1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeBlob.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/dependencies.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc_implementation/shared/markSweep.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/gcLocker.hpp"
  37 #include "memory/iterator.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/objArrayOop.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/icache.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/sweeper.hpp"
  48 #include "runtime/compilationPolicy.hpp"
  49 #include "services/memoryService.hpp"
  50 #include "trace/tracing.hpp"
  51 #include "utilities/xmlstream.hpp"
  52 #ifdef COMPILER1
  53 #include "c1/c1_Compilation.hpp"
  54 #include "c1/c1_Compiler.hpp"
  55 #endif
  56 #ifdef COMPILER2
  57 #include "opto/c2compiler.hpp"
  58 #include "opto/compile.hpp"
  59 #include "opto/node.hpp"
  60 #endif
  61 
  62 // Helper class for printing in CodeCache
  63 class CodeBlob_sizes {
  64  private:
  65   int count;
  66   int total_size;
  67   int header_size;
  68   int code_size;
  69   int stub_size;
  70   int relocation_size;
  71   int scopes_oop_size;
  72   int scopes_metadata_size;
  73   int scopes_data_size;
  74   int scopes_pcs_size;
  75 
  76  public:
  77   CodeBlob_sizes() {
  78     count            = 0;
  79     total_size       = 0;
  80     header_size      = 0;
  81     code_size        = 0;
  82     stub_size        = 0;
  83     relocation_size  = 0;
  84     scopes_oop_size  = 0;
  85     scopes_metadata_size  = 0;
  86     scopes_data_size = 0;
  87     scopes_pcs_size  = 0;
  88   }
  89 
  90   int total()                                    { return total_size; }
  91   bool is_empty()                                { return count == 0; }
  92 
  93   void print(const char* title) {
  94     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
  95                   count,
  96                   title,
  97                   (int)(total() / K),
  98                   header_size             * 100 / total_size,
  99                   relocation_size         * 100 / total_size,
 100                   code_size               * 100 / total_size,
 101                   stub_size               * 100 / total_size,
 102                   scopes_oop_size         * 100 / total_size,
 103                   scopes_metadata_size    * 100 / total_size,
 104                   scopes_data_size        * 100 / total_size,
 105                   scopes_pcs_size         * 100 / total_size);
 106   }
 107 
 108   void add(CodeBlob* cb) {
 109     count++;
 110     total_size       += cb->size();
 111     header_size      += cb->header_size();
 112     relocation_size  += cb->relocation_size();
 113     if (cb->is_nmethod()) {
 114       nmethod* nm = cb->as_nmethod_or_null();
 115       code_size        += nm->insts_size();
 116       stub_size        += nm->stub_size();
 117 
 118       scopes_oop_size  += nm->oops_size();
 119       scopes_metadata_size  += nm->metadata_size();
 120       scopes_data_size += nm->scopes_data_size();
 121       scopes_pcs_size  += nm->scopes_pcs_size();
 122     } else {
 123       code_size        += cb->code_size();
 124     }
 125   }
 126 };
 127 
 128 // Iterate over all CodeHeaps
 129 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 130 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 131 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 132 
 133 address CodeCache::_low_bound = 0;
 134 address CodeCache::_high_bound = 0;
 135 int CodeCache::_number_of_blobs = 0;
 136 int CodeCache::_number_of_adapters = 0;
 137 int CodeCache::_number_of_nmethods = 0;
 138 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 139 bool CodeCache::_needs_cache_clean = false;
 140 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 141 int CodeCache::_codemem_full_count = 0;
 142 
 143 // Initialize array of CodeHeaps
 144 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 145 
 146 void CodeCache::initialize_heaps() {
 147   // Determine size of compiler buffers
 148   size_t code_buffers_size = 0;
 149 #ifdef COMPILER1
 150   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 151   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 152   code_buffers_size += c1_count * Compiler::code_buffer_size();
 153 #endif
 154 #ifdef COMPILER2
 155   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 156   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 157   // Initial size of constant table (this may be increased if a compiled method needs more space)
 158   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 159 #endif
 160 
 161   // Calculate default CodeHeap sizes if not set by user
 162   if (!FLAG_IS_CMDLINE(NonNMethodCodeHeapSize) && !FLAG_IS_CMDLINE(ProfiledCodeHeapSize)
 163       && !FLAG_IS_CMDLINE(NonProfiledCodeHeapSize)) {
 164     // Increase default NonNMethodCodeHeapSize to account for compiler buffers
 165     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, NonNMethodCodeHeapSize + code_buffers_size);
 166 
 167     // Check if we have enough space for the non-nmethod code heap
 168     if (ReservedCodeCacheSize > NonNMethodCodeHeapSize) {
 169       // Use the default value for NonNMethodCodeHeapSize and one half of the
 170       // remaining size for non-profiled methods and one half for profiled methods
 171       size_t remaining_size = ReservedCodeCacheSize - NonNMethodCodeHeapSize;
 172       size_t profiled_size = remaining_size / 2;
 173       size_t non_profiled_size = remaining_size - profiled_size;
 174       FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 175       FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 176     } else {
 177       // Use all space for the non-nmethod heap and set other heaps to minimal size
 178       FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, ReservedCodeCacheSize - os::vm_page_size() * 2);
 179       FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, os::vm_page_size());
 180       FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, os::vm_page_size());
 181     }
 182   }
 183 
 184   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 185   if(!heap_available(CodeBlobType::MethodProfiled)) {
 186     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, NonProfiledCodeHeapSize + ProfiledCodeHeapSize);
 187     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
 188   }
 189   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 190   if(!heap_available(CodeBlobType::MethodNonProfiled)) {
 191     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, NonNMethodCodeHeapSize + NonProfiledCodeHeapSize);
 192     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
 193   }
 194 
 195   // Make sure we have enough space for VM internal code
 196   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 197   if (NonNMethodCodeHeapSize < (min_code_cache_size + code_buffers_size)) {
 198     vm_exit_during_initialization("Not enough space in non-nmethod code heap to run VM.");
 199   }
 200   guarantee(NonProfiledCodeHeapSize + ProfiledCodeHeapSize + NonNMethodCodeHeapSize <= ReservedCodeCacheSize, "Size check");
 201 
 202   // Align reserved sizes of CodeHeaps
 203   size_t non_method_size   = ReservedCodeSpace::allocation_align_size_up(NonNMethodCodeHeapSize);
 204   size_t profiled_size     = ReservedCodeSpace::allocation_align_size_up(ProfiledCodeHeapSize);
 205   size_t non_profiled_size = ReservedCodeSpace::allocation_align_size_up(NonProfiledCodeHeapSize);
 206 
 207   // Compute initial sizes of CodeHeaps
 208   size_t init_non_method_size   = MIN2(InitialCodeCacheSize, non_method_size);
 209   size_t init_profiled_size     = MIN2(InitialCodeCacheSize, profiled_size);
 210   size_t init_non_profiled_size = MIN2(InitialCodeCacheSize, non_profiled_size);
 211 
 212   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 213   // parts for the individual heaps. The memory layout looks like this:
 214   // ---------- high -----------
 215   //    Non-profiled nmethods
 216   //      Profiled nmethods
 217   //         Non-nmethods
 218   // ---------- low ------------
 219   ReservedCodeSpace rs = reserve_heap_memory(non_profiled_size + profiled_size + non_method_size);
 220   ReservedSpace non_method_space    = rs.first_part(non_method_size);
 221   ReservedSpace rest                = rs.last_part(non_method_size);
 222   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 223   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 224 
 225   // Non-nmethods (stubs, adapters, ...)
