1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1ErgoVerbose.hpp"
  32 #include "gc/g1/g1GCPhaseTimes.hpp"
  33 #include "gc/g1/g1Log.hpp"
  34 #include "gc/g1/heapRegion.inline.hpp"
  35 #include "gc/g1/heapRegionRemSet.hpp"
  36 #include "gc/shared/gcPolicyCounters.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/java.hpp"
  39 #include "runtime/mutexLocker.hpp"
  40 #include "utilities/debug.hpp"
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 G1CollectorPolicy::G1CollectorPolicy() :
  83   _parallel_gc_threads(ParallelGCThreads),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _recent_prev_end_times_for_all_gcs_sec(
 112                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 113 
 114   _recent_avg_pause_time_ratio(0.0),
 115 
 116   _eden_used_bytes_before_gc(0),
 117   _survivor_used_bytes_before_gc(0),
 118   _heap_used_bytes_before_gc(0),
 119   _metaspace_used_bytes_before_gc(0),
 120   _eden_capacity_bytes_before_gc(0),
 121   _heap_capacity_bytes_before_gc(0),
 122 
 123   _eden_cset_region_length(0),
 124   _survivor_cset_region_length(0),
 125   _old_cset_region_length(0),
 126 
 127   _sigma(G1ConfidencePercent / 100.0),
 128 
 129   _collection_set(NULL),
 130   _collection_set_bytes_used_before(0),
 131 
 132   // Incremental CSet attributes
 133   _inc_cset_build_state(Inactive),
 134   _inc_cset_head(NULL),
 135   _inc_cset_tail(NULL),
 136   _inc_cset_bytes_used_before(0),
 137   _inc_cset_max_finger(NULL),
 138   _inc_cset_recorded_rs_lengths(0),
 139   _inc_cset_recorded_rs_lengths_diffs(0),
 140   _inc_cset_predicted_elapsed_time_ms(0.0),
 141   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 142 
 143   // add here any more surv rate groups
 144   _recorded_survivor_regions(0),
 145   _recorded_survivor_head(NULL),
 146   _recorded_survivor_tail(NULL),
 147   _survivors_age_table(true),
 148 
 149   _gc_overhead_perc(0.0) {
 150 
 151   // SurvRateGroups below must be initialized after '_sigma' because they
 152   // indirectly access '_sigma' through this object passed to their constructor.
 153   _short_lived_surv_rate_group =
 154     new SurvRateGroup(this, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 155   _survivor_surv_rate_group =
 156     new SurvRateGroup(this, "Survivor", G1YoungSurvRateNumRegionsSummary);
 157 
 158   // Set up the region size and associated fields. Given that the
 159   // policy is created before the heap, we have to set this up here,
 160   // so it's done as soon as possible.
 161 
 162   // It would have been natural to pass initial_heap_byte_size() and
 163   // max_heap_byte_size() to setup_heap_region_size() but those have
 164   // not been set up at this point since they should be aligned with
 165   // the region size. So, there is a circular dependency here. We base
 166   // the region size on the heap size, but the heap size should be
 167   // aligned with the region size. To get around this we use the
 168   // unaligned values for the heap.
 169   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 170   HeapRegionRemSet::setup_remset_size();
 171 
 172   G1ErgoVerbose::initialize();
 173   if (PrintAdaptiveSizePolicy) {
 174     // Currently, we only use a single switch for all the heuristics.
 175     G1ErgoVerbose::set_enabled(true);
 176     // Given that we don't currently have a verboseness level
 177     // parameter, we'll hardcode this to high. This can be easily
 178     // changed in the future.
 179     G1ErgoVerbose::set_level(ErgoHigh);
 180   } else {
 181     G1ErgoVerbose::set_enabled(false);
 182   }
 183 
 184   // Verify PLAB sizes
 185   const size_t region_size = HeapRegion::GrainWords;
 186   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 187     char buffer[128];
 188     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most " SIZE_FORMAT,
 189                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 190     vm_exit_during_initialization(buffer);
 191   }
 192 
 193   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 194   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 195 
 196   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 197 
 198   int index = MIN2(_parallel_gc_threads - 1, 7);
 199 
 200   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 201   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 202   _young_cards_per_entry_ratio_seq->add(
 203                                   young_cards_per_entry_ratio_defaults[index]);
 204   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 205   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 206   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 207   _young_other_cost_per_region_ms_seq->add(
 208                                young_other_cost_per_region_ms_defaults[index]);
 209   _non_young_other_cost_per_region_ms_seq->add(
 210                            non_young_other_cost_per_region_ms_defaults[index]);
 211 
 212   // Below, we might need to calculate the pause time target based on
 213   // the pause interval. When we do so we are going to give G1 maximum
 214   // flexibility and allow it to do pauses when it needs to. So, we'll
 215   // arrange that the pause interval to be pause time target + 1 to
 216   // ensure that a) the pause time target is maximized with respect to
 217   // the pause interval and b) we maintain the invariant that pause
 218   // time target < pause interval. If the user does not want this
 219   // maximum flexibility, they will have to set the pause interval
 220   // explicitly.
 221 
 222   // First make sure that, if either parameter is set, its value is
 223   // reasonable.
 224   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 225     if (MaxGCPauseMillis < 1) {
 226       vm_exit_during_initialization("MaxGCPauseMillis should be "
 227                                     "greater than 0");
 228     }
 229   }
 230   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 231     if (GCPauseIntervalMillis < 1) {
 232       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 233                                     "greater than 0");
 234     }
 235   }
 236 
 237   // Then, if the pause time target parameter was not set, set it to
 238   // the default value.
 239   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 240     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 241       // The default pause time target in G1 is 200ms
 242       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 243     } else {
 244       // We do not allow the pause interval to be set without the
 245       // pause time target
 246       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 247                                     "without setting MaxGCPauseMillis");
 248     }
 249   }
 250 
 251   // Then, if the interval parameter was not set, set it according to
 252   // the pause time target (this will also deal with the case when the
 253   // pause time target is the default value).
 254   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 255     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 256   }
 257 
 258   // Finally, make sure that the two parameters are consistent.
 259   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 260     char buffer[256];
 261     jio_snprintf(buffer, 256,
 262                  "MaxGCPauseMillis (%u) should be less than "
 263                  "GCPauseIntervalMillis (%u)",
 264                  MaxGCPauseMillis, GCPauseIntervalMillis);
 265     vm_exit_during_initialization(buffer);
 266   }
 267 
 268   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 269   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 270   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 271 
 272   // start conservatively (around 50ms is about right)
 273   _concurrent_mark_remark_times_ms->add(0.05);
 274   _concurrent_mark_cleanup_times_ms->add(0.20);
 275   _tenuring_threshold = MaxTenuringThreshold;
 276   // _max_survivor_regions will be calculated by
 277   // update_young_list_target_length() during initialization.
 278   _max_survivor_regions = 0;
 279 
 280   assert(GCTimeRatio > 0,
 281          "we should have set it to a default value set_g1_gc_flags() "
 282          "if a user set it to 0");
 283   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 284 
 285   uintx reserve_perc = G1ReservePercent;
 286   // Put an artificial ceiling on this so that it's not set to a silly value.
 287   if (reserve_perc > 50) {
 288     reserve_perc = 50;
 289     warning("G1ReservePercent is set to a value that is too large, "
 290             "it's been updated to " UINTX_FORMAT, reserve_perc);
 291   }
 292   _reserve_factor = (double) reserve_perc / 100.0;
 293   // This will be set when the heap is expanded
 294   // for the first time during initialization.
 295   _reserve_regions = 0;
 296 
 297   _collectionSetChooser = new CollectionSetChooser();
 298 }
 299 
 300 void G1CollectorPolicy::initialize_alignments() {
 301   _space_alignment = HeapRegion::GrainBytes;
 302   size_t card_table_alignment = GenRemSet::max_alignment_constraint();
 303   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 304   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 305 }
 306 
 307 void G1CollectorPolicy::initialize_flags() {
 308   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 309     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 310   }
 311 
 312   if (SurvivorRatio < 1) {
 313     vm_exit_during_initialization("Invalid survivor ratio specified");
 314   }
 315   CollectorPolicy::initialize_flags();
 316   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 317 }
 318 
 319 void G1CollectorPolicy::post_heap_initialize() {
 320   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 321   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 322   if (max_young_size != MaxNewSize) {
 323     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 324   }
 325 }
 326 
 327 G1CollectorState* G1CollectorPolicy::collector_state() { return _g1->collector_state(); }
 328 
 329 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 330         _min_desired_young_length(0), _max_desired_young_length(0) {
 331   if (FLAG_IS_CMDLINE(NewRatio)) {
 332     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 333       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 334     } else {
 335       _sizer_kind = SizerNewRatio;
 336       _adaptive_size = false;
 337       return;
 338     }
 339   }
 340 
 341   if (NewSize > MaxNewSize) {
 342     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 343       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 344               "A new max generation size of " SIZE_FORMAT "k will be used.",
 345               NewSize/K, MaxNewSize/K, NewSize/K);
 346     }
 347     MaxNewSize = NewSize;
 348   }
 349 
 350   if (FLAG_IS_CMDLINE(NewSize)) {
 351     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 352                                      1U);
 353     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 354       _max_desired_young_length =
 355                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 356                                   1U);
 357       _sizer_kind = SizerMaxAndNewSize;
 358       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 359     } else {
 360       _sizer_kind = SizerNewSizeOnly;
 361     }
 362   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 363     _max_desired_young_length =
 364                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 365                                   1U);
 366     _sizer_kind = SizerMaxNewSizeOnly;
 367   }
 368 }
 369 
 370 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 371   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 372   return MAX2(1U, default_value);
 373 }
 374 
 375 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 376   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 377   return MAX2(1U, default_value);
 378 }
 379 
 380 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 381   assert(number_of_heap_regions > 0, "Heap must be initialized");
 382 
 383   switch (_sizer_kind) {
 384     case SizerDefaults:
 385       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 386       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 387       break;
 388     case SizerNewSizeOnly:
 389       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 390       *max_young_length = MAX2(*min_young_length, *max_young_length);
 391       break;
 392     case SizerMaxNewSizeOnly:
 393       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 394       *min_young_length = MIN2(*min_young_length, *max_young_length);
 395       break;
 396     case SizerMaxAndNewSize:
 397       // Do nothing. Values set on the command line, don't update them at runtime.
