1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  34 #include "gc_implementation/shared/liveRange.hpp"
  35 #include "memory/genOopClosures.inline.hpp"
  36 #include "memory/iterator.hpp"
  37 #include "memory/space.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/atomic.inline.hpp"
  40 #include "runtime/orderAccess.inline.hpp"
  41 
  42 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  43 
  44 int    HeapRegion::LogOfHRGrainBytes = 0;
  45 int    HeapRegion::LogOfHRGrainWords = 0;
  46 size_t HeapRegion::GrainBytes        = 0;
  47 size_t HeapRegion::GrainWords        = 0;
  48 size_t HeapRegion::CardsPerRegion    = 0;
  49 
  50 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  51                                  HeapRegion* hr,
  52                                  G1ParPushHeapRSClosure* cl,
  53                                  CardTableModRefBS::PrecisionStyle precision) :
  54   DirtyCardToOopClosure(hr, cl, precision, NULL),
  55   _hr(hr), _rs_scan(cl), _g1(g1) { }
  56 
  57 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  58                                                    OopClosure* oc) :
  59   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  60 
  61 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  62                                       HeapWord* bottom,
  63                                       HeapWord* top) {
  64   G1CollectedHeap* g1h = _g1;
  65   size_t oop_size;
  66   HeapWord* cur = bottom;
  67 
  68   // Start filtering what we add to the remembered set. If the object is
  69   // not considered dead, either because it is marked (in the mark bitmap)
  70   // or it was allocated after marking finished, then we add it. Otherwise
  71   // we can safely ignore the object.
  72   if (!g1h->is_obj_dead(oop(cur), _hr)) {
  73     oop_size = oop(cur)->oop_iterate(_rs_scan, mr);
  74   } else {
  75     oop_size = _hr->block_size(cur);
  76   }
  77 
  78   cur += oop_size;
  79 
  80   if (cur < top) {
  81     oop cur_oop = oop(cur);
  82     oop_size = _hr->block_size(cur);
  83     HeapWord* next_obj = cur + oop_size;
  84     while (next_obj < top) {
  85       // Keep filtering the remembered set.
  86       if (!g1h->is_obj_dead(cur_oop, _hr)) {
  87         // Bottom lies entirely below top, so we can call the
  88         // non-memRegion version of oop_iterate below.
  89         cur_oop->oop_iterate(_rs_scan);
  90       }
  91       cur = next_obj;
  92       cur_oop = oop(cur);
  93       oop_size = _hr->block_size(cur);
  94       next_obj = cur + oop_size;
  95     }
  96 
  97     // Last object. Need to do dead-obj filtering here too.
  98     if (!g1h->is_obj_dead(oop(cur), _hr)) {
  99       oop(cur)->oop_iterate(_rs_scan, mr);
 100     }
 101   }
 102 }
 103 
 104 size_t HeapRegion::max_region_size() {
 105   return HeapRegionBounds::max_size();
 106 }
 107 
 108 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 109   uintx region_size = G1HeapRegionSize;
 110   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 111     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 112     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 113                        (uintx) HeapRegionBounds::min_size());
 114   }
 115 
 116   int region_size_log = log2_long((jlong) region_size);
 117   // Recalculate the region size to make sure it's a power of
 118   // 2. This means that region_size is the largest power of 2 that's
 119   // <= what we've calculated so far.
 120   region_size = ((uintx)1 << region_size_log);
 121 
 122   // Now make sure that we don't go over or under our limits.
 123   if (region_size < HeapRegionBounds::min_size()) {
 124     region_size = HeapRegionBounds::min_size();
 125   } else if (region_size > HeapRegionBounds::max_size()) {
 126     region_size = HeapRegionBounds::max_size();
 127   }
 128 
 129   // And recalculate the log.
 130   region_size_log = log2_long((jlong) region_size);
 131 
 132   // Now, set up the globals.