 226   add_heap(non_method_space, "CodeHeap 'non-nmethods'", init_non_method_size, CodeBlobType::NonNMethod);
 227   // Tier 2 and tier 3 (profiled) methods
 228   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", init_profiled_size, CodeBlobType::MethodProfiled);
 229   // Tier 1 and tier 4 (non-profiled) methods and native methods
 230   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", init_non_profiled_size, CodeBlobType::MethodNonProfiled);
 231 }
 232 
 233 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 234   // Determine alignment
 235   const size_t page_size = os::can_execute_large_page_memory() ?
 236           MIN2(os::page_size_for_region_aligned(InitialCodeCacheSize, 8),
 237                os::page_size_for_region_aligned(size, 8)) :
 238           os::vm_page_size();
 239   const size_t granularity = os::vm_allocation_granularity();
 240   const size_t r_align = MAX2(page_size, granularity);
 241   const size_t r_size = align_size_up(size, r_align);
 242   const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
 243     MAX2(page_size, granularity);
 244 
 245   ReservedCodeSpace rs(r_size, rs_align, rs_align > 0);
 246 
 247   // Initialize bounds
 248   _low_bound = (address)rs.base();
 249   _high_bound = _low_bound + rs.size();
 250 
 251   return rs;
 252 }
 253 
 254 bool CodeCache::heap_available(int code_blob_type) {
 255   if (!SegmentedCodeCache) {
 256     // No segmentation: use a single code heap
 257     return (code_blob_type == CodeBlobType::All);
 258   } else if (Arguments::mode() == Arguments::_int) {
 259     // Interpreter only: we don't need any method code heaps
 260     return (code_blob_type == CodeBlobType::NonNMethod);
 261   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 262     // Tiered compilation: use all code heaps
 263     return (code_blob_type < CodeBlobType::All);
 264   } else {
 265     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 266     return (code_blob_type == CodeBlobType::NonNMethod) ||
 267            (code_blob_type == CodeBlobType::MethodNonProfiled);
 268   }
 269 }
 270 
 271 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 272   switch(code_blob_type) {
 273   case CodeBlobType::NonNMethod:
 274     return "NonNMethodCodeHeapSize";
 275     break;
 276   case CodeBlobType::MethodNonProfiled:
 277     return "NonProfiledCodeHeapSize";
 278     break;
 279   case CodeBlobType::MethodProfiled:
 280     return "ProfiledCodeHeapSize";
 281     break;
 282   }
 283   ShouldNotReachHere();
 284   return NULL;
 285 }
 286 
 287 void CodeCache::add_heap(ReservedSpace rs, const char* name, size_t size_initial, int code_blob_type) {
 288   // Check if heap is needed
 289   if (!heap_available(code_blob_type)) {
 290     return;
 291   }
 292 
 293   // Create CodeHeap
 294   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 295   _heaps->append(heap);
 296 
 297   // Reserve Space
 298   size_initial = round_to(size_initial, os::vm_page_size());
 299 
 300   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 301     vm_exit_during_initialization("Could not reserve enough space for code cache");
 302   }
 303 
 304   // Register the CodeHeap
 305   MemoryService::add_code_heap_memory_pool(heap, name);
 306 }
 307 
 308 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 309   assert(cb != NULL, "CodeBlob is null");
 310   FOR_ALL_HEAPS(heap) {
 311     if ((*heap)->contains(cb)) {
 312       return *heap;
 313     }
 314   }
 315   ShouldNotReachHere();
 316   return NULL;
 317 }
 318 
 319 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 320   FOR_ALL_HEAPS(heap) {
 321     if ((*heap)->accepts(code_blob_type)) {
 322       return *heap;
 323     }
 324   }
 325   return NULL;
 326 }
 327 
 328 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 329   assert_locked_or_safepoint(CodeCache_lock);
 330   assert(heap != NULL, "heap is null");
 331   return (CodeBlob*)heap->first();
 332 }
 333 
 334 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 335   if (heap_available(code_blob_type)) {
 336     return first_blob(get_code_heap(code_blob_type));
 337   } else {
 338     return NULL;
 339   }
 340 }
 341 
 342 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 343   assert_locked_or_safepoint(CodeCache_lock);
 344   assert(heap != NULL, "heap is null");
 345   return (CodeBlob*)heap->next(cb);
 346 }
 347 
 348 CodeBlob* CodeCache::next_blob(CodeBlob* cb) {
 349   return next_blob(get_code_heap(cb), cb);
 350 }
 351 
 352 /**
 353  * Do not seize the CodeCache lock here--if the caller has not
 354  * already done so, we are going to lose bigtime, since the code
 355  * cache will contain a garbage CodeBlob until the caller can
 356  * run the constructor for the CodeBlob subclass he is busy
 357  * instantiating.
 358  */
 359 CodeBlob* CodeCache::allocate(int size, int code_blob_type) {
 360   // Possibly wakes up the sweeper thread.
