1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/tenuredGeneration.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "services/memoryService.hpp"
  64 #include "services/runtimeService.hpp"
  65 
  66 // statics
  67 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  68 bool CMSCollector::_full_gc_requested = false;
  69 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  70 
  71 //////////////////////////////////////////////////////////////////
  72 // In support of CMS/VM thread synchronization
  73 //////////////////////////////////////////////////////////////////
  74 // We split use of the CGC_lock into 2 "levels".
  75 // The low-level locking is of the usual CGC_lock monitor. We introduce
  76 // a higher level "token" (hereafter "CMS token") built on top of the
  77 // low level monitor (hereafter "CGC lock").
  78 // The token-passing protocol gives priority to the VM thread. The
  79 // CMS-lock doesn't provide any fairness guarantees, but clients
  80 // should ensure that it is only held for very short, bounded
  81 // durations.
  82 //
  83 // When either of the CMS thread or the VM thread is involved in
  84 // collection operations during which it does not want the other
  85 // thread to interfere, it obtains the CMS token.
  86 //
  87 // If either thread tries to get the token while the other has
  88 // it, that thread waits. However, if the VM thread and CMS thread
  89 // both want the token, then the VM thread gets priority while the
  90 // CMS thread waits. This ensures, for instance, that the "concurrent"
  91 // phases of the CMS thread's work do not block out the VM thread
  92 // for long periods of time as the CMS thread continues to hog
  93 // the token. (See bug 4616232).
  94 //
  95 // The baton-passing functions are, however, controlled by the
  96 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  97 // and here the low-level CMS lock, not the high level token,
  98 // ensures mutual exclusion.
  99 //
 100 // Two important conditions that we have to satisfy:
 101 // 1. if a thread does a low-level wait on the CMS lock, then it
 102 //    relinquishes the CMS token if it were holding that token
 103 //    when it acquired the low-level CMS lock.
 104 // 2. any low-level notifications on the low-level lock
 105 //    should only be sent when a thread has relinquished the token.
 106 //
 107 // In the absence of either property, we'd have potential deadlock.
 108 //
 109 // We protect each of the CMS (concurrent and sequential) phases
 110 // with the CMS _token_, not the CMS _lock_.
 111 //
 112 // The only code protected by CMS lock is the token acquisition code
 113 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 114 // baton-passing code.
 115 //
 116 // Unfortunately, i couldn't come up with a good abstraction to factor and
 117 // hide the naked CGC_lock manipulation in the baton-passing code
 118 // further below. That's something we should try to do. Also, the proof
 119 // of correctness of this 2-level locking scheme is far from obvious,
 120 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 121 // that there may be a theoretical possibility of delay/starvation in the
 122 // low-level lock/wait/notify scheme used for the baton-passing because of
 123 // potential interference with the priority scheme embodied in the
 124 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 125 // invocation further below and marked with "XXX 20011219YSR".
 126 // Indeed, as we note elsewhere, this may become yet more slippery
 127 // in the presence of multiple CMS and/or multiple VM threads. XXX
 128 
 129 class CMSTokenSync: public StackObj {
 130  private:
 131   bool _is_cms_thread;
 132  public:
 133   CMSTokenSync(bool is_cms_thread):
 134     _is_cms_thread(is_cms_thread) {
 135     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 136            "Incorrect argument to constructor");
 137     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 138   }
 139 
 140   ~CMSTokenSync() {
 141     assert(_is_cms_thread ?
 142              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 143              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 144           "Incorrect state");
 145     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 146   }
 147 };
 148 
 149 // Convenience class that does a CMSTokenSync, and then acquires
 150 // upto three locks.
 151 class CMSTokenSyncWithLocks: public CMSTokenSync {
 152  private:
 153   // Note: locks are acquired in textual declaration order
 154   // and released in the opposite order
 155   MutexLockerEx _locker1, _locker2, _locker3;
 156  public:
 157   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 158                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 159     CMSTokenSync(is_cms_thread),
 160     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 161     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 162     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 163   { }
 164 };
 165 
 166 
 167 // Wrapper class to temporarily disable icms during a foreground cms collection.
 168 class ICMSDisabler: public StackObj {
 169  public:
 170   // The ctor disables icms and wakes up the thread so it notices the change;
 171   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 172   // CMSIncrementalMode.
 173   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 174   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 175 };
 176 
 177 //////////////////////////////////////////////////////////////////
 178 //  Concurrent Mark-Sweep Generation /////////////////////////////
 179 //////////////////////////////////////////////////////////////////
 180 
 181 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 182 
 183 // This struct contains per-thread things necessary to support parallel
 184 // young-gen collection.
 185 class CMSParGCThreadState: public CHeapObj<mtGC> {
 186  public:
 187   CFLS_LAB lab;
 188   PromotionInfo promo;
 189 
 190   // Constructor.
 191   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 192     promo.setSpace(cfls);
 193   }
 194 };
 195 
 196 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 197      ReservedSpace rs, size_t initial_byte_size, int level,
 198      CardTableRS* ct, bool use_adaptive_freelists,
 199      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 200   CardGeneration(rs, initial_byte_size, level, ct),
 201   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 202   _debug_collection_type(Concurrent_collection_type),
 203   _did_compact(false)
 204 {
 205   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 206   HeapWord* end    = (HeapWord*) _virtual_space.high();
 207 
 208   _direct_allocated_words = 0;
 209   NOT_PRODUCT(
 210     _numObjectsPromoted = 0;
 211     _numWordsPromoted = 0;
 212     _numObjectsAllocated = 0;
 213     _numWordsAllocated = 0;
 214   )
 215 
 216   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 217                                            use_adaptive_freelists,
 218                                            dictionaryChoice);
 219   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 220   if (_cmsSpace == NULL) {
 221     vm_exit_during_initialization(
 222       "CompactibleFreeListSpace allocation failure");
 223   }
 224   _cmsSpace->_gen = this;
 225 
 226   _gc_stats = new CMSGCStats();
 227 
 228   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 229   // offsets match. The ability to tell free chunks from objects
 230   // depends on this property.
 231   debug_only(
 232     FreeChunk* junk = NULL;
 233     assert(UseCompressedClassPointers ||
 234            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 235            "Offset of FreeChunk::_prev within FreeChunk must match"
 236            "  that of OopDesc::_klass within OopDesc");
 237   )
 238   if (CollectedHeap::use_parallel_gc_threads()) {
 239     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 240     _par_gc_thread_states =
 241       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 242     if (_par_gc_thread_states == NULL) {
 243       vm_exit_during_initialization("Could not allocate par gc structs");
 244     }
 245     for (uint i = 0; i < ParallelGCThreads; i++) {
 246       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 247       if (_par_gc_thread_states[i] == NULL) {
 248         vm_exit_during_initialization("Could not allocate par gc structs");
 249       }
 250     }
 251   } else {
 252     _par_gc_thread_states = NULL;
 253   }
 254   _incremental_collection_failed = false;
 255   // The "dilatation_factor" is the expansion that can occur on
 256   // account of the fact that the minimum object size in the CMS
 257   // generation may be larger than that in, say, a contiguous young
 258   //  generation.
 259   // Ideally, in the calculation below, we'd compute the dilatation
 260   // factor as: MinChunkSize/(promoting_gen's min object size)
 261   // Since we do not have such a general query interface for the
 262   // promoting generation, we'll instead just use the minimum
 263   // object size (which today is a header's worth of space);
 264   // note that all arithmetic is in units of HeapWords.
 265   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 266   assert(_dilatation_factor >= 1.0, "from previous assert");
 267 }
 268 
 269 
 270 // The field "_initiating_occupancy" represents the occupancy percentage
 271 // at which we trigger a new collection cycle.  Unless explicitly specified
 272 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 273 // is calculated by:
 274 //
 275 //   Let "f" be MinHeapFreeRatio in
 276 //
 277 //    _initiating_occupancy = 100-f +
 278 //                           f * (CMSTriggerRatio/100)
 279 //   where CMSTriggerRatio is the argument "tr" below.
 280 //
 281 // That is, if we assume the heap is at its desired maximum occupancy at the
 282 // end of a collection, we let CMSTriggerRatio of the (purported) free
 283 // space be allocated before initiating a new collection cycle.
 284 //
 285 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 286   assert(io <= 100 && tr <= 100, "Check the arguments");
 287   if (io >= 0) {
 288     _initiating_occupancy = (double)io / 100.0;
 289   } else {
 290     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 291                              (double)(tr * MinHeapFreeRatio) / 100.0)
 292                             / 100.0;
 293   }
 294 }
 295 
 296 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 297   assert(collector() != NULL, "no collector");
 298   collector()->ref_processor_init();
 299 }
 300 
 301 void CMSCollector::ref_processor_init() {
 302   if (_ref_processor == NULL) {
 303     // Allocate and initialize a reference processor
 304     _ref_processor =
 305       new ReferenceProcessor(_span,                               // span
 306                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 307                              (int) ParallelGCThreads,             // mt processing degree
 308                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 309                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 310                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 311                              &_is_alive_closure,                  // closure for liveness info
 312                              false);                              // next field updates do not need write barrier
 313     // Initialize the _ref_processor field of CMSGen
 314     _cmsGen->set_ref_processor(_ref_processor);
 315 
 316   }
 317 }
 318 
 319 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 320   GenCollectedHeap* gch = GenCollectedHeap::heap();
 321   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 322     "Wrong type of heap");
 323   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 324     gch->gen_policy()->size_policy();
 325   assert(sp->is_gc_cms_adaptive_size_policy(),
 326     "Wrong type of size policy");
 327   return sp;
 328 }
 329 
 330 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 331   CMSGCAdaptivePolicyCounters* results =
 332     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 333   assert(
 334     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 335     "Wrong gc policy counter kind");
 336   return results;
 337 }
 338 
 339 
 340 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 341 
 342   const char* gen_name = "old";
 343 
 344   // Generation Counters - generation 1, 1 subspace
 345   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 346 
 347   _space_counters = new GSpaceCounters(gen_name, 0,
 348                                        _virtual_space.reserved_size(),
 349                                        this, _gen_counters);
 350 }
 351 
 352 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 353   _cms_gen(cms_gen)
 354 {
 355   assert(alpha <= 100, "bad value");
 356   _saved_alpha = alpha;
 357 
 358   // Initialize the alphas to the bootstrap value of 100.
 359   _gc0_alpha = _cms_alpha = 100;
 360 
 361   _cms_begin_time.update();
 362   _cms_end_time.update();
 363 
 364   _gc0_duration = 0.0;
 365   _gc0_period = 0.0;
 366   _gc0_promoted = 0;
 367 
 368   _cms_duration = 0.0;
 369   _cms_period = 0.0;
 370   _cms_allocated = 0;
 371 
 372   _cms_used_at_gc0_begin = 0;
 373   _cms_used_at_gc0_end = 0;
 374   _allow_duty_cycle_reduction = false;
 375   _valid_bits = 0;
 376   _icms_duty_cycle = CMSIncrementalDutyCycle;
 377 }
 378 
 379 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 380   // TBD: CR 6909490
 381   return 1.0;
 382 }
 383 
 384 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 385 }
 386 
 387 // If promotion failure handling is on use
 388 // the padded average size of the promotion for each
 389 // young generation collection.
 390 double CMSStats::time_until_cms_gen_full() const {
 391   size_t cms_free = _cms_gen->cmsSpace()->free();
 392   GenCollectedHeap* gch = GenCollectedHeap::heap();
 393   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 394                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 395   if (cms_free > expected_promotion) {
 396     // Start a cms collection if there isn't enough space to promote
 397     // for the next minor collection.  Use the padded average as
 398     // a safety factor.
 399     cms_free -= expected_promotion;
 400 
 401     // Adjust by the safety factor.
 402     double cms_free_dbl = (double)cms_free;
 403     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 404     // Apply a further correction factor which tries to adjust
 405     // for recent occurance of concurrent mode failures.
 406     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 407     cms_free_dbl = cms_free_dbl * cms_adjustment;
 408 
 409     if (PrintGCDetails && Verbose) {
 410       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 411         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 412         cms_free, expected_promotion);
 413       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 414         cms_free_dbl, cms_consumption_rate() + 1.0);
 415     }
 416     // Add 1 in case the consumption rate goes to zero.
 417     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 418   }
 419   return 0.0;
 420 }
 421 
 422 // Compare the duration of the cms collection to the
 423 // time remaining before the cms generation is empty.
 424 // Note that the time from the start of the cms collection
 425 // to the start of the cms sweep (less than the total
 426 // duration of the cms collection) can be used.  This
 427 // has been tried and some applications experienced
 428 // promotion failures early in execution.  This was
 429 // possibly because the averages were not accurate
 430 // enough at the beginning.
 431 double CMSStats::time_until_cms_start() const {
 432   // We add "gc0_period" to the "work" calculation
 433   // below because this query is done (mostly) at the
 434   // end of a scavenge, so we need to conservatively
 435   // account for that much possible delay
 436   // in the query so as to avoid concurrent mode failures
 437   // due to starting the collection just a wee bit too
 438   // late.
 439   double work = cms_duration() + gc0_period();
 440   double deadline = time_until_cms_gen_full();
 441   // If a concurrent mode failure occurred recently, we want to be
 442   // more conservative and halve our expected time_until_cms_gen_full()
 443   if (work > deadline) {
 444     if (Verbose && PrintGCDetails) {
 445       gclog_or_tty->print(
 446         " CMSCollector: collect because of anticipated promotion "
 447         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 448         gc0_period(), time_until_cms_gen_full());
 449     }
 450     return 0.0;
 451   }
 452   return work - deadline;
 453 }
 454 
 455 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 456 // amount of change to prevent wild oscillation.
 457 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 458                                               unsigned int new_duty_cycle) {
 459   assert(old_duty_cycle <= 100, "bad input value");
 460   assert(new_duty_cycle <= 100, "bad input value");
 461 
 462   // Note:  use subtraction with caution since it may underflow (values are
 463   // unsigned).  Addition is safe since we're in the range 0-100.
 464   unsigned int damped_duty_cycle = new_duty_cycle;
 465   if (new_duty_cycle < old_duty_cycle) {
 466     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 467     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 468       damped_duty_cycle = old_duty_cycle - largest_delta;
 469     }
 470   } else if (new_duty_cycle > old_duty_cycle) {
 471     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 472     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 473       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 474     }
 475   }
 476   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 477 
 478   if (CMSTraceIncrementalPacing) {
 479     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 480                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 481   }
 482   return damped_duty_cycle;
 483 }
 484 
 485 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 486   assert(CMSIncrementalPacing && valid(),
 487          "should be handled in icms_update_duty_cycle()");
 488 
 489   double cms_time_so_far = cms_timer().seconds();
 490   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 491   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 492 
 493   // Avoid division by 0.
 494   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 495   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 496 
 497   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 498   if (new_duty_cycle > _icms_duty_cycle) {
 499     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 500     if (new_duty_cycle > 2) {
 501       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 502                                                 new_duty_cycle);
 503     }
 504   } else if (_allow_duty_cycle_reduction) {
 505     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 506     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 507     // Respect the minimum duty cycle.
 508     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 509     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 510   }
 511 
 512   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 513     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 514   }
 515 
 516   _allow_duty_cycle_reduction = false;
 517   return _icms_duty_cycle;
 518 }
 519 
 520 #ifndef PRODUCT
 521 void CMSStats::print_on(outputStream *st) const {
 522   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 523   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 524                gc0_duration(), gc0_period(), gc0_promoted());
 525   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 526             cms_duration(), cms_duration_per_mb(),
 527             cms_period(), cms_allocated());
 528   st->print(",cms_since_beg=%g,cms_since_end=%g",
 529             cms_time_since_begin(), cms_time_since_end());
 530   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 531             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 532   if (CMSIncrementalMode) {
 533     st->print(",dc=%d", icms_duty_cycle());
 534   }
 535 
 536   if (valid()) {
 537     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 538               promotion_rate(), cms_allocation_rate());
 539     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 540               cms_consumption_rate(), time_until_cms_gen_full());
 541   }
 542   st->print(" ");
 543 }
 544 #endif // #ifndef PRODUCT
 545 
 546 CMSCollector::CollectorState CMSCollector::_collectorState =
 547                              CMSCollector::Idling;
 548 bool CMSCollector::_foregroundGCIsActive = false;
 549 bool CMSCollector::_foregroundGCShouldWait = false;
 550 
 551 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 552                            CardTableRS*                   ct,
 553                            ConcurrentMarkSweepPolicy*     cp):
 554   _cmsGen(cmsGen),
 555   _ct(ct),
 556   _ref_processor(NULL),    // will be set later
 557   _conc_workers(NULL),     // may be set later
 558   _abort_preclean(false),
 559   _start_sampling(false),
 560   _between_prologue_and_epilogue(false),
 561   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 562   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 563                  -1 /* lock-free */, "No_lock" /* dummy */),
 564   _modUnionClosure(&_modUnionTable),
 565   _modUnionClosurePar(&_modUnionTable),
 566   // Adjust my span to cover old (cms) gen
 567   _span(cmsGen->reserved()),
 568   // Construct the is_alive_closure with _span & markBitMap
 569   _is_alive_closure(_span, &_markBitMap),
 570   _restart_addr(NULL),
 571   _overflow_list(NULL),
 572   _stats(cmsGen),
 573   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 574   _eden_chunk_array(NULL),     // may be set in ctor body
 575   _eden_chunk_capacity(0),     // -- ditto --
 576   _eden_chunk_index(0),        // -- ditto --
 577   _survivor_plab_array(NULL),  // -- ditto --
 578   _survivor_chunk_array(NULL), // -- ditto --
 579   _survivor_chunk_capacity(0), // -- ditto --
 580   _survivor_chunk_index(0),    // -- ditto --
 581   _ser_pmc_preclean_ovflw(0),
 582   _ser_kac_preclean_ovflw(0),
 583   _ser_pmc_remark_ovflw(0),
 584   _par_pmc_remark_ovflw(0),
 585   _ser_kac_ovflw(0),
 586   _par_kac_ovflw(0),
 587 #ifndef PRODUCT
 588   _num_par_pushes(0),
 589 #endif
 590   _collection_count_start(0),
 591   _verifying(false),
 592   _icms_start_limit(NULL),
 593   _icms_stop_limit(NULL),
 594   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 595   _completed_initialization(false),
 596   _collector_policy(cp),
 597   _should_unload_classes(CMSClassUnloadingEnabled),
 598   _concurrent_cycles_since_last_unload(0),
 599   _roots_scanning_options(SharedHeap::SO_None),
 600   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 601   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 602   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 603   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 604   _cms_start_registered(false)
 605 {
 606   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 607     ExplicitGCInvokesConcurrent = true;
 608   }
 609   // Now expand the span and allocate the collection support structures
 610   // (MUT, marking bit map etc.) to cover both generations subject to
 611   // collection.
 612 
 613   // For use by dirty card to oop closures.
 614   _cmsGen->cmsSpace()->set_collector(this);
 615 
 616   // Allocate MUT and marking bit map
 617   {
 618     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 619     if (!_markBitMap.allocate(_span)) {
 620       warning("Failed to allocate CMS Bit Map");
 621       return;
 622     }
 623     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 624   }
 625   {
 626     _modUnionTable.allocate(_span);
 627     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 628   }
 629 
 630   if (!_markStack.allocate(MarkStackSize)) {
 631     warning("Failed to allocate CMS Marking Stack");
 632     return;
 633   }
 634 
 635   // Support for multi-threaded concurrent phases
 636   if (CMSConcurrentMTEnabled) {
 637     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 638       // just for now
 639       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 640     }
 641     if (ConcGCThreads > 1) {
 642       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 643                                  ConcGCThreads, true);
 644       if (_conc_workers == NULL) {
 645         warning("GC/CMS: _conc_workers allocation failure: "
 646               "forcing -CMSConcurrentMTEnabled");
 647         CMSConcurrentMTEnabled = false;
 648       } else {
 649         _conc_workers->initialize_workers();
 650       }
 651     } else {
 652       CMSConcurrentMTEnabled = false;
 653     }
 654   }
 655   if (!CMSConcurrentMTEnabled) {
 656     ConcGCThreads = 0;
 657   } else {
 658     // Turn off CMSCleanOnEnter optimization temporarily for
 659     // the MT case where it's not fixed yet; see 6178663.
 660     CMSCleanOnEnter = false;
 661   }
 662   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 663          "Inconsistency");
 664 
 665   // Parallel task queues; these are shared for the
 666   // concurrent and stop-world phases of CMS, but
 667   // are not shared with parallel scavenge (ParNew).
 668   {
 669     uint i;
 670     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 671 
 672     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 673          || ParallelRefProcEnabled)
 674         && num_queues > 0) {
 675       _task_queues = new OopTaskQueueSet(num_queues);
 676       if (_task_queues == NULL) {
 677         warning("task_queues allocation failure.");
 678         return;
 679       }
 680       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 681       if (_hash_seed == NULL) {
 682         warning("_hash_seed array allocation failure");
 683         return;
 684       }
 685 
 686       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 687       for (i = 0; i < num_queues; i++) {
 688         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 689         if (q == NULL) {
 690           warning("work_queue allocation failure.");
 691           return;
 692         }
 693         _task_queues->register_queue(i, q);
 694       }
 695       for (i = 0; i < num_queues; i++) {
 696         _task_queues->queue(i)->initialize();
 697         _hash_seed[i] = 17;  // copied from ParNew
 698       }
 699     }
 700   }
 701 
 702   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 703 
 704   // Clip CMSBootstrapOccupancy between 0 and 100.
 705   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 706 
 707   _full_gcs_since_conc_gc = 0;
 708 
 709   // Now tell CMS generations the identity of their collector
 710   ConcurrentMarkSweepGeneration::set_collector(this);
 711 
 712   // Create & start a CMS thread for this CMS collector
 713   _cmsThread = ConcurrentMarkSweepThread::start(this);
 714   assert(cmsThread() != NULL, "CMS Thread should have been created");
 715   assert(cmsThread()->collector() == this,
 716          "CMS Thread should refer to this gen");
 717   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 718 
 719   // Support for parallelizing young gen rescan
 720   GenCollectedHeap* gch = GenCollectedHeap::heap();
 721   _young_gen = gch->prev_gen(_cmsGen);
 722   if (gch->supports_inline_contig_alloc()) {
 723     _top_addr = gch->top_addr();
 724     _end_addr = gch->end_addr();
 725     assert(_young_gen != NULL, "no _young_gen");
 726     _eden_chunk_index = 0;
 727     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 728     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 729     if (_eden_chunk_array == NULL) {
 730       _eden_chunk_capacity = 0;
 731       warning("GC/CMS: _eden_chunk_array allocation failure");
 732     }
 733   }
 734   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 735 
 736   // Support for parallelizing survivor space rescan
 737   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 738     const size_t max_plab_samples =
 739       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 740 
 741     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 742     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 743     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 744     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 745         || _cursor == NULL) {
 746       warning("Failed to allocate survivor plab/chunk array");
 747       if (_survivor_plab_array  != NULL) {
 748         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 749         _survivor_plab_array = NULL;
 750       }
 751       if (_survivor_chunk_array != NULL) {
 752         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 753         _survivor_chunk_array = NULL;
 754       }
 755       if (_cursor != NULL) {
 756         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 757         _cursor = NULL;
 758       }
 759     } else {
 760       _survivor_chunk_capacity = 2*max_plab_samples;
 761       for (uint i = 0; i < ParallelGCThreads; i++) {
 762         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 763         if (vec == NULL) {
 764           warning("Failed to allocate survivor plab array");
 765           for (int j = i; j > 0; j--) {
 766             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 767           }
 768           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 769           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 770           _survivor_plab_array = NULL;
 771           _survivor_chunk_array = NULL;
 772           _survivor_chunk_capacity = 0;
 773           break;
 774         } else {
 775           ChunkArray* cur =
 776             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 777                                                         max_plab_samples);
 778           assert(cur->end() == 0, "Should be 0");
 779           assert(cur->array() == vec, "Should be vec");
 780           assert(cur->capacity() == max_plab_samples, "Error");
 781         }
 782       }
 783     }
 784   }
 785   assert(   (   _survivor_plab_array  != NULL
 786              && _survivor_chunk_array != NULL)
 787          || (   _survivor_chunk_capacity == 0
 788              && _survivor_chunk_index == 0),
 789          "Error");
 790 
 791   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 792   _gc_counters = new CollectorCounters("CMS", 1);
 793   _completed_initialization = true;
 794   _inter_sweep_timer.start();  // start of time
 795 }
 796 
 797 const char* ConcurrentMarkSweepGeneration::name() const {
 798   return "concurrent mark-sweep generation";
 799 }
 800 void ConcurrentMarkSweepGeneration::update_counters() {
 801   if (UsePerfData) {
 802     _space_counters->update_all();
 803     _gen_counters->update_all();
 804   }
 805 }
 806 
 807 // this is an optimized version of update_counters(). it takes the
 808 // used value as a parameter rather than computing it.
 809 //
 810 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 811   if (UsePerfData) {
 812     _space_counters->update_used(used);
 813     _space_counters->update_capacity();
 814     _gen_counters->update_all();
 815   }
 816 }
 817 
 818 void ConcurrentMarkSweepGeneration::print() const {
 819   Generation::print();
 820   cmsSpace()->print();
 821 }
 822 
 823 #ifndef PRODUCT
 824 void ConcurrentMarkSweepGeneration::print_statistics() {
 825   cmsSpace()->printFLCensus(0);
 826 }
 827 #endif
 828 
 829 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 830   GenCollectedHeap* gch = GenCollectedHeap::heap();
 831   if (PrintGCDetails) {
 832     if (Verbose) {
 833       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 834         level(), short_name(), s, used(), capacity());
 835     } else {
 836       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 837         level(), short_name(), s, used() / K, capacity() / K);
 838     }
 839   }
 840   if (Verbose) {
 841     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 842               gch->used(), gch->capacity());
 843   } else {
 844     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 845               gch->used() / K, gch->capacity() / K);
 846   }
 847 }
 848 
 849 size_t
 850 ConcurrentMarkSweepGeneration::contiguous_available() const {
 851   // dld proposes an improvement in precision here. If the committed
 852   // part of the space ends in a free block we should add that to
 853   // uncommitted size in the calculation below. Will make this
 854   // change later, staying with the approximation below for the
 855   // time being. -- ysr.
 856   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 857 }
 858 
 859 size_t
 860 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 861   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 862 }
 863 
 864 size_t ConcurrentMarkSweepGeneration::max_available() const {
 865   return free() + _virtual_space.uncommitted_size();
 866 }
 867 
 868 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 869   size_t available = max_available();
 870   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 871   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 872   if (Verbose && PrintGCDetails) {
 873     gclog_or_tty->print_cr(
 874       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 875       "max_promo("SIZE_FORMAT")",
 876       res? "":" not", available, res? ">=":"<",
 877       av_promo, max_promotion_in_bytes);
 878   }
 879   return res;
 880 }
 881 
 882 // At a promotion failure dump information on block layout in heap
 883 // (cms old generation).
 884 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 885   if (CMSDumpAtPromotionFailure) {
 886     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 887   }
 888 }
 889 
 890 CompactibleSpace*
 891 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 892   return _cmsSpace;
 893 }
 894 
 895 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 896   // Clear the promotion information.  These pointers can be adjusted
 897   // along with all the other pointers into the heap but
 898   // compaction is expected to be a rare event with
 899   // a heap using cms so don't do it without seeing the need.
 900   if (CollectedHeap::use_parallel_gc_threads()) {
 901     for (uint i = 0; i < ParallelGCThreads; i++) {
 902       _par_gc_thread_states[i]->promo.reset();
 903     }
 904   }
 905 }
 906 
 907 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 908   blk->do_space(_cmsSpace);
 909 }
 910 
 911 void ConcurrentMarkSweepGeneration::compute_new_size() {
 912   assert_locked_or_safepoint(Heap_lock);
 913 
 914   // If incremental collection failed, we just want to expand
 915   // to the limit.
 916   if (incremental_collection_failed()) {
 917     clear_incremental_collection_failed();
 918     grow_to_reserved();
 919     return;
 920   }
 921 
 922   // The heap has been compacted but not reset yet.
 923   // Any metric such as free() or used() will be incorrect.
 924 
 925   CardGeneration::compute_new_size();
 926 
 927   // Reset again after a possible resizing
 928   if (did_compact()) {
 929     cmsSpace()->reset_after_compaction();
 930   }
 931 }
 932 
 933 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 934   assert_locked_or_safepoint(Heap_lock);
 935 
 936   // If incremental collection failed, we just want to expand
 937   // to the limit.
 938   if (incremental_collection_failed()) {
 939     clear_incremental_collection_failed();
 940     grow_to_reserved();
 941     return;
 942   }
 943 
 944   double free_percentage = ((double) free()) / capacity();
 945   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 946   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 947 
 948   // compute expansion delta needed for reaching desired free percentage
 949   if (free_percentage < desired_free_percentage) {
 950     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 951     assert(desired_capacity >= capacity(), "invalid expansion size");
 952     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 953     if (PrintGCDetails && Verbose) {
 954       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 955       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 956       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 957       gclog_or_tty->print_cr("  Desired free fraction %f",
 958         desired_free_percentage);
 959       gclog_or_tty->print_cr("  Maximum free fraction %f",
 960         maximum_free_percentage);
 961       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 962       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 963         desired_capacity/1000);
 964       int prev_level = level() - 1;
 965       if (prev_level >= 0) {
 966         size_t prev_size = 0;
 967         GenCollectedHeap* gch = GenCollectedHeap::heap();
 968         Generation* prev_gen = gch->_gens[prev_level];
 969         prev_size = prev_gen->capacity();
 970           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 971                                  prev_size/1000);
 972       }
 973       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 974         unsafe_max_alloc_nogc()/1000);
 975       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 976         contiguous_available()/1000);
 977       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 978         expand_bytes);
 979     }
 980     // safe if expansion fails
 981     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 982     if (PrintGCDetails && Verbose) {
 983       gclog_or_tty->print_cr("  Expanded free fraction %f",
 984         ((double) free()) / capacity());
 985     }
 986   } else {
 987     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 988     assert(desired_capacity <= capacity(), "invalid expansion size");
 989     size_t shrink_bytes = capacity() - desired_capacity;
 990     // Don't shrink unless the delta is greater than the minimum shrink we want
 991     if (shrink_bytes >= MinHeapDeltaBytes) {
 992       shrink_free_list_by(shrink_bytes);
 993     }
 994   }
 995 }
 996 
 997 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 998   return cmsSpace()->freelistLock();
 999 }
1000 
1001 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1002                                                   bool   tlab) {
1003   CMSSynchronousYieldRequest yr;
1004   MutexLockerEx x(freelistLock(),
1005                   Mutex::_no_safepoint_check_flag);
1006   return have_lock_and_allocate(size, tlab);
1007 }
1008 
1009 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1010                                                   bool   tlab /* ignored */) {
1011   assert_lock_strong(freelistLock());
1012   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1013   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1014   // Allocate the object live (grey) if the background collector has
1015   // started marking. This is necessary because the marker may
1016   // have passed this address and consequently this object will
1017   // not otherwise be greyed and would be incorrectly swept up.
1018   // Note that if this object contains references, the writing
1019   // of those references will dirty the card containing this object
1020   // allowing the object to be blackened (and its references scanned)
1021   // either during a preclean phase or at the final checkpoint.
1022   if (res != NULL) {
1023     // We may block here with an uninitialized object with
1024     // its mark-bit or P-bits not yet set. Such objects need
1025     // to be safely navigable by block_start().
1026     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1027     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1028     collector()->direct_allocated(res, adjustedSize);
1029     _direct_allocated_words += adjustedSize;
1030     // allocation counters
1031     NOT_PRODUCT(
1032       _numObjectsAllocated++;
1033       _numWordsAllocated += (int)adjustedSize;
1034     )
1035   }
1036   return res;
1037 }
1038 
1039 // In the case of direct allocation by mutators in a generation that
1040 // is being concurrently collected, the object must be allocated
1041 // live (grey) if the background collector has started marking.
1042 // This is necessary because the marker may
1043 // have passed this address and consequently this object will
1044 // not otherwise be greyed and would be incorrectly swept up.
1045 // Note that if this object contains references, the writing
1046 // of those references will dirty the card containing this object
1047 // allowing the object to be blackened (and its references scanned)
1048 // either during a preclean phase or at the final checkpoint.
1049 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1050   assert(_markBitMap.covers(start, size), "Out of bounds");
1051   if (_collectorState >= Marking) {
1052     MutexLockerEx y(_markBitMap.lock(),
1053                     Mutex::_no_safepoint_check_flag);
1054     // [see comments preceding SweepClosure::do_blk() below for details]
1055     //
1056     // Can the P-bits be deleted now?  JJJ
1057     //
1058     // 1. need to mark the object as live so it isn't collected
1059     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1060     // 3. need to mark the end of the object so marking, precleaning or sweeping
1061     //    can skip over uninitialized or unparsable objects. An allocated
1062     //    object is considered uninitialized for our purposes as long as
1063     //    its klass word is NULL.  All old gen objects are parsable
1064     //    as soon as they are initialized.)
1065     _markBitMap.mark(start);          // object is live
1066     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1067     _markBitMap.mark(start + size - 1);
1068                                       // mark end of object
1069   }
1070   // check that oop looks uninitialized
1071   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1072 }
1073 
1074 void CMSCollector::promoted(bool par, HeapWord* start,
1075                             bool is_obj_array, size_t obj_size) {
1076   assert(_markBitMap.covers(start), "Out of bounds");
1077   // See comment in direct_allocated() about when objects should
1078   // be allocated live.
1079   if (_collectorState >= Marking) {
1080     // we already hold the marking bit map lock, taken in
1081     // the prologue
1082     if (par) {
1083       _markBitMap.par_mark(start);
1084     } else {
1085       _markBitMap.mark(start);
1086     }
1087     // We don't need to mark the object as uninitialized (as
1088     // in direct_allocated above) because this is being done with the
1089     // world stopped and the object will be initialized by the
1090     // time the marking, precleaning or sweeping get to look at it.
1091     // But see the code for copying objects into the CMS generation,
1092     // where we need to ensure that concurrent readers of the
1093     // block offset table are able to safely navigate a block that
1094     // is in flux from being free to being allocated (and in
1095     // transition while being copied into) and subsequently
1096     // becoming a bona-fide object when the copy/promotion is complete.
1097     assert(SafepointSynchronize::is_at_safepoint(),
1098            "expect promotion only at safepoints");
1099 
1100     if (_collectorState < Sweeping) {
1101       // Mark the appropriate cards in the modUnionTable, so that
1102       // this object gets scanned before the sweep. If this is
1103       // not done, CMS generation references in the object might
1104       // not get marked.
1105       // For the case of arrays, which are otherwise precisely
1106       // marked, we need to dirty the entire array, not just its head.
1107       if (is_obj_array) {
1108         // The [par_]mark_range() method expects mr.end() below to
1109         // be aligned to the granularity of a bit's representation
1110         // in the heap. In the case of the MUT below, that's a
1111         // card size.
1112         MemRegion mr(start,
1113                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1114                         CardTableModRefBS::card_size /* bytes */));
1115         if (par) {
1116           _modUnionTable.par_mark_range(mr);
1117         } else {
1118           _modUnionTable.mark_range(mr);
1119         }
1120       } else {  // not an obj array; we can just mark the head
1121         if (par) {
1122           _modUnionTable.par_mark(start);
1123         } else {
1124           _modUnionTable.mark(start);
1125         }
1126       }
1127     }
1128   }
1129 }
1130 
1131 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1132 {
1133   size_t delta = pointer_delta(addr, space->bottom());
1134   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1135 }
1136 
1137 void CMSCollector::icms_update_allocation_limits()
1138 {
1139   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1140   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1141 
1142   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1143   if (CMSTraceIncrementalPacing) {
1144     stats().print();
1145   }
1146 
1147   assert(duty_cycle <= 100, "invalid duty cycle");
1148   if (duty_cycle != 0) {
1149     // The duty_cycle is a percentage between 0 and 100; convert to words and
1150     // then compute the offset from the endpoints of the space.
1151     size_t free_words = eden->free() / HeapWordSize;
1152     double free_words_dbl = (double)free_words;
1153     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1154     size_t offset_words = (free_words - duty_cycle_words) / 2;
1155 
1156     _icms_start_limit = eden->top() + offset_words;
1157     _icms_stop_limit = eden->end() - offset_words;
1158 
1159     // The limits may be adjusted (shifted to the right) by
1160     // CMSIncrementalOffset, to allow the application more mutator time after a
1161     // young gen gc (when all mutators were stopped) and before CMS starts and
1162     // takes away one or more cpus.
1163     if (CMSIncrementalOffset != 0) {
1164       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1165       size_t adjustment = (size_t)adjustment_dbl;
1166       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1167       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1168         _icms_start_limit += adjustment;
1169         _icms_stop_limit = tmp_stop;
1170       }
1171     }
1172   }
1173   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1174     _icms_start_limit = _icms_stop_limit = eden->end();
1175   }
1176 
1177   // Install the new start limit.
1178   eden->set_soft_end(_icms_start_limit);
1179 
1180   if (CMSTraceIncrementalMode) {
1181     gclog_or_tty->print(" icms alloc limits:  "
1182                            PTR_FORMAT "," PTR_FORMAT
1183                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1184                            _icms_start_limit, _icms_stop_limit,
1185                            percent_of_space(eden, _icms_start_limit),
1186                            percent_of_space(eden, _icms_stop_limit));
1187     if (Verbose) {
1188       gclog_or_tty->print("eden:  ");
1189       eden->print_on(gclog_or_tty);
1190     }
1191   }
1192 }
1193 
1194 // Any changes here should try to maintain the invariant
1195 // that if this method is called with _icms_start_limit
1196 // and _icms_stop_limit both NULL, then it should return NULL
1197 // and not notify the icms thread.
1198 HeapWord*
1199 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1200                                        size_t word_size)
1201 {
1202   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1203   // nop.
1204   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1205     if (top <= _icms_start_limit) {
1206       if (CMSTraceIncrementalMode) {
1207         space->print_on(gclog_or_tty);
1208         gclog_or_tty->stamp();
1209         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1210                                ", new limit=" PTR_FORMAT
1211                                " (" SIZE_FORMAT "%%)",
1212                                top, _icms_stop_limit,
1213                                percent_of_space(space, _icms_stop_limit));
1214       }
1215       ConcurrentMarkSweepThread::start_icms();
1216       assert(top < _icms_stop_limit, "Tautology");
1217       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1218         return _icms_stop_limit;
1219       }
1220 
1221       // The allocation will cross both the _start and _stop limits, so do the
1222       // stop notification also and return end().
1223       if (CMSTraceIncrementalMode) {
1224         space->print_on(gclog_or_tty);
1225         gclog_or_tty->stamp();
1226         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1227                                ", new limit=" PTR_FORMAT
1228                                " (" SIZE_FORMAT "%%)",
1229                                top, space->end(),
1230                                percent_of_space(space, space->end()));
1231       }
1232       ConcurrentMarkSweepThread::stop_icms();
1233       return space->end();
1234     }
1235 
1236     if (top <= _icms_stop_limit) {
1237       if (CMSTraceIncrementalMode) {
1238         space->print_on(gclog_or_tty);
1239         gclog_or_tty->stamp();
1240         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1241                                ", new limit=" PTR_FORMAT
1242                                " (" SIZE_FORMAT "%%)",
1243                                top, space->end(),
1244                                percent_of_space(space, space->end()));
1245       }
1246       ConcurrentMarkSweepThread::stop_icms();
1247       return space->end();
1248     }
1249 
1250     if (CMSTraceIncrementalMode) {
1251       space->print_on(gclog_or_tty);
1252       gclog_or_tty->stamp();
1253       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1254                              ", new limit=" PTR_FORMAT,
1255                              top, NULL);
1256     }
1257   }
1258 
1259   return NULL;
1260 }
1261 
1262 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1264   // allocate, copy and if necessary update promoinfo --
1265   // delegate to underlying space.
1266   assert_lock_strong(freelistLock());
1267 
1268 #ifndef PRODUCT
1269   if (Universe::heap()->promotion_should_fail()) {
1270     return NULL;
1271   }
1272 #endif  // #ifndef PRODUCT
1273 
1274   oop res = _cmsSpace->promote(obj, obj_size);
1275   if (res == NULL) {
1276     // expand and retry
1277     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1278     expand(s*HeapWordSize, MinHeapDeltaBytes,
1279       CMSExpansionCause::_satisfy_promotion);
1280     // Since there's currently no next generation, we don't try to promote
1281     // into a more senior generation.
1282     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1283                                "is made to pass on a possibly failing "
1284                                "promotion to next generation");
1285     res = _cmsSpace->promote(obj, obj_size);
1286   }
1287   if (res != NULL) {
1288     // See comment in allocate() about when objects should
1289     // be allocated live.
