begin();
2384         }
2385         // final marking in checkpointRootsFinal has been completed
2386         sweep(true);
2387         assert(_collectorState == Resizing, "Collector state change "
2388           "to Resizing must be done under the free_list_lock");
2389         _full_gcs_since_conc_gc = 0;
2390 
2391         // Stop the timers for adaptive size policy for the concurrent phases
2392         if (UseAdaptiveSizePolicy) {
2393           size_policy()->concurrent_sweeping_end();
2394           size_policy()->concurrent_phases_end(gch->gc_cause(),
2395                                              gch->prev_gen(_cmsGen)->capacity(),
2396                                              _cmsGen->free());
2397         }
2398 
2399       case Resizing: {
2400         // Sweeping has been completed...
2401         // At this point the background collection has completed.
2402         // Don't move the call to compute_new_size() down
2403         // into code that might be executed if the background
2404         // collection was preempted.
2405         {
2406           ReleaseForegroundGC x(this);   // unblock FG collection
2407           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2408           CMSTokenSync        z(true);   // not strictly needed.
2409           if (_collectorState == Resizing) {
2410             compute_new_size();
2411             save_heap_summary();
2412             _collectorState = Resetting;
2413           } else {
2414             assert(_collectorState == Idling, "The state should only change"
2415                    " because the foreground collector has finished the collection");
2416           }
2417         }
2418         break;
2419       }
2420       case Resetting:
2421         // CMS heap resizing has been completed
2422         reset(true);
2423         assert(_collectorState == Idling, "Collector state should "
2424           "have changed");
2425 
2426         MetaspaceGC::set_should_concurrent_collect(false);
2427 
2428         stats().record_cms_end();
2429         // Don't move the concurrent_phases_end() and compute_new_size()
2430         // calls to here because a preempted background collection
2431         // has it's state set to "Resetting".
2432         break;
2433       case Idling:
2434       default:
2435         ShouldNotReachHere();
2436         break;
2437     }
2438     if (TraceCMSState) {
2439       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2440         Thread::current(), _collectorState);
2441     }
2442     assert(_foregroundGCShouldWait, "block post-condition");
2443   }
2444 
2445   // Should this be in gc_epilogue?
2446   collector_policy()->counters()->update_counters();
2447 
2448   {
2449     // Clear _foregroundGCShouldWait and, in the event that the
2450     // foreground collector is waiting, notify it, before
2451     // returning.
2452     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2453     _foregroundGCShouldWait = false;
2454     if (_foregroundGCIsActive) {
2455       CGC_lock->notify();
2456     }
2457     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2458            "Possible deadlock");
2459   }
2460   if (TraceCMSState) {
2461     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2462       " exiting collection CMS state %d",
2463       Thread::current(), _collectorState);
2464   }
2465   if (PrintGC && Verbose) {
2466     _cmsGen->print_heap_change(prev_used);
2467   }
2468 }
2469 
2470 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2471   if (!_cms_start_registered) {
2472     register_gc_start(cause);
2473   }
2474 }
2475 
2476 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2477   _cms_start_registered = true;
2478   _gc_timer_cm->register_gc_start();
2479   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2480 }
2481 
2482 void CMSCollector::register_gc_end() {
2483   if (_cms_start_registered) {
2484     report_heap_summary(GCWhen::AfterGC);
2485 
2486     _gc_timer_cm->register_gc_end();
2487     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2488     _cms_start_registered = false;
2489   }
2490 }
2491 
2492 void CMSCollector::save_heap_summary() {
2493   GenCollectedHeap* gch = GenCollectedHeap::heap();
2494   _last_heap_summary = gch->create_heap_summary();
2495   _last_metaspace_summary = gch->create_metaspace_summary();
2496 }
2497 
2498 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2499   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_metaspace_summary);
2500 }
2501 
2502 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2503   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2504          "Foreground collector should be waiting, not executing");
2505   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2506     "may only be done by the VM Thread with the world stopped");
2507   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2508          "VM thread should have CMS token");
2509 
2510   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2511     true, NULL);)
2512   if (UseAdaptiveSizePolicy) {
2513     size_policy()->ms_collection_begin();
2514   }
2515   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2516 
2517   HandleMark hm;  // Discard invalid handles created during verification
2518 
2519   if (VerifyBeforeGC &&
2520       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2521     Universe::verify();
2522   }
2523 
2524   // Snapshot the soft reference policy to be used in this collection cycle.
2525   ref_processor()->setup_policy(clear_all_soft_refs);
2526 
2527   // Decide if class unloading should be done
2528   update_should_unload_classes();
2529 
2530   bool init_mark_was_synchronous = false; // until proven otherwise
2531   while (_collectorState != Idling) {
2532     if (TraceCMSState) {
2533       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2534         Thread::current(), _collectorState);
2535     }
2536     switch (_collectorState) {
2537       case InitialMarking:
2538         register_foreground_gc_start(cause);
2539         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2540         checkpointRootsInitial(false);
2541         assert(_collectorState == Marking, "Collector state should have changed"
2542           " within checkpointRootsInitial()");
2543         break;
2544       case Marking:
2545         // initial marking in checkpointRootsInitialWork has been completed
2546         if (VerifyDuringGC &&
2547             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2548           Universe::verify("Verify before initial mark: ");
2549         }
2550         {
2551           bool res = markFromRoots(false);
2552           assert(res && _collectorState == FinalMarking, "Collector state should "
2553             "have changed");
2554           break;
2555         }
2556       case FinalMarking:
2557         if (VerifyDuringGC &&
2558             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2559           Universe::verify("Verify before re-mark: ");
2560         }
2561         checkpointRootsFinal(false, clear_all_soft_refs,
2562                              init_mark_was_synchronous);
2563         assert(_collectorState == Sweeping, "Collector state should not "
2564           "have changed within checkpointRootsFinal()");
2565         break;
2566       case Sweeping:
2567         // final marking in checkpointRootsFinal has been completed
2568         if (VerifyDuringGC &&
2569             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2570           Universe::verify("Verify before sweep: ");
2571         }
2572         sweep(false);
2573         assert(_collectorState == Resizing, "Incorrect state");
2574         break;
2575       case Resizing: {
2576         // Sweeping has been completed; the actual resize in this case
2577         // is done separately; nothing to be done in this state.
2578         _collectorState = Resetting;
2579         break;
2580       }
2581       case Resetting:
2582         // The heap has been resized.
2583         if (VerifyDuringGC &&
2584             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2585           Universe::verify("Verify before reset: ");
2586         }
2587         save_heap_summary();
2588         reset(false);
2589         assert(_collectorState == Idling, "Collector state should "
2590           "have changed");
2591         break;
2592       case Precleaning:
2593       case AbortablePreclean:
2594         // Elide the preclean phase
2595         _collectorState = FinalMarking;
2596         break;
2597       default:
2598         ShouldNotReachHere();
2599     }
2600     if (TraceCMSState) {
2601       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2602         Thread::current(), _collectorState);
2603     }
2604   }
2605 
2606   if (UseAdaptiveSizePolicy) {
2607     GenCollectedHeap* gch = GenCollectedHeap::heap();
2608     size_policy()->ms_collection_end(gch->gc_cause());
2609   }
2610 
2611   if (VerifyAfterGC &&
2612       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2613     Universe::verify();
2614   }
2615   if (TraceCMSState) {
2616     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2617       " exiting collection CMS state %d",
2618       Thread::current(), _collectorState);
2619   }
2620 }
2621 
2622 bool CMSCollector::waitForForegroundGC() {
2623   bool res = false;
2624   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2625          "CMS thread should have CMS token");
2626   // Block the foreground collector until the
2627   // background collectors decides whether to
2628   // yield.
2629   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2630   _foregroundGCShouldWait = true;
2631   if (_foregroundGCIsActive) {
2632     // The background collector yields to the
2633     // foreground collector and returns a value
2634     // indicating that it has yielded.  The foreground
2635     // collector can proceed.
2636     res = true;
2637     _foregroundGCShouldWait = false;
2638     ConcurrentMarkSweepThread::clear_CMS_flag(
2639       ConcurrentMarkSweepThread::CMS_cms_has_token);
2640     ConcurrentMarkSweepThread::set_CMS_flag(
2641       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2642     // Get a possibly blocked foreground thread going
2643     CGC_lock->notify();
2644     if (TraceCMSState) {
2645       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2646         Thread::current(), _collectorState);
2647     }
2648     while (_foregroundGCIsActive) {
2649       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2650     }
2651     ConcurrentMarkSweepThread::set_CMS_flag(
2652       ConcurrentMarkSweepThread::CMS_cms_has_token);
2653     ConcurrentMarkSweepThread::clear_CMS_flag(
2654       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2655   }
2656   if (TraceCMSState) {
2657     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2658       Thread::current(), _collectorState);
2659   }
2660   return res;
2661 }
2662 
2663 // Because of the need to lock the free lists and other structures in
2664 // the collector, common to all the generations that the collector is
2665 // collecting, we need the gc_prologues of individual CMS generations
2666 // delegate to their collector. It may have been simpler had the
2667 // current infrastructure allowed one to call a prologue on a
2668 // collector. In the absence of that we have the generation's
2669 // prologue delegate to the collector, which delegates back
2670 // some "local" work to a worker method in the individual generations
2671 // that it's responsible for collecting, while itself doing any
2672 // work common to all generations it's responsible for. A similar
2673 // comment applies to the  gc_epilogue()'s.
2674 // The role of the variable _between_prologue_and_epilogue is to
2675 // enforce the invocation protocol.
2676 void CMSCollector::gc_prologue(bool full) {
2677   // Call gc_prologue_work() for the CMSGen
2678   // we are responsible for.
2679 
2680   // The following locking discipline assumes that we are only called
2681   // when the world is stopped.
2682   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2683 
2684   // The CMSCollector prologue must call the gc_prologues for the
2685   // "generations" that it's responsible
2686   // for.
2687 
2688   assert(   Thread::current()->is_VM_thread()
2689          || (   CMSScavengeBeforeRemark
2690              && Thread::current()->is_ConcurrentGC_thread()),
2691          "Incorrect thread type for prologue execution");
2692 
2693   if (_between_prologue_and_epilogue) {
2694     // We have already been invoked; this is a gc_prologue delegation
2695     // from yet another CMS generation that we are responsible for, just
2696     // ignore it since all relevant work has already been done.
2697     return;
2698   }
2699 
2700   // set a bit saying prologue has been called; cleared in epilogue
2701   _between_prologue_and_epilogue = true;
2702   // Claim locks for common data structures, then call gc_prologue_work()
2703   // for each CMSGen.
2704 
2705   getFreelistLocks();   // gets free list locks on constituent spaces
2706   bitMapLock()->lock_without_safepoint_check();
2707 
2708   // Should call gc_prologue_work() for all cms gens we are responsible for
2709   bool duringMarking =    _collectorState >= Marking
2710                          && _collectorState < Sweeping;
2711 
2712   // The young collections clear the modified oops state, which tells if
2713   // there are any modified oops in the class. The remark phase also needs
2714   // that information. Tell the young collection to save the union of all
2715   // modified klasses.
2716   if (duringMarking) {
2717     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2718   }
2719 
2720   bool registerClosure = duringMarking;
2721 
2722   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2723                                                &_modUnionClosurePar
2724                                                : &_modUnionClosure;
2725   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2726 
2727   if (!full) {
2728     stats().record_gc0_begin();
2729   }
2730 }
2731 
2732 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2733 
2734   _capacity_at_prologue = capacity();
2735   _used_at_prologue = used();
2736 
2737   // Delegate to CMScollector which knows how to coordinate between
2738   // this and any other CMS generations that it is responsible for
2739   // collecting.
2740   collector()->gc_prologue(full);
2741 }
2742 
2743 // This is a "private" interface for use by this generation's CMSCollector.
2744 // Not to be called directly by any other entity (for instance,
2745 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2746 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2747   bool registerClosure, ModUnionClosure* modUnionClosure) {
2748   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2749   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2750     "Should be NULL");
2751   if (registerClosure) {
2752     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2753   }
2754   cmsSpace()->gc_prologue();
2755   // Clear stat counters
2756   NOT_PRODUCT(
2757     assert(_numObjectsPromoted == 0, "check");
2758     assert(_numWordsPromoted   == 0, "check");
2759     if (Verbose && PrintGC) {
2760       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2761                           SIZE_FORMAT" bytes concurrently",
2762       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2763     }
2764     _numObjectsAllocated = 0;
2765     _numWordsAllocated   = 0;
2766   )
2767 }
2768 
2769 void CMSCollector::gc_epilogue(bool full) {
2770   // The following locking discipline assumes that we are only called
2771   // when the world is stopped.
2772   assert(SafepointSynchronize::is_at_safepoint(),
2773          "world is stopped assumption");
2774 
2775   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2776   // if linear allocation blocks need to be appropriately marked to allow the
2777   // the blocks to be parsable. We also check here whether we need to nudge the
2778   // CMS collector thread to start a new cycle (if it's not already active).
2779   assert(   Thread::current()->is_VM_thread()
2780          || (   CMSScavengeBeforeRemark
2781              && Thread::current()->is_ConcurrentGC_thread()),
2782          "Incorrect thread type for epilogue execution");
2783 
2784   if (!_between_prologue_and_epilogue) {
2785     // We have already been invoked; this is a gc_epilogue delegation
2786     // from yet another CMS generation that we are responsible for, just
2787     // ignore it since all relevant work has already been done.
2788     return;
2789   }
2790   assert(haveFreelistLocks(), "must have freelist locks");
2791   assert_lock_strong(bitMapLock());
2792 
2793   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2794 
2795   _cmsGen->gc_epilogue_work(full);
2796 
2797   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2798     // in case sampling was not already enabled, enable it
2799     _start_sampling = true;
2800   }
2801   // reset _eden_chunk_array so sampling starts afresh
2802   _eden_chunk_index = 0;
2803 
2804   size_t cms_used   = _cmsGen->cmsSpace()->used();
2805 
2806   // update performance counters - this uses a special version of
2807   // update_counters() that allows the utilization to be passed as a
2808   // parameter, avoiding multiple calls to used().
2809   //
2810   _cmsGen->update_counters(cms_used);
2811 
2812   if (CMSIncrementalMode) {
2813     icms_update_allocation_limits();
2814   }
2815 
2816   bitMapLock()->unlock();
2817   releaseFreelistLocks();
2818 
2819   if (!CleanChunkPoolAsync) {
2820     Chunk::clean_chunk_pool();
2821   }
2822 
2823   set_did_compact(false);
2824   _between_prologue_and_epilogue = false;  // ready for next cycle
2825 }
2826 
2827 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2828   collector()->gc_epilogue(full);
2829 
2830   // Also reset promotion tracking in par gc thread states.
2831   if (CollectedHeap::use_parallel_gc_threads()) {
2832     for (uint i = 0; i < ParallelGCThreads; i++) {
2833       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2834     }
2835   }
2836 }
2837 
2838 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2839   assert(!incremental_collection_failed(), "Should have been cleared");
2840   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2841   cmsSpace()->gc_epilogue();
2842     // Print stat counters
2843   NOT_PRODUCT(
2844     assert(_numObjectsAllocated == 0, "check");
2845     assert(_numWordsAllocated == 0, "check");
2846     if (Verbose && PrintGC) {
2847       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2848                           SIZE_FORMAT" bytes",
2849                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2850     }
2851     _numObjectsPromoted = 0;
2852     _numWordsPromoted   = 0;
2853   )
2854 
2855   if (PrintGC && Verbose) {
2856     // Call down the chain in contiguous_available needs the freelistLock
2857     // so print this out before releasing the freeListLock.
2858     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2859                         contiguous_available());
2860   }
2861 }
2862 
2863 #ifndef PRODUCT
2864 bool CMSCollector::have_cms_token() {
2865   Thread* thr = Thread::current();
2866   if (thr->is_VM_thread()) {
2867     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2868   } else if (thr->is_ConcurrentGC_thread()) {
2869     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2870   } else if (thr->is_GC_task_thread()) {
2871     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2872            ParGCRareEvent_lock->owned_by_self();
2873   }
2874   return false;
2875 }
2876 #endif
2877 
2878 // Check reachability of the given heap address in CMS generation,
2879 // treating all other generations as roots.
2880 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2881   // We could "guarantee" below, rather than assert, but I'll
2882   // leave these as "asserts" so that an adventurous debugger
2883   // could try this in the product build provided some subset of
2884   // the conditions were met, provided they were interested in the
2885   // results and knew that the computation below wouldn't interfere
2886   // with other concurrent computations mutating the structures
2887   // being read or written.
2888   assert(SafepointSynchronize::is_at_safepoint(),
2889          "Else mutations in object graph will make answer suspect");
2890   assert(have_cms_token(), "Should hold cms token");
2891   assert(haveFreelistLocks(), "must hold free list locks");
2892   assert_lock_strong(bitMapLock());
2893 
2894   // Clear the marking bit map array before starting, but, just
2895   // for kicks, first report if the given address is already marked
2896   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2897                 _markBitMap.isMarked(addr) ? "" : " not");
2898 
2899   if (verify_after_remark()) {
2900     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2901     bool result = verification_mark_bm()->isMarked(addr);
2902     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2903                            result ? "IS" : "is NOT");
2904     return result;
2905   } else {
2906     gclog_or_tty->print_cr("Could not compute result");
2907     return false;
2908   }
2909 }
2910 
2911 
2912 void
2913 CMSCollector::print_on_error(outputStream* st) {
2914   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2915   if (collector != NULL) {
2916     CMSBitMap* bitmap = &collector->_markBitMap;
2917     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2918     bitmap->print_on_error(st, " Bits: ");
2919 
2920     st->cr();
2921 
2922     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2923     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2924     mut_bitmap->print_on_error(st, " Bits: ");
2925   }
2926 }
2927 
2928 ////////////////////////////////////////////////////////
2929 // CMS Verification Support
2930 ////////////////////////////////////////////////////////
2931 // Following the remark phase, the following invariant
2932 // should hold -- each object in the CMS heap which is
2933 // marked in markBitMap() should be marked in the verification_mark_bm().
2934 
2935 class VerifyMarkedClosure: public BitMapClosure {
2936   CMSBitMap* _marks;
2937   bool       _failed;
2938 
2939  public:
2940   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2941 
2942   bool do_bit(size_t offset) {
2943     HeapWord* addr = _marks->offsetToHeapWord(offset);
2944     if (!_marks->isMarked(addr)) {
2945       oop(addr)->print_on(gclog_or_tty);
2946       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2947       _failed = true;
2948     }
2949     return true;
2950   }
2951 
2952   bool failed() { return _failed; }
2953 };
2954 
2955 bool CMSCollector::verify_after_remark(bool silent) {
2956   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2957   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2958   static bool init = false;
2959 
2960   assert(SafepointSynchronize::is_at_safepoint(),
2961          "Else mutations in object graph will make answer suspect");
2962   assert(have_cms_token(),
2963          "Else there may be mutual interference in use of "
2964          " verification data structures");
2965   assert(_collectorState > Marking && _collectorState <= Sweeping,
2966          "Else marking info checked here may be obsolete");
2967   assert(haveFreelistLocks(), "must hold free list locks");
2968   assert_lock_strong(bitMapLock());
2969 
2970 
2971   // Allocate marking bit map if not already allocated
2972   if (!init) { // first time
2973     if (!verification_mark_bm()->allocate(_span)) {
2974       return false;
2975     }
2976     init = true;
2977   }
2978 
2979   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2980 
2981   // Turn off refs discovery -- so we will be tracing through refs.
2982   // This is as intended, because by this time
2983   // GC must already have cleared any refs that need to be cleared,
2984   // and traced those that need to be marked; moreover,
2985   // the marking done here is not going to interfere in any
2986   // way with the marking information used by GC.
2987   NoRefDiscovery no_discovery(ref_processor());
2988 
2989   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2990 
2991   // Clear any marks from a previous round
2992   verification_mark_bm()->clear_all();
2993   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2994   verify_work_stacks_empty();
2995 
2996   GenCollectedHeap* gch = GenCollectedHeap::heap();
2997   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2998   // Update the saved marks which may affect the root scans.
2999   gch->save_marks();
3000 
3001   if (CMSRemarkVerifyVariant == 1) {
3002     // In this first variant of verification, we complete
3003     // all marking, then check if the new marks-vector is
3004     // a subset of the CMS marks-vector.
3005     verify_after_remark_work_1();
3006   } else if (CMSRemarkVerifyVariant == 2) {
3007     // In this second variant of verification, we flag an error
3008     // (i.e. an object reachable in the new marks-vector not reachable
3009     // in the CMS marks-vector) immediately, also indicating the
3010     // identify of an object (A) that references the unmarked object (B) --
3011     // presumably, a mutation to A failed to be picked up by preclean/remark?
3012     verify_after_remark_work_2();
3013   } else {
3014     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
3015             CMSRemarkVerifyVariant);
3016   }
3017   if (!silent) gclog_or_tty->print(" done] ");
3018   return true;
3019 }
3020 
3021 void CMSCollector::verify_after_remark_work_1() {
3022   ResourceMark rm;
3023   HandleMark  hm;
3024   GenCollectedHeap* gch = GenCollectedHeap::heap();
3025 
3026   // Get a clear set of claim bits for the strong roots processing to work with.
3027   ClassLoaderDataGraph::clear_claimed_marks();
3028 
3029   // Mark from roots one level into CMS
3030   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3031   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3032 
3033   gch->gen_process_strong_roots(_cmsGen->level(),
3034                                 true,   // younger gens are roots
3035                                 true,   // activate StrongRootsScope
3036                                 SharedHeap::ScanningOption(roots_scanning_options()),
3037                                 &notOlder,
3038                                 NULL,
3039                                 NULL); // SSS: Provide correct closure
3040 
3041   // Now mark from the roots
3042   MarkFromRootsClosure markFromRootsClosure(this, _span,
3043     verification_mark_bm(), verification_mark_stack(),
3044     false /* don't yield */, true /* verifying */);
3045   assert(_restart_addr == NULL, "Expected pre-condition");
3046   verification_mark_bm()->iterate(&markFromRootsClosure);
3047   while (_restart_addr != NULL) {
3048     // Deal with stack overflow: by restarting at the indicated
3049     // address.
3050     HeapWord* ra = _restart_addr;
3051     markFromRootsClosure.reset(ra);
3052     _restart_addr = NULL;
3053     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3054   }
3055   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3056   verify_work_stacks_empty();
3057 
3058   // Marking completed -- now verify that each bit marked in
3059   // verification_mark_bm() is also marked in markBitMap(); flag all
3060   // errors by printing corresponding objects.
3061   VerifyMarkedClosure vcl(markBitMap());
3062   verification_mark_bm()->iterate(&vcl);
3063   if (vcl.failed()) {
3064     gclog_or_tty->print("Verification failed");
3065     Universe::heap()->print_on(gclog_or_tty);
3066     fatal("CMS: failed marking verification after remark");
3067   }
3068 }
3069 
3070 class VerifyKlassOopsKlassClosure : public KlassClosure {
3071   class VerifyKlassOopsClosure : public OopClosure {
3072     CMSBitMap* _bitmap;
3073    public:
3074     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3075     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3076     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3077   } _oop_closure;
3078  public:
3079   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3080   void do_klass(Klass* k) {
3081     k->oops_do(&_oop_closure);
3082   }
3083 };
3084 
3085 void CMSCollector::verify_after_remark_work_2() {
3086   ResourceMark rm;
3087   HandleMark  hm;
3088   GenCollectedHeap* gch = GenCollectedHeap::heap();
3089 
3090   // Get a clear set of claim bits for the strong roots processing to work with.
3091   ClassLoaderDataGraph::clear_claimed_marks();
3092 
3093   // Mark from roots one level into CMS
3094   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3095                                      markBitMap());
3096   CMKlassClosure klass_closure(&notOlder);
3097 
3098   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3099   gch->gen_process_strong_roots(_cmsGen->level(),
3100                                 true,   // younger gens are roots
3101                                 true,   // activate StrongRootsScope
3102                                 SharedHeap::ScanningOption(roots_scanning_options()),
3103                                 &notOlder,
3104                                 NULL,
3105                                 &klass_closure);
3106 
3107   // Now mark from the roots
3108   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3109     verification_mark_bm(), markBitMap(), verification_mark_stack());
3110   assert(_restart_addr == NULL, "Expected pre-condition");
3111   verification_mark_bm()->iterate(&markFromRootsClosure);
3112   while (_restart_addr != NULL) {
3113     // Deal with stack overflow: by restarting at the indicated
3114     // address.
3115     HeapWord* ra = _restart_addr;
3116     markFromRootsClosure.reset(ra);
3117     _restart_addr = NULL;
3118     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3119   }
3120   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3121   verify_work_stacks_empty();
3122 
3123   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3124   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3125 
3126   // Marking completed -- now verify that each bit marked in
3127   // verification_mark_bm() is also marked in markBitMap(); flag all
3128   // errors by printing corresponding objects.
3129   VerifyMarkedClosure vcl(markBitMap());
3130   verification_mark_bm()->iterate(&vcl);
3131   assert(!vcl.failed(), "Else verification above should not have succeeded");
3132 }
3133 
3134 void ConcurrentMarkSweepGeneration::save_marks() {
3135   // delegate to CMS space
3136   cmsSpace()->save_marks();
3137   for (uint i = 0; i < ParallelGCThreads; i++) {
3138     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3139   }
3140 }
3141 
3142 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3143   return cmsSpace()->no_allocs_since_save_marks();
3144 }
3145 
3146 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3147                                                                 \
3148 void ConcurrentMarkSweepGeneration::                            \
3149 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3150   cl->set_generation(this);                                     \
3151   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3152   cl->reset_generation();                                       \
3153   save_marks();                                                 \
3154 }
3155 
3156 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3157 
3158 void
3159 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3160   cl->set_generation(this);
3161   younger_refs_in_space_iterate(_cmsSpace, cl);
3162   cl->reset_generation();
3163 }
3164 
3165 void
3166 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
3167   if (freelistLock()->owned_by_self()) {
3168     Generation::oop_iterate(mr, cl);
3169   } else {
3170     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3171     Generation::oop_iterate(mr, cl);
3172   }
3173 }
3174 
3175 void
3176 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3177   if (freelistLock()->owned_by_self()) {
3178     Generation::oop_iterate(cl);
3179   } else {
3180     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3181     Generation::oop_iterate(cl);
3182   }
3183 }
3184 
3185 void
3186 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3187   if (freelistLock()->owned_by_self()) {
3188     Generation::object_iterate(cl);
3189   } else {
3190     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3191     Generation::object_iterate(cl);
3192   }
3193 }
3194 
3195 void
3196 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3197   if (freelistLock()->owned_by_self()) {
3198     Generation::safe_object_iterate(cl);
3199   } else {
3200     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3201     Generation::safe_object_iterate(cl);
3202   }
3203 }
3204 
3205 void
3206 ConcurrentMarkSweepGeneration::post_compact() {
3207 }
3208 
3209 void
3210 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3211   // Fix the linear allocation blocks to look like free blocks.
3212 
3213   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3214   // are not called when the heap is verified during universe initialization and
3215   // at vm shutdown.
3216   if (freelistLock()->owned_by_self()) {
3217     cmsSpace()->prepare_for_verify();
3218   } else {
3219     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3220     cmsSpace()->prepare_for_verify();
3221   }
3222 }
3223 
3224 void
3225 ConcurrentMarkSweepGeneration::verify() {
3226   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3227   // are not called when the heap is verified during universe initialization and
3228   // at vm shutdown.
3229   if (freelistLock()->owned_by_self()) {
3230     cmsSpace()->verify();
3231   } else {
3232     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3233     cmsSpace()->verify();
3234   }
3235 }
3236 
3237 void CMSCollector::verify() {
3238   _cmsGen->verify();
3239 }
3240 
3241 #ifndef PRODUCT
3242 bool CMSCollector::overflow_list_is_empty() const {
3243   assert(_num_par_pushes >= 0, "Inconsistency");
3244   if (_overflow_list == NULL) {
3245     assert(_num_par_pushes == 0, "Inconsistency");
3246   }
3247   return _overflow_list == NULL;
3248 }
3249 
3250 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3251 // merely consolidate assertion checks that appear to occur together frequently.
3252 void CMSCollector::verify_work_stacks_empty() const {
3253   assert(_markStack.isEmpty(), "Marking stack should be empty");
3254   assert(overflow_list_is_empty(), "Overflow list should be empty");
3255 }
3256 
3257 void CMSCollector::verify_overflow_empty() const {
3258   assert(overflow_list_is_empty(), "Overflow list should be empty");
3259   assert(no_preserved_marks(), "No preserved marks");
3260 }
3261 #endif // PRODUCT
3262 
3263 // Decide if we want to enable class unloading as part of the
3264 // ensuing concurrent GC cycle. We will collect and
3265 // unload classes if it's the case that:
3266 // (1) an explicit gc request has been made and the flag
3267 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3268 // (2) (a) class unloading is enabled at the command line, and
3269 //     (b) old gen is getting really full
3270 // NOTE: Provided there is no change in the state of the heap between
3271 // calls to this method, it should have idempotent results. Moreover,
3272 // its results should be monotonically increasing (i.e. going from 0 to 1,
3273 // but not 1 to 0) between successive calls between which the heap was
3274 // not collected. For the implementation below, it must thus rely on
3275 // the property that concurrent_cycles_since_last_unload()
3276 // will not decrease unless a collection cycle happened and that
3277 // _cmsGen->is_too_full() are
3278 // themselves also monotonic in that sense. See check_monotonicity()
3279 // below.
3280 void CMSCollector::update_should_unload_classes() {
3281   _should_unload_classes = false;
3282   // Condition 1 above
3283   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3284     _should_unload_classes = true;
3285   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3286     // Disjuncts 2.b.(i,ii,iii) above
3287     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3288                               CMSClassUnloadingMaxInterval)
3289                            || _cmsGen->is_too_full();
3290   }
3291 }
3292 
3293 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3294   bool res = should_concurrent_collect();
3295   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3296   return res;
3297 }
3298 
3299 void CMSCollector::setup_cms_unloading_and_verification_state() {
3300   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3301                              || VerifyBeforeExit;
3302   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_AllCodeCache;
3303 
3304   // We set the proper root for this CMS cycle here.
3305   if (should_unload_classes()) {   // Should unload classes this cycle
3306     remove_root_scanning_option(SharedHeap::SO_AllClasses);
3307     add_root_scanning_option(SharedHeap::SO_SystemClasses);
3308     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3309     set_verifying(should_verify);    // Set verification state for this cycle
3310     return;                            // Nothing else needs to be done at this time
3311   }
3312 
3313   // Not unloading classes this cycle
3314   assert(!should_unload_classes(), "Inconsistency!");
3315   remove_root_scanning_option(SharedHeap::SO_SystemClasses);
3316   add_root_scanning_option(SharedHeap::SO_AllClasses);
3317 
3318   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3319     // Include symbols, strings and code cache elements to prevent their resurrection.
3320     add_root_scanning_option(rso);
3321     set_verifying(true);
3322   } else if (verifying() && !should_verify) {
3323     // We were verifying, but some verification flags got disabled.
3324     set_verifying(false);
3325     // Exclude symbols, strings and code cache elements from root scanning to
3326     // reduce IM and RM pauses.