 361   NMethodSweeper::notify(code_blob_type);
 362   assert_locked_or_safepoint(CodeCache_lock);
 363   assert(size > 0, err_msg_res("Code cache allocation request must be > 0 but is %d", size));
 364   if (size <= 0) {
 365     return NULL;
 366   }
 367   CodeBlob* cb = NULL;
 368 
 369   // Get CodeHeap for the given CodeBlobType
 370   CodeHeap* heap = get_code_heap(code_blob_type);
 371   assert(heap != NULL, "heap is null");
 372 
 373   while (true) {
 374     cb = (CodeBlob*)heap->allocate(size);
 375     if (cb != NULL) break;
 376     if (!heap->expand_by(CodeCacheExpansionSize)) {
 377       // Expansion failed
 378       if (SegmentedCodeCache && (code_blob_type == CodeBlobType::NonNMethod)) {
 379         // Fallback solution: Store non-nmethod code in the non-profiled code heap.
 380         // Note that at in the sweeper, we check the reverse_free_ratio of the non-profiled
 381         // code heap and force stack scanning if less than 10% if the code heap are free.
 382         return allocate(size, CodeBlobType::MethodNonProfiled);
 383       }
 384       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 385       CompileBroker::handle_full_code_cache(code_blob_type);
 386       return NULL;
 387     }
 388     if (PrintCodeCacheExtension) {
 389       ResourceMark rm;
 390       if (SegmentedCodeCache) {
 391         tty->print("%s", heap->name());
 392       } else {
 393         tty->print("CodeCache");
 394       }
 395       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 396                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 397                     (address)heap->high() - (address)heap->low_boundary());
 398     }
 399   }
 400   print_trace("allocation", cb, size);
 401   _number_of_blobs++;
 402   return cb;
 403 }
 404 
 405 void CodeCache::free(CodeBlob* cb) {
 406   assert_locked_or_safepoint(CodeCache_lock);
 407 
 408   print_trace("free", cb);
 409   if (cb->is_nmethod()) {
 410     _number_of_nmethods--;
 411     if (((nmethod *)cb)->has_dependencies()) {
 412       _number_of_nmethods_with_dependencies--;
 413     }
 414   }
 415   if (cb->is_adapter_blob()) {
 416     _number_of_adapters--;
 417   }
 418   _number_of_blobs--;
 419 
 420   // Get heap for given CodeBlob and deallocate
 421   get_code_heap(cb)->deallocate(cb);
 422 
 423   assert(_number_of_blobs >= 0, "sanity check");
 424 }
 425 
 426 void CodeCache::commit(CodeBlob* cb) {
 427   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 428   assert_locked_or_safepoint(CodeCache_lock);
 429   if (cb->is_nmethod()) {
 430     _number_of_nmethods++;
 431     if (((nmethod *)cb)->has_dependencies()) {
 432       _number_of_nmethods_with_dependencies++;
 433     }
 434   }
 435   if (cb->is_adapter_blob()) {
 436     _number_of_adapters++;
 437   }
 438 
 439   // flush the hardware I-cache
 440   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 441 }
 442 
 443 bool CodeCache::contains(void *p) {
 444   // It should be ok to call contains without holding a lock
 445   FOR_ALL_HEAPS(heap) {
 446     if ((*heap)->contains(p)) {
 447       return true;
 448     }
 449   }
 450   return false;
 451 }
 452 
 453 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 454 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 455 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 456 CodeBlob* CodeCache::find_blob(void* start) {
 457   CodeBlob* result = find_blob_unsafe(start);
 458   // We could potentially look up non_entrant methods
 459   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || is_error_reported(), "unsafe access to zombie method");
 460   return result;
 461 }
 462 
 463 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 464 // what you are doing)
 465 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 466   // NMT can walk the stack before code cache is created
 467   if (_heaps == NULL || _heaps->is_empty()) return NULL;
 468 
 469   FOR_ALL_HEAPS(heap) {
 470     CodeBlob* result = (CodeBlob*) (*heap)->find_start(start);
 471     if (result != NULL && result->blob_contains((address)start)) {
 472       return result;
 473     }
 474   }
 475   return NULL;
 476 }
 477 
 478 nmethod* CodeCache::find_nmethod(void* start) {
 479   CodeBlob* cb = find_blob(start);
 480   assert(cb->is_nmethod(), "did not find an nmethod");
 481   return (nmethod*)cb;
 482 }
 483 
 484 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 485   assert_locked_or_safepoint(CodeCache_lock);
 486   FOR_ALL_HEAPS(heap) {
 487     FOR_ALL_BLOBS(cb, *heap) {
 488       f(cb);
 489     }
 490   }
 491 }
 492 
 493 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 494   assert_locked_or_safepoint(CodeCache_lock);
 495   NMethodIterator iter;
 496   while(iter.next()) {
 497     f(iter.method());
 498   }
 499 }
 500 
 501 void CodeCache::alive_nmethods_do(void f(nmethod* nm)) {
 502   assert_locked_or_safepoint(CodeCache_lock);
 503   NMethodIterator iter;
 504   while(iter.next_alive()) {
 505     f(iter.method());
 506   }
 507 }
 508 
 509 int CodeCache::alignment_unit() {
 510   return (int)_heaps->first()->alignment_unit();
 511 }
 512 
 513 int CodeCache::alignment_offset() {
 514   return (int)_heaps->first()->alignment_offset();
 515 }
 516 
 517 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 518 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 519   assert_locked_or_safepoint(CodeCache_lock);
 520   NMethodIterator iter;
 521   while(iter.next_alive()) {
 522     iter.method()->do_unloading(is_alive, unloading_occurred);
 523   }
 524 }
 525 
 526 void CodeCache::blobs_do(CodeBlobClosure* f) {
 527   assert_locked_or_safepoint(CodeCache_lock);
 528   FOR_ALL_HEAPS(heap) {
 529     FOR_ALL_BLOBS(cb, *heap) {
 530       if (cb->is_alive()) {
 531         f->do_code_blob(cb);
 532 
 533 #ifdef ASSERT
 534         if (cb->is_nmethod())
 535         ((nmethod*)cb)->verify_scavenge_root_oops();
 536 #endif //ASSERT
 537       }
 538     }
 539   }
 540 }
 541 
 542 // Walk the list of methods which might contain non-perm oops.