 133   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 134   LogOfHRGrainBytes = region_size_log;
 135 
 136   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 137   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 138 
 139   guarantee(GrainBytes == 0, "we should only set it once");
 140   // The cast to int is safe, given that we've bounded region_size by
 141   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 142   GrainBytes = (size_t)region_size;
 143 
 144   guarantee(GrainWords == 0, "we should only set it once");
 145   GrainWords = GrainBytes >> LogHeapWordSize;
 146   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 147 
 148   guarantee(CardsPerRegion == 0, "we should only set it once");
 149   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 150 }
 151 
 152 void HeapRegion::reset_after_compaction() {
 153   G1OffsetTableContigSpace::reset_after_compaction();
 154   // After a compaction the mark bitmap is invalid, so we must
 155   // treat all objects as being inside the unmarked area.
 156   zero_marked_bytes();
 157   init_top_at_mark_start();
 158 }
 159 
 160 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 161   assert(_humongous_start_region == NULL,
 162          "we should have already filtered out humongous regions");
 163   assert(_end == orig_end(),
 164          "we should have already filtered out humongous regions");
 165 
 166   _in_collection_set = false;
 167 
 168   set_allocation_context(AllocationContext::system());
 169   set_young_index_in_cset(-1);
 170   uninstall_surv_rate_group();
 171   set_free();
 172   reset_pre_dummy_top();
 173 
 174   if (!par) {
 175     // If this is parallel, this will be done later.
 176     HeapRegionRemSet* hrrs = rem_set();
 177     if (locked) {
 178       hrrs->clear_locked();
 179     } else {
 180       hrrs->clear();
 181     }
 182   }
 183   zero_marked_bytes();
 184 
 185   _offsets.resize(HeapRegion::GrainWords);
 186   init_top_at_mark_start();
 187   if (clear_space) clear(SpaceDecorator::Mangle);
 188 }
 189 
 190 void HeapRegion::par_clear() {
 191   assert(used() == 0, "the region should have been already cleared");
 192   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 193   HeapRegionRemSet* hrrs = rem_set();
 194   hrrs->clear();
 195   CardTableModRefBS* ct_bs =
 196                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 197   ct_bs->clear(MemRegion(bottom(), end()));
 198 }
 199 
 200 void HeapRegion::calc_gc_efficiency() {
 201   // GC efficiency is the ratio of how much space would be
 202   // reclaimed over how long we predict it would take to reclaim it.
 203   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 204   G1CollectorPolicy* g1p = g1h->g1_policy();
 205 
 206   // Retrieve a prediction of the elapsed time for this region for
 207   // a mixed gc because the region will only be evacuated during a
 208   // mixed gc.
 209   double region_elapsed_time_ms =
 210     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 211   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 212 }
 213 
 214 void HeapRegion::set_starts_humongous(HeapWord* new_top, HeapWord* new_end) {
 215   assert(!is_humongous(), "sanity / pre-condition");
 216   assert(end() == orig_end(),
 217          "Should be normal before the humongous object allocation");
 218   assert(top() == bottom(), "should be empty");
 219   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 220 
 221   _type.set_starts_humongous();
 222   _humongous_start_region = this;
 223 
 224   set_end(new_end);
 225   _offsets.set_for_starts_humongous(new_top);
 226 }
 227 
 228 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 229   assert(!is_humongous(), "sanity / pre-condition");
 230   assert(end() == orig_end(),
 231          "Should be normal before the humongous object allocation");
 232   assert(top() == bottom(), "should be empty");
 233   assert(first_hr->is_starts_humongous(), "pre-condition");
 234 
 235   _type.set_continues_humongous();
 236   _humongous_start_region = first_hr;
 237 }
 238 
 239 void HeapRegion::clear_humongous() {
 240   assert(is_humongous(), "pre-condition");
 241 
 242   if (is_starts_humongous()) {
 243     assert(top() <= end(), "pre-condition");
 244     set_end(orig_end());
 245     if (top() > end()) {
 246       // at least one "continues humongous" region after it
 247       set_top(end());
 248     }
 249   } else {
 250     // continues humongous
 251     assert(end() == orig_end(), "sanity");
 252   }
 253 
 254   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 255   _humongous_start_region = NULL;
 256 }
 257 
 258 HeapRegion::HeapRegion(uint hrm_index,
 259                        G1BlockOffsetSharedArray* sharedOffsetArray,
 260                        MemRegion mr) :
 261     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 262     _hrm_index(hrm_index),