3327     remove_root_scanning_option(rso);
3328   }
3329 }
3330 
3331 
3332 #ifndef PRODUCT
3333 HeapWord* CMSCollector::block_start(const void* p) const {
3334   const HeapWord* addr = (HeapWord*)p;
3335   if (_span.contains(p)) {
3336     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3337       return _cmsGen->cmsSpace()->block_start(p);
3338     }
3339   }
3340   return NULL;
3341 }
3342 #endif
3343 
3344 HeapWord*
3345 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3346                                                    bool   tlab,
3347                                                    bool   parallel) {
3348   CMSSynchronousYieldRequest yr;
3349   assert(!tlab, "Can't deal with TLAB allocation");
3350   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3351   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3352     CMSExpansionCause::_satisfy_allocation);
3353   if (GCExpandToAllocateDelayMillis > 0) {
3354     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3355   }
3356   return have_lock_and_allocate(word_size, tlab);
3357 }
3358 
3359 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3360 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3361 // to CardGeneration and share it...
3362 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3363   return CardGeneration::expand(bytes, expand_bytes);
3364 }
3365 
3366 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3367   CMSExpansionCause::Cause cause)
3368 {
3369 
3370   bool success = expand(bytes, expand_bytes);
3371 
3372   // remember why we expanded; this information is used
3373   // by shouldConcurrentCollect() when making decisions on whether to start
3374   // a new CMS cycle.
3375   if (success) {
3376     set_expansion_cause(cause);
3377     if (PrintGCDetails && Verbose) {
3378       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3379         CMSExpansionCause::to_string(cause));
3380     }
3381   }
3382 }
3383 
3384 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3385   HeapWord* res = NULL;
3386   MutexLocker x(ParGCRareEvent_lock);
3387   while (true) {
3388     // Expansion by some other thread might make alloc OK now:
3389     res = ps->lab.alloc(word_sz);
3390     if (res != NULL) return res;
3391     // If there's not enough expansion space available, give up.
3392     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3393       return NULL;
3394     }
3395     // Otherwise, we try expansion.
3396     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3397       CMSExpansionCause::_allocate_par_lab);
3398     // Now go around the loop and try alloc again;
3399     // A competing par_promote might beat us to the expansion space,
3400     // so we may go around the loop again if promotion fails again.
3401     if (GCExpandToAllocateDelayMillis > 0) {
3402       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3403     }
3404   }
3405 }
3406 
3407 
3408 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3409   PromotionInfo* promo) {
3410   MutexLocker x(ParGCRareEvent_lock);
3411   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3412   while (true) {
3413     // Expansion by some other thread might make alloc OK now:
3414     if (promo->ensure_spooling_space()) {
3415       assert(promo->has_spooling_space(),
3416              "Post-condition of successful ensure_spooling_space()");
3417       return true;
3418     }
3419     // If there's not enough expansion space available, give up.
3420     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3421       return false;
3422     }
3423     // Otherwise, we try expansion.
3424     expand(refill_size_bytes, MinHeapDeltaBytes,
3425       CMSExpansionCause::_allocate_par_spooling_space);
3426     // Now go around the loop and try alloc again;
3427     // A competing allocation might beat us to the expansion space,
3428     // so we may go around the loop again if allocation fails again.
3429     if (GCExpandToAllocateDelayMillis > 0) {
3430       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3431     }
3432   }
3433 }
3434 
3435 
3436 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3437   assert_locked_or_safepoint(ExpandHeap_lock);
3438   // Shrink committed space
3439   _virtual_space.shrink_by(bytes);
3440   // Shrink space; this also shrinks the space's BOT
3441   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3442   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3443   // Shrink the shared block offset array
3444   _bts->resize(new_word_size);
3445   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3446   // Shrink the card table
3447   Universe::heap()->barrier_set()->resize_covered_region(mr);
3448 
3449   if (Verbose && PrintGC) {
3450     size_t new_mem_size = _virtual_space.committed_size();
3451     size_t old_mem_size = new_mem_size + bytes;
3452     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3453                   name(), old_mem_size/K, new_mem_size/K);
3454   }
3455 }
3456 
3457 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3458   assert_locked_or_safepoint(Heap_lock);
3459   size_t size = ReservedSpace::page_align_size_down(bytes);
3460   // Only shrink if a compaction was done so that all the free space
3461   // in the generation is in a contiguous block at the end.
3462   if (size > 0 && did_compact()) {
3463     shrink_by(size);
3464   }
3465 }
3466 
3467 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3468   assert_locked_or_safepoint(Heap_lock);
3469   bool result = _virtual_space.expand_by(bytes);
3470   if (result) {
3471     size_t new_word_size =
3472       heap_word_size(_virtual_space.committed_size());
3473     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3474     _bts->resize(new_word_size);  // resize the block offset shared array
3475     Universe::heap()->barrier_set()->resize_covered_region(mr);
3476     // Hmmmm... why doesn't CFLS::set_end verify locking?
3477     // This is quite ugly; FIX ME XXX
3478     _cmsSpace->assert_locked(freelistLock());
3479     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3480 
3481     // update the space and generation capacity counters
3482     if (UsePerfData) {
3483       _space_counters->update_capacity();
3484       _gen_counters->update_all();
3485     }
3486 
3487     if (Verbose && PrintGC) {
3488       size_t new_mem_size = _virtual_space.committed_size();
3489       size_t old_mem_size = new_mem_size - bytes;
3490       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3491                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3492     }
3493   }
3494   return result;
3495 }
3496 
3497 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3498   assert_locked_or_safepoint(Heap_lock);
3499   bool success = true;
3500   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3501   if (remaining_bytes > 0) {
3502     success = grow_by(remaining_bytes);
3503     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3504   }
3505   return success;
3506 }
3507 
3508 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3509   assert_locked_or_safepoint(Heap_lock);
3510   assert_lock_strong(freelistLock());
3511   if (PrintGCDetails && Verbose) {
3512     warning("Shrinking of CMS not yet implemented");
3513   }
3514   return;
3515 }
3516 
3517 
3518 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3519 // phases.
3520 class CMSPhaseAccounting: public StackObj {
3521  public:
3522   CMSPhaseAccounting(CMSCollector *collector,
3523                      const char *phase,
3524                      bool print_cr = true);
3525   ~CMSPhaseAccounting();
3526 
3527  private:
3528   CMSCollector *_collector;
3529   const char *_phase;
3530   elapsedTimer _wallclock;
3531   bool _print_cr;
3532 
3533  public:
3534   // Not MT-safe; so do not pass around these StackObj's
3535   // where they may be accessed by other threads.
3536   jlong wallclock_millis() {
3537     assert(_wallclock.is_active(), "Wall clock should not stop");
3538     _wallclock.stop();  // to record time
3539     jlong ret = _wallclock.milliseconds();
3540     _wallclock.start(); // restart
3541     return ret;
3542   }
3543 };
3544 
3545 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3546                                        const char *phase,
3547                                        bool print_cr) :
3548   _collector(collector), _phase(phase), _print_cr(print_cr) {
3549 
3550   if (PrintCMSStatistics != 0) {
3551     _collector->resetYields();
3552   }
3553   if (PrintGCDetails) {
3554     gclog_or_tty->date_stamp(PrintGCDateStamps);
3555     gclog_or_tty->stamp(PrintGCTimeStamps);
3556     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3557       _collector->cmsGen()->short_name(), _phase);
3558   }
3559   _collector->resetTimer();
3560   _wallclock.start();
3561   _collector->startTimer();
3562 }
3563 
3564 CMSPhaseAccounting::~CMSPhaseAccounting() {
3565   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3566   _collector->stopTimer();
3567   _wallclock.stop();
3568   if (PrintGCDetails) {
3569     gclog_or_tty->date_stamp(PrintGCDateStamps);
3570     gclog_or_tty->stamp(PrintGCTimeStamps);
3571     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3572                  _collector->cmsGen()->short_name(),
3573                  _phase, _collector->timerValue(), _wallclock.seconds());
3574     if (_print_cr) {
3575       gclog_or_tty->print_cr("");
3576     }
3577     if (PrintCMSStatistics != 0) {
3578       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3579                     _collector->yields());
3580     }
3581   }
3582 }
3583 
3584 // CMS work
3585 
3586 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3587 class CMSParMarkTask : public AbstractGangTask {
3588  protected:
3589   CMSCollector*     _collector;
3590   int               _n_workers;
3591   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3592       AbstractGangTask(name),
3593       _collector(collector),
3594       _n_workers(n_workers) {}
3595   // Work method in support of parallel rescan ... of young gen spaces
3596   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3597                              ContiguousSpace* space,
3598                              HeapWord** chunk_array, size_t chunk_top);
3599   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3600 };
3601 
3602 // Parallel initial mark task
3603 class CMSParInitialMarkTask: public CMSParMarkTask {
3604  public:
3605   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3606       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3607                      collector, n_workers) {}
3608   void work(uint worker_id);
3609 };
3610 
3611 // Checkpoint the roots into this generation from outside
3612 // this generation. [Note this initial checkpoint need only
3613 // be approximate -- we'll do a catch up phase subsequently.]
3614 void CMSCollector::checkpointRootsInitial(bool asynch) {
3615   assert(_collectorState == InitialMarking, "Wrong collector state");
3616   check_correct_thread_executing();
3617   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3618 
3619   save_heap_summary();
3620   report_heap_summary(GCWhen::BeforeGC);
3621 
3622   ReferenceProcessor* rp = ref_processor();
3623   SpecializationStats::clear();
3624   assert(_restart_addr == NULL, "Control point invariant");
3625   if (asynch) {
3626     // acquire locks for subsequent manipulations
3627     MutexLockerEx x(bitMapLock(),
3628                     Mutex::_no_safepoint_check_flag);
3629     checkpointRootsInitialWork(asynch);
3630     // enable ("weak") refs discovery
3631     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3632     _collectorState = Marking;
3633   } else {
3634     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3635     // which recognizes if we are a CMS generation, and doesn't try to turn on
3636     // discovery; verify that they aren't meddling.
3637     assert(!rp->discovery_is_atomic(),
3638            "incorrect setting of discovery predicate");
3639     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3640            "ref discovery for this generation kind");
3641     // already have locks
3642     checkpointRootsInitialWork(asynch);
3643     // now enable ("weak") refs discovery
3644     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3645     _collectorState = Marking;
3646   }
3647   SpecializationStats::print();
3648 }
3649 
3650 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3651   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3652   assert(_collectorState == InitialMarking, "just checking");
3653 
3654   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3655   // precede our marking with a collection of all
3656   // younger generations to keep floating garbage to a minimum.
3657   // XXX: we won't do this for now -- it's an optimization to be done later.
3658 
3659   // already have locks
3660   assert_lock_strong(bitMapLock());
3661   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3662 
3663   // Setup the verification and class unloading state for this
3664   // CMS collection cycle.
3665   setup_cms_unloading_and_verification_state();
3666 
3667   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3668     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3669   if (UseAdaptiveSizePolicy) {
3670     size_policy()->checkpoint_roots_initial_begin();
3671   }
3672 
3673   // Reset all the PLAB chunk arrays if necessary.
3674   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3675     reset_survivor_plab_arrays();
3676   }
3677 
3678   ResourceMark rm;
3679   HandleMark  hm;
3680 
3681   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3682   GenCollectedHeap* gch = GenCollectedHeap::heap();
3683 
3684   verify_work_stacks_empty();
3685   verify_overflow_empty();
3686 
3687   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3688   // Update the saved marks which may affect the root scans.
3689   gch->save_marks();
3690 
3691   // weak reference processing has not started yet.
3692   ref_processor()->set_enqueuing_is_done(false);
3693 
3694   // Need to remember all newly created CLDs,
3695   // so that we can guarantee that the remark finds them.
3696   ClassLoaderDataGraph::remember_new_clds(true);
3697 
3698   // Whenever a CLD is found, it will be claimed before proceeding to mark
3699   // the klasses. The claimed marks need to be cleared before marking starts.
3700   ClassLoaderDataGraph::clear_claimed_marks();
3701 
3702   if (CMSPrintEdenSurvivorChunks) {
3703     print_eden_and_survivor_chunk_arrays();
3704   }
3705 
3706   {
3707     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3708     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3709       // The parallel version.
3710       FlexibleWorkGang* workers = gch->workers();
3711       assert(workers != NULL, "Need parallel worker threads.");
3712       int n_workers = workers->active_workers();
3713       CMSParInitialMarkTask tsk(this, n_workers);
3714       gch->set_par_threads(n_workers);
3715       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3716       if (n_workers > 1) {
3717         GenCollectedHeap::StrongRootsScope srs(gch);
3718         workers->run_task(&tsk);
3719       } else {
3720         GenCollectedHeap::StrongRootsScope srs(gch);
3721         tsk.work(0);
3722       }
3723       gch->set_par_threads(0);
3724     } else {
3725       // The serial version.
3726       CMKlassClosure klass_closure(&notOlder);
3727       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3728       gch->gen_process_strong_roots(_cmsGen->level(),
3729                                     true,   // younger gens are roots
3730                                     true,   // activate StrongRootsScope
3731                                     SharedHeap::ScanningOption(roots_scanning_options()),
3732                                     &notOlder,
3733                                     NULL,
3734                                     &klass_closure);
3735     }
3736   }
3737 
3738   // Clear mod-union table; it will be dirtied in the prologue of
3739   // CMS generation per each younger generation collection.
3740 
3741   assert(_modUnionTable.isAllClear(),
3742        "Was cleared in most recent final checkpoint phase"
3743        " or no bits are set in the gc_prologue before the start of the next "
3744        "subsequent marking phase.");
3745 
3746   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3747 
3748   // Save the end of the used_region of the constituent generations
3749   // to be used to limit the extent of sweep in each generation.
3750   save_sweep_limits();
3751   if (UseAdaptiveSizePolicy) {
3752     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3753   }
3754   verify_overflow_empty();
3755 }
3756 
3757 bool CMSCollector::markFromRoots(bool asynch) {
3758   // we might be tempted to assert that:
3759   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3760   //        "inconsistent argument?");
3761   // However that wouldn't be right, because it's possible that
3762   // a safepoint is indeed in progress as a younger generation
3763   // stop-the-world GC happens even as we mark in this generation.
3764   assert(_collectorState == Marking, "inconsistent state?");
3765   check_correct_thread_executing();
3766   verify_overflow_empty();
3767 
3768   bool res;
3769   if (asynch) {
3770 
3771     // Start the timers for adaptive size policy for the concurrent phases
3772     // Do it here so that the foreground MS can use the concurrent
3773     // timer since a foreground MS might has the sweep done concurrently
3774     // or STW.
3775     if (UseAdaptiveSizePolicy) {
3776       size_policy()->concurrent_marking_begin();
3777     }
3778 
3779     // Weak ref discovery note: We may be discovering weak
3780     // refs in this generation concurrent (but interleaved) with
3781     // weak ref discovery by a younger generation collector.
3782 
3783     CMSTokenSyncWithLocks ts(true, bitMapLock());
3784     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3785     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3786     res = markFromRootsWork(asynch);
3787     if (res) {
3788       _collectorState = Precleaning;
3789     } else { // We failed and a foreground collection wants to take over
3790       assert(_foregroundGCIsActive, "internal state inconsistency");
3791       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3792       if (PrintGCDetails) {
3793         gclog_or_tty->print_cr("bailing out to foreground collection");
3794       }
3795     }
3796     if (UseAdaptiveSizePolicy) {
3797       size_policy()->concurrent_marking_end();
3798     }
3799   } else {
3800     assert(SafepointSynchronize::is_at_safepoint(),
3801            "inconsistent with asynch == false");
3802     if (UseAdaptiveSizePolicy) {
3803       size_policy()->ms_collection_marking_begin();
3804     }
3805     // already have locks
3806     res = markFromRootsWork(asynch);
3807     _collectorState = FinalMarking;
3808     if (UseAdaptiveSizePolicy) {
3809       GenCollectedHeap* gch = GenCollectedHeap::heap();
3810       size_policy()->ms_collection_marking_end(gch->gc_cause());
3811     }
3812   }
3813   verify_overflow_empty();
3814   return res;
3815 }
3816 
3817 bool CMSCollector::markFromRootsWork(bool asynch) {
3818   // iterate over marked bits in bit map, doing a full scan and mark
3819   // from these roots using the following algorithm:
3820   // . if oop is to the right of the current scan pointer,
3821   //   mark corresponding bit (we'll process it later)
3822   // . else (oop is to left of current scan pointer)
3823   //   push oop on marking stack
3824   // . drain the marking stack
3825 
3826   // Note that when we do a marking step we need to hold the
3827   // bit map lock -- recall that direct allocation (by mutators)
3828   // and promotion (by younger generation collectors) is also
3829   // marking the bit map. [the so-called allocate live policy.]
3830   // Because the implementation of bit map marking is not
3831   // robust wrt simultaneous marking of bits in the same word,
3832   // we need to make sure that there is no such interference
3833   // between concurrent such updates.
3834 
3835   // already have locks
3836   assert_lock_strong(bitMapLock());
3837 
3838   verify_work_stacks_empty();
3839   verify_overflow_empty();
3840   bool result = false;
3841   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3842     result = do_marking_mt(asynch);
3843   } else {
3844     result = do_marking_st(asynch);
3845   }
3846   return result;
3847 }
3848 
3849 // Forward decl
3850 class CMSConcMarkingTask;
3851 
3852 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3853   CMSCollector*       _collector;
3854   CMSConcMarkingTask* _task;
3855  public:
3856   virtual void yield();
3857 
3858   // "n_threads" is the number of threads to be terminated.
3859   // "queue_set" is a set of work queues of other threads.
3860   // "collector" is the CMS collector associated with this task terminator.
3861   // "yield" indicates whether we need the gang as a whole to yield.
3862   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3863     ParallelTaskTerminator(n_threads, queue_set),
3864     _collector(collector) { }
3865 
3866   void set_task(CMSConcMarkingTask* task) {
3867     _task = task;
3868   }
3869 };
3870 
3871 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3872   CMSConcMarkingTask* _task;
3873  public:
3874   bool should_exit_termination();
3875   void set_task(CMSConcMarkingTask* task) {
3876     _task = task;
3877   }
3878 };
3879 
3880 // MT Concurrent Marking Task
3881 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3882   CMSCollector* _collector;
3883   int           _n_workers;                  // requested/desired # workers
3884   bool          _asynch;
3885   bool          _result;
3886   CompactibleFreeListSpace*  _cms_space;
3887   char          _pad_front[64];   // padding to ...
3888   HeapWord*     _global_finger;   // ... avoid sharing cache line
3889   char          _pad_back[64];
3890   HeapWord*     _restart_addr;
3891 
3892   //  Exposed here for yielding support
3893   Mutex* const _bit_map_lock;
3894 
3895   // The per thread work queues, available here for stealing
3896   OopTaskQueueSet*  _task_queues;
3897 
3898   // Termination (and yielding) support
3899   CMSConcMarkingTerminator _term;
3900   CMSConcMarkingTerminatorTerminator _term_term;
3901 
3902  public:
3903   CMSConcMarkingTask(CMSCollector* collector,
3904                  CompactibleFreeListSpace* cms_space,
3905                  bool asynch,
3906                  YieldingFlexibleWorkGang* workers,
3907                  OopTaskQueueSet* task_queues):
3908     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3909     _collector(collector),
3910     _cms_space(cms_space),
3911     _asynch(asynch), _n_workers(0), _result(true),
3912     _task_queues(task_queues),
3913     _term(_n_workers, task_queues, _collector),
3914     _bit_map_lock(collector->bitMapLock())
3915   {
3916     _requested_size = _n_workers;
3917     _term.set_task(this);
3918     _term_term.set_task(this);
3919     _restart_addr = _global_finger = _cms_space->bottom();
3920   }
3921 
3922 
3923   OopTaskQueueSet* task_queues()  { return _task_queues; }
3924 
3925   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3926 
3927   HeapWord** global_finger_addr() { return &_global_finger; }
3928 
3929   CMSConcMarkingTerminator* terminator() { return &_term; }
3930 
3931   virtual void set_for_termination(int active_workers) {
3932     terminator()->reset_for_reuse(active_workers);
3933   }
3934 
3935   void work(uint worker_id);
3936   bool should_yield() {
3937     return    ConcurrentMarkSweepThread::should_yield()
3938            && !_collector->foregroundGCIsActive()
3939            && _asynch;
3940   }
3941 
3942   virtual void coordinator_yield();  // stuff done by coordinator
3943   bool result() { return _result; }
3944 
3945   void reset(HeapWord* ra) {
3946     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3947     _restart_addr = _global_finger = ra;
3948     _term.reset_for_reuse();
3949   }
3950 
3951   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3952                                            OopTaskQueue* work_q);
3953 
3954  private:
3955   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3956   void do_work_steal(int i);
3957   void bump_global_finger(HeapWord* f);
3958 };
3959 
3960 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3961   assert(_task != NULL, "Error");
3962   return _task->yielding();
3963   // Note that we do not need the disjunct || _task->should_yield() above
3964   // because we want terminating threads to yield only if the task
3965   // is already in the midst of yielding, which happens only after at least one
3966   // thread has yielded.
3967 }
3968 
3969 void CMSConcMarkingTerminator::yield() {
3970   if (_task->should_yield()) {
3971     _task->yield();
3972   } else {
3973     ParallelTaskTerminator::yield();
3974   }
3975 }
3976 
3977 ////////////////////////////////////////////////////////////////
3978 // Concurrent Marking Algorithm Sketch
3979 ////////////////////////////////////////////////////////////////
3980 // Until all tasks exhausted (both spaces):
3981 // -- claim next available chunk
3982 // -- bump global finger via CAS
3983 // -- find first object that starts in this chunk
3984 //    and start scanning bitmap from that position
3985 // -- scan marked objects for oops
3986 // -- CAS-mark target, and if successful:
3987 //    . if target oop is above global finger (volatile read)
3988 //      nothing to do
3989 //    . if target oop is in chunk and above local finger
3990 //        then nothing to do
3991 //    . else push on work-queue
3992 // -- Deal with possible overflow issues:
3993 //    . local work-queue overflow causes stuff to be pushed on
3994 //      global (common) overflow queue
3995 //    . always first empty local work queue
3996 //    . then get a batch of oops from global work queue if any
3997 //    . then do work stealing
3998 // -- When all tasks claimed (both spaces)
3999 //    and local work queue empty,
4000 //    then in a loop do:
4001 //    . check global overflow stack; steal a batch of oops and trace
4002 //    . try to steal from other threads oif GOS is empty
4003 //    . if neither is available, offer termination
4004 // -- Terminate and return result
4005 //
4006 void CMSConcMarkingTask::work(uint worker_id) {
4007   elapsedTimer _timer;
4008   ResourceMark rm;
4009   HandleMark hm;
4010 
4011   DEBUG_ONLY(_collector->verify_overflow_empty();)
4012 
4013   // Before we begin work, our work queue should be empty
4014   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
4015   // Scan the bitmap covering _cms_space, tracing through grey objects.
4016   _timer.start();
4017   do_scan_and_mark(worker_id, _cms_space);
4018   _timer.stop();
4019   if (PrintCMSStatistics != 0) {
4020     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
4021       worker_id, _timer.seconds());
4022       // XXX: need xxx/xxx type of notation, two timers
4023   }
4024 
4025   // ... do work stealing
4026   _timer.reset();
4027   _timer.start();
4028   do_work_steal(worker_id);
4029   _timer.stop();
4030   if (PrintCMSStatistics != 0) {
4031     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
4032       worker_id, _timer.seconds());
4033       // XXX: need xxx/xxx type of notation, two timers
4034   }
4035   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
4036   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
4037   // Note that under the current task protocol, the
4038   // following assertion is true even of the spaces
4039   // expanded since the completion of the concurrent
4040   // marking. XXX This will likely change under a strict
4041   // ABORT semantics.
4042   // After perm removal the comparison was changed to
4043   // greater than or equal to from strictly greater than.
4044   // Before perm removal the highest address sweep would
4045   // have been at the end of perm gen but now is at the
4046   // end of the tenured gen.
4047   assert(_global_finger >=  _cms_space->end(),
4048          "All tasks have been completed");
4049   DEBUG_ONLY(_collector->verify_overflow_empty();)
4050 }
4051 
4052 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
4053   HeapWord* read = _global_finger;
4054   HeapWord* cur  = read;
4055   while (f > read) {
4056     cur = read;
4057     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4058     if (cur == read) {
4059       // our cas succeeded
4060       assert(_global_finger >= f, "protocol consistency");
4061       break;
4062     }
4063   }
4064 }
4065 
4066 // This is really inefficient, and should be redone by
4067 // using (not yet available) block-read and -write interfaces to the
4068 // stack and the work_queue. XXX FIX ME !!!
4069 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4070                                                       OopTaskQueue* work_q) {
4071   // Fast lock-free check
4072   if (ovflw_stk->length() == 0) {
4073     return false;
4074   }
4075   assert(work_q->size() == 0, "Shouldn't steal");
4076   MutexLockerEx ml(ovflw_stk->par_lock(),
4077                    Mutex::_no_safepoint_check_flag);
4078   // Grab up to 1/4 the size of the work queue
4079   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4080                     (size_t)ParGCDesiredObjsFromOverflowList);
4081   num = MIN2(num, ovflw_stk->length());
4082   for (int i = (int) num; i > 0; i--) {
4083     oop cur = ovflw_stk->pop();
4084     assert(cur != NULL, "Counted wrong?");
4085     work_q->push(cur);
4086   }
4087   return num > 0;
4088 }
4089 
4090 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4091   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4092   int n_tasks = pst->n_tasks();
4093   // We allow that there may be no tasks to do here because
4094   // we are restarting after a stack overflow.
4095   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4096   uint nth_task = 0;
4097 
4098   HeapWord* aligned_start = sp->bottom();
4099   if (sp->used_region().contains(_restart_addr)) {
4100     // Align down to a card boundary for the start of 0th task
4101     // for this space.
4102     aligned_start =
4103       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4104                                  CardTableModRefBS::card_size);
4105   }
4106 
4107   size_t chunk_size = sp->marking_task_size();
4108   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4109     // Having claimed the nth task in this space,
4110     // compute the chunk that it corresponds to:
4111     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4112                                aligned_start + (nth_task+1)*chunk_size);
4113     // Try and bump the global finger via a CAS;
4114     // note that we need to do the global finger bump
4115     // _before_ taking the intersection below, because
4116     // the task corresponding to that region will be
4117     // deemed done even if the used_region() expands
4118     // because of allocation -- as it almost certainly will
4119     // during start-up while the threads yield in the
4120     // closure below.
4121     HeapWord* finger = span.end();
4122     bump_global_finger(finger);   // atomically
4123     // There are null tasks here corresponding to chunks
4124     // beyond the "top" address of the space.
4125     span = span.intersection(sp->used_region());
4126     if (!span.is_empty()) {  // Non-null task
4127       HeapWord* prev_obj;
4128       assert(!span.contains(_restart_addr) || nth_task == 0,
4129              "Inconsistency");
4130       if (nth_task == 0) {
4131         // For the 0th task, we'll not need to compute a block_start.
4132         if (span.contains(_restart_addr)) {
4133           // In the case of a restart because of stack overflow,
4134           // we might additionally skip a chunk prefix.
4135           prev_obj = _restart_addr;
4136         } else {
4137           prev_obj = span.start();
4138         }
4139       } else {
4140         // We want to skip the first object because
4141         // the protocol is to scan any object in its entirety
4142         // that _starts_ in this span; a fortiori, any
4143         // object starting in an earlier span is scanned
4144         // as part of an earlier claimed task.
4145         // Below we use the "careful" version of block_start
4146         // so we do not try to navigate uninitialized objects.
4147         prev_obj = sp->block_start_careful(span.start());
4148         // Below we use a variant of block_size that uses the
4149         // Printezis bits to avoid waiting for allocated
4150         // objects to become initialized/parsable.
4151         while (prev_obj < span.start()) {
4152           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4153           if (sz > 0) {
4154             prev_obj += sz;
4155           } else {
4156             // In this case we may end up doing a bit of redundant
4157             // scanning, but that appears unavoidable, short of
4158             // locking the free list locks; see bug 6324141.
4159             break;
4160           }
4161         }
4162       }
4163       if (prev_obj < span.end()) {
4164         MemRegion my_span = MemRegion(prev_obj, span.end());
4165         // Do the marking work within a non-empty span --
4166         // the last argument to the constructor indicates whether the
4167         // iteration should be incremental with periodic yields.
4168         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4169                                     &_collector->_markBitMap,
4170                                     work_queue(i),
4171                                     &_collector->_markStack,
4172                                     _asynch);
4173         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4174       } // else nothing to do for this task
4175     }   // else nothing to do for this task
4176   }
4177   // We'd be tempted to assert here that since there are no
4178   // more tasks left to claim in this space, the global_finger
4179   // must exceed space->top() and a fortiori space->end(). However,
4180   // that would not quite be correct because the bumping of
4181   // global_finger occurs strictly after the claiming of a task,
4182   // so by the time we reach here the global finger may not yet
4183   // have been bumped up by the thread that claimed the last
4184   // task.
4185   pst->all_tasks_completed();
4186 }
4187 
4188 class Par_ConcMarkingClosure: public CMSOopClosure {
4189  private:
4190   CMSCollector* _collector;
4191   CMSConcMarkingTask* _task;
4192   MemRegion     _span;
4193   CMSBitMap*    _bit_map;
4194   CMSMarkStack* _overflow_stack;
4195   OopTaskQueue* _work_queue;
4196  protected:
4197   DO_OOP_WORK_DEFN
4198  public:
4199   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4200                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4201     CMSOopClosure(collector->ref_processor()),
4202     _collector(collector),
4203     _task(task),
4204     _span(collector->_span),
4205     _work_queue(work_queue),
4206     _bit_map(bit_map),
4207     _overflow_stack(overflow_stack)
4208   { }
4209   virtual void do_oop(oop* p);
4210   virtual void do_oop(narrowOop* p);
4211 
4212   void trim_queue(size_t max);
4213   void handle_stack_overflow(HeapWord* lost);
4214   void do_yield_check() {
4215     if (_task->should_yield()) {
4216       _task->yield();
4217     }
4218   }
4219 };
4220 
4221 // Grey object scanning during work stealing phase --
4222 // the salient assumption here is that any references
4223 // that are in these stolen objects being scanned must
4224 // already have been initialized (else they would not have
4225 // been published), so we do not need to check for
4226 // uninitialized objects before pushing here.
4227 void Par_ConcMarkingClosure::do_oop(oop obj) {
4228   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4229   HeapWord* addr = (HeapWord*)obj;
4230   // Check if oop points into the CMS generation
4231   // and is not marked
4232   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4233     // a white object ...
4234     // If we manage to "claim" the object, by being the
4235     // first thread to mark it, then we push it on our
4236     // marking stack
4237     if (_bit_map->par_mark(addr)) {     // ... now grey
4238       // push on work queue (grey set)
4239       bool simulate_overflow = false;
4240       NOT_PRODUCT(
4241         if (CMSMarkStackOverflowALot &&
4242             _collector->simulate_overflow()) {
4243           // simulate a stack overflow
4244           simulate_overflow = true;
4245         }
4246       )
4247       if (simulate_overflow ||
4248           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4249         // stack overflow
4250         if (PrintCMSStatistics != 0) {
4251           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4252                                  SIZE_FORMAT, _overflow_stack->capacity());
4253         }
4254         // We cannot assert that the overflow stack is full because
4255         // it may have been emptied since.