 543 void CodeCache::scavenge_root_nmethods_do(CodeBlobClosure* f) {
 544   assert_locked_or_safepoint(CodeCache_lock);
 545 
 546   if (UseG1GC) {
 547     return;
 548   }
 549 
 550   debug_only(mark_scavenge_root_nmethods());
 551 
 552   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 553     debug_only(cur->clear_scavenge_root_marked());
 554     assert(cur->scavenge_root_not_marked(), "");
 555     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 556 
 557     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 558 #ifndef PRODUCT
 559     if (TraceScavenge) {
 560       cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
 561     }
 562 #endif //PRODUCT
 563     if (is_live) {
 564       // Perform cur->oops_do(f), maybe just once per nmethod.
 565       f->do_code_blob(cur);
 566     }
 567   }
 568 
 569   // Check for stray marks.
 570   debug_only(verify_perm_nmethods(NULL));
 571 }
 572 
 573 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 574   assert_locked_or_safepoint(CodeCache_lock);
 575 
 576   if (UseG1GC) {
 577     return;
 578   }
 579 
 580   nm->set_on_scavenge_root_list();
 581   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 582   set_scavenge_root_nmethods(nm);
 583   print_trace("add_scavenge_root", nm);
 584 }
 585 
 586 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 587   assert_locked_or_safepoint(CodeCache_lock);
 588 
 589   if (UseG1GC) {
 590     return;
 591   }
 592 
 593   print_trace("drop_scavenge_root", nm);
 594   nmethod* last = NULL;
 595   nmethod* cur = scavenge_root_nmethods();
 596   while (cur != NULL) {
 597     nmethod* next = cur->scavenge_root_link();
 598     if (cur == nm) {
 599       if (last != NULL)
 600             last->set_scavenge_root_link(next);
 601       else  set_scavenge_root_nmethods(next);
 602       nm->set_scavenge_root_link(NULL);
 603       nm->clear_on_scavenge_root_list();
 604       return;
 605     }
 606     last = cur;
 607     cur = next;
 608   }
 609   assert(false, "should have been on list");
 610 }
 611 
 612 void CodeCache::prune_scavenge_root_nmethods() {
 613   assert_locked_or_safepoint(CodeCache_lock);
 614 
 615   if (UseG1GC) {
 616     return;
 617   }
 618 
 619   debug_only(mark_scavenge_root_nmethods());
 620 
 621   nmethod* last = NULL;
 622   nmethod* cur = scavenge_root_nmethods();
 623   while (cur != NULL) {
 624     nmethod* next = cur->scavenge_root_link();
 625     debug_only(cur->clear_scavenge_root_marked());
 626     assert(cur->scavenge_root_not_marked(), "");
 627     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 628 
 629     if (!cur->is_zombie() && !cur->is_unloaded()
 630         && cur->detect_scavenge_root_oops()) {
 631       // Keep it.  Advance 'last' to prevent deletion.
 632       last = cur;
 633     } else {
 634       // Prune it from the list, so we don't have to look at it any more.
 635       print_trace("prune_scavenge_root", cur);
 636       cur->set_scavenge_root_link(NULL);
 637       cur->clear_on_scavenge_root_list();
 638       if (last != NULL)
 639             last->set_scavenge_root_link(next);
 640       else  set_scavenge_root_nmethods(next);
 641     }
 642     cur = next;
 643   }
 644 
 645   // Check for stray marks.
 646   debug_only(verify_perm_nmethods(NULL));
 647 }
 648 
 649 #ifndef PRODUCT
 650 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 651   if (UseG1GC) {
 652     return;
 653   }
 654 
 655   // While we are here, verify the integrity of the list.
 656   mark_scavenge_root_nmethods();
 657   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 658     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 659     cur->clear_scavenge_root_marked();
 660   }
 661   verify_perm_nmethods(f);
 662 }
 663 
 664 // Temporarily mark nmethods that are claimed to be on the non-perm list.
 665 void CodeCache::mark_scavenge_root_nmethods() {
 666   NMethodIterator iter;
 667   while(iter.next_alive()) {
 668     nmethod* nm = iter.method();
 669     assert(nm->scavenge_root_not_marked(), "clean state");
 670     if (nm->on_scavenge_root_list())
 671       nm->set_scavenge_root_marked();
 672   }
 673 }
 674 
 675 // If the closure is given, run it on the unlisted nmethods.
 676 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 677 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 678   NMethodIterator iter;
 679   while(iter.next_alive()) {
 680     nmethod* nm = iter.method();
 681     bool call_f = (f_or_null != NULL);
 682     assert(nm->scavenge_root_not_marked(), "must be already processed");
 683     if (nm->on_scavenge_root_list())
 684       call_f = false;  // don't show this one to the client
 685     nm->verify_scavenge_root_oops();
 686     if (call_f)  f_or_null->do_code_blob(nm);
 687   }
 688 }
 689 #endif //PRODUCT
 690 
 691 void CodeCache::verify_clean_inline_caches() {
 692 #ifdef ASSERT
 693   NMethodIterator iter;
 694   while(iter.next_alive()) {
 695     nmethod* nm = iter.method();
 696     assert(!nm->is_unloaded(), "Tautology");
 697     nm->verify_clean_inline_caches();
 698     nm->verify();
 699   }
 700 #endif
 701 }
 702 
 703 void CodeCache::verify_icholder_relocations() {
 704 #ifdef ASSERT
 705   // make sure that we aren't leaking icholders
 706   int count = 0;
 707   FOR_ALL_HEAPS(heap) {
 708     FOR_ALL_BLOBS(cb, *heap) {
 709       if (cb->is_nmethod()) {
 710         nmethod* nm = (nmethod*)cb;
 711         count += nm->verify_icholder_relocations();
 712       }
 713     }
 714   }
 715 
 716   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 717          CompiledICHolder::live_count(), "must agree");
 718 #endif
 719 }
 720 
 721 void CodeCache::gc_prologue() {
 722 }
 723 
 724 void CodeCache::gc_epilogue() {
 725   assert_locked_or_safepoint(CodeCache_lock);
 726   NMethodIterator iter;
 727   while(iter.next_alive()) {
 728     nmethod* nm = iter.method();
 729     assert(!nm->is_unloaded(), "Tautology");
 730     if (needs_cache_clean()) {
 731       nm->cleanup_inline_caches();
 732     }
 733     DEBUG_ONLY(nm->verify());
 734     DEBUG_ONLY(nm->verify_oop_relocations());
 735   }
 736   set_needs_cache_clean(false);
 737   prune_scavenge_root_nmethods();
 738 
 739   verify_icholder_relocations();
 740 }
 741 
 742 void CodeCache::verify_oops() {
 743   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 744   VerifyOopClosure voc;
 745   NMethodIterator iter;
 746   while(iter.next_alive()) {
 747     nmethod* nm = iter.method();
 748     nm->oops_do(&voc);
 749     nm->verify_oop_relocations();
 750   }
 751 }
 752 
 753 size_t CodeCache::capacity() {
 754   size_t cap = 0;
 755   FOR_ALL_HEAPS(heap) {
 756     cap += (*heap)->capacity();
 757   }
 758   return cap;
 759 }
 760 
 761 size_t CodeCache::unallocated_capacity(int code_blob_type) {
 762   CodeHeap* heap = get_code_heap(code_blob_type);
 763   return (heap != NULL) ? heap->unallocated_capacity() : 0;
 764 }
 765 
 766 size_t CodeCache::unallocated_capacity() {
 767   size_t unallocated_cap = 0;
 768   FOR_ALL_HEAPS(heap) {
 769     unallocated_cap += (*heap)->unallocated_capacity();
 770   }
 771   return unallocated_cap;
 772 }
 773 
 774 size_t CodeCache::max_capacity() {
 775   size_t max_cap = 0;
 776   FOR_ALL_HEAPS(heap) {
 777     max_cap += (*heap)->max_capacity();
 778   }
 779   return max_cap;
 780 }
 781 
 782 /**
 783  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
 784  * is free, reverse_free_ratio() returns 4.