 398       break;
 399     case SizerNewRatio:
 400       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 401       *max_young_length = *min_young_length;
 402       break;
 403     default:
 404       ShouldNotReachHere();
 405   }
 406 
 407   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 408 }
 409 
 410 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 411   // We need to pass the desired values because recalculation may not update these
 412   // values in some cases.
 413   uint temp = _min_desired_young_length;
 414   uint result = _max_desired_young_length;
 415   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 416   return result;
 417 }
 418 
 419 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 420   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 421           &_max_desired_young_length);
 422 }
 423 
 424 void G1CollectorPolicy::init() {
 425   // Set aside an initial future to_space.
 426   _g1 = G1CollectedHeap::heap();
 427 
 428   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 429 
 430   initialize_gc_policy_counters();
 431 
 432   if (adaptive_young_list_length()) {
 433     _young_list_fixed_length = 0;
 434   } else {
 435     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 436   }
 437   _free_regions_at_end_of_collection = _g1->num_free_regions();
 438   update_young_list_target_length();
 439 
 440   // We may immediately start allocating regions and placing them on the
 441   // collection set list. Initialize the per-collection set info
 442   start_incremental_cset_building();
 443 }
 444 
 445 // Create the jstat counters for the policy.
 446 void G1CollectorPolicy::initialize_gc_policy_counters() {
 447   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 448 }
 449 
 450 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 451                                          double base_time_ms,
 452                                          uint base_free_regions,
 453                                          double target_pause_time_ms) {
 454   if (young_length >= base_free_regions) {
 455     // end condition 1: not enough space for the young regions
 456     return false;
 457   }
 458 
 459   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 460   size_t bytes_to_copy =
 461                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 462   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 463   double young_other_time_ms = predict_young_other_time_ms(young_length);
 464   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 465   if (pause_time_ms > target_pause_time_ms) {
 466     // end condition 2: prediction is over the target pause time
 467     return false;
 468   }
 469 
 470   size_t free_bytes =
 471                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 472   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 473     // end condition 3: out-of-space (conservatively!)
 474     return false;
 475   }
 476 
 477   // success!
 478   return true;
 479 }
 480 
 481 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 482   // re-calculate the necessary reserve
 483   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 484   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 485   // smaller than 1.0) we'll get 1.
 486   _reserve_regions = (uint) ceil(reserve_regions_d);
 487 
 488   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 489 }
 490 
 491 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 492                                                        uint base_min_length) {
 493   uint desired_min_length = 0;
 494   if (adaptive_young_list_length()) {
 495     if (_alloc_rate_ms_seq->num() > 3) {
 496       double now_sec = os::elapsedTime();
 497       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 498       double alloc_rate_ms = predict_alloc_rate_ms();
 499       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 500     } else {
 501       // otherwise we don't have enough info to make the prediction
 502     }
 503   }
 504   desired_min_length += base_min_length;
 505   // make sure we don't go below any user-defined minimum bound
 506   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 507 }
 508 
 509 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 510   // Here, we might want to also take into account any additional
 511   // constraints (i.e., user-defined minimum bound). Currently, we
 512   // effectively don't set this bound.
 513   return _young_gen_sizer->max_desired_young_length();
 514 }
 515 
 516 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 517   if (rs_lengths == (size_t) -1) {
 518     // if it's set to the default value (-1), we should predict it;
 519     // otherwise, use the given value.
 520     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 521   }
 522 
 523   // Calculate the absolute and desired min bounds.
 524 
 525   // This is how many young regions we already have (currently: the survivors).
 526   uint base_min_length = recorded_survivor_regions();
 527   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 528   // This is the absolute minimum young length. Ensure that we
 529   // will at least have one eden region available for allocation.
 530   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 531   // If we shrank the young list target it should not shrink below the current size.
 532   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 533   // Calculate the absolute and desired max bounds.
 534 
 535   // We will try our best not to "eat" into the reserve.
 536   uint absolute_max_length = 0;
 537   if (_free_regions_at_end_of_collection > _reserve_regions) {
 538     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 539   }
 540   uint desired_max_length = calculate_young_list_desired_max_length();
 541   if (desired_max_length > absolute_max_length) {
 542     desired_max_length = absolute_max_length;
 543   }
 544 
 545   uint young_list_target_length = 0;
 546   if (adaptive_young_list_length()) {
 547     if (collector_state()->gcs_are_young()) {
 548       young_list_target_length =
 549                         calculate_young_list_target_length(rs_lengths,
 550                                                            base_min_length,
 551                                                            desired_min_length,
 552                                                            desired_max_length);
 553       _rs_lengths_prediction = rs_lengths;
 554     } else {
 555       // Don't calculate anything and let the code below bound it to
 556       // the desired_min_length, i.e., do the next GC as soon as
 557       // possible to maximize how many old regions we can add to it.
 558     }
 559   } else {
 560     // The user asked for a fixed young gen so we'll fix the young gen
 561     // whether the next GC is young or mixed.
 562     young_list_target_length = _young_list_fixed_length;
 563   }
 564 
 565   // Make sure we don't go over the desired max length, nor under the
 566   // desired min length. In case they clash, desired_min_length wins
 567   // which is why that test is second.
 568   if (young_list_target_length > desired_max_length) {
 569     young_list_target_length = desired_max_length;
 570   }
 571   if (young_list_target_length < desired_min_length) {
 572     young_list_target_length = desired_min_length;
 573   }
 574 
 575   assert(young_list_target_length > recorded_survivor_regions(),
 576          "we should be able to allocate at least one eden region");
 577   assert(young_list_target_length >= absolute_min_length, "post-condition");
 578   _young_list_target_length = young_list_target_length;
 579 
 580   update_max_gc_locker_expansion();
 581 }
 582 
 583 uint
 584 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 585                                                      uint base_min_length,
 586                                                      uint desired_min_length,
 587                                                      uint desired_max_length) {
 588   assert(adaptive_young_list_length(), "pre-condition");
 589   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 590 
 591   // In case some edge-condition makes the desired max length too small...
 592   if (desired_max_length <= desired_min_length) {
 593     return desired_min_length;
 594   }
 595 
 596   // We'll adjust min_young_length and max_young_length not to include
 597   // the already allocated young regions (i.e., so they reflect the
 598   // min and max eden regions we'll allocate). The base_min_length
 599   // will be reflected in the predictions by the
 600   // survivor_regions_evac_time prediction.
 601   assert(desired_min_length > base_min_length, "invariant");
 602   uint min_young_length = desired_min_length - base_min_length;
 603   assert(desired_max_length > base_min_length, "invariant");
 604   uint max_young_length = desired_max_length - base_min_length;
 605 
 606   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 607   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 608   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 609   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 610   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 611   double base_time_ms =
 612     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 613     survivor_regions_evac_time;
 614   uint available_free_regions = _free_regions_at_end_of_collection;
 615   uint base_free_regions = 0;
 616   if (available_free_regions > _reserve_regions) {
 617     base_free_regions = available_free_regions - _reserve_regions;
 618   }
 619 
 620   // Here, we will make sure that the shortest young length that
 621   // makes sense fits within the target pause time.
 622 
 623   if (predict_will_fit(min_young_length, base_time_ms,
 624                        base_free_regions, target_pause_time_ms)) {
 625     // The shortest young length will fit into the target pause time;
 626     // we'll now check whether the absolute maximum number of young
 627     // regions will fit in the target pause time. If not, we'll do
 628     // a binary search between min_young_length and max_young_length.
 629     if (predict_will_fit(max_young_length, base_time_ms,
 630                          base_free_regions, target_pause_time_ms)) {
 631       // The maximum young length will fit into the target pause time.
 632       // We are done so set min young length to the maximum length (as
 633       // the result is assumed to be returned in min_young_length).