1290     assert(obj->is_oop(), "Will dereference klass pointer below");
1291     collector()->promoted(false,           // Not parallel
1292                           (HeapWord*)res, obj->is_objArray(), obj_size);
1293     // promotion counters
1294     NOT_PRODUCT(
1295       _numObjectsPromoted++;
1296       _numWordsPromoted +=
1297         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1298     )
1299   }
1300   return res;
1301 }
1302 
1303 
1304 HeapWord*
1305 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1306                                              HeapWord* top,
1307                                              size_t word_sz)
1308 {
1309   return collector()->allocation_limit_reached(space, top, word_sz);
1310 }
1311 
1312 // IMPORTANT: Notes on object size recognition in CMS.
1313 // ---------------------------------------------------
1314 // A block of storage in the CMS generation is always in
1315 // one of three states. A free block (FREE), an allocated
1316 // object (OBJECT) whose size() method reports the correct size,
1317 // and an intermediate state (TRANSIENT) in which its size cannot
1318 // be accurately determined.
1319 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1320 // -----------------------------------------------------
1321 // FREE:      klass_word & 1 == 1; mark_word holds block size
1322 //
1323 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1324 //            obj->size() computes correct size
1325 //
1326 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1327 //
1328 // STATE IDENTIFICATION: (64 bit+COOPS)
1329 // ------------------------------------
1330 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1331 //
1332 // OBJECT:    klass_word installed; klass_word != 0;
1333 //            obj->size() computes correct size
1334 //
1335 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1336 //
1337 //
1338 // STATE TRANSITION DIAGRAM
1339 //
1340 //        mut / parnew                     mut  /  parnew
1341 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1342 //  ^                                                                   |
1343 //  |------------------------ DEAD <------------------------------------|
1344 //         sweep                            mut
1345 //
1346 // While a block is in TRANSIENT state its size cannot be determined
1347 // so readers will either need to come back later or stall until
1348 // the size can be determined. Note that for the case of direct
1349 // allocation, P-bits, when available, may be used to determine the
1350 // size of an object that may not yet have been initialized.
1351 
1352 // Things to support parallel young-gen collection.
1353 oop
1354 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1355                                            oop old, markOop m,
1356                                            size_t word_sz) {
1357 #ifndef PRODUCT
1358   if (Universe::heap()->promotion_should_fail()) {
1359     return NULL;
1360   }
1361 #endif  // #ifndef PRODUCT
1362 
1363   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1364   PromotionInfo* promoInfo = &ps->promo;
1365   // if we are tracking promotions, then first ensure space for
1366   // promotion (including spooling space for saving header if necessary).
1367   // then allocate and copy, then track promoted info if needed.
1368   // When tracking (see PromotionInfo::track()), the mark word may
1369   // be displaced and in this case restoration of the mark word
1370   // occurs in the (oop_since_save_marks_)iterate phase.
1371   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1372     // Out of space for allocating spooling buffers;
1373     // try expanding and allocating spooling buffers.
1374     if (!expand_and_ensure_spooling_space(promoInfo)) {
1375       return NULL;
1376     }
1377   }
1378   assert(promoInfo->has_spooling_space(), "Control point invariant");
1379   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1380   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1381   if (obj_ptr == NULL) {
1382      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1383      if (obj_ptr == NULL) {
1384        return NULL;
1385      }
1386   }
1387   oop obj = oop(obj_ptr);
1388   OrderAccess::storestore();
1389   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1390   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1391   // IMPORTANT: See note on object initialization for CMS above.
1392   // Otherwise, copy the object.  Here we must be careful to insert the
1393   // klass pointer last, since this marks the block as an allocated object.
1394   // Except with compressed oops it's the mark word.
1395   HeapWord* old_ptr = (HeapWord*)old;
1396   // Restore the mark word copied above.
1397   obj->set_mark(m);
1398   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1399   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1400   OrderAccess::storestore();
1401 
1402   if (UseCompressedClassPointers) {
1403     // Copy gap missed by (aligned) header size calculation below
1404     obj->set_klass_gap(old->klass_gap());
1405   }
1406   if (word_sz > (size_t)oopDesc::header_size()) {
1407     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1408                                  obj_ptr + oopDesc::header_size(),
1409                                  word_sz - oopDesc::header_size());
1410   }
1411 
1412   // Now we can track the promoted object, if necessary.  We take care
1413   // to delay the transition from uninitialized to full object
1414   // (i.e., insertion of klass pointer) until after, so that it
1415   // atomically becomes a promoted object.
1416   if (promoInfo->tracking()) {
1417     promoInfo->track((PromotedObject*)obj, old->klass());
1418   }
1419   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1420   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1421   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1422 
1423   // Finally, install the klass pointer (this should be volatile).
1424   OrderAccess::storestore();
1425   obj->set_klass(old->klass());
1426   // We should now be able to calculate the right size for this object
1427   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1428 
1429   collector()->promoted(true,          // parallel
1430                         obj_ptr, old->is_objArray(), word_sz);
1431 
1432   NOT_PRODUCT(
1433     Atomic::inc_ptr(&_numObjectsPromoted);
1434     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1435   )
1436 
1437   return obj;
1438 }
1439 
1440 void
1441 ConcurrentMarkSweepGeneration::
1442 par_promote_alloc_undo(int thread_num,
1443                        HeapWord* obj, size_t word_sz) {
1444   // CMS does not support promotion undo.
1445   ShouldNotReachHere();
1446 }
1447 
1448 void
1449 ConcurrentMarkSweepGeneration::
1450 par_promote_alloc_done(int thread_num) {
1451   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1452   ps->lab.retire(thread_num);
1453 }
1454 
1455 void
1456 ConcurrentMarkSweepGeneration::
1457 par_oop_since_save_marks_iterate_done(int thread_num) {
1458   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1459   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1460   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1461 }
1462 
1463 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1464                                                    size_t size,
1465                                                    bool   tlab)
1466 {
1467   // We allow a STW collection only if a full
1468   // collection was requested.
1469   return full || should_allocate(size, tlab); // FIX ME !!!
1470   // This and promotion failure handling are connected at the
1471   // hip and should be fixed by untying them.
1472 }
1473 
1474 bool CMSCollector::shouldConcurrentCollect() {
1475   if (_full_gc_requested) {
1476     if (Verbose && PrintGCDetails) {
1477       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1478                              " gc request (or gc_locker)");
1479     }
1480     return true;
1481   }
1482 
1483   // For debugging purposes, change the type of collection.
1484   // If the rotation is not on the concurrent collection
1485   // type, don't start a concurrent collection.
1486   NOT_PRODUCT(
1487     if (RotateCMSCollectionTypes &&
1488         (_cmsGen->debug_collection_type() !=
1489           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1490       assert(_cmsGen->debug_collection_type() !=
1491         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1492         "Bad cms collection type");
1493       return false;
1494     }
1495   )
1496 
1497   FreelistLocker x(this);
1498   // ------------------------------------------------------------------
1499   // Print out lots of information which affects the initiation of
1500   // a collection.
1501   if (PrintCMSInitiationStatistics && stats().valid()) {
1502     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1503     gclog_or_tty->stamp();
1504     gclog_or_tty->print_cr("");
1505     stats().print_on(gclog_or_tty);
1506     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1507       stats().time_until_cms_gen_full());
1508     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1509     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1510                            _cmsGen->contiguous_available());
1511     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1512     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1513     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1514     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1515     gclog_or_tty->print_cr("metadata initialized %d",
1516       MetaspaceGC::should_concurrent_collect());
1517   }
1518   // ------------------------------------------------------------------
1519 
1520   // If the estimated time to complete a cms collection (cms_duration())
1521   // is less than the estimated time remaining until the cms generation
1522   // is full, start a collection.
1523   if (!UseCMSInitiatingOccupancyOnly) {
1524     if (stats().valid()) {
1525       if (stats().time_until_cms_start() == 0.0) {
1526         return true;
1527       }
1528     } else {
1529       // We want to conservatively collect somewhat early in order
1530       // to try and "bootstrap" our CMS/promotion statistics;
1531       // this branch will not fire after the first successful CMS
1532       // collection because the stats should then be valid.
1533       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1534         if (Verbose && PrintGCDetails) {
1535           gclog_or_tty->print_cr(
1536             " CMSCollector: collect for bootstrapping statistics:"
1537             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1538             _bootstrap_occupancy);
1539         }
1540         return true;
1541       }
1542     }
1543   }
1544 
1545   // Otherwise, we start a collection cycle if
1546   // old gen want a collection cycle started. Each may use
1547   // an appropriate criterion for making this decision.
1548   // XXX We need to make sure that the gen expansion
1549   // criterion dovetails well with this. XXX NEED TO FIX THIS
1550   if (_cmsGen->should_concurrent_collect()) {
1551     if (Verbose && PrintGCDetails) {
1552       gclog_or_tty->print_cr("CMS old gen initiated");
1553     }
1554     return true;
1555   }
1556 
1557   // We start a collection if we believe an incremental collection may fail;
1558   // this is not likely to be productive in practice because it's probably too
1559   // late anyway.
1560   GenCollectedHeap* gch = GenCollectedHeap::heap();
1561   assert(gch->collector_policy()->is_two_generation_policy(),
1562          "You may want to check the correctness of the following");
1563   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1564     if (Verbose && PrintGCDetails) {
1565       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1566     }
1567     return true;
1568   }
1569 
1570   if (MetaspaceGC::should_concurrent_collect()) {
1571       if (Verbose && PrintGCDetails) {
1572       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1573       }
1574       return true;
1575     }
1576 
1577   return false;
1578 }
1579 
1580 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1581 
1582 // Clear _expansion_cause fields of constituent generations
1583 void CMSCollector::clear_expansion_cause() {
1584   _cmsGen->clear_expansion_cause();
1585 }
1586 
1587 // We should be conservative in starting a collection cycle.  To
1588 // start too eagerly runs the risk of collecting too often in the
1589 // extreme.  To collect too rarely falls back on full collections,
1590 // which works, even if not optimum in terms of concurrent work.
1591 // As a work around for too eagerly collecting, use the flag
1592 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1593 // giving the user an easily understandable way of controlling the
1594 // collections.
1595 // We want to start a new collection cycle if any of the following
1596 // conditions hold:
1597 // . our current occupancy exceeds the configured initiating occupancy
1598 //   for this generation, or
1599 // . we recently needed to expand this space and have not, since that
1600 //   expansion, done a collection of this generation, or
1601 // . the underlying space believes that it may be a good idea to initiate
1602 //   a concurrent collection (this may be based on criteria such as the
1603 //   following: the space uses linear allocation and linear allocation is
1604 //   going to fail, or there is believed to be excessive fragmentation in
1605 //   the generation, etc... or ...
1606 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1607 //   the case of the old generation; see CR 6543076):
1608 //   we may be approaching a point at which allocation requests may fail because
1609 //   we will be out of sufficient free space given allocation rate estimates.]
1610 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1611 
1612   assert_lock_strong(freelistLock());
1613   if (occupancy() > initiating_occupancy()) {
1614     if (PrintGCDetails && Verbose) {
1615       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1616         short_name(), occupancy(), initiating_occupancy());
1617     }
1618     return true;
1619   }
1620   if (UseCMSInitiatingOccupancyOnly) {
1621     return false;
1622   }
1623   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1624     if (PrintGCDetails && Verbose) {
1625       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1626         short_name());
1627     }
1628     return true;
1629   }
1630   if (_cmsSpace->should_concurrent_collect()) {
1631     if (PrintGCDetails && Verbose) {
1632       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1633         short_name());
1634     }
1635     return true;
1636   }
1637   return false;
1638 }
1639 
1640 void ConcurrentMarkSweepGeneration::collect(bool   full,
1641                                             bool   clear_all_soft_refs,
1642                                             size_t size,
1643                                             bool   tlab)
1644 {
1645   collector()->collect(full, clear_all_soft_refs, size, tlab);
1646 }
1647 
1648 void CMSCollector::collect(bool   full,
1649                            bool   clear_all_soft_refs,
1650                            size_t size,
1651                            bool   tlab)
1652 {
1653   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1654     // For debugging purposes skip the collection if the state
1655     // is not currently idle
1656     if (TraceCMSState) {
1657       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1658         Thread::current(), full, _collectorState);
1659     }
1660     return;
1661   }
1662 
1663   // The following "if" branch is present for defensive reasons.
1664   // In the current uses of this interface, it can be replaced with:
1665   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1666   // But I am not placing that assert here to allow future
1667   // generality in invoking this interface.
1668   if (GC_locker::is_active()) {
1669     // A consistency test for GC_locker
1670     assert(GC_locker::needs_gc(), "Should have been set already");
1671     // Skip this foreground collection, instead
1672     // expanding the heap if necessary.
1673     // Need the free list locks for the call to free() in compute_new_size()
1674     compute_new_size();
1675     return;
1676   }
1677   acquire_control_and_collect(full, clear_all_soft_refs);
1678   _full_gcs_since_conc_gc++;
1679 }
1680 
1681 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1682   GenCollectedHeap* gch = GenCollectedHeap::heap();
1683   unsigned int gc_count = gch->total_full_collections();
1684   if (gc_count == full_gc_count) {
1685     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1686     _full_gc_requested = true;
1687     _full_gc_cause = cause;
1688     CGC_lock->notify();   // nudge CMS thread
1689   } else {
1690     assert(gc_count > full_gc_count, "Error: causal loop");
1691   }
1692 }
1693 
1694 bool CMSCollector::is_external_interruption() {
1695   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1696   return GCCause::is_user_requested_gc(cause) ||
1697          GCCause::is_serviceability_requested_gc(cause);
1698 }
1699 
1700 void CMSCollector::report_concurrent_mode_interruption() {
1701   if (is_external_interruption()) {
1702     if (PrintGCDetails) {
1703       gclog_or_tty->print(" (concurrent mode interrupted)");
1704     }
1705   } else {
1706     if (PrintGCDetails) {
1707       gclog_or_tty->print(" (concurrent mode failure)");
1708     }
1709     _gc_tracer_cm->report_concurrent_mode_failure();
1710   }
1711 }
1712 
1713 
1714 // The foreground and background collectors need to coordinate in order
1715 // to make sure that they do not mutually interfere with CMS collections.
1716 // When a background collection is active,
1717 // the foreground collector may need to take over (preempt) and
1718 // synchronously complete an ongoing collection. Depending on the
1719 // frequency of the background collections and the heap usage
1720 // of the application, this preemption can be seldom or frequent.
1721 // There are only certain
1722 // points in the background collection that the "collection-baton"
1723 // can be passed to the foreground collector.
1724 //
1725 // The foreground collector will wait for the baton before
1726 // starting any part of the collection.  The foreground collector
1727 // will only wait at one location.
1728 //
1729 // The background collector will yield the baton before starting a new
1730 // phase of the collection (e.g., before initial marking, marking from roots,
1731 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1732 // of the loop which switches the phases. The background collector does some
1733 // of the phases (initial mark, final re-mark) with the world stopped.
1734 // Because of locking involved in stopping the world,
1735 // the foreground collector should not block waiting for the background
1736 // collector when it is doing a stop-the-world phase.  The background
1737 // collector will yield the baton at an additional point just before
1738 // it enters a stop-the-world phase.  Once the world is stopped, the
1739 // background collector checks the phase of the collection.  If the
1740 // phase has not changed, it proceeds with the collection.  If the
1741 // phase has changed, it skips that phase of the collection.  See
1742 // the comments on the use of the Heap_lock in collect_in_background().
1743 //
1744 // Variable used in baton passing.
1745 //   _foregroundGCIsActive - Set to true by the foreground collector when
1746 //      it wants the baton.  The foreground clears it when it has finished
1747 //      the collection.
1748 //   _foregroundGCShouldWait - Set to true by the background collector
1749 //        when it is running.  The foreground collector waits while
1750 //      _foregroundGCShouldWait is true.
1751 //  CGC_lock - monitor used to protect access to the above variables
1752 //      and to notify the foreground and background collectors.
1753 //  _collectorState - current state of the CMS collection.
1754 //
1755 // The foreground collector
1756 //   acquires the CGC_lock
1757 //   sets _foregroundGCIsActive
1758 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1759 //     various locks acquired in preparation for the collection
1760 //     are released so as not to block the background collector
1761 //     that is in the midst of a collection
1762 //   proceeds with the collection
1763 //   clears _foregroundGCIsActive
1764 //   returns
1765 //
1766 // The background collector in a loop iterating on the phases of the
1767 //      collection
1768 //   acquires the CGC_lock
1769 //   sets _foregroundGCShouldWait
1770 //   if _foregroundGCIsActive is set
1771 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1772 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1773 //     and exits the loop.
1774 //   otherwise
1775 //     proceed with that phase of the collection
1776 //     if the phase is a stop-the-world phase,
1777 //       yield the baton once more just before enqueueing
1778 //       the stop-world CMS operation (executed by the VM thread).
1779 //   returns after all phases of the collection are done
1780 //
1781 
1782 void CMSCollector::acquire_control_and_collect(bool full,
1783         bool clear_all_soft_refs) {
1784   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1785   assert(!Thread::current()->is_ConcurrentGC_thread(),
1786          "shouldn't try to acquire control from self!");
1787 
1788   // Start the protocol for acquiring control of the
1789   // collection from the background collector (aka CMS thread).
1790   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1791          "VM thread should have CMS token");
1792   // Remember the possibly interrupted state of an ongoing
1793   // concurrent collection
1794   CollectorState first_state = _collectorState;
1795 
1796   // Signal to a possibly ongoing concurrent collection that
1797   // we want to do a foreground collection.
1798   _foregroundGCIsActive = true;
1799 
1800   // Disable incremental mode during a foreground collection.
1801   ICMSDisabler icms_disabler;
1802 
1803   // release locks and wait for a notify from the background collector
1804   // releasing the locks in only necessary for phases which
1805   // do yields to improve the granularity of the collection.
1806   assert_lock_strong(bitMapLock());
1807   // We need to lock the Free list lock for the space that we are
1808   // currently collecting.
1809   assert(haveFreelistLocks(), "Must be holding free list locks");
1810   bitMapLock()->unlock();
1811   releaseFreelistLocks();
1812   {
1813     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1814     if (_foregroundGCShouldWait) {
1815       // We are going to be waiting for action for the CMS thread;
1816       // it had better not be gone (for instance at shutdown)!
1817       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1818              "CMS thread must be running");
1819       // Wait here until the background collector gives us the go-ahead
1820       ConcurrentMarkSweepThread::clear_CMS_flag(
1821         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1822       // Get a possibly blocked CMS thread going:
1823       //   Note that we set _foregroundGCIsActive true above,
1824       //   without protection of the CGC_lock.
1825       CGC_lock->notify();
1826       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1827              "Possible deadlock");
1828       while (_foregroundGCShouldWait) {
1829         // wait for notification
1830         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1831         // Possibility of delay/starvation here, since CMS token does
1832         // not know to give priority to VM thread? Actually, i think
1833         // there wouldn't be any delay/starvation, but the proof of
1834         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1835       }
1836       ConcurrentMarkSweepThread::set_CMS_flag(
1837         ConcurrentMarkSweepThread::CMS_vm_has_token);
1838     }
1839   }
1840   // The CMS_token is already held.  Get back the other locks.
1841   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1842          "VM thread should have CMS token");
1843   getFreelistLocks();
1844   bitMapLock()->lock_without_safepoint_check();
1845   if (TraceCMSState) {
1846     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1847       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1848     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1849   }
1850 
1851   // Check if we need to do a compaction, or if not, whether
1852   // we need to start the mark-sweep from scratch.
1853   bool should_compact    = false;
1854   bool should_start_over = false;
1855   decide_foreground_collection_type(clear_all_soft_refs,
1856     &should_compact, &should_start_over);
1857 
1858 NOT_PRODUCT(
1859   if (RotateCMSCollectionTypes) {
1860     if (_cmsGen->debug_collection_type() ==
1861         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1862       should_compact = true;
1863     } else if (_cmsGen->debug_collection_type() ==
1864                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1865       should_compact = false;
1866     }
1867   }
1868 )
1869 
1870   if (first_state > Idling) {
1871     report_concurrent_mode_interruption();
1872   }
1873 
1874   set_did_compact(should_compact);
1875   if (should_compact) {
1876     // If the collection is being acquired from the background
1877     // collector, there may be references on the discovered
1878     // references lists that have NULL referents (being those
1879     // that were concurrently cleared by a mutator) or
1880     // that are no longer active (having been enqueued concurrently
1881     // by the mutator).
1882     // Scrub the list of those references because Mark-Sweep-Compact
1883     // code assumes referents are not NULL and that all discovered
1884     // Reference objects are active.
1885     ref_processor()->clean_up_discovered_references();
1886 
1887     if (first_state > Idling) {
1888       save_heap_summary();
1889     }
1890 
1891     do_compaction_work(clear_all_soft_refs);
1892 
1893     // Has the GC time limit been exceeded?
1894     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1895     size_t max_eden_size = young_gen->max_capacity() -
1896                            young_gen->to()->capacity() -
1897                            young_gen->from()->capacity();
1898     GenCollectedHeap* gch = GenCollectedHeap::heap();
1899     GCCause::Cause gc_cause = gch->gc_cause();
1900     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1901                                            young_gen->eden()->used(),
1902                                            _cmsGen->max_capacity(),
1903                                            max_eden_size,
1904                                            full,
1905                                            gc_cause,
1906                                            gch->collector_policy());
1907   } else {
1908     do_mark_sweep_work(clear_all_soft_refs, first_state,
1909       should_start_over);
1910   }
1911   // Reset the expansion cause, now that we just completed
1912   // a collection cycle.
1913   clear_expansion_cause();
1914   _foregroundGCIsActive = false;
1915   return;
1916 }
1917 
1918 // Resize the tenured generation
1919 // after obtaining the free list locks for the
1920 // two generations.
1921 void CMSCollector::compute_new_size() {
1922   assert_locked_or_safepoint(Heap_lock);
1923   FreelistLocker z(this);
1924   MetaspaceGC::compute_new_size();
1925   _cmsGen->compute_new_size_free_list();
1926 }
1927 
1928 // A work method used by foreground collection to determine
1929 // what type of collection (compacting or not, continuing or fresh)
1930 // it should do.
1931 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1932 // and CMSCompactWhenClearAllSoftRefs the default in the future
1933 // and do away with the flags after a suitable period.
1934 void CMSCollector::decide_foreground_collection_type(
1935   bool clear_all_soft_refs, bool* should_compact,
1936   bool* should_start_over) {
1937   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1938   // flag is set, and we have either requested a System.gc() or
1939   // the number of full gc's since the last concurrent cycle
1940   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1941   // or if an incremental collection has failed
1942   GenCollectedHeap* gch = GenCollectedHeap::heap();
1943   assert(gch->collector_policy()->is_two_generation_policy(),
1944          "You may want to check the correctness of the following");
1945   // Inform cms gen if this was due to partial collection failing.
1946   // The CMS gen may use this fact to determine its expansion policy.
1947   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1948     assert(!_cmsGen->incremental_collection_failed(),
1949            "Should have been noticed, reacted to and cleared");
1950     _cmsGen->set_incremental_collection_failed();
1951   }
1952   *should_compact =
1953     UseCMSCompactAtFullCollection &&
1954     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1955      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1956      gch->incremental_collection_will_fail(true /* consult_young */));
1957   *should_start_over = false;
1958   if (clear_all_soft_refs && !*should_compact) {
1959     // We are about to do a last ditch collection attempt
1960     // so it would normally make sense to do a compaction
1961     // to reclaim as much space as possible.
1962     if (CMSCompactWhenClearAllSoftRefs) {
1963       // Default: The rationale is that in this case either
1964       // we are past the final marking phase, in which case
1965       // we'd have to start over, or so little has been done
1966       // that there's little point in saving that work. Compaction
1967       // appears to be the sensible choice in either case.
1968       *should_compact = true;
1969     } else {
1970       // We have been asked to clear all soft refs, but not to
1971       // compact. Make sure that we aren't past the final checkpoint
1972       // phase, for that is where we process soft refs. If we are already
1973       // past that phase, we'll need to redo the refs discovery phase and
1974       // if necessary clear soft refs that weren't previously
1975       // cleared. We do so by remembering the phase in which
1976       // we came in, and if we are past the refs processing
1977       // phase, we'll choose to just redo the mark-sweep
1978       // collection from scratch.
1979       if (_collectorState > FinalMarking) {
1980         // We are past the refs processing phase;
1981         // start over and do a fresh synchronous CMS cycle
1982         _collectorState = Resetting; // skip to reset to start new cycle
1983         reset(false /* == !asynch */);
1984         *should_start_over = true;
1985       } // else we can continue a possibly ongoing current cycle
1986     }
1987   }
1988 }
1989 
1990 // A work method used by the foreground collector to do
1991 // a mark-sweep-compact.
1992 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1993   GenCollectedHeap* gch = GenCollectedHeap::heap();
1994 
1995   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1996   gc_timer->register_gc_start();
1997 
1998   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1999   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2000 
2001   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
2002   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2003     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2004       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2005   }
2006 
2007   // Sample collection interval time and reset for collection pause.
2008   if (UseAdaptiveSizePolicy) {
2009     size_policy()->msc_collection_begin();
2010   }
2011 
2012   // Temporarily widen the span of the weak reference processing to
2013   // the entire heap.
2014   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2015   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2016   // Temporarily, clear the "is_alive_non_header" field of the
2017   // reference processor.
2018   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2019   // Temporarily make reference _processing_ single threaded (non-MT).
2020   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2021   // Temporarily make refs discovery atomic
2022   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2023   // Temporarily make reference _discovery_ single threaded (non-MT)
2024   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2025 
2026   ref_processor()->set_enqueuing_is_done(false);
2027   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2028   ref_processor()->setup_policy(clear_all_soft_refs);
2029   // If an asynchronous collection finishes, the _modUnionTable is
2030   // all clear.  If we are assuming the collection from an asynchronous
2031   // collection, clear the _modUnionTable.
2032   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2033     "_modUnionTable should be clear if the baton was not passed");
2034   _modUnionTable.clear_all();
2035   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2036     "mod union for klasses should be clear if the baton was passed");
2037   _ct->klass_rem_set()->clear_mod_union();
2038 
2039   // We must adjust the allocation statistics being maintained
2040   // in the free list space. We do so by reading and clearing
2041   // the sweep timer and updating the block flux rate estimates below.
2042   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2043   if (_inter_sweep_timer.is_active()) {
2044     _inter_sweep_timer.stop();
2045     // Note that we do not use this sample to update the _inter_sweep_estimate.
2046     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2047                                             _inter_sweep_estimate.padded_average(),
2048                                             _intra_sweep_estimate.padded_average());
2049   }
2050 
2051   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2052     ref_processor(), clear_all_soft_refs);
2053   #ifdef ASSERT
2054     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2055     size_t free_size = cms_space->free();
2056     assert(free_size ==
2057            pointer_delta(cms_space->end(), cms_space->compaction_top())
2058            * HeapWordSize,
2059       "All the free space should be compacted into one chunk at top");
2060     assert(cms_space->dictionary()->total_chunk_size(
2061                                       debug_only(cms_space->freelistLock())) == 0 ||
2062            cms_space->totalSizeInIndexedFreeLists() == 0,
2063       "All the free space should be in a single chunk");
2064     size_t num = cms_space->totalCount();
2065     assert((free_size == 0 && num == 0) ||
2066            (free_size > 0  && (num == 1 || num == 2)),
2067          "There should be at most 2 free chunks after compaction");
2068   #endif // ASSERT
2069   _collectorState = Resetting;
2070   assert(_restart_addr == NULL,
2071          "Should have been NULL'd before baton was passed");
2072   reset(false /* == !asynch */);
2073   _cmsGen->reset_after_compaction();
2074   _concurrent_cycles_since_last_unload = 0;
2075 
2076   // Clear any data recorded in the PLAB chunk arrays.
2077   if (_survivor_plab_array != NULL) {
2078     reset_survivor_plab_arrays();
2079   }
2080 
2081   // Adjust the per-size allocation stats for the next epoch.
2082   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2083   // Restart the "inter sweep timer" for the next epoch.
2084   _inter_sweep_timer.reset();
2085   _inter_sweep_timer.start();
2086 
2087   // Sample collection pause time and reset for collection interval.
2088   if (UseAdaptiveSizePolicy) {
2089     size_policy()->msc_collection_end(gch->gc_cause());
2090   }
2091 
2092   gc_timer->register_gc_end();
2093 
2094   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2095 
2096   // For a mark-sweep-compact, compute_new_size() will be called
2097   // in the heap's do_collection() method.
2098 }
2099 
2100 // A work method used by the foreground collector to do
2101 // a mark-sweep, after taking over from a possibly on-going
2102 // concurrent mark-sweep collection.
2103 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2104   CollectorState first_state, bool should_start_over) {
2105   if (PrintGC && Verbose) {
2106     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2107       "collector with count %d",
2108       _full_gcs_since_conc_gc);
2109   }
2110   switch (_collectorState) {
2111     case Idling:
2112       if (first_state == Idling || should_start_over) {
2113         // The background GC was not active, or should
2114         // restarted from scratch;  start the cycle.
2115         _collectorState = InitialMarking;
2116       }
2117       // If first_state was not Idling, then a background GC
2118       // was in progress and has now finished.  No need to do it
2119       // again.  Leave the state as Idling.
2120       break;
2121     case Precleaning:
2122       // In the foreground case don't do the precleaning since
2123       // it is not done concurrently and there is extra work
2124       // required.
2125       _collectorState = FinalMarking;
2126   }
2127   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2128 
2129   // For a mark-sweep, compute_new_size() will be called
2130   // in the heap's do_collection() method.
2131 }
2132 
2133 
2134 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2135   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2136   EdenSpace* eden_space = dng->eden();
2137   ContiguousSpace* from_space = dng->from();
2138   ContiguousSpace* to_space   = dng->to();
2139   // Eden
2140   if (_eden_chunk_array != NULL) {
2141     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2142                            eden_space->bottom(), eden_space->top(),
2143                            eden_space->end(), eden_space->capacity());
2144     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2145                            "_eden_chunk_capacity=" SIZE_FORMAT,
2146                            _eden_chunk_index, _eden_chunk_capacity);
2147     for (size_t i = 0; i < _eden_chunk_index; i++) {
2148       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2149                              i, _eden_chunk_array[i]);
2150     }
2151   }
2152   // Survivor
2153   if (_survivor_chunk_array != NULL) {
2154     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2155                            from_space->bottom(), from_space->top(),
2156                            from_space->end(), from_space->capacity());
2157     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2158                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2159                            _survivor_chunk_index, _survivor_chunk_capacity);
2160     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2161       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2162                              i, _survivor_chunk_array[i]);
2163     }
2164   }
2165 }
2166 
2167 void CMSCollector::getFreelistLocks() const {
2168   // Get locks for all free lists in all generations that this
2169   // collector is responsible for
2170   _cmsGen->freelistLock()->lock_without_safepoint_check();
2171 }
2172 
2173 void CMSCollector::releaseFreelistLocks() const {
2174   // Release locks for all free lists in all generations that this
2175   // collector is responsible for
2176   _cmsGen->freelistLock()->unlock();
2177 }
2178 
2179 bool CMSCollector::haveFreelistLocks() const {
2180   // Check locks for all free lists in all generations that this
2181   // collector is responsible for
2182   assert_lock_strong(_cmsGen->freelistLock());
2183   PRODUCT_ONLY(ShouldNotReachHere());
2184   return true;
2185 }
2186 
2187 // A utility class that is used by the CMS collector to
2188 // temporarily "release" the foreground collector from its
2189 // usual obligation to wait for the background collector to
2190 // complete an ongoing phase before proceeding.
2191 class ReleaseForegroundGC: public StackObj {
2192  private:
2193   CMSCollector* _c;
2194  public:
2195   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2196     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2197     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2198     // allow a potentially blocked foreground collector to proceed
2199     _c->_foregroundGCShouldWait = false;
2200     if (_c->_foregroundGCIsActive) {
2201       CGC_lock->notify();
2202     }
2203     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2204            "Possible deadlock");
2205   }
2206 
2207   ~ReleaseForegroundGC() {
2208     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2209     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2210     _c->_foregroundGCShouldWait = true;
2211   }
2212 };
2213 
2214 // There are separate collect_in_background and collect_in_foreground because of
2215 // the different locking requirements of the background collector and the
2216 // foreground collector.  There was originally an attempt to share
2217 // one "collect" method between the background collector and the foreground
2218 // collector but the if-then-else required made it cleaner to have
2219 // separate methods.
2220 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2221   assert(Thread::current()->is_ConcurrentGC_thread(),
2222     "A CMS asynchronous collection is only allowed on a CMS thread.");
2223 
2224   GenCollectedHeap* gch = GenCollectedHeap::heap();
2225   {
2226     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2227     MutexLockerEx hl(Heap_lock, safepoint_check);
2228     FreelistLocker fll(this);
2229     MutexLockerEx x(CGC_lock, safepoint_check);
2230     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2231       // The foreground collector is active or we're
2232       // not using asynchronous collections.  Skip this
2233       // background collection.
2234       assert(!_foregroundGCShouldWait, "Should be clear");
2235       return;
2236     } else {
2237       assert(_collectorState == Idling, "Should be idling before start.");
2238       _collectorState = InitialMarking;
2239       register_gc_start(cause);
2240       // Reset the expansion cause, now that we are about to begin
2241       // a new cycle.
2242       clear_expansion_cause();
2243 
2244       // Clear the MetaspaceGC flag since a concurrent collection
2245       // is starting but also clear it after the collection.
2246       MetaspaceGC::set_should_concurrent_collect(false);
2247     }
2248     // Decide if we want to enable class unloading as part of the
2249     // ensuing concurrent GC cycle.
2250     update_should_unload_classes();
2251     _full_gc_requested = false;           // acks all outstanding full gc requests
2252     _full_gc_cause = GCCause::_no_gc;
2253     // Signal that we are about to start a collection
2254     gch->increment_total_full_collections();  // ... starting a collection cycle
2255     _collection_count_start = gch->total_full_collections();
2256   }
2257 
2258   // Used for PrintGC
2259   size_t prev_used;
2260   if (PrintGC && Verbose) {
2261     prev_used = _cmsGen->used(); // XXXPERM
2262   }
2263 
2264   // The change of the collection state is normally done at this level;
2265   // the exceptions are phases that are executed while the world is
2266   // stopped.  For those phases the change of state is done while the
2267   // world is stopped.  For baton passing purposes this allows the
2268   // background collector to finish the phase and change state atomically.
2269   // The foreground collector cannot wait on a phase that is done
2270   // while the world is stopped because the foreground collector already
2271   // has the world stopped and would deadlock.
2272   while (_collectorState != Idling) {
2273     if (TraceCMSState) {
2274       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2275         Thread::current(), _collectorState);
2276     }
2277     // The foreground collector
2278     //   holds the Heap_lock throughout its collection.
2279     //   holds the CMS token (but not the lock)
2280     //     except while it is waiting for the background collector to yield.
2281     //
2282     // The foreground collector should be blocked (not for long)
2283     //   if the background collector is about to start a phase
2284     //   executed with world stopped.  If the background
2285     //   collector has already started such a phase, the
2286     //   foreground collector is blocked waiting for the
2287     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2288     //   are executed in the VM thread.
2289     //
2290     // The locking order is
2291     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2292     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2293     //   CMS token  (claimed in
2294     //                stop_world_and_do() -->
2295     //                  safepoint_synchronize() -->
2296     //                    CMSThread::synchronize())
2297 
2298     {
2299       // Check if the FG collector wants us to yield.
2300       CMSTokenSync x(true); // is cms thread
2301       if (waitForForegroundGC()) {
2302         // We yielded to a foreground GC, nothing more to be
2303         // done this round.
2304         assert(_foregroundGCShouldWait == false, "We set it to false in "
2305                "waitForForegroundGC()");
2306         if (TraceCMSState) {
2307           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2308             " exiting collection CMS state %d",
2309             Thread::current(), _collectorState);
2310         }
2311         return;
2312       } else {
2313         // The background collector can run but check to see if the
2314         // foreground collector has done a collection while the
2315         // background collector was waiting to get the CGC_lock
2316         // above.  If yes, break so that _foregroundGCShouldWait
2317         // is cleared before returning.
2318         if (_collectorState == Idling) {
2319           break;
2320         }
2321       }
2322     }
2323 
2324     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2325       "should be waiting");
2326 
2327     switch (_collectorState) {
2328       case InitialMarking:
2329         {
2330           ReleaseForegroundGC x(this);
2331           stats().record_cms_begin();
2332           VM_CMS_Initial_Mark initial_mark_op(this);
2333           VMThread::execute(&initial_mark_op);
2334         }
2335         // The collector state may be any legal state at this point
2336         // since the background collector may have yielded to the
2337         // foreground collector.
2338         break;
2339       case Marking:
2340         // initial marking in checkpointRootsInitialWork has been completed
2341         if (markFromRoots(true)) { // we were successful
2342           assert(_collectorState == Precleaning, "Collector state should "
2343             "have changed");
2344         } else {
2345           assert(_foregroundGCIsActive, "Internal state inconsistency");
2346         }
2347         break;
2348       case Precleaning:
2349         if (UseAdaptiveSizePolicy) {
2350           size_policy()->concurrent_precleaning_begin();
2351         }
2352         // marking from roots in markFromRoots has been completed
2353         preclean();
2354         if (UseAdaptiveSizePolicy) {
2355           size_policy()->concurrent_precleaning_end();
2356         }
2357         assert(_collectorState == AbortablePreclean ||
2358                _collectorState == FinalMarking,
2359                "Collector state should have changed");
2360         break;
2361       case AbortablePreclean:
2362         if (UseAdaptiveSizePolicy) {
2363         size_policy()->concurrent_phases_resume();
2364         }
2365         abortable_preclean();
2366         if (UseAdaptiveSizePolicy) {
2367           size_policy()->concurrent_precleaning_end();
2368         }
2369         assert(_collectorState == FinalMarking, "Collector state should "
2370           "have changed");
2371         break;
2372       case FinalMarking:
2373         {
2374           ReleaseForegroundGC x(this);
2375 
2376           VM_CMS_Final_Remark final_remark_op(this);
2377           VMThread::execute(&final_remark_op);
2378         }
2379         assert(_foregroundGCShouldWait, "block post-condition");
2380         break;
2381       case Sweeping:
2382         if (UseAdaptiveSizePolicy) {
2383           size_policy()->concurrent_sweeping_begin();
2384         }
2385         // final marking in checkpointRootsFinal has been completed
2386         sweep(true);
2387         assert(_collectorState == Resizing, "Collector state change "
2388           "to Resizing must be done under the free_list_lock");
2389         _full_gcs_since_conc_gc = 0;
2390 
2391         // Stop the timers for adaptive size policy for the concurrent phases
2392         if (UseAdaptiveSizePolicy) {
2393           size_policy()->concurrent_sweeping_end();
2394           size_policy()->concurrent_phases_end(gch->gc_cause(),
2395                                              gch->prev_gen(_cmsGen)->capacity(),
2396                                              _cmsGen->free());
2397         }
2398 
2399       case Resizing: {
2400         // Sweeping has been completed...
2401         // At this point the background collection has completed.
2402         // Don't move the call to compute_new_size() down
2403         // into code that might be executed if the background
2404         // collection was preempted.
2405         {
2406           ReleaseForegroundGC x(this);   // unblock FG collection
2407           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2408           CMSTokenSync        z(true);   // not strictly needed.
2409           if (_collectorState == Resizing) {
2410             compute_new_size();
2411             save_heap_summary();
2412             _collectorState = Resetting;
2413           } else {
2414             assert(_collectorState == Idling, "The state should only change"
2415                    " because the foreground collector has finished the collection");
2416           }
2417         }
2418         break;
2419       }
2420       case Resetting:
2421         // CMS heap resizing has been completed
2422         reset(true);
2423         assert(_collectorState == Idling, "Collector state should "
2424           "have changed");
2425 
2426         MetaspaceGC::set_should_concurrent_collect(false);
2427 
2428         stats().record_cms_end();
2429         // Don't move the concurrent_phases_end() and compute_new_size()
2430         // calls to here because a preempted background collection
2431         // has it's state set to "Resetting".
2432         break;
2433       case Idling:
2434       default:
2435         ShouldNotReachHere();
2436         break;
2437     }
2438     if (TraceCMSState) {
2439       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2440         Thread::current(), _collectorState);
2441     }
2442     assert(_foregroundGCShouldWait, "block post-condition");
2443   }
2444 
2445   // Should this be in gc_epilogue?
2446   collector_policy()->counters()->update_counters();
2447 
2448   {
2449     // Clear _foregroundGCShouldWait and, in the event that the
2450     // foreground collector is waiting, notify it, before
2451     // returning.