 785  */
 786 double CodeCache::reverse_free_ratio(int code_blob_type) {
 787   CodeHeap* heap = get_code_heap(code_blob_type);
 788   if (heap == NULL) {
 789     return 0;
 790   }
 791 
 792   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
 793   double max_capacity = (double)heap->max_capacity();
 794   double result = max_capacity / unallocated_capacity;
 795   assert (max_capacity >= unallocated_capacity, "Must be");
 796   assert (result >= 1.0, err_msg_res("reverse_free_ratio must be at least 1. It is %f", result));
 797   return result;
 798 }
 799 
 800 size_t CodeCache::bytes_allocated_in_freelists() {
 801   size_t allocated_bytes = 0;
 802   FOR_ALL_HEAPS(heap) {
 803     allocated_bytes += (*heap)->allocated_in_freelist();
 804   }
 805   return allocated_bytes;
 806 }
 807 
 808 int CodeCache::allocated_segments() {
 809   int number_of_segments = 0;
 810   FOR_ALL_HEAPS(heap) {
 811     number_of_segments += (*heap)->allocated_segments();
 812   }
 813   return number_of_segments;
 814 }
 815 
 816 size_t CodeCache::freelists_length() {
 817   size_t length = 0;
 818   FOR_ALL_HEAPS(heap) {
 819     length += (*heap)->freelist_length();
 820   }
 821   return length;
 822 }
 823 
 824 void icache_init();
 825 
 826 void CodeCache::initialize() {
 827   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
 828 #ifdef COMPILER2
 829   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
 830 #endif
 831   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
 832   // This was originally just a check of the alignment, causing failure, instead, round
 833   // the code cache to the page size.  In particular, Solaris is moving to a larger
 834   // default page size.
 835   CodeCacheExpansionSize = round_to(CodeCacheExpansionSize, os::vm_page_size());
 836 
 837   if (SegmentedCodeCache) {
 838     // Use multiple code heaps
 839     initialize_heaps();
 840   } else {
 841     // Use a single code heap
 842     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
 843     add_heap(rs, "CodeCache", InitialCodeCacheSize, CodeBlobType::All);
 844   }
 845 
 846   // Initialize ICache flush mechanism
 847   // This service is needed for os::register_code_area
 848   icache_init();
 849 
 850   // Give OS a chance to register generated code area.
 851   // This is used on Windows 64 bit platforms to register
 852   // Structured Exception Handlers for our generated code.
 853   os::register_code_area((char*)low_bound(), (char*)high_bound());
 854 }
 855 
 856 void codeCache_init() {
 857   CodeCache::initialize();
 858 }
 859 
 860 //------------------------------------------------------------------------------------------------
 861 
 862 int CodeCache::number_of_nmethods_with_dependencies() {
 863   return _number_of_nmethods_with_dependencies;
 864 }
 865 
 866 void CodeCache::clear_inline_caches() {
 867   assert_locked_or_safepoint(CodeCache_lock);
 868   NMethodIterator iter;
 869   while(iter.next_alive()) {
 870     iter.method()->clear_inline_caches();
 871   }
 872 }
 873 
 874 // Keeps track of time spent for checking dependencies
 875 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
 876 
 877 int CodeCache::mark_for_deoptimization(DepChange& changes) {
 878   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 879   int number_of_marked_CodeBlobs = 0;
 880 
 881   // search the hierarchy looking for nmethods which are affected by the loading of this class
 882 
 883   // then search the interfaces this class implements looking for nmethods
 884   // which might be dependent of the fact that an interface only had one
 885   // implementor.
 886   // nmethod::check_all_dependencies works only correctly, if no safepoint
 887   // can happen
 888   No_Safepoint_Verifier nsv;
 889   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
 890     Klass* d = str.klass();
 891     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
 892   }
 893 
 894 #ifndef PRODUCT
 895   if (VerifyDependencies) {
 896     // Object pointers are used as unique identifiers for dependency arguments. This
 897     // is only possible if no safepoint, i.e., GC occurs during the verification code.