 634       min_young_length = max_young_length;
 635     } else {
 636       // The maximum possible number of young regions will not fit within
 637       // the target pause time so we'll search for the optimal
 638       // length. The loop invariants are:
 639       //
 640       // min_young_length < max_young_length
 641       // min_young_length is known to fit into the target pause time
 642       // max_young_length is known not to fit into the target pause time
 643       //
 644       // Going into the loop we know the above hold as we've just
 645       // checked them. Every time around the loop we check whether
 646       // the middle value between min_young_length and
 647       // max_young_length fits into the target pause time. If it
 648       // does, it becomes the new min. If it doesn't, it becomes
 649       // the new max. This way we maintain the loop invariants.
 650 
 651       assert(min_young_length < max_young_length, "invariant");
 652       uint diff = (max_young_length - min_young_length) / 2;
 653       while (diff > 0) {
 654         uint young_length = min_young_length + diff;
 655         if (predict_will_fit(young_length, base_time_ms,
 656                              base_free_regions, target_pause_time_ms)) {
 657           min_young_length = young_length;
 658         } else {
 659           max_young_length = young_length;
 660         }
 661         assert(min_young_length <  max_young_length, "invariant");
 662         diff = (max_young_length - min_young_length) / 2;
 663       }
 664       // The results is min_young_length which, according to the
 665       // loop invariants, should fit within the target pause time.
 666 
 667       // These are the post-conditions of the binary search above:
 668       assert(min_young_length < max_young_length,
 669              "otherwise we should have discovered that max_young_length "
 670              "fits into the pause target and not done the binary search");
 671       assert(predict_will_fit(min_young_length, base_time_ms,
 672                               base_free_regions, target_pause_time_ms),
 673              "min_young_length, the result of the binary search, should "
 674              "fit into the pause target");
 675       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 676                                base_free_regions, target_pause_time_ms),
 677              "min_young_length, the result of the binary search, should be "
 678              "optimal, so no larger length should fit into the pause target");
 679     }
 680   } else {
 681     // Even the minimum length doesn't fit into the pause time
 682     // target, return it as the result nevertheless.
 683   }
 684   return base_min_length + min_young_length;
 685 }
 686 
 687 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 688   double survivor_regions_evac_time = 0.0;
 689   for (HeapRegion * r = _recorded_survivor_head;
 690        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 691        r = r->get_next_young_region()) {
 692     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 693   }
 694   return survivor_regions_evac_time;
 695 }
 696 
 697 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 698   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 699 
 700   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 701   if (rs_lengths > _rs_lengths_prediction) {
 702     // add 10% to avoid having to recalculate often
 703     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 704     update_young_list_target_length(rs_lengths_prediction);
 705   }
 706 }
 707 
 708 
 709 
 710 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 711                                                bool is_tlab,
 712                                                bool* gc_overhead_limit_was_exceeded) {
 713   guarantee(false, "Not using this policy feature yet.");
 714   return NULL;
 715 }
 716 
 717 // This method controls how a collector handles one or more
 718 // of its generations being fully allocated.
 719 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 720                                                        bool is_tlab) {
 721   guarantee(false, "Not using this policy feature yet.");
 722   return NULL;
 723 }
 724 
 725 
 726 #ifndef PRODUCT
 727 bool G1CollectorPolicy::verify_young_ages() {
 728   HeapRegion* head = _g1->young_list()->first_region();
 729   return
 730     verify_young_ages(head, _short_lived_surv_rate_group);
 731   // also call verify_young_ages on any additional surv rate groups
 732 }
 733 
 734 bool
 735 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 736                                      SurvRateGroup *surv_rate_group) {
 737   guarantee( surv_rate_group != NULL, "pre-condition" );
 738 
 739   const char* name = surv_rate_group->name();
 740   bool ret = true;
 741   int prev_age = -1;
 742 
 743   for (HeapRegion* curr = head;
 744        curr != NULL;
 745        curr = curr->get_next_young_region()) {
 746     SurvRateGroup* group = curr->surv_rate_group();
 747     if (group == NULL && !curr->is_survivor()) {
 748       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 749       ret = false;
 750     }
 751 
 752     if (surv_rate_group == group) {
 753       int age = curr->age_in_surv_rate_group();
 754 
 755       if (age < 0) {
 756         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 757         ret = false;
 758       }
 759 
 760       if (age <= prev_age) {
 761         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 762                                "(%d, %d)", name, age, prev_age);
 763         ret = false;
 764       }
 765       prev_age = age;
 766     }
 767   }
 768 
 769   return ret;
 770 }
 771 #endif // PRODUCT
 772 
 773 void G1CollectorPolicy::record_full_collection_start() {
 774   _full_collection_start_sec = os::elapsedTime();
 775   record_heap_size_info_at_start(true /* full */);
 776   // Release the future to-space so that it is available for compaction into.
 777   collector_state()->set_full_collection(true);
 778 }
 779 
 780 void G1CollectorPolicy::record_full_collection_end() {
 781   // Consider this like a collection pause for the purposes of allocation
 782   // since last pause.
 783   double end_sec = os::elapsedTime();
 784   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 785   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 786 
 787   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 788 
 789   update_recent_gc_times(end_sec, full_gc_time_ms);
 790 
 791   collector_state()->set_full_collection(false);
 792 
 793   // "Nuke" the heuristics that control the young/mixed GC
 794   // transitions and make sure we start with young GCs after the Full GC.
 795   collector_state()->set_gcs_are_young(true);
 796   collector_state()->set_last_young_gc(false);
 797   collector_state()->set_initiate_conc_mark_if_possible(false);
 798   collector_state()->set_during_initial_mark_pause(false);
 799   collector_state()->set_in_marking_window(false);
 800   collector_state()->set_in_marking_window_im(false);
 801 
 802   _short_lived_surv_rate_group->start_adding_regions();
 803   // also call this on any additional surv rate groups
 804 
 805   record_survivor_regions(0, NULL, NULL);
 806 
 807   _free_regions_at_end_of_collection = _g1->num_free_regions();
 808   // Reset survivors SurvRateGroup.
 809   _survivor_surv_rate_group->reset();
 810   update_young_list_target_length();
 811   _collectionSetChooser->clear();
 812 }
 813 
 814 void G1CollectorPolicy::record_stop_world_start() {
 815   _stop_world_start = os::elapsedTime();
 816 }
 817 
 818 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 819   // We only need to do this here as the policy will only be applied
 820   // to the GC we're about to start. so, no point is calculating this
 821   // every time we calculate / recalculate the target young length.
 822   update_survivors_policy();
 823 
 824   assert(_g1->used() == _g1->recalculate_used(),
 825          err_msg("sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 826                  _g1->used(), _g1->recalculate_used()));
 827 
 828   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 829   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 830   _stop_world_start = 0.0;
 831 
 832   record_heap_size_info_at_start(false /* full */);
 833 
 834   phase_times()->record_cur_collection_start_sec(start_time_sec);
 835   _pending_cards = _g1->pending_card_num();
 836 
 837   _collection_set_bytes_used_before = 0;
 838   _bytes_copied_during_gc = 0;
 839 
 840   collector_state()->set_last_gc_was_young(false);
 841 
 842   // do that for any other surv rate groups
 843   _short_lived_surv_rate_group->stop_adding_regions();
 844   _survivors_age_table.clear();
 845 
 846   assert( verify_young_ages(), "region age verification" );
 847 }
 848 
 849 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 850                                                    mark_init_elapsed_time_ms) {
 851   collector_state()->set_during_marking(true);
 852   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 853   collector_state()->set_during_initial_mark_pause(false);
 854   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 855 }
 856 
 857 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 858   _mark_remark_start_sec = os::elapsedTime();
 859   collector_state()->set_during_marking(false);
 860 }
 861 
 862 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 863   double end_time_sec = os::elapsedTime();
 864   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 865   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 866   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 867   _prev_collection_pause_end_ms += elapsed_time_ms;
 868 
 869   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, _g1->gc_tracer_cm()->gc_id());
 870 }
 871 
 872 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 873   _mark_cleanup_start_sec = os::elapsedTime();
 874 }
 875 
 876 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 877   collector_state()->set_last_young_gc(true);
 878   collector_state()->set_in_marking_window(false);
 879 }
 880 
 881 void G1CollectorPolicy::record_concurrent_pause() {
 882   if (_stop_world_start > 0.0) {
 883     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 884     _trace_young_gen_time_data.record_yield_time(yield_ms);
 885   }
 886 }
 887 
 888 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 889   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 890     return false;
 891   }
 892 
 893   size_t marking_initiating_used_threshold =
 894     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 895   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 896   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 897 
 898   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 899     if (collector_state()->gcs_are_young() && !collector_state()->last_young_gc()) {
 900       ergo_verbose5(ErgoConcCycles,
 901         "request concurrent cycle initiation",
 902         ergo_format_reason("occupancy higher than threshold")
 903         ergo_format_byte("occupancy")
 904         ergo_format_byte("allocation request")
 905         ergo_format_byte_perc("threshold")
 906         ergo_format_str("source"),
 907         cur_used_bytes,
 908         alloc_byte_size,
 909         marking_initiating_used_threshold,
 910         (double) InitiatingHeapOccupancyPercent,
 911         source);
 912       return true;
 913     } else {
 914       ergo_verbose5(ErgoConcCycles,
 915         "do not request concurrent cycle initiation",
 916         ergo_format_reason("still doing mixed collections")
 917         ergo_format_byte("occupancy")
 918         ergo_format_byte("allocation request")
 919         ergo_format_byte_perc("threshold")
 920         ergo_format_str("source"),
 921         cur_used_bytes,
 922         alloc_byte_size,
 923         marking_initiating_used_threshold,
 924         (double) InitiatingHeapOccupancyPercent,
 925         source);
 926     }
 927   }
 928 
 929   return false;
 930 }
 931 
 932 // Anything below that is considered to be zero
 933 #define MIN_TIMER_GRANULARITY 0.0000001
 934 
 935 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
 936   double end_time_sec = os::elapsedTime();
 937   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 938          "otherwise, the subtraction below does not make sense");
 939   size_t rs_size =
 940             _cur_collection_pause_used_regions_at_start - cset_region_length();
 941   size_t cur_used_bytes = _g1->used();
 942   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 943   bool last_pause_included_initial_mark = false;
 944   bool update_stats = !_g1->evacuation_failed();
 945 
 946 #ifndef PRODUCT
 947   if (G1YoungSurvRateVerbose) {
 948     gclog_or_tty->cr();
 949     _short_lived_surv_rate_group->print();
 950     // do that for any other surv rate groups too
 951   }
 952 #endif // PRODUCT
 953 
 954   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 955   if (last_pause_included_initial_mark) {
 956     record_concurrent_mark_init_end(0.0);
 957   } else if (need_to_start_conc_mark("end of GC")) {
 958     // Note: this might have already been set, if during the last
 959     // pause we decided to start a cycle but at the beginning of
 960     // this pause we decided to postpone it. That's OK.