4256         assert(simulate_overflow ||
4257                _work_queue->size() == _work_queue->max_elems(),
4258               "Else push should have succeeded");
4259         handle_stack_overflow(addr);
4260       }
4261     } // Else, some other thread got there first
4262     do_yield_check();
4263   }
4264 }
4265 
4266 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4267 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4268 
4269 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4270   while (_work_queue->size() > max) {
4271     oop new_oop;
4272     if (_work_queue->pop_local(new_oop)) {
4273       assert(new_oop->is_oop(), "Should be an oop");
4274       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4275       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4276       new_oop->oop_iterate(this);  // do_oop() above
4277       do_yield_check();
4278     }
4279   }
4280 }
4281 
4282 // Upon stack overflow, we discard (part of) the stack,
4283 // remembering the least address amongst those discarded
4284 // in CMSCollector's _restart_address.
4285 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4286   // We need to do this under a mutex to prevent other
4287   // workers from interfering with the work done below.
4288   MutexLockerEx ml(_overflow_stack->par_lock(),
4289                    Mutex::_no_safepoint_check_flag);
4290   // Remember the least grey address discarded
4291   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4292   _collector->lower_restart_addr(ra);
4293   _overflow_stack->reset();  // discard stack contents
4294   _overflow_stack->expand(); // expand the stack if possible
4295 }
4296 
4297 
4298 void CMSConcMarkingTask::do_work_steal(int i) {
4299   OopTaskQueue* work_q = work_queue(i);
4300   oop obj_to_scan;
4301   CMSBitMap* bm = &(_collector->_markBitMap);
4302   CMSMarkStack* ovflw = &(_collector->_markStack);
4303   int* seed = _collector->hash_seed(i);
4304   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4305   while (true) {
4306     cl.trim_queue(0);
4307     assert(work_q->size() == 0, "Should have been emptied above");
4308     if (get_work_from_overflow_stack(ovflw, work_q)) {
4309       // Can't assert below because the work obtained from the
4310       // overflow stack may already have been stolen from us.
4311       // assert(work_q->size() > 0, "Work from overflow stack");
4312       continue;
4313     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4314       assert(obj_to_scan->is_oop(), "Should be an oop");
4315       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4316       obj_to_scan->oop_iterate(&cl);
4317     } else if (terminator()->offer_termination(&_term_term)) {
4318       assert(work_q->size() == 0, "Impossible!");
4319       break;
4320     } else if (yielding() || should_yield()) {
4321       yield();
4322     }
4323   }
4324 }
4325 
4326 // This is run by the CMS (coordinator) thread.
4327 void CMSConcMarkingTask::coordinator_yield() {
4328   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4329          "CMS thread should hold CMS token");
4330   // First give up the locks, then yield, then re-lock
4331   // We should probably use a constructor/destructor idiom to
4332   // do this unlock/lock or modify the MutexUnlocker class to
4333   // serve our purpose. XXX
4334   assert_lock_strong(_bit_map_lock);
4335   _bit_map_lock->unlock();
4336   ConcurrentMarkSweepThread::desynchronize(true);
4337   ConcurrentMarkSweepThread::acknowledge_yield_request();
4338   _collector->stopTimer();
4339   if (PrintCMSStatistics != 0) {
4340     _collector->incrementYields();
4341   }
4342   _collector->icms_wait();
4343 
4344   // It is possible for whichever thread initiated the yield request
4345   // not to get a chance to wake up and take the bitmap lock between
4346   // this thread releasing it and reacquiring it. So, while the
4347   // should_yield() flag is on, let's sleep for a bit to give the
4348   // other thread a chance to wake up. The limit imposed on the number
4349   // of iterations is defensive, to avoid any unforseen circumstances
4350   // putting us into an infinite loop. Since it's always been this
4351   // (coordinator_yield()) method that was observed to cause the
4352   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4353   // which is by default non-zero. For the other seven methods that
4354   // also perform the yield operation, as are using a different
4355   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4356   // can enable the sleeping for those methods too, if necessary.
4357   // See 6442774.
4358   //
4359   // We really need to reconsider the synchronization between the GC
4360   // thread and the yield-requesting threads in the future and we
4361   // should really use wait/notify, which is the recommended
4362   // way of doing this type of interaction. Additionally, we should
4363   // consolidate the eight methods that do the yield operation and they
4364   // are almost identical into one for better maintainability and
4365   // readability. See 6445193.
4366   //
4367   // Tony 2006.06.29
4368   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4369                    ConcurrentMarkSweepThread::should_yield() &&
4370                    !CMSCollector::foregroundGCIsActive(); ++i) {
4371     os::sleep(Thread::current(), 1, false);
4372     ConcurrentMarkSweepThread::acknowledge_yield_request();
4373   }
4374 
4375   ConcurrentMarkSweepThread::synchronize(true);
4376   _bit_map_lock->lock_without_safepoint_check();
4377   _collector->startTimer();
4378 }
4379 
4380 bool CMSCollector::do_marking_mt(bool asynch) {
4381   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4382   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4383                                        conc_workers()->total_workers(),
4384                                        conc_workers()->active_workers(),
4385                                        Threads::number_of_non_daemon_threads());
4386   conc_workers()->set_active_workers(num_workers);
4387 
4388   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4389 
4390   CMSConcMarkingTask tsk(this,
4391                          cms_space,
4392                          asynch,
4393                          conc_workers(),
4394                          task_queues());
4395 
4396   // Since the actual number of workers we get may be different
4397   // from the number we requested above, do we need to do anything different
4398   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4399   // class?? XXX
4400   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4401 
4402   // Refs discovery is already non-atomic.
4403   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4404   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4405   conc_workers()->start_task(&tsk);
4406   while (tsk.yielded()) {
4407     tsk.coordinator_yield();
4408     conc_workers()->continue_task(&tsk);
4409   }
4410   // If the task was aborted, _restart_addr will be non-NULL
4411   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4412   while (_restart_addr != NULL) {
4413     // XXX For now we do not make use of ABORTED state and have not
4414     // yet implemented the right abort semantics (even in the original
4415     // single-threaded CMS case). That needs some more investigation
4416     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4417     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4418     // If _restart_addr is non-NULL, a marking stack overflow
4419     // occurred; we need to do a fresh marking iteration from the
4420     // indicated restart address.
4421     if (_foregroundGCIsActive && asynch) {
4422       // We may be running into repeated stack overflows, having
4423       // reached the limit of the stack size, while making very
4424       // slow forward progress. It may be best to bail out and
4425       // let the foreground collector do its job.
4426       // Clear _restart_addr, so that foreground GC
4427       // works from scratch. This avoids the headache of
4428       // a "rescan" which would otherwise be needed because
4429       // of the dirty mod union table & card table.
4430       _restart_addr = NULL;
4431       return false;
4432     }
4433     // Adjust the task to restart from _restart_addr
4434     tsk.reset(_restart_addr);
4435     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4436                   _restart_addr);
4437     _restart_addr = NULL;
4438     // Get the workers going again
4439     conc_workers()->start_task(&tsk);
4440     while (tsk.yielded()) {
4441       tsk.coordinator_yield();
4442       conc_workers()->continue_task(&tsk);
4443     }
4444   }
4445   assert(tsk.completed(), "Inconsistency");
4446   assert(tsk.result() == true, "Inconsistency");
4447   return true;
4448 }
4449 
4450 bool CMSCollector::do_marking_st(bool asynch) {
4451   ResourceMark rm;
4452   HandleMark   hm;
4453 
4454   // Temporarily make refs discovery single threaded (non-MT)
4455   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4456   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4457     &_markStack, CMSYield && asynch);
4458   // the last argument to iterate indicates whether the iteration
4459   // should be incremental with periodic yields.
4460   _markBitMap.iterate(&markFromRootsClosure);
4461   // If _restart_addr is non-NULL, a marking stack overflow
4462   // occurred; we need to do a fresh iteration from the
4463   // indicated restart address.
4464   while (_restart_addr != NULL) {
4465     if (_foregroundGCIsActive && asynch) {
4466       // We may be running into repeated stack overflows, having
4467       // reached the limit of the stack size, while making very
4468       // slow forward progress. It may be best to bail out and
4469       // let the foreground collector do its job.
4470       // Clear _restart_addr, so that foreground GC
4471       // works from scratch. This avoids the headache of
4472       // a "rescan" which would otherwise be needed because
4473       // of the dirty mod union table & card table.
4474       _restart_addr = NULL;
4475       return false;  // indicating failure to complete marking
4476     }
4477     // Deal with stack overflow:
4478     // we restart marking from _restart_addr
4479     HeapWord* ra = _restart_addr;
4480     markFromRootsClosure.reset(ra);
4481     _restart_addr = NULL;
4482     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4483   }
4484   return true;
4485 }
4486 
4487 void CMSCollector::preclean() {
4488   check_correct_thread_executing();
4489   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4490   verify_work_stacks_empty();
4491   verify_overflow_empty();
4492   _abort_preclean = false;
4493   if (CMSPrecleaningEnabled) {
4494     if (!CMSEdenChunksRecordAlways) {
4495       _eden_chunk_index = 0;
4496     }
4497     size_t used = get_eden_used();
4498     size_t capacity = get_eden_capacity();
4499     // Don't start sampling unless we will get sufficiently
4500     // many samples.
4501     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4502                 * CMSScheduleRemarkEdenPenetration)) {
4503       _start_sampling = true;
4504     } else {
4505       _start_sampling = false;
4506     }
4507     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4508     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4509     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4510   }
4511   CMSTokenSync x(true); // is cms thread
4512   if (CMSPrecleaningEnabled) {
4513     sample_eden();
4514     _collectorState = AbortablePreclean;
4515   } else {
4516     _collectorState = FinalMarking;
4517   }
4518   verify_work_stacks_empty();
4519   verify_overflow_empty();
4520 }
4521 
4522 // Try and schedule the remark such that young gen
4523 // occupancy is CMSScheduleRemarkEdenPenetration %.
4524 void CMSCollector::abortable_preclean() {
4525   check_correct_thread_executing();
4526   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4527   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4528 
4529   // If Eden's current occupancy is below this threshold,
4530   // immediately schedule the remark; else preclean
4531   // past the next scavenge in an effort to
4532   // schedule the pause as described above. By choosing
4533   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4534   // we will never do an actual abortable preclean cycle.
4535   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4536     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4537     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4538     // We need more smarts in the abortable preclean
4539     // loop below to deal with cases where allocation
4540     // in young gen is very very slow, and our precleaning
4541     // is running a losing race against a horde of
4542     // mutators intent on flooding us with CMS updates
4543     // (dirty cards).
4544     // One, admittedly dumb, strategy is to give up
4545     // after a certain number of abortable precleaning loops
4546     // or after a certain maximum time. We want to make
4547     // this smarter in the next iteration.
4548     // XXX FIX ME!!! YSR
4549     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4550     while (!(should_abort_preclean() ||
4551              ConcurrentMarkSweepThread::should_terminate())) {
4552       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4553       cumworkdone += workdone;
4554       loops++;
4555       // Voluntarily terminate abortable preclean phase if we have
4556       // been at it for too long.
4557       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4558           loops >= CMSMaxAbortablePrecleanLoops) {
4559         if (PrintGCDetails) {
4560           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4561         }
4562         break;
4563       }
4564       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4565         if (PrintGCDetails) {
4566           gclog_or_tty->print(" CMS: abort preclean due to time ");
4567         }
4568         break;
4569       }
4570       // If we are doing little work each iteration, we should
4571       // take a short break.
4572       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4573         // Sleep for some time, waiting for work to accumulate
4574         stopTimer();
4575         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4576         startTimer();
4577         waited++;
4578       }
4579     }
4580     if (PrintCMSStatistics > 0) {
4581       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4582                           loops, waited, cumworkdone);
4583     }
4584   }
4585   CMSTokenSync x(true); // is cms thread
4586   if (_collectorState != Idling) {
4587     assert(_collectorState == AbortablePreclean,
4588            "Spontaneous state transition?");
4589     _collectorState = FinalMarking;
4590   } // Else, a foreground collection completed this CMS cycle.
4591   return;
4592 }
4593 
4594 // Respond to an Eden sampling opportunity
4595 void CMSCollector::sample_eden() {
4596   // Make sure a young gc cannot sneak in between our
4597   // reading and recording of a sample.
4598   assert(Thread::current()->is_ConcurrentGC_thread(),
4599          "Only the cms thread may collect Eden samples");
4600   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4601          "Should collect samples while holding CMS token");
4602   if (!_start_sampling) {
4603     return;
4604   }
4605   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4606   // is populated by the young generation.
4607   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4608     if (_eden_chunk_index < _eden_chunk_capacity) {
4609       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4610       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4611              "Unexpected state of Eden");
4612       // We'd like to check that what we just sampled is an oop-start address;
4613       // however, we cannot do that here since the object may not yet have been
4614       // initialized. So we'll instead do the check when we _use_ this sample
4615       // later.
4616       if (_eden_chunk_index == 0 ||
4617           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4618                          _eden_chunk_array[_eden_chunk_index-1])
4619            >= CMSSamplingGrain)) {
4620         _eden_chunk_index++;  // commit sample
4621       }
4622     }
4623   }
4624   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4625     size_t used = get_eden_used();
4626     size_t capacity = get_eden_capacity();
4627     assert(used <= capacity, "Unexpected state of Eden");
4628     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4629       _abort_preclean = true;
4630     }
4631   }
4632 }
4633 
4634 
4635 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4636   assert(_collectorState == Precleaning ||
4637          _collectorState == AbortablePreclean, "incorrect state");
4638   ResourceMark rm;
4639   HandleMark   hm;
4640 
4641   // Precleaning is currently not MT but the reference processor
4642   // may be set for MT.  Disable it temporarily here.
4643   ReferenceProcessor* rp = ref_processor();
4644   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4645 
4646   // Do one pass of scrubbing the discovered reference lists
4647   // to remove any reference objects with strongly-reachable
4648   // referents.
4649   if (clean_refs) {
4650     CMSPrecleanRefsYieldClosure yield_cl(this);
4651     assert(rp->span().equals(_span), "Spans should be equal");
4652     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4653                                    &_markStack, true /* preclean */);
4654     CMSDrainMarkingStackClosure complete_trace(this,
4655                                    _span, &_markBitMap, &_markStack,
4656                                    &keep_alive, true /* preclean */);
4657 
4658     // We don't want this step to interfere with a young
4659     // collection because we don't want to take CPU
4660     // or memory bandwidth away from the young GC threads
4661     // (which may be as many as there are CPUs).
4662     // Note that we don't need to protect ourselves from
4663     // interference with mutators because they can't
4664     // manipulate the discovered reference lists nor affect
4665     // the computed reachability of the referents, the
4666     // only properties manipulated by the precleaning
4667     // of these reference lists.
4668     stopTimer();
4669     CMSTokenSyncWithLocks x(true /* is cms thread */,
4670                             bitMapLock());
4671     startTimer();
4672     sample_eden();
4673 
4674     // The following will yield to allow foreground
4675     // collection to proceed promptly. XXX YSR:
4676     // The code in this method may need further
4677     // tweaking for better performance and some restructuring
4678     // for cleaner interfaces.
4679     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4680     rp->preclean_discovered_references(
4681           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4682           gc_timer);
4683   }
4684 
4685   if (clean_survivor) {  // preclean the active survivor space(s)
4686     assert(_young_gen->kind() == Generation::DefNew ||
4687            _young_gen->kind() == Generation::ParNew ||
4688            _young_gen->kind() == Generation::ASParNew,
4689          "incorrect type for cast");
4690     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4691     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4692                              &_markBitMap, &_modUnionTable,
4693                              &_markStack, true /* precleaning phase */);
4694     stopTimer();
4695     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4696                              bitMapLock());
4697     startTimer();
4698     unsigned int before_count =
4699       GenCollectedHeap::heap()->total_collections();
4700     SurvivorSpacePrecleanClosure
4701       sss_cl(this, _span, &_markBitMap, &_markStack,
4702              &pam_cl, before_count, CMSYield);
4703     dng->from()->object_iterate_careful(&sss_cl);
4704     dng->to()->object_iterate_careful(&sss_cl);
4705   }
4706   MarkRefsIntoAndScanClosure
4707     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4708              &_markStack, this, CMSYield,
4709              true /* precleaning phase */);
4710   // CAUTION: The following closure has persistent state that may need to
4711   // be reset upon a decrease in the sequence of addresses it
4712   // processes.
4713   ScanMarkedObjectsAgainCarefullyClosure
4714     smoac_cl(this, _span,
4715       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4716 
4717   // Preclean dirty cards in ModUnionTable and CardTable using
4718   // appropriate convergence criterion;
4719   // repeat CMSPrecleanIter times unless we find that
4720   // we are losing.
4721   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4722   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4723          "Bad convergence multiplier");
4724   assert(CMSPrecleanThreshold >= 100,
4725          "Unreasonably low CMSPrecleanThreshold");
4726 
4727   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4728   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4729        numIter < CMSPrecleanIter;
4730        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4731     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4732     if (Verbose && PrintGCDetails) {
4733       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4734     }
4735     // Either there are very few dirty cards, so re-mark
4736     // pause will be small anyway, or our pre-cleaning isn't
4737     // that much faster than the rate at which cards are being
4738     // dirtied, so we might as well stop and re-mark since
4739     // precleaning won't improve our re-mark time by much.
4740     if (curNumCards <= CMSPrecleanThreshold ||
4741         (numIter > 0 &&
4742          (curNumCards * CMSPrecleanDenominator >
4743          lastNumCards * CMSPrecleanNumerator))) {
4744       numIter++;
4745       cumNumCards += curNumCards;
4746       break;
4747     }
4748   }
4749 
4750   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4751 
4752   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4753   cumNumCards += curNumCards;
4754   if (PrintGCDetails && PrintCMSStatistics != 0) {
4755     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4756                   curNumCards, cumNumCards, numIter);
4757   }
4758   return cumNumCards;   // as a measure of useful work done
4759 }
4760 
4761 // PRECLEANING NOTES:
4762 // Precleaning involves:
4763 // . reading the bits of the modUnionTable and clearing the set bits.
4764 // . For the cards corresponding to the set bits, we scan the
4765 //   objects on those cards. This means we need the free_list_lock
4766 //   so that we can safely iterate over the CMS space when scanning
4767 //   for oops.
4768 // . When we scan the objects, we'll be both reading and setting
4769 //   marks in the marking bit map, so we'll need the marking bit map.
4770 // . For protecting _collector_state transitions, we take the CGC_lock.
4771 //   Note that any races in the reading of of card table entries by the
4772 //   CMS thread on the one hand and the clearing of those entries by the
4773 //   VM thread or the setting of those entries by the mutator threads on the
4774 //   other are quite benign. However, for efficiency it makes sense to keep
4775 //   the VM thread from racing with the CMS thread while the latter is
4776 //   dirty card info to the modUnionTable. We therefore also use the
4777 //   CGC_lock to protect the reading of the card table and the mod union
4778 //   table by the CM thread.
4779 // . We run concurrently with mutator updates, so scanning
4780 //   needs to be done carefully  -- we should not try to scan
4781 //   potentially uninitialized objects.
4782 //
4783 // Locking strategy: While holding the CGC_lock, we scan over and
4784 // reset a maximal dirty range of the mod union / card tables, then lock
4785 // the free_list_lock and bitmap lock to do a full marking, then
4786 // release these locks; and repeat the cycle. This allows for a
4787 // certain amount of fairness in the sharing of these locks between
4788 // the CMS collector on the one hand, and the VM thread and the
4789 // mutators on the other.
4790 
4791 // NOTE: preclean_mod_union_table() and preclean_card_table()
4792 // further below are largely identical; if you need to modify
4793 // one of these methods, please check the other method too.
4794 
4795 size_t CMSCollector::preclean_mod_union_table(
4796   ConcurrentMarkSweepGeneration* gen,
4797   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4798   verify_work_stacks_empty();
4799   verify_overflow_empty();
4800 
4801   // strategy: starting with the first card, accumulate contiguous
4802   // ranges of dirty cards; clear these cards, then scan the region
4803   // covered by these cards.
4804 
4805   // Since all of the MUT is committed ahead, we can just use
4806   // that, in case the generations expand while we are precleaning.
4807   // It might also be fine to just use the committed part of the
4808   // generation, but we might potentially miss cards when the
4809   // generation is rapidly expanding while we are in the midst
4810   // of precleaning.
4811   HeapWord* startAddr = gen->reserved().start();
4812   HeapWord* endAddr   = gen->reserved().end();
4813 
4814   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4815 
4816   size_t numDirtyCards, cumNumDirtyCards;
4817   HeapWord *nextAddr, *lastAddr;
4818   for (cumNumDirtyCards = numDirtyCards = 0,
4819        nextAddr = lastAddr = startAddr;
4820        nextAddr < endAddr;
4821        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4822 
4823     ResourceMark rm;
4824     HandleMark   hm;
4825 
4826     MemRegion dirtyRegion;
4827     {
4828       stopTimer();
4829       // Potential yield point
4830       CMSTokenSync ts(true);
4831       startTimer();
4832       sample_eden();
4833       // Get dirty region starting at nextOffset (inclusive),
4834       // simultaneously clearing it.
4835       dirtyRegion =
4836         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4837       assert(dirtyRegion.start() >= nextAddr,
4838              "returned region inconsistent?");
4839     }
4840     // Remember where the next search should begin.
4841     // The returned region (if non-empty) is a right open interval,
4842     // so lastOffset is obtained from the right end of that
4843     // interval.
4844     lastAddr = dirtyRegion.end();
4845     // Should do something more transparent and less hacky XXX
4846     numDirtyCards =
4847       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4848 
4849     // We'll scan the cards in the dirty region (with periodic
4850     // yields for foreground GC as needed).
4851     if (!dirtyRegion.is_empty()) {
4852       assert(numDirtyCards > 0, "consistency check");
4853       HeapWord* stop_point = NULL;
4854       stopTimer();
4855       // Potential yield point
4856       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4857                                bitMapLock());
4858       startTimer();
4859       {
4860         verify_work_stacks_empty();
4861         verify_overflow_empty();
4862         sample_eden();
4863         stop_point =
4864           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4865       }
4866       if (stop_point != NULL) {
4867         // The careful iteration stopped early either because it found an
4868         // uninitialized object, or because we were in the midst of an
4869         // "abortable preclean", which should now be aborted. Redirty
4870         // the bits corresponding to the partially-scanned or unscanned
4871         // cards. We'll either restart at the next block boundary or
4872         // abort the preclean.
4873         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4874                "Should only be AbortablePreclean.");
4875         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4876         if (should_abort_preclean()) {
4877           break; // out of preclean loop
4878         } else {
4879           // Compute the next address at which preclean should pick up;
4880           // might need bitMapLock in order to read P-bits.
4881           lastAddr = next_card_start_after_block(stop_point);
4882         }
4883       }
4884     } else {
4885       assert(lastAddr == endAddr, "consistency check");
4886       assert(numDirtyCards == 0, "consistency check");
4887       break;
4888     }
4889   }
4890   verify_work_stacks_empty();
4891   verify_overflow_empty();
4892   return cumNumDirtyCards;
4893 }
4894 
4895 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4896 // below are largely identical; if you need to modify
4897 // one of these methods, please check the other method too.
4898 
4899 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4900   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4901   // strategy: it's similar to precleamModUnionTable above, in that
4902   // we accumulate contiguous ranges of dirty cards, mark these cards
4903   // precleaned, then scan the region covered by these cards.
4904   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4905   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4906 
4907   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4908 
4909   size_t numDirtyCards, cumNumDirtyCards;
4910   HeapWord *lastAddr, *nextAddr;
4911 
4912   for (cumNumDirtyCards = numDirtyCards = 0,
4913        nextAddr = lastAddr = startAddr;
4914        nextAddr < endAddr;
4915        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4916 
4917     ResourceMark rm;
4918     HandleMark   hm;
4919 
4920     MemRegion dirtyRegion;
4921     {
4922       // See comments in "Precleaning notes" above on why we
4923       // do this locking. XXX Could the locking overheads be
4924       // too high when dirty cards are sparse? [I don't think so.]
4925       stopTimer();
4926       CMSTokenSync x(true); // is cms thread
4927       startTimer();
4928       sample_eden();
4929       // Get and clear dirty region from card table
4930       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4931                                     MemRegion(nextAddr, endAddr),
4932                                     true,
4933                                     CardTableModRefBS::precleaned_card_val());
4934 
4935       assert(dirtyRegion.start() >= nextAddr,
4936              "returned region inconsistent?");
4937     }
4938     lastAddr = dirtyRegion.end();
4939     numDirtyCards =
4940       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4941 
4942     if (!dirtyRegion.is_empty()) {
4943       stopTimer();
4944       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4945       startTimer();
4946       sample_eden();
4947       verify_work_stacks_empty();
4948       verify_overflow_empty();
4949       HeapWord* stop_point =
4950         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4951       if (stop_point != NULL) {
4952         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4953                "Should only be AbortablePreclean.");
4954         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4955         if (should_abort_preclean()) {
4956           break; // out of preclean loop
4957         } else {
4958           // Compute the next address at which preclean should pick up.
4959           lastAddr = next_card_start_after_block(stop_point);
4960         }
4961       }
4962     } else {
4963       break;
4964     }
4965   }
4966   verify_work_stacks_empty();
4967   verify_overflow_empty();
4968   return cumNumDirtyCards;
4969 }
4970 
4971 class PrecleanKlassClosure : public KlassClosure {
4972   CMKlassClosure _cm_klass_closure;
4973  public:
4974   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4975   void do_klass(Klass* k) {
4976     if (k->has_accumulated_modified_oops()) {
4977       k->clear_accumulated_modified_oops();
4978 
4979       _cm_klass_closure.do_klass(k);
4980     }
4981   }
4982 };
4983 
4984 // The freelist lock is needed to prevent asserts, is it really needed?
4985 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4986 
4987   cl->set_freelistLock(freelistLock);
4988 
4989   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4990 
4991   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4992   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4993   PrecleanKlassClosure preclean_klass_closure(cl);
4994   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4995 
4996   verify_work_stacks_empty();
4997   verify_overflow_empty();
4998 }
4999 
5000 void CMSCollector::checkpointRootsFinal(bool asynch,
5001   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5002   assert(_collectorState == FinalMarking, "incorrect state transition?");
5003   check_correct_thread_executing();
5004   // world is stopped at this checkpoint
5005   assert(SafepointSynchronize::is_at_safepoint(),
5006          "world should be stopped");
5007   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5008 
5009   verify_work_stacks_empty();
5010   verify_overflow_empty();
5011 
5012   SpecializationStats::clear();
5013   if (PrintGCDetails) {
5014     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
5015                         _young_gen->used() / K,
5016                         _young_gen->capacity() / K);
5017   }
5018   if (asynch) {
5019     if (CMSScavengeBeforeRemark) {
5020       GenCollectedHeap* gch = GenCollectedHeap::heap();
5021       // Temporarily set flag to false, GCH->do_collection will
5022       // expect it to be false and set to true
5023       FlagSetting fl(gch->_is_gc_active, false);
5024       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
5025         PrintGCDetails && Verbose, true, _gc_timer_cm);)
5026       int level = _cmsGen->level() - 1;
5027       if (level >= 0) {
5028         gch->do_collection(true,        // full (i.e. force, see below)
5029                            false,       // !clear_all_soft_refs
5030                            0,           // size
5031                            false,       // is_tlab
5032                            level        // max_level
5033                           );
5034       }
5035     }
5036     FreelistLocker x(this);
5037     MutexLockerEx y(bitMapLock(),
5038                     Mutex::_no_safepoint_check_flag);
5039     assert(!init_mark_was_synchronous, "but that's impossible!");
5040     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
5041   } else {
5042     // already have all the locks
5043     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
5044                              init_mark_was_synchronous);
5045   }
5046   verify_work_stacks_empty();
5047   verify_overflow_empty();
5048   SpecializationStats::print();
5049 }
5050 
5051 void CMSCollector::checkpointRootsFinalWork(bool asynch,
5052   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5053 
5054   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
5055 
5056   assert(haveFreelistLocks(), "must have free list locks");
5057   assert_lock_strong(bitMapLock());
5058 
5059   if (UseAdaptiveSizePolicy) {
5060     size_policy()->checkpoint_roots_final_begin();
5061   }
5062 
5063   ResourceMark rm;
5064   HandleMark   hm;
5065 
5066   GenCollectedHeap* gch = GenCollectedHeap::heap();
5067 
5068   if (should_unload_classes()) {
5069     CodeCache::gc_prologue();
5070   }
5071   assert(haveFreelistLocks(), "must have free list locks");
5072   assert_lock_strong(bitMapLock());
5073 
5074   if (!init_mark_was_synchronous) {
5075     // We might assume that we need not fill TLAB's when
5076     // CMSScavengeBeforeRemark is set, because we may have just done
5077     // a scavenge which would have filled all TLAB's -- and besides
5078     // Eden would be empty. This however may not always be the case --
5079     // for instance although we asked for a scavenge, it may not have
5080     // happened because of a JNI critical section. We probably need
5081     // a policy for deciding whether we can in that case wait until
5082     // the critical section releases and then do the remark following
5083     // the scavenge, and skip it here. In the absence of that policy,
5084     // or of an indication of whether the scavenge did indeed occur,
5085     // we cannot rely on TLAB's having been filled and must do
5086     // so here just in case a scavenge did not happen.
5087     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5088     // Update the saved marks which may affect the root scans.
5089     gch->save_marks();
5090 
5091     if (CMSPrintEdenSurvivorChunks) {
5092       print_eden_and_survivor_chunk_arrays();
5093     }
5094 
5095     {
5096       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5097 
5098       // Note on the role of the mod union table:
5099       // Since the marker in "markFromRoots" marks concurrently with
5100       // mutators, it is possible for some reachable objects not to have been
5101       // scanned. For instance, an only reference to an object A was
5102       // placed in object B after the marker scanned B. Unless B is rescanned,
5103       // A would be collected. Such updates to references in marked objects
5104       // are detected via the mod union table which is the set of all cards
5105       // dirtied since the first checkpoint in this GC cycle and prior to
5106       // the most recent young generation GC, minus those cleaned up by the
5107       // concurrent precleaning.
5108       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5109         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
5110         do_remark_parallel();
5111       } else {
5112         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5113                     _gc_timer_cm);
5114         do_remark_non_parallel();
5115       }
5116     }
5117   } else {
5118     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5119     // The initial mark was stop-world, so there's no rescanning to
5120     // do; go straight on to the next step below.
5121   }
5122   verify_work_stacks_empty();
5123   verify_overflow_empty();
5124 
5125   {
5126     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
5127     refProcessingWork(asynch, clear_all_soft_refs);
5128   }
5129   verify_work_stacks_empty();
5130   verify_overflow_empty();
5131 
5132   if (should_unload_classes()) {
5133     CodeCache::gc_epilogue();
5134   }
5135   JvmtiExport::gc_epilogue();
5136 
5137   // If we encountered any (marking stack / work queue) overflow
5138   // events during the current CMS cycle, take appropriate
5139   // remedial measures, where possible, so as to try and avoid
5140   // recurrence of that condition.