 898     dependentCheckTime.start();
 899     nmethod::check_all_dependencies(changes);
 900     dependentCheckTime.stop();
 901   }
 902 #endif
 903 
 904   return number_of_marked_CodeBlobs;
 905 }
 906 
 907 
 908 #ifdef HOTSWAP
 909 int CodeCache::mark_for_evol_deoptimization(instanceKlassHandle dependee) {
 910   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 911   int number_of_marked_CodeBlobs = 0;
 912 
 913   // Deoptimize all methods of the evolving class itself
 914   Array<Method*>* old_methods = dependee->methods();
 915   for (int i = 0; i < old_methods->length(); i++) {
 916     ResourceMark rm;
 917     Method* old_method = old_methods->at(i);
 918     nmethod *nm = old_method->code();
 919     if (nm != NULL) {
 920       nm->mark_for_deoptimization();
 921       number_of_marked_CodeBlobs++;
 922     }
 923   }
 924 
 925   NMethodIterator iter;
 926   while(iter.next_alive()) {
 927     nmethod* nm = iter.method();
 928     if (nm->is_marked_for_deoptimization()) {
 929       // ...Already marked in the previous pass; don't count it again.
 930     } else if (nm->is_evol_dependent_on(dependee())) {
 931       ResourceMark rm;
 932       nm->mark_for_deoptimization();
 933       number_of_marked_CodeBlobs++;
 934     } else  {
 935       // flush caches in case they refer to a redefined Method*
 936       nm->clear_inline_caches();
 937     }
 938   }
 939 
 940   return number_of_marked_CodeBlobs;
 941 }
 942 #endif // HOTSWAP
 943 
 944 
 945 // Deoptimize all methods
 946 void CodeCache::mark_all_nmethods_for_deoptimization() {
 947   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 948   NMethodIterator iter;
 949   while(iter.next_alive()) {
 950     nmethod* nm = iter.method();
 951     if (!nm->method()->is_method_handle_intrinsic()) {
 952       nm->mark_for_deoptimization();
 953     }
 954   }
 955 }
 956 
 957 int CodeCache::mark_for_deoptimization(Method* dependee) {
 958   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 959   int number_of_marked_CodeBlobs = 0;
 960 
 961   NMethodIterator iter;
 962   while(iter.next_alive()) {
 963     nmethod* nm = iter.method();
 964     if (nm->is_dependent_on_method(dependee)) {
 965       ResourceMark rm;
 966       nm->mark_for_deoptimization();
 967       number_of_marked_CodeBlobs++;
 968     }
 969   }
 970 
 971   return number_of_marked_CodeBlobs;
 972 }
 973 
 974 void CodeCache::make_marked_nmethods_zombies() {
 975   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 976   NMethodIterator iter;
 977   while(iter.next_alive()) {
 978     nmethod* nm = iter.method();
 979     if (nm->is_marked_for_deoptimization()) {
 980 
 981       // If the nmethod has already been made non-entrant and it can be converted
 982       // then zombie it now. Otherwise make it non-entrant and it will eventually
 983       // be zombied when it is no longer seen on the stack. Note that the nmethod
 984       // might be "entrant" and not on the stack and so could be zombied immediately
 985       // but we can't tell because we don't track it on stack until it becomes
 986       // non-entrant.
 987 
 988       if (nm->is_not_entrant() && nm->can_not_entrant_be_converted()) {
 989         nm->make_zombie();
 990       } else {
 991         nm->make_not_entrant();
 992       }
 993     }
 994   }
 995 }
 996 
 997 void CodeCache::make_marked_nmethods_not_entrant() {
 998   assert_locked_or_safepoint(CodeCache_lock);
 999   NMethodIterator iter;
1000   while(iter.next_alive()) {
1001     nmethod* nm = iter.method();
1002     if (nm->is_marked_for_deoptimization()) {
1003       nm->make_not_entrant();
1004     }
1005   }
1006 }
1007 
1008 // Flushes compiled methods dependent on dependee.
1009 void CodeCache::flush_dependents_on(instanceKlassHandle dependee) {
1010   assert_lock_strong(Compile_lock);
1011 
1012   if (number_of_nmethods_with_dependencies() == 0) return;
1013 
1014   // CodeCache can only be updated by a thread_in_VM and they will all be
1015   // stopped during the safepoint so CodeCache will be safe to update without
1016   // holding the CodeCache_lock.
1017 
1018   KlassDepChange changes(dependee);
1019 
1020   // Compute the dependent nmethods
1021   if (mark_for_deoptimization(changes) > 0) {
1022     // At least one nmethod has been marked for deoptimization
1023     VM_Deoptimize op;
1024     VMThread::execute(&op);
1025   }
1026 }
1027 
1028 // Flushes compiled methods dependent on a particular CallSite
1029 // instance when its target is different than the given MethodHandle.
1030 void CodeCache::flush_dependents_on(Handle call_site, Handle method_handle) {
1031   assert_lock_strong(Compile_lock);
1032 
1033   if (number_of_nmethods_with_dependencies() == 0) return;
1034 
1035   // CodeCache can only be updated by a thread_in_VM and they will all be
1036   // stopped during the safepoint so CodeCache will be safe to update without
1037   // holding the CodeCache_lock.
1038 
1039   CallSiteDepChange changes(call_site(), method_handle());
1040 
1041   // Compute the dependent nmethods that have a reference to a
1042   // CallSite object.  We use InstanceKlass::mark_dependent_nmethod
1043   // directly instead of CodeCache::mark_for_deoptimization because we
1044   // want dependents on the call site class only not all classes in
1045   // the ContextStream.
1046   int marked = 0;
1047   {
1048     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1049     InstanceKlass* call_site_klass = InstanceKlass::cast(call_site->klass());
1050     marked = call_site_klass->mark_dependent_nmethods(changes);
1051   }
1052   if (marked > 0) {
1053     // At least one nmethod has been marked for deoptimization
1054     VM_Deoptimize op;
1055     VMThread::execute(&op);
1056   }
1057 }
1058 
1059 #ifdef HOTSWAP
1060 // Flushes compiled methods dependent on dependee in the evolutionary sense
1061 void CodeCache::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1062   // --- Compile_lock is not held. However we are at a safepoint.
1063   assert_locked_or_safepoint(Compile_lock);
1064   if (number_of_nmethods_with_dependencies() == 0) return;
1065 
1066   // CodeCache can only be updated by a thread_in_VM and they will all be
1067   // stopped during the safepoint so CodeCache will be safe to update without
1068   // holding the CodeCache_lock.
1069 
1070   // Compute the dependent nmethods
1071   if (mark_for_evol_deoptimization(ev_k_h) > 0) {
1072     // At least one nmethod has been marked for deoptimization
1073 
1074     // All this already happens inside a VM_Operation, so we'll do all the work here.