 961     collector_state()->set_initiate_conc_mark_if_possible(true);
 962   }
 963 
 964   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 965                           end_time_sec, _g1->gc_tracer_stw()->gc_id());
 966 
 967   if (update_stats) {
 968     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
 969     // this is where we update the allocation rate of the application
 970     double app_time_ms =
 971       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 972     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 973       // This usually happens due to the timer not having the required
 974       // granularity. Some Linuxes are the usual culprits.
 975       // We'll just set it to something (arbitrarily) small.
 976       app_time_ms = 1.0;
 977     }
 978     // We maintain the invariant that all objects allocated by mutator
 979     // threads will be allocated out of eden regions. So, we can use
 980     // the eden region number allocated since the previous GC to
 981     // calculate the application's allocate rate. The only exception
 982     // to that is humongous objects that are allocated separately. But
 983     // given that humongous object allocations do not really affect
 984     // either the pause's duration nor when the next pause will take
 985     // place we can safely ignore them here.
 986     uint regions_allocated = eden_cset_region_length();
 987     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 988     _alloc_rate_ms_seq->add(alloc_rate_ms);
 989 
 990     double interval_ms =
 991       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 992     update_recent_gc_times(end_time_sec, pause_time_ms);
 993     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 994     if (recent_avg_pause_time_ratio() < 0.0 ||
 995         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 996 #ifndef PRODUCT
 997       // Dump info to allow post-facto debugging
 998       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
 999       gclog_or_tty->print_cr("-------------------------------------------");
1000       gclog_or_tty->print_cr("Recent GC Times (ms):");
1001       _recent_gc_times_ms->dump();
1002       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1003       _recent_prev_end_times_for_all_gcs_sec->dump();
1004       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1005                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1006       // In debug mode, terminate the JVM if the user wants to debug at this point.
1007       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1008 #endif  // !PRODUCT
1009       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1010       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1011       if (_recent_avg_pause_time_ratio < 0.0) {
1012         _recent_avg_pause_time_ratio = 0.0;
1013       } else {
1014         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1015         _recent_avg_pause_time_ratio = 1.0;
1016       }
1017     }
1018   }
1019 
1020   bool new_in_marking_window = collector_state()->in_marking_window();
1021   bool new_in_marking_window_im = false;
1022   if (last_pause_included_initial_mark) {
1023     new_in_marking_window = true;
1024     new_in_marking_window_im = true;
1025   }
1026 
1027   if (collector_state()->last_young_gc()) {
1028     // This is supposed to to be the "last young GC" before we start
1029     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1030 
1031     if (!last_pause_included_initial_mark) {
1032       if (next_gc_should_be_mixed("start mixed GCs",
1033                                   "do not start mixed GCs")) {
1034         collector_state()->set_gcs_are_young(false);
1035       }
1036     } else {
1037       ergo_verbose0(ErgoMixedGCs,
1038                     "do not start mixed GCs",
1039                     ergo_format_reason("concurrent cycle is about to start"));
1040     }
1041     collector_state()->set_last_young_gc(false);
1042   }
1043 
1044   if (!collector_state()->last_gc_was_young()) {
1045     // This is a mixed GC. Here we decide whether to continue doing
1046     // mixed GCs or not.
1047 
1048     if (!next_gc_should_be_mixed("continue mixed GCs",
1049                                  "do not continue mixed GCs")) {
1050       collector_state()->set_gcs_are_young(true);
1051     }
1052   }
1053 
1054   _short_lived_surv_rate_group->start_adding_regions();
1055   // Do that for any other surv rate groups
1056 
1057   if (update_stats) {
1058     double cost_per_card_ms = 0.0;
1059     if (_pending_cards > 0) {
1060       cost_per_card_ms = phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) / (double) _pending_cards;
1061       _cost_per_card_ms_seq->add(cost_per_card_ms);
1062     }
1063 
1064     size_t cards_scanned = _g1->cards_scanned();
1065 
1066     double cost_per_entry_ms = 0.0;
1067     if (cards_scanned > 10) {
1068       cost_per_entry_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1069       if (collector_state()->last_gc_was_young()) {
1070         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1071       } else {
1072         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1073       }
1074     }
1075 
1076     if (_max_rs_lengths > 0) {
1077       double cards_per_entry_ratio =
1078         (double) cards_scanned / (double) _max_rs_lengths;
1079       if (collector_state()->last_gc_was_young()) {
1080         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1081       } else {
1082         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1083       }
1084     }
1085 
1086     // This is defensive. For a while _max_rs_lengths could get
1087     // smaller than _recorded_rs_lengths which was causing
1088     // rs_length_diff to get very large and mess up the RSet length
1089     // predictions. The reason was unsafe concurrent updates to the
1090     // _inc_cset_recorded_rs_lengths field which the code below guards
1091     // against (see CR 7118202). This bug has now been fixed (see CR
1092     // 7119027). However, I'm still worried that
1093     // _inc_cset_recorded_rs_lengths might still end up somewhat
1094     // inaccurate. The concurrent refinement thread calculates an
1095     // RSet's length concurrently with other CR threads updating it
1096     // which might cause it to calculate the length incorrectly (if,
1097     // say, it's in mid-coarsening). So I'll leave in the defensive
1098     // conditional below just in case.