2452     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2453     _foregroundGCShouldWait = false;
2454     if (_foregroundGCIsActive) {
2455       CGC_lock->notify();
2456     }
2457     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2458            "Possible deadlock");
2459   }
2460   if (TraceCMSState) {
2461     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2462       " exiting collection CMS state %d",
2463       Thread::current(), _collectorState);
2464   }
2465   if (PrintGC && Verbose) {
2466     _cmsGen->print_heap_change(prev_used);
2467   }
2468 }
2469 
2470 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2471   if (!_cms_start_registered) {
2472     register_gc_start(cause);
2473   }
2474 }
2475 
2476 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2477   _cms_start_registered = true;
2478   _gc_timer_cm->register_gc_start();
2479   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2480 }
2481 
2482 void CMSCollector::register_gc_end() {
2483   if (_cms_start_registered) {
2484     report_heap_summary(GCWhen::AfterGC);
2485 
2486     _gc_timer_cm->register_gc_end();
2487     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2488     _cms_start_registered = false;
2489   }
2490 }
2491 
2492 void CMSCollector::save_heap_summary() {
2493   GenCollectedHeap* gch = GenCollectedHeap::heap();
2494   _last_heap_summary = gch->create_heap_summary();
2495   _last_metaspace_summary = gch->create_metaspace_summary();
2496 }
2497 
2498 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2499   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2500   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2501 }
2502 
2503 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2504   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2505          "Foreground collector should be waiting, not executing");
2506   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2507     "may only be done by the VM Thread with the world stopped");
2508   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2509          "VM thread should have CMS token");
2510 
2511   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2512     true, NULL);)
2513   if (UseAdaptiveSizePolicy) {
2514     size_policy()->ms_collection_begin();
2515   }
2516   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2517 
2518   HandleMark hm;  // Discard invalid handles created during verification
2519 
2520   if (VerifyBeforeGC &&
2521       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2522     Universe::verify();
2523   }
2524 
2525   // Snapshot the soft reference policy to be used in this collection cycle.
2526   ref_processor()->setup_policy(clear_all_soft_refs);
2527 
2528   // Decide if class unloading should be done
2529   update_should_unload_classes();
2530 
2531   bool init_mark_was_synchronous = false; // until proven otherwise
2532   while (_collectorState != Idling) {
2533     if (TraceCMSState) {
2534       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2535         Thread::current(), _collectorState);
2536     }
2537     switch (_collectorState) {
2538       case InitialMarking:
2539         register_foreground_gc_start(cause);
2540         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2541         checkpointRootsInitial(false);
2542         assert(_collectorState == Marking, "Collector state should have changed"
2543           " within checkpointRootsInitial()");
2544         break;
2545       case Marking:
2546         // initial marking in checkpointRootsInitialWork has been completed
2547         if (VerifyDuringGC &&
2548             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2549           Universe::verify("Verify before initial mark: ");
2550         }
2551         {
2552           bool res = markFromRoots(false);
2553           assert(res && _collectorState == FinalMarking, "Collector state should "
2554             "have changed");
2555           break;
2556         }
2557       case FinalMarking:
2558         if (VerifyDuringGC &&
2559             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2560           Universe::verify("Verify before re-mark: ");
2561         }
2562         checkpointRootsFinal(false, clear_all_soft_refs,
2563                              init_mark_was_synchronous);
2564         assert(_collectorState == Sweeping, "Collector state should not "
2565           "have changed within checkpointRootsFinal()");
2566         break;
2567       case Sweeping:
2568         // final marking in checkpointRootsFinal has been completed
2569         if (VerifyDuringGC &&
2570             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2571           Universe::verify("Verify before sweep: ");
2572         }
2573         sweep(false);
2574         assert(_collectorState == Resizing, "Incorrect state");
2575         break;
2576       case Resizing: {
2577         // Sweeping has been completed; the actual resize in this case
2578         // is done separately; nothing to be done in this state.
2579         _collectorState = Resetting;
2580         break;
2581       }
2582       case Resetting:
2583         // The heap has been resized.
2584         if (VerifyDuringGC &&
2585             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2586           Universe::verify("Verify before reset: ");
2587         }
2588         save_heap_summary();
2589         reset(false);
2590         assert(_collectorState == Idling, "Collector state should "
2591           "have changed");
2592         break;
2593       case Precleaning:
2594       case AbortablePreclean:
2595         // Elide the preclean phase
2596         _collectorState = FinalMarking;
2597         break;
2598       default:
2599         ShouldNotReachHere();
2600     }
2601     if (TraceCMSState) {
2602       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2603         Thread::current(), _collectorState);
2604     }
2605   }
2606 
2607   if (UseAdaptiveSizePolicy) {
2608     GenCollectedHeap* gch = GenCollectedHeap::heap();
2609     size_policy()->ms_collection_end(gch->gc_cause());
2610   }
2611 
2612   if (VerifyAfterGC &&
2613       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2614     Universe::verify();
2615   }
2616   if (TraceCMSState) {
2617     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2618       " exiting collection CMS state %d",
2619       Thread::current(), _collectorState);
2620   }
2621 }
2622 
2623 bool CMSCollector::waitForForegroundGC() {
2624   bool res = false;
2625   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2626          "CMS thread should have CMS token");
2627   // Block the foreground collector until the
2628   // background collectors decides whether to
2629   // yield.
2630   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2631   _foregroundGCShouldWait = true;
2632   if (_foregroundGCIsActive) {
2633     // The background collector yields to the
2634     // foreground collector and returns a value
2635     // indicating that it has yielded.  The foreground
2636     // collector can proceed.
2637     res = true;
2638     _foregroundGCShouldWait = false;
2639     ConcurrentMarkSweepThread::clear_CMS_flag(
2640       ConcurrentMarkSweepThread::CMS_cms_has_token);
2641     ConcurrentMarkSweepThread::set_CMS_flag(
2642       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2643     // Get a possibly blocked foreground thread going
2644     CGC_lock->notify();
2645     if (TraceCMSState) {
2646       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2647         Thread::current(), _collectorState);
2648     }
2649     while (_foregroundGCIsActive) {
2650       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2651     }
2652     ConcurrentMarkSweepThread::set_CMS_flag(
2653       ConcurrentMarkSweepThread::CMS_cms_has_token);
2654     ConcurrentMarkSweepThread::clear_CMS_flag(
2655       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2656   }
2657   if (TraceCMSState) {
2658     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2659       Thread::current(), _collectorState);
2660   }
2661   return res;
2662 }
2663 
2664 // Because of the need to lock the free lists and other structures in
2665 // the collector, common to all the generations that the collector is
2666 // collecting, we need the gc_prologues of individual CMS generations
2667 // delegate to their collector. It may have been simpler had the
2668 // current infrastructure allowed one to call a prologue on a
2669 // collector. In the absence of that we have the generation's
2670 // prologue delegate to the collector, which delegates back
2671 // some "local" work to a worker method in the individual generations
2672 // that it's responsible for collecting, while itself doing any
2673 // work common to all generations it's responsible for. A similar
2674 // comment applies to the  gc_epilogue()'s.
2675 // The role of the variable _between_prologue_and_epilogue is to
2676 // enforce the invocation protocol.
2677 void CMSCollector::gc_prologue(bool full) {
2678   // Call gc_prologue_work() for the CMSGen
2679   // we are responsible for.
2680 
2681   // The following locking discipline assumes that we are only called
2682   // when the world is stopped.
2683   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2684 
2685   // The CMSCollector prologue must call the gc_prologues for the
2686   // "generations" that it's responsible
2687   // for.
2688 
2689   assert(   Thread::current()->is_VM_thread()
2690          || (   CMSScavengeBeforeRemark
2691              && Thread::current()->is_ConcurrentGC_thread()),
2692          "Incorrect thread type for prologue execution");
2693 
2694   if (_between_prologue_and_epilogue) {
2695     // We have already been invoked; this is a gc_prologue delegation
2696     // from yet another CMS generation that we are responsible for, just
2697     // ignore it since all relevant work has already been done.
2698     return;
2699   }
2700 
2701   // set a bit saying prologue has been called; cleared in epilogue
2702   _between_prologue_and_epilogue = true;
2703   // Claim locks for common data structures, then call gc_prologue_work()
2704   // for each CMSGen.
2705 
2706   getFreelistLocks();   // gets free list locks on constituent spaces
2707   bitMapLock()->lock_without_safepoint_check();
2708 
2709   // Should call gc_prologue_work() for all cms gens we are responsible for
2710   bool duringMarking =    _collectorState >= Marking
2711                          && _collectorState < Sweeping;
2712 
2713   // The young collections clear the modified oops state, which tells if
2714   // there are any modified oops in the class. The remark phase also needs
2715   // that information. Tell the young collection to save the union of all
2716   // modified klasses.
2717   if (duringMarking) {
2718     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2719   }
2720 
2721   bool registerClosure = duringMarking;
2722 
2723   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2724                                                &_modUnionClosurePar
2725                                                : &_modUnionClosure;
2726   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2727 
2728   if (!full) {
2729     stats().record_gc0_begin();
2730   }
2731 }
2732 
2733 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2734 
2735   _capacity_at_prologue = capacity();
2736   _used_at_prologue = used();
2737 
2738   // Delegate to CMScollector which knows how to coordinate between
2739   // this and any other CMS generations that it is responsible for
2740   // collecting.
2741   collector()->gc_prologue(full);
2742 }
2743 
2744 // This is a "private" interface for use by this generation's CMSCollector.
2745 // Not to be called directly by any other entity (for instance,
2746 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2747 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2748   bool registerClosure, ModUnionClosure* modUnionClosure) {
2749   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2750   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2751     "Should be NULL");
2752   if (registerClosure) {
2753     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2754   }
2755   cmsSpace()->gc_prologue();
2756   // Clear stat counters
2757   NOT_PRODUCT(
2758     assert(_numObjectsPromoted == 0, "check");
2759     assert(_numWordsPromoted   == 0, "check");
2760     if (Verbose && PrintGC) {
2761       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2762                           SIZE_FORMAT" bytes concurrently",
2763       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2764     }
2765     _numObjectsAllocated = 0;
2766     _numWordsAllocated   = 0;
2767   )
2768 }
2769 
2770 void CMSCollector::gc_epilogue(bool full) {
2771   // The following locking discipline assumes that we are only called
2772   // when the world is stopped.
2773   assert(SafepointSynchronize::is_at_safepoint(),
2774          "world is stopped assumption");
2775 
2776   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2777   // if linear allocation blocks need to be appropriately marked to allow the
2778   // the blocks to be parsable. We also check here whether we need to nudge the
2779   // CMS collector thread to start a new cycle (if it's not already active).
2780   assert(   Thread::current()->is_VM_thread()
2781          || (   CMSScavengeBeforeRemark
2782              && Thread::current()->is_ConcurrentGC_thread()),
2783          "Incorrect thread type for epilogue execution");
2784 
2785   if (!_between_prologue_and_epilogue) {
2786     // We have already been invoked; this is a gc_epilogue delegation
2787     // from yet another CMS generation that we are responsible for, just
2788     // ignore it since all relevant work has already been done.
2789     return;
2790   }
2791   assert(haveFreelistLocks(), "must have freelist locks");
2792   assert_lock_strong(bitMapLock());
2793 
2794   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2795 
2796   _cmsGen->gc_epilogue_work(full);
2797 
2798   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2799     // in case sampling was not already enabled, enable it
2800     _start_sampling = true;
2801   }
2802   // reset _eden_chunk_array so sampling starts afresh
2803   _eden_chunk_index = 0;
2804 
2805   size_t cms_used   = _cmsGen->cmsSpace()->used();
2806 
2807   // update performance counters - this uses a special version of
2808   // update_counters() that allows the utilization to be passed as a
2809   // parameter, avoiding multiple calls to used().
2810   //
2811   _cmsGen->update_counters(cms_used);
2812 
2813   if (CMSIncrementalMode) {
2814     icms_update_allocation_limits();
2815   }
2816 
2817   bitMapLock()->unlock();
2818   releaseFreelistLocks();
2819 
2820   if (!CleanChunkPoolAsync) {
2821     Chunk::clean_chunk_pool();
2822   }
2823 
2824   set_did_compact(false);
2825   _between_prologue_and_epilogue = false;  // ready for next cycle
2826 }
2827 
2828 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2829   collector()->gc_epilogue(full);
2830 
2831   // Also reset promotion tracking in par gc thread states.
2832   if (CollectedHeap::use_parallel_gc_threads()) {
2833     for (uint i = 0; i < ParallelGCThreads; i++) {
2834       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2835     }
2836   }
2837 }
2838 
2839 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2840   assert(!incremental_collection_failed(), "Should have been cleared");
2841   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2842   cmsSpace()->gc_epilogue();
2843     // Print stat counters
2844   NOT_PRODUCT(
2845     assert(_numObjectsAllocated == 0, "check");
2846     assert(_numWordsAllocated == 0, "check");
2847     if (Verbose && PrintGC) {
2848       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2849                           SIZE_FORMAT" bytes",
2850                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2851     }
2852     _numObjectsPromoted = 0;
2853     _numWordsPromoted   = 0;
2854   )
2855 
2856   if (PrintGC && Verbose) {
2857     // Call down the chain in contiguous_available needs the freelistLock
2858     // so print this out before releasing the freeListLock.
2859     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2860                         contiguous_available());
2861   }
2862 }
2863 
2864 #ifndef PRODUCT
2865 bool CMSCollector::have_cms_token() {
2866   Thread* thr = Thread::current();
2867   if (thr->is_VM_thread()) {
2868     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2869   } else if (thr->is_ConcurrentGC_thread()) {
2870     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2871   } else if (thr->is_GC_task_thread()) {
2872     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2873            ParGCRareEvent_lock->owned_by_self();
2874   }
2875   return false;
2876 }
2877 #endif
2878 
2879 // Check reachability of the given heap address in CMS generation,
2880 // treating all other generations as roots.
2881 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2882   // We could "guarantee" below, rather than assert, but I'll
2883   // leave these as "asserts" so that an adventurous debugger
2884   // could try this in the product build provided some subset of
2885   // the conditions were met, provided they were interested in the
2886   // results and knew that the computation below wouldn't interfere
2887   // with other concurrent computations mutating the structures
2888   // being read or written.
2889   assert(SafepointSynchronize::is_at_safepoint(),
2890          "Else mutations in object graph will make answer suspect");
2891   assert(have_cms_token(), "Should hold cms token");
2892   assert(haveFreelistLocks(), "must hold free list locks");
2893   assert_lock_strong(bitMapLock());
2894 
2895   // Clear the marking bit map array before starting, but, just
2896   // for kicks, first report if the given address is already marked
2897   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2898                 _markBitMap.isMarked(addr) ? "" : " not");
2899 
2900   if (verify_after_remark()) {
2901     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2902     bool result = verification_mark_bm()->isMarked(addr);
2903     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2904                            result ? "IS" : "is NOT");
2905     return result;
2906   } else {
2907     gclog_or_tty->print_cr("Could not compute result");
2908     return false;
2909   }
2910 }
2911 
2912 
2913 void
2914 CMSCollector::print_on_error(outputStream* st) {
2915   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2916   if (collector != NULL) {
2917     CMSBitMap* bitmap = &collector->_markBitMap;
2918     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2919     bitmap->print_on_error(st, " Bits: ");
2920 
2921     st->cr();
2922 
2923     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2924     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2925     mut_bitmap->print_on_error(st, " Bits: ");
2926   }
2927 }
2928 
2929 ////////////////////////////////////////////////////////
2930 // CMS Verification Support
2931 ////////////////////////////////////////////////////////
2932 // Following the remark phase, the following invariant
2933 // should hold -- each object in the CMS heap which is
2934 // marked in markBitMap() should be marked in the verification_mark_bm().
2935 
2936 class VerifyMarkedClosure: public BitMapClosure {
2937   CMSBitMap* _marks;
2938   bool       _failed;
2939 
2940  public:
2941   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2942 
2943   bool do_bit(size_t offset) {
2944     HeapWord* addr = _marks->offsetToHeapWord(offset);
2945     if (!_marks->isMarked(addr)) {
2946       oop(addr)->print_on(gclog_or_tty);
2947       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2948       _failed = true;
2949     }
2950     return true;
2951   }
2952 
2953   bool failed() { return _failed; }
2954 };
2955 
2956 bool CMSCollector::verify_after_remark(bool silent) {
2957   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2958   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2959   static bool init = false;
2960 
2961   assert(SafepointSynchronize::is_at_safepoint(),
2962          "Else mutations in object graph will make answer suspect");
2963   assert(have_cms_token(),
2964          "Else there may be mutual interference in use of "
2965          " verification data structures");
2966   assert(_collectorState > Marking && _collectorState <= Sweeping,
2967          "Else marking info checked here may be obsolete");
2968   assert(haveFreelistLocks(), "must hold free list locks");
2969   assert_lock_strong(bitMapLock());
2970 
2971 
2972   // Allocate marking bit map if not already allocated
2973   if (!init) { // first time
2974     if (!verification_mark_bm()->allocate(_span)) {
2975       return false;
2976     }
2977     init = true;
2978   }
2979 
2980   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2981 
2982   // Turn off refs discovery -- so we will be tracing through refs.
2983   // This is as intended, because by this time
2984   // GC must already have cleared any refs that need to be cleared,
2985   // and traced those that need to be marked; moreover,
2986   // the marking done here is not going to interfere in any
2987   // way with the marking information used by GC.
2988   NoRefDiscovery no_discovery(ref_processor());
2989 
2990   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2991 
2992   // Clear any marks from a previous round
2993   verification_mark_bm()->clear_all();
2994   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2995   verify_work_stacks_empty();
2996 
2997   GenCollectedHeap* gch = GenCollectedHeap::heap();
2998   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2999   // Update the saved marks which may affect the root scans.
3000   gch->save_marks();
3001 
3002   if (CMSRemarkVerifyVariant == 1) {
3003     // In this first variant of verification, we complete
3004     // all marking, then check if the new marks-vector is
3005     // a subset of the CMS marks-vector.
3006     verify_after_remark_work_1();
3007   } else if (CMSRemarkVerifyVariant == 2) {
3008     // In this second variant of verification, we flag an error
3009     // (i.e. an object reachable in the new marks-vector not reachable
3010     // in the CMS marks-vector) immediately, also indicating the
3011     // identify of an object (A) that references the unmarked object (B) --
3012     // presumably, a mutation to A failed to be picked up by preclean/remark?
3013     verify_after_remark_work_2();
3014   } else {
3015     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
3016             CMSRemarkVerifyVariant);
3017   }
3018   if (!silent) gclog_or_tty->print(" done] ");
3019   return true;
3020 }
3021 
3022 void CMSCollector::verify_after_remark_work_1() {
3023   ResourceMark rm;
3024   HandleMark  hm;
3025   GenCollectedHeap* gch = GenCollectedHeap::heap();
3026 
3027   // Get a clear set of claim bits for the strong roots processing to work with.
3028   ClassLoaderDataGraph::clear_claimed_marks();
3029 
3030   // Mark from roots one level into CMS
3031   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3032   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3033 
3034   gch->gen_process_strong_roots(_cmsGen->level(),
3035                                 true,   // younger gens are roots
3036                                 true,   // activate StrongRootsScope
3037                                 SharedHeap::ScanningOption(roots_scanning_options()),
3038                                 &notOlder,
3039                                 NULL,
3040                                 NULL); // SSS: Provide correct closure
3041 
3042   // Now mark from the roots
3043   MarkFromRootsClosure markFromRootsClosure(this, _span,
3044     verification_mark_bm(), verification_mark_stack(),
3045     false /* don't yield */, true /* verifying */);
3046   assert(_restart_addr == NULL, "Expected pre-condition");
3047   verification_mark_bm()->iterate(&markFromRootsClosure);
3048   while (_restart_addr != NULL) {
3049     // Deal with stack overflow: by restarting at the indicated
3050     // address.
3051     HeapWord* ra = _restart_addr;
3052     markFromRootsClosure.reset(ra);
3053     _restart_addr = NULL;
3054     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3055   }
3056   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3057   verify_work_stacks_empty();
3058 
3059   // Marking completed -- now verify that each bit marked in
3060   // verification_mark_bm() is also marked in markBitMap(); flag all
3061   // errors by printing corresponding objects.
3062   VerifyMarkedClosure vcl(markBitMap());
3063   verification_mark_bm()->iterate(&vcl);
3064   if (vcl.failed()) {
3065     gclog_or_tty->print("Verification failed");
3066     Universe::heap()->print_on(gclog_or_tty);
3067     fatal("CMS: failed marking verification after remark");
3068   }
3069 }
3070 
3071 class VerifyKlassOopsKlassClosure : public KlassClosure {
3072   class VerifyKlassOopsClosure : public OopClosure {
3073     CMSBitMap* _bitmap;
3074    public:
3075     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3076     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3077     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3078   } _oop_closure;
3079  public:
3080   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3081   void do_klass(Klass* k) {
3082     k->oops_do(&_oop_closure);
3083   }
3084 };
3085 
3086 void CMSCollector::verify_after_remark_work_2() {
3087   ResourceMark rm;
3088   HandleMark  hm;
3089   GenCollectedHeap* gch = GenCollectedHeap::heap();
3090 
3091   // Get a clear set of claim bits for the strong roots processing to work with.
3092   ClassLoaderDataGraph::clear_claimed_marks();
3093 
3094   // Mark from roots one level into CMS
3095   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3096                                      markBitMap());
3097   CMKlassClosure klass_closure(&notOlder);
3098 
3099   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3100   gch->gen_process_strong_roots(_cmsGen->level(),
3101                                 true,   // younger gens are roots
3102                                 true,   // activate StrongRootsScope
3103                                 SharedHeap::ScanningOption(roots_scanning_options()),
3104                                 &notOlder,
3105                                 NULL,
3106                                 &klass_closure);
3107 
3108   // Now mark from the roots
3109   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3110     verification_mark_bm(), markBitMap(), verification_mark_stack());
3111   assert(_restart_addr == NULL, "Expected pre-condition");
3112   verification_mark_bm()->iterate(&markFromRootsClosure);
3113   while (_restart_addr != NULL) {
3114     // Deal with stack overflow: by restarting at the indicated
3115     // address.
3116     HeapWord* ra = _restart_addr;
3117     markFromRootsClosure.reset(ra);
3118     _restart_addr = NULL;
3119     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3120   }
3121   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3122   verify_work_stacks_empty();
3123 
3124   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3125   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3126 
3127   // Marking completed -- now verify that each bit marked in
3128   // verification_mark_bm() is also marked in markBitMap(); flag all
3129   // errors by printing corresponding objects.
3130   VerifyMarkedClosure vcl(markBitMap());
3131   verification_mark_bm()->iterate(&vcl);
3132   assert(!vcl.failed(), "Else verification above should not have succeeded");
3133 }
3134 
3135 void ConcurrentMarkSweepGeneration::save_marks() {
3136   // delegate to CMS space
3137   cmsSpace()->save_marks();
3138   for (uint i = 0; i < ParallelGCThreads; i++) {
3139     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3140   }
3141 }
3142 
3143 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3144   return cmsSpace()->no_allocs_since_save_marks();
3145 }
3146 
3147 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3148                                                                 \
3149 void ConcurrentMarkSweepGeneration::                            \
3150 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3151   cl->set_generation(this);                                     \
3152   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3153   cl->reset_generation();                                       \
3154   save_marks();                                                 \
3155 }
3156 
3157 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3158 
3159 void
3160 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3161   cl->set_generation(this);
3162   younger_refs_in_space_iterate(_cmsSpace, cl);
3163   cl->reset_generation();
3164 }
3165 
3166 void
3167 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
3168   if (freelistLock()->owned_by_self()) {
3169     Generation::oop_iterate(mr, cl);
3170   } else {
3171     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3172     Generation::oop_iterate(mr, cl);
3173   }
3174 }
3175 
3176 void
3177 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3178   if (freelistLock()->owned_by_self()) {
3179     Generation::oop_iterate(cl);
3180   } else {
3181     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3182     Generation::oop_iterate(cl);
3183   }
3184 }
3185 
3186 void
3187 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3188   if (freelistLock()->owned_by_self()) {
3189     Generation::object_iterate(cl);
3190   } else {
3191     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3192     Generation::object_iterate(cl);
3193   }
3194 }
3195 
3196 void
3197 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3198   if (freelistLock()->owned_by_self()) {
3199     Generation::safe_object_iterate(cl);
3200   } else {
3201     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3202     Generation::safe_object_iterate(cl);
3203   }
3204 }
3205 
3206 void
3207 ConcurrentMarkSweepGeneration::post_compact() {
3208 }
3209 
3210 void
3211 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3212   // Fix the linear allocation blocks to look like free blocks.
3213 
3214   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3215   // are not called when the heap is verified during universe initialization and
3216   // at vm shutdown.
3217   if (freelistLock()->owned_by_self()) {
3218     cmsSpace()->prepare_for_verify();
3219   } else {
3220     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3221     cmsSpace()->prepare_for_verify();
3222   }
3223 }
3224 
3225 void
3226 ConcurrentMarkSweepGeneration::verify() {
3227   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3228   // are not called when the heap is verified during universe initialization and
3229   // at vm shutdown.
3230   if (freelistLock()->owned_by_self()) {
3231     cmsSpace()->verify();
3232   } else {
3233     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3234     cmsSpace()->verify();
3235   }
3236 }
3237 
3238 void CMSCollector::verify() {
3239   _cmsGen->verify();
3240 }
3241 
3242 #ifndef PRODUCT
3243 bool CMSCollector::overflow_list_is_empty() const {
3244   assert(_num_par_pushes >= 0, "Inconsistency");
3245   if (_overflow_list == NULL) {
3246     assert(_num_par_pushes == 0, "Inconsistency");
3247   }
3248   return _overflow_list == NULL;
3249 }
3250 
3251 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3252 // merely consolidate assertion checks that appear to occur together frequently.
3253 void CMSCollector::verify_work_stacks_empty() const {
3254   assert(_markStack.isEmpty(), "Marking stack should be empty");
3255   assert(overflow_list_is_empty(), "Overflow list should be empty");
3256 }
3257 
3258 void CMSCollector::verify_overflow_empty() const {
3259   assert(overflow_list_is_empty(), "Overflow list should be empty");
3260   assert(no_preserved_marks(), "No preserved marks");
3261 }
3262 #endif // PRODUCT
3263 
3264 // Decide if we want to enable class unloading as part of the
3265 // ensuing concurrent GC cycle. We will collect and
3266 // unload classes if it's the case that:
3267 // (1) an explicit gc request has been made and the flag
3268 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3269 // (2) (a) class unloading is enabled at the command line, and
3270 //     (b) old gen is getting really full
3271 // NOTE: Provided there is no change in the state of the heap between
3272 // calls to this method, it should have idempotent results. Moreover,
3273 // its results should be monotonically increasing (i.e. going from 0 to 1,
3274 // but not 1 to 0) between successive calls between which the heap was
3275 // not collected. For the implementation below, it must thus rely on
3276 // the property that concurrent_cycles_since_last_unload()
3277 // will not decrease unless a collection cycle happened and that
3278 // _cmsGen->is_too_full() are
3279 // themselves also monotonic in that sense. See check_monotonicity()
3280 // below.
3281 void CMSCollector::update_should_unload_classes() {
3282   _should_unload_classes = false;
3283   // Condition 1 above
3284   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3285     _should_unload_classes = true;
3286   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3287     // Disjuncts 2.b.(i,ii,iii) above
3288     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3289                               CMSClassUnloadingMaxInterval)
3290                            || _cmsGen->is_too_full();
3291   }
3292 }
3293 
3294 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3295   bool res = should_concurrent_collect();
3296   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3297   return res;
3298 }
3299 
3300 void CMSCollector::setup_cms_unloading_and_verification_state() {
3301   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3302                              || VerifyBeforeExit;
3303   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_AllCodeCache;
3304 
3305   // We set the proper root for this CMS cycle here.
3306   if (should_unload_classes()) {   // Should unload classes this cycle
3307     remove_root_scanning_option(SharedHeap::SO_AllClasses);
3308     add_root_scanning_option(SharedHeap::SO_SystemClasses);
3309     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3310     set_verifying(should_verify);    // Set verification state for this cycle
3311     return;                            // Nothing else needs to be done at this time
3312   }
3313 
3314   // Not unloading classes this cycle
3315   assert(!should_unload_classes(), "Inconsistency!");
3316   remove_root_scanning_option(SharedHeap::SO_SystemClasses);
3317   add_root_scanning_option(SharedHeap::SO_AllClasses);
3318 
3319   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3320     // Include symbols, strings and code cache elements to prevent their resurrection.
3321     add_root_scanning_option(rso);
3322     set_verifying(true);
3323   } else if (verifying() && !should_verify) {
3324     // We were verifying, but some verification flags got disabled.
3325     set_verifying(false);
3326     // Exclude symbols, strings and code cache elements from root scanning to
3327     // reduce IM and RM pauses.
3328     remove_root_scanning_option(rso);
3329   }
3330 }
3331 
3332 
3333 #ifndef PRODUCT
3334 HeapWord* CMSCollector::block_start(const void* p) const {
3335   const HeapWord* addr = (HeapWord*)p;
3336   if (_span.contains(p)) {
3337     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3338       return _cmsGen->cmsSpace()->block_start(p);
3339     }
3340   }
3341   return NULL;
3342 }
3343 #endif
3344 
3345 HeapWord*
3346 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3347                                                    bool   tlab,
3348                                                    bool   parallel) {
3349   CMSSynchronousYieldRequest yr;
3350   assert(!tlab, "Can't deal with TLAB allocation");
3351   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3352   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3353     CMSExpansionCause::_satisfy_allocation);
3354   if (GCExpandToAllocateDelayMillis > 0) {
3355     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3356   }
3357   return have_lock_and_allocate(word_size, tlab);
3358 }
3359 
3360 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3361 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3362 // to CardGeneration and share it...
3363 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3364   return CardGeneration::expand(bytes, expand_bytes);
3365 }
3366 
3367 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3368   CMSExpansionCause::Cause cause)
3369 {
3370 
3371   bool success = expand(bytes, expand_bytes);
3372 
3373   // remember why we expanded; this information is used
3374   // by shouldConcurrentCollect() when making decisions on whether to start
3375   // a new CMS cycle.
3376   if (success) {
3377     set_expansion_cause(cause);
3378     if (PrintGCDetails && Verbose) {
3379       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3380         CMSExpansionCause::to_string(cause));
3381     }
3382   }
3383 }
3384 
3385 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3386   HeapWord* res = NULL;
3387   MutexLocker x(ParGCRareEvent_lock);
3388   while (true) {
3389     // Expansion by some other thread might make alloc OK now:
3390     res = ps->lab.alloc(word_sz);
3391     if (res != NULL) return res;
3392     // If there's not enough expansion space available, give up.
3393     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3394       return NULL;
3395     }
3396     // Otherwise, we try expansion.
3397     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3398       CMSExpansionCause::_allocate_par_lab);
3399     // Now go around the loop and try alloc again;
3400     // A competing par_promote might beat us to the expansion space,
3401     // so we may go around the loop again if promotion fails again.
3402     if (GCExpandToAllocateDelayMillis > 0) {
3403       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3404     }
3405   }
3406 }
3407 
3408 
3409 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3410   PromotionInfo* promo) {
3411   MutexLocker x(ParGCRareEvent_lock);
3412   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3413   while (true) {
3414     // Expansion by some other thread might make alloc OK now:
3415     if (promo->ensure_spooling_space()) {
3416       assert(promo->has_spooling_space(),
3417              "Post-condition of successful ensure_spooling_space()");
3418       return true;
3419     }
3420     // If there's not enough expansion space available, give up.
3421     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3422       return false;
3423     }
3424     // Otherwise, we try expansion.
3425     expand(refill_size_bytes, MinHeapDeltaBytes,
3426       CMSExpansionCause::_allocate_par_spooling_space);
3427     // Now go around the loop and try alloc again;
3428     // A competing allocation might beat us to the expansion space,
3429     // so we may go around the loop again if allocation fails again.
3430     if (GCExpandToAllocateDelayMillis > 0) {
3431       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3432     }
3433   }
3434 }
3435 
3436 
3437 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3438   assert_locked_or_safepoint(ExpandHeap_lock);
3439   // Shrink committed space
3440   _virtual_space.shrink_by(bytes);
3441   // Shrink space; this also shrinks the space's BOT
3442   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3443   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3444   // Shrink the shared block offset array
3445   _bts->resize(new_word_size);
3446   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3447   // Shrink the card table
3448   Universe::heap()->barrier_set()->resize_covered_region(mr);
3449 
3450   if (Verbose && PrintGC) {
3451     size_t new_mem_size = _virtual_space.committed_size();
3452     size_t old_mem_size = new_mem_size + bytes;
3453     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3454                   name(), old_mem_size/K, new_mem_size/K);
3455   }
3456 }
3457 
3458 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3459   assert_locked_or_safepoint(Heap_lock);
3460   size_t size = ReservedSpace::page_align_size_down(bytes);
3461   // Only shrink if a compaction was done so that all the free space
3462   // in the generation is in a contiguous block at the end.
3463   if (size > 0 && did_compact()) {
3464     shrink_by(size);
3465   }
3466 }
3467 
3468 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3469   assert_locked_or_safepoint(Heap_lock);
3470   bool result = _virtual_space.expand_by(bytes);
3471   if (result) {
3472     size_t new_word_size =
3473       heap_word_size(_virtual_space.committed_size());
3474     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3475     _bts->resize(new_word_size);  // resize the block offset shared array
3476     Universe::heap()->barrier_set()->resize_covered_region(mr);
3477     // Hmmmm... why doesn't CFLS::set_end verify locking?
3478     // This is quite ugly; FIX ME XXX
3479     _cmsSpace->assert_locked(freelistLock());
3480     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3481 
3482     // update the space and generation capacity counters
3483     if (UsePerfData) {
3484       _space_counters->update_capacity();
3485       _gen_counters->update_all();
3486     }
3487 
3488     if (Verbose && PrintGC) {
3489       size_t new_mem_size = _virtual_space.committed_size();
3490       size_t old_mem_size = new_mem_size - bytes;
3491       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3492                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3493     }
3494   }
3495   return result;
3496 }
3497 
3498 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3499   assert_locked_or_safepoint(Heap_lock);
3500   bool success = true;
3501   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3502   if (remaining_bytes > 0) {
3503     success = grow_by(remaining_bytes);
3504     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3505   }
3506   return success;
3507 }
3508 
3509 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3510   assert_locked_or_safepoint(Heap_lock);
3511   assert_lock_strong(freelistLock());
3512   if (PrintGCDetails && Verbose) {
3513     warning("Shrinking of CMS not yet implemented");
3514   }
3515   return;
3516 }
3517 
3518 
3519 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3520 // phases.
3521 class CMSPhaseAccounting: public StackObj {
3522  public:
3523   CMSPhaseAccounting(CMSCollector *collector,
3524                      const char *phase,
3525                      bool print_cr = true);
3526   ~CMSPhaseAccounting();
3527 
3528  private:
3529   CMSCollector *_collector;
3530   const char *_phase;
3531   elapsedTimer _wallclock;
3532   bool _print_cr;
3533 
3534  public:
3535   // Not MT-safe; so do not pass around these StackObj's
3536   // where they may be accessed by other threads.
3537   jlong wallclock_millis() {
3538     assert(_wallclock.is_active(), "Wall clock should not stop");
3539     _wallclock.stop();  // to record time
3540     jlong ret = _wallclock.milliseconds();
3541     _wallclock.start(); // restart
3542     return ret;
3543   }
3544 };
3545 
3546 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3547                                        const char *phase,
3548                                        bool print_cr) :
3549   _collector(collector), _phase(phase), _print_cr(print_cr) {
3550 
3551   if (PrintCMSStatistics != 0) {
3552     _collector->resetYields();
3553   }
3554   if (PrintGCDetails) {
3555     gclog_or_tty->date_stamp(PrintGCDateStamps);
3556     gclog_or_tty->stamp(PrintGCTimeStamps);
3557     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3558       _collector->cmsGen()->short_name(), _phase);
3559   }
3560   _collector->resetTimer();
3561   _wallclock.start();
3562   _collector->startTimer();
3563 }
3564 
3565 CMSPhaseAccounting::~CMSPhaseAccounting() {
3566   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3567   _collector->stopTimer();
3568   _wallclock.stop();
3569   if (PrintGCDetails) {
3570     gclog_or_tty->date_stamp(PrintGCDateStamps);
3571     gclog_or_tty->stamp(PrintGCTimeStamps);
3572     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3573                  _collector->cmsGen()->short_name(),
3574                  _phase, _collector->timerValue(), _wallclock.seconds());
3575     if (_print_cr) {
3576       gclog_or_tty->print_cr("");
3577     }
3578     if (PrintCMSStatistics != 0) {
3579       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3580                     _collector->yields());
3581     }
3582   }
3583 }
3584 
3585 // CMS work
3586 
3587 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3588 class CMSParMarkTask : public AbstractGangTask {
3589  protected:
3590   CMSCollector*     _collector;
3591   int               _n_workers;
3592   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3593       AbstractGangTask(name),
3594       _collector(collector),
3595       _n_workers(n_workers) {}
3596   // Work method in support of parallel rescan ... of young gen spaces
3597   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3598                              ContiguousSpace* space,
3599                              HeapWord** chunk_array, size_t chunk_top);
3600   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3601 };
3602 
3603 // Parallel initial mark task
3604 class CMSParInitialMarkTask: public CMSParMarkTask {
3605  public:
3606   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3607       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3608                      collector, n_workers) {}
3609   void work(uint worker_id);
3610 };
3611 
3612 // Checkpoint the roots into this generation from outside
3613 // this generation. [Note this initial checkpoint need only
3614 // be approximate -- we'll do a catch up phase subsequently.]
3615 void CMSCollector::checkpointRootsInitial(bool asynch) {
3616   assert(_collectorState == InitialMarking, "Wrong collector state");
3617   check_correct_thread_executing();
3618   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3619 
3620   save_heap_summary();
3621   report_heap_summary(GCWhen::BeforeGC);
3622 
3623   ReferenceProcessor* rp = ref_processor();
3624   SpecializationStats::clear();
3625   assert(_restart_addr == NULL, "Control point invariant");
3626   if (asynch) {
3627     // acquire locks for subsequent manipulations
3628     MutexLockerEx x(bitMapLock(),
3629                     Mutex::_no_safepoint_check_flag);
3630     checkpointRootsInitialWork(asynch);
3631     // enable ("weak") refs discovery
3632     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3633     _collectorState = Marking;
3634   } else {
3635     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3636     // which recognizes if we are a CMS generation, and doesn't try to turn on
3637     // discovery; verify that they aren't meddling.
3638     assert(!rp->discovery_is_atomic(),
3639            "incorrect setting of discovery predicate");
3640     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3641            "ref discovery for this generation kind");
3642     // already have locks
3643     checkpointRootsInitialWork(asynch);
3644     // now enable ("weak") refs discovery
3645     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3646     _collectorState = Marking;
3647   }
3648   SpecializationStats::print();
3649 }
3650 
3651 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3652   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3653   assert(_collectorState == InitialMarking, "just checking");
3654 
3655   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3656   // precede our marking with a collection of all
3657   // younger generations to keep floating garbage to a minimum.
3658   // XXX: we won't do this for now -- it's an optimization to be done later.
3659 
3660   // already have locks
3661   assert_lock_strong(bitMapLock());
3662   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3663 
3664   // Setup the verification and class unloading state for this
3665   // CMS collection cycle.
3666   setup_cms_unloading_and_verification_state();
3667 
3668   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3669     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3670   if (UseAdaptiveSizePolicy) {
3671     size_policy()->checkpoint_roots_initial_begin();
3672   }
3673 
3674   // Reset all the PLAB chunk arrays if necessary.
3675   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3676     reset_survivor_plab_arrays();
3677   }
3678 
3679   ResourceMark rm;
3680   HandleMark  hm;
3681 
3682   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3683   GenCollectedHeap* gch = GenCollectedHeap::heap();
3684 
3685   verify_work_stacks_empty();
3686   verify_overflow_empty();
3687 
3688   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3689   // Update the saved marks which may affect the root scans.
3690   gch->save_marks();
3691 
3692   // weak reference processing has not started yet.
3693   ref_processor()->set_enqueuing_is_done(false);
3694 
3695   // Need to remember all newly created CLDs,
3696   // so that we can guarantee that the remark finds them.
3697   ClassLoaderDataGraph::remember_new_clds(true);
3698 
3699   // Whenever a CLD is found, it will be claimed before proceeding to mark
3700   // the klasses. The claimed marks need to be cleared before marking starts.
3701   ClassLoaderDataGraph::clear_claimed_marks();
3702 
3703   if (CMSPrintEdenSurvivorChunks) {
3704     print_eden_and_survivor_chunk_arrays();
3705   }
3706 
3707   {
3708     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3709     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3710       // The parallel version.
3711       FlexibleWorkGang* workers = gch->workers();
3712       assert(workers != NULL, "Need parallel worker threads.");
3713       int n_workers = workers->active_workers();
3714       CMSParInitialMarkTask tsk(this, n_workers);
3715       gch->set_par_threads(n_workers);
3716       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3717       if (n_workers > 1) {
3718         GenCollectedHeap::StrongRootsScope srs(gch);
3719         workers->run_task(&tsk);
3720       } else {
3721         GenCollectedHeap::StrongRootsScope srs(gch);
3722         tsk.work(0);
3723       }
3724       gch->set_par_threads(0);
3725     } else {
3726       // The serial version.
3727       CMKlassClosure klass_closure(&notOlder);
3728       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3729       gch->gen_process_strong_roots(_cmsGen->level(),
3730                                     true,   // younger gens are roots
3731                                     true,   // activate StrongRootsScope
3732                                     SharedHeap::ScanningOption(roots_scanning_options()),
3733                                     &notOlder,
3734                                     NULL,
3735                                     &klass_closure);
3736     }
3737   }
3738 
3739   // Clear mod-union table; it will be dirtied in the prologue of
3740   // CMS generation per each younger generation collection.