1075     // Stuff copied from VM_Deoptimize and modified slightly.
1076 
1077     // We do not want any GCs to happen while we are in the middle of this VM operation
1078     ResourceMark rm;
1079     DeoptimizationMarker dm;
1080 
1081     // Deoptimize all activations depending on marked nmethods
1082     Deoptimization::deoptimize_dependents();
1083 
1084     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1085     make_marked_nmethods_not_entrant();
1086   }
1087 }
1088 #endif // HOTSWAP
1089 
1090 
1091 // Flushes compiled methods dependent on dependee
1092 void CodeCache::flush_dependents_on_method(methodHandle m_h) {
1093   // --- Compile_lock is not held. However we are at a safepoint.
1094   assert_locked_or_safepoint(Compile_lock);
1095 
1096   // CodeCache can only be updated by a thread_in_VM and they will all be
1097   // stopped dring the safepoint so CodeCache will be safe to update without
1098   // holding the CodeCache_lock.
1099 
1100   // Compute the dependent nmethods
1101   if (mark_for_deoptimization(m_h()) > 0) {
1102     // At least one nmethod has been marked for deoptimization
1103 
1104     // All this already happens inside a VM_Operation, so we'll do all the work here.
1105     // Stuff copied from VM_Deoptimize and modified slightly.
1106 
1107     // We do not want any GCs to happen while we are in the middle of this VM operation
1108     ResourceMark rm;
1109     DeoptimizationMarker dm;
1110 
1111     // Deoptimize all activations depending on marked nmethods
1112     Deoptimization::deoptimize_dependents();
1113 
1114     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1115     make_marked_nmethods_not_entrant();
1116   }
1117 }
1118 
1119 void CodeCache::verify() {
1120   assert_locked_or_safepoint(CodeCache_lock);
1121   FOR_ALL_HEAPS(heap) {
1122     (*heap)->verify();
1123     FOR_ALL_BLOBS(cb, *heap) {
1124       if (cb->is_alive()) {
1125         cb->verify();
1126       }
1127     }
1128   }
1129 }
1130 
1131 // A CodeHeap is full. Print out warning and report event.
1132 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1133   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1134   CodeHeap* heap = get_code_heap(code_blob_type);
1135   assert(heap != NULL, "heap is null");
1136 
1137   if (!heap->was_full() || print) {
1138     // Not yet reported for this heap, report
1139     heap->report_full();
1140     if (SegmentedCodeCache) {
1141       warning("%s is full. Compiler has been disabled.", get_code_heap_name(code_blob_type));
1142       warning("Try increasing the code heap size using -XX:%s=", get_code_heap_flag_name(code_blob_type));
1143     } else {
1144       warning("CodeCache is full. Compiler has been disabled.");
1145       warning("Try increasing the code cache size using -XX:ReservedCodeCacheSize=");
1146     }
1147     ResourceMark rm;
1148     stringStream s;
1149     // Dump code cache  into a buffer before locking the tty,
1150     {
1151       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1152       print_summary(&s);
1153     }
1154     ttyLocker ttyl;
1155     tty->print("%s", s.as_string());
1156   }
1157 
1158   _codemem_full_count++;
1159   EventCodeCacheFull event;
1160   if (event.should_commit()) {
1161     event.set_codeBlobType((u1)code_blob_type);
1162     event.set_startAddress((u8)heap->low_boundary());
1163     event.set_commitedTopAddress((u8)heap->high());
1164     event.set_reservedTopAddress((u8)heap->high_boundary());
1165     event.set_entryCount(nof_blobs());
1166     event.set_methodCount(nof_nmethods());
1167     event.set_adaptorCount(nof_adapters());
1168     event.set_unallocatedCapacity(heap->unallocated_capacity()/K);
1169     event.set_fullCount(_codemem_full_count);
1170     event.commit();
1171   }
1172 }
1173 
1174 void CodeCache::print_memory_overhead() {
1175   size_t wasted_bytes = 0;
1176   FOR_ALL_HEAPS(heap) {
1177       CodeHeap* curr_heap = *heap;
1178       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1179         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1180         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1181       }
1182   }
1183   // Print bytes that are allocated in the freelist
1184   ttyLocker ttl;
1185   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1186   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1187   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1188   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1189 }
1190 
1191 //------------------------------------------------------------------------------------------------
1192 // Non-product version
1193 
1194 #ifndef PRODUCT
1195 
1196 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1197   if (PrintCodeCache2) {  // Need to add a new flag
1198     ResourceMark rm;
1199     if (size == 0)  size = cb->size();
1200     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1201   }
1202 }
1203 
1204 void CodeCache::print_internals() {
1205   int nmethodCount = 0;
1206   int runtimeStubCount = 0;
1207   int adapterCount = 0;
1208   int deoptimizationStubCount = 0;
1209   int uncommonTrapStubCount = 0;
1210   int bufferBlobCount = 0;
1211   int total = 0;
1212   int nmethodAlive = 0;
1213   int nmethodNotEntrant = 0;
1214   int nmethodZombie = 0;
1215   int nmethodUnloaded = 0;
1216   int nmethodJava = 0;
1217   int nmethodNative = 0;
1218   int max_nm_size = 0;
1219   ResourceMark rm;
1220 
1221   int i = 0;
1222   FOR_ALL_HEAPS(heap) {
1223     if (SegmentedCodeCache && Verbose) {
1224       tty->print_cr("-- %s --", (*heap)->name());
1225     }
1226     FOR_ALL_BLOBS(cb, *heap) {
1227       total++;
1228       if (cb->is_nmethod()) {
1229         nmethod* nm = (nmethod*)cb;
1230 
1231         if (Verbose && nm->method() != NULL) {
1232           ResourceMark rm;
1233           char *method_name = nm->method()->name_and_sig_as_C_string();
1234           tty->print("%s", method_name);
1235           if(nm->is_alive()) { tty->print_cr(" alive"); }
1236           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1237           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1238         }
1239 
1240         nmethodCount++;
1241 
1242         if(nm->is_alive()) { nmethodAlive++; }
1243         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1244         if(nm->is_zombie()) { nmethodZombie++; }
1245         if(nm->is_unloaded()) { nmethodUnloaded++; }