1099     size_t rs_length_diff = 0;
1100     if (_max_rs_lengths > _recorded_rs_lengths) {
1101       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1102     }
1103     _rs_length_diff_seq->add((double) rs_length_diff);
1104 
1105     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1106     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1107     double cost_per_byte_ms = 0.0;
1108 
1109     if (copied_bytes > 0) {
1110       cost_per_byte_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1111       if (collector_state()->in_marking_window()) {
1112         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1113       } else {
1114         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1115       }
1116     }
1117 
1118     double all_other_time_ms = pause_time_ms -
1119       (phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) + phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) +
1120           phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) + phase_times()->average_time_ms(G1GCPhaseTimes::Termination));
1121 
1122     double young_other_time_ms = 0.0;
1123     if (young_cset_region_length() > 0) {
1124       young_other_time_ms =
1125         phase_times()->young_cset_choice_time_ms() +
1126         phase_times()->young_free_cset_time_ms();
1127       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1128                                           (double) young_cset_region_length());
1129     }
1130     double non_young_other_time_ms = 0.0;
1131     if (old_cset_region_length() > 0) {
1132       non_young_other_time_ms =
1133         phase_times()->non_young_cset_choice_time_ms() +
1134         phase_times()->non_young_free_cset_time_ms();
1135 
1136       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1137                                             (double) old_cset_region_length());
1138     }
1139 
1140     double constant_other_time_ms = all_other_time_ms -
1141       (young_other_time_ms + non_young_other_time_ms);
1142     _constant_other_time_ms_seq->add(constant_other_time_ms);
1143 
1144     double survival_ratio = 0.0;
1145     if (_collection_set_bytes_used_before > 0) {
1146       survival_ratio = (double) _bytes_copied_during_gc /
1147                                    (double) _collection_set_bytes_used_before;
1148     }
1149 
1150     _pending_cards_seq->add((double) _pending_cards);
1151     _rs_lengths_seq->add((double) _max_rs_lengths);
1152   }
1153 
1154   collector_state()->set_in_marking_window(new_in_marking_window);
1155   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1156   _free_regions_at_end_of_collection = _g1->num_free_regions();
1157   update_young_list_target_length();
1158 
1159   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1160   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1161   adjust_concurrent_refinement(phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS),
1162                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS), update_rs_time_goal_ms);
1163 
1164   _collectionSetChooser->verify();
1165 }
1166 
1167 #define EXT_SIZE_FORMAT "%.1f%s"
1168 #define EXT_SIZE_PARAMS(bytes)                                  \
1169   byte_size_in_proper_unit((double)(bytes)),                    \
1170   proper_unit_for_byte_size((bytes))
1171 
1172 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1173   YoungList* young_list = _g1->young_list();
1174   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1175   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1176   _heap_capacity_bytes_before_gc = _g1->capacity();
1177   _heap_used_bytes_before_gc = _g1->used();
1178   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1179 
1180   _eden_capacity_bytes_before_gc =
1181          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1182 
1183   if (full) {
1184     _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1185   }
1186 }
1187 
1188 void G1CollectorPolicy::print_heap_transition(size_t bytes_before) {
1189   size_t bytes_after = _g1->used();
1190   size_t capacity = _g1->capacity();
1191 
1192   gclog_or_tty->print(" " SIZE_FORMAT "%s->" SIZE_FORMAT "%s(" SIZE_FORMAT "%s)",
1193       byte_size_in_proper_unit(bytes_before),
1194       proper_unit_for_byte_size(bytes_before),
1195       byte_size_in_proper_unit(bytes_after),
1196       proper_unit_for_byte_size(bytes_after),
1197       byte_size_in_proper_unit(capacity),
1198       proper_unit_for_byte_size(capacity));
1199 }
1200 
1201 void G1CollectorPolicy::print_heap_transition() {
1202   print_heap_transition(_heap_used_bytes_before_gc);
1203 }
1204 
1205 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1206   YoungList* young_list = _g1->young_list();
1207 
1208   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1209   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1210   size_t heap_used_bytes_after_gc = _g1->used();
1211 
1212   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1213   size_t eden_capacity_bytes_after_gc =
1214     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1215 
1216   gclog_or_tty->print(
1217     "   [Eden: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->" EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ") "
1218     "Survivors: " EXT_SIZE_FORMAT "->" EXT_SIZE_FORMAT " "
1219     "Heap: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->"
1220     EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")]",
1221     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1222     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1223     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1224     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1225     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1226     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1227     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1228     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1229     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1230     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1231 
1232   if (full) {
1233     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1234   }
1235 
1236   gclog_or_tty->cr();
1237 }
1238 
1239 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1240                                                      double update_rs_processed_buffers,
1241                                                      double goal_ms) {
1242   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1243   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1244 
1245   if (G1UseAdaptiveConcRefinement) {
1246     const int k_gy = 3, k_gr = 6;
1247     const double inc_k = 1.1, dec_k = 0.9;
1248 
1249     int g = cg1r->green_zone();
1250     if (update_rs_time > goal_ms) {
1251       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1252     } else {
1253       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1254         g = (int)MAX2(g * inc_k, g + 1.0);
1255       }
1256     }
1257     // Change the refinement threads params
1258     cg1r->set_green_zone(g);
1259     cg1r->set_yellow_zone(g * k_gy);
1260     cg1r->set_red_zone(g * k_gr);
1261     cg1r->reinitialize_threads();
1262 
1263     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1264     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1265                                     cg1r->yellow_zone());
1266     // Change the barrier params
1267     dcqs.set_process_completed_threshold(processing_threshold);
1268     dcqs.set_max_completed_queue(cg1r->red_zone());
1269   }
1270 
1271   int curr_queue_size = dcqs.completed_buffers_num();
1272   if (curr_queue_size >= cg1r->yellow_zone()) {
1273     dcqs.set_completed_queue_padding(curr_queue_size);
1274   } else {
1275     dcqs.set_completed_queue_padding(0);
1276   }
1277   dcqs.notify_if_necessary();
1278 }
1279 
1280 double
1281 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1282                                                 size_t scanned_cards) {
1283   return
1284     predict_rs_update_time_ms(pending_cards) +
1285     predict_rs_scan_time_ms(scanned_cards) +
1286     predict_constant_other_time_ms();
1287 }
1288 
1289 double
1290 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1291   size_t rs_length = predict_rs_length_diff();
1292   size_t card_num;
1293   if (collector_state()->gcs_are_young()) {
1294     card_num = predict_young_card_num(rs_length);
1295   } else {
1296     card_num = predict_non_young_card_num(rs_length);
1297   }
1298   return predict_base_elapsed_time_ms(pending_cards, card_num);
1299 }
1300 
1301 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1302   size_t bytes_to_copy;
1303   if (hr->is_marked())
1304     bytes_to_copy = hr->max_live_bytes();
1305   else {
1306     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1307     int age = hr->age_in_surv_rate_group();
1308     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1309     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1310   }
1311   return bytes_to_copy;
1312 }
1313 
1314 double
1315 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1316                                                   bool for_young_gc) {
1317   size_t rs_length = hr->rem_set()->occupied();
1318   size_t card_num;
1319 
1320   // Predicting the number of cards is based on which type of GC
1321   // we're predicting for.
1322   if (for_young_gc) {
1323     card_num = predict_young_card_num(rs_length);
1324   } else {
1325     card_num = predict_non_young_card_num(rs_length);
1326   }
1327   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1328 
1329   double region_elapsed_time_ms =
1330     predict_rs_scan_time_ms(card_num) +
1331     predict_object_copy_time_ms(bytes_to_copy);
1332 
1333   // The prediction of the "other" time for this region is based
1334   // upon the region type and NOT the GC type.
1335   if (hr->is_young()) {
1336     region_elapsed_time_ms += predict_young_other_time_ms(1);
1337   } else {
1338     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1339   }
1340   return region_elapsed_time_ms;
1341 }
1342 
1343 void
1344 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1345                                             uint survivor_cset_region_length) {
1346   _eden_cset_region_length     = eden_cset_region_length;
1347   _survivor_cset_region_length = survivor_cset_region_length;
1348   _old_cset_region_length      = 0;
1349 }
1350 
1351 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1352   _recorded_rs_lengths = rs_lengths;
1353 }
1354 
1355 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1356                                                double elapsed_ms) {
1357   _recent_gc_times_ms->add(elapsed_ms);
1358   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1359   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1360 }
1361 
1362 size_t G1CollectorPolicy::expansion_amount() {
1363   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1364   double threshold = _gc_overhead_perc;
1365   if (recent_gc_overhead > threshold) {
1366     // We will double the existing space, or take
1367     // G1ExpandByPercentOfAvailable % of the available expansion
1368     // space, whichever is smaller, bounded below by a minimum
1369     // expansion (unless that's all that's left.)
1370     const size_t min_expand_bytes = 1*M;
1371     size_t reserved_bytes = _g1->max_capacity();
1372     size_t committed_bytes = _g1->capacity();
1373     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1374     size_t expand_bytes;
1375     size_t expand_bytes_via_pct =
1376       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1377     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1378     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1379     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1380 
1381     ergo_verbose5(ErgoHeapSizing,
1382                   "attempt heap expansion",
1383                   ergo_format_reason("recent GC overhead higher than "
1384                                      "threshold after GC")
1385                   ergo_format_perc("recent GC overhead")
1386                   ergo_format_perc("threshold")
1387                   ergo_format_byte("uncommitted")
1388                   ergo_format_byte_perc("calculated expansion amount"),
1389                   recent_gc_overhead, threshold,
1390                   uncommitted_bytes,
1391                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1392 
1393     return expand_bytes;
1394   } else {
1395     return 0;
1396   }
1397 }
1398 
1399 void G1CollectorPolicy::print_tracing_info() const {
1400   _trace_young_gen_time_data.print();
1401   _trace_old_gen_time_data.print();
1402 }
1403 
1404 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1405 #ifndef PRODUCT
1406   _short_lived_surv_rate_group->print_surv_rate_summary();
1407   // add this call for any other surv rate groups
1408 #endif // PRODUCT
1409 }
1410 
1411 bool G1CollectorPolicy::is_young_list_full() {
1412   uint young_list_length = _g1->young_list()->length();
1413   uint young_list_target_length = _young_list_target_length;
1414   return young_list_length >= young_list_target_length;
1415 }
1416 
1417 bool G1CollectorPolicy::can_expand_young_list() {
1418   uint young_list_length = _g1->young_list()->length();
1419   uint young_list_max_length = _young_list_max_length;
1420   return young_list_length < young_list_max_length;
1421 }
1422 
1423 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1424   uint expansion_region_num = 0;
1425   if (GCLockerEdenExpansionPercent > 0) {
1426     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1427     double expansion_region_num_d = perc * (double) _young_list_target_length;
1428     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1429     // less than 1.0) we'll get 1.
1430     expansion_region_num = (uint) ceil(expansion_region_num_d);
1431   } else {
1432     assert(expansion_region_num == 0, "sanity");
1433   }
1434   _young_list_max_length = _young_list_target_length + expansion_region_num;
1435   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1436 }
1437 
1438 // Calculates survivor space parameters.