3741 
3742   assert(_modUnionTable.isAllClear(),
3743        "Was cleared in most recent final checkpoint phase"
3744        " or no bits are set in the gc_prologue before the start of the next "
3745        "subsequent marking phase.");
3746 
3747   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3748 
3749   // Save the end of the used_region of the constituent generations
3750   // to be used to limit the extent of sweep in each generation.
3751   save_sweep_limits();
3752   if (UseAdaptiveSizePolicy) {
3753     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3754   }
3755   verify_overflow_empty();
3756 }
3757 
3758 bool CMSCollector::markFromRoots(bool asynch) {
3759   // we might be tempted to assert that:
3760   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3761   //        "inconsistent argument?");
3762   // However that wouldn't be right, because it's possible that
3763   // a safepoint is indeed in progress as a younger generation
3764   // stop-the-world GC happens even as we mark in this generation.
3765   assert(_collectorState == Marking, "inconsistent state?");
3766   check_correct_thread_executing();
3767   verify_overflow_empty();
3768 
3769   bool res;
3770   if (asynch) {
3771 
3772     // Start the timers for adaptive size policy for the concurrent phases
3773     // Do it here so that the foreground MS can use the concurrent
3774     // timer since a foreground MS might has the sweep done concurrently
3775     // or STW.
3776     if (UseAdaptiveSizePolicy) {
3777       size_policy()->concurrent_marking_begin();
3778     }
3779 
3780     // Weak ref discovery note: We may be discovering weak
3781     // refs in this generation concurrent (but interleaved) with
3782     // weak ref discovery by a younger generation collector.
3783 
3784     CMSTokenSyncWithLocks ts(true, bitMapLock());
3785     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3786     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3787     res = markFromRootsWork(asynch);
3788     if (res) {
3789       _collectorState = Precleaning;
3790     } else { // We failed and a foreground collection wants to take over
3791       assert(_foregroundGCIsActive, "internal state inconsistency");
3792       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3793       if (PrintGCDetails) {
3794         gclog_or_tty->print_cr("bailing out to foreground collection");
3795       }
3796     }
3797     if (UseAdaptiveSizePolicy) {
3798       size_policy()->concurrent_marking_end();
3799     }
3800   } else {
3801     assert(SafepointSynchronize::is_at_safepoint(),
3802            "inconsistent with asynch == false");
3803     if (UseAdaptiveSizePolicy) {
3804       size_policy()->ms_collection_marking_begin();
3805     }
3806     // already have locks
3807     res = markFromRootsWork(asynch);
3808     _collectorState = FinalMarking;
3809     if (UseAdaptiveSizePolicy) {
3810       GenCollectedHeap* gch = GenCollectedHeap::heap();
3811       size_policy()->ms_collection_marking_end(gch->gc_cause());
3812     }
3813   }
3814   verify_overflow_empty();
3815   return res;
3816 }
3817 
3818 bool CMSCollector::markFromRootsWork(bool asynch) {
3819   // iterate over marked bits in bit map, doing a full scan and mark
3820   // from these roots using the following algorithm:
3821   // . if oop is to the right of the current scan pointer,
3822   //   mark corresponding bit (we'll process it later)
3823   // . else (oop is to left of current scan pointer)
3824   //   push oop on marking stack
3825   // . drain the marking stack
3826 
3827   // Note that when we do a marking step we need to hold the
3828   // bit map lock -- recall that direct allocation (by mutators)
3829   // and promotion (by younger generation collectors) is also
3830   // marking the bit map. [the so-called allocate live policy.]
3831   // Because the implementation of bit map marking is not
3832   // robust wrt simultaneous marking of bits in the same word,
3833   // we need to make sure that there is no such interference
3834   // between concurrent such updates.
3835 
3836   // already have locks
3837   assert_lock_strong(bitMapLock());
3838 
3839   verify_work_stacks_empty();
3840   verify_overflow_empty();
3841   bool result = false;
3842   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3843     result = do_marking_mt(asynch);
3844   } else {
3845     result = do_marking_st(asynch);
3846   }
3847   return result;
3848 }
3849 
3850 // Forward decl
3851 class CMSConcMarkingTask;
3852 
3853 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3854   CMSCollector*       _collector;
3855   CMSConcMarkingTask* _task;
3856  public:
3857   virtual void yield();
3858 
3859   // "n_threads" is the number of threads to be terminated.
3860   // "queue_set" is a set of work queues of other threads.
3861   // "collector" is the CMS collector associated with this task terminator.
3862   // "yield" indicates whether we need the gang as a whole to yield.
3863   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3864     ParallelTaskTerminator(n_threads, queue_set),
3865     _collector(collector) { }
3866 
3867   void set_task(CMSConcMarkingTask* task) {
3868     _task = task;
3869   }
3870 };
3871 
3872 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3873   CMSConcMarkingTask* _task;
3874  public:
3875   bool should_exit_termination();
3876   void set_task(CMSConcMarkingTask* task) {
3877     _task = task;
3878   }
3879 };
3880 
3881 // MT Concurrent Marking Task
3882 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3883   CMSCollector* _collector;
3884   int           _n_workers;                  // requested/desired # workers
3885   bool          _asynch;
3886   bool          _result;
3887   CompactibleFreeListSpace*  _cms_space;
3888   char          _pad_front[64];   // padding to ...
3889   HeapWord*     _global_finger;   // ... avoid sharing cache line
3890   char          _pad_back[64];
3891   HeapWord*     _restart_addr;
3892 
3893   //  Exposed here for yielding support
3894   Mutex* const _bit_map_lock;
3895 
3896   // The per thread work queues, available here for stealing
3897   OopTaskQueueSet*  _task_queues;
3898 
3899   // Termination (and yielding) support
3900   CMSConcMarkingTerminator _term;
3901   CMSConcMarkingTerminatorTerminator _term_term;
3902 
3903  public:
3904   CMSConcMarkingTask(CMSCollector* collector,
3905                  CompactibleFreeListSpace* cms_space,
3906                  bool asynch,
3907                  YieldingFlexibleWorkGang* workers,
3908                  OopTaskQueueSet* task_queues):
3909     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3910     _collector(collector),
3911     _cms_space(cms_space),
3912     _asynch(asynch), _n_workers(0), _result(true),
3913     _task_queues(task_queues),
3914     _term(_n_workers, task_queues, _collector),
3915     _bit_map_lock(collector->bitMapLock())
3916   {
3917     _requested_size = _n_workers;
3918     _term.set_task(this);
3919     _term_term.set_task(this);
3920     _restart_addr = _global_finger = _cms_space->bottom();
3921   }
3922 
3923 
3924   OopTaskQueueSet* task_queues()  { return _task_queues; }
3925 
3926   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3927 
3928   HeapWord** global_finger_addr() { return &_global_finger; }
3929 
3930   CMSConcMarkingTerminator* terminator() { return &_term; }
3931 
3932   virtual void set_for_termination(int active_workers) {
3933     terminator()->reset_for_reuse(active_workers);
3934   }
3935 
3936   void work(uint worker_id);
3937   bool should_yield() {
3938     return    ConcurrentMarkSweepThread::should_yield()
3939            && !_collector->foregroundGCIsActive()
3940            && _asynch;
3941   }
3942 
3943   virtual void coordinator_yield();  // stuff done by coordinator
3944   bool result() { return _result; }
3945 
3946   void reset(HeapWord* ra) {
3947     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3948     _restart_addr = _global_finger = ra;
3949     _term.reset_for_reuse();
3950   }
3951 
3952   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3953                                            OopTaskQueue* work_q);
3954 
3955  private:
3956   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3957   void do_work_steal(int i);
3958   void bump_global_finger(HeapWord* f);
3959 };
3960 
3961 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3962   assert(_task != NULL, "Error");
3963   return _task->yielding();
3964   // Note that we do not need the disjunct || _task->should_yield() above
3965   // because we want terminating threads to yield only if the task
3966   // is already in the midst of yielding, which happens only after at least one
3967   // thread has yielded.
3968 }
3969 
3970 void CMSConcMarkingTerminator::yield() {
3971   if (_task->should_yield()) {
3972     _task->yield();
3973   } else {
3974     ParallelTaskTerminator::yield();
3975   }
3976 }
3977 
3978 ////////////////////////////////////////////////////////////////
3979 // Concurrent Marking Algorithm Sketch
3980 ////////////////////////////////////////////////////////////////
3981 // Until all tasks exhausted (both spaces):
3982 // -- claim next available chunk
3983 // -- bump global finger via CAS
3984 // -- find first object that starts in this chunk
3985 //    and start scanning bitmap from that position
3986 // -- scan marked objects for oops
3987 // -- CAS-mark target, and if successful:
3988 //    . if target oop is above global finger (volatile read)
3989 //      nothing to do
3990 //    . if target oop is in chunk and above local finger
3991 //        then nothing to do
3992 //    . else push on work-queue
3993 // -- Deal with possible overflow issues:
3994 //    . local work-queue overflow causes stuff to be pushed on
3995 //      global (common) overflow queue
3996 //    . always first empty local work queue
3997 //    . then get a batch of oops from global work queue if any
3998 //    . then do work stealing
3999 // -- When all tasks claimed (both spaces)
4000 //    and local work queue empty,
4001 //    then in a loop do:
4002 //    . check global overflow stack; steal a batch of oops and trace
4003 //    . try to steal from other threads oif GOS is empty
4004 //    . if neither is available, offer termination
4005 // -- Terminate and return result
4006 //
4007 void CMSConcMarkingTask::work(uint worker_id) {
4008   elapsedTimer _timer;
4009   ResourceMark rm;
4010   HandleMark hm;
4011 
4012   DEBUG_ONLY(_collector->verify_overflow_empty();)
4013 
4014   // Before we begin work, our work queue should be empty
4015   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
4016   // Scan the bitmap covering _cms_space, tracing through grey objects.
4017   _timer.start();
4018   do_scan_and_mark(worker_id, _cms_space);
4019   _timer.stop();
4020   if (PrintCMSStatistics != 0) {
4021     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
4022       worker_id, _timer.seconds());
4023       // XXX: need xxx/xxx type of notation, two timers
4024   }
4025 
4026   // ... do work stealing
4027   _timer.reset();
4028   _timer.start();
4029   do_work_steal(worker_id);
4030   _timer.stop();
4031   if (PrintCMSStatistics != 0) {
4032     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
4033       worker_id, _timer.seconds());
4034       // XXX: need xxx/xxx type of notation, two timers
4035   }
4036   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
4037   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
4038   // Note that under the current task protocol, the
4039   // following assertion is true even of the spaces
4040   // expanded since the completion of the concurrent
4041   // marking. XXX This will likely change under a strict
4042   // ABORT semantics.
4043   // After perm removal the comparison was changed to
4044   // greater than or equal to from strictly greater than.
4045   // Before perm removal the highest address sweep would
4046   // have been at the end of perm gen but now is at the
4047   // end of the tenured gen.
4048   assert(_global_finger >=  _cms_space->end(),
4049          "All tasks have been completed");
4050   DEBUG_ONLY(_collector->verify_overflow_empty();)
4051 }
4052 
4053 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
4054   HeapWord* read = _global_finger;
4055   HeapWord* cur  = read;
4056   while (f > read) {
4057     cur = read;
4058     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4059     if (cur == read) {
4060       // our cas succeeded
4061       assert(_global_finger >= f, "protocol consistency");
4062       break;
4063     }
4064   }
4065 }
4066 
4067 // This is really inefficient, and should be redone by
4068 // using (not yet available) block-read and -write interfaces to the
4069 // stack and the work_queue. XXX FIX ME !!!
4070 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4071                                                       OopTaskQueue* work_q) {
4072   // Fast lock-free check
4073   if (ovflw_stk->length() == 0) {
4074     return false;
4075   }
4076   assert(work_q->size() == 0, "Shouldn't steal");
4077   MutexLockerEx ml(ovflw_stk->par_lock(),
4078                    Mutex::_no_safepoint_check_flag);
4079   // Grab up to 1/4 the size of the work queue
4080   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4081                     (size_t)ParGCDesiredObjsFromOverflowList);
4082   num = MIN2(num, ovflw_stk->length());
4083   for (int i = (int) num; i > 0; i--) {
4084     oop cur = ovflw_stk->pop();
4085     assert(cur != NULL, "Counted wrong?");
4086     work_q->push(cur);
4087   }
4088   return num > 0;
4089 }
4090 
4091 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4092   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4093   int n_tasks = pst->n_tasks();
4094   // We allow that there may be no tasks to do here because
4095   // we are restarting after a stack overflow.
4096   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4097   uint nth_task = 0;
4098 
4099   HeapWord* aligned_start = sp->bottom();
4100   if (sp->used_region().contains(_restart_addr)) {
4101     // Align down to a card boundary for the start of 0th task
4102     // for this space.
4103     aligned_start =
4104       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4105                                  CardTableModRefBS::card_size);
4106   }
4107 
4108   size_t chunk_size = sp->marking_task_size();
4109   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4110     // Having claimed the nth task in this space,
4111     // compute the chunk that it corresponds to:
4112     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4113                                aligned_start + (nth_task+1)*chunk_size);
4114     // Try and bump the global finger via a CAS;
4115     // note that we need to do the global finger bump
4116     // _before_ taking the intersection below, because
4117     // the task corresponding to that region will be
4118     // deemed done even if the used_region() expands
4119     // because of allocation -- as it almost certainly will
4120     // during start-up while the threads yield in the
4121     // closure below.
4122     HeapWord* finger = span.end();
4123     bump_global_finger(finger);   // atomically
4124     // There are null tasks here corresponding to chunks
4125     // beyond the "top" address of the space.
4126     span = span.intersection(sp->used_region());
4127     if (!span.is_empty()) {  // Non-null task
4128       HeapWord* prev_obj;
4129       assert(!span.contains(_restart_addr) || nth_task == 0,
4130              "Inconsistency");
4131       if (nth_task == 0) {
4132         // For the 0th task, we'll not need to compute a block_start.
4133         if (span.contains(_restart_addr)) {
4134           // In the case of a restart because of stack overflow,
4135           // we might additionally skip a chunk prefix.
4136           prev_obj = _restart_addr;
4137         } else {
4138           prev_obj = span.start();
4139         }
4140       } else {
4141         // We want to skip the first object because
4142         // the protocol is to scan any object in its entirety
4143         // that _starts_ in this span; a fortiori, any
4144         // object starting in an earlier span is scanned
4145         // as part of an earlier claimed task.
4146         // Below we use the "careful" version of block_start
4147         // so we do not try to navigate uninitialized objects.
4148         prev_obj = sp->block_start_careful(span.start());
4149         // Below we use a variant of block_size that uses the
4150         // Printezis bits to avoid waiting for allocated
4151         // objects to become initialized/parsable.
4152         while (prev_obj < span.start()) {
4153           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4154           if (sz > 0) {
4155             prev_obj += sz;
4156           } else {
4157             // In this case we may end up doing a bit of redundant
4158             // scanning, but that appears unavoidable, short of
4159             // locking the free list locks; see bug 6324141.
4160             break;
4161           }
4162         }
4163       }
4164       if (prev_obj < span.end()) {
4165         MemRegion my_span = MemRegion(prev_obj, span.end());
4166         // Do the marking work within a non-empty span --
4167         // the last argument to the constructor indicates whether the
4168         // iteration should be incremental with periodic yields.
4169         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4170                                     &_collector->_markBitMap,
4171                                     work_queue(i),
4172                                     &_collector->_markStack,
4173                                     _asynch);
4174         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4175       } // else nothing to do for this task
4176     }   // else nothing to do for this task
4177   }
4178   // We'd be tempted to assert here that since there are no
4179   // more tasks left to claim in this space, the global_finger
4180   // must exceed space->top() and a fortiori space->end(). However,
4181   // that would not quite be correct because the bumping of
4182   // global_finger occurs strictly after the claiming of a task,
4183   // so by the time we reach here the global finger may not yet
4184   // have been bumped up by the thread that claimed the last
4185   // task.
4186   pst->all_tasks_completed();
4187 }
4188 
4189 class Par_ConcMarkingClosure: public CMSOopClosure {
4190  private:
4191   CMSCollector* _collector;
4192   CMSConcMarkingTask* _task;
4193   MemRegion     _span;
4194   CMSBitMap*    _bit_map;
4195   CMSMarkStack* _overflow_stack;
4196   OopTaskQueue* _work_queue;
4197  protected:
4198   DO_OOP_WORK_DEFN
4199  public:
4200   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4201                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4202     CMSOopClosure(collector->ref_processor()),
4203     _collector(collector),
4204     _task(task),
4205     _span(collector->_span),
4206     _work_queue(work_queue),
4207     _bit_map(bit_map),
4208     _overflow_stack(overflow_stack)
4209   { }
4210   virtual void do_oop(oop* p);
4211   virtual void do_oop(narrowOop* p);
4212 
4213   void trim_queue(size_t max);
4214   void handle_stack_overflow(HeapWord* lost);
4215   void do_yield_check() {
4216     if (_task->should_yield()) {
4217       _task->yield();
4218     }
4219   }
4220 };
4221 
4222 // Grey object scanning during work stealing phase --
4223 // the salient assumption here is that any references
4224 // that are in these stolen objects being scanned must
4225 // already have been initialized (else they would not have
4226 // been published), so we do not need to check for
4227 // uninitialized objects before pushing here.
4228 void Par_ConcMarkingClosure::do_oop(oop obj) {
4229   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4230   HeapWord* addr = (HeapWord*)obj;
4231   // Check if oop points into the CMS generation
4232   // and is not marked
4233   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4234     // a white object ...
4235     // If we manage to "claim" the object, by being the
4236     // first thread to mark it, then we push it on our
4237     // marking stack
4238     if (_bit_map->par_mark(addr)) {     // ... now grey
4239       // push on work queue (grey set)
4240       bool simulate_overflow = false;
4241       NOT_PRODUCT(
4242         if (CMSMarkStackOverflowALot &&
4243             _collector->simulate_overflow()) {
4244           // simulate a stack overflow
4245           simulate_overflow = true;
4246         }
4247       )
4248       if (simulate_overflow ||
4249           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4250         // stack overflow
4251         if (PrintCMSStatistics != 0) {
4252           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4253                                  SIZE_FORMAT, _overflow_stack->capacity());
4254         }
4255         // We cannot assert that the overflow stack is full because
4256         // it may have been emptied since.
4257         assert(simulate_overflow ||
4258                _work_queue->size() == _work_queue->max_elems(),
4259               "Else push should have succeeded");
4260         handle_stack_overflow(addr);
4261       }
4262     } // Else, some other thread got there first
4263     do_yield_check();
4264   }
4265 }
4266 
4267 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4268 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4269 
4270 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4271   while (_work_queue->size() > max) {
4272     oop new_oop;
4273     if (_work_queue->pop_local(new_oop)) {
4274       assert(new_oop->is_oop(), "Should be an oop");
4275       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4276       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4277       new_oop->oop_iterate(this);  // do_oop() above
4278       do_yield_check();
4279     }
4280   }
4281 }
4282 
4283 // Upon stack overflow, we discard (part of) the stack,
4284 // remembering the least address amongst those discarded
4285 // in CMSCollector's _restart_address.
4286 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4287   // We need to do this under a mutex to prevent other
4288   // workers from interfering with the work done below.
4289   MutexLockerEx ml(_overflow_stack->par_lock(),
4290                    Mutex::_no_safepoint_check_flag);
4291   // Remember the least grey address discarded
4292   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4293   _collector->lower_restart_addr(ra);
4294   _overflow_stack->reset();  // discard stack contents
4295   _overflow_stack->expand(); // expand the stack if possible
4296 }
4297 
4298 
4299 void CMSConcMarkingTask::do_work_steal(int i) {
4300   OopTaskQueue* work_q = work_queue(i);
4301   oop obj_to_scan;
4302   CMSBitMap* bm = &(_collector->_markBitMap);
4303   CMSMarkStack* ovflw = &(_collector->_markStack);
4304   int* seed = _collector->hash_seed(i);
4305   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4306   while (true) {
4307     cl.trim_queue(0);
4308     assert(work_q->size() == 0, "Should have been emptied above");
4309     if (get_work_from_overflow_stack(ovflw, work_q)) {
4310       // Can't assert below because the work obtained from the
4311       // overflow stack may already have been stolen from us.
4312       // assert(work_q->size() > 0, "Work from overflow stack");
4313       continue;
4314     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4315       assert(obj_to_scan->is_oop(), "Should be an oop");
4316       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4317       obj_to_scan->oop_iterate(&cl);
4318     } else if (terminator()->offer_termination(&_term_term)) {
4319       assert(work_q->size() == 0, "Impossible!");
4320       break;
4321     } else if (yielding() || should_yield()) {
4322       yield();
4323     }
4324   }
4325 }
4326 
4327 // This is run by the CMS (coordinator) thread.
4328 void CMSConcMarkingTask::coordinator_yield() {
4329   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4330          "CMS thread should hold CMS token");
4331   // First give up the locks, then yield, then re-lock
4332   // We should probably use a constructor/destructor idiom to
4333   // do this unlock/lock or modify the MutexUnlocker class to
4334   // serve our purpose. XXX
4335   assert_lock_strong(_bit_map_lock);
4336   _bit_map_lock->unlock();
4337   ConcurrentMarkSweepThread::desynchronize(true);
4338   ConcurrentMarkSweepThread::acknowledge_yield_request();
4339   _collector->stopTimer();
4340   if (PrintCMSStatistics != 0) {
4341     _collector->incrementYields();
4342   }
4343   _collector->icms_wait();
4344 
4345   // It is possible for whichever thread initiated the yield request
4346   // not to get a chance to wake up and take the bitmap lock between
4347   // this thread releasing it and reacquiring it. So, while the
4348   // should_yield() flag is on, let's sleep for a bit to give the
4349   // other thread a chance to wake up. The limit imposed on the number
4350   // of iterations is defensive, to avoid any unforseen circumstances
4351   // putting us into an infinite loop. Since it's always been this
4352   // (coordinator_yield()) method that was observed to cause the
4353   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4354   // which is by default non-zero. For the other seven methods that
4355   // also perform the yield operation, as are using a different
4356   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4357   // can enable the sleeping for those methods too, if necessary.
4358   // See 6442774.
4359   //
4360   // We really need to reconsider the synchronization between the GC
4361   // thread and the yield-requesting threads in the future and we
4362   // should really use wait/notify, which is the recommended
4363   // way of doing this type of interaction. Additionally, we should
4364   // consolidate the eight methods that do the yield operation and they
4365   // are almost identical into one for better maintainability and
4366   // readability. See 6445193.
4367   //
4368   // Tony 2006.06.29
4369   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4370                    ConcurrentMarkSweepThread::should_yield() &&
4371                    !CMSCollector::foregroundGCIsActive(); ++i) {
4372     os::sleep(Thread::current(), 1, false);
4373     ConcurrentMarkSweepThread::acknowledge_yield_request();
4374   }
4375 
4376   ConcurrentMarkSweepThread::synchronize(true);
4377   _bit_map_lock->lock_without_safepoint_check();
4378   _collector->startTimer();
4379 }
4380 
4381 bool CMSCollector::do_marking_mt(bool asynch) {
4382   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4383   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4384                                        conc_workers()->total_workers(),
4385                                        conc_workers()->active_workers(),
4386                                        Threads::number_of_non_daemon_threads());
4387   conc_workers()->set_active_workers(num_workers);
4388 
4389   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4390 
4391   CMSConcMarkingTask tsk(this,
4392                          cms_space,
4393                          asynch,
4394                          conc_workers(),
4395                          task_queues());
4396 
4397   // Since the actual number of workers we get may be different
4398   // from the number we requested above, do we need to do anything different
4399   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4400   // class?? XXX
4401   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4402 
4403   // Refs discovery is already non-atomic.
4404   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4405   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4406   conc_workers()->start_task(&tsk);
4407   while (tsk.yielded()) {
4408     tsk.coordinator_yield();
4409     conc_workers()->continue_task(&tsk);
4410   }
4411   // If the task was aborted, _restart_addr will be non-NULL
4412   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4413   while (_restart_addr != NULL) {
4414     // XXX For now we do not make use of ABORTED state and have not
4415     // yet implemented the right abort semantics (even in the original
4416     // single-threaded CMS case). That needs some more investigation
4417     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4418     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4419     // If _restart_addr is non-NULL, a marking stack overflow
4420     // occurred; we need to do a fresh marking iteration from the
4421     // indicated restart address.
4422     if (_foregroundGCIsActive && asynch) {
4423       // We may be running into repeated stack overflows, having
4424       // reached the limit of the stack size, while making very
4425       // slow forward progress. It may be best to bail out and
4426       // let the foreground collector do its job.
4427       // Clear _restart_addr, so that foreground GC
4428       // works from scratch. This avoids the headache of
4429       // a "rescan" which would otherwise be needed because
4430       // of the dirty mod union table & card table.
4431       _restart_addr = NULL;
4432       return false;
4433     }
4434     // Adjust the task to restart from _restart_addr
4435     tsk.reset(_restart_addr);
4436     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4437                   _restart_addr);
4438     _restart_addr = NULL;
4439     // Get the workers going again
4440     conc_workers()->start_task(&tsk);
4441     while (tsk.yielded()) {
4442       tsk.coordinator_yield();
4443       conc_workers()->continue_task(&tsk);
4444     }
4445   }
4446   assert(tsk.completed(), "Inconsistency");
4447   assert(tsk.result() == true, "Inconsistency");
4448   return true;
4449 }
4450 
4451 bool CMSCollector::do_marking_st(bool asynch) {
4452   ResourceMark rm;
4453   HandleMark   hm;
4454 
4455   // Temporarily make refs discovery single threaded (non-MT)
4456   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4457   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4458     &_markStack, CMSYield && asynch);
4459   // the last argument to iterate indicates whether the iteration
4460   // should be incremental with periodic yields.
4461   _markBitMap.iterate(&markFromRootsClosure);
4462   // If _restart_addr is non-NULL, a marking stack overflow
4463   // occurred; we need to do a fresh iteration from the
4464   // indicated restart address.
4465   while (_restart_addr != NULL) {
4466     if (_foregroundGCIsActive && asynch) {
4467       // We may be running into repeated stack overflows, having
4468       // reached the limit of the stack size, while making very
4469       // slow forward progress. It may be best to bail out and
4470       // let the foreground collector do its job.
4471       // Clear _restart_addr, so that foreground GC
4472       // works from scratch. This avoids the headache of
4473       // a "rescan" which would otherwise be needed because
4474       // of the dirty mod union table & card table.
4475       _restart_addr = NULL;
4476       return false;  // indicating failure to complete marking
4477     }
4478     // Deal with stack overflow:
4479     // we restart marking from _restart_addr
4480     HeapWord* ra = _restart_addr;
4481     markFromRootsClosure.reset(ra);
4482     _restart_addr = NULL;
4483     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4484   }
4485   return true;
4486 }
4487 
4488 void CMSCollector::preclean() {
4489   check_correct_thread_executing();
4490   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4491   verify_work_stacks_empty();
4492   verify_overflow_empty();
4493   _abort_preclean = false;
4494   if (CMSPrecleaningEnabled) {
4495     if (!CMSEdenChunksRecordAlways) {
4496       _eden_chunk_index = 0;
4497     }
4498     size_t used = get_eden_used();
4499     size_t capacity = get_eden_capacity();
4500     // Don't start sampling unless we will get sufficiently
4501     // many samples.
4502     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4503                 * CMSScheduleRemarkEdenPenetration)) {
4504       _start_sampling = true;
4505     } else {
4506       _start_sampling = false;
4507     }
4508     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4509     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4510     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4511   }
4512   CMSTokenSync x(true); // is cms thread
4513   if (CMSPrecleaningEnabled) {
4514     sample_eden();
4515     _collectorState = AbortablePreclean;
4516   } else {
4517     _collectorState = FinalMarking;
4518   }
4519   verify_work_stacks_empty();
4520   verify_overflow_empty();
4521 }
4522 
4523 // Try and schedule the remark such that young gen
4524 // occupancy is CMSScheduleRemarkEdenPenetration %.
4525 void CMSCollector::abortable_preclean() {
4526   check_correct_thread_executing();
4527   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4528   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4529 
4530   // If Eden's current occupancy is below this threshold,
4531   // immediately schedule the remark; else preclean
4532   // past the next scavenge in an effort to
4533   // schedule the pause as described above. By choosing
4534   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4535   // we will never do an actual abortable preclean cycle.
4536   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4537     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4538     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4539     // We need more smarts in the abortable preclean
4540     // loop below to deal with cases where allocation
4541     // in young gen is very very slow, and our precleaning
4542     // is running a losing race against a horde of
4543     // mutators intent on flooding us with CMS updates
4544     // (dirty cards).
4545     // One, admittedly dumb, strategy is to give up
4546     // after a certain number of abortable precleaning loops
4547     // or after a certain maximum time. We want to make
4548     // this smarter in the next iteration.
4549     // XXX FIX ME!!! YSR
4550     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4551     while (!(should_abort_preclean() ||
4552              ConcurrentMarkSweepThread::should_terminate())) {
4553       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4554       cumworkdone += workdone;
4555       loops++;
4556       // Voluntarily terminate abortable preclean phase if we have
4557       // been at it for too long.
4558       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4559           loops >= CMSMaxAbortablePrecleanLoops) {
4560         if (PrintGCDetails) {
4561           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4562         }
4563         break;
4564       }
4565       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4566         if (PrintGCDetails) {
4567           gclog_or_tty->print(" CMS: abort preclean due to time ");
4568         }
4569         break;
4570       }
4571       // If we are doing little work each iteration, we should
4572       // take a short break.
4573       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4574         // Sleep for some time, waiting for work to accumulate
4575         stopTimer();
4576         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4577         startTimer();
4578         waited++;
4579       }
4580     }
4581     if (PrintCMSStatistics > 0) {
4582       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4583                           loops, waited, cumworkdone);
4584     }
4585   }
4586   CMSTokenSync x(true); // is cms thread
4587   if (_collectorState != Idling) {
4588     assert(_collectorState == AbortablePreclean,
4589            "Spontaneous state transition?");
4590     _collectorState = FinalMarking;
4591   } // Else, a foreground collection completed this CMS cycle.
4592   return;
4593 }
4594 
4595 // Respond to an Eden sampling opportunity
4596 void CMSCollector::sample_eden() {
4597   // Make sure a young gc cannot sneak in between our
4598   // reading and recording of a sample.
4599   assert(Thread::current()->is_ConcurrentGC_thread(),
4600          "Only the cms thread may collect Eden samples");
4601   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4602          "Should collect samples while holding CMS token");
4603   if (!_start_sampling) {
4604     return;
4605   }
4606   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4607   // is populated by the young generation.
4608   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4609     if (_eden_chunk_index < _eden_chunk_capacity) {
4610       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4611       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4612              "Unexpected state of Eden");
4613       // We'd like to check that what we just sampled is an oop-start address;
4614       // however, we cannot do that here since the object may not yet have been
4615       // initialized. So we'll instead do the check when we _use_ this sample
4616       // later.
4617       if (_eden_chunk_index == 0 ||
4618           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4619                          _eden_chunk_array[_eden_chunk_index-1])
4620            >= CMSSamplingGrain)) {
4621         _eden_chunk_index++;  // commit sample
4622       }
4623     }
4624   }
4625   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4626     size_t used = get_eden_used();
4627     size_t capacity = get_eden_capacity();
4628     assert(used <= capacity, "Unexpected state of Eden");
4629     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4630       _abort_preclean = true;
4631     }
4632   }
4633 }
4634 
4635 
4636 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4637   assert(_collectorState == Precleaning ||
4638          _collectorState == AbortablePreclean, "incorrect state");
4639   ResourceMark rm;
4640   HandleMark   hm;
4641 
4642   // Precleaning is currently not MT but the reference processor
4643   // may be set for MT.  Disable it temporarily here.
4644   ReferenceProcessor* rp = ref_processor();
4645   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4646 
4647   // Do one pass of scrubbing the discovered reference lists
4648   // to remove any reference objects with strongly-reachable
4649   // referents.
4650   if (clean_refs) {
4651     CMSPrecleanRefsYieldClosure yield_cl(this);
4652     assert(rp->span().equals(_span), "Spans should be equal");
4653     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4654                                    &_markStack, true /* preclean */);
4655     CMSDrainMarkingStackClosure complete_trace(this,
4656                                    _span, &_markBitMap, &_markStack,
4657                                    &keep_alive, true /* preclean */);
4658 
4659     // We don't want this step to interfere with a young
4660     // collection because we don't want to take CPU
4661     // or memory bandwidth away from the young GC threads
4662     // (which may be as many as there are CPUs).
4663     // Note that we don't need to protect ourselves from
4664     // interference with mutators because they can't
4665     // manipulate the discovered reference lists nor affect
4666     // the computed reachability of the referents, the
4667     // only properties manipulated by the precleaning
4668     // of these reference lists.
4669     stopTimer();
4670     CMSTokenSyncWithLocks x(true /* is cms thread */,
4671                             bitMapLock());
4672     startTimer();
4673     sample_eden();
4674 
4675     // The following will yield to allow foreground
4676     // collection to proceed promptly. XXX YSR:
4677     // The code in this method may need further
4678     // tweaking for better performance and some restructuring
4679     // for cleaner interfaces.
4680     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4681     rp->preclean_discovered_references(
4682           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4683           gc_timer);
4684   }
4685 
4686   if (clean_survivor) {  // preclean the active survivor space(s)
4687     assert(_young_gen->kind() == Generation::DefNew ||
4688            _young_gen->kind() == Generation::ParNew ||
4689            _young_gen->kind() == Generation::ASParNew,
4690          "incorrect type for cast");
4691     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4692     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4693                              &_markBitMap, &_modUnionTable,
4694                              &_markStack, true /* precleaning phase */);
4695     stopTimer();
4696     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4697                              bitMapLock());
4698     startTimer();
4699     unsigned int before_count =
4700       GenCollectedHeap::heap()->total_collections();
4701     SurvivorSpacePrecleanClosure
4702       sss_cl(this, _span, &_markBitMap, &_markStack,
4703              &pam_cl, before_count, CMSYield);
4704     dng->from()->object_iterate_careful(&sss_cl);
4705     dng->to()->object_iterate_careful(&sss_cl);
4706   }
4707   MarkRefsIntoAndScanClosure
4708     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4709              &_markStack, this, CMSYield,
4710              true /* precleaning phase */);
4711   // CAUTION: The following closure has persistent state that may need to
4712   // be reset upon a decrease in the sequence of addresses it
4713   // processes.
4714   ScanMarkedObjectsAgainCarefullyClosure
4715     smoac_cl(this, _span,
4716       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4717 
4718   // Preclean dirty cards in ModUnionTable and CardTable using
4719   // appropriate convergence criterion;
4720   // repeat CMSPrecleanIter times unless we find that
4721   // we are losing.
4722   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4723   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4724          "Bad convergence multiplier");
4725   assert(CMSPrecleanThreshold >= 100,
4726          "Unreasonably low CMSPrecleanThreshold");
4727 
4728   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4729   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4730        numIter < CMSPrecleanIter;
4731        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4732     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4733     if (Verbose && PrintGCDetails) {
4734       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4735     }
4736     // Either there are very few dirty cards, so re-mark
4737     // pause will be small anyway, or our pre-cleaning isn't
4738     // that much faster than the rate at which cards are being
4739     // dirtied, so we might as well stop and re-mark since
4740     // precleaning won't improve our re-mark time by much.
4741     if (curNumCards <= CMSPrecleanThreshold ||
4742         (numIter > 0 &&
4743          (curNumCards * CMSPrecleanDenominator >
4744          lastNumCards * CMSPrecleanNumerator))) {
4745       numIter++;
4746       cumNumCards += curNumCards;
4747       break;
4748     }
4749   }
4750 
4751   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4752 
4753   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4754   cumNumCards += curNumCards;
4755   if (PrintGCDetails && PrintCMSStatistics != 0) {
4756     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4757                   curNumCards, cumNumCards, numIter);
4758   }
4759   return cumNumCards;   // as a measure of useful work done
4760 }
4761 
4762 // PRECLEANING NOTES:
4763 // Precleaning involves:
4764 // . reading the bits of the modUnionTable and clearing the set bits.
4765 // . For the cards corresponding to the set bits, we scan the
4766 //   objects on those cards. This means we need the free_list_lock
4767 //   so that we can safely iterate over the CMS space when scanning
4768 //   for oops.
4769 // . When we scan the objects, we'll be both reading and setting
4770 //   marks in the marking bit map, so we'll need the marking bit map.
4771 // . For protecting _collector_state transitions, we take the CGC_lock.
4772 //   Note that any races in the reading of of card table entries by the
4773 //   CMS thread on the one hand and the clearing of those entries by the
4774 //   VM thread or the setting of those entries by the mutator threads on the
4775 //   other are quite benign. However, for efficiency it makes sense to keep
4776 //   the VM thread from racing with the CMS thread while the latter is
4777 //   dirty card info to the modUnionTable. We therefore also use the
4778 //   CGC_lock to protect the reading of the card table and the mod union
4779 //   table by the CM thread.
4780 // . We run concurrently with mutator updates, so scanning
4781 //   needs to be done carefully  -- we should not try to scan
4782 //   potentially uninitialized objects.
4783 //
4784 // Locking strategy: While holding the CGC_lock, we scan over and
4785 // reset a maximal dirty range of the mod union / card tables, then lock
4786 // the free_list_lock and bitmap lock to do a full marking, then
4787 // release these locks; and repeat the cycle. This allows for a
4788 // certain amount of fairness in the sharing of these locks between
4789 // the CMS collector on the one hand, and the VM thread and the
4790 // mutators on the other.
4791 
4792 // NOTE: preclean_mod_union_table() and preclean_card_table()
4793 // further below are largely identical; if you need to modify
4794 // one of these methods, please check the other method too.
4795 
4796 size_t CMSCollector::preclean_mod_union_table(
4797   ConcurrentMarkSweepGeneration* gen,
4798   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4799   verify_work_stacks_empty();
4800   verify_overflow_empty();
4801 
4802   // strategy: starting with the first card, accumulate contiguous
4803   // ranges of dirty cards; clear these cards, then scan the region
4804   // covered by these cards.
4805 
4806   // Since all of the MUT is committed ahead, we can just use
4807   // that, in case the generations expand while we are precleaning.
4808   // It might also be fine to just use the committed part of the
4809   // generation, but we might potentially miss cards when the
4810   // generation is rapidly expanding while we are in the midst
4811   // of precleaning.
4812   HeapWord* startAddr = gen->reserved().start();
4813   HeapWord* endAddr   = gen->reserved().end();
4814 
4815   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4816 
4817   size_t numDirtyCards, cumNumDirtyCards;
4818   HeapWord *nextAddr, *lastAddr;
4819   for (cumNumDirtyCards = numDirtyCards = 0,
4820        nextAddr = lastAddr = startAddr;
4821        nextAddr < endAddr;
4822        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4823 
4824     ResourceMark rm;
4825     HandleMark   hm;
4826 
4827     MemRegion dirtyRegion;
4828     {
4829       stopTimer();
4830       // Potential yield point
4831       CMSTokenSync ts(true);
4832       startTimer();
4833       sample_eden();
4834       // Get dirty region starting at nextOffset (inclusive),
4835       // simultaneously clearing it.
4836       dirtyRegion =
4837         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4838       assert(dirtyRegion.start() >= nextAddr,
4839              "returned region inconsistent?");
4840     }
4841     // Remember where the next search should begin.
4842     // The returned region (if non-empty) is a right open interval,
4843     // so lastOffset is obtained from the right end of that
4844     // interval.
4845     lastAddr = dirtyRegion.end();
4846     // Should do something more transparent and less hacky XXX
4847     numDirtyCards =
4848       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4849 
4850     // We'll scan the cards in the dirty region (with periodic
4851     // yields for foreground GC as needed).
4852     if (!dirtyRegion.is_empty()) {
4853       assert(numDirtyCards > 0, "consistency check");
4854       HeapWord* stop_point = NULL;
4855       stopTimer();
4856       // Potential yield point
4857       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4858                                bitMapLock());
4859       startTimer();
4860       {
4861         verify_work_stacks_empty();
4862         verify_overflow_empty();
4863         sample_eden();
4864         stop_point =
4865           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4866       }
4867       if (stop_point != NULL) {
4868         // The careful iteration stopped early either because it found an
4869         // uninitialized object, or because we were in the midst of an
4870         // "abortable preclean", which should now be aborted. Redirty
4871         // the bits corresponding to the partially-scanned or unscanned
4872         // cards. We'll either restart at the next block boundary or
4873         // abort the preclean.
4874         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4875                "Should only be AbortablePreclean.");
4876         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4877         if (should_abort_preclean()) {
4878           break; // out of preclean loop
4879         } else {
4880           // Compute the next address at which preclean should pick up;
4881           // might need bitMapLock in order to read P-bits.