5141   assert(_markStack.isEmpty(), "No grey objects");
5142   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5143                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5144   if (ser_ovflw > 0) {
5145     if (PrintCMSStatistics != 0) {
5146       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5147         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5148         ", kac_preclean="SIZE_FORMAT")",
5149         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5150         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5151     }
5152     _markStack.expand();
5153     _ser_pmc_remark_ovflw = 0;
5154     _ser_pmc_preclean_ovflw = 0;
5155     _ser_kac_preclean_ovflw = 0;
5156     _ser_kac_ovflw = 0;
5157   }
5158   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5159     if (PrintCMSStatistics != 0) {
5160       gclog_or_tty->print_cr("Work queue overflow (benign) "
5161         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5162         _par_pmc_remark_ovflw, _par_kac_ovflw);
5163     }
5164     _par_pmc_remark_ovflw = 0;
5165     _par_kac_ovflw = 0;
5166   }
5167   if (PrintCMSStatistics != 0) {
5168      if (_markStack._hit_limit > 0) {
5169        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5170                               _markStack._hit_limit);
5171      }
5172      if (_markStack._failed_double > 0) {
5173        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5174                               " current capacity "SIZE_FORMAT,
5175                               _markStack._failed_double,
5176                               _markStack.capacity());
5177      }
5178   }
5179   _markStack._hit_limit = 0;
5180   _markStack._failed_double = 0;
5181 
5182   if ((VerifyAfterGC || VerifyDuringGC) &&
5183       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5184     verify_after_remark();
5185   }
5186 
5187   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5188 
5189   // Change under the freelistLocks.
5190   _collectorState = Sweeping;
5191   // Call isAllClear() under bitMapLock
5192   assert(_modUnionTable.isAllClear(),
5193       "Should be clear by end of the final marking");
5194   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5195       "Should be clear by end of the final marking");
5196   if (UseAdaptiveSizePolicy) {
5197     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5198   }
5199 }
5200 
5201 void CMSParInitialMarkTask::work(uint worker_id) {
5202   elapsedTimer _timer;
5203   ResourceMark rm;
5204   HandleMark   hm;
5205 
5206   // ---------- scan from roots --------------
5207   _timer.start();
5208   GenCollectedHeap* gch = GenCollectedHeap::heap();
5209   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5210   CMKlassClosure klass_closure(&par_mri_cl);
5211 
5212   // ---------- young gen roots --------------
5213   {
5214     work_on_young_gen_roots(worker_id, &par_mri_cl);
5215     _timer.stop();
5216     if (PrintCMSStatistics != 0) {
5217       gclog_or_tty->print_cr(
5218         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5219         worker_id, _timer.seconds());
5220     }
5221   }
5222 
5223   // ---------- remaining roots --------------
5224   _timer.reset();
5225   _timer.start();
5226   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5227                                 false,     // yg was scanned above
5228                                 false,     // this is parallel code
5229                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5230                                 &par_mri_cl,
5231                                 NULL,
5232                                 &klass_closure);
5233   assert(_collector->should_unload_classes()
5234          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5235          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5236   _timer.stop();
5237   if (PrintCMSStatistics != 0) {
5238     gclog_or_tty->print_cr(
5239       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5240       worker_id, _timer.seconds());
5241   }
5242 }
5243 
5244 // Parallel remark task
5245 class CMSParRemarkTask: public CMSParMarkTask {
5246   CompactibleFreeListSpace* _cms_space;
5247 
5248   // The per-thread work queues, available here for stealing.
5249   OopTaskQueueSet*       _task_queues;
5250   ParallelTaskTerminator _term;
5251 
5252  public:
5253   // A value of 0 passed to n_workers will cause the number of
5254   // workers to be taken from the active workers in the work gang.
5255   CMSParRemarkTask(CMSCollector* collector,
5256                    CompactibleFreeListSpace* cms_space,
5257                    int n_workers, FlexibleWorkGang* workers,
5258                    OopTaskQueueSet* task_queues):
5259     CMSParMarkTask("Rescan roots and grey objects in parallel",
5260                    collector, n_workers),
5261     _cms_space(cms_space),
5262     _task_queues(task_queues),
5263     _term(n_workers, task_queues) { }
5264 
5265   OopTaskQueueSet* task_queues() { return _task_queues; }
5266 
5267   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5268 
5269   ParallelTaskTerminator* terminator() { return &_term; }
5270   int n_workers() { return _n_workers; }
5271 
5272   void work(uint worker_id);
5273 
5274  private:
5275   // ... of  dirty cards in old space
5276   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5277                                   Par_MarkRefsIntoAndScanClosure* cl);
5278 
5279   // ... work stealing for the above
5280   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5281 };
5282 
5283 class RemarkKlassClosure : public KlassClosure {
5284   CMKlassClosure _cm_klass_closure;
5285  public:
5286   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5287   void do_klass(Klass* k) {
5288     // Check if we have modified any oops in the Klass during the concurrent marking.
5289     if (k->has_accumulated_modified_oops()) {
5290       k->clear_accumulated_modified_oops();
5291 
5292       // We could have transfered the current modified marks to the accumulated marks,
5293       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5294     } else if (k->has_modified_oops()) {
5295       // Don't clear anything, this info is needed by the next young collection.
5296     } else {
5297       // No modified oops in the Klass.
5298       return;
5299     }
5300 
5301     // The klass has modified fields, need to scan the klass.
5302     _cm_klass_closure.do_klass(k);
5303   }
5304 };
5305 
5306 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5307   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5308   EdenSpace* eden_space = dng->eden();
5309   ContiguousSpace* from_space = dng->from();
5310   ContiguousSpace* to_space   = dng->to();
5311 
5312   HeapWord** eca = _collector->_eden_chunk_array;
5313   size_t     ect = _collector->_eden_chunk_index;
5314   HeapWord** sca = _collector->_survivor_chunk_array;
5315   size_t     sct = _collector->_survivor_chunk_index;
5316 
5317   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5318   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5319 
5320   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5321   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5322   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5323 }
5324 
5325 // work_queue(i) is passed to the closure
5326 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5327 // also is passed to do_dirty_card_rescan_tasks() and to
5328 // do_work_steal() to select the i-th task_queue.
5329 
5330 void CMSParRemarkTask::work(uint worker_id) {
5331   elapsedTimer _timer;
5332   ResourceMark rm;
5333   HandleMark   hm;
5334 
5335   // ---------- rescan from roots --------------
5336   _timer.start();
5337   GenCollectedHeap* gch = GenCollectedHeap::heap();
5338   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5339     _collector->_span, _collector->ref_processor(),
5340     &(_collector->_markBitMap),
5341     work_queue(worker_id));
5342 
5343   // Rescan young gen roots first since these are likely
5344   // coarsely partitioned and may, on that account, constitute
5345   // the critical path; thus, it's best to start off that
5346   // work first.
5347   // ---------- young gen roots --------------
5348   {
5349     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5350     _timer.stop();
5351     if (PrintCMSStatistics != 0) {
5352       gclog_or_tty->print_cr(
5353         "Finished young gen rescan work in %dth thread: %3.3f sec",
5354         worker_id, _timer.seconds());
5355     }
5356   }
5357 
5358   // ---------- remaining roots --------------
5359   _timer.reset();
5360   _timer.start();
5361   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5362                                 false,     // yg was scanned above
5363                                 false,     // this is parallel code
5364                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5365                                 &par_mrias_cl,
5366                                 NULL,
5367                                 NULL);     // The dirty klasses will be handled below
5368   assert(_collector->should_unload_classes()
5369          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5370          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5371   _timer.stop();
5372   if (PrintCMSStatistics != 0) {
5373     gclog_or_tty->print_cr(
5374       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5375       worker_id, _timer.seconds());
5376   }
5377 
5378   // ---------- unhandled CLD scanning ----------
5379   if (worker_id == 0) { // Single threaded at the moment.
5380     _timer.reset();
5381     _timer.start();
5382 
5383     // Scan all new class loader data objects and new dependencies that were
5384     // introduced during concurrent marking.
5385     ResourceMark rm;
5386     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5387     for (int i = 0; i < array->length(); i++) {
5388       par_mrias_cl.do_class_loader_data(array->at(i));
5389     }
5390 
5391     // We don't need to keep track of new CLDs anymore.
5392     ClassLoaderDataGraph::remember_new_clds(false);
5393 
5394     _timer.stop();
5395     if (PrintCMSStatistics != 0) {
5396       gclog_or_tty->print_cr(
5397           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5398           worker_id, _timer.seconds());
5399     }
5400   }
5401 
5402   // ---------- dirty klass scanning ----------
5403   if (worker_id == 0) { // Single threaded at the moment.
5404     _timer.reset();
5405     _timer.start();
5406 
5407     // Scan all classes that was dirtied during the concurrent marking phase.
5408     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5409     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5410 
5411     _timer.stop();
5412     if (PrintCMSStatistics != 0) {
5413       gclog_or_tty->print_cr(
5414           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5415           worker_id, _timer.seconds());
5416     }
5417   }
5418 
5419   // We might have added oops to ClassLoaderData::_handles during the
5420   // concurrent marking phase. These oops point to newly allocated objects
5421   // that are guaranteed to be kept alive. Either by the direct allocation
5422   // code, or when the young collector processes the strong roots. Hence,
5423   // we don't have to revisit the _handles block during the remark phase.
5424 
5425   // ---------- rescan dirty cards ------------
5426   _timer.reset();
5427   _timer.start();
5428 
5429   // Do the rescan tasks for each of the two spaces
5430   // (cms_space) in turn.
5431   // "worker_id" is passed to select the task_queue for "worker_id"
5432   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5433   _timer.stop();
5434   if (PrintCMSStatistics != 0) {
5435     gclog_or_tty->print_cr(
5436       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5437       worker_id, _timer.seconds());
5438   }
5439 
5440   // ---------- steal work from other threads ...
5441   // ---------- ... and drain overflow list.
5442   _timer.reset();
5443   _timer.start();
5444   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5445   _timer.stop();
5446   if (PrintCMSStatistics != 0) {
5447     gclog_or_tty->print_cr(
5448       "Finished work stealing in %dth thread: %3.3f sec",
5449       worker_id, _timer.seconds());
5450   }
5451 }
5452 
5453 // Note that parameter "i" is not used.
5454 void
5455 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5456   OopsInGenClosure* cl, ContiguousSpace* space,
5457   HeapWord** chunk_array, size_t chunk_top) {
5458   // Until all tasks completed:
5459   // . claim an unclaimed task
5460   // . compute region boundaries corresponding to task claimed
5461   //   using chunk_array
5462   // . par_oop_iterate(cl) over that region
5463 
5464   ResourceMark rm;
5465   HandleMark   hm;
5466 
5467   SequentialSubTasksDone* pst = space->par_seq_tasks();
5468 
5469   uint nth_task = 0;
5470   uint n_tasks  = pst->n_tasks();
5471 
5472   if (n_tasks > 0) {
5473     assert(pst->valid(), "Uninitialized use?");
5474     HeapWord *start, *end;
5475     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5476       // We claimed task # nth_task; compute its boundaries.
5477       if (chunk_top == 0) {  // no samples were taken
5478         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5479         start = space->bottom();
5480         end   = space->top();
5481       } else if (nth_task == 0) {
5482         start = space->bottom();
5483         end   = chunk_array[nth_task];
5484       } else if (nth_task < (uint)chunk_top) {
5485         assert(nth_task >= 1, "Control point invariant");
5486         start = chunk_array[nth_task - 1];
5487         end   = chunk_array[nth_task];
5488       } else {
5489         assert(nth_task == (uint)chunk_top, "Control point invariant");
5490         start = chunk_array[chunk_top - 1];
5491         end   = space->top();
5492       }
5493       MemRegion mr(start, end);
5494       // Verify that mr is in space
5495       assert(mr.is_empty() || space->used_region().contains(mr),
5496              "Should be in space");
5497       // Verify that "start" is an object boundary
5498       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5499              "Should be an oop");
5500       space->par_oop_iterate(mr, cl);
5501     }
5502     pst->all_tasks_completed();
5503   }
5504 }
5505 
5506 void
5507 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5508   CompactibleFreeListSpace* sp, int i,
5509   Par_MarkRefsIntoAndScanClosure* cl) {
5510   // Until all tasks completed:
5511   // . claim an unclaimed task
5512   // . compute region boundaries corresponding to task claimed
5513   // . transfer dirty bits ct->mut for that region
5514   // . apply rescanclosure to dirty mut bits for that region
5515 
5516   ResourceMark rm;
5517   HandleMark   hm;
5518 
5519   OopTaskQueue* work_q = work_queue(i);
5520   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5521   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5522   // CAUTION: This closure has state that persists across calls to
5523   // the work method dirty_range_iterate_clear() in that it has
5524   // embedded in it a (subtype of) UpwardsObjectClosure. The
5525   // use of that state in the embedded UpwardsObjectClosure instance
5526   // assumes that the cards are always iterated (even if in parallel
5527   // by several threads) in monotonically increasing order per each
5528   // thread. This is true of the implementation below which picks
5529   // card ranges (chunks) in monotonically increasing order globally
5530   // and, a-fortiori, in monotonically increasing order per thread
5531   // (the latter order being a subsequence of the former).
5532   // If the work code below is ever reorganized into a more chaotic
5533   // work-partitioning form than the current "sequential tasks"
5534   // paradigm, the use of that persistent state will have to be
5535   // revisited and modified appropriately. See also related
5536   // bug 4756801 work on which should examine this code to make
5537   // sure that the changes there do not run counter to the
5538   // assumptions made here and necessary for correctness and
5539   // efficiency. Note also that this code might yield inefficient
5540   // behavior in the case of very large objects that span one or
5541   // more work chunks. Such objects would potentially be scanned
5542   // several times redundantly. Work on 4756801 should try and
5543   // address that performance anomaly if at all possible. XXX
5544   MemRegion  full_span  = _collector->_span;
5545   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5546   MarkFromDirtyCardsClosure
5547     greyRescanClosure(_collector, full_span, // entire span of interest
5548                       sp, bm, work_q, cl);
5549 
5550   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5551   assert(pst->valid(), "Uninitialized use?");
5552   uint nth_task = 0;
5553   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5554   MemRegion span = sp->used_region();
5555   HeapWord* start_addr = span.start();
5556   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5557                                            alignment);
5558   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5559   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5560          start_addr, "Check alignment");
5561   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5562          chunk_size, "Check alignment");
5563 
5564   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5565     // Having claimed the nth_task, compute corresponding mem-region,
5566     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
5567     // The alignment restriction ensures that we do not need any
5568     // synchronization with other gang-workers while setting or
5569     // clearing bits in thus chunk of the MUT.
5570     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5571                                     start_addr + (nth_task+1)*chunk_size);
5572     // The last chunk's end might be way beyond end of the
5573     // used region. In that case pull back appropriately.
5574     if (this_span.end() > end_addr) {
5575       this_span.set_end(end_addr);
5576       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5577     }
5578     // Iterate over the dirty cards covering this chunk, marking them
5579     // precleaned, and setting the corresponding bits in the mod union
5580     // table. Since we have been careful to partition at Card and MUT-word
5581     // boundaries no synchronization is needed between parallel threads.
5582     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5583                                                  &modUnionClosure);
5584 
5585     // Having transferred these marks into the modUnionTable,
5586     // rescan the marked objects on the dirty cards in the modUnionTable.
5587     // Even if this is at a synchronous collection, the initial marking
5588     // may have been done during an asynchronous collection so there
5589     // may be dirty bits in the mod-union table.
5590     _collector->_modUnionTable.dirty_range_iterate_clear(
5591                   this_span, &greyRescanClosure);
5592     _collector->_modUnionTable.verifyNoOneBitsInRange(
5593                                  this_span.start(),
5594                                  this_span.end());
5595   }
5596   pst->all_tasks_completed();  // declare that i am done
5597 }
5598 
5599 // . see if we can share work_queues with ParNew? XXX
5600 void
5601 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5602                                 int* seed) {
5603   OopTaskQueue* work_q = work_queue(i);
5604   NOT_PRODUCT(int num_steals = 0;)
5605   oop obj_to_scan;
5606   CMSBitMap* bm = &(_collector->_markBitMap);
5607 
5608   while (true) {
5609     // Completely finish any left over work from (an) earlier round(s)
5610     cl->trim_queue(0);
5611     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5612                                          (size_t)ParGCDesiredObjsFromOverflowList);
5613     // Now check if there's any work in the overflow list
5614     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5615     // only affects the number of attempts made to get work from the
5616     // overflow list and does not affect the number of workers.  Just
5617     // pass ParallelGCThreads so this behavior is unchanged.
5618     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5619                                                 work_q,
5620                                                 ParallelGCThreads)) {
5621       // found something in global overflow list;
5622       // not yet ready to go stealing work from others.
5623       // We'd like to assert(work_q->size() != 0, ...)
5624       // because we just took work from the overflow list,
5625       // but of course we can't since all of that could have
5626       // been already stolen from us.
5627       // "He giveth and He taketh away."
5628       continue;
5629     }
5630     // Verify that we have no work before we resort to stealing
5631     assert(work_q->size() == 0, "Have work, shouldn't steal");
5632     // Try to steal from other queues that have work
5633     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5634       NOT_PRODUCT(num_steals++;)
5635       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5636       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5637       // Do scanning work
5638       obj_to_scan->oop_iterate(cl);
5639       // Loop around, finish this work, and try to steal some more
5640     } else if (terminator()->offer_termination()) {
5641         break;  // nirvana from the infinite cycle
5642     }
5643   }
5644   NOT_PRODUCT(
5645     if (PrintCMSStatistics != 0) {
5646       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5647     }
5648   )
5649   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5650          "Else our work is not yet done");
5651 }
5652 
5653 // Record object boundaries in _eden_chunk_array by sampling the eden
5654 // top in the slow-path eden object allocation code path and record
5655 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5656 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5657 // sampling in sample_eden() that activates during the part of the
5658 // preclean phase.
5659 void CMSCollector::sample_eden_chunk() {
5660   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5661     if (_eden_chunk_lock->try_lock()) {
5662       // Record a sample. This is the critical section. The contents
5663       // of the _eden_chunk_array have to be non-decreasing in the
5664       // address order.
5665       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5666       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5667              "Unexpected state of Eden");
5668       if (_eden_chunk_index == 0 ||
5669           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5670            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5671                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5672         _eden_chunk_index++;  // commit sample
5673       }
5674       _eden_chunk_lock->unlock();
5675     }
5676   }
5677 }
5678 
5679 // Return a thread-local PLAB recording array, as appropriate.
5680 void* CMSCollector::get_data_recorder(int thr_num) {
5681   if (_survivor_plab_array != NULL &&
5682       (CMSPLABRecordAlways ||
5683        (_collectorState > Marking && _collectorState < FinalMarking))) {
5684     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5685     ChunkArray* ca = &_survivor_plab_array[thr_num];
5686     ca->reset();   // clear it so that fresh data is recorded
5687     return (void*) ca;
5688   } else {
5689     return NULL;
5690   }
5691 }
5692 
5693 // Reset all the thread-local PLAB recording arrays
5694 void CMSCollector::reset_survivor_plab_arrays() {
5695   for (uint i = 0; i < ParallelGCThreads; i++) {
5696     _survivor_plab_array[i].reset();
5697   }
5698 }
5699 
5700 // Merge the per-thread plab arrays into the global survivor chunk
5701 // array which will provide the partitioning of the survivor space
5702 // for CMS initial scan and rescan.
5703 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5704                                               int no_of_gc_threads) {
5705   assert(_survivor_plab_array  != NULL, "Error");
5706   assert(_survivor_chunk_array != NULL, "Error");
5707   assert(_collectorState == FinalMarking ||
5708          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5709   for (int j = 0; j < no_of_gc_threads; j++) {
5710     _cursor[j] = 0;
5711   }
5712   HeapWord* top = surv->top();
5713   size_t i;
5714   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5715     HeapWord* min_val = top;          // Higher than any PLAB address
5716     uint      min_tid = 0;            // position of min_val this round
5717     for (int j = 0; j < no_of_gc_threads; j++) {
5718       ChunkArray* cur_sca = &_survivor_plab_array[j];
5719       if (_cursor[j] == cur_sca->end()) {
5720         continue;
5721       }
5722       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5723       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5724       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5725       if (cur_val < min_val) {
5726         min_tid = j;
5727         min_val = cur_val;
5728       } else {
5729         assert(cur_val < top, "All recorded addresses should be less");
5730       }
5731     }
5732     // At this point min_val and min_tid are respectively
5733     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5734     // and the thread (j) that witnesses that address.
5735     // We record this address in the _survivor_chunk_array[i]
5736     // and increment _cursor[min_tid] prior to the next round i.
5737     if (min_val == top) {
5738       break;
5739     }
5740     _survivor_chunk_array[i] = min_val;
5741     _cursor[min_tid]++;
5742   }
5743   // We are all done; record the size of the _survivor_chunk_array
5744   _survivor_chunk_index = i; // exclusive: [0, i)
5745   if (PrintCMSStatistics > 0) {
5746     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5747   }
5748   // Verify that we used up all the recorded entries
5749   #ifdef ASSERT
5750     size_t total = 0;
5751     for (int j = 0; j < no_of_gc_threads; j++) {
5752       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5753       total += _cursor[j];
5754     }
5755     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5756     // Check that the merged array is in sorted order
5757     if (total > 0) {
5758       for (size_t i = 0; i < total - 1; i++) {
5759         if (PrintCMSStatistics > 0) {
5760           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5761                               i, _survivor_chunk_array[i]);
5762         }
5763         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5764                "Not sorted");
5765       }
5766     }
5767   #endif // ASSERT
5768 }
5769 
5770 // Set up the space's par_seq_tasks structure for work claiming
5771 // for parallel initial scan and rescan of young gen.
5772 // See ParRescanTask where this is currently used.
5773 void
5774 CMSCollector::
5775 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5776   assert(n_threads > 0, "Unexpected n_threads argument");
5777   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5778 
5779   // Eden space
5780   if (!dng->eden()->is_empty()) {
5781     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5782     assert(!pst->valid(), "Clobbering existing data?");
5783     // Each valid entry in [0, _eden_chunk_index) represents a task.
5784     size_t n_tasks = _eden_chunk_index + 1;
5785     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5786     // Sets the condition for completion of the subtask (how many threads
5787     // need to finish in order to be done).
5788     pst->set_n_threads(n_threads);
5789     pst->set_n_tasks((int)n_tasks);
5790   }
5791 
5792   // Merge the survivor plab arrays into _survivor_chunk_array
5793   if (_survivor_plab_array != NULL) {
5794     merge_survivor_plab_arrays(dng->from(), n_threads);
5795   } else {
5796     assert(_survivor_chunk_index == 0, "Error");
5797   }
5798 
5799   // To space
5800   {
5801     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5802     assert(!pst->valid(), "Clobbering existing data?");
5803     // Sets the condition for completion of the subtask (how many threads
5804     // need to finish in order to be done).
5805     pst->set_n_threads(n_threads);
5806     pst->set_n_tasks(1);
5807     assert(pst->valid(), "Error");
5808   }
5809 
5810   // From space
5811   {
5812     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5813     assert(!pst->valid(), "Clobbering existing data?");
5814     size_t n_tasks = _survivor_chunk_index + 1;
5815     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5816     // Sets the condition for completion of the subtask (how many threads
5817     // need to finish in order to be done).
5818     pst->set_n_threads(n_threads);
5819     pst->set_n_tasks((int)n_tasks);
5820     assert(pst->valid(), "Error");
5821   }
5822 }
5823 
5824 // Parallel version of remark
5825 void CMSCollector::do_remark_parallel() {
5826   GenCollectedHeap* gch = GenCollectedHeap::heap();
5827   FlexibleWorkGang* workers = gch->workers();
5828   assert(workers != NULL, "Need parallel worker threads.");
5829   // Choose to use the number of GC workers most recently set
5830   // into "active_workers".  If active_workers is not set, set it
5831   // to ParallelGCThreads.
5832   int n_workers = workers->active_workers();
5833   if (n_workers == 0) {
5834     assert(n_workers > 0, "Should have been set during scavenge");
5835     n_workers = ParallelGCThreads;
5836     workers->set_active_workers(n_workers);
5837   }
5838   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5839 
5840   CMSParRemarkTask tsk(this,
5841     cms_space,
5842     n_workers, workers, task_queues());
5843 
5844   // Set up for parallel process_strong_roots work.
5845   gch->set_par_threads(n_workers);
5846   // We won't be iterating over the cards in the card table updating
5847   // the younger_gen cards, so we shouldn't call the following else
5848   // the verification code as well as subsequent younger_refs_iterate
5849   // code would get confused. XXX
5850   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5851 
5852   // The young gen rescan work will not be done as part of
5853   // process_strong_roots (which currently doesn't knw how to
5854   // parallelize such a scan), but rather will be broken up into
5855   // a set of parallel tasks (via the sampling that the [abortable]
5856   // preclean phase did of EdenSpace, plus the [two] tasks of
5857   // scanning the [two] survivor spaces. Further fine-grain
5858   // parallelization of the scanning of the survivor spaces
5859   // themselves, and of precleaning of the younger gen itself
5860   // is deferred to the future.
5861   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5862 
5863   // The dirty card rescan work is broken up into a "sequence"
5864   // of parallel tasks (per constituent space) that are dynamically
5865   // claimed by the parallel threads.
5866   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5867 
5868   // It turns out that even when we're using 1 thread, doing the work in a
5869   // separate thread causes wide variance in run times.  We can't help this
5870   // in the multi-threaded case, but we special-case n=1 here to get
5871   // repeatable measurements of the 1-thread overhead of the parallel code.
5872   if (n_workers > 1) {
5873     // Make refs discovery MT-safe, if it isn't already: it may not
5874     // necessarily be so, since it's possible that we are doing
5875     // ST marking.
5876     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5877     GenCollectedHeap::StrongRootsScope srs(gch);
5878     workers->run_task(&tsk);
5879   } else {
5880     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5881     GenCollectedHeap::StrongRootsScope srs(gch);
5882     tsk.work(0);
5883   }
5884 
5885   gch->set_par_threads(0);  // 0 ==> non-parallel.
5886   // restore, single-threaded for now, any preserved marks
5887   // as a result of work_q overflow
5888   restore_preserved_marks_if_any();
5889 }
5890 
5891 // Non-parallel version of remark
5892 void CMSCollector::do_remark_non_parallel() {
5893   ResourceMark rm;
5894   HandleMark   hm;
5895   GenCollectedHeap* gch = GenCollectedHeap::heap();
5896   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5897 
5898   MarkRefsIntoAndScanClosure
5899     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5900              &_markStack, this,
5901              false /* should_yield */, false /* not precleaning */);
5902   MarkFromDirtyCardsClosure
5903     markFromDirtyCardsClosure(this, _span,
5904                               NULL,  // space is set further below
5905                               &_markBitMap, &_markStack, &mrias_cl);
5906   {
5907     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5908     // Iterate over the dirty cards, setting the corresponding bits in the
5909     // mod union table.
5910     {
5911       ModUnionClosure modUnionClosure(&_modUnionTable);
5912       _ct->ct_bs()->dirty_card_iterate(
5913                       _cmsGen->used_region(),
5914                       &modUnionClosure);
5915     }
5916     // Having transferred these marks into the modUnionTable, we just need
5917     // to rescan the marked objects on the dirty cards in the modUnionTable.
5918     // The initial marking may have been done during an asynchronous
5919     // collection so there may be dirty bits in the mod-union table.
5920     const int alignment =
5921       CardTableModRefBS::card_size * BitsPerWord;
5922     {
5923       // ... First handle dirty cards in CMS gen
5924       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5925       MemRegion ur = _cmsGen->used_region();
5926       HeapWord* lb = ur.start();
5927       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5928       MemRegion cms_span(lb, ub);
5929       _modUnionTable.dirty_range_iterate_clear(cms_span,
5930                                                &markFromDirtyCardsClosure);
5931       verify_work_stacks_empty();
5932       if (PrintCMSStatistics != 0) {
5933         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5934           markFromDirtyCardsClosure.num_dirty_cards());
5935       }
5936     }
5937   }
5938   if (VerifyDuringGC &&
5939       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5940     HandleMark hm;  // Discard invalid handles created during verification
5941     Universe::verify();
5942   }
5943   {
5944     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5945 
5946     verify_work_stacks_empty();
5947 
5948     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5949     GenCollectedHeap::StrongRootsScope srs(gch);
5950     gch->gen_process_strong_roots(_cmsGen->level(),
5951                                   true,  // younger gens as roots
5952                                   false, // use the local StrongRootsScope
5953                                   SharedHeap::ScanningOption(roots_scanning_options()),
5954                                   &mrias_cl,
5955                                   NULL,
5956                                   NULL);  // The dirty klasses will be handled below
5957 
5958     assert(should_unload_classes()
5959            || (roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5960            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5961   }
5962 
5963   {
5964     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5965 
5966     verify_work_stacks_empty();
5967 
5968     // Scan all class loader data objects that might have been introduced
5969     // during concurrent marking.
5970     ResourceMark rm;
5971     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5972     for (int i = 0; i < array->length(); i++) {
5973       mrias_cl.do_class_loader_data(array->at(i));
5974     }
5975 
5976     // We don't need to keep track of new CLDs anymore.
5977     ClassLoaderDataGraph::remember_new_clds(false);
5978 
5979     verify_work_stacks_empty();
5980   }
5981 
5982   {
5983     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5984 
5985     verify_work_stacks_empty();
5986 
5987     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5988     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5989 
5990     verify_work_stacks_empty();
5991   }
5992 
5993   // We might have added oops to ClassLoaderData::_handles during the
5994   // concurrent marking phase. These oops point to newly allocated objects
5995   // that are guaranteed to be kept alive. Either by the direct allocation
5996   // code, or when the young collector processes the strong roots. Hence,
5997   // we don't have to revisit the _handles block during the remark phase.
5998 
5999   verify_work_stacks_empty();
6000   // Restore evacuated mark words, if any, used for overflow list links
6001   if (!CMSOverflowEarlyRestoration) {
6002     restore_preserved_marks_if_any();
6003   }
6004   verify_overflow_empty();
6005 }
6006 
6007 ////////////////////////////////////////////////////////
6008 // Parallel Reference Processing Task Proxy Class
6009 ////////////////////////////////////////////////////////
6010 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
6011   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
6012   CMSCollector*          _collector;
6013   CMSBitMap*             _mark_bit_map;
6014   const MemRegion        _span;
6015   ProcessTask&           _task;
6016 
6017 public:
6018   CMSRefProcTaskProxy(ProcessTask&     task,
6019                       CMSCollector*    collector,
6020                       const MemRegion& span,
6021                       CMSBitMap*       mark_bit_map,
6022                       AbstractWorkGang* workers,
6023                       OopTaskQueueSet* task_queues):
6024     // XXX Should superclass AGTWOQ also know about AWG since it knows
6025     // about the task_queues used by the AWG? Then it could initialize
6026     // the terminator() object. See 6984287. The set_for_termination()
6027     // below is a temporary band-aid for the regression in 6984287.