1439 void G1CollectorPolicy::update_survivors_policy() {
1440   double max_survivor_regions_d =
1441                  (double) _young_list_target_length / (double) SurvivorRatio;
1442   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1443   // smaller than 1.0) we'll get 1.
1444   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1445 
1446   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1447         HeapRegion::GrainWords * _max_survivor_regions, counters());
1448 }
1449 
1450 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1451                                                      GCCause::Cause gc_cause) {
1452   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1453   if (!during_cycle) {
1454     ergo_verbose1(ErgoConcCycles,
1455                   "request concurrent cycle initiation",
1456                   ergo_format_reason("requested by GC cause")
1457                   ergo_format_str("GC cause"),
1458                   GCCause::to_string(gc_cause));
1459     collector_state()->set_initiate_conc_mark_if_possible(true);
1460     return true;
1461   } else {
1462     ergo_verbose1(ErgoConcCycles,
1463                   "do not request concurrent cycle initiation",
1464                   ergo_format_reason("concurrent cycle already in progress")
1465                   ergo_format_str("GC cause"),
1466                   GCCause::to_string(gc_cause));
1467     return false;
1468   }
1469 }
1470 
1471 void
1472 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1473   // We are about to decide on whether this pause will be an
1474   // initial-mark pause.
1475 
1476   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1477   // will set it here if we have to. However, it should be cleared by
1478   // the end of the pause (it's only set for the duration of an
1479   // initial-mark pause).
1480   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1481 
1482   if (collector_state()->initiate_conc_mark_if_possible()) {
1483     // We had noticed on a previous pause that the heap occupancy has
1484     // gone over the initiating threshold and we should start a
1485     // concurrent marking cycle. So we might initiate one.
1486 
1487     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1488     if (!during_cycle) {
1489       // The concurrent marking thread is not "during a cycle", i.e.,
1490       // it has completed the last one. So we can go ahead and
1491       // initiate a new cycle.
1492 
1493       collector_state()->set_during_initial_mark_pause(true);
1494       // We do not allow mixed GCs during marking.
1495       if (!collector_state()->gcs_are_young()) {
1496         collector_state()->set_gcs_are_young(true);
1497         ergo_verbose0(ErgoMixedGCs,
1498                       "end mixed GCs",
1499                       ergo_format_reason("concurrent cycle is about to start"));
1500       }
1501 
1502       // And we can now clear initiate_conc_mark_if_possible() as
1503       // we've already acted on it.
1504       collector_state()->set_initiate_conc_mark_if_possible(false);
1505 
1506       ergo_verbose0(ErgoConcCycles,
1507                   "initiate concurrent cycle",
1508                   ergo_format_reason("concurrent cycle initiation requested"));
1509     } else {
1510       // The concurrent marking thread is still finishing up the
1511       // previous cycle. If we start one right now the two cycles
1512       // overlap. In particular, the concurrent marking thread might
1513       // be in the process of clearing the next marking bitmap (which
1514       // we will use for the next cycle if we start one). Starting a
1515       // cycle now will be bad given that parts of the marking
1516       // information might get cleared by the marking thread. And we
1517       // cannot wait for the marking thread to finish the cycle as it
1518       // periodically yields while clearing the next marking bitmap
1519       // and, if it's in a yield point, it's waiting for us to
1520       // finish. So, at this point we will not start a cycle and we'll
1521       // let the concurrent marking thread complete the last one.
1522       ergo_verbose0(ErgoConcCycles,
1523                     "do not initiate concurrent cycle",
1524                     ergo_format_reason("concurrent cycle already in progress"));
1525     }
1526   }
1527 }
1528 
1529 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1530   G1CollectedHeap* _g1h;
1531   CSetChooserParUpdater _cset_updater;
1532 
1533 public:
1534   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1535                            uint chunk_size) :
1536     _g1h(G1CollectedHeap::heap()),
1537     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1538 
1539   bool doHeapRegion(HeapRegion* r) {
1540     // Do we have any marking information for this region?
1541     if (r->is_marked()) {
1542       // We will skip any region that's currently used as an old GC
1543       // alloc region (we should not consider those for collection
1544       // before we fill them up).
1545       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1546         _cset_updater.add_region(r);
1547       }
1548     }
1549     return false;
1550   }
1551 };
1552 
1553 class ParKnownGarbageTask: public AbstractGangTask {
1554   CollectionSetChooser* _hrSorted;
1555   uint _chunk_size;
1556   G1CollectedHeap* _g1;
1557   HeapRegionClaimer _hrclaimer;
1558 
1559 public:
1560   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1561       AbstractGangTask("ParKnownGarbageTask"),
1562       _hrSorted(hrSorted), _chunk_size(chunk_size),
1563       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1564 
1565   void work(uint worker_id) {
1566     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1567     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1568   }
1569 };
1570 
1571 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) {
1572   assert(n_workers > 0, "Active gc workers should be greater than 0");
1573   const uint overpartition_factor = 4;
1574   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1575   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1576 }
1577 
1578 void
1579 G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1580   _collectionSetChooser->clear();
1581 
1582   WorkGang* workers = _g1->workers();
1583   uint n_workers = workers->active_workers();
1584 
1585   uint n_regions = _g1->num_regions();
1586   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1587   _collectionSetChooser->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1588   ParKnownGarbageTask par_known_garbage_task(_collectionSetChooser, chunk_size, n_workers);
1589   workers->run_task(&par_known_garbage_task);
1590 
1591   _collectionSetChooser->sort_regions();
1592 
1593   double end_sec = os::elapsedTime();
1594   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1595   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1596   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1597   _prev_collection_pause_end_ms += elapsed_time_ms;
1598   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, _g1->gc_tracer_cm()->gc_id());
1599 }
1600 
1601 // Add the heap region at the head of the non-incremental collection set
1602 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1603   assert(_inc_cset_build_state == Active, "Precondition");
1604   assert(hr->is_old(), "the region should be old");
1605 
1606   assert(!hr->in_collection_set(), "should not already be in the CSet");
1607   _g1->register_old_region_with_cset(hr);
1608   hr->set_next_in_collection_set(_collection_set);
1609   _collection_set = hr;
1610   _collection_set_bytes_used_before += hr->used();
1611   size_t rs_length = hr->rem_set()->occupied();
1612   _recorded_rs_lengths += rs_length;
1613   _old_cset_region_length += 1;
1614 }
1615 
1616 // Initialize the per-collection-set information
1617 void G1CollectorPolicy::start_incremental_cset_building() {
1618   assert(_inc_cset_build_state == Inactive, "Precondition");
1619 
1620   _inc_cset_head = NULL;
1621   _inc_cset_tail = NULL;
1622   _inc_cset_bytes_used_before = 0;
1623 
1624   _inc_cset_max_finger = 0;
1625   _inc_cset_recorded_rs_lengths = 0;
1626   _inc_cset_recorded_rs_lengths_diffs = 0;
1627   _inc_cset_predicted_elapsed_time_ms = 0.0;
1628   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1629   _inc_cset_build_state = Active;
1630 }
1631 
1632 void G1CollectorPolicy::finalize_incremental_cset_building() {
1633   assert(_inc_cset_build_state == Active, "Precondition");
1634   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1635 
1636   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1637   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1638   // that adds a new region to the CSet. Further updates by the
1639   // concurrent refinement thread that samples the young RSet lengths
1640   // are accumulated in the *_diffs fields. Here we add the diffs to
1641   // the "main" fields.
1642 
1643   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1644     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1645   } else {
1646     // This is defensive. The diff should in theory be always positive
1647     // as RSets can only grow between GCs. However, given that we
1648     // sample their size concurrently with other threads updating them
1649     // it's possible that we might get the wrong size back, which
1650     // could make the calculations somewhat inaccurate.
1651     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1652     if (_inc_cset_recorded_rs_lengths >= diffs) {
1653       _inc_cset_recorded_rs_lengths -= diffs;
1654     } else {
1655       _inc_cset_recorded_rs_lengths = 0;
1656     }
1657   }
1658   _inc_cset_predicted_elapsed_time_ms +=
1659                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1660 
1661   _inc_cset_recorded_rs_lengths_diffs = 0;
1662   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1663 }
1664 
1665 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1666   // This routine is used when:
1667   // * adding survivor regions to the incremental cset at the end of an
1668   //   evacuation pause,
1669   // * adding the current allocation region to the incremental cset
1670   //   when it is retired, and
1671   // * updating existing policy information for a region in the
1672   //   incremental cset via young list RSet sampling.
1673   // Therefore this routine may be called at a safepoint by the
1674   // VM thread, or in-between safepoints by mutator threads (when
1675   // retiring the current allocation region) or a concurrent
1676   // refine thread (RSet sampling).