 263     _allocation_context(AllocationContext::system()),
 264     _humongous_start_region(NULL),
 265     _in_collection_set(false),
 266     _next_in_special_set(NULL),
 267     _evacuation_failed(false),
 268     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 269     _next_young_region(NULL),
 270     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 271 #ifdef ASSERT
 272     _containing_set(NULL),
 273 #endif // ASSERT
 274      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 275     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 276     _predicted_bytes_to_copy(0)
 277 {
 278   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 279   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 280 
 281   initialize(mr);
 282 }
 283 
 284 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 285   assert(_rem_set->is_empty(), "Remembered set must be empty");
 286 
 287   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 288 
 289   hr_clear(false /*par*/, false /*clear_space*/);
 290   set_top(bottom());
 291   record_timestamp();
 292 
 293   assert(mr.end() == orig_end(),
 294          err_msg("Given region end address " PTR_FORMAT " should match exactly "
 295                  "bottom plus one region size, i.e. " PTR_FORMAT,
 296                  p2i(mr.end()), p2i(orig_end())));
 297 }
 298 
 299 CompactibleSpace* HeapRegion::next_compaction_space() const {
 300   return G1CollectedHeap::heap()->next_compaction_region(this);
 301 }
 302 
 303 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 304                                                     bool during_conc_mark) {
 305   // We always recreate the prev marking info and we'll explicitly
 306   // mark all objects we find to be self-forwarded on the prev
 307   // bitmap. So all objects need to be below PTAMS.
 308   _prev_marked_bytes = 0;
 309 
 310   if (during_initial_mark) {
 311     // During initial-mark, we'll also explicitly mark all objects
 312     // we find to be self-forwarded on the next bitmap. So all
 313     // objects need to be below NTAMS.
 314     _next_top_at_mark_start = top();
 315     _next_marked_bytes = 0;
 316   } else if (during_conc_mark) {
 317     // During concurrent mark, all objects in the CSet (including
 318     // the ones we find to be self-forwarded) are implicitly live.
 319     // So all objects need to be above NTAMS.
 320     _next_top_at_mark_start = bottom();
 321     _next_marked_bytes = 0;
 322   }
 323 }
 324 
 325 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 326                                                   bool during_conc_mark,
 327                                                   size_t marked_bytes) {
 328   assert(0 <= marked_bytes && marked_bytes <= used(),
 329          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 330                  marked_bytes, used()));
 331   _prev_top_at_mark_start = top();
 332   _prev_marked_bytes = marked_bytes;
 333 }
 334 
 335 HeapWord*
 336 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 337                                                  ObjectClosure* cl) {
 338   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 339   // We used to use "block_start_careful" here.  But we're actually happy
 340   // to update the BOT while we do this...
 341   HeapWord* cur = block_start(mr.start());
 342   mr = mr.intersection(used_region());
 343   if (mr.is_empty()) return NULL;
 344   // Otherwise, find the obj that extends onto mr.start().
 345 
 346   assert(cur <= mr.start()
 347          && (oop(cur)->klass_or_null() == NULL ||
 348              cur + oop(cur)->size() > mr.start()),
 349          "postcondition of block_start");
 350   oop obj;
 351   while (cur < mr.end()) {
 352     obj = oop(cur);
 353     if (obj->klass_or_null() == NULL) {
 354       // Ran into an unparseable point.
 355       return cur;
 356     } else if (!g1h->is_obj_dead(obj)) {
 357       cl->do_object(obj);
 358     }
 359     cur += block_size(cur);
 360   }
 361   return NULL;
 362 }
 363 
 364 HeapWord*
 365 HeapRegion::
 366 oops_on_card_seq_iterate_careful(MemRegion mr,
 367                                  FilterOutOfRegionClosure* cl,
 368                                  bool filter_young,
 369                                  jbyte* card_ptr) {
 370   // Currently, we should only have to clean the card if filter_young
 371   // is true and vice versa.
 372   if (filter_young) {
 373     assert(card_ptr != NULL, "pre-condition");
 374   } else {
 375     assert(card_ptr == NULL, "pre-condition");
 376   }
 377   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 378 
 379   // If we're within a stop-world GC, then we might look at a card in a
 380   // GC alloc region that extends onto a GC LAB, which may not be
 381   // parseable.  Stop such at the "scan_top" of the region.