4882           lastAddr = next_card_start_after_block(stop_point);
4883         }
4884       }
4885     } else {
4886       assert(lastAddr == endAddr, "consistency check");
4887       assert(numDirtyCards == 0, "consistency check");
4888       break;
4889     }
4890   }
4891   verify_work_stacks_empty();
4892   verify_overflow_empty();
4893   return cumNumDirtyCards;
4894 }
4895 
4896 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4897 // below are largely identical; if you need to modify
4898 // one of these methods, please check the other method too.
4899 
4900 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4901   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4902   // strategy: it's similar to precleamModUnionTable above, in that
4903   // we accumulate contiguous ranges of dirty cards, mark these cards
4904   // precleaned, then scan the region covered by these cards.
4905   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4906   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4907 
4908   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4909 
4910   size_t numDirtyCards, cumNumDirtyCards;
4911   HeapWord *lastAddr, *nextAddr;
4912 
4913   for (cumNumDirtyCards = numDirtyCards = 0,
4914        nextAddr = lastAddr = startAddr;
4915        nextAddr < endAddr;
4916        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4917 
4918     ResourceMark rm;
4919     HandleMark   hm;
4920 
4921     MemRegion dirtyRegion;
4922     {
4923       // See comments in "Precleaning notes" above on why we
4924       // do this locking. XXX Could the locking overheads be
4925       // too high when dirty cards are sparse? [I don't think so.]
4926       stopTimer();
4927       CMSTokenSync x(true); // is cms thread
4928       startTimer();
4929       sample_eden();
4930       // Get and clear dirty region from card table
4931       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4932                                     MemRegion(nextAddr, endAddr),
4933                                     true,
4934                                     CardTableModRefBS::precleaned_card_val());
4935 
4936       assert(dirtyRegion.start() >= nextAddr,
4937              "returned region inconsistent?");
4938     }
4939     lastAddr = dirtyRegion.end();
4940     numDirtyCards =
4941       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4942 
4943     if (!dirtyRegion.is_empty()) {
4944       stopTimer();
4945       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4946       startTimer();
4947       sample_eden();
4948       verify_work_stacks_empty();
4949       verify_overflow_empty();
4950       HeapWord* stop_point =
4951         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4952       if (stop_point != NULL) {
4953         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4954                "Should only be AbortablePreclean.");
4955         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4956         if (should_abort_preclean()) {
4957           break; // out of preclean loop
4958         } else {
4959           // Compute the next address at which preclean should pick up.
4960           lastAddr = next_card_start_after_block(stop_point);
4961         }
4962       }
4963     } else {
4964       break;
4965     }
4966   }
4967   verify_work_stacks_empty();
4968   verify_overflow_empty();
4969   return cumNumDirtyCards;
4970 }
4971 
4972 class PrecleanKlassClosure : public KlassClosure {
4973   CMKlassClosure _cm_klass_closure;
4974  public:
4975   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4976   void do_klass(Klass* k) {
4977     if (k->has_accumulated_modified_oops()) {
4978       k->clear_accumulated_modified_oops();
4979 
4980       _cm_klass_closure.do_klass(k);
4981     }
4982   }
4983 };
4984 
4985 // The freelist lock is needed to prevent asserts, is it really needed?
4986 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4987 
4988   cl->set_freelistLock(freelistLock);
4989 
4990   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4991 
4992   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4993   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4994   PrecleanKlassClosure preclean_klass_closure(cl);
4995   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4996 
4997   verify_work_stacks_empty();
4998   verify_overflow_empty();
4999 }
5000 
5001 void CMSCollector::checkpointRootsFinal(bool asynch,
5002   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5003   assert(_collectorState == FinalMarking, "incorrect state transition?");
5004   check_correct_thread_executing();
5005   // world is stopped at this checkpoint
5006   assert(SafepointSynchronize::is_at_safepoint(),
5007          "world should be stopped");
5008   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5009 
5010   verify_work_stacks_empty();
5011   verify_overflow_empty();
5012 
5013   SpecializationStats::clear();
5014   if (PrintGCDetails) {
5015     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
5016                         _young_gen->used() / K,
5017                         _young_gen->capacity() / K);
5018   }
5019   if (asynch) {
5020     if (CMSScavengeBeforeRemark) {
5021       GenCollectedHeap* gch = GenCollectedHeap::heap();
5022       // Temporarily set flag to false, GCH->do_collection will
5023       // expect it to be false and set to true
5024       FlagSetting fl(gch->_is_gc_active, false);
5025       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
5026         PrintGCDetails && Verbose, true, _gc_timer_cm);)
5027       int level = _cmsGen->level() - 1;
5028       if (level >= 0) {
5029         gch->do_collection(true,        // full (i.e. force, see below)
5030                            false,       // !clear_all_soft_refs
5031                            0,           // size
5032                            false,       // is_tlab
5033                            level        // max_level
5034                           );
5035       }
5036     }
5037     FreelistLocker x(this);
5038     MutexLockerEx y(bitMapLock(),
5039                     Mutex::_no_safepoint_check_flag);
5040     assert(!init_mark_was_synchronous, "but that's impossible!");
5041     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
5042   } else {
5043     // already have all the locks
5044     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
5045                              init_mark_was_synchronous);
5046   }
5047   verify_work_stacks_empty();
5048   verify_overflow_empty();
5049   SpecializationStats::print();
5050 }
5051 
5052 void CMSCollector::checkpointRootsFinalWork(bool asynch,
5053   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5054 
5055   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
5056 
5057   assert(haveFreelistLocks(), "must have free list locks");
5058   assert_lock_strong(bitMapLock());
5059 
5060   if (UseAdaptiveSizePolicy) {
5061     size_policy()->checkpoint_roots_final_begin();
5062   }
5063 
5064   ResourceMark rm;
5065   HandleMark   hm;
5066 
5067   GenCollectedHeap* gch = GenCollectedHeap::heap();
5068 
5069   if (should_unload_classes()) {
5070     CodeCache::gc_prologue();
5071   }
5072   assert(haveFreelistLocks(), "must have free list locks");
5073   assert_lock_strong(bitMapLock());
5074 
5075   if (!init_mark_was_synchronous) {
5076     // We might assume that we need not fill TLAB's when
5077     // CMSScavengeBeforeRemark is set, because we may have just done
5078     // a scavenge which would have filled all TLAB's -- and besides
5079     // Eden would be empty. This however may not always be the case --
5080     // for instance although we asked for a scavenge, it may not have
5081     // happened because of a JNI critical section. We probably need
5082     // a policy for deciding whether we can in that case wait until
5083     // the critical section releases and then do the remark following
5084     // the scavenge, and skip it here. In the absence of that policy,
5085     // or of an indication of whether the scavenge did indeed occur,
5086     // we cannot rely on TLAB's having been filled and must do
5087     // so here just in case a scavenge did not happen.
5088     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5089     // Update the saved marks which may affect the root scans.
5090     gch->save_marks();
5091 
5092     if (CMSPrintEdenSurvivorChunks) {
5093       print_eden_and_survivor_chunk_arrays();
5094     }
5095 
5096     {
5097       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5098 
5099       // Note on the role of the mod union table:
5100       // Since the marker in "markFromRoots" marks concurrently with
5101       // mutators, it is possible for some reachable objects not to have been
5102       // scanned. For instance, an only reference to an object A was
5103       // placed in object B after the marker scanned B. Unless B is rescanned,
5104       // A would be collected. Such updates to references in marked objects
5105       // are detected via the mod union table which is the set of all cards
5106       // dirtied since the first checkpoint in this GC cycle and prior to
5107       // the most recent young generation GC, minus those cleaned up by the
5108       // concurrent precleaning.
5109       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5110         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
5111         do_remark_parallel();
5112       } else {
5113         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5114                     _gc_timer_cm);
5115         do_remark_non_parallel();
5116       }
5117     }
5118   } else {
5119     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5120     // The initial mark was stop-world, so there's no rescanning to
5121     // do; go straight on to the next step below.
5122   }
5123   verify_work_stacks_empty();
5124   verify_overflow_empty();
5125 
5126   {
5127     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
5128     refProcessingWork(asynch, clear_all_soft_refs);
5129   }
5130   verify_work_stacks_empty();
5131   verify_overflow_empty();
5132 
5133   if (should_unload_classes()) {
5134     CodeCache::gc_epilogue();
5135   }
5136   JvmtiExport::gc_epilogue();
5137 
5138   // If we encountered any (marking stack / work queue) overflow
5139   // events during the current CMS cycle, take appropriate
5140   // remedial measures, where possible, so as to try and avoid
5141   // recurrence of that condition.
5142   assert(_markStack.isEmpty(), "No grey objects");
5143   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5144                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5145   if (ser_ovflw > 0) {
5146     if (PrintCMSStatistics != 0) {
5147       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5148         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5149         ", kac_preclean="SIZE_FORMAT")",
5150         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5151         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5152     }
5153     _markStack.expand();
5154     _ser_pmc_remark_ovflw = 0;
5155     _ser_pmc_preclean_ovflw = 0;
5156     _ser_kac_preclean_ovflw = 0;
5157     _ser_kac_ovflw = 0;
5158   }
5159   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5160     if (PrintCMSStatistics != 0) {
5161       gclog_or_tty->print_cr("Work queue overflow (benign) "
5162         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5163         _par_pmc_remark_ovflw, _par_kac_ovflw);
5164     }
5165     _par_pmc_remark_ovflw = 0;
5166     _par_kac_ovflw = 0;
5167   }
5168   if (PrintCMSStatistics != 0) {
5169      if (_markStack._hit_limit > 0) {
5170        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5171                               _markStack._hit_limit);
5172      }
5173      if (_markStack._failed_double > 0) {
5174        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5175                               " current capacity "SIZE_FORMAT,
5176                               _markStack._failed_double,
5177                               _markStack.capacity());
5178      }
5179   }
5180   _markStack._hit_limit = 0;
5181   _markStack._failed_double = 0;
5182 
5183   if ((VerifyAfterGC || VerifyDuringGC) &&
5184       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5185     verify_after_remark();
5186   }
5187 
5188   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5189 
5190   // Change under the freelistLocks.
5191   _collectorState = Sweeping;
5192   // Call isAllClear() under bitMapLock
5193   assert(_modUnionTable.isAllClear(),
5194       "Should be clear by end of the final marking");
5195   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5196       "Should be clear by end of the final marking");
5197   if (UseAdaptiveSizePolicy) {
5198     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5199   }
5200 }
5201 
5202 void CMSParInitialMarkTask::work(uint worker_id) {
5203   elapsedTimer _timer;
5204   ResourceMark rm;
5205   HandleMark   hm;
5206 
5207   // ---------- scan from roots --------------
5208   _timer.start();
5209   GenCollectedHeap* gch = GenCollectedHeap::heap();
5210   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5211   CMKlassClosure klass_closure(&par_mri_cl);
5212 
5213   // ---------- young gen roots --------------
5214   {
5215     work_on_young_gen_roots(worker_id, &par_mri_cl);
5216     _timer.stop();
5217     if (PrintCMSStatistics != 0) {
5218       gclog_or_tty->print_cr(
5219         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5220         worker_id, _timer.seconds());
5221     }
5222   }
5223 
5224   // ---------- remaining roots --------------
5225   _timer.reset();
5226   _timer.start();
5227   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5228                                 false,     // yg was scanned above
5229                                 false,     // this is parallel code
5230                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5231                                 &par_mri_cl,
5232                                 NULL,
5233                                 &klass_closure);
5234   assert(_collector->should_unload_classes()
5235          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5236          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5237   _timer.stop();
5238   if (PrintCMSStatistics != 0) {
5239     gclog_or_tty->print_cr(
5240       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5241       worker_id, _timer.seconds());
5242   }
5243 }
5244 
5245 // Parallel remark task
5246 class CMSParRemarkTask: public CMSParMarkTask {
5247   CompactibleFreeListSpace* _cms_space;
5248 
5249   // The per-thread work queues, available here for stealing.
5250   OopTaskQueueSet*       _task_queues;
5251   ParallelTaskTerminator _term;
5252 
5253  public:
5254   // A value of 0 passed to n_workers will cause the number of
5255   // workers to be taken from the active workers in the work gang.
5256   CMSParRemarkTask(CMSCollector* collector,
5257                    CompactibleFreeListSpace* cms_space,
5258                    int n_workers, FlexibleWorkGang* workers,
5259                    OopTaskQueueSet* task_queues):
5260     CMSParMarkTask("Rescan roots and grey objects in parallel",
5261                    collector, n_workers),
5262     _cms_space(cms_space),
5263     _task_queues(task_queues),
5264     _term(n_workers, task_queues) { }
5265 
5266   OopTaskQueueSet* task_queues() { return _task_queues; }
5267 
5268   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5269 
5270   ParallelTaskTerminator* terminator() { return &_term; }
5271   int n_workers() { return _n_workers; }
5272 
5273   void work(uint worker_id);
5274 
5275  private:
5276   // ... of  dirty cards in old space
5277   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5278                                   Par_MarkRefsIntoAndScanClosure* cl);
5279 
5280   // ... work stealing for the above
5281   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5282 };
5283 
5284 class RemarkKlassClosure : public KlassClosure {
5285   CMKlassClosure _cm_klass_closure;
5286  public:
5287   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5288   void do_klass(Klass* k) {
5289     // Check if we have modified any oops in the Klass during the concurrent marking.
5290     if (k->has_accumulated_modified_oops()) {
5291       k->clear_accumulated_modified_oops();
5292 
5293       // We could have transfered the current modified marks to the accumulated marks,
5294       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5295     } else if (k->has_modified_oops()) {
5296       // Don't clear anything, this info is needed by the next young collection.
5297     } else {
5298       // No modified oops in the Klass.
5299       return;
5300     }
5301 
5302     // The klass has modified fields, need to scan the klass.
5303     _cm_klass_closure.do_klass(k);
5304   }
5305 };
5306 
5307 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5308   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5309   EdenSpace* eden_space = dng->eden();
5310   ContiguousSpace* from_space = dng->from();
5311   ContiguousSpace* to_space   = dng->to();
5312 
5313   HeapWord** eca = _collector->_eden_chunk_array;
5314   size_t     ect = _collector->_eden_chunk_index;
5315   HeapWord** sca = _collector->_survivor_chunk_array;
5316   size_t     sct = _collector->_survivor_chunk_index;
5317 
5318   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5319   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5320 
5321   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5322   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5323   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5324 }
5325 
5326 // work_queue(i) is passed to the closure
5327 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5328 // also is passed to do_dirty_card_rescan_tasks() and to
5329 // do_work_steal() to select the i-th task_queue.
5330 
5331 void CMSParRemarkTask::work(uint worker_id) {
5332   elapsedTimer _timer;
5333   ResourceMark rm;
5334   HandleMark   hm;
5335 
5336   // ---------- rescan from roots --------------
5337   _timer.start();
5338   GenCollectedHeap* gch = GenCollectedHeap::heap();
5339   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5340     _collector->_span, _collector->ref_processor(),
5341     &(_collector->_markBitMap),
5342     work_queue(worker_id));
5343 
5344   // Rescan young gen roots first since these are likely
5345   // coarsely partitioned and may, on that account, constitute
5346   // the critical path; thus, it's best to start off that
5347   // work first.
5348   // ---------- young gen roots --------------
5349   {
5350     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5351     _timer.stop();
5352     if (PrintCMSStatistics != 0) {
5353       gclog_or_tty->print_cr(
5354         "Finished young gen rescan work in %dth thread: %3.3f sec",
5355         worker_id, _timer.seconds());
5356     }
5357   }
5358 
5359   // ---------- remaining roots --------------
5360   _timer.reset();
5361   _timer.start();
5362   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5363                                 false,     // yg was scanned above
5364                                 false,     // this is parallel code
5365                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5366                                 &par_mrias_cl,
5367                                 NULL,
5368                                 NULL);     // The dirty klasses will be handled below
5369   assert(_collector->should_unload_classes()
5370          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5371          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5372   _timer.stop();
5373   if (PrintCMSStatistics != 0) {
5374     gclog_or_tty->print_cr(
5375       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5376       worker_id, _timer.seconds());
5377   }
5378 
5379   // ---------- unhandled CLD scanning ----------
5380   if (worker_id == 0) { // Single threaded at the moment.
5381     _timer.reset();
5382     _timer.start();
5383 
5384     // Scan all new class loader data objects and new dependencies that were
5385     // introduced during concurrent marking.
5386     ResourceMark rm;
5387     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5388     for (int i = 0; i < array->length(); i++) {
5389       par_mrias_cl.do_class_loader_data(array->at(i));
5390     }
5391 
5392     // We don't need to keep track of new CLDs anymore.
5393     ClassLoaderDataGraph::remember_new_clds(false);
5394 
5395     _timer.stop();
5396     if (PrintCMSStatistics != 0) {
5397       gclog_or_tty->print_cr(
5398           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5399           worker_id, _timer.seconds());
5400     }
5401   }
5402 
5403   // ---------- dirty klass scanning ----------
5404   if (worker_id == 0) { // Single threaded at the moment.
5405     _timer.reset();
5406     _timer.start();
5407 
5408     // Scan all classes that was dirtied during the concurrent marking phase.
5409     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5410     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5411 
5412     _timer.stop();
5413     if (PrintCMSStatistics != 0) {
5414       gclog_or_tty->print_cr(
5415           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5416           worker_id, _timer.seconds());
5417     }
5418   }
5419 
5420   // We might have added oops to ClassLoaderData::_handles during the
5421   // concurrent marking phase. These oops point to newly allocated objects
5422   // that are guaranteed to be kept alive. Either by the direct allocation
5423   // code, or when the young collector processes the strong roots. Hence,
5424   // we don't have to revisit the _handles block during the remark phase.
5425 
5426   // ---------- rescan dirty cards ------------
5427   _timer.reset();
5428   _timer.start();
5429 
5430   // Do the rescan tasks for each of the two spaces
5431   // (cms_space) in turn.
5432   // "worker_id" is passed to select the task_queue for "worker_id"
5433   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5434   _timer.stop();
5435   if (PrintCMSStatistics != 0) {
5436     gclog_or_tty->print_cr(
5437       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5438       worker_id, _timer.seconds());
5439   }
5440 
5441   // ---------- steal work from other threads ...
5442   // ---------- ... and drain overflow list.
5443   _timer.reset();
5444   _timer.start();
5445   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5446   _timer.stop();
5447   if (PrintCMSStatistics != 0) {
5448     gclog_or_tty->print_cr(
5449       "Finished work stealing in %dth thread: %3.3f sec",
5450       worker_id, _timer.seconds());
5451   }
5452 }
5453 
5454 // Note that parameter "i" is not used.
5455 void
5456 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5457   OopsInGenClosure* cl, ContiguousSpace* space,
5458   HeapWord** chunk_array, size_t chunk_top) {
5459   // Until all tasks completed:
5460   // . claim an unclaimed task
5461   // . compute region boundaries corresponding to task claimed
5462   //   using chunk_array
5463   // . par_oop_iterate(cl) over that region
5464 
5465   ResourceMark rm;
5466   HandleMark   hm;
5467 
5468   SequentialSubTasksDone* pst = space->par_seq_tasks();
5469 
5470   uint nth_task = 0;
5471   uint n_tasks  = pst->n_tasks();
5472 
5473   if (n_tasks > 0) {
5474     assert(pst->valid(), "Uninitialized use?");
5475     HeapWord *start, *end;
5476     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5477       // We claimed task # nth_task; compute its boundaries.
5478       if (chunk_top == 0) {  // no samples were taken
5479         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5480         start = space->bottom();
5481         end   = space->top();
5482       } else if (nth_task == 0) {
5483         start = space->bottom();
5484         end   = chunk_array[nth_task];
5485       } else if (nth_task < (uint)chunk_top) {
5486         assert(nth_task >= 1, "Control point invariant");
5487         start = chunk_array[nth_task - 1];
5488         end   = chunk_array[nth_task];
5489       } else {
5490         assert(nth_task == (uint)chunk_top, "Control point invariant");
5491         start = chunk_array[chunk_top - 1];
5492         end   = space->top();
5493       }
5494       MemRegion mr(start, end);
5495       // Verify that mr is in space
5496       assert(mr.is_empty() || space->used_region().contains(mr),
5497              "Should be in space");
5498       // Verify that "start" is an object boundary
5499       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5500              "Should be an oop");
5501       space->par_oop_iterate(mr, cl);
5502     }
5503     pst->all_tasks_completed();
5504   }
5505 }
5506 
5507 void
5508 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5509   CompactibleFreeListSpace* sp, int i,
5510   Par_MarkRefsIntoAndScanClosure* cl) {
5511   // Until all tasks completed:
5512   // . claim an unclaimed task
5513   // . compute region boundaries corresponding to task claimed
5514   // . transfer dirty bits ct->mut for that region
5515   // . apply rescanclosure to dirty mut bits for that region
5516 
5517   ResourceMark rm;
5518   HandleMark   hm;
5519 
5520   OopTaskQueue* work_q = work_queue(i);
5521   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5522   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5523   // CAUTION: This closure has state that persists across calls to
5524   // the work method dirty_range_iterate_clear() in that it has
5525   // embedded in it a (subtype of) UpwardsObjectClosure. The
5526   // use of that state in the embedded UpwardsObjectClosure instance
5527   // assumes that the cards are always iterated (even if in parallel
5528   // by several threads) in monotonically increasing order per each
5529   // thread. This is true of the implementation below which picks
5530   // card ranges (chunks) in monotonically increasing order globally
5531   // and, a-fortiori, in monotonically increasing order per thread
5532   // (the latter order being a subsequence of the former).
5533   // If the work code below is ever reorganized into a more chaotic
5534   // work-partitioning form than the current "sequential tasks"
5535   // paradigm, the use of that persistent state will have to be
5536   // revisited and modified appropriately. See also related
5537   // bug 4756801 work on which should examine this code to make
5538   // sure that the changes there do not run counter to the
5539   // assumptions made here and necessary for correctness and
5540   // efficiency. Note also that this code might yield inefficient
5541   // behavior in the case of very large objects that span one or
5542   // more work chunks. Such objects would potentially be scanned
5543   // several times redundantly. Work on 4756801 should try and
5544   // address that performance anomaly if at all possible. XXX
5545   MemRegion  full_span  = _collector->_span;
5546   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5547   MarkFromDirtyCardsClosure
5548     greyRescanClosure(_collector, full_span, // entire span of interest
5549                       sp, bm, work_q, cl);
5550 
5551   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5552   assert(pst->valid(), "Uninitialized use?");
5553   uint nth_task = 0;
5554   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5555   MemRegion span = sp->used_region();
5556   HeapWord* start_addr = span.start();
5557   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5558                                            alignment);
5559   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5560   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5561          start_addr, "Check alignment");
5562   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5563          chunk_size, "Check alignment");
5564 
5565   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5566     // Having claimed the nth_task, compute corresponding mem-region,
5567     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
5568     // The alignment restriction ensures that we do not need any
5569     // synchronization with other gang-workers while setting or
5570     // clearing bits in thus chunk of the MUT.
5571     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5572                                     start_addr + (nth_task+1)*chunk_size);
5573     // The last chunk's end might be way beyond end of the
5574     // used region. In that case pull back appropriately.
5575     if (this_span.end() > end_addr) {
5576       this_span.set_end(end_addr);
5577       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5578     }
5579     // Iterate over the dirty cards covering this chunk, marking them
5580     // precleaned, and setting the corresponding bits in the mod union
5581     // table. Since we have been careful to partition at Card and MUT-word
5582     // boundaries no synchronization is needed between parallel threads.
5583     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5584                                                  &modUnionClosure);
5585 
5586     // Having transferred these marks into the modUnionTable,
5587     // rescan the marked objects on the dirty cards in the modUnionTable.
5588     // Even if this is at a synchronous collection, the initial marking
5589     // may have been done during an asynchronous collection so there
5590     // may be dirty bits in the mod-union table.
5591     _collector->_modUnionTable.dirty_range_iterate_clear(
5592                   this_span, &greyRescanClosure);
5593     _collector->_modUnionTable.verifyNoOneBitsInRange(
5594                                  this_span.start(),
5595                                  this_span.end());
5596   }
5597   pst->all_tasks_completed();  // declare that i am done
5598 }
5599 
5600 // . see if we can share work_queues with ParNew? XXX
5601 void
5602 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5603                                 int* seed) {
5604   OopTaskQueue* work_q = work_queue(i);
5605   NOT_PRODUCT(int num_steals = 0;)
5606   oop obj_to_scan;
5607   CMSBitMap* bm = &(_collector->_markBitMap);
5608 
5609   while (true) {
5610     // Completely finish any left over work from (an) earlier round(s)
5611     cl->trim_queue(0);
5612     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5613                                          (size_t)ParGCDesiredObjsFromOverflowList);
5614     // Now check if there's any work in the overflow list
5615     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5616     // only affects the number of attempts made to get work from the
5617     // overflow list and does not affect the number of workers.  Just
5618     // pass ParallelGCThreads so this behavior is unchanged.
5619     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5620                                                 work_q,
5621                                                 ParallelGCThreads)) {
5622       // found something in global overflow list;
5623       // not yet ready to go stealing work from others.
5624       // We'd like to assert(work_q->size() != 0, ...)
5625       // because we just took work from the overflow list,
5626       // but of course we can't since all of that could have
5627       // been already stolen from us.
5628       // "He giveth and He taketh away."
5629       continue;
5630     }
5631     // Verify that we have no work before we resort to stealing
5632     assert(work_q->size() == 0, "Have work, shouldn't steal");
5633     // Try to steal from other queues that have work
5634     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5635       NOT_PRODUCT(num_steals++;)
5636       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5637       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5638       // Do scanning work
5639       obj_to_scan->oop_iterate(cl);
5640       // Loop around, finish this work, and try to steal some more
5641     } else if (terminator()->offer_termination()) {
5642         break;  // nirvana from the infinite cycle
5643     }
5644   }
5645   NOT_PRODUCT(
5646     if (PrintCMSStatistics != 0) {
5647       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5648     }
5649   )
5650   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5651          "Else our work is not yet done");
5652 }
5653 
5654 // Record object boundaries in _eden_chunk_array by sampling the eden
5655 // top in the slow-path eden object allocation code path and record
5656 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5657 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5658 // sampling in sample_eden() that activates during the part of the
5659 // preclean phase.
5660 void CMSCollector::sample_eden_chunk() {
5661   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5662     if (_eden_chunk_lock->try_lock()) {
5663       // Record a sample. This is the critical section. The contents
5664       // of the _eden_chunk_array have to be non-decreasing in the
5665       // address order.
5666       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5667       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5668              "Unexpected state of Eden");
5669       if (_eden_chunk_index == 0 ||
5670           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5671            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5672                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5673         _eden_chunk_index++;  // commit sample
5674       }
5675       _eden_chunk_lock->unlock();
5676     }
5677   }
5678 }
5679 
5680 // Return a thread-local PLAB recording array, as appropriate.
5681 void* CMSCollector::get_data_recorder(int thr_num) {
5682   if (_survivor_plab_array != NULL &&
5683       (CMSPLABRecordAlways ||
5684        (_collectorState > Marking && _collectorState < FinalMarking))) {
5685     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5686     ChunkArray* ca = &_survivor_plab_array[thr_num];
5687     ca->reset();   // clear it so that fresh data is recorded
5688     return (void*) ca;
5689   } else {
5690     return NULL;
5691   }
5692 }
5693 
5694 // Reset all the thread-local PLAB recording arrays
5695 void CMSCollector::reset_survivor_plab_arrays() {
5696   for (uint i = 0; i < ParallelGCThreads; i++) {
5697     _survivor_plab_array[i].reset();
5698   }
5699 }
5700 
5701 // Merge the per-thread plab arrays into the global survivor chunk
5702 // array which will provide the partitioning of the survivor space
5703 // for CMS initial scan and rescan.
5704 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5705                                               int no_of_gc_threads) {
5706   assert(_survivor_plab_array  != NULL, "Error");
5707   assert(_survivor_chunk_array != NULL, "Error");
5708   assert(_collectorState == FinalMarking ||
5709          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5710   for (int j = 0; j < no_of_gc_threads; j++) {
5711     _cursor[j] = 0;
5712   }
5713   HeapWord* top = surv->top();
5714   size_t i;
5715   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5716     HeapWord* min_val = top;          // Higher than any PLAB address
5717     uint      min_tid = 0;            // position of min_val this round
5718     for (int j = 0; j < no_of_gc_threads; j++) {
5719       ChunkArray* cur_sca = &_survivor_plab_array[j];
5720       if (_cursor[j] == cur_sca->end()) {
5721         continue;
5722       }
5723       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5724       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5725       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5726       if (cur_val < min_val) {
5727         min_tid = j;
5728         min_val = cur_val;
5729       } else {
5730         assert(cur_val < top, "All recorded addresses should be less");
5731       }
5732     }
5733     // At this point min_val and min_tid are respectively
5734     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5735     // and the thread (j) that witnesses that address.
5736     // We record this address in the _survivor_chunk_array[i]
5737     // and increment _cursor[min_tid] prior to the next round i.
5738     if (min_val == top) {
5739       break;
5740     }
5741     _survivor_chunk_array[i] = min_val;
5742     _cursor[min_tid]++;
5743   }
5744   // We are all done; record the size of the _survivor_chunk_array
5745   _survivor_chunk_index = i; // exclusive: [0, i)
5746   if (PrintCMSStatistics > 0) {
5747     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5748   }
5749   // Verify that we used up all the recorded entries
5750   #ifdef ASSERT
5751     size_t total = 0;
5752     for (int j = 0; j < no_of_gc_threads; j++) {
5753       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5754       total += _cursor[j];
5755     }
5756     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5757     // Check that the merged array is in sorted order
5758     if (total > 0) {
5759       for (size_t i = 0; i < total - 1; i++) {
5760         if (PrintCMSStatistics > 0) {
5761           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5762                               i, _survivor_chunk_array[i]);
5763         }
5764         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5765                "Not sorted");
5766       }
5767     }
5768   #endif // ASSERT
5769 }
5770 
5771 // Set up the space's par_seq_tasks structure for work claiming
5772 // for parallel initial scan and rescan of young gen.
5773 // See ParRescanTask where this is currently used.
5774 void
5775 CMSCollector::
5776 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5777   assert(n_threads > 0, "Unexpected n_threads argument");
5778   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5779 
5780   // Eden space
5781   if (!dng->eden()->is_empty()) {
5782     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5783     assert(!pst->valid(), "Clobbering existing data?");
5784     // Each valid entry in [0, _eden_chunk_index) represents a task.
5785     size_t n_tasks = _eden_chunk_index + 1;
5786     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5787     // Sets the condition for completion of the subtask (how many threads
5788     // need to finish in order to be done).
5789     pst->set_n_threads(n_threads);
5790     pst->set_n_tasks((int)n_tasks);
5791   }
5792 
5793   // Merge the survivor plab arrays into _survivor_chunk_array
5794   if (_survivor_plab_array != NULL) {
5795     merge_survivor_plab_arrays(dng->from(), n_threads);
5796   } else {
5797     assert(_survivor_chunk_index == 0, "Error");
5798   }
5799 
5800   // To space
5801   {
5802     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5803     assert(!pst->valid(), "Clobbering existing data?");
5804     // Sets the condition for completion of the subtask (how many threads
5805     // need to finish in order to be done).
5806     pst->set_n_threads(n_threads);
5807     pst->set_n_tasks(1);
5808     assert(pst->valid(), "Error");
5809   }
5810 
5811   // From space
5812   {
5813     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5814     assert(!pst->valid(), "Clobbering existing data?");
5815     size_t n_tasks = _survivor_chunk_index + 1;
5816     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5817     // Sets the condition for completion of the subtask (how many threads
5818     // need to finish in order to be done).
5819     pst->set_n_threads(n_threads);
5820     pst->set_n_tasks((int)n_tasks);
5821     assert(pst->valid(), "Error");
5822   }
5823 }
5824 
5825 // Parallel version of remark
5826 void CMSCollector::do_remark_parallel() {
5827   GenCollectedHeap* gch = GenCollectedHeap::heap();
5828   FlexibleWorkGang* workers = gch->workers();
5829   assert(workers != NULL, "Need parallel worker threads.");
5830   // Choose to use the number of GC workers most recently set
5831   // into "active_workers".  If active_workers is not set, set it
5832   // to ParallelGCThreads.
5833   int n_workers = workers->active_workers();
5834   if (n_workers == 0) {
5835     assert(n_workers > 0, "Should have been set during scavenge");
5836     n_workers = ParallelGCThreads;
5837     workers->set_active_workers(n_workers);
5838   }
5839   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5840 
5841   CMSParRemarkTask tsk(this,
5842     cms_space,
5843     n_workers, workers, task_queues());
5844 
5845   // Set up for parallel process_strong_roots work.
5846   gch->set_par_threads(n_workers);
5847   // We won't be iterating over the cards in the card table updating
5848   // the younger_gen cards, so we shouldn't call the following else
5849   // the verification code as well as subsequent younger_refs_iterate
5850   // code would get confused. XXX
5851   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5852 
5853   // The young gen rescan work will not be done as part of
5854   // process_strong_roots (which currently doesn't knw how to
5855   // parallelize such a scan), but rather will be broken up into
5856   // a set of parallel tasks (via the sampling that the [abortable]
5857   // preclean phase did of EdenSpace, plus the [two] tasks of
5858   // scanning the [two] survivor spaces. Further fine-grain
5859   // parallelization of the scanning of the survivor spaces
5860   // themselves, and of precleaning of the younger gen itself
5861   // is deferred to the future.
5862   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5863 
5864   // The dirty card rescan work is broken up into a "sequence"
5865   // of parallel tasks (per constituent space) that are dynamically
5866   // claimed by the parallel threads.
5867   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5868 
5869   // It turns out that even when we're using 1 thread, doing the work in a
5870   // separate thread causes wide variance in run times.  We can't help this
5871   // in the multi-threaded case, but we special-case n=1 here to get
5872   // repeatable measurements of the 1-thread overhead of the parallel code.
5873   if (n_workers > 1) {
5874     // Make refs discovery MT-safe, if it isn't already: it may not
5875     // necessarily be so, since it's possible that we are doing
5876     // ST marking.
5877     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5878     GenCollectedHeap::StrongRootsScope srs(gch);
5879     workers->run_task(&tsk);
5880   } else {
5881     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5882     GenCollectedHeap::StrongRootsScope srs(gch);
5883     tsk.work(0);
5884   }
5885 
5886   gch->set_par_threads(0);  // 0 ==> non-parallel.
5887   // restore, single-threaded for now, any preserved marks
5888   // as a result of work_q overflow
5889   restore_preserved_marks_if_any();
5890 }
5891 
5892 // Non-parallel version of remark
5893 void CMSCollector::do_remark_non_parallel() {
5894   ResourceMark rm;
5895   HandleMark   hm;
5896   GenCollectedHeap* gch = GenCollectedHeap::heap();
5897   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5898 
5899   MarkRefsIntoAndScanClosure
5900     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5901              &_markStack, this,
5902              false /* should_yield */, false /* not precleaning */);
5903   MarkFromDirtyCardsClosure
5904     markFromDirtyCardsClosure(this, _span,
5905                               NULL,  // space is set further below
5906                               &_markBitMap, &_markStack, &mrias_cl);
5907   {
5908     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5909     // Iterate over the dirty cards, setting the corresponding bits in the
5910     // mod union table.
5911     {
5912       ModUnionClosure modUnionClosure(&_modUnionTable);
5913       _ct->ct_bs()->dirty_card_iterate(
5914                       _cmsGen->used_region(),
5915                       &modUnionClosure);
5916     }
5917     // Having transferred these marks into the modUnionTable, we just need
5918     // to rescan the marked objects on the dirty cards in the modUnionTable.
5919     // The initial marking may have been done during an asynchronous
5920     // collection so there may be dirty bits in the mod-union table.
5921     const int alignment =
5922       CardTableModRefBS::card_size * BitsPerWord;
5923     {
5924       // ... First handle dirty cards in CMS gen
5925       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5926       MemRegion ur = _cmsGen->used_region();
5927       HeapWord* lb = ur.start();
5928       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5929       MemRegion cms_span(lb, ub);
5930       _modUnionTable.dirty_range_iterate_clear(cms_span,
5931                                                &markFromDirtyCardsClosure);
5932       verify_work_stacks_empty();
5933       if (PrintCMSStatistics != 0) {
5934         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5935           markFromDirtyCardsClosure.num_dirty_cards());
5936       }
5937     }
5938   }
5939   if (VerifyDuringGC &&
5940       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5941     HandleMark hm;  // Discard invalid handles created during verification
5942     Universe::verify();
5943   }
5944   {
5945     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5946 
5947     verify_work_stacks_empty();
5948 
5949     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5950     GenCollectedHeap::StrongRootsScope srs(gch);
5951     gch->gen_process_strong_roots(_cmsGen->level(),
5952                                   true,  // younger gens as roots
5953                                   false, // use the local StrongRootsScope
5954                                   SharedHeap::ScanningOption(roots_scanning_options()),
5955                                   &mrias_cl,
5956                                   NULL,
5957                                   NULL);  // The dirty klasses will be handled below
5958 
5959     assert(should_unload_classes()
5960            || (roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5961            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5962   }
5963 
5964   {
5965     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5966 
5967     verify_work_stacks_empty();
5968 
5969     // Scan all class loader data objects that might have been introduced
5970     // during concurrent marking.
5971     ResourceMark rm;
5972     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5973     for (int i = 0; i < array->length(); i++) {
5974       mrias_cl.do_class_loader_data(array->at(i));
5975     }
5976 
5977     // We don't need to keep track of new CLDs anymore.
5978     ClassLoaderDataGraph::remember_new_clds(false);
5979 
5980     verify_work_stacks_empty();
5981   }
5982 
5983   {
5984     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5985 
5986     verify_work_stacks_empty();
5987 
5988     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5989     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5990 
5991     verify_work_stacks_empty();
5992   }
5993 
5994   // We might have added oops to ClassLoaderData::_handles during the
5995   // concurrent marking phase. These oops point to newly allocated objects
5996   // that are guaranteed to be kept alive. Either by the direct allocation
5997   // code, or when the young collector processes the strong roots. Hence,
5998   // we don't have to revisit the _handles block during the remark phase.
5999 
6000   verify_work_stacks_empty();
6001   // Restore evacuated mark words, if any, used for overflow list links
6002   if (!CMSOverflowEarlyRestoration) {
6003     restore_preserved_marks_if_any();
6004   }
6005   verify_overflow_empty();
6006 }
6007 
6008 ////////////////////////////////////////////////////////
6009 // Parallel Reference Processing Task Proxy Class
6010 ////////////////////////////////////////////////////////
6011 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
6012   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
6013   CMSCollector*          _collector;
6014   CMSBitMap*             _mark_bit_map;
6015   const MemRegion        _span;
6016   ProcessTask&           _task;
6017 
6018 public:
6019   CMSRefProcTaskProxy(ProcessTask&     task,
6020                       CMSCollector*    collector,
6021                       const MemRegion& span,
6022                       CMSBitMap*       mark_bit_map,
6023                       AbstractWorkGang* workers,
6024                       OopTaskQueueSet* task_queues):
6025     // XXX Should superclass AGTWOQ also know about AWG since it knows
6026     // about the task_queues used by the AWG? Then it could initialize
6027     // the terminator() object. See 6984287. The set_for_termination()
6028     // below is a temporary band-aid for the regression in 6984287.
6029     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
6030       task_queues),
6031     _task(task),
6032     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
6033   {
6034     assert(_collector->_span.equals(_span) && !_span.is_empty(),
6035            "Inconsistency in _span");
6036     set_for_termination(workers->active_workers());
6037   }
6038 
6039   OopTaskQueueSet* task_queues() { return queues(); }
6040 
6041   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
6042 
6043   void do_work_steal(int i,
6044                      CMSParDrainMarkingStackClosure* drain,
6045                      CMSParKeepAliveClosure* keep_alive,
6046                      int* seed);
6047 
6048   virtual void work(uint worker_id);
6049 };
6050 
6051 void CMSRefProcTaskProxy::work(uint worker_id) {
6052   assert(_collector->_span.equals(_span), "Inconsistency in _span");
6053   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
6054                                         _mark_bit_map,
6055                                         work_queue(worker_id));
6056   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
6057                                                  _mark_bit_map,
6058                                                  work_queue(worker_id));
6059   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
6060   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
6061   if (_task.marks_oops_alive()) {
6062     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6063                   _collector->hash_seed(worker_id));
6064   }
6065   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6066   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6067 }
6068 
6069 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6070   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6071   EnqueueTask& _task;
6072 
6073 public:
6074   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6075     : AbstractGangTask("Enqueue reference objects in parallel"),
6076       _task(task)
6077   { }
6078 
6079   virtual void work(uint worker_id)
6080   {
6081     _task.work(worker_id);
6082   }
6083 };
6084 
6085 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6086   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6087    _span(span),
6088    _bit_map(bit_map),
6089    _work_queue(work_queue),
6090    _mark_and_push(collector, span, bit_map, work_queue),
6091    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6092                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6093 { }
6094 
6095 // . see if we can share work_queues with ParNew? XXX
6096 void CMSRefProcTaskProxy::do_work_steal(int i,
6097   CMSParDrainMarkingStackClosure* drain,
6098   CMSParKeepAliveClosure* keep_alive,
6099   int* seed) {
6100   OopTaskQueue* work_q = work_queue(i);
6101   NOT_PRODUCT(int num_steals = 0;)
6102   oop obj_to_scan;
6103 
6104   while (true) {
6105     // Completely finish any left over work from (an) earlier round(s)
6106     drain->trim_queue(0);
6107     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6108                                          (size_t)ParGCDesiredObjsFromOverflowList);
6109     // Now check if there's any work in the overflow list
6110     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6111     // only affects the number of attempts made to get work from the
6112     // overflow list and does not affect the number of workers.  Just
6113     // pass ParallelGCThreads so this behavior is unchanged.