1246         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1247 
1248         if(nm->method() != NULL && nm->is_java_method()) {
1249           nmethodJava++;
1250           max_nm_size = MAX2(max_nm_size, nm->size());
1251         }
1252       } else if (cb->is_runtime_stub()) {
1253         runtimeStubCount++;
1254       } else if (cb->is_deoptimization_stub()) {
1255         deoptimizationStubCount++;
1256       } else if (cb->is_uncommon_trap_stub()) {
1257         uncommonTrapStubCount++;
1258       } else if (cb->is_adapter_blob()) {
1259         adapterCount++;
1260       } else if (cb->is_buffer_blob()) {
1261         bufferBlobCount++;
1262       }
1263     }
1264   }
1265 
1266   int bucketSize = 512;
1267   int bucketLimit = max_nm_size / bucketSize + 1;
1268   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1269   memset(buckets, 0, sizeof(int) * bucketLimit);
1270 
1271   NMethodIterator iter;
1272   while(iter.next()) {
1273     nmethod* nm = iter.method();
1274     if(nm->method() != NULL && nm->is_java_method()) {
1275       buckets[nm->size() / bucketSize]++;
1276     }
1277   }
1278 
1279   tty->print_cr("Code Cache Entries (total of %d)",total);
1280   tty->print_cr("-------------------------------------------------");
1281   tty->print_cr("nmethods: %d",nmethodCount);
1282   tty->print_cr("\talive: %d",nmethodAlive);
1283   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1284   tty->print_cr("\tzombie: %d",nmethodZombie);
1285   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1286   tty->print_cr("\tjava: %d",nmethodJava);
1287   tty->print_cr("\tnative: %d",nmethodNative);
1288   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1289   tty->print_cr("adapters: %d",adapterCount);
1290   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1291   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1292   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1293   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1294   tty->print_cr("-------------------------------------------------");
1295 
1296   for(int i=0; i<bucketLimit; i++) {
1297     if(buckets[i] != 0) {
1298       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1299       tty->fill_to(40);
1300       tty->print_cr("%d",buckets[i]);
1301     }
1302   }
1303 
1304   FREE_C_HEAP_ARRAY(int, buckets);
1305   print_memory_overhead();
1306 }
1307 
1308 #endif // !PRODUCT
1309 
1310 void CodeCache::print() {
1311   print_summary(tty);
1312 
1313 #ifndef PRODUCT
1314   if (!Verbose) return;
1315 
1316   CodeBlob_sizes live;
1317   CodeBlob_sizes dead;
1318 
1319   FOR_ALL_HEAPS(heap) {
1320     FOR_ALL_BLOBS(cb, *heap) {
1321       if (!cb->is_alive()) {
1322         dead.add(cb);
1323       } else {
1324         live.add(cb);
1325       }
1326     }
1327   }
1328 
1329   tty->print_cr("CodeCache:");
1330   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1331 
1332   if (!live.is_empty()) {
1333     live.print("live");
1334   }
1335   if (!dead.is_empty()) {
1336     dead.print("dead");
1337   }
1338 
1339   if (WizardMode) {
1340      // print the oop_map usage
1341     int code_size = 0;
1342     int number_of_blobs = 0;
1343     int number_of_oop_maps = 0;
1344     int map_size = 0;
1345     FOR_ALL_HEAPS(heap) {
1346       FOR_ALL_BLOBS(cb, *heap) {
1347         if (cb->is_alive()) {
1348           number_of_blobs++;
1349           code_size += cb->code_size();
1350           OopMapSet* set = cb->oop_maps();
1351           if (set != NULL) {
1352             number_of_oop_maps += set->size();
1353             map_size           += set->heap_size();
1354           }
1355         }
1356       }
1357     }
1358     tty->print_cr("OopMaps");
1359     tty->print_cr("  #blobs    = %d", number_of_blobs);
1360     tty->print_cr("  code size = %d", code_size);
1361     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1362     tty->print_cr("  map size  = %d", map_size);
1363   }
1364 
1365 #endif // !PRODUCT
1366 }
1367 
1368 void CodeCache::print_summary(outputStream* st, bool detailed) {
1369   FOR_ALL_HEAPS(heap_iterator) {
1370     CodeHeap* heap = (*heap_iterator);
1371     size_t total = (heap->high_boundary() - heap->low_boundary());
1372     if (SegmentedCodeCache) {
1373       st->print("%s:", heap->name());
1374     } else {
1375       st->print("CodeCache:");
1376     }
1377     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1378                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1379                  total/K, (total - heap->unallocated_capacity())/K,
1380                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1381 
1382     if (detailed) {
1383       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1384                    p2i(heap->low_boundary()),
1385                    p2i(heap->high()),
1386                    p2i(heap->high_boundary()));
1387     }
1388   }
1389 
1390   if (detailed) {
1391     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1392                        " adapters=" UINT32_FORMAT,
1393                        nof_blobs(), nof_nmethods(), nof_adapters());
1394     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1395                  "enabled" : Arguments::mode() == Arguments::_int ?
1396                  "disabled (interpreter mode)" :
1397                  "disabled (not enough contiguous free space left)");
1398   }
1399 }
1400 
1401 void CodeCache::print_codelist(outputStream* st) {
1402   assert_locked_or_safepoint(CodeCache_lock);
1403 
1404   NMethodIterator iter;
1405   while(iter.next_alive()) {
1406     nmethod* nm = iter.method();
1407     ResourceMark rm;
1408     char *method_name = nm->method()->name_and_sig_as_C_string();
1409     st->print_cr("%d %d %s ["INTPTR_FORMAT", "INTPTR_FORMAT" - "INTPTR_FORMAT"]",
1410                  nm->compile_id(), nm->comp_level(), method_name, (intptr_t)nm->header_begin(),
1411                  (intptr_t)nm->code_begin(), (intptr_t)nm->code_end());
1412   }
1413 }
1414 
1415 void CodeCache::print_layout(outputStream* st) {
1416   assert_locked_or_safepoint(CodeCache_lock);
1417   ResourceMark rm;
1418 
1419   print_summary(st, true);
1420 }
1421 
1422 void CodeCache::log_state(outputStream* st) {
1423   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1424             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1425             nof_blobs(), nof_nmethods(), nof_adapters(),
1426             unallocated_capacity());
1427 }