 382   if (g1h->is_gc_active()) {
 383     mr = mr.intersection(MemRegion(bottom(), scan_top()));
 384   } else {
 385     mr = mr.intersection(used_region());
 386   }
 387   if (mr.is_empty()) return NULL;
 388   // Otherwise, find the obj that extends onto mr.start().
 389 
 390   // The intersection of the incoming mr (for the card) and the
 391   // allocated part of the region is non-empty. This implies that
 392   // we have actually allocated into this region. The code in
 393   // G1CollectedHeap.cpp that allocates a new region sets the
 394   // is_young tag on the region before allocating. Thus we
 395   // safely know if this region is young.
 396   if (is_young() && filter_young) {
 397     return NULL;
 398   }
 399 
 400   assert(!is_young(), "check value of filter_young");
 401 
 402   // We can only clean the card here, after we make the decision that
 403   // the card is not young. And we only clean the card if we have been
 404   // asked to (i.e., card_ptr != NULL).
 405   if (card_ptr != NULL) {
 406     *card_ptr = CardTableModRefBS::clean_card_val();
 407     // We must complete this write before we do any of the reads below.
 408     OrderAccess::storeload();
 409   }
 410 
 411   // Cache the boundaries of the memory region in some const locals
 412   HeapWord* const start = mr.start();
 413   HeapWord* const end = mr.end();
 414 
 415   // We used to use "block_start_careful" here.  But we're actually happy
 416   // to update the BOT while we do this...
 417   HeapWord* cur = block_start(start);
 418   assert(cur <= start, "Postcondition");
 419 
 420   oop obj;
 421 
 422   HeapWord* next = cur;
 423   while (next <= start) {
 424     cur = next;
 425     obj = oop(cur);
 426     if (obj->klass_or_null() == NULL) {
 427       // Ran into an unparseable point.
 428       return cur;
 429     }
 430     // Otherwise...
 431     next = cur + block_size(cur);
 432   }
 433 
 434   // If we finish the above loop...We have a parseable object that
 435   // begins on or before the start of the memory region, and ends
 436   // inside or spans the entire region.
 437 
 438   assert(obj == oop(cur), "sanity");
 439   assert(cur <= start, "Loop postcondition");
 440   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 441   assert((cur + block_size(cur)) > start, "Loop postcondition");
 442 
 443   if (!g1h->is_obj_dead(obj)) {
 444     obj->oop_iterate(cl, mr);
 445   }
 446 
 447   while (cur < end) {
 448     obj = oop(cur);
 449     if (obj->klass_or_null() == NULL) {
 450       // Ran into an unparseable point.
 451       return cur;
 452     };
 453 
 454     // Otherwise:
 455     next = cur + block_size(cur);
 456 
 457     if (!g1h->is_obj_dead(obj)) {
 458       if (next < end || !obj->is_objArray()) {
 459         // This object either does not span the MemRegion
 460         // boundary, or if it does it's not an array.
 461         // Apply closure to whole object.
 462         obj->oop_iterate(cl);
 463       } else {
 464         // This obj is an array that spans the boundary.
 465         // Stop at the boundary.
 466         obj->oop_iterate(cl, mr);
 467       }
 468     }
 469     cur = next;
 470   }
 471   return NULL;
 472 }
 473 
 474 // Code roots support
 475 
 476 void HeapRegion::add_strong_code_root(nmethod* nm) {
 477   HeapRegionRemSet* hrrs = rem_set();
 478   hrrs->add_strong_code_root(nm);
 479 }
 480 
 481 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 482   assert_locked_or_safepoint(CodeCache_lock);
 483   HeapRegionRemSet* hrrs = rem_set();
 484   hrrs->add_strong_code_root_locked(nm);
 485 }
 486 
 487 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 488   HeapRegionRemSet* hrrs = rem_set();
 489   hrrs->remove_strong_code_root(nm);
 490 }
 491 
 492 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 493   HeapRegionRemSet* hrrs = rem_set();
 494   hrrs->strong_code_roots_do(blk);
 495 }
 496 
 497 class VerifyStrongCodeRootOopClosure: public OopClosure {
 498   const HeapRegion* _hr;
 499   nmethod* _nm;
 500   bool _failures;
 501   bool _has_oops_in_region;
 502 
 503   template <class T> void do_oop_work(T* p) {
 504     T heap_oop = oopDesc::load_heap_oop(p);
 505     if (!oopDesc::is_null(heap_oop)) {
 506       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 507 
 508       // Note: not all the oops embedded in the nmethod are in the
 509       // current region. We only look at those which are.