6028     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
6029       task_queues),
6030     _task(task),
6031     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
6032   {
6033     assert(_collector->_span.equals(_span) && !_span.is_empty(),
6034            "Inconsistency in _span");
6035     set_for_termination(workers->active_workers());
6036   }
6037 
6038   OopTaskQueueSet* task_queues() { return queues(); }
6039 
6040   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
6041 
6042   void do_work_steal(int i,
6043                      CMSParDrainMarkingStackClosure* drain,
6044                      CMSParKeepAliveClosure* keep_alive,
6045                      int* seed);
6046 
6047   virtual void work(uint worker_id);
6048 };
6049 
6050 void CMSRefProcTaskProxy::work(uint worker_id) {
6051   assert(_collector->_span.equals(_span), "Inconsistency in _span");
6052   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
6053                                         _mark_bit_map,
6054                                         work_queue(worker_id));
6055   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
6056                                                  _mark_bit_map,
6057                                                  work_queue(worker_id));
6058   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
6059   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
6060   if (_task.marks_oops_alive()) {
6061     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6062                   _collector->hash_seed(worker_id));
6063   }
6064   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6065   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6066 }
6067 
6068 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6069   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6070   EnqueueTask& _task;
6071 
6072 public:
6073   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6074     : AbstractGangTask("Enqueue reference objects in parallel"),
6075       _task(task)
6076   { }
6077 
6078   virtual void work(uint worker_id)
6079   {
6080     _task.work(worker_id);
6081   }
6082 };
6083 
6084 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6085   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6086    _span(span),
6087    _bit_map(bit_map),
6088    _work_queue(work_queue),
6089    _mark_and_push(collector, span, bit_map, work_queue),
6090    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6091                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6092 { }
6093 
6094 // . see if we can share work_queues with ParNew? XXX
6095 void CMSRefProcTaskProxy::do_work_steal(int i,
6096   CMSParDrainMarkingStackClosure* drain,
6097   CMSParKeepAliveClosure* keep_alive,
6098   int* seed) {
6099   OopTaskQueue* work_q = work_queue(i);
6100   NOT_PRODUCT(int num_steals = 0;)
6101   oop obj_to_scan;
6102 
6103   while (true) {
6104     // Completely finish any left over work from (an) earlier round(s)
6105     drain->trim_queue(0);
6106     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6107                                          (size_t)ParGCDesiredObjsFromOverflowList);
6108     // Now check if there's any work in the overflow list
6109     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6110     // only affects the number of attempts made to get work from the
6111     // overflow list and does not affect the number of workers.  Just
6112     // pass ParallelGCThreads so this behavior is unchanged.
6113     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6114                                                 work_q,
6115                                                 ParallelGCThreads)) {
6116       // Found something in global overflow list;
6117       // not yet ready to go stealing work from others.
6118       // We'd like to assert(work_q->size() != 0, ...)
6119       // because we just took work from the overflow list,
6120       // but of course we can't, since all of that might have
6121       // been already stolen from us.
6122       continue;
6123     }
6124     // Verify that we have no work before we resort to stealing
6125     assert(work_q->size() == 0, "Have work, shouldn't steal");
6126     // Try to steal from other queues that have work
6127     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6128       NOT_PRODUCT(num_steals++;)
6129       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6130       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6131       // Do scanning work
6132       obj_to_scan->oop_iterate(keep_alive);
6133       // Loop around, finish this work, and try to steal some more
6134     } else if (terminator()->offer_termination()) {
6135       break;  // nirvana from the infinite cycle
6136     }
6137   }
6138   NOT_PRODUCT(
6139     if (PrintCMSStatistics != 0) {
6140       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6141     }
6142   )
6143 }
6144 
6145 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6146 {
6147   GenCollectedHeap* gch = GenCollectedHeap::heap();
6148   FlexibleWorkGang* workers = gch->workers();
6149   assert(workers != NULL, "Need parallel worker threads.");
6150   CMSRefProcTaskProxy rp_task(task, &_collector,
6151                               _collector.ref_processor()->span(),
6152                               _collector.markBitMap(),
6153                               workers, _collector.task_queues());
6154   workers->run_task(&rp_task);
6155 }
6156 
6157 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6158 {
6159 
6160   GenCollectedHeap* gch = GenCollectedHeap::heap();
6161   FlexibleWorkGang* workers = gch->workers();
6162   assert(workers != NULL, "Need parallel worker threads.");
6163   CMSRefEnqueueTaskProxy enq_task(task);
6164   workers->run_task(&enq_task);
6165 }
6166 
6167 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6168 
6169   ResourceMark rm;
6170   HandleMark   hm;
6171 
6172   ReferenceProcessor* rp = ref_processor();
6173   assert(rp->span().equals(_span), "Spans should be equal");
6174   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6175   // Process weak references.
6176   rp->setup_policy(clear_all_soft_refs);
6177   verify_work_stacks_empty();
6178 
6179   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6180                                           &_markStack, false /* !preclean */);
6181   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6182                                 _span, &_markBitMap, &_markStack,
6183                                 &cmsKeepAliveClosure, false /* !preclean */);
6184   {
6185     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
6186 
6187     ReferenceProcessorStats stats;
6188     if (rp->processing_is_mt()) {
6189       // Set the degree of MT here.  If the discovery is done MT, there
6190       // may have been a different number of threads doing the discovery
6191       // and a different number of discovered lists may have Ref objects.
6192       // That is OK as long as the Reference lists are balanced (see
6193       // balance_all_queues() and balance_queues()).
6194       GenCollectedHeap* gch = GenCollectedHeap::heap();
6195       int active_workers = ParallelGCThreads;
6196       FlexibleWorkGang* workers = gch->workers();
6197       if (workers != NULL) {
6198         active_workers = workers->active_workers();
6199         // The expectation is that active_workers will have already
6200         // been set to a reasonable value.  If it has not been set,
6201         // investigate.
6202         assert(active_workers > 0, "Should have been set during scavenge");
6203       }
6204       rp->set_active_mt_degree(active_workers);
6205       CMSRefProcTaskExecutor task_executor(*this);
6206       stats = rp->process_discovered_references(&_is_alive_closure,
6207                                         &cmsKeepAliveClosure,
6208                                         &cmsDrainMarkingStackClosure,
6209                                         &task_executor,
6210                                         _gc_timer_cm);
6211     } else {
6212       stats = rp->process_discovered_references(&_is_alive_closure,
6213                                         &cmsKeepAliveClosure,
6214                                         &cmsDrainMarkingStackClosure,
6215                                         NULL,
6216                                         _gc_timer_cm);
6217     }
6218     _gc_tracer_cm->report_gc_reference_stats(stats);
6219 
6220   }
6221 
6222   // This is the point where the entire marking should have completed.
6223   verify_work_stacks_empty();
6224 
6225   if (should_unload_classes()) {
6226     {
6227       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
6228 
6229       // Unload classes and purge the SystemDictionary.
6230       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6231 
6232       // Unload nmethods.
6233       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6234 
6235       // Prune dead klasses from subklass/sibling/implementor lists.
6236       Klass::clean_weak_klass_links(&_is_alive_closure);
6237     }
6238 
6239     {
6240       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
6241       // Clean up unreferenced symbols in symbol table.
6242       SymbolTable::unlink();
6243     }
6244   }
6245 
6246   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
6247   // Need to check if we really scanned the StringTable.
6248   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
6249     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
6250     // Delete entries for dead interned strings.
6251     StringTable::unlink(&_is_alive_closure);
6252   }
6253 
6254   // Restore any preserved marks as a result of mark stack or
6255   // work queue overflow
6256   restore_preserved_marks_if_any();  // done single-threaded for now
6257 
6258   rp->set_enqueuing_is_done(true);
6259   if (rp->processing_is_mt()) {
6260     rp->balance_all_queues();
6261     CMSRefProcTaskExecutor task_executor(*this);
6262     rp->enqueue_discovered_references(&task_executor);
6263   } else {
6264     rp->enqueue_discovered_references(NULL);
6265   }
6266   rp->verify_no_references_recorded();
6267   assert(!rp->discovery_enabled(), "should have been disabled");
6268 }
6269 
6270 #ifndef PRODUCT
6271 void CMSCollector::check_correct_thread_executing() {
6272   Thread* t = Thread::current();
6273   // Only the VM thread or the CMS thread should be here.
6274   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6275          "Unexpected thread type");
6276   // If this is the vm thread, the foreground process
6277   // should not be waiting.  Note that _foregroundGCIsActive is
6278   // true while the foreground collector is waiting.
6279   if (_foregroundGCShouldWait) {
6280     // We cannot be the VM thread
6281     assert(t->is_ConcurrentGC_thread(),
6282            "Should be CMS thread");
6283   } else {
6284     // We can be the CMS thread only if we are in a stop-world
6285     // phase of CMS collection.
6286     if (t->is_ConcurrentGC_thread()) {
6287       assert(_collectorState == InitialMarking ||
6288              _collectorState == FinalMarking,
6289              "Should be a stop-world phase");
6290       // The CMS thread should be holding the CMS_token.
6291       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6292              "Potential interference with concurrently "
6293              "executing VM thread");
6294     }
6295   }
6296 }
6297 #endif
6298 
6299 void CMSCollector::sweep(bool asynch) {
6300   assert(_collectorState == Sweeping, "just checking");
6301   check_correct_thread_executing();
6302   verify_work_stacks_empty();
6303   verify_overflow_empty();
6304   increment_sweep_count();
6305   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6306 
6307   _inter_sweep_timer.stop();
6308   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6309   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6310 
6311   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6312   _intra_sweep_timer.reset();
6313   _intra_sweep_timer.start();
6314   if (asynch) {
6315     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6316     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6317     // First sweep the old gen
6318     {
6319       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6320                                bitMapLock());
6321       sweepWork(_cmsGen, asynch);
6322     }
6323 
6324     // Update Universe::_heap_*_at_gc figures.
6325     // We need all the free list locks to make the abstract state
6326     // transition from Sweeping to Resetting. See detailed note
6327     // further below.
6328     {
6329       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6330       // Update heap occupancy information which is used as
6331       // input to soft ref clearing policy at the next gc.
6332       Universe::update_heap_info_at_gc();
6333       _collectorState = Resizing;
6334     }
6335   } else {
6336     // already have needed locks
6337     sweepWork(_cmsGen,  asynch);
6338     // Update heap occupancy information which is used as
6339     // input to soft ref clearing policy at the next gc.
6340     Universe::update_heap_info_at_gc();
6341     _collectorState = Resizing;
6342   }
6343   verify_work_stacks_empty();
6344   verify_overflow_empty();
6345 
6346   if (should_unload_classes()) {
6347     ClassLoaderDataGraph::purge();
6348   }
6349 
6350   _intra_sweep_timer.stop();
6351   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6352 
6353   _inter_sweep_timer.reset();
6354   _inter_sweep_timer.start();
6355 
6356   // We need to use a monotonically non-decreasing time in ms
6357   // or we will see time-warp warnings and os::javaTimeMillis()
6358   // does not guarantee monotonicity.
6359   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6360   update_time_of_last_gc(now);
6361 
6362   // NOTE on abstract state transitions:
6363   // Mutators allocate-live and/or mark the mod-union table dirty
6364   // based on the state of the collection.  The former is done in
6365   // the interval [Marking, Sweeping] and the latter in the interval
6366   // [Marking, Sweeping).  Thus the transitions into the Marking state
6367   // and out of the Sweeping state must be synchronously visible
6368   // globally to the mutators.
6369   // The transition into the Marking state happens with the world
6370   // stopped so the mutators will globally see it.  Sweeping is
6371   // done asynchronously by the background collector so the transition
6372   // from the Sweeping state to the Resizing state must be done
6373   // under the freelistLock (as is the check for whether to
6374   // allocate-live and whether to dirty the mod-union table).
6375   assert(_collectorState == Resizing, "Change of collector state to"
6376     " Resizing must be done under the freelistLocks (plural)");
6377 
6378   // Now that sweeping has been completed, we clear
6379   // the incremental_collection_failed flag,
6380   // thus inviting a younger gen collection to promote into
6381   // this generation. If such a promotion may still fail,
6382   // the flag will be set again when a young collection is
6383   // attempted.
6384   GenCollectedHeap* gch = GenCollectedHeap::heap();
6385   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6386   gch->update_full_collections_completed(_collection_count_start);
6387 }
6388 
6389 // FIX ME!!! Looks like this belongs in CFLSpace, with
6390 // CMSGen merely delegating to it.
6391 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6392   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6393   HeapWord*  minAddr        = _cmsSpace->bottom();
6394   HeapWord*  largestAddr    =
6395     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6396   if (largestAddr == NULL) {
6397     // The dictionary appears to be empty.  In this case
6398     // try to coalesce at the end of the heap.
6399     largestAddr = _cmsSpace->end();
6400   }
6401   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6402   size_t nearLargestOffset =
6403     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6404   if (PrintFLSStatistics != 0) {
6405     gclog_or_tty->print_cr(
6406       "CMS: Large Block: " PTR_FORMAT ";"
6407       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6408       largestAddr,
6409       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6410   }
6411   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6412 }
6413 
6414 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6415   return addr >= _cmsSpace->nearLargestChunk();
6416 }
6417 
6418 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6419   return _cmsSpace->find_chunk_at_end();
6420 }
6421 
6422 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6423                                                     bool full) {
6424   // The next lower level has been collected.  Gather any statistics
6425   // that are of interest at this point.
6426   if (!full && (current_level + 1) == level()) {
6427     // Gather statistics on the young generation collection.
6428     collector()->stats().record_gc0_end(used());
6429   }
6430 }
6431 
6432 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6433   GenCollectedHeap* gch = GenCollectedHeap::heap();
6434   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6435     "Wrong type of heap");
6436   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6437     gch->gen_policy()->size_policy();
6438   assert(sp->is_gc_cms_adaptive_size_policy(),
6439     "Wrong type of size policy");
6440   return sp;
6441 }
6442 
6443 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6444   if (PrintGCDetails && Verbose) {
6445     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6446   }
6447   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6448   _debug_collection_type =
6449     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6450   if (PrintGCDetails && Verbose) {
6451     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6452   }
6453 }
6454 
6455 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6456   bool asynch) {
6457   // We iterate over the space(s) underlying this generation,
6458   // checking the mark bit map to see if the bits corresponding
6459   // to specific blocks are marked or not. Blocks that are
6460   // marked are live and are not swept up. All remaining blocks
6461   // are swept up, with coalescing on-the-fly as we sweep up
6462   // contiguous free and/or garbage blocks:
6463   // We need to ensure that the sweeper synchronizes with allocators
6464   // and stop-the-world collectors. In particular, the following
6465   // locks are used:
6466   // . CMS token: if this is held, a stop the world collection cannot occur
6467   // . freelistLock: if this is held no allocation can occur from this
6468   //                 generation by another thread
6469   // . bitMapLock: if this is held, no other thread can access or update
6470   //
6471 
6472   // Note that we need to hold the freelistLock if we use
6473   // block iterate below; else the iterator might go awry if
6474   // a mutator (or promotion) causes block contents to change
6475   // (for instance if the allocator divvies up a block).
6476   // If we hold the free list lock, for all practical purposes
6477   // young generation GC's can't occur (they'll usually need to
6478   // promote), so we might as well prevent all young generation
6479   // GC's while we do a sweeping step. For the same reason, we might
6480   // as well take the bit map lock for the entire duration
6481 
6482   // check that we hold the requisite locks
6483   assert(have_cms_token(), "Should hold cms token");
6484   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6485          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6486         "Should possess CMS token to sweep");
6487   assert_lock_strong(gen->freelistLock());
6488   assert_lock_strong(bitMapLock());
6489 
6490   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6491   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6492   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6493                                       _inter_sweep_estimate.padded_average(),
6494                                       _intra_sweep_estimate.padded_average());
6495   gen->setNearLargestChunk();
6496 
6497   {
6498     SweepClosure sweepClosure(this, gen, &_markBitMap,
6499                             CMSYield && asynch);
6500     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6501     // We need to free-up/coalesce garbage/blocks from a
6502     // co-terminal free run. This is done in the SweepClosure
6503     // destructor; so, do not remove this scope, else the
6504     // end-of-sweep-census below will be off by a little bit.
6505   }
6506   gen->cmsSpace()->sweep_completed();
6507   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6508   if (should_unload_classes()) {                // unloaded classes this cycle,
6509     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6510   } else {                                      // did not unload classes,
6511     _concurrent_cycles_since_last_unload++;     // ... increment count
6512   }
6513 }
6514 
6515 // Reset CMS data structures (for now just the marking bit map)
6516 // preparatory for the next cycle.
6517 void CMSCollector::reset(bool asynch) {
6518   GenCollectedHeap* gch = GenCollectedHeap::heap();
6519   CMSAdaptiveSizePolicy* sp = size_policy();
6520   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6521   if (asynch) {
6522     CMSTokenSyncWithLocks ts(true, bitMapLock());
6523 
6524     // If the state is not "Resetting", the foreground  thread
6525     // has done a collection and the resetting.
6526     if (_collectorState != Resetting) {
6527       assert(_collectorState == Idling, "The state should only change"
6528         " because the foreground collector has finished the collection");
6529       return;
6530     }
6531 
6532     // Clear the mark bitmap (no grey objects to start with)
6533     // for the next cycle.
6534     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6535     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6536 
6537     HeapWord* curAddr = _markBitMap.startWord();
6538     while (curAddr < _markBitMap.endWord()) {
6539       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6540       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6541       _markBitMap.clear_large_range(chunk);
6542       if (ConcurrentMarkSweepThread::should_yield() &&
6543           !foregroundGCIsActive() &&
6544           CMSYield) {
6545         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6546                "CMS thread should hold CMS token");
6547         assert_lock_strong(bitMapLock());
6548         bitMapLock()->unlock();
6549         ConcurrentMarkSweepThread::desynchronize(true);
6550         ConcurrentMarkSweepThread::acknowledge_yield_request();
6551         stopTimer();
6552         if (PrintCMSStatistics != 0) {
6553           incrementYields();
6554         }
6555         icms_wait();
6556 
6557         // See the comment in coordinator_yield()
6558         for (unsigned i = 0; i < CMSYieldSleepCount &&
6559                          ConcurrentMarkSweepThread::should_yield() &&
6560                          !CMSCollector::foregroundGCIsActive(); ++i) {
6561           os::sleep(Thread::current(), 1, false);
6562           ConcurrentMarkSweepThread::acknowledge_yield_request();
6563         }
6564 
6565         ConcurrentMarkSweepThread::synchronize(true);
6566         bitMapLock()->lock_without_safepoint_check();
6567         startTimer();
6568       }
6569       curAddr = chunk.end();
6570     }
6571     // A successful mostly concurrent collection has been done.
6572     // Because only the full (i.e., concurrent mode failure) collections
6573     // are being measured for gc overhead limits, clean the "near" flag
6574     // and count.
6575     sp->reset_gc_overhead_limit_count();
6576     _collectorState = Idling;
6577   } else {
6578     // already have the lock
6579     assert(_collectorState == Resetting, "just checking");
6580     assert_lock_strong(bitMapLock());
6581     _markBitMap.clear_all();
6582     _collectorState = Idling;
6583   }
6584 
6585   // Stop incremental mode after a cycle completes, so that any future cycles
6586   // are triggered by allocation.
6587   stop_icms();
6588 
6589   NOT_PRODUCT(
6590     if (RotateCMSCollectionTypes) {
6591       _cmsGen->rotate_debug_collection_type();
6592     }
6593   )
6594 
6595   register_gc_end();
6596 }
6597 
6598 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6599   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6600   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6601   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6602   TraceCollectorStats tcs(counters());
6603 
6604   switch (op) {
6605     case CMS_op_checkpointRootsInitial: {
6606       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6607       checkpointRootsInitial(true);       // asynch
6608       if (PrintGC) {
6609         _cmsGen->printOccupancy("initial-mark");
6610       }
6611       break;
6612     }
6613     case CMS_op_checkpointRootsFinal: {
6614       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6615       checkpointRootsFinal(true,    // asynch
6616                            false,   // !clear_all_soft_refs
6617                            false);  // !init_mark_was_synchronous
6618       if (PrintGC) {
6619         _cmsGen->printOccupancy("remark");
6620       }
6621       break;
6622     }
6623     default:
6624       fatal("No such CMS_op");
6625   }
6626 }
6627 
6628 #ifndef PRODUCT
6629 size_t const CMSCollector::skip_header_HeapWords() {
6630   return FreeChunk::header_size();
6631 }
6632 
6633 // Try and collect here conditions that should hold when
6634 // CMS thread is exiting. The idea is that the foreground GC
6635 // thread should not be blocked if it wants to terminate
6636 // the CMS thread and yet continue to run the VM for a while
6637 // after that.
6638 void CMSCollector::verify_ok_to_terminate() const {
6639   assert(Thread::current()->is_ConcurrentGC_thread(),
6640          "should be called by CMS thread");
6641   assert(!_foregroundGCShouldWait, "should be false");
6642   // We could check here that all the various low-level locks
6643   // are not held by the CMS thread, but that is overkill; see
6644   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6645   // is checked.
6646 }
6647 #endif
6648 
6649 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6650    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6651           "missing Printezis mark?");
6652   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6653   size_t size = pointer_delta(nextOneAddr + 1, addr);
6654   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6655          "alignment problem");
6656   assert(size >= 3, "Necessary for Printezis marks to work");
6657   return size;
6658 }
6659 
6660 // A variant of the above (block_size_using_printezis_bits()) except
6661 // that we return 0 if the P-bits are not yet set.
6662 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6663   if (_markBitMap.isMarked(addr + 1)) {
6664     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6665     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6666     size_t size = pointer_delta(nextOneAddr + 1, addr);
6667     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6668            "alignment problem");
6669     assert(size >= 3, "Necessary for Printezis marks to work");
6670     return size;
6671   }
6672   return 0;
6673 }
6674 
6675 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6676   size_t sz = 0;
6677   oop p = (oop)addr;
6678   if (p->klass_or_null() != NULL) {
6679     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6680   } else {
6681     sz = block_size_using_printezis_bits(addr);
6682   }
6683   assert(sz > 0, "size must be nonzero");
6684   HeapWord* next_block = addr + sz;
6685   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6686                                              CardTableModRefBS::card_size);
6687   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6688          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6689          "must be different cards");
6690   return next_card;
6691 }
6692 
6693 
6694 // CMS Bit Map Wrapper /////////////////////////////////////////
6695 
6696 // Construct a CMS bit map infrastructure, but don't create the
6697 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6698 // further below.
6699 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6700   _bm(),
6701   _shifter(shifter),
6702   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6703 {
6704   _bmStartWord = 0;
6705   _bmWordSize  = 0;
6706 }
6707 
6708 bool CMSBitMap::allocate(MemRegion mr) {
6709   _bmStartWord = mr.start();
6710   _bmWordSize  = mr.word_size();
6711   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6712                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6713   if (!brs.is_reserved()) {
6714     warning("CMS bit map allocation failure");
6715     return false;
6716   }
6717   // For now we'll just commit all of the bit map up front.
6718   // Later on we'll try to be more parsimonious with swap.
6719   if (!_virtual_space.initialize(brs, brs.size())) {
6720     warning("CMS bit map backing store failure");
6721     return false;
6722   }
6723   assert(_virtual_space.committed_size() == brs.size(),
6724          "didn't reserve backing store for all of CMS bit map?");
6725   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6726   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6727          _bmWordSize, "inconsistency in bit map sizing");
6728   _bm.set_size(_bmWordSize >> _shifter);
6729 
6730   // bm.clear(); // can we rely on getting zero'd memory? verify below
6731   assert(isAllClear(),
6732          "Expected zero'd memory from ReservedSpace constructor");
6733   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6734          "consistency check");
6735   return true;
6736 }
6737 
6738 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6739   HeapWord *next_addr, *end_addr, *last_addr;
6740   assert_locked();
6741   assert(covers(mr), "out-of-range error");
6742   // XXX assert that start and end are appropriately aligned
6743   for (next_addr = mr.start(), end_addr = mr.end();
6744        next_addr < end_addr; next_addr = last_addr) {
6745     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6746     last_addr = dirty_region.end();
6747     if (!dirty_region.is_empty()) {
6748       cl->do_MemRegion(dirty_region);
6749     } else {
6750       assert(last_addr == end_addr, "program logic");
6751       return;
6752     }
6753   }
6754 }
6755 
6756 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6757   _bm.print_on_error(st, prefix);
6758 }
6759 
6760 #ifndef PRODUCT
6761 void CMSBitMap::assert_locked() const {
6762   CMSLockVerifier::assert_locked(lock());
6763 }
6764 
6765 bool CMSBitMap::covers(MemRegion mr) const {
6766   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6767   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6768          "size inconsistency");
6769   return (mr.start() >= _bmStartWord) &&
6770          (mr.end()   <= endWord());
6771 }
6772 
6773 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6774     return (start >= _bmStartWord && (start + size) <= endWord());
6775 }
6776 
6777 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6778   // verify that there are no 1 bits in the interval [left, right)
6779   FalseBitMapClosure falseBitMapClosure;
6780   iterate(&falseBitMapClosure, left, right);
6781 }
6782 
6783 void CMSBitMap::region_invariant(MemRegion mr)
6784 {
6785   assert_locked();
6786   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6787   assert(!mr.is_empty(), "unexpected empty region");
6788   assert(covers(mr), "mr should be covered by bit map");
6789   // convert address range into offset range
6790   size_t start_ofs = heapWordToOffset(mr.start());
6791   // Make sure that end() is appropriately aligned
6792   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6793                         (1 << (_shifter+LogHeapWordSize))),
6794          "Misaligned mr.end()");
6795   size_t end_ofs   = heapWordToOffset(mr.end());
6796   assert(end_ofs > start_ofs, "Should mark at least one bit");
6797 }
6798 
6799 #endif
6800 
6801 bool CMSMarkStack::allocate(size_t size) {
6802   // allocate a stack of the requisite depth
6803   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6804                    size * sizeof(oop)));
6805   if (!rs.is_reserved()) {
6806     warning("CMSMarkStack allocation failure");
6807     return false;
6808   }
6809   if (!_virtual_space.initialize(rs, rs.size())) {
6810     warning("CMSMarkStack backing store failure");
6811     return false;
6812   }
6813   assert(_virtual_space.committed_size() == rs.size(),
6814          "didn't reserve backing store for all of CMS stack?");
6815   _base = (oop*)(_virtual_space.low());
6816   _index = 0;
6817   _capacity = size;
6818   NOT_PRODUCT(_max_depth = 0);
6819   return true;
6820 }
6821 
6822 // XXX FIX ME !!! In the MT case we come in here holding a
6823 // leaf lock. For printing we need to take a further lock
6824 // which has lower rank. We need to recalibrate the two
6825 // lock-ranks involved in order to be able to print the
6826 // messages below. (Or defer the printing to the caller.
6827 // For now we take the expedient path of just disabling the
6828 // messages for the problematic case.)
6829 void CMSMarkStack::expand() {
6830   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6831   if (_capacity == MarkStackSizeMax) {
6832     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6833       // We print a warning message only once per CMS cycle.
6834       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6835     }
6836     return;
6837   }
6838   // Double capacity if possible
6839   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6840   // Do not give up existing stack until we have managed to
6841   // get the double capacity that we desired.
6842   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6843                    new_capacity * sizeof(oop)));
6844   if (rs.is_reserved()) {
6845     // Release the backing store associated with old stack
6846     _virtual_space.release();
6847     // Reinitialize virtual space for new stack
6848     if (!_virtual_space.initialize(rs, rs.size())) {
6849       fatal("Not enough swap for expanded marking stack");
6850     }
6851     _base = (oop*)(_virtual_space.low());
6852     _index = 0;
6853     _capacity = new_capacity;
6854   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6855     // Failed to double capacity, continue;
6856     // we print a detail message only once per CMS cycle.
6857     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6858             SIZE_FORMAT"K",
6859             _capacity / K, new_capacity / K);
6860   }
6861 }
6862 
6863 
6864 // Closures
6865 // XXX: there seems to be a lot of code  duplication here;
6866 // should refactor and consolidate common code.
6867 
6868 // This closure is used to mark refs into the CMS generation in
6869 // the CMS bit map. Called at the first checkpoint. This closure
6870 // assumes that we do not need to re-mark dirty cards; if the CMS
6871 // generation on which this is used is not an oldest
6872 // generation then this will lose younger_gen cards!
6873 
6874 MarkRefsIntoClosure::MarkRefsIntoClosure(
6875   MemRegion span, CMSBitMap* bitMap):
6876     _span(span),
6877     _bitMap(bitMap)
6878 {
6879     assert(_ref_processor == NULL, "deliberately left NULL");
6880     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6881 }
6882 
6883 void MarkRefsIntoClosure::do_oop(oop obj) {
6884   // if p points into _span, then mark corresponding bit in _markBitMap
6885   assert(obj->is_oop(), "expected an oop");
6886   HeapWord* addr = (HeapWord*)obj;
6887   if (_span.contains(addr)) {
6888     // this should be made more efficient
6889     _bitMap->mark(addr);
6890   }
6891 }
6892 
6893 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6894 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6895 
6896 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6897   MemRegion span, CMSBitMap* bitMap):
6898     _span(span),
6899     _bitMap(bitMap)
6900 {
6901     assert(_ref_processor == NULL, "deliberately left NULL");
6902     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6903 }
6904 
6905 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6906   // if p points into _span, then mark corresponding bit in _markBitMap
6907   assert(obj->is_oop(), "expected an oop");
6908   HeapWord* addr = (HeapWord*)obj;
6909   if (_span.contains(addr)) {
6910     // this should be made more efficient
6911     _bitMap->par_mark(addr);
6912   }
6913 }
6914 
6915 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6916 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6917 
6918 // A variant of the above, used for CMS marking verification.
6919 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6920   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6921     _span(span),
6922     _verification_bm(verification_bm),
6923     _cms_bm(cms_bm)
6924 {
6925     assert(_ref_processor == NULL, "deliberately left NULL");
6926     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6927 }
6928 
6929 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6930   // if p points into _span, then mark corresponding bit in _markBitMap
6931   assert(obj->is_oop(), "expected an oop");
6932   HeapWord* addr = (HeapWord*)obj;
6933   if (_span.contains(addr)) {
6934     _verification_bm->mark(addr);
6935     if (!_cms_bm->isMarked(addr)) {
6936       oop(addr)->print();
6937       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6938       fatal("... aborting");
6939     }
6940   }
6941 }
6942 
6943 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6944 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6945 
6946 //////////////////////////////////////////////////
6947 // MarkRefsIntoAndScanClosure
6948 //////////////////////////////////////////////////
6949 
6950 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6951                                                        ReferenceProcessor* rp,
6952                                                        CMSBitMap* bit_map,
6953                                                        CMSBitMap* mod_union_table,
6954                                                        CMSMarkStack*  mark_stack,
6955                                                        CMSCollector* collector,
6956                                                        bool should_yield,
6957                                                        bool concurrent_precleaning):
6958   _collector(collector),
6959   _span(span),
6960   _bit_map(bit_map),
6961   _mark_stack(mark_stack),
6962   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6963                       mark_stack, concurrent_precleaning),
6964   _yield(should_yield),
6965   _concurrent_precleaning(concurrent_precleaning),
6966   _freelistLock(NULL)
6967 {
6968   _ref_processor = rp;
6969   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6970 }
6971 
6972 // This closure is used to mark refs into the CMS generation at the
6973 // second (final) checkpoint, and to scan and transitively follow
6974 // the unmarked oops. It is also used during the concurrent precleaning
6975 // phase while scanning objects on dirty cards in the CMS generation.