1677 
1678   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1679   size_t used_bytes = hr->used();
1680   _inc_cset_recorded_rs_lengths += rs_length;
1681   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1682   _inc_cset_bytes_used_before += used_bytes;
1683 
1684   // Cache the values we have added to the aggregated information
1685   // in the heap region in case we have to remove this region from
1686   // the incremental collection set, or it is updated by the
1687   // rset sampling code
1688   hr->set_recorded_rs_length(rs_length);
1689   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1690 }
1691 
1692 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1693                                                      size_t new_rs_length) {
1694   // Update the CSet information that is dependent on the new RS length
1695   assert(hr->is_young(), "Precondition");
1696   assert(!SafepointSynchronize::is_at_safepoint(),
1697                                                "should not be at a safepoint");
1698 
1699   // We could have updated _inc_cset_recorded_rs_lengths and
1700   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1701   // that atomically, as this code is executed by a concurrent
1702   // refinement thread, potentially concurrently with a mutator thread
1703   // allocating a new region and also updating the same fields. To
1704   // avoid the atomic operations we accumulate these updates on two
1705   // separate fields (*_diffs) and we'll just add them to the "main"
1706   // fields at the start of a GC.
1707 
1708   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1709   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1710   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1711 
1712   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1713   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1714   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1715   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1716 
1717   hr->set_recorded_rs_length(new_rs_length);
1718   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1719 }
1720 
1721 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1722   assert(hr->is_young(), "invariant");
1723   assert(hr->young_index_in_cset() > -1, "should have already been set");
1724   assert(_inc_cset_build_state == Active, "Precondition");
1725 
1726   // We need to clear and set the cached recorded/cached collection set
1727   // information in the heap region here (before the region gets added
1728   // to the collection set). An individual heap region's cached values
1729   // are calculated, aggregated with the policy collection set info,
1730   // and cached in the heap region here (initially) and (subsequently)
1731   // by the Young List sampling code.
1732 
1733   size_t rs_length = hr->rem_set()->occupied();
1734   add_to_incremental_cset_info(hr, rs_length);
1735 
1736   HeapWord* hr_end = hr->end();
1737   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1738 
1739   assert(!hr->in_collection_set(), "invariant");
1740   _g1->register_young_region_with_cset(hr);
1741   assert(hr->next_in_collection_set() == NULL, "invariant");
1742 }
1743 
1744 // Add the region at the RHS of the incremental cset
1745 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1746   // We should only ever be appending survivors at the end of a pause
1747   assert(hr->is_survivor(), "Logic");
1748 
1749   // Do the 'common' stuff
1750   add_region_to_incremental_cset_common(hr);
1751 
1752   // Now add the region at the right hand side
1753   if (_inc_cset_tail == NULL) {
1754     assert(_inc_cset_head == NULL, "invariant");
1755     _inc_cset_head = hr;
1756   } else {
1757     _inc_cset_tail->set_next_in_collection_set(hr);
1758   }
1759   _inc_cset_tail = hr;
1760 }
1761 
1762 // Add the region to the LHS of the incremental cset
1763 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1764   // Survivors should be added to the RHS at the end of a pause
1765   assert(hr->is_eden(), "Logic");
1766 
1767   // Do the 'common' stuff
1768   add_region_to_incremental_cset_common(hr);
1769 
1770   // Add the region at the left hand side
1771   hr->set_next_in_collection_set(_inc_cset_head);
1772   if (_inc_cset_head == NULL) {
1773     assert(_inc_cset_tail == NULL, "Invariant");
1774     _inc_cset_tail = hr;
1775   }
1776   _inc_cset_head = hr;
1777 }
1778 
1779 #ifndef PRODUCT
1780 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1781   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1782 
1783   st->print_cr("\nCollection_set:");
1784   HeapRegion* csr = list_head;
1785   while (csr != NULL) {
1786     HeapRegion* next = csr->next_in_collection_set();
1787     assert(csr->in_collection_set(), "bad CS");
1788     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
1789                  HR_FORMAT_PARAMS(csr),
1790                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
1791                  csr->age_in_surv_rate_group_cond());
1792     csr = next;
1793   }
1794 }
1795 #endif // !PRODUCT
1796 
1797 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1798   // Returns the given amount of reclaimable bytes (that represents
1799   // the amount of reclaimable space still to be collected) as a
1800   // percentage of the current heap capacity.
1801   size_t capacity_bytes = _g1->capacity();
1802   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1803 }
1804 
1805 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1806                                                 const char* false_action_str) {
1807   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1808   if (cset_chooser->is_empty()) {
1809     ergo_verbose0(ErgoMixedGCs,
1810                   false_action_str,
1811                   ergo_format_reason("candidate old regions not available"));
1812     return false;
1813   }
1814 
1815   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1816   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1817   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1818   double threshold = (double) G1HeapWastePercent;
1819   if (reclaimable_perc <= threshold) {
1820     ergo_verbose4(ErgoMixedGCs,
1821               false_action_str,
1822               ergo_format_reason("reclaimable percentage not over threshold")
1823               ergo_format_region("candidate old regions")
1824               ergo_format_byte_perc("reclaimable")
1825               ergo_format_perc("threshold"),
1826               cset_chooser->remaining_regions(),
1827               reclaimable_bytes,
1828               reclaimable_perc, threshold);
1829     return false;
1830   }
1831 
1832   ergo_verbose4(ErgoMixedGCs,
1833                 true_action_str,
1834                 ergo_format_reason("candidate old regions available")
1835                 ergo_format_region("candidate old regions")
1836                 ergo_format_byte_perc("reclaimable")
1837                 ergo_format_perc("threshold"),
1838                 cset_chooser->remaining_regions(),
1839                 reclaimable_bytes,
1840                 reclaimable_perc, threshold);
1841   return true;
1842 }
1843 
1844 uint G1CollectorPolicy::calc_min_old_cset_length() {
1845   // The min old CSet region bound is based on the maximum desired
1846   // number of mixed GCs after a cycle. I.e., even if some old regions
1847   // look expensive, we should add them to the CSet anyway to make
1848   // sure we go through the available old regions in no more than the
1849   // maximum desired number of mixed GCs.
1850   //
1851   // The calculation is based on the number of marked regions we added
1852   // to the CSet chooser in the first place, not how many remain, so
1853   // that the result is the same during all mixed GCs that follow a cycle.
1854 
1855   const size_t region_num = (size_t) _collectionSetChooser->length();
1856   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1857   size_t result = region_num / gc_num;
1858   // emulate ceiling
1859   if (result * gc_num < region_num) {
1860     result += 1;
1861   }
1862   return (uint) result;
1863 }
1864 
1865 uint G1CollectorPolicy::calc_max_old_cset_length() {
1866   // The max old CSet region bound is based on the threshold expressed
1867   // as a percentage of the heap size. I.e., it should bound the
1868   // number of old regions added to the CSet irrespective of how many
1869   // of them are available.
1870 
1871   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1872   const size_t region_num = g1h->num_regions();
1873   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1874   size_t result = region_num * perc / 100;
1875   // emulate ceiling
1876   if (100 * result < region_num * perc) {
1877     result += 1;
1878   }
1879   return (uint) result;
1880 }
1881 
1882 
1883 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
1884   double young_start_time_sec = os::elapsedTime();
1885 
1886   YoungList* young_list = _g1->young_list();
1887   finalize_incremental_cset_building();
1888 
1889   guarantee(target_pause_time_ms > 0.0,
1890             err_msg("target_pause_time_ms = %1.6lf should be positive",
1891                     target_pause_time_ms));
1892   guarantee(_collection_set == NULL, "Precondition");
1893 
1894   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1895   double predicted_pause_time_ms = base_time_ms;
1896   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1897 
1898   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1899                 "start choosing CSet",
1900                 ergo_format_size("_pending_cards")
1901                 ergo_format_ms("predicted base time")
1902                 ergo_format_ms("remaining time")
1903                 ergo_format_ms("target pause time"),
1904                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1905 
1906   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
1907 
1908   if (collector_state()->last_gc_was_young()) {
1909     _trace_young_gen_time_data.increment_young_collection_count();
1910   } else {
1911     _trace_young_gen_time_data.increment_mixed_collection_count();
1912   }
1913 
1914   // The young list is laid with the survivor regions from the previous
1915   // pause are appended to the RHS of the young list, i.e.
1916   //   [Newly Young Regions ++ Survivors from last pause].
1917 
1918   uint survivor_region_length = young_list->survivor_length();
1919   uint eden_region_length = young_list->eden_length();
1920   init_cset_region_lengths(eden_region_length, survivor_region_length);
1921 
1922   HeapRegion* hr = young_list->first_survivor_region();
1923   while (hr != NULL) {
1924     assert(hr->is_survivor(), "badly formed young list");
1925     // There is a convention that all the young regions in the CSet
1926     // are tagged as "eden", so we do this for the survivors here. We
1927     // use the special set_eden_pre_gc() as it doesn't check that the
1928     // region is free (which is not the case here).
1929     hr->set_eden_pre_gc();
1930     hr = hr->get_next_young_region();
1931   }
1932 
1933   // Clear the fields that point to the survivor list - they are all young now.
1934   young_list->clear_survivors();
1935 
1936   _collection_set = _inc_cset_head;
1937   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1938   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1939   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1940 
1941   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1942                 "add young regions to CSet",
1943                 ergo_format_region("eden")
1944                 ergo_format_region("survivors")
1945                 ergo_format_ms("predicted young region time"),
1946                 eden_region_length, survivor_region_length,
1947                 _inc_cset_predicted_elapsed_time_ms);
1948 
1949   // The number of recorded young regions is the incremental
1950   // collection set's current size
1951   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1952 
1953   double young_end_time_sec = os::elapsedTime();
1954   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1955 
1956   // Set the start of the non-young choice time.