 510       if (_hr->is_in(obj)) {
 511         // Object is in the region. Check that its less than top
 512         if (_hr->top() <= (HeapWord*)obj) {
 513           // Object is above top
 514           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 515                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 516                                  "top "PTR_FORMAT,
 517                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 518           _failures = true;
 519           return;
 520         }
 521         // Nmethod has at least one oop in the current region
 522         _has_oops_in_region = true;
 523       }
 524     }
 525   }
 526 
 527 public:
 528   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 529     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 530 
 531   void do_oop(narrowOop* p) { do_oop_work(p); }
 532   void do_oop(oop* p)       { do_oop_work(p); }
 533 
 534   bool failures()           { return _failures; }
 535   bool has_oops_in_region() { return _has_oops_in_region; }
 536 };
 537 
 538 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 539   const HeapRegion* _hr;
 540   bool _failures;
 541 public:
 542   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 543     _hr(hr), _failures(false) {}
 544 
 545   void do_code_blob(CodeBlob* cb) {
 546     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 547     if (nm != NULL) {
 548       // Verify that the nemthod is live
 549       if (!nm->is_alive()) {
 550         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 551                                PTR_FORMAT" in its strong code roots",
 552                                _hr->bottom(), _hr->end(), nm);
 553         _failures = true;
 554       } else {
 555         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 556         nm->oops_do(&oop_cl);
 557         if (!oop_cl.has_oops_in_region()) {
 558           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 559                                  PTR_FORMAT" in its strong code roots "
 560                                  "with no pointers into region",
 561                                  _hr->bottom(), _hr->end(), nm);
 562           _failures = true;
 563         } else if (oop_cl.failures()) {
 564           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 565                                  "failures for nmethod "PTR_FORMAT,
 566                                  _hr->bottom(), _hr->end(), nm);
 567           _failures = true;
 568         }
 569       }
 570     }
 571   }
 572 
 573   bool failures()       { return _failures; }
 574 };
 575 
 576 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 577   if (!G1VerifyHeapRegionCodeRoots) {
 578     // We're not verifying code roots.
 579     return;
 580   }
 581   if (vo == VerifyOption_G1UseMarkWord) {
 582     // Marking verification during a full GC is performed after class
 583     // unloading, code cache unloading, etc so the strong code roots
 584     // attached to each heap region are in an inconsistent state. They won't
 585     // be consistent until the strong code roots are rebuilt after the
 586     // actual GC. Skip verifying the strong code roots in this particular
 587     // time.
 588     assert(VerifyDuringGC, "only way to get here");
 589     return;
 590   }
 591 
 592   HeapRegionRemSet* hrrs = rem_set();
 593   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 594 
 595   // if this region is empty then there should be no entries
 596   // on its strong code root list
 597   if (is_empty()) {
 598     if (strong_code_roots_length > 0) {
 599       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 600                              "but has "SIZE_FORMAT" code root entries",
 601                              bottom(), end(), strong_code_roots_length);
 602       *failures = true;
 603     }
 604     return;
 605   }
 606 
 607   if (is_continues_humongous()) {
 608     if (strong_code_roots_length > 0) {
 609       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
 610                              "region but has "SIZE_FORMAT" code root entries",
 611                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 612       *failures = true;
 613     }
 614     return;
 615   }
 616 
 617   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 618   strong_code_roots_do(&cb_cl);
 619 
 620   if (cb_cl.failures()) {
 621     *failures = true;
 622   }
 623 }
 624 
 625 void HeapRegion::print() const { print_on(gclog_or_tty); }
 626 void HeapRegion::print_on(outputStream* st) const {
 627   st->print("AC%4u", allocation_context());
 628 
 629   st->print(" %2s", get_short_type_str());
 630   if (in_collection_set())
 631     st->print(" CS");
 632   else
 633     st->print("   ");
 634   st->print(" TS %5d", _gc_time_stamp);
 635   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 636             prev_top_at_mark_start(), next_top_at_mark_start());
 637   G1OffsetTableContigSpace::print_on(st);
 638 }
 639 
 640 class VerifyLiveClosure: public OopClosure {
 641 private:
 642   G1CollectedHeap* _g1h;
 643   CardTableModRefBS* _bs;
 644   oop _containing_obj;
 645   bool _failures;
 646   int _n_failures;
 647   VerifyOption _vo;
 648 public:
 649   // _vo == UsePrevMarking -> use "prev" marking information,
 650   // _vo == UseNextMarking -> use "next" marking information,
 651   // _vo == UseMarkWord    -> use mark word from object header.