6976 // The marks are made in the marking bit map and the marking stack is
6977 // used for keeping the (newly) grey objects during the scan.
6978 // The parallel version (Par_...) appears further below.
6979 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6980   if (obj != NULL) {
6981     assert(obj->is_oop(), "expected an oop");
6982     HeapWord* addr = (HeapWord*)obj;
6983     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6984     assert(_collector->overflow_list_is_empty(),
6985            "overflow list should be empty");
6986     if (_span.contains(addr) &&
6987         !_bit_map->isMarked(addr)) {
6988       // mark bit map (object is now grey)
6989       _bit_map->mark(addr);
6990       // push on marking stack (stack should be empty), and drain the
6991       // stack by applying this closure to the oops in the oops popped
6992       // from the stack (i.e. blacken the grey objects)
6993       bool res = _mark_stack->push(obj);
6994       assert(res, "Should have space to push on empty stack");
6995       do {
6996         oop new_oop = _mark_stack->pop();
6997         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6998         assert(_bit_map->isMarked((HeapWord*)new_oop),
6999                "only grey objects on this stack");
7000         // iterate over the oops in this oop, marking and pushing
7001         // the ones in CMS heap (i.e. in _span).
7002         new_oop->oop_iterate(&_pushAndMarkClosure);
7003         // check if it's time to yield
7004         do_yield_check();
7005       } while (!_mark_stack->isEmpty() ||
7006                (!_concurrent_precleaning && take_from_overflow_list()));
7007         // if marking stack is empty, and we are not doing this
7008         // during precleaning, then check the overflow list
7009     }
7010     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7011     assert(_collector->overflow_list_is_empty(),
7012            "overflow list was drained above");
7013     // We could restore evacuated mark words, if any, used for
7014     // overflow list links here because the overflow list is
7015     // provably empty here. That would reduce the maximum
7016     // size requirements for preserved_{oop,mark}_stack.
7017     // But we'll just postpone it until we are all done
7018     // so we can just stream through.
7019     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
7020       _collector->restore_preserved_marks_if_any();
7021       assert(_collector->no_preserved_marks(), "No preserved marks");
7022     }
7023     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
7024            "All preserved marks should have been restored above");
7025   }
7026 }
7027 
7028 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7029 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7030 
7031 void MarkRefsIntoAndScanClosure::do_yield_work() {
7032   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7033          "CMS thread should hold CMS token");
7034   assert_lock_strong(_freelistLock);
7035   assert_lock_strong(_bit_map->lock());
7036   // relinquish the free_list_lock and bitMaplock()
7037   _bit_map->lock()->unlock();
7038   _freelistLock->unlock();
7039   ConcurrentMarkSweepThread::desynchronize(true);
7040   ConcurrentMarkSweepThread::acknowledge_yield_request();
7041   _collector->stopTimer();
7042   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7043   if (PrintCMSStatistics != 0) {
7044     _collector->incrementYields();
7045   }
7046   _collector->icms_wait();
7047 
7048   // See the comment in coordinator_yield()
7049   for (unsigned i = 0;
7050        i < CMSYieldSleepCount &&
7051        ConcurrentMarkSweepThread::should_yield() &&
7052        !CMSCollector::foregroundGCIsActive();
7053        ++i) {
7054     os::sleep(Thread::current(), 1, false);
7055     ConcurrentMarkSweepThread::acknowledge_yield_request();
7056   }
7057 
7058   ConcurrentMarkSweepThread::synchronize(true);
7059   _freelistLock->lock_without_safepoint_check();
7060   _bit_map->lock()->lock_without_safepoint_check();
7061   _collector->startTimer();
7062 }
7063 
7064 ///////////////////////////////////////////////////////////
7065 // Par_MarkRefsIntoAndScanClosure: a parallel version of
7066 //                                 MarkRefsIntoAndScanClosure
7067 ///////////////////////////////////////////////////////////
7068 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
7069   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
7070   CMSBitMap* bit_map, OopTaskQueue* work_queue):
7071   _span(span),
7072   _bit_map(bit_map),
7073   _work_queue(work_queue),
7074   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7075                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7076   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7077 {
7078   _ref_processor = rp;
7079   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7080 }
7081 
7082 // This closure is used to mark refs into the CMS generation at the
7083 // second (final) checkpoint, and to scan and transitively follow
7084 // the unmarked oops. The marks are made in the marking bit map and
7085 // the work_queue is used for keeping the (newly) grey objects during
7086 // the scan phase whence they are also available for stealing by parallel
7087 // threads. Since the marking bit map is shared, updates are
7088 // synchronized (via CAS).
7089 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7090   if (obj != NULL) {
7091     // Ignore mark word because this could be an already marked oop
7092     // that may be chained at the end of the overflow list.
7093     assert(obj->is_oop(true), "expected an oop");
7094     HeapWord* addr = (HeapWord*)obj;
7095     if (_span.contains(addr) &&
7096         !_bit_map->isMarked(addr)) {
7097       // mark bit map (object will become grey):
7098       // It is possible for several threads to be
7099       // trying to "claim" this object concurrently;
7100       // the unique thread that succeeds in marking the
7101       // object first will do the subsequent push on
7102       // to the work queue (or overflow list).
7103       if (_bit_map->par_mark(addr)) {
7104         // push on work_queue (which may not be empty), and trim the
7105         // queue to an appropriate length by applying this closure to
7106         // the oops in the oops popped from the stack (i.e. blacken the
7107         // grey objects)
7108         bool res = _work_queue->push(obj);
7109         assert(res, "Low water mark should be less than capacity?");
7110         trim_queue(_low_water_mark);
7111       } // Else, another thread claimed the object
7112     }
7113   }
7114 }
7115 
7116 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7117 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7118 
7119 // This closure is used to rescan the marked objects on the dirty cards
7120 // in the mod union table and the card table proper.
7121 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7122   oop p, MemRegion mr) {
7123 
7124   size_t size = 0;
7125   HeapWord* addr = (HeapWord*)p;
7126   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7127   assert(_span.contains(addr), "we are scanning the CMS generation");
7128   // check if it's time to yield
7129   if (do_yield_check()) {
7130     // We yielded for some foreground stop-world work,
7131     // and we have been asked to abort this ongoing preclean cycle.
7132     return 0;
7133   }
7134   if (_bitMap->isMarked(addr)) {
7135     // it's marked; is it potentially uninitialized?
7136     if (p->klass_or_null() != NULL) {
7137         // an initialized object; ignore mark word in verification below
7138         // since we are running concurrent with mutators
7139         assert(p->is_oop(true), "should be an oop");
7140         if (p->is_objArray()) {
7141           // objArrays are precisely marked; restrict scanning
7142           // to dirty cards only.
7143           size = CompactibleFreeListSpace::adjustObjectSize(
7144                    p->oop_iterate(_scanningClosure, mr));
7145         } else {
7146           // A non-array may have been imprecisely marked; we need
7147           // to scan object in its entirety.
7148           size = CompactibleFreeListSpace::adjustObjectSize(
7149                    p->oop_iterate(_scanningClosure));
7150         }
7151         #ifdef ASSERT
7152           size_t direct_size =
7153             CompactibleFreeListSpace::adjustObjectSize(p->size());
7154           assert(size == direct_size, "Inconsistency in size");
7155           assert(size >= 3, "Necessary for Printezis marks to work");
7156           if (!_bitMap->isMarked(addr+1)) {
7157             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7158           } else {
7159             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7160             assert(_bitMap->isMarked(addr+size-1),
7161                    "inconsistent Printezis mark");
7162           }
7163         #endif // ASSERT
7164     } else {
7165       // An uninitialized object.
7166       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7167       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7168       size = pointer_delta(nextOneAddr + 1, addr);
7169       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7170              "alignment problem");
7171       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7172       // will dirty the card when the klass pointer is installed in the
7173       // object (signaling the completion of initialization).
7174     }
7175   } else {
7176     // Either a not yet marked object or an uninitialized object
7177     if (p->klass_or_null() == NULL) {
7178       // An uninitialized object, skip to the next card, since
7179       // we may not be able to read its P-bits yet.
7180       assert(size == 0, "Initial value");
7181     } else {
7182       // An object not (yet) reached by marking: we merely need to
7183       // compute its size so as to go look at the next block.
7184       assert(p->is_oop(true), "should be an oop");
7185       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7186     }
7187   }
7188   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7189   return size;
7190 }
7191 
7192 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7193   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7194          "CMS thread should hold CMS token");
7195   assert_lock_strong(_freelistLock);
7196   assert_lock_strong(_bitMap->lock());
7197   // relinquish the free_list_lock and bitMaplock()
7198   _bitMap->lock()->unlock();
7199   _freelistLock->unlock();
7200   ConcurrentMarkSweepThread::desynchronize(true);
7201   ConcurrentMarkSweepThread::acknowledge_yield_request();
7202   _collector->stopTimer();
7203   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7204   if (PrintCMSStatistics != 0) {
7205     _collector->incrementYields();
7206   }
7207   _collector->icms_wait();
7208 
7209   // See the comment in coordinator_yield()
7210   for (unsigned i = 0; i < CMSYieldSleepCount &&
7211                    ConcurrentMarkSweepThread::should_yield() &&
7212                    !CMSCollector::foregroundGCIsActive(); ++i) {
7213     os::sleep(Thread::current(), 1, false);
7214     ConcurrentMarkSweepThread::acknowledge_yield_request();
7215   }
7216 
7217   ConcurrentMarkSweepThread::synchronize(true);
7218   _freelistLock->lock_without_safepoint_check();
7219   _bitMap->lock()->lock_without_safepoint_check();
7220   _collector->startTimer();
7221 }
7222 
7223 
7224 //////////////////////////////////////////////////////////////////
7225 // SurvivorSpacePrecleanClosure
7226 //////////////////////////////////////////////////////////////////
7227 // This (single-threaded) closure is used to preclean the oops in
7228 // the survivor spaces.
7229 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7230 
7231   HeapWord* addr = (HeapWord*)p;
7232   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7233   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7234   assert(p->klass_or_null() != NULL, "object should be initialized");
7235   // an initialized object; ignore mark word in verification below
7236   // since we are running concurrent with mutators
7237   assert(p->is_oop(true), "should be an oop");
7238   // Note that we do not yield while we iterate over
7239   // the interior oops of p, pushing the relevant ones
7240   // on our marking stack.
7241   size_t size = p->oop_iterate(_scanning_closure);
7242   do_yield_check();
7243   // Observe that below, we do not abandon the preclean
7244   // phase as soon as we should; rather we empty the
7245   // marking stack before returning. This is to satisfy
7246   // some existing assertions. In general, it may be a
7247   // good idea to abort immediately and complete the marking
7248   // from the grey objects at a later time.
7249   while (!_mark_stack->isEmpty()) {
7250     oop new_oop = _mark_stack->pop();
7251     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7252     assert(_bit_map->isMarked((HeapWord*)new_oop),
7253            "only grey objects on this stack");
7254     // iterate over the oops in this oop, marking and pushing
7255     // the ones in CMS heap (i.e. in _span).
7256     new_oop->oop_iterate(_scanning_closure);
7257     // check if it's time to yield
7258     do_yield_check();
7259   }
7260   unsigned int after_count =
7261     GenCollectedHeap::heap()->total_collections();
7262   bool abort = (_before_count != after_count) ||
7263                _collector->should_abort_preclean();
7264   return abort ? 0 : size;
7265 }
7266 
7267 void SurvivorSpacePrecleanClosure::do_yield_work() {
7268   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7269          "CMS thread should hold CMS token");
7270   assert_lock_strong(_bit_map->lock());
7271   // Relinquish the bit map lock
7272   _bit_map->lock()->unlock();
7273   ConcurrentMarkSweepThread::desynchronize(true);
7274   ConcurrentMarkSweepThread::acknowledge_yield_request();
7275   _collector->stopTimer();
7276   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7277   if (PrintCMSStatistics != 0) {
7278     _collector->incrementYields();
7279   }
7280   _collector->icms_wait();
7281 
7282   // See the comment in coordinator_yield()
7283   for (unsigned i = 0; i < CMSYieldSleepCount &&
7284                        ConcurrentMarkSweepThread::should_yield() &&
7285                        !CMSCollector::foregroundGCIsActive(); ++i) {
7286     os::sleep(Thread::current(), 1, false);
7287     ConcurrentMarkSweepThread::acknowledge_yield_request();
7288   }
7289 
7290   ConcurrentMarkSweepThread::synchronize(true);
7291   _bit_map->lock()->lock_without_safepoint_check();
7292   _collector->startTimer();
7293 }
7294 
7295 // This closure is used to rescan the marked objects on the dirty cards
7296 // in the mod union table and the card table proper. In the parallel
7297 // case, although the bitMap is shared, we do a single read so the
7298 // isMarked() query is "safe".
7299 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7300   // Ignore mark word because we are running concurrent with mutators
7301   assert(p->is_oop_or_null(true), "expected an oop or null");
7302   HeapWord* addr = (HeapWord*)p;
7303   assert(_span.contains(addr), "we are scanning the CMS generation");
7304   bool is_obj_array = false;
7305   #ifdef ASSERT
7306     if (!_parallel) {
7307       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7308       assert(_collector->overflow_list_is_empty(),
7309              "overflow list should be empty");
7310 
7311     }
7312   #endif // ASSERT
7313   if (_bit_map->isMarked(addr)) {
7314     // Obj arrays are precisely marked, non-arrays are not;
7315     // so we scan objArrays precisely and non-arrays in their
7316     // entirety.
7317     if (p->is_objArray()) {
7318       is_obj_array = true;
7319       if (_parallel) {
7320         p->oop_iterate(_par_scan_closure, mr);
7321       } else {
7322         p->oop_iterate(_scan_closure, mr);
7323       }
7324     } else {
7325       if (_parallel) {
7326         p->oop_iterate(_par_scan_closure);
7327       } else {
7328         p->oop_iterate(_scan_closure);
7329       }
7330     }
7331   }
7332   #ifdef ASSERT
7333     if (!_parallel) {
7334       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7335       assert(_collector->overflow_list_is_empty(),
7336              "overflow list should be empty");
7337 
7338     }
7339   #endif // ASSERT
7340   return is_obj_array;
7341 }
7342 
7343 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7344                         MemRegion span,
7345                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7346                         bool should_yield, bool verifying):
7347   _collector(collector),
7348   _span(span),
7349   _bitMap(bitMap),
7350   _mut(&collector->_modUnionTable),
7351   _markStack(markStack),
7352   _yield(should_yield),
7353   _skipBits(0)
7354 {
7355   assert(_markStack->isEmpty(), "stack should be empty");
7356   _finger = _bitMap->startWord();
7357   _threshold = _finger;
7358   assert(_collector->_restart_addr == NULL, "Sanity check");
7359   assert(_span.contains(_finger), "Out of bounds _finger?");
7360   DEBUG_ONLY(_verifying = verifying;)
7361 }
7362 
7363 void MarkFromRootsClosure::reset(HeapWord* addr) {
7364   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7365   assert(_span.contains(addr), "Out of bounds _finger?");
7366   _finger = addr;
7367   _threshold = (HeapWord*)round_to(
7368                  (intptr_t)_finger, CardTableModRefBS::card_size);
7369 }
7370 
7371 // Should revisit to see if this should be restructured for
7372 // greater efficiency.
7373 bool MarkFromRootsClosure::do_bit(size_t offset) {
7374   if (_skipBits > 0) {
7375     _skipBits--;
7376     return true;
7377   }
7378   // convert offset into a HeapWord*
7379   HeapWord* addr = _bitMap->startWord() + offset;
7380   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7381          "address out of range");
7382   assert(_bitMap->isMarked(addr), "tautology");
7383   if (_bitMap->isMarked(addr+1)) {
7384     // this is an allocated but not yet initialized object
7385     assert(_skipBits == 0, "tautology");
7386     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7387     oop p = oop(addr);
7388     if (p->klass_or_null() == NULL) {
7389       DEBUG_ONLY(if (!_verifying) {)
7390         // We re-dirty the cards on which this object lies and increase
7391         // the _threshold so that we'll come back to scan this object
7392         // during the preclean or remark phase. (CMSCleanOnEnter)
7393         if (CMSCleanOnEnter) {
7394           size_t sz = _collector->block_size_using_printezis_bits(addr);
7395           HeapWord* end_card_addr   = (HeapWord*)round_to(
7396                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7397           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7398           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7399           // Bump _threshold to end_card_addr; note that
7400           // _threshold cannot possibly exceed end_card_addr, anyhow.
7401           // This prevents future clearing of the card as the scan proceeds
7402           // to the right.
7403           assert(_threshold <= end_card_addr,
7404                  "Because we are just scanning into this object");
7405           if (_threshold < end_card_addr) {
7406             _threshold = end_card_addr;
7407           }
7408           if (p->klass_or_null() != NULL) {
7409             // Redirty the range of cards...
7410             _mut->mark_range(redirty_range);
7411           } // ...else the setting of klass will dirty the card anyway.
7412         }
7413       DEBUG_ONLY(})
7414       return true;
7415     }
7416   }
7417   scanOopsInOop(addr);
7418   return true;
7419 }
7420 
7421 // We take a break if we've been at this for a while,
7422 // so as to avoid monopolizing the locks involved.
7423 void MarkFromRootsClosure::do_yield_work() {
7424   // First give up the locks, then yield, then re-lock
7425   // We should probably use a constructor/destructor idiom to
7426   // do this unlock/lock or modify the MutexUnlocker class to
7427   // serve our purpose. XXX
7428   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7429          "CMS thread should hold CMS token");
7430   assert_lock_strong(_bitMap->lock());
7431   _bitMap->lock()->unlock();
7432   ConcurrentMarkSweepThread::desynchronize(true);
7433   ConcurrentMarkSweepThread::acknowledge_yield_request();
7434   _collector->stopTimer();
7435   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7436   if (PrintCMSStatistics != 0) {
7437     _collector->incrementYields();
7438   }
7439   _collector->icms_wait();
7440 
7441   // See the comment in coordinator_yield()
7442   for (unsigned i = 0; i < CMSYieldSleepCount &&
7443                        ConcurrentMarkSweepThread::should_yield() &&
7444                        !CMSCollector::foregroundGCIsActive(); ++i) {
7445     os::sleep(Thread::current(), 1, false);
7446     ConcurrentMarkSweepThread::acknowledge_yield_request();
7447   }
7448 
7449   ConcurrentMarkSweepThread::synchronize(true);
7450   _bitMap->lock()->lock_without_safepoint_check();
7451   _collector->startTimer();
7452 }
7453 
7454 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7455   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7456   assert(_markStack->isEmpty(),
7457          "should drain stack to limit stack usage");
7458   // convert ptr to an oop preparatory to scanning
7459   oop obj = oop(ptr);
7460   // Ignore mark word in verification below, since we
7461   // may be running concurrent with mutators.
7462   assert(obj->is_oop(true), "should be an oop");
7463   assert(_finger <= ptr, "_finger runneth ahead");
7464   // advance the finger to right end of this object
7465   _finger = ptr + obj->size();
7466   assert(_finger > ptr, "we just incremented it above");
7467   // On large heaps, it may take us some time to get through
7468   // the marking phase (especially if running iCMS). During
7469   // this time it's possible that a lot of mutations have
7470   // accumulated in the card table and the mod union table --
7471   // these mutation records are redundant until we have
7472   // actually traced into the corresponding card.
7473   // Here, we check whether advancing the finger would make
7474   // us cross into a new card, and if so clear corresponding
7475   // cards in the MUT (preclean them in the card-table in the
7476   // future).
7477 
7478   DEBUG_ONLY(if (!_verifying) {)
7479     // The clean-on-enter optimization is disabled by default,
7480     // until we fix 6178663.
7481     if (CMSCleanOnEnter && (_finger > _threshold)) {
7482       // [_threshold, _finger) represents the interval
7483       // of cards to be cleared  in MUT (or precleaned in card table).
7484       // The set of cards to be cleared is all those that overlap
7485       // with the interval [_threshold, _finger); note that
7486       // _threshold is always kept card-aligned but _finger isn't
7487       // always card-aligned.
7488       HeapWord* old_threshold = _threshold;
7489       assert(old_threshold == (HeapWord*)round_to(
7490               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7491              "_threshold should always be card-aligned");
7492       _threshold = (HeapWord*)round_to(
7493                      (intptr_t)_finger, CardTableModRefBS::card_size);
7494       MemRegion mr(old_threshold, _threshold);
7495       assert(!mr.is_empty(), "Control point invariant");
7496       assert(_span.contains(mr), "Should clear within span");
7497       _mut->clear_range(mr);
7498     }
7499   DEBUG_ONLY(})
7500   // Note: the finger doesn't advance while we drain
7501   // the stack below.
7502   PushOrMarkClosure pushOrMarkClosure(_collector,
7503                                       _span, _bitMap, _markStack,
7504                                       _finger, this);
7505   bool res = _markStack->push(obj);
7506   assert(res, "Empty non-zero size stack should have space for single push");
7507   while (!_markStack->isEmpty()) {
7508     oop new_oop = _markStack->pop();
7509     // Skip verifying header mark word below because we are
7510     // running concurrent with mutators.
7511     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7512     // now scan this oop's oops
7513     new_oop->oop_iterate(&pushOrMarkClosure);
7514     do_yield_check();
7515   }
7516   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7517 }
7518 
7519 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7520                        CMSCollector* collector, MemRegion span,
7521                        CMSBitMap* bit_map,
7522                        OopTaskQueue* work_queue,
7523                        CMSMarkStack*  overflow_stack,
7524                        bool should_yield):
7525   _collector(collector),
7526   _whole_span(collector->_span),
7527   _span(span),
7528   _bit_map(bit_map),
7529   _mut(&collector->_modUnionTable),
7530   _work_queue(work_queue),
7531   _overflow_stack(overflow_stack),
7532   _yield(should_yield),
7533   _skip_bits(0),
7534   _task(task)
7535 {
7536   assert(_work_queue->size() == 0, "work_queue should be empty");
7537   _finger = span.start();
7538   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7539   assert(_span.contains(_finger), "Out of bounds _finger?");
7540 }
7541 
7542 // Should revisit to see if this should be restructured for
7543 // greater efficiency.
7544 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7545   if (_skip_bits > 0) {
7546     _skip_bits--;
7547     return true;
7548   }
7549   // convert offset into a HeapWord*
7550   HeapWord* addr = _bit_map->startWord() + offset;
7551   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7552          "address out of range");
7553   assert(_bit_map->isMarked(addr), "tautology");
7554   if (_bit_map->isMarked(addr+1)) {
7555     // this is an allocated object that might not yet be initialized
7556     assert(_skip_bits == 0, "tautology");
7557     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7558     oop p = oop(addr);
7559     if (p->klass_or_null() == NULL) {
7560       // in the case of Clean-on-Enter optimization, redirty card
7561       // and avoid clearing card by increasing  the threshold.
7562       return true;
7563     }
7564   }
7565   scan_oops_in_oop(addr);
7566   return true;
7567 }
7568 
7569 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7570   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7571   // Should we assert that our work queue is empty or
7572   // below some drain limit?
7573   assert(_work_queue->size() == 0,
7574          "should drain stack to limit stack usage");
7575   // convert ptr to an oop preparatory to scanning
7576   oop obj = oop(ptr);
7577   // Ignore mark word in verification below, since we
7578   // may be running concurrent with mutators.
7579   assert(obj->is_oop(true), "should be an oop");
7580   assert(_finger <= ptr, "_finger runneth ahead");
7581   // advance the finger to right end of this object
7582   _finger = ptr + obj->size();
7583   assert(_finger > ptr, "we just incremented it above");
7584   // On large heaps, it may take us some time to get through
7585   // the marking phase (especially if running iCMS). During
7586   // this time it's possible that a lot of mutations have
7587   // accumulated in the card table and the mod union table --
7588   // these mutation records are redundant until we have
7589   // actually traced into the corresponding card.
7590   // Here, we check whether advancing the finger would make
7591   // us cross into a new card, and if so clear corresponding
7592   // cards in the MUT (preclean them in the card-table in the
7593   // future).
7594 
7595   // The clean-on-enter optimization is disabled by default,
7596   // until we fix 6178663.
7597   if (CMSCleanOnEnter && (_finger > _threshold)) {
7598     // [_threshold, _finger) represents the interval
7599     // of cards to be cleared  in MUT (or precleaned in card table).
7600     // The set of cards to be cleared is all those that overlap
7601     // with the interval [_threshold, _finger); note that
7602     // _threshold is always kept card-aligned but _finger isn't
7603     // always card-aligned.
7604     HeapWord* old_threshold = _threshold;
7605     assert(old_threshold == (HeapWord*)round_to(
7606             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7607            "_threshold should always be card-aligned");
7608     _threshold = (HeapWord*)round_to(
7609                    (intptr_t)_finger, CardTableModRefBS::card_size);
7610     MemRegion mr(old_threshold, _threshold);
7611     assert(!mr.is_empty(), "Control point invariant");
7612     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7613     _mut->clear_range(mr);
7614   }
7615 
7616   // Note: the local finger doesn't advance while we drain
7617   // the stack below, but the global finger sure can and will.
7618   HeapWord** gfa = _task->global_finger_addr();
7619   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7620                                       _span, _bit_map,
7621                                       _work_queue,
7622                                       _overflow_stack,
7623                                       _finger,
7624                                       gfa, this);
7625   bool res = _work_queue->push(obj);   // overflow could occur here
7626   assert(res, "Will hold once we use workqueues");
7627   while (true) {
7628     oop new_oop;
7629     if (!_work_queue->pop_local(new_oop)) {
7630       // We emptied our work_queue; check if there's stuff that can
7631       // be gotten from the overflow stack.
7632       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7633             _overflow_stack, _work_queue)) {
7634         do_yield_check();
7635         continue;
7636       } else {  // done
7637         break;
7638       }
7639     }
7640     // Skip verifying header mark word below because we are
7641     // running concurrent with mutators.
7642     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7643     // now scan this oop's oops
7644     new_oop->oop_iterate(&pushOrMarkClosure);
7645     do_yield_check();
7646   }
7647   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7648 }
7649 
7650 // Yield in response to a request from VM Thread or
7651 // from mutators.
7652 void Par_MarkFromRootsClosure::do_yield_work() {
7653   assert(_task != NULL, "sanity");
7654   _task->yield();
7655 }
7656 
7657 // A variant of the above used for verifying CMS marking work.
7658 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7659                         MemRegion span,
7660                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7661                         CMSMarkStack*  mark_stack):
7662   _collector(collector),
7663   _span(span),
7664   _verification_bm(verification_bm),
7665   _cms_bm(cms_bm),
7666   _mark_stack(mark_stack),
7667   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7668                       mark_stack)
7669 {
7670   assert(_mark_stack->isEmpty(), "stack should be empty");
7671   _finger = _verification_bm->startWord();
7672   assert(_collector->_restart_addr == NULL, "Sanity check");
7673   assert(_span.contains(_finger), "Out of bounds _finger?");
7674 }
7675 
7676 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7677   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7678   assert(_span.contains(addr), "Out of bounds _finger?");
7679   _finger = addr;
7680 }
7681 
7682 // Should revisit to see if this should be restructured for
7683 // greater efficiency.
7684 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7685   // convert offset into a HeapWord*
7686   HeapWord* addr = _verification_bm->startWord() + offset;
7687   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7688          "address out of range");
7689   assert(_verification_bm->isMarked(addr), "tautology");
7690   assert(_cms_bm->isMarked(addr), "tautology");
7691 
7692   assert(_mark_stack->isEmpty(),
7693          "should drain stack to limit stack usage");
7694   // convert addr to an oop preparatory to scanning
7695   oop obj = oop(addr);
7696   assert(obj->is_oop(), "should be an oop");
7697   assert(_finger <= addr, "_finger runneth ahead");
7698   // advance the finger to right end of this object
7699   _finger = addr + obj->size();
7700   assert(_finger > addr, "we just incremented it above");
7701   // Note: the finger doesn't advance while we drain
7702   // the stack below.
7703   bool res = _mark_stack->push(obj);
7704   assert(res, "Empty non-zero size stack should have space for single push");
7705   while (!_mark_stack->isEmpty()) {
7706     oop new_oop = _mark_stack->pop();
7707     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7708     // now scan this oop's oops
7709     new_oop->oop_iterate(&_pam_verify_closure);
7710   }
7711   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7712   return true;
7713 }
7714 
7715 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7716   CMSCollector* collector, MemRegion span,
7717   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7718   CMSMarkStack*  mark_stack):
7719   CMSOopClosure(collector->ref_processor()),
7720   _collector(collector),
7721   _span(span),
7722   _verification_bm(verification_bm),
7723   _cms_bm(cms_bm),
7724   _mark_stack(mark_stack)
7725 { }
7726 
7727 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7728 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7729 
7730 // Upon stack overflow, we discard (part of) the stack,
7731 // remembering the least address amongst those discarded
7732 // in CMSCollector's _restart_address.
7733 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7734   // Remember the least grey address discarded
7735   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7736   _collector->lower_restart_addr(ra);
7737   _mark_stack->reset();  // discard stack contents
7738   _mark_stack->expand(); // expand the stack if possible
7739 }
7740 
7741 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7742   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7743   HeapWord* addr = (HeapWord*)obj;
7744   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7745     // Oop lies in _span and isn't yet grey or black
7746     _verification_bm->mark(addr);            // now grey
7747     if (!_cms_bm->isMarked(addr)) {
7748       oop(addr)->print();
7749       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7750                              addr);
7751       fatal("... aborting");
7752     }
7753 
7754     if (!_mark_stack->push(obj)) { // stack overflow
7755       if (PrintCMSStatistics != 0) {
7756         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7757                                SIZE_FORMAT, _mark_stack->capacity());
7758       }
7759       assert(_mark_stack->isFull(), "Else push should have succeeded");
7760       handle_stack_overflow(addr);
7761     }
7762     // anything including and to the right of _finger
7763     // will be scanned as we iterate over the remainder of the
7764     // bit map
7765   }
7766 }
7767 
7768 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7769                      MemRegion span,
7770                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7771                      HeapWord* finger, MarkFromRootsClosure* parent) :
7772   CMSOopClosure(collector->ref_processor()),
7773   _collector(collector),
7774   _span(span),
7775   _bitMap(bitMap),
7776   _markStack(markStack),
7777   _finger(finger),
7778   _parent(parent)
7779 { }
7780 
7781 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7782                      MemRegion span,
7783                      CMSBitMap* bit_map,
7784                      OopTaskQueue* work_queue,
7785                      CMSMarkStack*  overflow_stack,
7786                      HeapWord* finger,
7787                      HeapWord** global_finger_addr,
7788                      Par_MarkFromRootsClosure* parent) :
7789   CMSOopClosure(collector->ref_processor()),
7790   _collector(collector),
7791   _whole_span(collector->_span),
7792   _span(span),
7793   _bit_map(bit_map),
7794   _work_queue(work_queue),
7795   _overflow_stack(overflow_stack),
7796   _finger(finger),
7797   _global_finger_addr(global_finger_addr),
7798   _parent(parent)
7799 { }
7800 
7801 // Assumes thread-safe access by callers, who are
7802 // responsible for mutual exclusion.