1957   double non_young_start_time_sec = young_end_time_sec;
1958 
1959   if (!collector_state()->gcs_are_young()) {
1960     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1961     cset_chooser->verify();
1962     const uint min_old_cset_length = calc_min_old_cset_length();
1963     const uint max_old_cset_length = calc_max_old_cset_length();
1964 
1965     uint expensive_region_num = 0;
1966     bool check_time_remaining = adaptive_young_list_length();
1967 
1968     HeapRegion* hr = cset_chooser->peek();
1969     while (hr != NULL) {
1970       if (old_cset_region_length() >= max_old_cset_length) {
1971         // Added maximum number of old regions to the CSet.
1972         ergo_verbose2(ErgoCSetConstruction,
1973                       "finish adding old regions to CSet",
1974                       ergo_format_reason("old CSet region num reached max")
1975                       ergo_format_region("old")
1976                       ergo_format_region("max"),
1977                       old_cset_region_length(), max_old_cset_length);
1978         break;
1979       }
1980 
1981 
1982       // Stop adding regions if the remaining reclaimable space is
1983       // not above G1HeapWastePercent.
1984       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1985       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1986       double threshold = (double) G1HeapWastePercent;
1987       if (reclaimable_perc <= threshold) {
1988         // We've added enough old regions that the amount of uncollected
1989         // reclaimable space is at or below the waste threshold. Stop
1990         // adding old regions to the CSet.
1991         ergo_verbose5(ErgoCSetConstruction,
1992                       "finish adding old regions to CSet",
1993                       ergo_format_reason("reclaimable percentage not over threshold")
1994                       ergo_format_region("old")
1995                       ergo_format_region("max")
1996                       ergo_format_byte_perc("reclaimable")
1997                       ergo_format_perc("threshold"),
1998                       old_cset_region_length(),
1999                       max_old_cset_length,
2000                       reclaimable_bytes,
2001                       reclaimable_perc, threshold);
2002         break;
2003       }
2004 
2005       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2006       if (check_time_remaining) {
2007         if (predicted_time_ms > time_remaining_ms) {
2008           // Too expensive for the current CSet.
2009 
2010           if (old_cset_region_length() >= min_old_cset_length) {
2011             // We have added the minimum number of old regions to the CSet,
2012             // we are done with this CSet.
2013             ergo_verbose4(ErgoCSetConstruction,
2014                           "finish adding old regions to CSet",
2015                           ergo_format_reason("predicted time is too high")
2016                           ergo_format_ms("predicted time")
2017                           ergo_format_ms("remaining time")
2018                           ergo_format_region("old")
2019                           ergo_format_region("min"),
2020                           predicted_time_ms, time_remaining_ms,
2021                           old_cset_region_length(), min_old_cset_length);
2022             break;
2023           }
2024 
2025           // We'll add it anyway given that we haven't reached the
2026           // minimum number of old regions.
2027           expensive_region_num += 1;
2028         }
2029       } else {
2030         if (old_cset_region_length() >= min_old_cset_length) {
2031           // In the non-auto-tuning case, we'll finish adding regions
2032           // to the CSet if we reach the minimum.
2033           ergo_verbose2(ErgoCSetConstruction,
2034                         "finish adding old regions to CSet",
2035                         ergo_format_reason("old CSet region num reached min")
2036                         ergo_format_region("old")
2037                         ergo_format_region("min"),
2038                         old_cset_region_length(), min_old_cset_length);
2039           break;
2040         }
2041       }
2042 
2043       // We will add this region to the CSet.
2044       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2045       predicted_pause_time_ms += predicted_time_ms;
2046       cset_chooser->remove_and_move_to_next(hr);
2047       _g1->old_set_remove(hr);
2048       add_old_region_to_cset(hr);
2049 
2050       hr = cset_chooser->peek();
2051     }
2052     if (hr == NULL) {
2053       ergo_verbose0(ErgoCSetConstruction,
2054                     "finish adding old regions to CSet",
2055                     ergo_format_reason("candidate old regions not available"));
2056     }
2057 
2058     if (expensive_region_num > 0) {
2059       // We print the information once here at the end, predicated on
2060       // whether we added any apparently expensive regions or not, to
2061       // avoid generating output per region.
2062       ergo_verbose4(ErgoCSetConstruction,
2063                     "added expensive regions to CSet",
2064                     ergo_format_reason("old CSet region num not reached min")
2065                     ergo_format_region("old")
2066                     ergo_format_region("expensive")
2067                     ergo_format_region("min")
2068                     ergo_format_ms("remaining time"),
2069                     old_cset_region_length(),
2070                     expensive_region_num,
2071                     min_old_cset_length,
2072                     time_remaining_ms);
2073     }
2074 
2075     cset_chooser->verify();
2076   }
2077 
2078   stop_incremental_cset_building();
2079 
2080   ergo_verbose5(ErgoCSetConstruction,
2081                 "finish choosing CSet",
2082                 ergo_format_region("eden")
2083                 ergo_format_region("survivors")
2084                 ergo_format_region("old")
2085                 ergo_format_ms("predicted pause time")
2086                 ergo_format_ms("target pause time"),
2087                 eden_region_length, survivor_region_length,
2088                 old_cset_region_length(),
2089                 predicted_pause_time_ms, target_pause_time_ms);
2090 
2091   double non_young_end_time_sec = os::elapsedTime();
2092   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2093 }
2094 
2095 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2096   if(TraceYoungGenTime) {
2097     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2098   }
2099 }
2100 
2101 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2102   if(TraceYoungGenTime) {
2103     _all_yield_times_ms.add(yield_time_ms);
2104   }
2105 }
2106 
2107 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2108   if(TraceYoungGenTime) {
2109     _total.add(pause_time_ms);
2110     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2111     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2112     _parallel.add(phase_times->cur_collection_par_time_ms());
2113     _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2114     _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2115     _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2116     _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2117     _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2118     _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2119 
2120     double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2121       phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2122       phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2123       phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2124       phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2125       phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2126 
2127     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2128     _parallel_other.add(parallel_other_time);
2129     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2130   }
2131 }
2132 
2133 void TraceYoungGenTimeData::increment_young_collection_count() {
2134   if(TraceYoungGenTime) {
2135     ++_young_pause_num;
2136   }
2137 }
2138 
2139 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2140   if(TraceYoungGenTime) {
2141     ++_mixed_pause_num;
2142   }
2143 }
2144 
2145 void TraceYoungGenTimeData::print_summary(const char* str,
2146                                           const NumberSeq* seq) const {
2147   double sum = seq->sum();
2148   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2149                 str, sum / 1000.0, seq->avg());
2150 }
2151 
2152 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2153                                              const NumberSeq* seq) const {
2154   print_summary(str, seq);
2155   gclog_or_tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2156                 "(num", seq->num(), seq->sd(), seq->maximum());
2157 }
2158 
2159 void TraceYoungGenTimeData::print() const {
2160   if (!TraceYoungGenTime) {
2161     return;
2162   }
2163 
2164   gclog_or_tty->print_cr("ALL PAUSES");
2165   print_summary_sd("   Total", &_total);
2166   gclog_or_tty->cr();
2167   gclog_or_tty->cr();
2168   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2169   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2170   gclog_or_tty->cr();
2171 
2172   gclog_or_tty->print_cr("EVACUATION PAUSES");
2173 
2174   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2175     gclog_or_tty->print_cr("none");
2176   } else {
2177     print_summary_sd("   Evacuation Pauses", &_total);
2178     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2179     print_summary("      Parallel Time", &_parallel);
2180     print_summary("         Ext Root Scanning", &_ext_root_scan);
2181     print_summary("         SATB Filtering", &_satb_filtering);
2182     print_summary("         Update RS", &_update_rs);
2183     print_summary("         Scan RS", &_scan_rs);
2184     print_summary("         Object Copy", &_obj_copy);
2185     print_summary("         Termination", &_termination);
2186     print_summary("         Parallel Other", &_parallel_other);
2187     print_summary("      Clear CT", &_clear_ct);
2188     print_summary("      Other", &_other);
2189   }
2190   gclog_or_tty->cr();
2191 
2192   gclog_or_tty->print_cr("MISC");
2193   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2194   print_summary_sd("   Yields", &_all_yield_times_ms);
2195 }
2196 
2197 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2198   if (TraceOldGenTime) {
2199     _all_full_gc_times.add(full_gc_time_ms);
2200   }
2201 }
2202 
2203 void TraceOldGenTimeData::print() const {
2204   if (!TraceOldGenTime) {
2205     return;
2206   }
2207 
2208   if (_all_full_gc_times.num() > 0) {
2209     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2210       _all_full_gc_times.num(),
2211       _all_full_gc_times.sum() / 1000.0);
2212     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2213     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2214       _all_full_gc_times.sd(),
2215       _all_full_gc_times.maximum());
2216   }
2217 }