6114     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6115                                                 work_q,
6116                                                 ParallelGCThreads)) {
6117       // Found something in global overflow list;
6118       // not yet ready to go stealing work from others.
6119       // We'd like to assert(work_q->size() != 0, ...)
6120       // because we just took work from the overflow list,
6121       // but of course we can't, since all of that might have
6122       // been already stolen from us.
6123       continue;
6124     }
6125     // Verify that we have no work before we resort to stealing
6126     assert(work_q->size() == 0, "Have work, shouldn't steal");
6127     // Try to steal from other queues that have work
6128     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6129       NOT_PRODUCT(num_steals++;)
6130       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6131       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6132       // Do scanning work
6133       obj_to_scan->oop_iterate(keep_alive);
6134       // Loop around, finish this work, and try to steal some more
6135     } else if (terminator()->offer_termination()) {
6136       break;  // nirvana from the infinite cycle
6137     }
6138   }
6139   NOT_PRODUCT(
6140     if (PrintCMSStatistics != 0) {
6141       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6142     }
6143   )
6144 }
6145 
6146 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6147 {
6148   GenCollectedHeap* gch = GenCollectedHeap::heap();
6149   FlexibleWorkGang* workers = gch->workers();
6150   assert(workers != NULL, "Need parallel worker threads.");
6151   CMSRefProcTaskProxy rp_task(task, &_collector,
6152                               _collector.ref_processor()->span(),
6153                               _collector.markBitMap(),
6154                               workers, _collector.task_queues());
6155   workers->run_task(&rp_task);
6156 }
6157 
6158 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6159 {
6160 
6161   GenCollectedHeap* gch = GenCollectedHeap::heap();
6162   FlexibleWorkGang* workers = gch->workers();
6163   assert(workers != NULL, "Need parallel worker threads.");
6164   CMSRefEnqueueTaskProxy enq_task(task);
6165   workers->run_task(&enq_task);
6166 }
6167 
6168 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6169 
6170   ResourceMark rm;
6171   HandleMark   hm;
6172 
6173   ReferenceProcessor* rp = ref_processor();
6174   assert(rp->span().equals(_span), "Spans should be equal");
6175   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6176   // Process weak references.
6177   rp->setup_policy(clear_all_soft_refs);
6178   verify_work_stacks_empty();
6179 
6180   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6181                                           &_markStack, false /* !preclean */);
6182   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6183                                 _span, &_markBitMap, &_markStack,
6184                                 &cmsKeepAliveClosure, false /* !preclean */);
6185   {
6186     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
6187 
6188     ReferenceProcessorStats stats;
6189     if (rp->processing_is_mt()) {
6190       // Set the degree of MT here.  If the discovery is done MT, there
6191       // may have been a different number of threads doing the discovery
6192       // and a different number of discovered lists may have Ref objects.
6193       // That is OK as long as the Reference lists are balanced (see
6194       // balance_all_queues() and balance_queues()).
6195       GenCollectedHeap* gch = GenCollectedHeap::heap();
6196       int active_workers = ParallelGCThreads;
6197       FlexibleWorkGang* workers = gch->workers();
6198       if (workers != NULL) {
6199         active_workers = workers->active_workers();
6200         // The expectation is that active_workers will have already
6201         // been set to a reasonable value.  If it has not been set,
6202         // investigate.
6203         assert(active_workers > 0, "Should have been set during scavenge");
6204       }
6205       rp->set_active_mt_degree(active_workers);
6206       CMSRefProcTaskExecutor task_executor(*this);
6207       stats = rp->process_discovered_references(&_is_alive_closure,
6208                                         &cmsKeepAliveClosure,
6209                                         &cmsDrainMarkingStackClosure,
6210                                         &task_executor,
6211                                         _gc_timer_cm);
6212     } else {
6213       stats = rp->process_discovered_references(&_is_alive_closure,
6214                                         &cmsKeepAliveClosure,
6215                                         &cmsDrainMarkingStackClosure,
6216                                         NULL,
6217                                         _gc_timer_cm);
6218     }
6219     _gc_tracer_cm->report_gc_reference_stats(stats);
6220 
6221   }
6222 
6223   // This is the point where the entire marking should have completed.
6224   verify_work_stacks_empty();
6225 
6226   if (should_unload_classes()) {
6227     {
6228       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
6229 
6230       // Unload classes and purge the SystemDictionary.
6231       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6232 
6233       // Unload nmethods.
6234       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6235 
6236       // Prune dead klasses from subklass/sibling/implementor lists.
6237       Klass::clean_weak_klass_links(&_is_alive_closure);
6238     }
6239 
6240     {
6241       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
6242       // Clean up unreferenced symbols in symbol table.
6243       SymbolTable::unlink();
6244     }
6245   }
6246 
6247   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
6248   // Need to check if we really scanned the StringTable.
6249   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
6250     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
6251     // Delete entries for dead interned strings.
6252     StringTable::unlink(&_is_alive_closure);
6253   }
6254 
6255   // Restore any preserved marks as a result of mark stack or
6256   // work queue overflow
6257   restore_preserved_marks_if_any();  // done single-threaded for now
6258 
6259   rp->set_enqueuing_is_done(true);
6260   if (rp->processing_is_mt()) {
6261     rp->balance_all_queues();
6262     CMSRefProcTaskExecutor task_executor(*this);
6263     rp->enqueue_discovered_references(&task_executor);
6264   } else {
6265     rp->enqueue_discovered_references(NULL);
6266   }
6267   rp->verify_no_references_recorded();
6268   assert(!rp->discovery_enabled(), "should have been disabled");
6269 }
6270 
6271 #ifndef PRODUCT
6272 void CMSCollector::check_correct_thread_executing() {
6273   Thread* t = Thread::current();
6274   // Only the VM thread or the CMS thread should be here.
6275   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6276          "Unexpected thread type");
6277   // If this is the vm thread, the foreground process
6278   // should not be waiting.  Note that _foregroundGCIsActive is
6279   // true while the foreground collector is waiting.
6280   if (_foregroundGCShouldWait) {
6281     // We cannot be the VM thread
6282     assert(t->is_ConcurrentGC_thread(),
6283            "Should be CMS thread");
6284   } else {
6285     // We can be the CMS thread only if we are in a stop-world
6286     // phase of CMS collection.
6287     if (t->is_ConcurrentGC_thread()) {
6288       assert(_collectorState == InitialMarking ||
6289              _collectorState == FinalMarking,
6290              "Should be a stop-world phase");
6291       // The CMS thread should be holding the CMS_token.
6292       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6293              "Potential interference with concurrently "
6294              "executing VM thread");
6295     }
6296   }
6297 }
6298 #endif
6299 
6300 void CMSCollector::sweep(bool asynch) {
6301   assert(_collectorState == Sweeping, "just checking");
6302   check_correct_thread_executing();
6303   verify_work_stacks_empty();
6304   verify_overflow_empty();
6305   increment_sweep_count();
6306   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6307 
6308   _inter_sweep_timer.stop();
6309   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6310   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6311 
6312   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6313   _intra_sweep_timer.reset();
6314   _intra_sweep_timer.start();
6315   if (asynch) {
6316     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6317     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6318     // First sweep the old gen
6319     {
6320       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6321                                bitMapLock());
6322       sweepWork(_cmsGen, asynch);
6323     }
6324 
6325     // Update Universe::_heap_*_at_gc figures.
6326     // We need all the free list locks to make the abstract state
6327     // transition from Sweeping to Resetting. See detailed note
6328     // further below.
6329     {
6330       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6331       // Update heap occupancy information which is used as
6332       // input to soft ref clearing policy at the next gc.
6333       Universe::update_heap_info_at_gc();
6334       _collectorState = Resizing;
6335     }
6336   } else {
6337     // already have needed locks
6338     sweepWork(_cmsGen,  asynch);
6339     // Update heap occupancy information which is used as
6340     // input to soft ref clearing policy at the next gc.
6341     Universe::update_heap_info_at_gc();
6342     _collectorState = Resizing;
6343   }
6344   verify_work_stacks_empty();
6345   verify_overflow_empty();
6346 
6347   if (should_unload_classes()) {
6348     ClassLoaderDataGraph::purge();
6349   }
6350 
6351   _intra_sweep_timer.stop();
6352   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6353 
6354   _inter_sweep_timer.reset();
6355   _inter_sweep_timer.start();
6356 
6357   // We need to use a monotonically non-decreasing time in ms
6358   // or we will see time-warp warnings and os::javaTimeMillis()
6359   // does not guarantee monotonicity.
6360   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6361   update_time_of_last_gc(now);
6362 
6363   // NOTE on abstract state transitions:
6364   // Mutators allocate-live and/or mark the mod-union table dirty
6365   // based on the state of the collection.  The former is done in
6366   // the interval [Marking, Sweeping] and the latter in the interval
6367   // [Marking, Sweeping).  Thus the transitions into the Marking state
6368   // and out of the Sweeping state must be synchronously visible
6369   // globally to the mutators.
6370   // The transition into the Marking state happens with the world
6371   // stopped so the mutators will globally see it.  Sweeping is
6372   // done asynchronously by the background collector so the transition
6373   // from the Sweeping state to the Resizing state must be done
6374   // under the freelistLock (as is the check for whether to
6375   // allocate-live and whether to dirty the mod-union table).
6376   assert(_collectorState == Resizing, "Change of collector state to"
6377     " Resizing must be done under the freelistLocks (plural)");
6378 
6379   // Now that sweeping has been completed, we clear
6380   // the incremental_collection_failed flag,
6381   // thus inviting a younger gen collection to promote into
6382   // this generation. If such a promotion may still fail,
6383   // the flag will be set again when a young collection is
6384   // attempted.
6385   GenCollectedHeap* gch = GenCollectedHeap::heap();
6386   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6387   gch->update_full_collections_completed(_collection_count_start);
6388 }
6389 
6390 // FIX ME!!! Looks like this belongs in CFLSpace, with
6391 // CMSGen merely delegating to it.
6392 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6393   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6394   HeapWord*  minAddr        = _cmsSpace->bottom();
6395   HeapWord*  largestAddr    =
6396     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6397   if (largestAddr == NULL) {
6398     // The dictionary appears to be empty.  In this case
6399     // try to coalesce at the end of the heap.
6400     largestAddr = _cmsSpace->end();
6401   }
6402   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6403   size_t nearLargestOffset =
6404     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6405   if (PrintFLSStatistics != 0) {
6406     gclog_or_tty->print_cr(
6407       "CMS: Large Block: " PTR_FORMAT ";"
6408       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6409       largestAddr,
6410       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6411   }
6412   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6413 }
6414 
6415 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6416   return addr >= _cmsSpace->nearLargestChunk();
6417 }
6418 
6419 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6420   return _cmsSpace->find_chunk_at_end();
6421 }
6422 
6423 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6424                                                     bool full) {
6425   // The next lower level has been collected.  Gather any statistics
6426   // that are of interest at this point.
6427   if (!full && (current_level + 1) == level()) {
6428     // Gather statistics on the young generation collection.
6429     collector()->stats().record_gc0_end(used());
6430   }
6431 }
6432 
6433 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6434   GenCollectedHeap* gch = GenCollectedHeap::heap();
6435   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6436     "Wrong type of heap");
6437   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6438     gch->gen_policy()->size_policy();
6439   assert(sp->is_gc_cms_adaptive_size_policy(),
6440     "Wrong type of size policy");
6441   return sp;
6442 }
6443 
6444 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6445   if (PrintGCDetails && Verbose) {
6446     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6447   }
6448   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6449   _debug_collection_type =
6450     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6451   if (PrintGCDetails && Verbose) {
6452     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6453   }
6454 }
6455 
6456 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6457   bool asynch) {
6458   // We iterate over the space(s) underlying this generation,
6459   // checking the mark bit map to see if the bits corresponding
6460   // to specific blocks are marked or not. Blocks that are
6461   // marked are live and are not swept up. All remaining blocks
6462   // are swept up, with coalescing on-the-fly as we sweep up
6463   // contiguous free and/or garbage blocks:
6464   // We need to ensure that the sweeper synchronizes with allocators
6465   // and stop-the-world collectors. In particular, the following
6466   // locks are used:
6467   // . CMS token: if this is held, a stop the world collection cannot occur
6468   // . freelistLock: if this is held no allocation can occur from this
6469   //                 generation by another thread
6470   // . bitMapLock: if this is held, no other thread can access or update
6471   //
6472 
6473   // Note that we need to hold the freelistLock if we use
6474   // block iterate below; else the iterator might go awry if
6475   // a mutator (or promotion) causes block contents to change
6476   // (for instance if the allocator divvies up a block).
6477   // If we hold the free list lock, for all practical purposes
6478   // young generation GC's can't occur (they'll usually need to
6479   // promote), so we might as well prevent all young generation
6480   // GC's while we do a sweeping step. For the same reason, we might
6481   // as well take the bit map lock for the entire duration
6482 
6483   // check that we hold the requisite locks
6484   assert(have_cms_token(), "Should hold cms token");
6485   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6486          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6487         "Should possess CMS token to sweep");
6488   assert_lock_strong(gen->freelistLock());
6489   assert_lock_strong(bitMapLock());
6490 
6491   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6492   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6493   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6494                                       _inter_sweep_estimate.padded_average(),
6495                                       _intra_sweep_estimate.padded_average());
6496   gen->setNearLargestChunk();
6497 
6498   {
6499     SweepClosure sweepClosure(this, gen, &_markBitMap,
6500                             CMSYield && asynch);
6501     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6502     // We need to free-up/coalesce garbage/blocks from a
6503     // co-terminal free run. This is done in the SweepClosure
6504     // destructor; so, do not remove this scope, else the
6505     // end-of-sweep-census below will be off by a little bit.
6506   }
6507   gen->cmsSpace()->sweep_completed();
6508   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6509   if (should_unload_classes()) {                // unloaded classes this cycle,
6510     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6511   } else {                                      // did not unload classes,
6512     _concurrent_cycles_since_last_unload++;     // ... increment count
6513   }
6514 }
6515 
6516 // Reset CMS data structures (for now just the marking bit map)
6517 // preparatory for the next cycle.
6518 void CMSCollector::reset(bool asynch) {
6519   GenCollectedHeap* gch = GenCollectedHeap::heap();
6520   CMSAdaptiveSizePolicy* sp = size_policy();
6521   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6522   if (asynch) {
6523     CMSTokenSyncWithLocks ts(true, bitMapLock());
6524 
6525     // If the state is not "Resetting", the foreground  thread
6526     // has done a collection and the resetting.
6527     if (_collectorState != Resetting) {
6528       assert(_collectorState == Idling, "The state should only change"
6529         " because the foreground collector has finished the collection");
6530       return;
6531     }
6532 
6533     // Clear the mark bitmap (no grey objects to start with)
6534     // for the next cycle.
6535     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6536     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6537 
6538     HeapWord* curAddr = _markBitMap.startWord();
6539     while (curAddr < _markBitMap.endWord()) {
6540       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6541       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6542       _markBitMap.clear_large_range(chunk);
6543       if (ConcurrentMarkSweepThread::should_yield() &&
6544           !foregroundGCIsActive() &&
6545           CMSYield) {
6546         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6547                "CMS thread should hold CMS token");
6548         assert_lock_strong(bitMapLock());
6549         bitMapLock()->unlock();
6550         ConcurrentMarkSweepThread::desynchronize(true);
6551         ConcurrentMarkSweepThread::acknowledge_yield_request();
6552         stopTimer();
6553         if (PrintCMSStatistics != 0) {
6554           incrementYields();
6555         }
6556         icms_wait();
6557 
6558         // See the comment in coordinator_yield()
6559         for (unsigned i = 0; i < CMSYieldSleepCount &&
6560                          ConcurrentMarkSweepThread::should_yield() &&
6561                          !CMSCollector::foregroundGCIsActive(); ++i) {
6562           os::sleep(Thread::current(), 1, false);
6563           ConcurrentMarkSweepThread::acknowledge_yield_request();
6564         }
6565 
6566         ConcurrentMarkSweepThread::synchronize(true);
6567         bitMapLock()->lock_without_safepoint_check();
6568         startTimer();
6569       }
6570       curAddr = chunk.end();
6571     }
6572     // A successful mostly concurrent collection has been done.
6573     // Because only the full (i.e., concurrent mode failure) collections
6574     // are being measured for gc overhead limits, clean the "near" flag
6575     // and count.
6576     sp->reset_gc_overhead_limit_count();
6577     _collectorState = Idling;
6578   } else {
6579     // already have the lock
6580     assert(_collectorState == Resetting, "just checking");
6581     assert_lock_strong(bitMapLock());
6582     _markBitMap.clear_all();
6583     _collectorState = Idling;
6584   }
6585 
6586   // Stop incremental mode after a cycle completes, so that any future cycles
6587   // are triggered by allocation.
6588   stop_icms();
6589 
6590   NOT_PRODUCT(
6591     if (RotateCMSCollectionTypes) {
6592       _cmsGen->rotate_debug_collection_type();
6593     }
6594   )
6595 
6596   register_gc_end();
6597 }
6598 
6599 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6600   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6601   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6602   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6603   TraceCollectorStats tcs(counters());
6604 
6605   switch (op) {
6606     case CMS_op_checkpointRootsInitial: {
6607       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6608       checkpointRootsInitial(true);       // asynch
6609       if (PrintGC) {
6610         _cmsGen->printOccupancy("initial-mark");
6611       }
6612       break;
6613     }
6614     case CMS_op_checkpointRootsFinal: {
6615       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6616       checkpointRootsFinal(true,    // asynch
6617                            false,   // !clear_all_soft_refs
6618                            false);  // !init_mark_was_synchronous
6619       if (PrintGC) {
6620         _cmsGen->printOccupancy("remark");
6621       }
6622       break;
6623     }
6624     default:
6625       fatal("No such CMS_op");
6626   }
6627 }
6628 
6629 #ifndef PRODUCT
6630 size_t const CMSCollector::skip_header_HeapWords() {
6631   return FreeChunk::header_size();
6632 }
6633 
6634 // Try and collect here conditions that should hold when
6635 // CMS thread is exiting. The idea is that the foreground GC
6636 // thread should not be blocked if it wants to terminate
6637 // the CMS thread and yet continue to run the VM for a while
6638 // after that.
6639 void CMSCollector::verify_ok_to_terminate() const {
6640   assert(Thread::current()->is_ConcurrentGC_thread(),
6641          "should be called by CMS thread");
6642   assert(!_foregroundGCShouldWait, "should be false");
6643   // We could check here that all the various low-level locks
6644   // are not held by the CMS thread, but that is overkill; see
6645   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6646   // is checked.
6647 }
6648 #endif
6649 
6650 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6651    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6652           "missing Printezis mark?");
6653   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6654   size_t size = pointer_delta(nextOneAddr + 1, addr);
6655   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6656          "alignment problem");
6657   assert(size >= 3, "Necessary for Printezis marks to work");
6658   return size;
6659 }
6660 
6661 // A variant of the above (block_size_using_printezis_bits()) except
6662 // that we return 0 if the P-bits are not yet set.
6663 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6664   if (_markBitMap.isMarked(addr + 1)) {
6665     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6666     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6667     size_t size = pointer_delta(nextOneAddr + 1, addr);
6668     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6669            "alignment problem");
6670     assert(size >= 3, "Necessary for Printezis marks to work");
6671     return size;
6672   }
6673   return 0;
6674 }
6675 
6676 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6677   size_t sz = 0;
6678   oop p = (oop)addr;
6679   if (p->klass_or_null() != NULL) {
6680     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6681   } else {
6682     sz = block_size_using_printezis_bits(addr);
6683   }
6684   assert(sz > 0, "size must be nonzero");
6685   HeapWord* next_block = addr + sz;
6686   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6687                                              CardTableModRefBS::card_size);
6688   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6689          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6690          "must be different cards");
6691   return next_card;
6692 }
6693 
6694 
6695 // CMS Bit Map Wrapper /////////////////////////////////////////
6696 
6697 // Construct a CMS bit map infrastructure, but don't create the
6698 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6699 // further below.
6700 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6701   _bm(),
6702   _shifter(shifter),
6703   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6704 {
6705   _bmStartWord = 0;
6706   _bmWordSize  = 0;
6707 }
6708 
6709 bool CMSBitMap::allocate(MemRegion mr) {
6710   _bmStartWord = mr.start();
6711   _bmWordSize  = mr.word_size();
6712   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6713                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6714   if (!brs.is_reserved()) {
6715     warning("CMS bit map allocation failure");
6716     return false;
6717   }
6718   // For now we'll just commit all of the bit map up front.
6719   // Later on we'll try to be more parsimonious with swap.
6720   if (!_virtual_space.initialize(brs, brs.size())) {
6721     warning("CMS bit map backing store failure");
6722     return false;
6723   }
6724   assert(_virtual_space.committed_size() == brs.size(),
6725          "didn't reserve backing store for all of CMS bit map?");
6726   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6727   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6728          _bmWordSize, "inconsistency in bit map sizing");
6729   _bm.set_size(_bmWordSize >> _shifter);
6730 
6731   // bm.clear(); // can we rely on getting zero'd memory? verify below
6732   assert(isAllClear(),
6733          "Expected zero'd memory from ReservedSpace constructor");
6734   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6735          "consistency check");
6736   return true;
6737 }
6738 
6739 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6740   HeapWord *next_addr, *end_addr, *last_addr;
6741   assert_locked();
6742   assert(covers(mr), "out-of-range error");
6743   // XXX assert that start and end are appropriately aligned
6744   for (next_addr = mr.start(), end_addr = mr.end();
6745        next_addr < end_addr; next_addr = last_addr) {
6746     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6747     last_addr = dirty_region.end();
6748     if (!dirty_region.is_empty()) {
6749       cl->do_MemRegion(dirty_region);
6750     } else {
6751       assert(last_addr == end_addr, "program logic");
6752       return;
6753     }
6754   }
6755 }
6756 
6757 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6758   _bm.print_on_error(st, prefix);
6759 }
6760 
6761 #ifndef PRODUCT
6762 void CMSBitMap::assert_locked() const {
6763   CMSLockVerifier::assert_locked(lock());
6764 }
6765 
6766 bool CMSBitMap::covers(MemRegion mr) const {
6767   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6768   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6769          "size inconsistency");
6770   return (mr.start() >= _bmStartWord) &&
6771          (mr.end()   <= endWord());
6772 }
6773 
6774 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6775     return (start >= _bmStartWord && (start + size) <= endWord());
6776 }
6777 
6778 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6779   // verify that there are no 1 bits in the interval [left, right)
6780   FalseBitMapClosure falseBitMapClosure;
6781   iterate(&falseBitMapClosure, left, right);
6782 }
6783 
6784 void CMSBitMap::region_invariant(MemRegion mr)
6785 {
6786   assert_locked();
6787   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6788   assert(!mr.is_empty(), "unexpected empty region");
6789   assert(covers(mr), "mr should be covered by bit map");
6790   // convert address range into offset range
6791   size_t start_ofs = heapWordToOffset(mr.start());
6792   // Make sure that end() is appropriately aligned
6793   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6794                         (1 << (_shifter+LogHeapWordSize))),
6795          "Misaligned mr.end()");
6796   size_t end_ofs   = heapWordToOffset(mr.end());
6797   assert(end_ofs > start_ofs, "Should mark at least one bit");
6798 }
6799 
6800 #endif
6801 
6802 bool CMSMarkStack::allocate(size_t size) {
6803   // allocate a stack of the requisite depth
6804   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6805                    size * sizeof(oop)));
6806   if (!rs.is_reserved()) {
6807     warning("CMSMarkStack allocation failure");
6808     return false;
6809   }
6810   if (!_virtual_space.initialize(rs, rs.size())) {
6811     warning("CMSMarkStack backing store failure");
6812     return false;
6813   }
6814   assert(_virtual_space.committed_size() == rs.size(),
6815          "didn't reserve backing store for all of CMS stack?");
6816   _base = (oop*)(_virtual_space.low());
6817   _index = 0;
6818   _capacity = size;
6819   NOT_PRODUCT(_max_depth = 0);
6820   return true;
6821 }
6822 
6823 // XXX FIX ME !!! In the MT case we come in here holding a
6824 // leaf lock. For printing we need to take a further lock
6825 // which has lower rank. We need to recalibrate the two
6826 // lock-ranks involved in order to be able to print the
6827 // messages below. (Or defer the printing to the caller.
6828 // For now we take the expedient path of just disabling the
6829 // messages for the problematic case.)
6830 void CMSMarkStack::expand() {
6831   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6832   if (_capacity == MarkStackSizeMax) {
6833     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6834       // We print a warning message only once per CMS cycle.
6835       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6836     }
6837     return;
6838   }
6839   // Double capacity if possible
6840   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6841   // Do not give up existing stack until we have managed to
6842   // get the double capacity that we desired.
6843   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6844                    new_capacity * sizeof(oop)));
6845   if (rs.is_reserved()) {
6846     // Release the backing store associated with old stack
6847     _virtual_space.release();
6848     // Reinitialize virtual space for new stack
6849     if (!_virtual_space.initialize(rs, rs.size())) {
6850       fatal("Not enough swap for expanded marking stack");
6851     }
6852     _base = (oop*)(_virtual_space.low());
6853     _index = 0;
6854     _capacity = new_capacity;
6855   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6856     // Failed to double capacity, continue;
6857     // we print a detail message only once per CMS cycle.
6858     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6859             SIZE_FORMAT"K",
6860             _capacity / K, new_capacity / K);
6861   }
6862 }
6863 
6864 
6865 // Closures
6866 // XXX: there seems to be a lot of code  duplication here;
6867 // should refactor and consolidate common code.
6868 
6869 // This closure is used to mark refs into the CMS generation in
6870 // the CMS bit map. Called at the first checkpoint. This closure
6871 // assumes that we do not need to re-mark dirty cards; if the CMS
6872 // generation on which this is used is not an oldest
6873 // generation then this will lose younger_gen cards!
6874 
6875 MarkRefsIntoClosure::MarkRefsIntoClosure(
6876   MemRegion span, CMSBitMap* bitMap):
6877     _span(span),
6878     _bitMap(bitMap)
6879 {
6880     assert(_ref_processor == NULL, "deliberately left NULL");
6881     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6882 }
6883 
6884 void MarkRefsIntoClosure::do_oop(oop obj) {
6885   // if p points into _span, then mark corresponding bit in _markBitMap
6886   assert(obj->is_oop(), "expected an oop");
6887   HeapWord* addr = (HeapWord*)obj;
6888   if (_span.contains(addr)) {
6889     // this should be made more efficient
6890     _bitMap->mark(addr);
6891   }
6892 }
6893 
6894 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6895 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6896 
6897 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6898   MemRegion span, CMSBitMap* bitMap):
6899     _span(span),
6900     _bitMap(bitMap)
6901 {
6902     assert(_ref_processor == NULL, "deliberately left NULL");
6903     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6904 }
6905 
6906 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6907   // if p points into _span, then mark corresponding bit in _markBitMap
6908   assert(obj->is_oop(), "expected an oop");
6909   HeapWord* addr = (HeapWord*)obj;
6910   if (_span.contains(addr)) {
6911     // this should be made more efficient
6912     _bitMap->par_mark(addr);
6913   }
6914 }
6915 
6916 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6917 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6918 
6919 // A variant of the above, used for CMS marking verification.
6920 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6921   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6922     _span(span),
6923     _verification_bm(verification_bm),
6924     _cms_bm(cms_bm)
6925 {
6926     assert(_ref_processor == NULL, "deliberately left NULL");
6927     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6928 }
6929 
6930 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6931   // if p points into _span, then mark corresponding bit in _markBitMap
6932   assert(obj->is_oop(), "expected an oop");
6933   HeapWord* addr = (HeapWord*)obj;
6934   if (_span.contains(addr)) {
6935     _verification_bm->mark(addr);
6936     if (!_cms_bm->isMarked(addr)) {
6937       oop(addr)->print();
6938       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6939       fatal("... aborting");
6940     }
6941   }
6942 }
6943 
6944 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6945 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6946 
6947 //////////////////////////////////////////////////
6948 // MarkRefsIntoAndScanClosure
6949 //////////////////////////////////////////////////
6950 
6951 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6952                                                        ReferenceProcessor* rp,
6953                                                        CMSBitMap* bit_map,
6954                                                        CMSBitMap* mod_union_table,
6955                                                        CMSMarkStack*  mark_stack,
6956                                                        CMSCollector* collector,
6957                                                        bool should_yield,
6958                                                        bool concurrent_precleaning):
6959   _collector(collector),
6960   _span(span),
6961   _bit_map(bit_map),
6962   _mark_stack(mark_stack),
6963   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6964                       mark_stack, concurrent_precleaning),
6965   _yield(should_yield),
6966   _concurrent_precleaning(concurrent_precleaning),
6967   _freelistLock(NULL)
6968 {
6969   _ref_processor = rp;
6970   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6971 }
6972 
6973 // This closure is used to mark refs into the CMS generation at the
6974 // second (final) checkpoint, and to scan and transitively follow
6975 // the unmarked oops. It is also used during the concurrent precleaning
6976 // phase while scanning objects on dirty cards in the CMS generation.
6977 // The marks are made in the marking bit map and the marking stack is
6978 // used for keeping the (newly) grey objects during the scan.
6979 // The parallel version (Par_...) appears further below.
6980 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6981   if (obj != NULL) {
6982     assert(obj->is_oop(), "expected an oop");
6983     HeapWord* addr = (HeapWord*)obj;
6984     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6985     assert(_collector->overflow_list_is_empty(),
6986            "overflow list should be empty");
6987     if (_span.contains(addr) &&
6988         !_bit_map->isMarked(addr)) {
6989       // mark bit map (object is now grey)
6990       _bit_map->mark(addr);
6991       // push on marking stack (stack should be empty), and drain the
6992       // stack by applying this closure to the oops in the oops popped
6993       // from the stack (i.e. blacken the grey objects)
6994       bool res = _mark_stack->push(obj);
6995       assert(res, "Should have space to push on empty stack");
6996       do {
6997         oop new_oop = _mark_stack->pop();
6998         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6999         assert(_bit_map->isMarked((HeapWord*)new_oop),
7000                "only grey objects on this stack");
7001         // iterate over the oops in this oop, marking and pushing
7002         // the ones in CMS heap (i.e. in _span).
7003         new_oop->oop_iterate(&_pushAndMarkClosure);
7004         // check if it's time to yield
7005         do_yield_check();
7006       } while (!_mark_stack->isEmpty() ||
7007                (!_concurrent_precleaning && take_from_overflow_list()));
7008         // if marking stack is empty, and we are not doing this
7009         // during precleaning, then check the overflow list
7010     }
7011     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7012     assert(_collector->overflow_list_is_empty(),
7013            "overflow list was drained above");
7014     // We could restore evacuated mark words, if any, used for
7015     // overflow list links here because the overflow list is
7016     // provably empty here. That would reduce the maximum
7017     // size requirements for preserved_{oop,mark}_stack.
7018     // But we'll just postpone it until we are all done
7019     // so we can just stream through.
7020     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
7021       _collector->restore_preserved_marks_if_any();
7022       assert(_collector->no_preserved_marks(), "No preserved marks");
7023     }
7024     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
7025            "All preserved marks should have been restored above");
7026   }
7027 }
7028 
7029 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7030 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7031 
7032 void MarkRefsIntoAndScanClosure::do_yield_work() {
7033   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7034          "CMS thread should hold CMS token");
7035   assert_lock_strong(_freelistLock);
7036   assert_lock_strong(_bit_map->lock());
7037   // relinquish the free_list_lock and bitMaplock()
7038   _bit_map->lock()->unlock();
7039   _freelistLock->unlock();
7040   ConcurrentMarkSweepThread::desynchronize(true);
7041   ConcurrentMarkSweepThread::acknowledge_yield_request();
7042   _collector->stopTimer();
7043   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7044   if (PrintCMSStatistics != 0) {
7045     _collector->incrementYields();
7046   }
7047   _collector->icms_wait();
7048 
7049   // See the comment in coordinator_yield()
7050   for (unsigned i = 0;
7051        i < CMSYieldSleepCount &&
7052        ConcurrentMarkSweepThread::should_yield() &&
7053        !CMSCollector::foregroundGCIsActive();
7054        ++i) {
7055     os::sleep(Thread::current(), 1, false);
7056     ConcurrentMarkSweepThread::acknowledge_yield_request();
7057   }
7058 
7059   ConcurrentMarkSweepThread::synchronize(true);
7060   _freelistLock->lock_without_safepoint_check();
7061   _bit_map->lock()->lock_without_safepoint_check();
7062   _collector->startTimer();
7063 }
7064 
7065 ///////////////////////////////////////////////////////////
7066 // Par_MarkRefsIntoAndScanClosure: a parallel version of
7067 //                                 MarkRefsIntoAndScanClosure
7068 ///////////////////////////////////////////////////////////
7069 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
7070   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
7071   CMSBitMap* bit_map, OopTaskQueue* work_queue):
7072   _span(span),
7073   _bit_map(bit_map),
7074   _work_queue(work_queue),
7075   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7076                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7077   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7078 {
7079   _ref_processor = rp;
7080   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7081 }
7082 
7083 // This closure is used to mark refs into the CMS generation at the
7084 // second (final) checkpoint, and to scan and transitively follow
7085 // the unmarked oops. The marks are made in the marking bit map and
7086 // the work_queue is used for keeping the (newly) grey objects during
7087 // the scan phase whence they are also available for stealing by parallel
7088 // threads. Since the marking bit map is shared, updates are
7089 // synchronized (via CAS).
7090 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7091   if (obj != NULL) {
7092     // Ignore mark word because this could be an already marked oop
7093     // that may be chained at the end of the overflow list.
7094     assert(obj->is_oop(true), "expected an oop");
7095     HeapWord* addr = (HeapWord*)obj;
7096     if (_span.contains(addr) &&
7097         !_bit_map->isMarked(addr)) {
7098       // mark bit map (object will become grey):
7099       // It is possible for several threads to be
7100       // trying to "claim" this object concurrently;
7101       // the unique thread that succeeds in marking the
7102       // object first will do the subsequent push on
7103       // to the work queue (or overflow list).
7104       if (_bit_map->par_mark(addr)) {
7105         // push on work_queue (which may not be empty), and trim the
7106         // queue to an appropriate length by applying this closure to
7107         // the oops in the oops popped from the stack (i.e. blacken the
7108         // grey objects)
7109         bool res = _work_queue->push(obj);
7110         assert(res, "Low water mark should be less than capacity?");
7111         trim_queue(_low_water_mark);
7112       } // Else, another thread claimed the object
7113     }
7114   }
7115 }
7116 
7117 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7118 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7119 
7120 // This closure is used to rescan the marked objects on the dirty cards
7121 // in the mod union table and the card table proper.
7122 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7123   oop p, MemRegion mr) {
7124 
7125   size_t size = 0;
7126   HeapWord* addr = (HeapWord*)p;
7127   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7128   assert(_span.contains(addr), "we are scanning the CMS generation");
7129   // check if it's time to yield
7130   if (do_yield_check()) {
7131     // We yielded for some foreground stop-world work,
7132     // and we have been asked to abort this ongoing preclean cycle.
7133     return 0;
7134   }
7135   if (_bitMap->isMarked(addr)) {
7136     // it's marked; is it potentially uninitialized?
7137     if (p->klass_or_null() != NULL) {
7138         // an initialized object; ignore mark word in verification below
7139         // since we are running concurrent with mutators
7140         assert(p->is_oop(true), "should be an oop");
7141         if (p->is_objArray()) {
7142           // objArrays are precisely marked; restrict scanning
7143           // to dirty cards only.
7144           size = CompactibleFreeListSpace::adjustObjectSize(
7145                    p->oop_iterate(_scanningClosure, mr));
7146         } else {
7147           // A non-array may have been imprecisely marked; we need
7148           // to scan object in its entirety.
7149           size = CompactibleFreeListSpace::adjustObjectSize(
7150                    p->oop_iterate(_scanningClosure));
7151         }
7152         #ifdef ASSERT
7153           size_t direct_size =
7154             CompactibleFreeListSpace::adjustObjectSize(p->size());
7155           assert(size == direct_size, "Inconsistency in size");
7156           assert(size >= 3, "Necessary for Printezis marks to work");
7157           if (!_bitMap->isMarked(addr+1)) {
7158             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7159           } else {
7160             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7161             assert(_bitMap->isMarked(addr+size-1),
7162                    "inconsistent Printezis mark");
7163           }
7164         #endif // ASSERT
7165     } else {
7166       // An uninitialized object.
7167       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7168       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7169       size = pointer_delta(nextOneAddr + 1, addr);
7170       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7171              "alignment problem");
7172       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7173       // will dirty the card when the klass pointer is installed in the
7174       // object (signaling the completion of initialization).
7175     }
7176   } else {
7177     // Either a not yet marked object or an uninitialized object
7178     if (p->klass_or_null() == NULL) {
7179       // An uninitialized object, skip to the next card, since
7180       // we may not be able to read its P-bits yet.
7181       assert(size == 0, "Initial value");
7182     } else {
7183       // An object not (yet) reached by marking: we merely need to
7184       // compute its size so as to go look at the next block.
7185       assert(p->is_oop(true), "should be an oop");
7186       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7187     }
7188   }
7189   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7190   return size;
7191 }
7192 
7193 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7194   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7195          "CMS thread should hold CMS token");
7196   assert_lock_strong(_freelistLock);
7197   assert_lock_strong(_bitMap->lock());
7198   // relinquish the free_list_lock and bitMaplock()
7199   _bitMap->lock()->unlock();
7200   _freelistLock->unlock();
7201   ConcurrentMarkSweepThread::desynchronize(true);
7202   ConcurrentMarkSweepThread::acknowledge_yield_request();
7203   _collector->stopTimer();
7204   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7205   if (PrintCMSStatistics != 0) {
7206     _collector->incrementYields();
7207   }
7208   _collector->icms_wait();
7209 
7210   // See the comment in coordinator_yield()
7211   for (unsigned i = 0; i < CMSYieldSleepCount &&
7212                    ConcurrentMarkSweepThread::should_yield() &&
7213                    !CMSCollector::foregroundGCIsActive(); ++i) {
7214     os::sleep(Thread::current(), 1, false);
7215     ConcurrentMarkSweepThread::acknowledge_yield_request();
7216   }
7217 
7218   ConcurrentMarkSweepThread::synchronize(true);
7219   _freelistLock->lock_without_safepoint_check();
7220   _bitMap->lock()->lock_without_safepoint_check();
7221   _collector->startTimer();
7222 }
7223 
7224 
7225 //////////////////////////////////////////////////////////////////
7226 // SurvivorSpacePrecleanClosure
7227 //////////////////////////////////////////////////////////////////
7228 // This (single-threaded) closure is used to preclean the oops in
7229 // the survivor spaces.
7230 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7231 
7232   HeapWord* addr = (HeapWord*)p;
7233   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7234   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7235   assert(p->klass_or_null() != NULL, "object should be initialized");
7236   // an initialized object; ignore mark word in verification below
7237   // since we are running concurrent with mutators
7238   assert(p->is_oop(true), "should be an oop");
7239   // Note that we do not yield while we iterate over
7240   // the interior oops of p, pushing the relevant ones
7241   // on our marking stack.
7242   size_t size = p->oop_iterate(_scanning_closure);
7243   do_yield_check();
7244   // Observe that below, we do not abandon the preclean
7245   // phase as soon as we should; rather we empty the
7246   // marking stack before returning. This is to satisfy
7247   // some existing assertions. In general, it may be a
7248   // good idea to abort immediately and complete the marking
7249   // from the grey objects at a later time.
7250   while (!_mark_stack->isEmpty()) {
7251     oop new_oop = _mark_stack->pop();
7252     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7253     assert(_bit_map->isMarked((HeapWord*)new_oop),
7254            "only grey objects on this stack");
7255     // iterate over the oops in this oop, marking and pushing
7256     // the ones in CMS heap (i.e. in _span).