 652   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 653     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 654     _failures(false), _n_failures(0), _vo(vo)
 655   {
 656     BarrierSet* bs = _g1h->barrier_set();
 657     if (bs->is_a(BarrierSet::CardTableModRef))
 658       _bs = (CardTableModRefBS*)bs;
 659   }
 660 
 661   void set_containing_obj(oop obj) {
 662     _containing_obj = obj;
 663   }
 664 
 665   bool failures() { return _failures; }
 666   int n_failures() { return _n_failures; }
 667 
 668   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 669   virtual void do_oop(      oop* p) { do_oop_work(p); }
 670 
 671   void print_object(outputStream* out, oop obj) {
 672 #ifdef PRODUCT
 673     Klass* k = obj->klass();
 674     const char* class_name = InstanceKlass::cast(k)->external_name();
 675     out->print_cr("class name %s", class_name);
 676 #else // PRODUCT
 677     obj->print_on(out);
 678 #endif // PRODUCT
 679   }
 680 
 681   template <class T>
 682   void do_oop_work(T* p) {
 683     assert(_containing_obj != NULL, "Precondition");
 684     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 685            "Precondition");
 686     T heap_oop = oopDesc::load_heap_oop(p);
 687     if (!oopDesc::is_null(heap_oop)) {
 688       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 689       bool failed = false;
 690       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 691         MutexLockerEx x(ParGCRareEvent_lock,
 692                         Mutex::_no_safepoint_check_flag);
 693 
 694         if (!_failures) {
 695           gclog_or_tty->cr();
 696           gclog_or_tty->print_cr("----------");
 697         }
 698         if (!_g1h->is_in_closed_subset(obj)) {
 699           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 700           gclog_or_tty->print_cr("Field "PTR_FORMAT
 701                                  " of live obj "PTR_FORMAT" in region "
 702                                  "["PTR_FORMAT", "PTR_FORMAT")",
 703                                  p, (void*) _containing_obj,
 704                                  from->bottom(), from->end());
 705           print_object(gclog_or_tty, _containing_obj);
 706           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 707                                  (void*) obj);
 708         } else {
 709           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 710           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 711           gclog_or_tty->print_cr("Field "PTR_FORMAT
 712                                  " of live obj "PTR_FORMAT" in region "
 713                                  "["PTR_FORMAT", "PTR_FORMAT")",
 714                                  p, (void*) _containing_obj,
 715                                  from->bottom(), from->end());
 716           print_object(gclog_or_tty, _containing_obj);
 717           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 718                                  "["PTR_FORMAT", "PTR_FORMAT")",
 719                                  (void*) obj, to->bottom(), to->end());
 720           print_object(gclog_or_tty, obj);
 721         }
 722         gclog_or_tty->print_cr("----------");
 723         gclog_or_tty->flush();
 724         _failures = true;
 725         failed = true;
 726         _n_failures++;
 727       }
 728 
 729       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 730         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 731         HeapRegion* to   = _g1h->heap_region_containing(obj);
 732         if (from != NULL && to != NULL &&
 733             from != to &&
 734             !to->is_humongous()) {
 735           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 736           jbyte cv_field = *_bs->byte_for_const(p);
 737           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 738 
 739           bool is_bad = !(from->is_young()
 740                           || to->rem_set()->contains_reference(p)
 741                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 742                               (_containing_obj->is_objArray() ?
