1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "memory/allocation.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/orderAccess.inline.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "utilities/globalDefinitions.hpp"
  72 #include "utilities/stack.inline.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Local to this file.
  93 
  94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  95   bool _concurrent;
  96 public:
  97   RefineCardTableEntryClosure() : _concurrent(true) { }
  98 
  99   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 100     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 101     // This path is executed by the concurrent refine or mutator threads,
 102     // concurrently, and so we do not care if card_ptr contains references
 103     // that point into the collection set.
 104     assert(!oops_into_cset, "should be");
 105 
 106     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 107       // Caller will actually yield.
 108       return false;
 109     }
 110     // Otherwise, we finished successfully; return true.
 111     return true;
 112   }
 113 
 114   void set_concurrent(bool b) { _concurrent = b; }
 115 };
 116 
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 119  private:
 120   size_t _num_processed;
 121 
 122  public:
 123   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 124 
 125   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 126     *card_ptr = CardTableModRefBS::dirty_card_val();
 127     _num_processed++;
 128     return true;
 129   }
 130 
 131   size_t num_processed() const { return _num_processed; }
 132 };
 133 
 134 YoungList::YoungList(G1CollectedHeap* g1h) :
 135     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 136     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 137   guarantee(check_list_empty(false), "just making sure...");
 138 }
 139 
 140 void YoungList::push_region(HeapRegion *hr) {
 141   assert(!hr->is_young(), "should not already be young");
 142   assert(hr->get_next_young_region() == NULL, "cause it should!");
 143 
 144   hr->set_next_young_region(_head);
 145   _head = hr;
 146 
 147   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 148   ++_length;
 149 }
 150 
 151 void YoungList::add_survivor_region(HeapRegion* hr) {
 152   assert(hr->is_survivor(), "should be flagged as survivor region");
 153   assert(hr->get_next_young_region() == NULL, "cause it should!");
 154 
 155   hr->set_next_young_region(_survivor_head);
 156   if (_survivor_head == NULL) {
 157     _survivor_tail = hr;
 158   }
 159   _survivor_head = hr;
 160   ++_survivor_length;
 161 }
 162 
 163 void YoungList::empty_list(HeapRegion* list) {
 164   while (list != NULL) {
 165     HeapRegion* next = list->get_next_young_region();
 166     list->set_next_young_region(NULL);
 167     list->uninstall_surv_rate_group();
 168     // This is called before a Full GC and all the non-empty /
 169     // non-humongous regions at the end of the Full GC will end up as
 170     // old anyway.
 171     list->set_old();
 172     list = next;
 173   }
 174 }
 175 
 176 void YoungList::empty_list() {
 177   assert(check_list_well_formed(), "young list should be well formed");
 178 
 179   empty_list(_head);
 180   _head = NULL;
 181   _length = 0;
 182 
 183   empty_list(_survivor_head);
 184   _survivor_head = NULL;
 185   _survivor_tail = NULL;
 186   _survivor_length = 0;
 187 
 188   _last_sampled_rs_lengths = 0;
 189 
 190   assert(check_list_empty(false), "just making sure...");
 191 }
 192 
 193 bool YoungList::check_list_well_formed() {
 194   bool ret = true;
 195 
 196   uint length = 0;
 197   HeapRegion* curr = _head;
 198   HeapRegion* last = NULL;
 199   while (curr != NULL) {
 200     if (!curr->is_young()) {
 201       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
 202                              "incorrectly tagged (y: %d, surv: %d)",
 203                              p2i(curr->bottom()), p2i(curr->end()),
 204                              curr->is_young(), curr->is_survivor());
 205       ret = false;
 206     }
 207     ++length;
 208     last = curr;
 209     curr = curr->get_next_young_region();
 210   }
 211   ret = ret && (length == _length);
 212 
 213   if (!ret) {
 214     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 215     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 216                            length, _length);
 217   }
 218 
 219   return ret;
 220 }
 221 
 222 bool YoungList::check_list_empty(bool check_sample) {
 223   bool ret = true;
 224 
 225   if (_length != 0) {
 226     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 227                   _length);
 228     ret = false;
 229   }
 230   if (check_sample && _last_sampled_rs_lengths != 0) {
 231     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 232     ret = false;
 233   }
 234   if (_head != NULL) {
 235     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 236     ret = false;
 237   }
 238   if (!ret) {
 239     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 240   }
 241 
 242   return ret;
 243 }
 244 
 245 void
 246 YoungList::rs_length_sampling_init() {
 247   _sampled_rs_lengths = 0;
 248   _curr               = _head;
 249 }
 250 
 251 bool
 252 YoungList::rs_length_sampling_more() {
 253   return _curr != NULL;
 254 }
 255 
 256 void
 257 YoungList::rs_length_sampling_next() {
 258   assert( _curr != NULL, "invariant" );
 259   size_t rs_length = _curr->rem_set()->occupied();
 260 
 261   _sampled_rs_lengths += rs_length;
 262 
 263   // The current region may not yet have been added to the
 264   // incremental collection set (it gets added when it is
 265   // retired as the current allocation region).