7257     new_oop->oop_iterate(_scanning_closure);
7258     // check if it's time to yield
7259     do_yield_check();
7260   }
7261   unsigned int after_count =
7262     GenCollectedHeap::heap()->total_collections();
7263   bool abort = (_before_count != after_count) ||
7264                _collector->should_abort_preclean();
7265   return abort ? 0 : size;
7266 }
7267 
7268 void SurvivorSpacePrecleanClosure::do_yield_work() {
7269   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7270          "CMS thread should hold CMS token");
7271   assert_lock_strong(_bit_map->lock());
7272   // Relinquish the bit map lock
7273   _bit_map->lock()->unlock();
7274   ConcurrentMarkSweepThread::desynchronize(true);
7275   ConcurrentMarkSweepThread::acknowledge_yield_request();
7276   _collector->stopTimer();
7277   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7278   if (PrintCMSStatistics != 0) {
7279     _collector->incrementYields();
7280   }
7281   _collector->icms_wait();
7282 
7283   // See the comment in coordinator_yield()
7284   for (unsigned i = 0; i < CMSYieldSleepCount &&
7285                        ConcurrentMarkSweepThread::should_yield() &&
7286                        !CMSCollector::foregroundGCIsActive(); ++i) {
7287     os::sleep(Thread::current(), 1, false);
7288     ConcurrentMarkSweepThread::acknowledge_yield_request();
7289   }
7290 
7291   ConcurrentMarkSweepThread::synchronize(true);
7292   _bit_map->lock()->lock_without_safepoint_check();
7293   _collector->startTimer();
7294 }
7295 
7296 // This closure is used to rescan the marked objects on the dirty cards
7297 // in the mod union table and the card table proper. In the parallel
7298 // case, although the bitMap is shared, we do a single read so the
7299 // isMarked() query is "safe".
7300 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7301   // Ignore mark word because we are running concurrent with mutators
7302   assert(p->is_oop_or_null(true), "expected an oop or null");
7303   HeapWord* addr = (HeapWord*)p;
7304   assert(_span.contains(addr), "we are scanning the CMS generation");
7305   bool is_obj_array = false;
7306   #ifdef ASSERT
7307     if (!_parallel) {
7308       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7309       assert(_collector->overflow_list_is_empty(),
7310              "overflow list should be empty");
7311 
7312     }
7313   #endif // ASSERT
7314   if (_bit_map->isMarked(addr)) {
7315     // Obj arrays are precisely marked, non-arrays are not;
7316     // so we scan objArrays precisely and non-arrays in their
7317     // entirety.
7318     if (p->is_objArray()) {
7319       is_obj_array = true;
7320       if (_parallel) {
7321         p->oop_iterate(_par_scan_closure, mr);
7322       } else {
7323         p->oop_iterate(_scan_closure, mr);
7324       }
7325     } else {
7326       if (_parallel) {
7327         p->oop_iterate(_par_scan_closure);
7328       } else {
7329         p->oop_iterate(_scan_closure);
7330       }
7331     }
7332   }
7333   #ifdef ASSERT
7334     if (!_parallel) {
7335       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7336       assert(_collector->overflow_list_is_empty(),
7337              "overflow list should be empty");
7338 
7339     }
7340   #endif // ASSERT
7341   return is_obj_array;
7342 }
7343 
7344 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7345                         MemRegion span,
7346                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7347                         bool should_yield, bool verifying):
7348   _collector(collector),
7349   _span(span),
7350   _bitMap(bitMap),
7351   _mut(&collector->_modUnionTable),
7352   _markStack(markStack),
7353   _yield(should_yield),
7354   _skipBits(0)
7355 {
7356   assert(_markStack->isEmpty(), "stack should be empty");
7357   _finger = _bitMap->startWord();
7358   _threshold = _finger;
7359   assert(_collector->_restart_addr == NULL, "Sanity check");
7360   assert(_span.contains(_finger), "Out of bounds _finger?");
7361   DEBUG_ONLY(_verifying = verifying;)
7362 }
7363 
7364 void MarkFromRootsClosure::reset(HeapWord* addr) {
7365   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7366   assert(_span.contains(addr), "Out of bounds _finger?");
7367   _finger = addr;
7368   _threshold = (HeapWord*)round_to(
7369                  (intptr_t)_finger, CardTableModRefBS::card_size);
7370 }
7371 
7372 // Should revisit to see if this should be restructured for
7373 // greater efficiency.
7374 bool MarkFromRootsClosure::do_bit(size_t offset) {
7375   if (_skipBits > 0) {
7376     _skipBits--;
7377     return true;
7378   }
7379   // convert offset into a HeapWord*
7380   HeapWord* addr = _bitMap->startWord() + offset;
7381   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7382          "address out of range");
7383   assert(_bitMap->isMarked(addr), "tautology");
7384   if (_bitMap->isMarked(addr+1)) {
7385     // this is an allocated but not yet initialized object
7386     assert(_skipBits == 0, "tautology");
7387     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7388     oop p = oop(addr);
7389     if (p->klass_or_null() == NULL) {
7390       DEBUG_ONLY(if (!_verifying) {)
7391         // We re-dirty the cards on which this object lies and increase
7392         // the _threshold so that we'll come back to scan this object
7393         // during the preclean or remark phase. (CMSCleanOnEnter)
7394         if (CMSCleanOnEnter) {
7395           size_t sz = _collector->block_size_using_printezis_bits(addr);
7396           HeapWord* end_card_addr   = (HeapWord*)round_to(
7397                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7398           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7399           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7400           // Bump _threshold to end_card_addr; note that
7401           // _threshold cannot possibly exceed end_card_addr, anyhow.
7402           // This prevents future clearing of the card as the scan proceeds
7403           // to the right.
7404           assert(_threshold <= end_card_addr,
7405                  "Because we are just scanning into this object");
7406           if (_threshold < end_card_addr) {
7407             _threshold = end_card_addr;
7408           }
7409           if (p->klass_or_null() != NULL) {
7410             // Redirty the range of cards...
7411             _mut->mark_range(redirty_range);
7412           } // ...else the setting of klass will dirty the card anyway.
7413         }
7414       DEBUG_ONLY(})
7415       return true;
7416     }
7417   }
7418   scanOopsInOop(addr);
7419   return true;
7420 }
7421 
7422 // We take a break if we've been at this for a while,
7423 // so as to avoid monopolizing the locks involved.
7424 void MarkFromRootsClosure::do_yield_work() {
7425   // First give up the locks, then yield, then re-lock
7426   // We should probably use a constructor/destructor idiom to
7427   // do this unlock/lock or modify the MutexUnlocker class to
7428   // serve our purpose. XXX
7429   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7430          "CMS thread should hold CMS token");
7431   assert_lock_strong(_bitMap->lock());
7432   _bitMap->lock()->unlock();
7433   ConcurrentMarkSweepThread::desynchronize(true);
7434   ConcurrentMarkSweepThread::acknowledge_yield_request();
7435   _collector->stopTimer();
7436   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7437   if (PrintCMSStatistics != 0) {
7438     _collector->incrementYields();
7439   }
7440   _collector->icms_wait();
7441 
7442   // See the comment in coordinator_yield()
7443   for (unsigned i = 0; i < CMSYieldSleepCount &&
7444                        ConcurrentMarkSweepThread::should_yield() &&
7445                        !CMSCollector::foregroundGCIsActive(); ++i) {
7446     os::sleep(Thread::current(), 1, false);
7447     ConcurrentMarkSweepThread::acknowledge_yield_request();
7448   }
7449 
7450   ConcurrentMarkSweepThread::synchronize(true);
7451   _bitMap->lock()->lock_without_safepoint_check();
7452   _collector->startTimer();
7453 }
7454 
7455 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7456   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7457   assert(_markStack->isEmpty(),
7458          "should drain stack to limit stack usage");
7459   // convert ptr to an oop preparatory to scanning
7460   oop obj = oop(ptr);
7461   // Ignore mark word in verification below, since we
7462   // may be running concurrent with mutators.
7463   assert(obj->is_oop(true), "should be an oop");
7464   assert(_finger <= ptr, "_finger runneth ahead");
7465   // advance the finger to right end of this object
7466   _finger = ptr + obj->size();
7467   assert(_finger > ptr, "we just incremented it above");
7468   // On large heaps, it may take us some time to get through
7469   // the marking phase (especially if running iCMS). During
7470   // this time it's possible that a lot of mutations have
7471   // accumulated in the card table and the mod union table --
7472   // these mutation records are redundant until we have
7473   // actually traced into the corresponding card.
7474   // Here, we check whether advancing the finger would make
7475   // us cross into a new card, and if so clear corresponding
7476   // cards in the MUT (preclean them in the card-table in the
7477   // future).
7478 
7479   DEBUG_ONLY(if (!_verifying) {)
7480     // The clean-on-enter optimization is disabled by default,
7481     // until we fix 6178663.
7482     if (CMSCleanOnEnter && (_finger > _threshold)) {
7483       // [_threshold, _finger) represents the interval
7484       // of cards to be cleared  in MUT (or precleaned in card table).
7485       // The set of cards to be cleared is all those that overlap
7486       // with the interval [_threshold, _finger); note that
7487       // _threshold is always kept card-aligned but _finger isn't
7488       // always card-aligned.
7489       HeapWord* old_threshold = _threshold;
7490       assert(old_threshold == (HeapWord*)round_to(
7491               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7492              "_threshold should always be card-aligned");
7493       _threshold = (HeapWord*)round_to(
7494                      (intptr_t)_finger, CardTableModRefBS::card_size);
7495       MemRegion mr(old_threshold, _threshold);
7496       assert(!mr.is_empty(), "Control point invariant");
7497       assert(_span.contains(mr), "Should clear within span");
7498       _mut->clear_range(mr);
7499     }
7500   DEBUG_ONLY(})
7501   // Note: the finger doesn't advance while we drain
7502   // the stack below.
7503   PushOrMarkClosure pushOrMarkClosure(_collector,
7504                                       _span, _bitMap, _markStack,
7505                                       _finger, this);
7506   bool res = _markStack->push(obj);
7507   assert(res, "Empty non-zero size stack should have space for single push");
7508   while (!_markStack->isEmpty()) {
7509     oop new_oop = _markStack->pop();
7510     // Skip verifying header mark word below because we are
7511     // running concurrent with mutators.
7512     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7513     // now scan this oop's oops
7514     new_oop->oop_iterate(&pushOrMarkClosure);
7515     do_yield_check();
7516   }
7517   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7518 }
7519 
7520 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7521                        CMSCollector* collector, MemRegion span,
7522                        CMSBitMap* bit_map,
7523                        OopTaskQueue* work_queue,
7524                        CMSMarkStack*  overflow_stack,
7525                        bool should_yield):
7526   _collector(collector),
7527   _whole_span(collector->_span),
7528   _span(span),
7529   _bit_map(bit_map),
7530   _mut(&collector->_modUnionTable),
7531   _work_queue(work_queue),
7532   _overflow_stack(overflow_stack),
7533   _yield(should_yield),
7534   _skip_bits(0),
7535   _task(task)
7536 {
7537   assert(_work_queue->size() == 0, "work_queue should be empty");
7538   _finger = span.start();
7539   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7540   assert(_span.contains(_finger), "Out of bounds _finger?");
7541 }
7542 
7543 // Should revisit to see if this should be restructured for
7544 // greater efficiency.
7545 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7546   if (_skip_bits > 0) {
7547     _skip_bits--;
7548     return true;
7549   }
7550   // convert offset into a HeapWord*
7551   HeapWord* addr = _bit_map->startWord() + offset;
7552   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7553          "address out of range");
7554   assert(_bit_map->isMarked(addr), "tautology");
7555   if (_bit_map->isMarked(addr+1)) {
7556     // this is an allocated object that might not yet be initialized
7557     assert(_skip_bits == 0, "tautology");
7558     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7559     oop p = oop(addr);
7560     if (p->klass_or_null() == NULL) {
7561       // in the case of Clean-on-Enter optimization, redirty card
7562       // and avoid clearing card by increasing  the threshold.
7563       return true;
7564     }
7565   }
7566   scan_oops_in_oop(addr);
7567   return true;
7568 }
7569 
7570 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7571   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7572   // Should we assert that our work queue is empty or
7573   // below some drain limit?
7574   assert(_work_queue->size() == 0,
7575          "should drain stack to limit stack usage");
7576   // convert ptr to an oop preparatory to scanning
7577   oop obj = oop(ptr);
7578   // Ignore mark word in verification below, since we
7579   // may be running concurrent with mutators.
7580   assert(obj->is_oop(true), "should be an oop");
7581   assert(_finger <= ptr, "_finger runneth ahead");
7582   // advance the finger to right end of this object
7583   _finger = ptr + obj->size();
7584   assert(_finger > ptr, "we just incremented it above");
7585   // On large heaps, it may take us some time to get through
7586   // the marking phase (especially if running iCMS). During
7587   // this time it's possible that a lot of mutations have
7588   // accumulated in the card table and the mod union table --
7589   // these mutation records are redundant until we have
7590   // actually traced into the corresponding card.
7591   // Here, we check whether advancing the finger would make
7592   // us cross into a new card, and if so clear corresponding
7593   // cards in the MUT (preclean them in the card-table in the
7594   // future).
7595 
7596   // The clean-on-enter optimization is disabled by default,
7597   // until we fix 6178663.
7598   if (CMSCleanOnEnter && (_finger > _threshold)) {
7599     // [_threshold, _finger) represents the interval
7600     // of cards to be cleared  in MUT (or precleaned in card table).
7601     // The set of cards to be cleared is all those that overlap
7602     // with the interval [_threshold, _finger); note that
7603     // _threshold is always kept card-aligned but _finger isn't
7604     // always card-aligned.
7605     HeapWord* old_threshold = _threshold;
7606     assert(old_threshold == (HeapWord*)round_to(
7607             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7608            "_threshold should always be card-aligned");
7609     _threshold = (HeapWord*)round_to(
7610                    (intptr_t)_finger, CardTableModRefBS::card_size);
7611     MemRegion mr(old_threshold, _threshold);
7612     assert(!mr.is_empty(), "Control point invariant");
7613     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7614     _mut->clear_range(mr);
7615   }
7616 
7617   // Note: the local finger doesn't advance while we drain
7618   // the stack below, but the global finger sure can and will.
7619   HeapWord** gfa = _task->global_finger_addr();
7620   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7621                                       _span, _bit_map,
7622                                       _work_queue,
7623                                       _overflow_stack,
7624                                       _finger,
7625                                       gfa, this);
7626   bool res = _work_queue->push(obj);   // overflow could occur here
7627   assert(res, "Will hold once we use workqueues");
7628   while (true) {
7629     oop new_oop;
7630     if (!_work_queue->pop_local(new_oop)) {
7631       // We emptied our work_queue; check if there's stuff that can
7632       // be gotten from the overflow stack.
7633       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7634             _overflow_stack, _work_queue)) {
7635         do_yield_check();
7636         continue;
7637       } else {  // done
7638         break;
7639       }
7640     }
7641     // Skip verifying header mark word below because we are
7642     // running concurrent with mutators.
7643     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7644     // now scan this oop's oops
7645     new_oop->oop_iterate(&pushOrMarkClosure);
7646     do_yield_check();
7647   }
7648   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7649 }
7650 
7651 // Yield in response to a request from VM Thread or
7652 // from mutators.
7653 void Par_MarkFromRootsClosure::do_yield_work() {
7654   assert(_task != NULL, "sanity");
7655   _task->yield();
7656 }
7657 
7658 // A variant of the above used for verifying CMS marking work.
7659 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7660                         MemRegion span,
7661                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7662                         CMSMarkStack*  mark_stack):
7663   _collector(collector),
7664   _span(span),
7665   _verification_bm(verification_bm),
7666   _cms_bm(cms_bm),
7667   _mark_stack(mark_stack),
7668   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7669                       mark_stack)
7670 {
7671   assert(_mark_stack->isEmpty(), "stack should be empty");
7672   _finger = _verification_bm->startWord();
7673   assert(_collector->_restart_addr == NULL, "Sanity check");
7674   assert(_span.contains(_finger), "Out of bounds _finger?");
7675 }
7676 
7677 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7678   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7679   assert(_span.contains(addr), "Out of bounds _finger?");
7680   _finger = addr;
7681 }
7682 
7683 // Should revisit to see if this should be restructured for
7684 // greater efficiency.
7685 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7686   // convert offset into a HeapWord*
7687   HeapWord* addr = _verification_bm->startWord() + offset;
7688   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7689          "address out of range");
7690   assert(_verification_bm->isMarked(addr), "tautology");
7691   assert(_cms_bm->isMarked(addr), "tautology");
7692 
7693   assert(_mark_stack->isEmpty(),
7694          "should drain stack to limit stack usage");
7695   // convert addr to an oop preparatory to scanning
7696   oop obj = oop(addr);
7697   assert(obj->is_oop(), "should be an oop");
7698   assert(_finger <= addr, "_finger runneth ahead");
7699   // advance the finger to right end of this object
7700   _finger = addr + obj->size();
7701   assert(_finger > addr, "we just incremented it above");
7702   // Note: the finger doesn't advance while we drain
7703   // the stack below.
7704   bool res = _mark_stack->push(obj);
7705   assert(res, "Empty non-zero size stack should have space for single push");
7706   while (!_mark_stack->isEmpty()) {
7707     oop new_oop = _mark_stack->pop();
7708     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7709     // now scan this oop's oops
7710     new_oop->oop_iterate(&_pam_verify_closure);
7711   }
7712   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7713   return true;
7714 }
7715 
7716 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7717   CMSCollector* collector, MemRegion span,
7718   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7719   CMSMarkStack*  mark_stack):
7720   CMSOopClosure(collector->ref_processor()),
7721   _collector(collector),
7722   _span(span),
7723   _verification_bm(verification_bm),
7724   _cms_bm(cms_bm),
7725   _mark_stack(mark_stack)
7726 { }
7727 
7728 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7729 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7730 
7731 // Upon stack overflow, we discard (part of) the stack,
7732 // remembering the least address amongst those discarded
7733 // in CMSCollector's _restart_address.
7734 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7735   // Remember the least grey address discarded
7736   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7737   _collector->lower_restart_addr(ra);
7738   _mark_stack->reset();  // discard stack contents
7739   _mark_stack->expand(); // expand the stack if possible
7740 }
7741 
7742 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7743   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7744   HeapWord* addr = (HeapWord*)obj;
7745   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7746     // Oop lies in _span and isn't yet grey or black
7747     _verification_bm->mark(addr);            // now grey
7748     if (!_cms_bm->isMarked(addr)) {
7749       oop(addr)->print();
7750       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7751                              addr);
7752       fatal("... aborting");
7753     }
7754 
7755     if (!_mark_stack->push(obj)) { // stack overflow
7756       if (PrintCMSStatistics != 0) {
7757         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7758                                SIZE_FORMAT, _mark_stack->capacity());
7759       }
7760       assert(_mark_stack->isFull(), "Else push should have succeeded");
7761       handle_stack_overflow(addr);
7762     }
7763     // anything including and to the right of _finger
7764     // will be scanned as we iterate over the remainder of the
7765     // bit map
7766   }
7767 }
7768 
7769 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7770                      MemRegion span,
7771                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7772                      HeapWord* finger, MarkFromRootsClosure* parent) :
7773   CMSOopClosure(collector->ref_processor()),
7774   _collector(collector),
7775   _span(span),
7776   _bitMap(bitMap),
7777   _markStack(markStack),
7778   _finger(finger),
7779   _parent(parent)
7780 { }
7781 
7782 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7783                      MemRegion span,
7784                      CMSBitMap* bit_map,
7785                      OopTaskQueue* work_queue,
7786                      CMSMarkStack*  overflow_stack,
7787                      HeapWord* finger,
7788                      HeapWord** global_finger_addr,
7789                      Par_MarkFromRootsClosure* parent) :
7790   CMSOopClosure(collector->ref_processor()),
7791   _collector(collector),
7792   _whole_span(collector->_span),
7793   _span(span),
7794   _bit_map(bit_map),
7795   _work_queue(work_queue),
7796   _overflow_stack(overflow_stack),
7797   _finger(finger),
7798   _global_finger_addr(global_finger_addr),
7799   _parent(parent)
7800 { }
7801 
7802 // Assumes thread-safe access by callers, who are
7803 // responsible for mutual exclusion.
7804 void CMSCollector::lower_restart_addr(HeapWord* low) {
7805   assert(_span.contains(low), "Out of bounds addr");
7806   if (_restart_addr == NULL) {
7807     _restart_addr = low;
7808   } else {
7809     _restart_addr = MIN2(_restart_addr, low);
7810   }
7811 }
7812 
7813 // Upon stack overflow, we discard (part of) the stack,
7814 // remembering the least address amongst those discarded
7815 // in CMSCollector's _restart_address.
7816 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7817   // Remember the least grey address discarded
7818   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7819   _collector->lower_restart_addr(ra);
7820   _markStack->reset();  // discard stack contents
7821   _markStack->expand(); // expand the stack if possible
7822 }
7823 
7824 // Upon stack overflow, we discard (part of) the stack,
7825 // remembering the least address amongst those discarded
7826 // in CMSCollector's _restart_address.
7827 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7828   // We need to do this under a mutex to prevent other
7829   // workers from interfering with the work done below.
7830   MutexLockerEx ml(_overflow_stack->par_lock(),
7831                    Mutex::_no_safepoint_check_flag);
7832   // Remember the least grey address discarded
7833   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7834   _collector->lower_restart_addr(ra);
7835   _overflow_stack->reset();  // discard stack contents
7836   _overflow_stack->expand(); // expand the stack if possible
7837 }
7838 
7839 void CMKlassClosure::do_klass(Klass* k) {
7840   assert(_oop_closure != NULL, "Not initialized?");
7841   k->oops_do(_oop_closure);
7842 }
7843 
7844 void PushOrMarkClosure::do_oop(oop obj) {
7845   // Ignore mark word because we are running concurrent with mutators.
7846   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7847   HeapWord* addr = (HeapWord*)obj;
7848   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7849     // Oop lies in _span and isn't yet grey or black
7850     _bitMap->mark(addr);            // now grey
7851     if (addr < _finger) {
7852       // the bit map iteration has already either passed, or
7853       // sampled, this bit in the bit map; we'll need to
7854       // use the marking stack to scan this oop's oops.
7855       bool simulate_overflow = false;
7856       NOT_PRODUCT(
7857         if (CMSMarkStackOverflowALot &&
7858             _collector->simulate_overflow()) {
7859           // simulate a stack overflow
7860           simulate_overflow = true;
7861         }
7862       )
7863       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7864         if (PrintCMSStatistics != 0) {
7865           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7866                                  SIZE_FORMAT, _markStack->capacity());
7867         }
7868         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7869         handle_stack_overflow(addr);
7870       }
7871     }
7872     // anything including and to the right of _finger
7873     // will be scanned as we iterate over the remainder of the
7874     // bit map
7875     do_yield_check();
7876   }
7877 }
7878 
7879 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7880 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7881 
7882 void Par_PushOrMarkClosure::do_oop(oop obj) {
7883   // Ignore mark word because we are running concurrent with mutators.
7884   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7885   HeapWord* addr = (HeapWord*)obj;
7886   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7887     // Oop lies in _span and isn't yet grey or black
7888     // We read the global_finger (volatile read) strictly after marking oop
7889     bool res = _bit_map->par_mark(addr);    // now grey
7890     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7891     // Should we push this marked oop on our stack?
7892     // -- if someone else marked it, nothing to do
7893     // -- if target oop is above global finger nothing to do
7894     // -- if target oop is in chunk and above local finger
7895     //      then nothing to do
7896     // -- else push on work queue
7897     if (   !res       // someone else marked it, they will deal with it
7898         || (addr >= *gfa)  // will be scanned in a later task
7899         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7900       return;
7901     }
7902     // the bit map iteration has already either passed, or
7903     // sampled, this bit in the bit map; we'll need to
7904     // use the marking stack to scan this oop's oops.
7905     bool simulate_overflow = false;
7906     NOT_PRODUCT(
7907       if (CMSMarkStackOverflowALot &&
7908           _collector->simulate_overflow()) {
7909         // simulate a stack overflow
7910         simulate_overflow = true;
7911       }
7912     )
7913     if (simulate_overflow ||
7914         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7915       // stack overflow
7916       if (PrintCMSStatistics != 0) {
7917         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7918                                SIZE_FORMAT, _overflow_stack->capacity());
7919       }
7920       // We cannot assert that the overflow stack is full because
7921       // it may have been emptied since.
7922       assert(simulate_overflow ||
7923              _work_queue->size() == _work_queue->max_elems(),
7924             "Else push should have succeeded");
7925       handle_stack_overflow(addr);
7926     }
7927     do_yield_check();
7928   }
7929 }
7930 
7931 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7932 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7933 
7934 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7935                                        MemRegion span,
7936                                        ReferenceProcessor* rp,
7937                                        CMSBitMap* bit_map,
7938                                        CMSBitMap* mod_union_table,
7939                                        CMSMarkStack*  mark_stack,
7940                                        bool           concurrent_precleaning):
7941   CMSOopClosure(rp),
7942   _collector(collector),
7943   _span(span),
7944   _bit_map(bit_map),
7945   _mod_union_table(mod_union_table),
7946   _mark_stack(mark_stack),
7947   _concurrent_precleaning(concurrent_precleaning)
7948 {
7949   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7950 }
7951 
7952 // Grey object rescan during pre-cleaning and second checkpoint phases --
7953 // the non-parallel version (the parallel version appears further below.)
7954 void PushAndMarkClosure::do_oop(oop obj) {
7955   // Ignore mark word verification. If during concurrent precleaning,
7956   // the object monitor may be locked. If during the checkpoint
7957   // phases, the object may already have been reached by a  different
7958   // path and may be at the end of the global overflow list (so
7959   // the mark word may be NULL).
7960   assert(obj->is_oop_or_null(true /* ignore mark word */),
7961          "expected an oop or NULL");
7962   HeapWord* addr = (HeapWord*)obj;
7963   // Check if oop points into the CMS generation
7964   // and is not marked
7965   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7966     // a white object ...
7967     _bit_map->mark(addr);         // ... now grey
7968     // push on the marking stack (grey set)
7969     bool simulate_overflow = false;
7970     NOT_PRODUCT(
7971       if (CMSMarkStackOverflowALot &&
7972           _collector->simulate_overflow()) {
7973         // simulate a stack overflow
7974         simulate_overflow = true;
7975       }
7976     )
7977     if (simulate_overflow || !_mark_stack->push(obj)) {
7978       if (_concurrent_precleaning) {
7979          // During precleaning we can just dirty the appropriate card(s)
7980          // in the mod union table, thus ensuring that the object remains
7981          // in the grey set  and continue. In the case of object arrays
7982          // we need to dirty all of the cards that the object spans,
7983          // since the rescan of object arrays will be limited to the
7984          // dirty cards.
7985          // Note that no one can be interfering with us in this action
7986          // of dirtying the mod union table, so no locking or atomics
7987          // are required.
7988          if (obj->is_objArray()) {
7989            size_t sz = obj->size();
7990            HeapWord* end_card_addr = (HeapWord*)round_to(
7991                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7992            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7993            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7994            _mod_union_table->mark_range(redirty_range);
7995          } else {
7996            _mod_union_table->mark(addr);
7997          }
7998          _collector->_ser_pmc_preclean_ovflw++;
7999       } else {
8000          // During the remark phase, we need to remember this oop
8001          // in the overflow list.
8002          _collector->push_on_overflow_list(obj);
8003          _collector->_ser_pmc_remark_ovflw++;
8004       }
8005     }
8006   }
8007 }
8008 
8009 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
8010                                                MemRegion span,
8011                                                ReferenceProcessor* rp,
8012                                                CMSBitMap* bit_map,
8013                                                OopTaskQueue* work_queue):
8014   CMSOopClosure(rp),
8015   _collector(collector),
8016   _span(span),
8017   _bit_map(bit_map),
8018   _work_queue(work_queue)
8019 {
8020   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
8021 }
8022 
8023 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
8024 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
8025 
8026 // Grey object rescan during second checkpoint phase --
8027 // the parallel version.
8028 void Par_PushAndMarkClosure::do_oop(oop obj) {
8029   // In the assert below, we ignore the mark word because
8030   // this oop may point to an already visited object that is
8031   // on the overflow stack (in which case the mark word has
8032   // been hijacked for chaining into the overflow stack --
8033   // if this is the last object in the overflow stack then
8034   // its mark word will be NULL). Because this object may
8035   // have been subsequently popped off the global overflow
8036   // stack, and the mark word possibly restored to the prototypical
8037   // value, by the time we get to examined this failing assert in
8038   // the debugger, is_oop_or_null(false) may subsequently start
8039   // to hold.
8040   assert(obj->is_oop_or_null(true),
8041          "expected an oop or NULL");
8042   HeapWord* addr = (HeapWord*)obj;
8043   // Check if oop points into the CMS generation
8044   // and is not marked
8045   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
8046     // a white object ...
8047     // If we manage to "claim" the object, by being the
8048     // first thread to mark it, then we push it on our
8049     // marking stack
8050     if (_bit_map->par_mark(addr)) {     // ... now grey
8051       // push on work queue (grey set)
8052       bool simulate_overflow = false;
8053       NOT_PRODUCT(
8054         if (CMSMarkStackOverflowALot &&
8055             _collector->par_simulate_overflow()) {
8056           // simulate a stack overflow
8057           simulate_overflow = true;
8058         }
8059       )
8060       if (simulate_overflow || !_work_queue->push(obj)) {
8061         _collector->par_push_on_overflow_list(obj);
8062         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
8063       }
8064     } // Else, some other thread got there first
8065   }
8066 }
8067 
8068 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
8069 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
8070 
8071 void CMSPrecleanRefsYieldClosure::do_yield_work() {
8072   Mutex* bml = _collector->bitMapLock();
8073   assert_lock_strong(bml);
8074   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8075          "CMS thread should hold CMS token");
8076 
8077   bml->unlock();
8078   ConcurrentMarkSweepThread::desynchronize(true);
8079 
8080   ConcurrentMarkSweepThread::acknowledge_yield_request();
8081 
8082   _collector->stopTimer();
8083   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8084   if (PrintCMSStatistics != 0) {
8085     _collector->incrementYields();
8086   }
8087   _collector->icms_wait();
8088 
8089   // See the comment in coordinator_yield()
8090   for (unsigned i = 0; i < CMSYieldSleepCount &&
8091                        ConcurrentMarkSweepThread::should_yield() &&
8092                        !CMSCollector::foregroundGCIsActive(); ++i) {
8093     os::sleep(Thread::current(), 1, false);
8094     ConcurrentMarkSweepThread::acknowledge_yield_request();
8095   }
8096 
8097   ConcurrentMarkSweepThread::synchronize(true);
8098   bml->lock();
8099 
8100   _collector->startTimer();
8101 }
8102 
8103 bool CMSPrecleanRefsYieldClosure::should_return() {
8104   if (ConcurrentMarkSweepThread::should_yield()) {
8105     do_yield_work();
8106   }
8107   return _collector->foregroundGCIsActive();
8108 }
8109 
8110 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8111   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8112          "mr should be aligned to start at a card boundary");
8113   // We'd like to assert:
8114   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8115   //        "mr should be a range of cards");
8116   // However, that would be too strong in one case -- the last
8117   // partition ends at _unallocated_block which, in general, can be
8118   // an arbitrary boundary, not necessarily card aligned.
8119   if (PrintCMSStatistics != 0) {
8120     _num_dirty_cards +=
8121          mr.word_size()/CardTableModRefBS::card_size_in_words;
8122   }
8123   _space->object_iterate_mem(mr, &_scan_cl);
8124 }
8125 
8126 SweepClosure::SweepClosure(CMSCollector* collector,
8127                            ConcurrentMarkSweepGeneration* g,
8128                            CMSBitMap* bitMap, bool should_yield) :
8129   _collector(collector),
8130   _g(g),
8131   _sp(g->cmsSpace()),
8132   _limit(_sp->sweep_limit()),
8133   _freelistLock(_sp->freelistLock()),
8134   _bitMap(bitMap),
8135   _yield(should_yield),
8136   _inFreeRange(false),           // No free range at beginning of sweep
8137   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8138   _lastFreeRangeCoalesced(false),
8139   _freeFinger(g->used_region().start())
8140 {
8141   NOT_PRODUCT(
8142     _numObjectsFreed = 0;
8143     _numWordsFreed   = 0;
8144     _numObjectsLive = 0;
8145     _numWordsLive = 0;
8146     _numObjectsAlreadyFree = 0;
8147     _numWordsAlreadyFree = 0;
8148     _last_fc = NULL;
8149 
8150     _sp->initializeIndexedFreeListArrayReturnedBytes();
8151     _sp->dictionary()->initialize_dict_returned_bytes();
8152   )
8153   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8154          "sweep _limit out of bounds");
8155   if (CMSTraceSweeper) {
8156     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8157                         _limit);
8158   }
8159 }
8160 
8161 void SweepClosure::print_on(outputStream* st) const {
8162   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8163                 _sp->bottom(), _sp->end());
8164   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8165   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8166   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8167   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8168                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8169 }
8170 
8171 #ifndef PRODUCT
8172 // Assertion checking only:  no useful work in product mode --
8173 // however, if any of the flags below become product flags,
8174 // you may need to review this code to see if it needs to be
8175 // enabled in product mode.
8176 SweepClosure::~SweepClosure() {
8177   assert_lock_strong(_freelistLock);
8178   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8179          "sweep _limit out of bounds");
8180   if (inFreeRange()) {
8181     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8182     print();
8183     ShouldNotReachHere();
8184   }
8185   if (Verbose && PrintGC) {
8186     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8187                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8188     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8189                            SIZE_FORMAT" bytes  "
8190       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8191       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8192       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8193     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8194                         * sizeof(HeapWord);
8195     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8196 
8197     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8198       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8199       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8200       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8201       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8202       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8203         indexListReturnedBytes);
8204       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8205         dict_returned_bytes);
8206     }
8207   }
8208   if (CMSTraceSweeper) {
8209     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8210                            _limit);
8211   }
8212 }
8213 #endif  // PRODUCT
8214 
8215 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8216     bool freeRangeInFreeLists) {
8217   if (CMSTraceSweeper) {
8218     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8219                freeFinger, freeRangeInFreeLists);
8220   }
8221   assert(!inFreeRange(), "Trampling existing free range");
8222   set_inFreeRange(true);
8223   set_lastFreeRangeCoalesced(false);
8224 
8225   set_freeFinger(freeFinger);
8226   set_freeRangeInFreeLists(freeRangeInFreeLists);
8227   if (CMSTestInFreeList) {
8228     if (freeRangeInFreeLists) {
8229       FreeChunk* fc = (FreeChunk*) freeFinger;
8230       assert(fc->is_free(), "A chunk on the free list should be free.");
8231       assert(fc->size() > 0, "Free range should have a size");
8232       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8233     }
8234   }
8235 }
8236 
8237 // Note that the sweeper runs concurrently with mutators. Thus,
8238 // it is possible for direct allocation in this generation to happen
8239 // in the middle of the sweep. Note that the sweeper also coalesces
8240 // contiguous free blocks. Thus, unless the sweeper and the allocator
8241 // synchronize appropriately freshly allocated blocks may get swept up.
8242 // This is accomplished by the sweeper locking the free lists while
8243 // it is sweeping. Thus blocks that are determined to be free are
8244 // indeed free. There is however one additional complication:
8245 // blocks that have been allocated since the final checkpoint and
8246 // mark, will not have been marked and so would be treated as
8247 // unreachable and swept up. To prevent this, the allocator marks
8248 // the bit map when allocating during the sweep phase. This leads,
8249 // however, to a further complication -- objects may have been allocated
8250 // but not yet initialized -- in the sense that the header isn't yet
8251 // installed. The sweeper can not then determine the size of the block
8252 // in order to skip over it. To deal with this case, we use a technique
8253 // (due to Printezis) to encode such uninitialized block sizes in the
8254 // bit map. Since the bit map uses a bit per every HeapWord, but the
8255 // CMS generation has a minimum object size of 3 HeapWords, it follows
8256 // that "normal marks" won't be adjacent in the bit map (there will
8257 // always be at least two 0 bits between successive 1 bits). We make use
8258 // of these "unused" bits to represent uninitialized blocks -- the bit
8259 // corresponding to the start of the uninitialized object and the next
8260 // bit are both set. Finally, a 1 bit marks the end of the object that
8261 // started with the two consecutive 1 bits to indicate its potentially
8262 // uninitialized state.
8263 
8264 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8265   FreeChunk* fc = (FreeChunk*)addr;
8266   size_t res;
8267 
8268   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8269   // than "addr == _limit" because although _limit was a block boundary when
8270   // we started the sweep, it may no longer be one because heap expansion
8271   // may have caused us to coalesce the block ending at the address _limit
8272   // with a newly expanded chunk (this happens when _limit was set to the
8273   // previous _end of the space), so we may have stepped past _limit:
8274   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8275   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8276     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8277            "sweep _limit out of bounds");
8278     assert(addr < _sp->end(), "addr out of bounds");
8279     // Flush any free range we might be holding as a single
8280     // coalesced chunk to the appropriate free list.
8281     if (inFreeRange()) {
8282       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8283              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8284       flush_cur_free_chunk(freeFinger(),
8285                            pointer_delta(addr, freeFinger()));
8286       if (CMSTraceSweeper) {
8287         gclog_or_tty->print("Sweep: last chunk: ");
8288         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8289                    "[coalesced:"SIZE_FORMAT"]\n",
8290                    freeFinger(), pointer_delta(addr, freeFinger()),
8291                    lastFreeRangeCoalesced());
8292       }
8293     }
8294 
8295     // help the iterator loop finish
8296     return pointer_delta(_sp->end(), addr);
8297   }
8298 
8299   assert(addr < _limit, "sweep invariant");
8300   // check if we should yield
8301   do_yield_check(addr);
8302   if (fc->is_free()) {
8303     // Chunk that is already free
8304     res = fc->size();
8305     do_already_free_chunk(fc);
8306     debug_only(_sp->verifyFreeLists());
8307     // If we flush the chunk at hand in lookahead_and_flush()
8308     // and it's coalesced with a preceding chunk, then the
8309     // process of "mangling" the payload of the coalesced block
8310     // will cause erasure of the size information from the
8311     // (erstwhile) header of all the coalesced blocks but the
8312     // first, so the first disjunct in the assert will not hold
8313     // in that specific case (in which case the second disjunct
8314     // will hold).
8315     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8316            "Otherwise the size info doesn't change at this step");
8317     NOT_PRODUCT(
8318       _numObjectsAlreadyFree++;
8319       _numWordsAlreadyFree += res;
8320     )
8321     NOT_PRODUCT(_last_fc = fc;)
8322   } else if (!_bitMap->isMarked(addr)) {
8323     // Chunk is fresh garbage
8324     res = do_garbage_chunk(fc);
8325     debug_only(_sp->verifyFreeLists());
8326     NOT_PRODUCT(
8327       _numObjectsFreed++;
8328       _numWordsFreed += res;
8329     )
8330   } else {
8331     // Chunk that is alive.
8332     res = do_live_chunk(fc);
8333     debug_only(_sp->verifyFreeLists());
8334     NOT_PRODUCT(
8335         _numObjectsLive++;
8336         _numWordsLive += res;
8337     )
8338   }
8339   return res;
8340 }
8341 
8342 // For the smart allocation, record following
8343 //  split deaths - a free chunk is removed from its free list because
8344 //      it is being split into two or more chunks.
8345 //  split birth - a free chunk is being added to its free list because
8346 //      a larger free chunk has been split and resulted in this free chunk.
8347 //  coal death - a free chunk is being removed from its free list because
8348 //      it is being coalesced into a large free chunk.
8349 //  coal birth - a free chunk is being added to its free list because
8350 //      it was created when two or more free chunks where coalesced into
8351 //      this free chunk.
8352 //
8353 // These statistics are used to determine the desired number of free
8354 // chunks of a given size.  The desired number is chosen to be relative
8355 // to the end of a CMS sweep.  The desired number at the end of a sweep
8356 // is the
8357 //      count-at-end-of-previous-sweep (an amount that was enough)
8358 //              - count-at-beginning-of-current-sweep  (the excess)
8359 //              + split-births  (gains in this size during interval)
8360 //              - split-deaths  (demands on this size during interval)
8361 // where the interval is from the end of one sweep to the end of the
8362 // next.
8363 //
8364 // When sweeping the sweeper maintains an accumulated chunk which is
8365 // the chunk that is made up of chunks that have been coalesced.  That
8366 // will be termed the left-hand chunk.  A new chunk of garbage that
8367 // is being considered for coalescing will be referred to as the
8368 // right-hand chunk.
8369 //
8370 // When making a decision on whether to coalesce a right-hand chunk with
8371 // the current left-hand chunk, the current count vs. the desired count
8372 // of the left-hand chunk is considered.  Also if the right-hand chunk
8373 // is near the large chunk at the end of the heap (see
8374 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8375 // left-hand chunk is coalesced.
8376 //
8377 // When making a decision about whether to split a chunk, the desired count
8378 // vs. the current count of the candidate to be split is also considered.
8379 // If the candidate is underpopulated (currently fewer chunks than desired)
8380 // a chunk of an overpopulated (currently more chunks than desired) size may
8381 // be chosen.  The "hint" associated with a free list, if non-null, points
8382 // to a free list which may be overpopulated.
8383 //
8384 
8385 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8386   const size_t size = fc->size();
8387   // Chunks that cannot be coalesced are not in the
8388   // free lists.
8389   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8390     assert(_sp->verify_chunk_in_free_list(fc),
8391       "free chunk should be in free lists");
8392   }
8393   // a chunk that is already free, should not have been
8394   // marked in the bit map
8395   HeapWord* const addr = (HeapWord*) fc;
8396   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8397   // Verify that the bit map has no bits marked between
8398   // addr and purported end of this block.