 743                                   cv_field == dirty
 744                                : cv_obj == dirty || cv_field == dirty));
 745           if (is_bad) {
 746             MutexLockerEx x(ParGCRareEvent_lock,
 747                             Mutex::_no_safepoint_check_flag);
 748 
 749             if (!_failures) {
 750               gclog_or_tty->cr();
 751               gclog_or_tty->print_cr("----------");
 752             }
 753             gclog_or_tty->print_cr("Missing rem set entry:");
 754             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 755                                    "of obj "PTR_FORMAT", "
 756                                    "in region "HR_FORMAT,
 757                                    p, (void*) _containing_obj,
 758                                    HR_FORMAT_PARAMS(from));
 759             _containing_obj->print_on(gclog_or_tty);
 760             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 761                                    "in region "HR_FORMAT,
 762                                    (void*) obj,
 763                                    HR_FORMAT_PARAMS(to));
 764             obj->print_on(gclog_or_tty);
 765             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 766                           cv_obj, cv_field);
 767             gclog_or_tty->print_cr("----------");
 768             gclog_or_tty->flush();
 769             _failures = true;
 770             if (!failed) _n_failures++;
 771           }
 772         }
 773       }
 774     }
 775   }
 776 };
 777 
 778 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 779 // We would need a mechanism to make that code skip dead objects.
 780 
 781 void HeapRegion::verify(VerifyOption vo,
 782                         bool* failures) const {
 783   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 784   *failures = false;
 785   HeapWord* p = bottom();
 786   HeapWord* prev_p = NULL;
 787   VerifyLiveClosure vl_cl(g1, vo);
 788   bool is_region_humongous = is_humongous();
 789   size_t object_num = 0;
 790   while (p < top()) {
 791     oop obj = oop(p);
 792     size_t obj_size = block_size(p);
 793     object_num += 1;
 794 
 795     if (is_region_humongous != g1->is_humongous(obj_size) &&
 796         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 797       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 798                              SIZE_FORMAT" words) in a %shumongous region",
 799                              p, g1->is_humongous(obj_size) ? "" : "non-",
 800                              obj_size, is_region_humongous ? "" : "non-");
 801        *failures = true;
 802        return;
 803     }
 804 
 805     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 806       if (obj->is_oop()) {
 807         Klass* klass = obj->klass();
 808         bool is_metaspace_object = Metaspace::contains(klass) ||
 809                                    (vo == VerifyOption_G1UsePrevMarking &&
 810                                    ClassLoaderDataGraph::unload_list_contains(klass));
 811         if (!is_metaspace_object) {
 812           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 813                                  "not metadata", klass, (void *)obj);
 814           *failures = true;
 815           return;
 816         } else if (!klass->is_klass()) {
 817           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 818                                  "not a klass", klass, (void *)obj);
 819           *failures = true;
 820           return;
 821         } else {
 822           vl_cl.set_containing_obj(obj);
 823           obj->oop_iterate_no_header(&vl_cl);
 824           if (vl_cl.failures()) {
 825             *failures = true;
 826           }
 827           if (G1MaxVerifyFailures >= 0 &&
 828               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 829             return;
 830           }
 831         }
 832       } else {
 833         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
 834         *failures = true;
 835         return;
 836       }
 837     }
 838     prev_p = p;
 839     p += obj_size;
 840   }
 841 
 842   if (!is_young() && !is_empty()) {
 843     _offsets.verify();
 844   }
 845 
 846   if (p != top()) {
 847     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 848                            "does not match top "PTR_FORMAT, p, top());
 849     *failures = true;
 850     return;
 851   }
 852 
 853   HeapWord* the_end = end();
 854   assert(p == top(), "it should still hold");
 855   // Do some extra BOT consistency checking for addresses in the
 856   // range [top, end). BOT look-ups in this range should yield
 857   // top. No point in doing that if top == end (there's nothing there).