7803 void CMSCollector::lower_restart_addr(HeapWord* low) {
7804   assert(_span.contains(low), "Out of bounds addr");
7805   if (_restart_addr == NULL) {
7806     _restart_addr = low;
7807   } else {
7808     _restart_addr = MIN2(_restart_addr, low);
7809   }
7810 }
7811 
7812 // Upon stack overflow, we discard (part of) the stack,
7813 // remembering the least address amongst those discarded
7814 // in CMSCollector's _restart_address.
7815 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7816   // Remember the least grey address discarded
7817   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7818   _collector->lower_restart_addr(ra);
7819   _markStack->reset();  // discard stack contents
7820   _markStack->expand(); // expand the stack if possible
7821 }
7822 
7823 // Upon stack overflow, we discard (part of) the stack,
7824 // remembering the least address amongst those discarded
7825 // in CMSCollector's _restart_address.
7826 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7827   // We need to do this under a mutex to prevent other
7828   // workers from interfering with the work done below.
7829   MutexLockerEx ml(_overflow_stack->par_lock(),
7830                    Mutex::_no_safepoint_check_flag);
7831   // Remember the least grey address discarded
7832   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7833   _collector->lower_restart_addr(ra);
7834   _overflow_stack->reset();  // discard stack contents
7835   _overflow_stack->expand(); // expand the stack if possible
7836 }
7837 
7838 void CMKlassClosure::do_klass(Klass* k) {
7839   assert(_oop_closure != NULL, "Not initialized?");
7840   k->oops_do(_oop_closure);
7841 }
7842 
7843 void PushOrMarkClosure::do_oop(oop obj) {
7844   // Ignore mark word because we are running concurrent with mutators.
7845   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7846   HeapWord* addr = (HeapWord*)obj;
7847   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7848     // Oop lies in _span and isn't yet grey or black
7849     _bitMap->mark(addr);            // now grey
7850     if (addr < _finger) {
7851       // the bit map iteration has already either passed, or
7852       // sampled, this bit in the bit map; we'll need to
7853       // use the marking stack to scan this oop's oops.
7854       bool simulate_overflow = false;
7855       NOT_PRODUCT(
7856         if (CMSMarkStackOverflowALot &&
7857             _collector->simulate_overflow()) {
7858           // simulate a stack overflow
7859           simulate_overflow = true;
7860         }
7861       )
7862       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7863         if (PrintCMSStatistics != 0) {
7864           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7865                                  SIZE_FORMAT, _markStack->capacity());
7866         }
7867         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7868         handle_stack_overflow(addr);
7869       }
7870     }
7871     // anything including and to the right of _finger
7872     // will be scanned as we iterate over the remainder of the
7873     // bit map
7874     do_yield_check();
7875   }
7876 }
7877 
7878 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7879 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7880 
7881 void Par_PushOrMarkClosure::do_oop(oop obj) {
7882   // Ignore mark word because we are running concurrent with mutators.
7883   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7884   HeapWord* addr = (HeapWord*)obj;
7885   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7886     // Oop lies in _span and isn't yet grey or black
7887     // We read the global_finger (volatile read) strictly after marking oop
7888     bool res = _bit_map->par_mark(addr);    // now grey
7889     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7890     // Should we push this marked oop on our stack?
7891     // -- if someone else marked it, nothing to do
7892     // -- if target oop is above global finger nothing to do
7893     // -- if target oop is in chunk and above local finger
7894     //      then nothing to do
7895     // -- else push on work queue
7896     if (   !res       // someone else marked it, they will deal with it
7897         || (addr >= *gfa)  // will be scanned in a later task
7898         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7899       return;
7900     }
7901     // the bit map iteration has already either passed, or
7902     // sampled, this bit in the bit map; we'll need to
7903     // use the marking stack to scan this oop's oops.
7904     bool simulate_overflow = false;
7905     NOT_PRODUCT(
7906       if (CMSMarkStackOverflowALot &&
7907           _collector->simulate_overflow()) {
7908         // simulate a stack overflow
7909         simulate_overflow = true;
7910       }
7911     )
7912     if (simulate_overflow ||
7913         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7914       // stack overflow
7915       if (PrintCMSStatistics != 0) {
7916         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7917                                SIZE_FORMAT, _overflow_stack->capacity());
7918       }
7919       // We cannot assert that the overflow stack is full because
7920       // it may have been emptied since.
7921       assert(simulate_overflow ||
7922              _work_queue->size() == _work_queue->max_elems(),
7923             "Else push should have succeeded");
7924       handle_stack_overflow(addr);
7925     }
7926     do_yield_check();
7927   }
7928 }
7929 
7930 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7931 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7932 
7933 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7934                                        MemRegion span,
7935                                        ReferenceProcessor* rp,
7936                                        CMSBitMap* bit_map,
7937                                        CMSBitMap* mod_union_table,
7938                                        CMSMarkStack*  mark_stack,
7939                                        bool           concurrent_precleaning):
7940   CMSOopClosure(rp),
7941   _collector(collector),
7942   _span(span),
7943   _bit_map(bit_map),
7944   _mod_union_table(mod_union_table),
7945   _mark_stack(mark_stack),
7946   _concurrent_precleaning(concurrent_precleaning)
7947 {
7948   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7949 }
7950 
7951 // Grey object rescan during pre-cleaning and second checkpoint phases --
7952 // the non-parallel version (the parallel version appears further below.)
7953 void PushAndMarkClosure::do_oop(oop obj) {
7954   // Ignore mark word verification. If during concurrent precleaning,
7955   // the object monitor may be locked. If during the checkpoint
7956   // phases, the object may already have been reached by a  different
7957   // path and may be at the end of the global overflow list (so
7958   // the mark word may be NULL).
7959   assert(obj->is_oop_or_null(true /* ignore mark word */),
7960          "expected an oop or NULL");
7961   HeapWord* addr = (HeapWord*)obj;
7962   // Check if oop points into the CMS generation
7963   // and is not marked
7964   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7965     // a white object ...
7966     _bit_map->mark(addr);         // ... now grey
7967     // push on the marking stack (grey set)
7968     bool simulate_overflow = false;
7969     NOT_PRODUCT(
7970       if (CMSMarkStackOverflowALot &&
7971           _collector->simulate_overflow()) {
7972         // simulate a stack overflow
7973         simulate_overflow = true;
7974       }
7975     )
7976     if (simulate_overflow || !_mark_stack->push(obj)) {
7977       if (_concurrent_precleaning) {
7978          // During precleaning we can just dirty the appropriate card(s)
7979          // in the mod union table, thus ensuring that the object remains
7980          // in the grey set  and continue. In the case of object arrays
7981          // we need to dirty all of the cards that the object spans,
7982          // since the rescan of object arrays will be limited to the
7983          // dirty cards.
7984          // Note that no one can be interfering with us in this action
7985          // of dirtying the mod union table, so no locking or atomics
7986          // are required.
7987          if (obj->is_objArray()) {
7988            size_t sz = obj->size();
7989            HeapWord* end_card_addr = (HeapWord*)round_to(
7990                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7991            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7992            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7993            _mod_union_table->mark_range(redirty_range);
7994          } else {
7995            _mod_union_table->mark(addr);
7996          }
7997          _collector->_ser_pmc_preclean_ovflw++;
7998       } else {
7999          // During the remark phase, we need to remember this oop
8000          // in the overflow list.
8001          _collector->push_on_overflow_list(obj);
8002          _collector->_ser_pmc_remark_ovflw++;
8003       }
8004     }
8005   }
8006 }
8007 
8008 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
8009                                                MemRegion span,
8010                                                ReferenceProcessor* rp,
8011                                                CMSBitMap* bit_map,
8012                                                OopTaskQueue* work_queue):
8013   CMSOopClosure(rp),
8014   _collector(collector),
8015   _span(span),
8016   _bit_map(bit_map),
8017   _work_queue(work_queue)
8018 {
8019   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
8020 }
8021 
8022 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
8023 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
8024 
8025 // Grey object rescan during second checkpoint phase --
8026 // the parallel version.
8027 void Par_PushAndMarkClosure::do_oop(oop obj) {
8028   // In the assert below, we ignore the mark word because
8029   // this oop may point to an already visited object that is
8030   // on the overflow stack (in which case the mark word has
8031   // been hijacked for chaining into the overflow stack --
8032   // if this is the last object in the overflow stack then
8033   // its mark word will be NULL). Because this object may
8034   // have been subsequently popped off the global overflow
8035   // stack, and the mark word possibly restored to the prototypical
8036   // value, by the time we get to examined this failing assert in
8037   // the debugger, is_oop_or_null(false) may subsequently start
8038   // to hold.
8039   assert(obj->is_oop_or_null(true),
8040          "expected an oop or NULL");
8041   HeapWord* addr = (HeapWord*)obj;
8042   // Check if oop points into the CMS generation
8043   // and is not marked
8044   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
8045     // a white object ...
8046     // If we manage to "claim" the object, by being the
8047     // first thread to mark it, then we push it on our
8048     // marking stack
8049     if (_bit_map->par_mark(addr)) {     // ... now grey
8050       // push on work queue (grey set)
8051       bool simulate_overflow = false;
8052       NOT_PRODUCT(
8053         if (CMSMarkStackOverflowALot &&
8054             _collector->par_simulate_overflow()) {
8055           // simulate a stack overflow
8056           simulate_overflow = true;
8057         }
8058       )
8059       if (simulate_overflow || !_work_queue->push(obj)) {
8060         _collector->par_push_on_overflow_list(obj);
8061         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
8062       }
8063     } // Else, some other thread got there first
8064   }
8065 }
8066 
8067 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
8068 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
8069 
8070 void CMSPrecleanRefsYieldClosure::do_yield_work() {
8071   Mutex* bml = _collector->bitMapLock();
8072   assert_lock_strong(bml);
8073   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8074          "CMS thread should hold CMS token");
8075 
8076   bml->unlock();
8077   ConcurrentMarkSweepThread::desynchronize(true);
8078 
8079   ConcurrentMarkSweepThread::acknowledge_yield_request();
8080 
8081   _collector->stopTimer();
8082   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8083   if (PrintCMSStatistics != 0) {
8084     _collector->incrementYields();
8085   }
8086   _collector->icms_wait();
8087 
8088   // See the comment in coordinator_yield()
8089   for (unsigned i = 0; i < CMSYieldSleepCount &&
8090                        ConcurrentMarkSweepThread::should_yield() &&
8091                        !CMSCollector::foregroundGCIsActive(); ++i) {
8092     os::sleep(Thread::current(), 1, false);
8093     ConcurrentMarkSweepThread::acknowledge_yield_request();
8094   }
8095 
8096   ConcurrentMarkSweepThread::synchronize(true);
8097   bml->lock();
8098 
8099   _collector->startTimer();
8100 }
8101 
8102 bool CMSPrecleanRefsYieldClosure::should_return() {
8103   if (ConcurrentMarkSweepThread::should_yield()) {
8104     do_yield_work();
8105   }
8106   return _collector->foregroundGCIsActive();
8107 }
8108 
8109 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8110   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8111          "mr should be aligned to start at a card boundary");
8112   // We'd like to assert:
8113   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8114   //        "mr should be a range of cards");
8115   // However, that would be too strong in one case -- the last
8116   // partition ends at _unallocated_block which, in general, can be
8117   // an arbitrary boundary, not necessarily card aligned.
8118   if (PrintCMSStatistics != 0) {
8119     _num_dirty_cards +=
8120          mr.word_size()/CardTableModRefBS::card_size_in_words;
8121   }
8122   _space->object_iterate_mem(mr, &_scan_cl);
8123 }
8124 
8125 SweepClosure::SweepClosure(CMSCollector* collector,
8126                            ConcurrentMarkSweepGeneration* g,
8127                            CMSBitMap* bitMap, bool should_yield) :
8128   _collector(collector),
8129   _g(g),
8130   _sp(g->cmsSpace()),
8131   _limit(_sp->sweep_limit()),
8132   _freelistLock(_sp->freelistLock()),
8133   _bitMap(bitMap),
8134   _yield(should_yield),
8135   _inFreeRange(false),           // No free range at beginning of sweep
8136   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8137   _lastFreeRangeCoalesced(false),
8138   _freeFinger(g->used_region().start())
8139 {
8140   NOT_PRODUCT(
8141     _numObjectsFreed = 0;
8142     _numWordsFreed   = 0;
8143     _numObjectsLive = 0;
8144     _numWordsLive = 0;
8145     _numObjectsAlreadyFree = 0;
8146     _numWordsAlreadyFree = 0;
8147     _last_fc = NULL;
8148 
8149     _sp->initializeIndexedFreeListArrayReturnedBytes();
8150     _sp->dictionary()->initialize_dict_returned_bytes();
8151   )
8152   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8153          "sweep _limit out of bounds");
8154   if (CMSTraceSweeper) {
8155     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8156                         _limit);
8157   }
8158 }
8159 
8160 void SweepClosure::print_on(outputStream* st) const {
8161   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8162                 _sp->bottom(), _sp->end());
8163   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8164   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8165   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8166   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8167                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8168 }
8169 
8170 #ifndef PRODUCT
8171 // Assertion checking only:  no useful work in product mode --
8172 // however, if any of the flags below become product flags,
8173 // you may need to review this code to see if it needs to be
8174 // enabled in product mode.
8175 SweepClosure::~SweepClosure() {
8176   assert_lock_strong(_freelistLock);
8177   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8178          "sweep _limit out of bounds");
8179   if (inFreeRange()) {
8180     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8181     print();
8182     ShouldNotReachHere();
8183   }
8184   if (Verbose && PrintGC) {
8185     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8186                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8187     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8188                            SIZE_FORMAT" bytes  "
8189       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8190       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8191       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8192     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8193                         * sizeof(HeapWord);
8194     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8195 
8196     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8197       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8198       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8199       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8200       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8201       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8202         indexListReturnedBytes);
8203       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8204         dict_returned_bytes);
8205     }
8206   }
8207   if (CMSTraceSweeper) {
8208     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8209                            _limit);
8210   }
8211 }
8212 #endif  // PRODUCT
8213 
8214 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8215     bool freeRangeInFreeLists) {
8216   if (CMSTraceSweeper) {
8217     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8218                freeFinger, freeRangeInFreeLists);
8219   }
8220   assert(!inFreeRange(), "Trampling existing free range");
8221   set_inFreeRange(true);
8222   set_lastFreeRangeCoalesced(false);
8223 
8224   set_freeFinger(freeFinger);
8225   set_freeRangeInFreeLists(freeRangeInFreeLists);
8226   if (CMSTestInFreeList) {
8227     if (freeRangeInFreeLists) {
8228       FreeChunk* fc = (FreeChunk*) freeFinger;
8229       assert(fc->is_free(), "A chunk on the free list should be free.");
8230       assert(fc->size() > 0, "Free range should have a size");
8231       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8232     }
8233   }
8234 }
8235 
8236 // Note that the sweeper runs concurrently with mutators. Thus,
8237 // it is possible for direct allocation in this generation to happen
8238 // in the middle of the sweep. Note that the sweeper also coalesces
8239 // contiguous free blocks. Thus, unless the sweeper and the allocator
8240 // synchronize appropriately freshly allocated blocks may get swept up.
8241 // This is accomplished by the sweeper locking the free lists while
8242 // it is sweeping. Thus blocks that are determined to be free are
8243 // indeed free. There is however one additional complication:
8244 // blocks that have been allocated since the final checkpoint and
8245 // mark, will not have been marked and so would be treated as
8246 // unreachable and swept up. To prevent this, the allocator marks
8247 // the bit map when allocating during the sweep phase. This leads,
8248 // however, to a further complication -- objects may have been allocated
8249 // but not yet initialized -- in the sense that the header isn't yet
8250 // installed. The sweeper can not then determine the size of the block
8251 // in order to skip over it. To deal with this case, we use a technique
8252 // (due to Printezis) to encode such uninitialized block sizes in the
8253 // bit map. Since the bit map uses a bit per every HeapWord, but the
8254 // CMS generation has a minimum object size of 3 HeapWords, it follows
8255 // that "normal marks" won't be adjacent in the bit map (there will
8256 // always be at least two 0 bits between successive 1 bits). We make use
8257 // of these "unused" bits to represent uninitialized blocks -- the bit
8258 // corresponding to the start of the uninitialized object and the next
8259 // bit are both set. Finally, a 1 bit marks the end of the object that
8260 // started with the two consecutive 1 bits to indicate its potentially
8261 // uninitialized state.
8262 
8263 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8264   FreeChunk* fc = (FreeChunk*)addr;
8265   size_t res;
8266 
8267   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8268   // than "addr == _limit" because although _limit was a block boundary when
8269   // we started the sweep, it may no longer be one because heap expansion
8270   // may have caused us to coalesce the block ending at the address _limit
8271   // with a newly expanded chunk (this happens when _limit was set to the
8272   // previous _end of the space), so we may have stepped past _limit:
8273   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8274   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8275     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8276            "sweep _limit out of bounds");
8277     assert(addr < _sp->end(), "addr out of bounds");
8278     // Flush any free range we might be holding as a single
8279     // coalesced chunk to the appropriate free list.
8280     if (inFreeRange()) {
8281       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8282              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8283       flush_cur_free_chunk(freeFinger(),
8284                            pointer_delta(addr, freeFinger()));
8285       if (CMSTraceSweeper) {
8286         gclog_or_tty->print("Sweep: last chunk: ");
8287         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8288                    "[coalesced:"SIZE_FORMAT"]\n",
8289                    freeFinger(), pointer_delta(addr, freeFinger()),
8290                    lastFreeRangeCoalesced());
8291       }
8292     }
8293 
8294     // help the iterator loop finish
8295     return pointer_delta(_sp->end(), addr);
8296   }
8297 
8298   assert(addr < _limit, "sweep invariant");
8299   // check if we should yield
8300   do_yield_check(addr);
8301   if (fc->is_free()) {
8302     // Chunk that is already free
8303     res = fc->size();
8304     do_already_free_chunk(fc);
8305     debug_only(_sp->verifyFreeLists());
8306     // If we flush the chunk at hand in lookahead_and_flush()
8307     // and it's coalesced with a preceding chunk, then the
8308     // process of "mangling" the payload of the coalesced block
8309     // will cause erasure of the size information from the
8310     // (erstwhile) header of all the coalesced blocks but the
8311     // first, so the first disjunct in the assert will not hold
8312     // in that specific case (in which case the second disjunct
8313     // will hold).
8314     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8315            "Otherwise the size info doesn't change at this step");
8316     NOT_PRODUCT(
8317       _numObjectsAlreadyFree++;
8318       _numWordsAlreadyFree += res;
8319     )
8320     NOT_PRODUCT(_last_fc = fc;)
8321   } else if (!_bitMap->isMarked(addr)) {
8322     // Chunk is fresh garbage
8323     res = do_garbage_chunk(fc);
8324     debug_only(_sp->verifyFreeLists());
8325     NOT_PRODUCT(
8326       _numObjectsFreed++;
8327       _numWordsFreed += res;
8328     )
8329   } else {
8330     // Chunk that is alive.
8331     res = do_live_chunk(fc);
8332     debug_only(_sp->verifyFreeLists());
8333     NOT_PRODUCT(
8334         _numObjectsLive++;
8335         _numWordsLive += res;
8336     )
8337   }
8338   return res;
8339 }
8340 
8341 // For the smart allocation, record following
8342 //  split deaths - a free chunk is removed from its free list because
8343 //      it is being split into two or more chunks.
8344 //  split birth - a free chunk is being added to its free list because
8345 //      a larger free chunk has been split and resulted in this free chunk.
8346 //  coal death - a free chunk is being removed from its free list because
8347 //      it is being coalesced into a large free chunk.
8348 //  coal birth - a free chunk is being added to its free list because
8349 //      it was created when two or more free chunks where coalesced into
8350 //      this free chunk.
8351 //
8352 // These statistics are used to determine the desired number of free
8353 // chunks of a given size.  The desired number is chosen to be relative
8354 // to the end of a CMS sweep.  The desired number at the end of a sweep
8355 // is the
8356 //      count-at-end-of-previous-sweep (an amount that was enough)
8357 //              - count-at-beginning-of-current-sweep  (the excess)
8358 //              + split-births  (gains in this size during interval)
8359 //              - split-deaths  (demands on this size during interval)
8360 // where the interval is from the end of one sweep to the end of the
8361 // next.
8362 //
8363 // When sweeping the sweeper maintains an accumulated chunk which is
8364 // the chunk that is made up of chunks that have been coalesced.  That
8365 // will be termed the left-hand chunk.  A new chunk of garbage that
8366 // is being considered for coalescing will be referred to as the
8367 // right-hand chunk.
8368 //
8369 // When making a decision on whether to coalesce a right-hand chunk with
8370 // the current left-hand chunk, the current count vs. the desired count
8371 // of the left-hand chunk is considered.  Also if the right-hand chunk
8372 // is near the large chunk at the end of the heap (see
8373 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8374 // left-hand chunk is coalesced.
8375 //
8376 // When making a decision about whether to split a chunk, the desired count
8377 // vs. the current count of the candidate to be split is also considered.
8378 // If the candidate is underpopulated (currently fewer chunks than desired)
8379 // a chunk of an overpopulated (currently more chunks than desired) size may
8380 // be chosen.  The "hint" associated with a free list, if non-null, points
8381 // to a free list which may be overpopulated.
8382 //
8383 
8384 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8385   const size_t size = fc->size();
8386   // Chunks that cannot be coalesced are not in the
8387   // free lists.
8388   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8389     assert(_sp->verify_chunk_in_free_list(fc),
8390       "free chunk should be in free lists");
8391   }
8392   // a chunk that is already free, should not have been
8393   // marked in the bit map
8394   HeapWord* const addr = (HeapWord*) fc;
8395   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8396   // Verify that the bit map has no bits marked between
8397   // addr and purported end of this block.
8398   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8399 
8400   // Some chunks cannot be coalesced under any circumstances.
8401   // See the definition of cantCoalesce().
8402   if (!fc->cantCoalesce()) {
8403     // This chunk can potentially be coalesced.
8404     if (_sp->adaptive_freelists()) {
8405       // All the work is done in
8406       do_post_free_or_garbage_chunk(fc, size);
8407     } else {  // Not adaptive free lists
8408       // this is a free chunk that can potentially be coalesced by the sweeper;
8409       if (!inFreeRange()) {
8410         // if the next chunk is a free block that can't be coalesced
8411         // it doesn't make sense to remove this chunk from the free lists
8412         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8413         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8414         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8415             nextChunk->is_free()               &&     // ... which is free...
8416             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8417           // nothing to do
8418         } else {
8419           // Potentially the start of a new free range:
8420           // Don't eagerly remove it from the free lists.
8421           // No need to remove it if it will just be put
8422           // back again.  (Also from a pragmatic point of view
8423           // if it is a free block in a region that is beyond
8424           // any allocated blocks, an assertion will fail)
8425           // Remember the start of a free run.
8426           initialize_free_range(addr, true);
8427           // end - can coalesce with next chunk
8428         }
8429       } else {
8430         // the midst of a free range, we are coalescing
8431         print_free_block_coalesced(fc);
8432         if (CMSTraceSweeper) {
8433           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8434         }
8435         // remove it from the free lists
8436         _sp->removeFreeChunkFromFreeLists(fc);
8437         set_lastFreeRangeCoalesced(true);
8438         // If the chunk is being coalesced and the current free range is
8439         // in the free lists, remove the current free range so that it
8440         // will be returned to the free lists in its entirety - all
8441         // the coalesced pieces included.
8442         if (freeRangeInFreeLists()) {
8443           FreeChunk* ffc = (FreeChunk*) freeFinger();
8444           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8445             "Size of free range is inconsistent with chunk size.");
8446           if (CMSTestInFreeList) {
8447             assert(_sp->verify_chunk_in_free_list(ffc),
8448               "free range is not in free lists");
8449           }
8450           _sp->removeFreeChunkFromFreeLists(ffc);
8451           set_freeRangeInFreeLists(false);
8452         }
8453       }
8454     }
8455     // Note that if the chunk is not coalescable (the else arm
8456     // below), we unconditionally flush, without needing to do
8457     // a "lookahead," as we do below.
8458     if (inFreeRange()) lookahead_and_flush(fc, size);
8459   } else {
8460     // Code path common to both original and adaptive free lists.
8461 
8462     // cant coalesce with previous block; this should be treated
8463     // as the end of a free run if any
8464     if (inFreeRange()) {
8465       // we kicked some butt; time to pick up the garbage
8466       assert(freeFinger() < addr, "freeFinger points too high");
8467       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8468     }
8469     // else, nothing to do, just continue
8470   }
8471 }
8472 
8473 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8474   // This is a chunk of garbage.  It is not in any free list.
8475   // Add it to a free list or let it possibly be coalesced into
8476   // a larger chunk.
8477   HeapWord* const addr = (HeapWord*) fc;
8478   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8479 
8480   if (_sp->adaptive_freelists()) {
8481     // Verify that the bit map has no bits marked between
8482     // addr and purported end of just dead object.
8483     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8484 
8485     do_post_free_or_garbage_chunk(fc, size);
8486   } else {
8487     if (!inFreeRange()) {
8488       // start of a new free range
8489       assert(size > 0, "A free range should have a size");
8490       initialize_free_range(addr, false);
8491     } else {
8492       // this will be swept up when we hit the end of the
8493       // free range
8494       if (CMSTraceSweeper) {
8495         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8496       }
8497       // If the chunk is being coalesced and the current free range is
8498       // in the free lists, remove the current free range so that it
8499       // will be returned to the free lists in its entirety - all
8500       // the coalesced pieces included.
8501       if (freeRangeInFreeLists()) {
8502         FreeChunk* ffc = (FreeChunk*)freeFinger();
8503         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8504           "Size of free range is inconsistent with chunk size.");
8505         if (CMSTestInFreeList) {
8506           assert(_sp->verify_chunk_in_free_list(ffc),
8507             "free range is not in free lists");
8508         }
8509         _sp->removeFreeChunkFromFreeLists(ffc);
8510         set_freeRangeInFreeLists(false);
8511       }
8512       set_lastFreeRangeCoalesced(true);
8513     }
8514     // this will be swept up when we hit the end of the free range
8515 
8516     // Verify that the bit map has no bits marked between
8517     // addr and purported end of just dead object.
8518     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8519   }
8520   assert(_limit >= addr + size,
8521          "A freshly garbage chunk can't possibly straddle over _limit");
8522   if (inFreeRange()) lookahead_and_flush(fc, size);
8523   return size;
8524 }
8525 
8526 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8527   HeapWord* addr = (HeapWord*) fc;
8528   // The sweeper has just found a live object. Return any accumulated
8529   // left hand chunk to the free lists.
8530   if (inFreeRange()) {
8531     assert(freeFinger() < addr, "freeFinger points too high");
8532     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8533   }
8534 
8535   // This object is live: we'd normally expect this to be
8536   // an oop, and like to assert the following:
8537   // assert(oop(addr)->is_oop(), "live block should be an oop");
8538   // However, as we commented above, this may be an object whose
8539   // header hasn't yet been initialized.
8540   size_t size;
8541   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8542   if (_bitMap->isMarked(addr + 1)) {
8543     // Determine the size from the bit map, rather than trying to
8544     // compute it from the object header.
8545     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8546     size = pointer_delta(nextOneAddr + 1, addr);
8547     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8548            "alignment problem");
8549 
8550 #ifdef ASSERT
8551       if (oop(addr)->klass_or_null() != NULL) {
8552         // Ignore mark word because we are running concurrent with mutators
8553         assert(oop(addr)->is_oop(true), "live block should be an oop");
8554         assert(size ==
8555                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8556                "P-mark and computed size do not agree");
8557       }
8558 #endif
8559 
8560   } else {
8561     // This should be an initialized object that's alive.
8562     assert(oop(addr)->klass_or_null() != NULL,
8563            "Should be an initialized object");
8564     // Ignore mark word because we are running concurrent with mutators
8565     assert(oop(addr)->is_oop(true), "live block should be an oop");
8566     // Verify that the bit map has no bits marked between
8567     // addr and purported end of this block.
8568     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8569     assert(size >= 3, "Necessary for Printezis marks to work");
8570     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8571     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8572   }
8573   return size;
8574 }
8575 
8576 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8577                                                  size_t chunkSize) {
8578   // do_post_free_or_garbage_chunk() should only be called in the case
8579   // of the adaptive free list allocator.
8580   const bool fcInFreeLists = fc->is_free();
8581   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8582   assert((HeapWord*)fc <= _limit, "sweep invariant");
8583   if (CMSTestInFreeList && fcInFreeLists) {
8584     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8585   }
8586 
8587   if (CMSTraceSweeper) {
8588     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8589   }
8590 
8591   HeapWord* const fc_addr = (HeapWord*) fc;
8592 
8593   bool coalesce;
8594   const size_t left  = pointer_delta(fc_addr, freeFinger());
8595   const size_t right = chunkSize;
8596   switch (FLSCoalescePolicy) {
8597     // numeric value forms a coalition aggressiveness metric
8598     case 0:  { // never coalesce
8599       coalesce = false;
8600       break;
8601     }
8602     case 1: { // coalesce if left & right chunks on overpopulated lists
8603       coalesce = _sp->coalOverPopulated(left) &&
8604                  _sp->coalOverPopulated(right);
8605       break;
8606     }
8607     case 2: { // coalesce if left chunk on overpopulated list (default)
8608       coalesce = _sp->coalOverPopulated(left);
8609       break;
8610     }
8611     case 3: { // coalesce if left OR right chunk on overpopulated list
8612       coalesce = _sp->coalOverPopulated(left) ||
8613                  _sp->coalOverPopulated(right);
8614       break;
8615     }
8616     case 4: { // always coalesce
8617       coalesce = true;
8618       break;
8619     }
8620     default:
8621      ShouldNotReachHere();
8622   }
8623 
8624   // Should the current free range be coalesced?
8625   // If the chunk is in a free range and either we decided to coalesce above
8626   // or the chunk is near the large block at the end of the heap
8627   // (isNearLargestChunk() returns true), then coalesce this chunk.
8628   const bool doCoalesce = inFreeRange()
8629                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8630   if (doCoalesce) {
8631     // Coalesce the current free range on the left with the new
8632     // chunk on the right.  If either is on a free list,
8633     // it must be removed from the list and stashed in the closure.
8634     if (freeRangeInFreeLists()) {
8635       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8636       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8637         "Size of free range is inconsistent with chunk size.");
8638       if (CMSTestInFreeList) {
8639         assert(_sp->verify_chunk_in_free_list(ffc),
8640           "Chunk is not in free lists");
8641       }
8642       _sp->coalDeath(ffc->size());
8643       _sp->removeFreeChunkFromFreeLists(ffc);
8644       set_freeRangeInFreeLists(false);
8645     }
8646     if (fcInFreeLists) {
8647       _sp->coalDeath(chunkSize);
8648       assert(fc->size() == chunkSize,
8649         "The chunk has the wrong size or is not in the free lists");
8650       _sp->removeFreeChunkFromFreeLists(fc);
8651     }
8652     set_lastFreeRangeCoalesced(true);
8653     print_free_block_coalesced(fc);
8654   } else {  // not in a free range and/or should not coalesce
8655     // Return the current free range and start a new one.
8656     if (inFreeRange()) {
8657       // In a free range but cannot coalesce with the right hand chunk.
8658       // Put the current free range into the free lists.
8659       flush_cur_free_chunk(freeFinger(),
8660                            pointer_delta(fc_addr, freeFinger()));
8661     }
8662     // Set up for new free range.  Pass along whether the right hand
8663     // chunk is in the free lists.