8399   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8400 
8401   // Some chunks cannot be coalesced under any circumstances.
8402   // See the definition of cantCoalesce().
8403   if (!fc->cantCoalesce()) {
8404     // This chunk can potentially be coalesced.
8405     if (_sp->adaptive_freelists()) {
8406       // All the work is done in
8407       do_post_free_or_garbage_chunk(fc, size);
8408     } else {  // Not adaptive free lists
8409       // this is a free chunk that can potentially be coalesced by the sweeper;
8410       if (!inFreeRange()) {
8411         // if the next chunk is a free block that can't be coalesced
8412         // it doesn't make sense to remove this chunk from the free lists
8413         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8414         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8415         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8416             nextChunk->is_free()               &&     // ... which is free...
8417             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8418           // nothing to do
8419         } else {
8420           // Potentially the start of a new free range:
8421           // Don't eagerly remove it from the free lists.
8422           // No need to remove it if it will just be put
8423           // back again.  (Also from a pragmatic point of view
8424           // if it is a free block in a region that is beyond
8425           // any allocated blocks, an assertion will fail)
8426           // Remember the start of a free run.
8427           initialize_free_range(addr, true);
8428           // end - can coalesce with next chunk
8429         }
8430       } else {
8431         // the midst of a free range, we are coalescing
8432         print_free_block_coalesced(fc);
8433         if (CMSTraceSweeper) {
8434           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8435         }
8436         // remove it from the free lists
8437         _sp->removeFreeChunkFromFreeLists(fc);
8438         set_lastFreeRangeCoalesced(true);
8439         // If the chunk is being coalesced and the current free range is
8440         // in the free lists, remove the current free range so that it
8441         // will be returned to the free lists in its entirety - all
8442         // the coalesced pieces included.
8443         if (freeRangeInFreeLists()) {
8444           FreeChunk* ffc = (FreeChunk*) freeFinger();
8445           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8446             "Size of free range is inconsistent with chunk size.");
8447           if (CMSTestInFreeList) {
8448             assert(_sp->verify_chunk_in_free_list(ffc),
8449               "free range is not in free lists");
8450           }
8451           _sp->removeFreeChunkFromFreeLists(ffc);
8452           set_freeRangeInFreeLists(false);
8453         }
8454       }
8455     }
8456     // Note that if the chunk is not coalescable (the else arm
8457     // below), we unconditionally flush, without needing to do
8458     // a "lookahead," as we do below.
8459     if (inFreeRange()) lookahead_and_flush(fc, size);
8460   } else {
8461     // Code path common to both original and adaptive free lists.
8462 
8463     // cant coalesce with previous block; this should be treated
8464     // as the end of a free run if any
8465     if (inFreeRange()) {
8466       // we kicked some butt; time to pick up the garbage
8467       assert(freeFinger() < addr, "freeFinger points too high");
8468       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8469     }
8470     // else, nothing to do, just continue
8471   }
8472 }
8473 
8474 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8475   // This is a chunk of garbage.  It is not in any free list.
8476   // Add it to a free list or let it possibly be coalesced into
8477   // a larger chunk.
8478   HeapWord* const addr = (HeapWord*) fc;
8479   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8480 
8481   if (_sp->adaptive_freelists()) {
8482     // Verify that the bit map has no bits marked between
8483     // addr and purported end of just dead object.
8484     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8485 
8486     do_post_free_or_garbage_chunk(fc, size);
8487   } else {
8488     if (!inFreeRange()) {
8489       // start of a new free range
8490       assert(size > 0, "A free range should have a size");
8491       initialize_free_range(addr, false);
8492     } else {
8493       // this will be swept up when we hit the end of the
8494       // free range
8495       if (CMSTraceSweeper) {
8496         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8497       }
8498       // If the chunk is being coalesced and the current free range is
8499       // in the free lists, remove the current free range so that it
8500       // will be returned to the free lists in its entirety - all
8501       // the coalesced pieces included.
8502       if (freeRangeInFreeLists()) {
8503         FreeChunk* ffc = (FreeChunk*)freeFinger();
8504         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8505           "Size of free range is inconsistent with chunk size.");
8506         if (CMSTestInFreeList) {
8507           assert(_sp->verify_chunk_in_free_list(ffc),
8508             "free range is not in free lists");
8509         }
8510         _sp->removeFreeChunkFromFreeLists(ffc);
8511         set_freeRangeInFreeLists(false);
8512       }
8513       set_lastFreeRangeCoalesced(true);
8514     }
8515     // this will be swept up when we hit the end of the free range
8516 
8517     // Verify that the bit map has no bits marked between
8518     // addr and purported end of just dead object.
8519     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8520   }
8521   assert(_limit >= addr + size,
8522          "A freshly garbage chunk can't possibly straddle over _limit");
8523   if (inFreeRange()) lookahead_and_flush(fc, size);
8524   return size;
8525 }
8526 
8527 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8528   HeapWord* addr = (HeapWord*) fc;
8529   // The sweeper has just found a live object. Return any accumulated
8530   // left hand chunk to the free lists.
8531   if (inFreeRange()) {
8532     assert(freeFinger() < addr, "freeFinger points too high");
8533     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8534   }
8535 
8536   // This object is live: we'd normally expect this to be
8537   // an oop, and like to assert the following:
8538   // assert(oop(addr)->is_oop(), "live block should be an oop");
8539   // However, as we commented above, this may be an object whose
8540   // header hasn't yet been initialized.
8541   size_t size;
8542   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8543   if (_bitMap->isMarked(addr + 1)) {
8544     // Determine the size from the bit map, rather than trying to
8545     // compute it from the object header.
8546     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8547     size = pointer_delta(nextOneAddr + 1, addr);
8548     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8549            "alignment problem");
8550 
8551 #ifdef ASSERT
8552       if (oop(addr)->klass_or_null() != NULL) {
8553         // Ignore mark word because we are running concurrent with mutators
8554         assert(oop(addr)->is_oop(true), "live block should be an oop");
8555         assert(size ==
8556                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8557                "P-mark and computed size do not agree");
8558       }
8559 #endif
8560 
8561   } else {
8562     // This should be an initialized object that's alive.
8563     assert(oop(addr)->klass_or_null() != NULL,
8564            "Should be an initialized object");
8565     // Ignore mark word because we are running concurrent with mutators
8566     assert(oop(addr)->is_oop(true), "live block should be an oop");
8567     // Verify that the bit map has no bits marked between
8568     // addr and purported end of this block.
8569     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8570     assert(size >= 3, "Necessary for Printezis marks to work");
8571     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8572     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8573   }
8574   return size;
8575 }
8576 
8577 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8578                                                  size_t chunkSize) {
8579   // do_post_free_or_garbage_chunk() should only be called in the case
8580   // of the adaptive free list allocator.
8581   const bool fcInFreeLists = fc->is_free();
8582   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8583   assert((HeapWord*)fc <= _limit, "sweep invariant");
8584   if (CMSTestInFreeList && fcInFreeLists) {
8585     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8586   }
8587 
8588   if (CMSTraceSweeper) {
8589     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8590   }
8591 
8592   HeapWord* const fc_addr = (HeapWord*) fc;
8593 
8594   bool coalesce;
8595   const size_t left  = pointer_delta(fc_addr, freeFinger());
8596   const size_t right = chunkSize;
8597   switch (FLSCoalescePolicy) {
8598     // numeric value forms a coalition aggressiveness metric
8599     case 0:  { // never coalesce
8600       coalesce = false;
8601       break;
8602     }
8603     case 1: { // coalesce if left & right chunks on overpopulated lists
8604       coalesce = _sp->coalOverPopulated(left) &&
8605                  _sp->coalOverPopulated(right);
8606       break;
8607     }
8608     case 2: { // coalesce if left chunk on overpopulated list (default)
8609       coalesce = _sp->coalOverPopulated(left);
8610       break;
8611     }
8612     case 3: { // coalesce if left OR right chunk on overpopulated list
8613       coalesce = _sp->coalOverPopulated(left) ||
8614                  _sp->coalOverPopulated(right);
8615       break;
8616     }
8617     case 4: { // always coalesce
8618       coalesce = true;
8619       break;
8620     }
8621     default:
8622      ShouldNotReachHere();
8623   }
8624 
8625   // Should the current free range be coalesced?
8626   // If the chunk is in a free range and either we decided to coalesce above
8627   // or the chunk is near the large block at the end of the heap
8628   // (isNearLargestChunk() returns true), then coalesce this chunk.
8629   const bool doCoalesce = inFreeRange()
8630                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8631   if (doCoalesce) {
8632     // Coalesce the current free range on the left with the new
8633     // chunk on the right.  If either is on a free list,
8634     // it must be removed from the list and stashed in the closure.
8635     if (freeRangeInFreeLists()) {
8636       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8637       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8638         "Size of free range is inconsistent with chunk size.");
8639       if (CMSTestInFreeList) {
8640         assert(_sp->verify_chunk_in_free_list(ffc),
8641           "Chunk is not in free lists");
8642       }
8643       _sp->coalDeath(ffc->size());
8644       _sp->removeFreeChunkFromFreeLists(ffc);
8645       set_freeRangeInFreeLists(false);
8646     }
8647     if (fcInFreeLists) {
8648       _sp->coalDeath(chunkSize);
8649       assert(fc->size() == chunkSize,
8650         "The chunk has the wrong size or is not in the free lists");
8651       _sp->removeFreeChunkFromFreeLists(fc);
8652     }
8653     set_lastFreeRangeCoalesced(true);
8654     print_free_block_coalesced(fc);
8655   } else {  // not in a free range and/or should not coalesce
8656     // Return the current free range and start a new one.
8657     if (inFreeRange()) {
8658       // In a free range but cannot coalesce with the right hand chunk.
8659       // Put the current free range into the free lists.
8660       flush_cur_free_chunk(freeFinger(),
8661                            pointer_delta(fc_addr, freeFinger()));
8662     }
8663     // Set up for new free range.  Pass along whether the right hand
8664     // chunk is in the free lists.
8665     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8666   }
8667 }
8668 
8669 // Lookahead flush:
8670 // If we are tracking a free range, and this is the last chunk that
8671 // we'll look at because its end crosses past _limit, we'll preemptively
8672 // flush it along with any free range we may be holding on to. Note that
8673 // this can be the case only for an already free or freshly garbage
8674 // chunk. If this block is an object, it can never straddle
8675 // over _limit. The "straddling" occurs when _limit is set at
8676 // the previous end of the space when this cycle started, and
8677 // a subsequent heap expansion caused the previously co-terminal
8678 // free block to be coalesced with the newly expanded portion,
8679 // thus rendering _limit a non-block-boundary making it dangerous
8680 // for the sweeper to step over and examine.
8681 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8682   assert(inFreeRange(), "Should only be called if currently in a free range.");
8683   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8684   assert(_sp->used_region().contains(eob - 1),
8685          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8686                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8687                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8688                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8689   if (eob >= _limit) {
8690     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8691     if (CMSTraceSweeper) {
8692       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8693                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8694                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8695                              _limit, fc, eob, _sp->bottom(), _sp->end());
8696     }
8697     // Return the storage we are tracking back into the free lists.
8698     if (CMSTraceSweeper) {
8699       gclog_or_tty->print_cr("Flushing ... ");
8700     }
8701     assert(freeFinger() < eob, "Error");
8702     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8703   }
8704 }
8705 
8706 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8707   assert(inFreeRange(), "Should only be called if currently in a free range.");
8708   assert(size > 0,
8709     "A zero sized chunk cannot be added to the free lists.");
8710   if (!freeRangeInFreeLists()) {
8711     if (CMSTestInFreeList) {
8712       FreeChunk* fc = (FreeChunk*) chunk;
8713       fc->set_size(size);
8714       assert(!_sp->verify_chunk_in_free_list(fc),
8715         "chunk should not be in free lists yet");
8716     }
8717     if (CMSTraceSweeper) {
8718       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8719                     chunk, size);
8720     }
8721     // A new free range is going to be starting.  The current
8722     // free range has not been added to the free lists yet or
8723     // was removed so add it back.
8724     // If the current free range was coalesced, then the death
8725     // of the free range was recorded.  Record a birth now.
8726     if (lastFreeRangeCoalesced()) {
8727       _sp->coalBirth(size);
8728     }
8729     _sp->addChunkAndRepairOffsetTable(chunk, size,
8730             lastFreeRangeCoalesced());
8731   } else if (CMSTraceSweeper) {
8732     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8733   }
8734   set_inFreeRange(false);
8735   set_freeRangeInFreeLists(false);
8736 }
8737 
8738 // We take a break if we've been at this for a while,
8739 // so as to avoid monopolizing the locks involved.
8740 void SweepClosure::do_yield_work(HeapWord* addr) {
8741   // Return current free chunk being used for coalescing (if any)
8742   // to the appropriate freelist.  After yielding, the next
8743   // free block encountered will start a coalescing range of
8744   // free blocks.  If the next free block is adjacent to the
8745   // chunk just flushed, they will need to wait for the next
8746   // sweep to be coalesced.
8747   if (inFreeRange()) {
8748     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8749   }
8750 
8751   // First give up the locks, then yield, then re-lock.
8752   // We should probably use a constructor/destructor idiom to
8753   // do this unlock/lock or modify the MutexUnlocker class to
8754   // serve our purpose. XXX
8755   assert_lock_strong(_bitMap->lock());
8756   assert_lock_strong(_freelistLock);
8757   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8758          "CMS thread should hold CMS token");
8759   _bitMap->lock()->unlock();
8760   _freelistLock->unlock();
8761   ConcurrentMarkSweepThread::desynchronize(true);
8762   ConcurrentMarkSweepThread::acknowledge_yield_request();
8763   _collector->stopTimer();
8764   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8765   if (PrintCMSStatistics != 0) {
8766     _collector->incrementYields();
8767   }
8768   _collector->icms_wait();
8769 
8770   // See the comment in coordinator_yield()
8771   for (unsigned i = 0; i < CMSYieldSleepCount &&
8772                        ConcurrentMarkSweepThread::should_yield() &&
8773                        !CMSCollector::foregroundGCIsActive(); ++i) {
8774     os::sleep(Thread::current(), 1, false);
8775     ConcurrentMarkSweepThread::acknowledge_yield_request();
8776   }
8777 
8778   ConcurrentMarkSweepThread::synchronize(true);
8779   _freelistLock->lock();
8780   _bitMap->lock()->lock_without_safepoint_check();
8781   _collector->startTimer();
8782 }
8783 
8784 #ifndef PRODUCT
8785 // This is actually very useful in a product build if it can
8786 // be called from the debugger.  Compile it into the product
8787 // as needed.
8788 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8789   return debug_cms_space->verify_chunk_in_free_list(fc);
8790 }
8791 #endif
8792 
8793 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8794   if (CMSTraceSweeper) {
8795     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8796                            fc, fc->size());
8797   }
8798 }
8799 
8800 // CMSIsAliveClosure
8801 bool CMSIsAliveClosure::do_object_b(oop obj) {
8802   HeapWord* addr = (HeapWord*)obj;
8803   return addr != NULL &&
8804          (!_span.contains(addr) || _bit_map->isMarked(addr));
8805 }
8806 
8807 
8808 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8809                       MemRegion span,
8810                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8811                       bool cpc):
8812   _collector(collector),
8813   _span(span),
8814   _bit_map(bit_map),
8815   _mark_stack(mark_stack),
8816   _concurrent_precleaning(cpc) {
8817   assert(!_span.is_empty(), "Empty span could spell trouble");
8818 }
8819 
8820 
8821 // CMSKeepAliveClosure: the serial version
8822 void CMSKeepAliveClosure::do_oop(oop obj) {
8823   HeapWord* addr = (HeapWord*)obj;
8824   if (_span.contains(addr) &&
8825       !_bit_map->isMarked(addr)) {
8826     _bit_map->mark(addr);
8827     bool simulate_overflow = false;
8828     NOT_PRODUCT(
8829       if (CMSMarkStackOverflowALot &&
8830           _collector->simulate_overflow()) {
8831         // simulate a stack overflow
8832         simulate_overflow = true;
8833       }
8834     )
8835     if (simulate_overflow || !_mark_stack->push(obj)) {
8836       if (_concurrent_precleaning) {
8837         // We dirty the overflown object and let the remark
8838         // phase deal with it.
8839         assert(_collector->overflow_list_is_empty(), "Error");
8840         // In the case of object arrays, we need to dirty all of
8841         // the cards that the object spans. No locking or atomics
8842         // are needed since no one else can be mutating the mod union
8843         // table.
8844         if (obj->is_objArray()) {
8845           size_t sz = obj->size();
8846           HeapWord* end_card_addr =
8847             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8848           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8849           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8850           _collector->_modUnionTable.mark_range(redirty_range);
8851         } else {
8852           _collector->_modUnionTable.mark(addr);
8853         }
8854         _collector->_ser_kac_preclean_ovflw++;
8855       } else {
8856         _collector->push_on_overflow_list(obj);
8857         _collector->_ser_kac_ovflw++;
8858       }
8859     }
8860   }
8861 }
8862 
8863 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8864 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8865 
8866 // CMSParKeepAliveClosure: a parallel version of the above.
8867 // The work queues are private to each closure (thread),
8868 // but (may be) available for stealing by other threads.
8869 void CMSParKeepAliveClosure::do_oop(oop obj) {
8870   HeapWord* addr = (HeapWord*)obj;
8871   if (_span.contains(addr) &&
8872       !_bit_map->isMarked(addr)) {
8873     // In general, during recursive tracing, several threads
8874     // may be concurrently getting here; the first one to
8875     // "tag" it, claims it.
8876     if (_bit_map->par_mark(addr)) {
8877       bool res = _work_queue->push(obj);
8878       assert(res, "Low water mark should be much less than capacity");
8879       // Do a recursive trim in the hope that this will keep
8880       // stack usage lower, but leave some oops for potential stealers
8881       trim_queue(_low_water_mark);
8882     } // Else, another thread got there first
8883   }
8884 }
8885 
8886 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8887 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8888 
8889 void CMSParKeepAliveClosure::trim_queue(uint max) {
8890   while (_work_queue->size() > max) {
8891     oop new_oop;
8892     if (_work_queue->pop_local(new_oop)) {
8893       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8894       assert(_bit_map->isMarked((HeapWord*)new_oop),
8895              "no white objects on this stack!");
8896       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8897       // iterate over the oops in this oop, marking and pushing
8898       // the ones in CMS heap (i.e. in _span).
8899       new_oop->oop_iterate(&_mark_and_push);
8900     }
8901   }
8902 }
8903 
8904 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8905                                 CMSCollector* collector,
8906                                 MemRegion span, CMSBitMap* bit_map,
8907                                 OopTaskQueue* work_queue):
8908   _collector(collector),
8909   _span(span),
8910   _bit_map(bit_map),
8911   _work_queue(work_queue) { }
8912 
8913 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8914   HeapWord* addr = (HeapWord*)obj;
8915   if (_span.contains(addr) &&
8916       !_bit_map->isMarked(addr)) {
8917     if (_bit_map->par_mark(addr)) {
8918       bool simulate_overflow = false;
8919       NOT_PRODUCT(
8920         if (CMSMarkStackOverflowALot &&
8921             _collector->par_simulate_overflow()) {
8922           // simulate a stack overflow
8923           simulate_overflow = true;
8924         }
8925       )
8926       if (simulate_overflow || !_work_queue->push(obj)) {
8927         _collector->par_push_on_overflow_list(obj);
8928         _collector->_par_kac_ovflw++;
8929       }
8930     } // Else another thread got there already
8931   }
8932 }
8933 
8934 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8935 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8936 
8937 //////////////////////////////////////////////////////////////////
8938 //  CMSExpansionCause                /////////////////////////////
8939 //////////////////////////////////////////////////////////////////
8940 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8941   switch (cause) {
8942     case _no_expansion:
8943       return "No expansion";
8944     case _satisfy_free_ratio:
8945       return "Free ratio";
8946     case _satisfy_promotion:
8947       return "Satisfy promotion";
8948     case _satisfy_allocation:
8949       return "allocation";
8950     case _allocate_par_lab:
8951       return "Par LAB";
8952     case _allocate_par_spooling_space:
8953       return "Par Spooling Space";
8954     case _adaptive_size_policy:
8955       return "Ergonomics";
8956     default:
8957       return "unknown";
8958   }
8959 }
8960 
8961 void CMSDrainMarkingStackClosure::do_void() {
8962   // the max number to take from overflow list at a time
8963   const size_t num = _mark_stack->capacity()/4;
8964   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8965          "Overflow list should be NULL during concurrent phases");
8966   while (!_mark_stack->isEmpty() ||
8967          // if stack is empty, check the overflow list
8968          _collector->take_from_overflow_list(num, _mark_stack)) {
8969     oop obj = _mark_stack->pop();
8970     HeapWord* addr = (HeapWord*)obj;
8971     assert(_span.contains(addr), "Should be within span");
8972     assert(_bit_map->isMarked(addr), "Should be marked");
8973     assert(obj->is_oop(), "Should be an oop");
8974     obj->oop_iterate(_keep_alive);
8975   }
8976 }
8977 
8978 void CMSParDrainMarkingStackClosure::do_void() {
8979   // drain queue
8980   trim_queue(0);
8981 }
8982 
8983 // Trim our work_queue so its length is below max at return
8984 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8985   while (_work_queue->size() > max) {
8986     oop new_oop;
8987     if (_work_queue->pop_local(new_oop)) {
8988       assert(new_oop->is_oop(), "Expected an oop");
8989       assert(_bit_map->isMarked((HeapWord*)new_oop),
8990              "no white objects on this stack!");
8991       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8992       // iterate over the oops in this oop, marking and pushing
8993       // the ones in CMS heap (i.e. in _span).
8994       new_oop->oop_iterate(&_mark_and_push);
8995     }
8996   }
8997 }
8998 
8999 ////////////////////////////////////////////////////////////////////
9000 // Support for Marking Stack Overflow list handling and related code
9001 ////////////////////////////////////////////////////////////////////
9002 // Much of the following code is similar in shape and spirit to the
9003 // code used in ParNewGC. We should try and share that code
9004 // as much as possible in the future.
9005 
9006 #ifndef PRODUCT
9007 // Debugging support for CMSStackOverflowALot
9008 
9009 // It's OK to call this multi-threaded;  the worst thing
9010 // that can happen is that we'll get a bunch of closely
9011 // spaced simulated overflows, but that's OK, in fact
9012 // probably good as it would exercise the overflow code
9013 // under contention.
9014 bool CMSCollector::simulate_overflow() {
9015   if (_overflow_counter-- <= 0) { // just being defensive
9016     _overflow_counter = CMSMarkStackOverflowInterval;
9017     return true;
9018   } else {
9019     return false;
9020   }
9021 }
9022 
9023 bool CMSCollector::par_simulate_overflow() {
9024   return simulate_overflow();
9025 }
9026 #endif
9027 
9028 // Single-threaded
9029 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
9030   assert(stack->isEmpty(), "Expected precondition");
9031   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
9032   size_t i = num;
9033   oop  cur = _overflow_list;
9034   const markOop proto = markOopDesc::prototype();
9035   NOT_PRODUCT(ssize_t n = 0;)
9036   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
9037     next = oop(cur->mark());
9038     cur->set_mark(proto);   // until proven otherwise
9039     assert(cur->is_oop(), "Should be an oop");
9040     bool res = stack->push(cur);
9041     assert(res, "Bit off more than can chew?");
9042     NOT_PRODUCT(n++;)
9043   }
9044   _overflow_list = cur;
9045 #ifndef PRODUCT
9046   assert(_num_par_pushes >= n, "Too many pops?");
9047   _num_par_pushes -=n;
9048 #endif
9049   return !stack->isEmpty();
9050 }
9051 
9052 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
9053 // (MT-safe) Get a prefix of at most "num" from the list.
9054 // The overflow list is chained through the mark word of
9055 // each object in the list. We fetch the entire list,
9056 // break off a prefix of the right size and return the
9057 // remainder. If other threads try to take objects from
9058 // the overflow list at that time, they will wait for
9059 // some time to see if data becomes available. If (and
9060 // only if) another thread places one or more object(s)
9061 // on the global list before we have returned the suffix
9062 // to the global list, we will walk down our local list
9063 // to find its end and append the global list to
9064 // our suffix before returning it. This suffix walk can
9065 // prove to be expensive (quadratic in the amount of traffic)
9066 // when there are many objects in the overflow list and
9067 // there is much producer-consumer contention on the list.
9068 // *NOTE*: The overflow list manipulation code here and
9069 // in ParNewGeneration:: are very similar in shape,
9070 // except that in the ParNew case we use the old (from/eden)
9071 // copy of the object to thread the list via its klass word.
9072 // Because of the common code, if you make any changes in
9073 // the code below, please check the ParNew version to see if
9074 // similar changes might be needed.
9075 // CR 6797058 has been filed to consolidate the common code.
9076 bool CMSCollector::par_take_from_overflow_list(size_t num,
9077                                                OopTaskQueue* work_q,
9078                                                int no_of_gc_threads) {
9079   assert(work_q->size() == 0, "First empty local work queue");
9080   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
9081   if (_overflow_list == NULL) {
9082     return false;
9083   }
9084   // Grab the entire list; we'll put back a suffix
9085   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9086   Thread* tid = Thread::current();
9087   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9088   // set to ParallelGCThreads.
9089   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9090   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9091   // If the list is busy, we spin for a short while,
9092   // sleeping between attempts to get the list.
9093   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9094     os::sleep(tid, sleep_time_millis, false);
9095     if (_overflow_list == NULL) {
9096       // Nothing left to take
9097       return false;
9098     } else if (_overflow_list != BUSY) {
9099       // Try and grab the prefix
9100       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9101     }
9102   }
9103   // If the list was found to be empty, or we spun long
9104   // enough, we give up and return empty-handed. If we leave
9105   // the list in the BUSY state below, it must be the case that
9106   // some other thread holds the overflow list and will set it
9107   // to a non-BUSY state in the future.
9108   if (prefix == NULL || prefix == BUSY) {
9109      // Nothing to take or waited long enough
9110      if (prefix == NULL) {
9111        // Write back the NULL in case we overwrote it with BUSY above
9112        // and it is still the same value.
9113        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9114      }
9115      return false;
9116   }
9117   assert(prefix != NULL && prefix != BUSY, "Error");
9118   size_t i = num;
9119   oop cur = prefix;
9120   // Walk down the first "num" objects, unless we reach the end.
9121   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9122   if (cur->mark() == NULL) {
9123     // We have "num" or fewer elements in the list, so there
9124     // is nothing to return to the global list.
9125     // Write back the NULL in lieu of the BUSY we wrote
9126     // above, if it is still the same value.
9127     if (_overflow_list == BUSY) {
9128       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9129     }
9130   } else {
9131     // Chop off the suffix and return it to the global list.
9132     assert(cur->mark() != BUSY, "Error");
9133     oop suffix_head = cur->mark(); // suffix will be put back on global list
9134     cur->set_mark(NULL);           // break off suffix
9135     // It's possible that the list is still in the empty(busy) state
9136     // we left it in a short while ago; in that case we may be
9137     // able to place back the suffix without incurring the cost
9138     // of a walk down the list.
9139     oop observed_overflow_list = _overflow_list;
9140     oop cur_overflow_list = observed_overflow_list;
9141     bool attached = false;
9142     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9143       observed_overflow_list =
9144         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9145       if (cur_overflow_list == observed_overflow_list) {
9146         attached = true;
9147         break;
9148       } else cur_overflow_list = observed_overflow_list;
9149     }
9150     if (!attached) {
9151       // Too bad, someone else sneaked in (at least) an element; we'll need
9152       // to do a splice. Find tail of suffix so we can prepend suffix to global
9153       // list.
9154       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9155       oop suffix_tail = cur;
9156       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9157              "Tautology");
9158       observed_overflow_list = _overflow_list;
9159       do {
9160         cur_overflow_list = observed_overflow_list;
9161         if (cur_overflow_list != BUSY) {
9162           // Do the splice ...
9163           suffix_tail->set_mark(markOop(cur_overflow_list));
9164         } else { // cur_overflow_list == BUSY
9165           suffix_tail->set_mark(NULL);
9166         }
9167         // ... and try to place spliced list back on overflow_list ...
9168         observed_overflow_list =
9169           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9170       } while (cur_overflow_list != observed_overflow_list);
9171       // ... until we have succeeded in doing so.
9172     }
9173   }
9174 
9175   // Push the prefix elements on work_q
9176   assert(prefix != NULL, "control point invariant");
9177   const markOop proto = markOopDesc::prototype();
9178   oop next;
9179   NOT_PRODUCT(ssize_t n = 0;)
9180   for (cur = prefix; cur != NULL; cur = next) {
9181     next = oop(cur->mark());
9182     cur->set_mark(proto);   // until proven otherwise
9183     assert(cur->is_oop(), "Should be an oop");
9184     bool res = work_q->push(cur);
9185     assert(res, "Bit off more than we can chew?");
9186     NOT_PRODUCT(n++;)
9187   }
9188 #ifndef PRODUCT
9189   assert(_num_par_pushes >= n, "Too many pops?");
9190   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9191 #endif
9192   return true;
9193 }
9194 
9195 // Single-threaded
9196 void CMSCollector::push_on_overflow_list(oop p) {
9197   NOT_PRODUCT(_num_par_pushes++;)
9198   assert(p->is_oop(), "Not an oop");
9199   preserve_mark_if_necessary(p);
9200   p->set_mark((markOop)_overflow_list);
9201   _overflow_list = p;
9202 }
9203 
9204 // Multi-threaded; use CAS to prepend to overflow list
9205 void CMSCollector::par_push_on_overflow_list(oop p) {
9206   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9207   assert(p->is_oop(), "Not an oop");
9208   par_preserve_mark_if_necessary(p);
9209   oop observed_overflow_list = _overflow_list;
9210   oop cur_overflow_list;
9211   do {
9212     cur_overflow_list = observed_overflow_list;
9213     if (cur_overflow_list != BUSY) {
9214       p->set_mark(markOop(cur_overflow_list));
9215     } else {
9216       p->set_mark(NULL);
9217     }
9218     observed_overflow_list =
9219       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9220   } while (cur_overflow_list != observed_overflow_list);
9221 }
9222 #undef BUSY
9223 
9224 // Single threaded
9225 // General Note on GrowableArray: pushes may silently fail
9226 // because we are (temporarily) out of C-heap for expanding
9227 // the stack. The problem is quite ubiquitous and affects
9228 // a lot of code in the JVM. The prudent thing for GrowableArray
9229 // to do (for now) is to exit with an error. However, that may
9230 // be too draconian in some cases because the caller may be
9231 // able to recover without much harm. For such cases, we
9232 // should probably introduce a "soft_push" method which returns
9233 // an indication of success or failure with the assumption that
9234 // the caller may be able to recover from a failure; code in
9235 // the VM can then be changed, incrementally, to deal with such
9236 // failures where possible, thus, incrementally hardening the VM
9237 // in such low resource situations.
9238 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9239   _preserved_oop_stack.push(p);
9240   _preserved_mark_stack.push(m);
9241   assert(m == p->mark(), "Mark word changed");
9242   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9243          "bijection");
9244 }
9245 
9246 // Single threaded
9247 void CMSCollector::preserve_mark_if_necessary(oop p) {
9248   markOop m = p->mark();
9249   if (m->must_be_preserved(p)) {
9250     preserve_mark_work(p, m);
9251   }
9252 }
9253 
9254 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9255   markOop m = p->mark();
9256   if (m->must_be_preserved(p)) {
9257     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9258     // Even though we read the mark word without holding
9259     // the lock, we are assured that it will not change
9260     // because we "own" this oop, so no other thread can
9261     // be trying to push it on the overflow list; see
9262     // the assertion in preserve_mark_work() that checks
9263     // that m == p->mark().
9264     preserve_mark_work(p, m);
9265   }
9266 }
9267 
9268 // We should be able to do this multi-threaded,
9269 // a chunk of stack being a task (this is
9270 // correct because each oop only ever appears
9271 // once in the overflow list. However, it's
9272 // not very easy to completely overlap this with
9273 // other operations, so will generally not be done
9274 // until all work's been completed. Because we
9275 // expect the preserved oop stack (set) to be small,
9276 // it's probably fine to do this single-threaded.
9277 // We can explore cleverer concurrent/overlapped/parallel
9278 // processing of preserved marks if we feel the
9279 // need for this in the future. Stack overflow should
9280 // be so rare in practice and, when it happens, its
9281 // effect on performance so great that this will
9282 // likely just be in the noise anyway.
9283 void CMSCollector::restore_preserved_marks_if_any() {
9284   assert(SafepointSynchronize::is_at_safepoint(),
9285          "world should be stopped");
9286   assert(Thread::current()->is_ConcurrentGC_thread() ||
9287          Thread::current()->is_VM_thread(),
9288          "should be single-threaded");
9289   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9290          "bijection");
9291 
9292   while (!_preserved_oop_stack.is_empty()) {
9293     oop p = _preserved_oop_stack.pop();
9294     assert(p->is_oop(), "Should be an oop");
9295     assert(_span.contains(p), "oop should be in _span");
9296     assert(p->mark() == markOopDesc::prototype(),
9297            "Set when taken from overflow list");
9298     markOop m = _preserved_mark_stack.pop();
9299     p->set_mark(m);
9300   }
9301   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9302          "stacks were cleared above");
9303 }
9304 
9305 #ifndef PRODUCT
9306 bool CMSCollector::no_preserved_marks() const {
9307   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9308 }
9309 #endif
9310 
9311 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9312 {
9313   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9314   CMSAdaptiveSizePolicy* size_policy =
9315     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9316   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9317     "Wrong type for size policy");
9318   return size_policy;
9319 }
9320 
9321 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9322                                            size_t desired_promo_size) {
9323   if (cur_promo_size < desired_promo_size) {
9324     size_t expand_bytes = desired_promo_size - cur_promo_size;
9325     if (PrintAdaptiveSizePolicy && Verbose) {
9326       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9327         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9328         expand_bytes);
9329     }
9330     expand(expand_bytes,
9331            MinHeapDeltaBytes,
9332            CMSExpansionCause::_adaptive_size_policy);
9333   } else if (desired_promo_size < cur_promo_size) {
9334     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9335     if (PrintAdaptiveSizePolicy && Verbose) {
9336       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9337         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9338         shrink_bytes);
9339     }
9340     shrink(shrink_bytes);
9341   }
9342 }
9343 
9344 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9345   GenCollectedHeap* gch = GenCollectedHeap::heap();
9346   CMSGCAdaptivePolicyCounters* counters =
9347     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9348   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9349     "Wrong kind of counters");
9350   return counters;
9351 }
9352 
9353 
9354 void ASConcurrentMarkSweepGeneration::update_counters() {
9355   if (UsePerfData) {
9356     _space_counters->update_all();
9357     _gen_counters->update_all();
9358     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9359     GenCollectedHeap* gch = GenCollectedHeap::heap();
9360     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9361     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9362       "Wrong gc statistics type");
9363     counters->update_counters(gc_stats_l);
9364   }
9365 }
9366 
9367 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9368   if (UsePerfData) {
9369     _space_counters->update_used(used);
9370     _space_counters->update_capacity();
9371     _gen_counters->update_all();
9372 
9373     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9374     GenCollectedHeap* gch = GenCollectedHeap::heap();
9375     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9376     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9377       "Wrong gc statistics type");
9378     counters->update_counters(gc_stats_l);
9379   }
9380 }
9381 
9382 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9383   assert_locked_or_safepoint(Heap_lock);
9384   assert_lock_strong(freelistLock());
9385   HeapWord* old_end = _cmsSpace->end();
9386   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9387   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9388   FreeChunk* chunk_at_end = find_chunk_at_end();
9389   if (chunk_at_end == NULL) {
9390     // No room to shrink
9391     if (PrintGCDetails && Verbose) {
9392       gclog_or_tty->print_cr("No room to shrink: old_end  "
9393         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9394         " chunk_at_end  " PTR_FORMAT,
9395         old_end, unallocated_start, chunk_at_end);
9396     }
9397     return;
9398   } else {
9399 
9400     // Find the chunk at the end of the space and determine
9401     // how much it can be shrunk.
9402     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9403     size_t aligned_shrinkable_size_in_bytes =
9404       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9405     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9406       "Inconsistent chunk at end of space");
9407     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9408     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9409 
9410     // Shrink the underlying space
9411     _virtual_space.shrink_by(bytes);
9412     if (PrintGCDetails && Verbose) {
9413       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9414         " desired_bytes " SIZE_FORMAT
9415         " shrinkable_size_in_bytes " SIZE_FORMAT
9416         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9417         "  bytes  " SIZE_FORMAT,
9418         desired_bytes, shrinkable_size_in_bytes,
9419         aligned_shrinkable_size_in_bytes, bytes);
9420       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9421         "  unallocated_start  " SIZE_FORMAT,
9422         old_end, unallocated_start);
9423     }
9424 
9425     // If the space did shrink (shrinking is not guaranteed),
9426     // shrink the chunk at the end by the appropriate amount.
9427     if (((HeapWord*)_virtual_space.high()) < old_end) {
9428       size_t new_word_size =
9429         heap_word_size(_virtual_space.committed_size());
9430 
9431       // Have to remove the chunk from the dictionary because it is changing
9432       // size and might be someplace elsewhere in the dictionary.
9433 
9434       // Get the chunk at end, shrink it, and put it
9435       // back.
9436       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9437       size_t word_size_change = word_size_before - new_word_size;
9438       size_t chunk_at_end_old_size = chunk_at_end->size();
9439       assert(chunk_at_end_old_size >= word_size_change,
9440         "Shrink is too large");
9441       chunk_at_end->set_size(chunk_at_end_old_size -
9442                           word_size_change);
9443       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9444         word_size_change);
9445 
9446       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9447 
9448       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9449       _bts->resize(new_word_size);  // resize the block offset shared array
9450       Universe::heap()->barrier_set()->resize_covered_region(mr);
9451       _cmsSpace->assert_locked();
9452       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9453 
9454       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9455 
9456       // update the space and generation capacity counters
9457       if (UsePerfData) {
9458         _space_counters->update_capacity();
9459         _gen_counters->update_all();
9460       }
9461 
9462       if (Verbose && PrintGCDetails) {
9463         size_t new_mem_size = _virtual_space.committed_size();
9464         size_t old_mem_size = new_mem_size + bytes;
9465         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9466                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9467       }
9468     }
9469 
9470     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9471       "Inconsistency at end of space");
9472     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9473       "Shrinking is inconsistent");
9474     return;
9475   }
9476 }
9477 // Transfer some number of overflown objects to usual marking
9478 // stack. Return true if some objects were transferred.
9479 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9480   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9481                     (size_t)ParGCDesiredObjsFromOverflowList);
9482 
9483   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9484   assert(_collector->overflow_list_is_empty() || res,
9485          "If list is not empty, we should have taken something");
9486   assert(!res || !_mark_stack->isEmpty(),
9487          "If we took something, it should now be on our stack");
9488   return res;
9489 }
9490 
9491 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9492   size_t res = _sp->block_size_no_stall(addr, _collector);
9493   if (_sp->block_is_obj(addr)) {
9494     if (_live_bit_map->isMarked(addr)) {
9495       // It can't have been dead in a previous cycle
9496       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9497     } else {
9498       _dead_bit_map->mark(addr);      // mark the dead object
9499     }
9500   }
9501   // Could be 0, if the block size could not be computed without stalling.
9502   return res;
9503 }
9504 
9505 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9506 
9507   switch (phase) {
9508     case CMSCollector::InitialMarking:
9509       initialize(true  /* fullGC */ ,
9510                  cause /* cause of the GC */,
9511                  true  /* recordGCBeginTime */,
9512                  true  /* recordPreGCUsage */,
9513                  false /* recordPeakUsage */,
9514                  false /* recordPostGCusage */,
9515                  true  /* recordAccumulatedGCTime */,
9516                  false /* recordGCEndTime */,
9517                  false /* countCollection */  );
9518       break;
9519 
9520     case CMSCollector::FinalMarking:
9521       initialize(true  /* fullGC */ ,
9522                  cause /* cause of the GC */,
9523                  false /* recordGCBeginTime */,
9524                  false /* recordPreGCUsage */,
9525                  false /* recordPeakUsage */,
9526                  false /* recordPostGCusage */,
9527                  true  /* recordAccumulatedGCTime */,
9528                  false /* recordGCEndTime */,
9529                  false /* countCollection */  );
9530       break;
9531 
9532     case CMSCollector::Sweeping:
9533       initialize(true  /* fullGC */ ,
9534                  cause /* cause of the GC */,
9535                  false /* recordGCBeginTime */,
9536                  false /* recordPreGCUsage */,
9537                  true  /* recordPeakUsage */,
9538                  true  /* recordPostGCusage */,
9539                  false /* recordAccumulatedGCTime */,
9540                  true  /* recordGCEndTime */,
9541                  true  /* countCollection */  );
9542       break;
9543 
9544     default:
9545       ShouldNotReachHere();
9546   }
9547 }