 266   if (_curr->in_collection_set()) {
 267     // Update the collection set policy information for this region
 268     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 269   }
 270 
 271   _curr = _curr->get_next_young_region();
 272   if (_curr == NULL) {
 273     _last_sampled_rs_lengths = _sampled_rs_lengths;
 274     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 275   }
 276 }
 277 
 278 void
 279 YoungList::reset_auxilary_lists() {
 280   guarantee( is_empty(), "young list should be empty" );
 281   assert(check_list_well_formed(), "young list should be well formed");
 282 
 283   // Add survivor regions to SurvRateGroup.
 284   _g1h->g1_policy()->note_start_adding_survivor_regions();
 285   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 286 
 287   int young_index_in_cset = 0;
 288   for (HeapRegion* curr = _survivor_head;
 289        curr != NULL;
 290        curr = curr->get_next_young_region()) {
 291     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 292 
 293     // The region is a non-empty survivor so let's add it to
 294     // the incremental collection set for the next evacuation
 295     // pause.
 296     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 297     young_index_in_cset += 1;
 298   }
 299   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 300   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 301 
 302   _head   = _survivor_head;
 303   _length = _survivor_length;
 304   if (_survivor_head != NULL) {
 305     assert(_survivor_tail != NULL, "cause it shouldn't be");
 306     assert(_survivor_length > 0, "invariant");
 307     _survivor_tail->set_next_young_region(NULL);
 308   }
 309 
 310   // Don't clear the survivor list handles until the start of
 311   // the next evacuation pause - we need it in order to re-tag
 312   // the survivor regions from this evacuation pause as 'young'
 313   // at the start of the next.
 314 
 315   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 316 
 317   assert(check_list_well_formed(), "young list should be well formed");
 318 }
 319 
 320 void YoungList::print() {
 321   HeapRegion* lists[] = {_head,   _survivor_head};
 322   const char* names[] = {"YOUNG", "SURVIVOR"};
 323 
 324   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 325     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 326     HeapRegion *curr = lists[list];
 327     if (curr == NULL)
 328       gclog_or_tty->print_cr("  empty");
 329     while (curr != NULL) {
 330       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
 331                              HR_FORMAT_PARAMS(curr),
 332                              p2i(curr->prev_top_at_mark_start()),
 333                              p2i(curr->next_top_at_mark_start()),
 334                              curr->age_in_surv_rate_group_cond());
 335       curr = curr->get_next_young_region();
 336     }
 337   }
 338 
 339   gclog_or_tty->cr();
 340 }
 341 
 342 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 343   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 344 }
 345 
 346 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 347   // The from card cache is not the memory that is actually committed. So we cannot
 348   // take advantage of the zero_filled parameter.
 349   reset_from_card_cache(start_idx, num_regions);
 350 }
 351 
 352 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 353 {
 354   // Claim the right to put the region on the dirty cards region list
 355   // by installing a self pointer.
 356   HeapRegion* next = hr->get_next_dirty_cards_region();
 357   if (next == NULL) {
 358     HeapRegion* res = (HeapRegion*)
 359       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 360                           NULL);
 361     if (res == NULL) {
 362       HeapRegion* head;
 363       do {
 364         // Put the region to the dirty cards region list.
 365         head = _dirty_cards_region_list;
 366         next = (HeapRegion*)
 367           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 368         if (next == head) {
 369           assert(hr->get_next_dirty_cards_region() == hr,
 370                  "hr->get_next_dirty_cards_region() != hr");
 371           if (next == NULL) {
 372             // The last region in the list points to itself.
 373             hr->set_next_dirty_cards_region(hr);
 374           } else {
 375             hr->set_next_dirty_cards_region(next);
 376           }
 377         }
 378       } while (next != head);
 379     }
 380   }
 381 }
 382 
 383 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 384 {
 385   HeapRegion* head;
 386   HeapRegion* hr;
 387   do {
 388     head = _dirty_cards_region_list;
 389     if (head == NULL) {
 390       return NULL;
 391     }
 392     HeapRegion* new_head = head->get_next_dirty_cards_region();
 393     if (head == new_head) {
 394       // The last region.