 858   if (p < the_end) {
 859     // Look up top
 860     HeapWord* addr_1 = p;
 861     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 862     if (b_start_1 != p) {
 863       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 864                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 865                              addr_1, b_start_1, p);
 866       *failures = true;
 867       return;
 868     }
 869 
 870     // Look up top + 1
 871     HeapWord* addr_2 = p + 1;
 872     if (addr_2 < the_end) {
 873       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 874       if (b_start_2 != p) {
 875         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 876                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 877                                addr_2, b_start_2, p);
 878         *failures = true;
 879         return;
 880       }
 881     }
 882 
 883     // Look up an address between top and end
 884     size_t diff = pointer_delta(the_end, p) / 2;
 885     HeapWord* addr_3 = p + diff;
 886     if (addr_3 < the_end) {
 887       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 888       if (b_start_3 != p) {
 889         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 890                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 891                                addr_3, b_start_3, p);
 892         *failures = true;
 893         return;
 894       }
 895     }
 896 
 897     // Look up end - 1
 898     HeapWord* addr_4 = the_end - 1;
 899     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 900     if (b_start_4 != p) {
 901       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
 902                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 903                              addr_4, b_start_4, p);
 904       *failures = true;
 905       return;
 906     }
 907   }
 908 
 909   if (is_region_humongous && object_num > 1) {
 910     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 911                            "but has "SIZE_FORMAT", objects",
 912                            bottom(), end(), object_num);
 913     *failures = true;
 914     return;
 915   }
 916 
 917   verify_strong_code_roots(vo, failures);
 918 }
 919 
 920 void HeapRegion::verify() const {
 921   bool dummy = false;
 922   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 923 }
 924 
 925 void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
 926   scan_and_forward(this, cp);
 927 }
 928 
 929 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 930 // away eventually.
 931 
 932 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 933   set_top(bottom());
 934   _scan_top = bottom();
 935   CompactibleSpace::clear(mangle_space);
 936   reset_bot();
 937 }
 938 
 939 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 940   Space::set_bottom(new_bottom);
 941   _offsets.set_bottom(new_bottom);
 942 }
 943 
 944 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 945   Space::set_end(new_end);
 946   _offsets.resize(new_end - bottom());
 947 }
 948 
 949 void G1OffsetTableContigSpace::print() const {
 950   print_short();
 951   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 952                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 953                 bottom(), top(), _offsets.threshold(), end());
 954 }
 955 
 956 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 957   return _offsets.initialize_threshold();
 958 }
 959 
 960 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
 961                                                     HeapWord* end) {
 962   _offsets.alloc_block(start, end);
 963   return _offsets.threshold();
 964 }
 965 
 966 HeapWord* G1OffsetTableContigSpace::scan_top() const {
 967   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 968   HeapWord* local_top = top();
 969   OrderAccess::loadload();
 970   const unsigned local_time_stamp = _gc_time_stamp;
 971   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
 972   if (local_time_stamp < g1h->get_gc_time_stamp()) {
 973     return local_top;
 974   } else {
 975     return _scan_top;
 976   }
 977 }
 978 
 979 void G1OffsetTableContigSpace::record_timestamp() {
 980   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 981   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
 982 
 983   if (_gc_time_stamp < curr_gc_time_stamp) {
 984     // Setting the time stamp here tells concurrent readers to look at
 985     // scan_top to know the maximum allowed address to look at.
 986 
 987     // scan_top should be bottom for all regions except for the
 988     // retained old alloc region which should have scan_top == top
 989     HeapWord* st = _scan_top;
 990     guarantee(st == _bottom || st == _top, "invariant");
 991 
 992     _gc_time_stamp = curr_gc_time_stamp;
 993   }
 994 }
 995 
 996 void G1OffsetTableContigSpace::record_retained_region() {
 997   // scan_top is the maximum address where it's safe for the next gc to
 998   // scan this region.
 999   _scan_top = top();
1000 }
1001 
1002 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1003   object_iterate(blk);
1004 }
1005 
1006 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1007   HeapWord* p = bottom();
1008   while (p < top()) {
1009     if (block_is_obj(p)) {
1010       blk->do_object(oop(p));
1011     }
1012     p += block_size(p);
1013   }
1014 }
1015 
1016 G1OffsetTableContigSpace::
1017 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1018                          MemRegion mr) :
1019   _offsets(sharedOffsetArray, mr),
1020   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1021   _gc_time_stamp(0)
1022 {
1023   _offsets.set_space(this);
1024 }
1025 
1026 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1027   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1028   _top = bottom();
1029   _scan_top = bottom();
1030   set_saved_mark_word(NULL);
1031   reset_bot();
1032 }
1033