8664     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8665   }
8666 }
8667 
8668 // Lookahead flush:
8669 // If we are tracking a free range, and this is the last chunk that
8670 // we'll look at because its end crosses past _limit, we'll preemptively
8671 // flush it along with any free range we may be holding on to. Note that
8672 // this can be the case only for an already free or freshly garbage
8673 // chunk. If this block is an object, it can never straddle
8674 // over _limit. The "straddling" occurs when _limit is set at
8675 // the previous end of the space when this cycle started, and
8676 // a subsequent heap expansion caused the previously co-terminal
8677 // free block to be coalesced with the newly expanded portion,
8678 // thus rendering _limit a non-block-boundary making it dangerous
8679 // for the sweeper to step over and examine.
8680 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8681   assert(inFreeRange(), "Should only be called if currently in a free range.");
8682   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8683   assert(_sp->used_region().contains(eob - 1),
8684          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8685                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8686                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8687                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8688   if (eob >= _limit) {
8689     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8690     if (CMSTraceSweeper) {
8691       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8692                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8693                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8694                              _limit, fc, eob, _sp->bottom(), _sp->end());
8695     }
8696     // Return the storage we are tracking back into the free lists.
8697     if (CMSTraceSweeper) {
8698       gclog_or_tty->print_cr("Flushing ... ");
8699     }
8700     assert(freeFinger() < eob, "Error");
8701     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8702   }
8703 }
8704 
8705 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8706   assert(inFreeRange(), "Should only be called if currently in a free range.");
8707   assert(size > 0,
8708     "A zero sized chunk cannot be added to the free lists.");
8709   if (!freeRangeInFreeLists()) {
8710     if (CMSTestInFreeList) {
8711       FreeChunk* fc = (FreeChunk*) chunk;
8712       fc->set_size(size);
8713       assert(!_sp->verify_chunk_in_free_list(fc),
8714         "chunk should not be in free lists yet");
8715     }
8716     if (CMSTraceSweeper) {
8717       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8718                     chunk, size);
8719     }
8720     // A new free range is going to be starting.  The current
8721     // free range has not been added to the free lists yet or
8722     // was removed so add it back.
8723     // If the current free range was coalesced, then the death
8724     // of the free range was recorded.  Record a birth now.
8725     if (lastFreeRangeCoalesced()) {
8726       _sp->coalBirth(size);
8727     }
8728     _sp->addChunkAndRepairOffsetTable(chunk, size,
8729             lastFreeRangeCoalesced());
8730   } else if (CMSTraceSweeper) {
8731     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8732   }
8733   set_inFreeRange(false);
8734   set_freeRangeInFreeLists(false);
8735 }
8736 
8737 // We take a break if we've been at this for a while,
8738 // so as to avoid monopolizing the locks involved.
8739 void SweepClosure::do_yield_work(HeapWord* addr) {
8740   // Return current free chunk being used for coalescing (if any)
8741   // to the appropriate freelist.  After yielding, the next
8742   // free block encountered will start a coalescing range of
8743   // free blocks.  If the next free block is adjacent to the
8744   // chunk just flushed, they will need to wait for the next
8745   // sweep to be coalesced.
8746   if (inFreeRange()) {
8747     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8748   }
8749 
8750   // First give up the locks, then yield, then re-lock.
8751   // We should probably use a constructor/destructor idiom to
8752   // do this unlock/lock or modify the MutexUnlocker class to
8753   // serve our purpose. XXX
8754   assert_lock_strong(_bitMap->lock());
8755   assert_lock_strong(_freelistLock);
8756   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8757          "CMS thread should hold CMS token");
8758   _bitMap->lock()->unlock();
8759   _freelistLock->unlock();
8760   ConcurrentMarkSweepThread::desynchronize(true);
8761   ConcurrentMarkSweepThread::acknowledge_yield_request();
8762   _collector->stopTimer();
8763   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8764   if (PrintCMSStatistics != 0) {
8765     _collector->incrementYields();
8766   }
8767   _collector->icms_wait();
8768 
8769   // See the comment in coordinator_yield()
8770   for (unsigned i = 0; i < CMSYieldSleepCount &&
8771                        ConcurrentMarkSweepThread::should_yield() &&
8772                        !CMSCollector::foregroundGCIsActive(); ++i) {
8773     os::sleep(Thread::current(), 1, false);
8774     ConcurrentMarkSweepThread::acknowledge_yield_request();
8775   }
8776 
8777   ConcurrentMarkSweepThread::synchronize(true);
8778   _freelistLock->lock();
8779   _bitMap->lock()->lock_without_safepoint_check();
8780   _collector->startTimer();
8781 }
8782 
8783 #ifndef PRODUCT
8784 // This is actually very useful in a product build if it can
8785 // be called from the debugger.  Compile it into the product
8786 // as needed.
8787 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8788   return debug_cms_space->verify_chunk_in_free_list(fc);
8789 }
8790 #endif
8791 
8792 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8793   if (CMSTraceSweeper) {
8794     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8795                            fc, fc->size());
8796   }
8797 }
8798 
8799 // CMSIsAliveClosure
8800 bool CMSIsAliveClosure::do_object_b(oop obj) {
8801   HeapWord* addr = (HeapWord*)obj;
8802   return addr != NULL &&
8803          (!_span.contains(addr) || _bit_map->isMarked(addr));
8804 }
8805 
8806 
8807 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8808                       MemRegion span,
8809                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8810                       bool cpc):
8811   _collector(collector),
8812   _span(span),
8813   _bit_map(bit_map),
8814   _mark_stack(mark_stack),
8815   _concurrent_precleaning(cpc) {
8816   assert(!_span.is_empty(), "Empty span could spell trouble");
8817 }
8818 
8819 
8820 // CMSKeepAliveClosure: the serial version
8821 void CMSKeepAliveClosure::do_oop(oop obj) {
8822   HeapWord* addr = (HeapWord*)obj;
8823   if (_span.contains(addr) &&
8824       !_bit_map->isMarked(addr)) {
8825     _bit_map->mark(addr);
8826     bool simulate_overflow = false;
8827     NOT_PRODUCT(
8828       if (CMSMarkStackOverflowALot &&
8829           _collector->simulate_overflow()) {
8830         // simulate a stack overflow
8831         simulate_overflow = true;
8832       }
8833     )
8834     if (simulate_overflow || !_mark_stack->push(obj)) {
8835       if (_concurrent_precleaning) {
8836         // We dirty the overflown object and let the remark
8837         // phase deal with it.
8838         assert(_collector->overflow_list_is_empty(), "Error");
8839         // In the case of object arrays, we need to dirty all of
8840         // the cards that the object spans. No locking or atomics
8841         // are needed since no one else can be mutating the mod union
8842         // table.
8843         if (obj->is_objArray()) {
8844           size_t sz = obj->size();
8845           HeapWord* end_card_addr =
8846             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8847           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8848           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8849           _collector->_modUnionTable.mark_range(redirty_range);
8850         } else {
8851           _collector->_modUnionTable.mark(addr);
8852         }
8853         _collector->_ser_kac_preclean_ovflw++;
8854       } else {
8855         _collector->push_on_overflow_list(obj);
8856         _collector->_ser_kac_ovflw++;
8857       }
8858     }
8859   }
8860 }
8861 
8862 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8863 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8864 
8865 // CMSParKeepAliveClosure: a parallel version of the above.
8866 // The work queues are private to each closure (thread),
8867 // but (may be) available for stealing by other threads.
8868 void CMSParKeepAliveClosure::do_oop(oop obj) {
8869   HeapWord* addr = (HeapWord*)obj;
8870   if (_span.contains(addr) &&
8871       !_bit_map->isMarked(addr)) {
8872     // In general, during recursive tracing, several threads
8873     // may be concurrently getting here; the first one to
8874     // "tag" it, claims it.
8875     if (_bit_map->par_mark(addr)) {
8876       bool res = _work_queue->push(obj);
8877       assert(res, "Low water mark should be much less than capacity");
8878       // Do a recursive trim in the hope that this will keep
8879       // stack usage lower, but leave some oops for potential stealers
8880       trim_queue(_low_water_mark);
8881     } // Else, another thread got there first
8882   }
8883 }
8884 
8885 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8886 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8887 
8888 void CMSParKeepAliveClosure::trim_queue(uint max) {
8889   while (_work_queue->size() > max) {
8890     oop new_oop;
8891     if (_work_queue->pop_local(new_oop)) {
8892       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8893       assert(_bit_map->isMarked((HeapWord*)new_oop),
8894              "no white objects on this stack!");
8895       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8896       // iterate over the oops in this oop, marking and pushing
8897       // the ones in CMS heap (i.e. in _span).
8898       new_oop->oop_iterate(&_mark_and_push);
8899     }
8900   }
8901 }
8902 
8903 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8904                                 CMSCollector* collector,
8905                                 MemRegion span, CMSBitMap* bit_map,
8906                                 OopTaskQueue* work_queue):
8907   _collector(collector),
8908   _span(span),
8909   _bit_map(bit_map),
8910   _work_queue(work_queue) { }
8911 
8912 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8913   HeapWord* addr = (HeapWord*)obj;
8914   if (_span.contains(addr) &&
8915       !_bit_map->isMarked(addr)) {
8916     if (_bit_map->par_mark(addr)) {
8917       bool simulate_overflow = false;
8918       NOT_PRODUCT(
8919         if (CMSMarkStackOverflowALot &&
8920             _collector->par_simulate_overflow()) {
8921           // simulate a stack overflow
8922           simulate_overflow = true;
8923         }
8924       )
8925       if (simulate_overflow || !_work_queue->push(obj)) {
8926         _collector->par_push_on_overflow_list(obj);
8927         _collector->_par_kac_ovflw++;
8928       }
8929     } // Else another thread got there already
8930   }
8931 }
8932 
8933 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8934 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8935 
8936 //////////////////////////////////////////////////////////////////
8937 //  CMSExpansionCause                /////////////////////////////
8938 //////////////////////////////////////////////////////////////////
8939 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8940   switch (cause) {
8941     case _no_expansion:
8942       return "No expansion";
8943     case _satisfy_free_ratio:
8944       return "Free ratio";
8945     case _satisfy_promotion:
8946       return "Satisfy promotion";
8947     case _satisfy_allocation:
8948       return "allocation";
8949     case _allocate_par_lab:
8950       return "Par LAB";
8951     case _allocate_par_spooling_space:
8952       return "Par Spooling Space";
8953     case _adaptive_size_policy:
8954       return "Ergonomics";
8955     default:
8956       return "unknown";
8957   }
8958 }
8959 
8960 void CMSDrainMarkingStackClosure::do_void() {
8961   // the max number to take from overflow list at a time
8962   const size_t num = _mark_stack->capacity()/4;
8963   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8964          "Overflow list should be NULL during concurrent phases");
8965   while (!_mark_stack->isEmpty() ||
8966          // if stack is empty, check the overflow list
8967          _collector->take_from_overflow_list(num, _mark_stack)) {
8968     oop obj = _mark_stack->pop();
8969     HeapWord* addr = (HeapWord*)obj;
8970     assert(_span.contains(addr), "Should be within span");
8971     assert(_bit_map->isMarked(addr), "Should be marked");
8972     assert(obj->is_oop(), "Should be an oop");
8973     obj->oop_iterate(_keep_alive);
8974   }
8975 }
8976 
8977 void CMSParDrainMarkingStackClosure::do_void() {
8978   // drain queue
8979   trim_queue(0);
8980 }
8981 
8982 // Trim our work_queue so its length is below max at return
8983 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8984   while (_work_queue->size() > max) {
8985     oop new_oop;
8986     if (_work_queue->pop_local(new_oop)) {
8987       assert(new_oop->is_oop(), "Expected an oop");
8988       assert(_bit_map->isMarked((HeapWord*)new_oop),
8989              "no white objects on this stack!");
8990       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8991       // iterate over the oops in this oop, marking and pushing
8992       // the ones in CMS heap (i.e. in _span).
8993       new_oop->oop_iterate(&_mark_and_push);
8994     }
8995   }
8996 }
8997 
8998 ////////////////////////////////////////////////////////////////////
8999 // Support for Marking Stack Overflow list handling and related code
9000 ////////////////////////////////////////////////////////////////////
9001 // Much of the following code is similar in shape and spirit to the
9002 // code used in ParNewGC. We should try and share that code
9003 // as much as possible in the future.
9004 
9005 #ifndef PRODUCT
9006 // Debugging support for CMSStackOverflowALot
9007 
9008 // It's OK to call this multi-threaded;  the worst thing
9009 // that can happen is that we'll get a bunch of closely
9010 // spaced simulated overflows, but that's OK, in fact
9011 // probably good as it would exercise the overflow code
9012 // under contention.
9013 bool CMSCollector::simulate_overflow() {
9014   if (_overflow_counter-- <= 0) { // just being defensive
9015     _overflow_counter = CMSMarkStackOverflowInterval;
9016     return true;
9017   } else {
9018     return false;
9019   }
9020 }
9021 
9022 bool CMSCollector::par_simulate_overflow() {
9023   return simulate_overflow();
9024 }
9025 #endif
9026 
9027 // Single-threaded
9028 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
9029   assert(stack->isEmpty(), "Expected precondition");
9030   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
9031   size_t i = num;
9032   oop  cur = _overflow_list;
9033   const markOop proto = markOopDesc::prototype();
9034   NOT_PRODUCT(ssize_t n = 0;)
9035   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
9036     next = oop(cur->mark());
9037     cur->set_mark(proto);   // until proven otherwise
9038     assert(cur->is_oop(), "Should be an oop");
9039     bool res = stack->push(cur);
9040     assert(res, "Bit off more than can chew?");
9041     NOT_PRODUCT(n++;)
9042   }
9043   _overflow_list = cur;
9044 #ifndef PRODUCT
9045   assert(_num_par_pushes >= n, "Too many pops?");
9046   _num_par_pushes -=n;
9047 #endif
9048   return !stack->isEmpty();
9049 }
9050 
9051 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
9052 // (MT-safe) Get a prefix of at most "num" from the list.
9053 // The overflow list is chained through the mark word of
9054 // each object in the list. We fetch the entire list,
9055 // break off a prefix of the right size and return the
9056 // remainder. If other threads try to take objects from
9057 // the overflow list at that time, they will wait for
9058 // some time to see if data becomes available. If (and
9059 // only if) another thread places one or more object(s)
9060 // on the global list before we have returned the suffix
9061 // to the global list, we will walk down our local list
9062 // to find its end and append the global list to
9063 // our suffix before returning it. This suffix walk can
9064 // prove to be expensive (quadratic in the amount of traffic)
9065 // when there are many objects in the overflow list and
9066 // there is much producer-consumer contention on the list.
9067 // *NOTE*: The overflow list manipulation code here and
9068 // in ParNewGeneration:: are very similar in shape,
9069 // except that in the ParNew case we use the old (from/eden)
9070 // copy of the object to thread the list via its klass word.
9071 // Because of the common code, if you make any changes in
9072 // the code below, please check the ParNew version to see if
9073 // similar changes might be needed.
9074 // CR 6797058 has been filed to consolidate the common code.
9075 bool CMSCollector::par_take_from_overflow_list(size_t num,
9076                                                OopTaskQueue* work_q,
9077                                                int no_of_gc_threads) {
9078   assert(work_q->size() == 0, "First empty local work queue");
9079   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
9080   if (_overflow_list == NULL) {
9081     return false;
9082   }
9083   // Grab the entire list; we'll put back a suffix
9084   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9085   Thread* tid = Thread::current();
9086   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9087   // set to ParallelGCThreads.
9088   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9089   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9090   // If the list is busy, we spin for a short while,
9091   // sleeping between attempts to get the list.
9092   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9093     os::sleep(tid, sleep_time_millis, false);
9094     if (_overflow_list == NULL) {
9095       // Nothing left to take
9096       return false;
9097     } else if (_overflow_list != BUSY) {
9098       // Try and grab the prefix
9099       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9100     }
9101   }
9102   // If the list was found to be empty, or we spun long
9103   // enough, we give up and return empty-handed. If we leave
9104   // the list in the BUSY state below, it must be the case that
9105   // some other thread holds the overflow list and will set it
9106   // to a non-BUSY state in the future.
9107   if (prefix == NULL || prefix == BUSY) {
9108      // Nothing to take or waited long enough
9109      if (prefix == NULL) {
9110        // Write back the NULL in case we overwrote it with BUSY above
9111        // and it is still the same value.
9112        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9113      }
9114      return false;
9115   }
9116   assert(prefix != NULL && prefix != BUSY, "Error");
9117   size_t i = num;
9118   oop cur = prefix;
9119   // Walk down the first "num" objects, unless we reach the end.
9120   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9121   if (cur->mark() == NULL) {
9122     // We have "num" or fewer elements in the list, so there
9123     // is nothing to return to the global list.
9124     // Write back the NULL in lieu of the BUSY we wrote
9125     // above, if it is still the same value.
9126     if (_overflow_list == BUSY) {
9127       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9128     }
9129   } else {
9130     // Chop off the suffix and return it to the global list.
9131     assert(cur->mark() != BUSY, "Error");
9132     oop suffix_head = cur->mark(); // suffix will be put back on global list
9133     cur->set_mark(NULL);           // break off suffix
9134     // It's possible that the list is still in the empty(busy) state
9135     // we left it in a short while ago; in that case we may be
9136     // able to place back the suffix without incurring the cost
9137     // of a walk down the list.
9138     oop observed_overflow_list = _overflow_list;
9139     oop cur_overflow_list = observed_overflow_list;
9140     bool attached = false;
9141     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9142       observed_overflow_list =
9143         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9144       if (cur_overflow_list == observed_overflow_list) {
9145         attached = true;
9146         break;
9147       } else cur_overflow_list = observed_overflow_list;
9148     }
9149     if (!attached) {
9150       // Too bad, someone else sneaked in (at least) an element; we'll need
9151       // to do a splice. Find tail of suffix so we can prepend suffix to global
9152       // list.
9153       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9154       oop suffix_tail = cur;
9155       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9156              "Tautology");
9157       observed_overflow_list = _overflow_list;
9158       do {
9159         cur_overflow_list = observed_overflow_list;
9160         if (cur_overflow_list != BUSY) {
9161           // Do the splice ...
9162           suffix_tail->set_mark(markOop(cur_overflow_list));
9163         } else { // cur_overflow_list == BUSY
9164           suffix_tail->set_mark(NULL);
9165         }
9166         // ... and try to place spliced list back on overflow_list ...
9167         observed_overflow_list =
9168           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9169       } while (cur_overflow_list != observed_overflow_list);
9170       // ... until we have succeeded in doing so.
9171     }
9172   }
9173 
9174   // Push the prefix elements on work_q
9175   assert(prefix != NULL, "control point invariant");
9176   const markOop proto = markOopDesc::prototype();
9177   oop next;
9178   NOT_PRODUCT(ssize_t n = 0;)
9179   for (cur = prefix; cur != NULL; cur = next) {
9180     next = oop(cur->mark());
9181     cur->set_mark(proto);   // until proven otherwise
9182     assert(cur->is_oop(), "Should be an oop");
9183     bool res = work_q->push(cur);
9184     assert(res, "Bit off more than we can chew?");
9185     NOT_PRODUCT(n++;)
9186   }
9187 #ifndef PRODUCT
9188   assert(_num_par_pushes >= n, "Too many pops?");
9189   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9190 #endif
9191   return true;
9192 }
9193 
9194 // Single-threaded
9195 void CMSCollector::push_on_overflow_list(oop p) {
9196   NOT_PRODUCT(_num_par_pushes++;)
9197   assert(p->is_oop(), "Not an oop");
9198   preserve_mark_if_necessary(p);
9199   p->set_mark((markOop)_overflow_list);
9200   _overflow_list = p;
9201 }
9202 
9203 // Multi-threaded; use CAS to prepend to overflow list
9204 void CMSCollector::par_push_on_overflow_list(oop p) {
9205   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9206   assert(p->is_oop(), "Not an oop");
9207   par_preserve_mark_if_necessary(p);
9208   oop observed_overflow_list = _overflow_list;
9209   oop cur_overflow_list;
9210   do {
9211     cur_overflow_list = observed_overflow_list;
9212     if (cur_overflow_list != BUSY) {
9213       p->set_mark(markOop(cur_overflow_list));
9214     } else {
9215       p->set_mark(NULL);
9216     }
9217     observed_overflow_list =
9218       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9219   } while (cur_overflow_list != observed_overflow_list);
9220 }
9221 #undef BUSY
9222 
9223 // Single threaded
9224 // General Note on GrowableArray: pushes may silently fail
9225 // because we are (temporarily) out of C-heap for expanding
9226 // the stack. The problem is quite ubiquitous and affects
9227 // a lot of code in the JVM. The prudent thing for GrowableArray
9228 // to do (for now) is to exit with an error. However, that may
9229 // be too draconian in some cases because the caller may be
9230 // able to recover without much harm. For such cases, we
9231 // should probably introduce a "soft_push" method which returns
9232 // an indication of success or failure with the assumption that
9233 // the caller may be able to recover from a failure; code in
9234 // the VM can then be changed, incrementally, to deal with such
9235 // failures where possible, thus, incrementally hardening the VM
9236 // in such low resource situations.
9237 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9238   _preserved_oop_stack.push(p);
9239   _preserved_mark_stack.push(m);
9240   assert(m == p->mark(), "Mark word changed");
9241   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9242          "bijection");
9243 }
9244 
9245 // Single threaded
9246 void CMSCollector::preserve_mark_if_necessary(oop p) {
9247   markOop m = p->mark();
9248   if (m->must_be_preserved(p)) {
9249     preserve_mark_work(p, m);
9250   }
9251 }
9252 
9253 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9254   markOop m = p->mark();
9255   if (m->must_be_preserved(p)) {
9256     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9257     // Even though we read the mark word without holding
9258     // the lock, we are assured that it will not change
9259     // because we "own" this oop, so no other thread can
9260     // be trying to push it on the overflow list; see
9261     // the assertion in preserve_mark_work() that checks
9262     // that m == p->mark().
9263     preserve_mark_work(p, m);
9264   }
9265 }
9266 
9267 // We should be able to do this multi-threaded,
9268 // a chunk of stack being a task (this is
9269 // correct because each oop only ever appears
9270 // once in the overflow list. However, it's
9271 // not very easy to completely overlap this with
9272 // other operations, so will generally not be done
9273 // until all work's been completed. Because we
9274 // expect the preserved oop stack (set) to be small,
9275 // it's probably fine to do this single-threaded.
9276 // We can explore cleverer concurrent/overlapped/parallel
9277 // processing of preserved marks if we feel the
9278 // need for this in the future. Stack overflow should
9279 // be so rare in practice and, when it happens, its
9280 // effect on performance so great that this will
9281 // likely just be in the noise anyway.
9282 void CMSCollector::restore_preserved_marks_if_any() {
9283   assert(SafepointSynchronize::is_at_safepoint(),
9284          "world should be stopped");
9285   assert(Thread::current()->is_ConcurrentGC_thread() ||
9286          Thread::current()->is_VM_thread(),
9287          "should be single-threaded");
9288   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9289          "bijection");
9290 
9291   while (!_preserved_oop_stack.is_empty()) {
9292     oop p = _preserved_oop_stack.pop();
9293     assert(p->is_oop(), "Should be an oop");
9294     assert(_span.contains(p), "oop should be in _span");
9295     assert(p->mark() == markOopDesc::prototype(),
9296            "Set when taken from overflow list");
9297     markOop m = _preserved_mark_stack.pop();
9298     p->set_mark(m);
9299   }
9300   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9301          "stacks were cleared above");
9302 }
9303 
9304 #ifndef PRODUCT
9305 bool CMSCollector::no_preserved_marks() const {
9306   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9307 }
9308 #endif
9309 
9310 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9311 {
9312   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9313   CMSAdaptiveSizePolicy* size_policy =
9314     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9315   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9316     "Wrong type for size policy");
9317   return size_policy;
9318 }
9319 
9320 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9321                                            size_t desired_promo_size) {
9322   if (cur_promo_size < desired_promo_size) {
9323     size_t expand_bytes = desired_promo_size - cur_promo_size;
9324     if (PrintAdaptiveSizePolicy && Verbose) {
9325       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9326         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9327         expand_bytes);
9328     }
9329     expand(expand_bytes,
9330            MinHeapDeltaBytes,
9331            CMSExpansionCause::_adaptive_size_policy);
9332   } else if (desired_promo_size < cur_promo_size) {
9333     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9334     if (PrintAdaptiveSizePolicy && Verbose) {
9335       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9336         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9337         shrink_bytes);
9338     }
9339     shrink(shrink_bytes);
9340   }
9341 }
9342 
9343 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9344   GenCollectedHeap* gch = GenCollectedHeap::heap();
9345   CMSGCAdaptivePolicyCounters* counters =
9346     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9347   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9348     "Wrong kind of counters");
9349   return counters;
9350 }
9351 
9352 
9353 void ASConcurrentMarkSweepGeneration::update_counters() {
9354   if (UsePerfData) {
9355     _space_counters->update_all();
9356     _gen_counters->update_all();
9357     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9358     GenCollectedHeap* gch = GenCollectedHeap::heap();
9359     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9360     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9361       "Wrong gc statistics type");
9362     counters->update_counters(gc_stats_l);
9363   }
9364 }
9365 
9366 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9367   if (UsePerfData) {
9368     _space_counters->update_used(used);
9369     _space_counters->update_capacity();
9370     _gen_counters->update_all();
9371 
9372     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9373     GenCollectedHeap* gch = GenCollectedHeap::heap();
9374     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9375     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9376       "Wrong gc statistics type");
9377     counters->update_counters(gc_stats_l);
9378   }
9379 }
9380 
9381 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9382   assert_locked_or_safepoint(Heap_lock);
9383   assert_lock_strong(freelistLock());
9384   HeapWord* old_end = _cmsSpace->end();
9385   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9386   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9387   FreeChunk* chunk_at_end = find_chunk_at_end();
9388   if (chunk_at_end == NULL) {
9389     // No room to shrink
9390     if (PrintGCDetails && Verbose) {
9391       gclog_or_tty->print_cr("No room to shrink: old_end  "
9392         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9393         " chunk_at_end  " PTR_FORMAT,
9394         old_end, unallocated_start, chunk_at_end);
9395     }
9396     return;
9397   } else {
9398 
9399     // Find the chunk at the end of the space and determine
9400     // how much it can be shrunk.
9401     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9402     size_t aligned_shrinkable_size_in_bytes =
9403       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9404     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9405       "Inconsistent chunk at end of space");
9406     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9407     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9408 
9409     // Shrink the underlying space
9410     _virtual_space.shrink_by(bytes);
9411     if (PrintGCDetails && Verbose) {
9412       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9413         " desired_bytes " SIZE_FORMAT
9414         " shrinkable_size_in_bytes " SIZE_FORMAT
9415         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9416         "  bytes  " SIZE_FORMAT,
9417         desired_bytes, shrinkable_size_in_bytes,
9418         aligned_shrinkable_size_in_bytes, bytes);
9419       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9420         "  unallocated_start  " SIZE_FORMAT,
9421         old_end, unallocated_start);
9422     }
9423 
9424     // If the space did shrink (shrinking is not guaranteed),
9425     // shrink the chunk at the end by the appropriate amount.
9426     if (((HeapWord*)_virtual_space.high()) < old_end) {
9427       size_t new_word_size =
9428         heap_word_size(_virtual_space.committed_size());
9429 
9430       // Have to remove the chunk from the dictionary because it is changing
9431       // size and might be someplace elsewhere in the dictionary.
9432 
9433       // Get the chunk at end, shrink it, and put it
9434       // back.
9435       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9436       size_t word_size_change = word_size_before - new_word_size;
9437       size_t chunk_at_end_old_size = chunk_at_end->size();
9438       assert(chunk_at_end_old_size >= word_size_change,
9439         "Shrink is too large");
9440       chunk_at_end->set_size(chunk_at_end_old_size -
9441                           word_size_change);
9442       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9443         word_size_change);
9444 
9445       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9446 
9447       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9448       _bts->resize(new_word_size);  // resize the block offset shared array
9449       Universe::heap()->barrier_set()->resize_covered_region(mr);
9450       _cmsSpace->assert_locked();
9451       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9452 
9453       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9454 
9455       // update the space and generation capacity counters
9456       if (UsePerfData) {
9457         _space_counters->update_capacity();
9458         _gen_counters->update_all();
9459       }
9460 
9461       if (Verbose && PrintGCDetails) {
9462         size_t new_mem_size = _virtual_space.committed_size();
9463         size_t old_mem_size = new_mem_size + bytes;
9464         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9465                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9466       }
9467     }
9468 
9469     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9470       "Inconsistency at end of space");
9471     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9472       "Shrinking is inconsistent");
9473     return;
9474   }
9475 }
9476 // Transfer some number of overflown objects to usual marking
9477 // stack. Return true if some objects were transferred.
9478 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9479   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9480                     (size_t)ParGCDesiredObjsFromOverflowList);
9481 
9482   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9483   assert(_collector->overflow_list_is_empty() || res,
9484          "If list is not empty, we should have taken something");
9485   assert(!res || !_mark_stack->isEmpty(),
9486          "If we took something, it should now be on our stack");
9487   return res;
9488 }
9489 
9490 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9491   size_t res = _sp->block_size_no_stall(addr, _collector);
9492   if (_sp->block_is_obj(addr)) {
9493     if (_live_bit_map->isMarked(addr)) {
9494       // It can't have been dead in a previous cycle
9495       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9496     } else {
9497       _dead_bit_map->mark(addr);      // mark the dead object
9498     }
9499   }
9500   // Could be 0, if the block size could not be computed without stalling.
9501   return res;
9502 }
9503 
9504 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9505 
9506   switch (phase) {
9507     case CMSCollector::InitialMarking:
9508       initialize(true  /* fullGC */ ,
9509                  cause /* cause of the GC */,
9510                  true  /* recordGCBeginTime */,
9511                  true  /* recordPreGCUsage */,
9512                  false /* recordPeakUsage */,
9513                  false /* recordPostGCusage */,
9514                  true  /* recordAccumulatedGCTime */,
9515                  false /* recordGCEndTime */,
9516                  false /* countCollection */  );
9517       break;
9518 
9519     case CMSCollector::FinalMarking:
9520       initialize(true  /* fullGC */ ,
9521                  cause /* cause of the GC */,
9522                  false /* recordGCBeginTime */,
9523                  false /* recordPreGCUsage */,
9524                  false /* recordPeakUsage */,
9525                  false /* recordPostGCusage */,
9526                  true  /* recordAccumulatedGCTime */,
9527                  false /* recordGCEndTime */,
9528                  false /* countCollection */  );
9529       break;
9530 
9531     case CMSCollector::Sweeping:
9532       initialize(true  /* fullGC */ ,
9533                  cause /* cause of the GC */,
9534                  false /* recordGCBeginTime */,
9535                  false /* recordPreGCUsage */,
9536                  true  /* recordPeakUsage */,
9537                  true  /* recordPostGCusage */,
9538                  false /* recordAccumulatedGCTime */,
9539                  true  /* recordGCEndTime */,
9540                  true  /* countCollection */  );
9541       break;
9542 
9543     default:
9544       ShouldNotReachHere();
9545   }
9546 }