 395       new_head = NULL;
 396     }
 397     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 398                                           head);
 399   } while (hr != head);
 400   assert(hr != NULL, "invariant");
 401   hr->set_next_dirty_cards_region(NULL);
 402   return hr;
 403 }
 404 
 405 // Returns true if the reference points to an object that
 406 // can move in an incremental collection.
 407 bool G1CollectedHeap::is_scavengable(const void* p) {
 408   HeapRegion* hr = heap_region_containing(p);
 409   return !hr->is_pinned();
 410 }
 411 
 412 // Private methods.
 413 
 414 HeapRegion*
 415 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 416   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 417   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 418     if (!_secondary_free_list.is_empty()) {
 419       if (G1ConcRegionFreeingVerbose) {
 420         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 421                                "secondary_free_list has %u entries",
 422                                _secondary_free_list.length());
 423       }
 424       // It looks as if there are free regions available on the
 425       // secondary_free_list. Let's move them to the free_list and try
 426       // again to allocate from it.
 427       append_secondary_free_list();
 428 
 429       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 430              "empty we should have moved at least one entry to the free_list");
 431       HeapRegion* res = _hrm.allocate_free_region(is_old);
 432       if (G1ConcRegionFreeingVerbose) {
 433         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 434                                "allocated " HR_FORMAT " from secondary_free_list",
 435                                HR_FORMAT_PARAMS(res));
 436       }
 437       return res;
 438     }
 439 
 440     // Wait here until we get notified either when (a) there are no
 441     // more free regions coming or (b) some regions have been moved on
 442     // the secondary_free_list.
 443     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 444   }
 445 
 446   if (G1ConcRegionFreeingVerbose) {
 447     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 448                            "could not allocate from secondary_free_list");
 449   }
 450   return NULL;
 451 }
 452 
 453 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 454   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 455          "the only time we use this to allocate a humongous region is "
 456          "when we are allocating a single humongous region");
 457 
 458   HeapRegion* res;
 459   if (G1StressConcRegionFreeing) {
 460     if (!_secondary_free_list.is_empty()) {
 461       if (G1ConcRegionFreeingVerbose) {
 462         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 463                                "forced to look at the secondary_free_list");
 464       }
 465       res = new_region_try_secondary_free_list(is_old);
 466       if (res != NULL) {
 467         return res;
 468       }
 469     }
 470   }
 471 
 472   res = _hrm.allocate_free_region(is_old);
 473 
 474   if (res == NULL) {
 475     if (G1ConcRegionFreeingVerbose) {
 476       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 477                              "res == NULL, trying the secondary_free_list");
 478     }
 479     res = new_region_try_secondary_free_list(is_old);
 480   }
 481   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 482     // Currently, only attempts to allocate GC alloc regions set
 483     // do_expand to true. So, we should only reach here during a
 484     // safepoint. If this assumption changes we might have to
 485     // reconsider the use of _expand_heap_after_alloc_failure.
 486     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 487 
 488     ergo_verbose1(ErgoHeapSizing,
 489                   "attempt heap expansion",
 490                   ergo_format_reason("region allocation request failed")
 491                   ergo_format_byte("allocation request"),
 492                   word_size * HeapWordSize);
 493     if (expand(word_size * HeapWordSize)) {
 494       // Given that expand() succeeded in expanding the heap, and we
 495       // always expand the heap by an amount aligned to the heap
 496       // region size, the free list should in theory not be empty.
 497       // In either case allocate_free_region() will check for NULL.
 498       res = _hrm.allocate_free_region(is_old);
 499     } else {
 500       _expand_heap_after_alloc_failure = false;
 501     }
 502   }
 503   return res;
 504 }
 505 
 506 HeapWord*
 507 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 508                                                            uint num_regions,
 509                                                            size_t word_size,
 510                                                            AllocationContext_t context) {
 511   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 512   assert(is_humongous(word_size), "word_size should be humongous");
 513   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 514 
 515   // Index of last region in the series + 1.
 516   uint last = first + num_regions;
 517 
 518   // We need to initialize the region(s) we just discovered. This is
 519   // a bit tricky given that it can happen concurrently with
 520   // refinement threads refining cards on these regions and
 521   // potentially wanting to refine the BOT as they are scanning
 522   // those cards (this can happen shortly after a cleanup; see CR
 523   // 6991377). So we have to set up the region(s) carefully and in
 524   // a specific order.
 525 
 526   // The word size sum of all the regions we will allocate.
 527   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 528   assert(word_size <= word_size_sum, "sanity");
 529 
 530   // This will be the "starts humongous" region.
 531   HeapRegion* first_hr = region_at(first);
 532   // The header of the new object will be placed at the bottom of
 533   // the first region.
 534   HeapWord* new_obj = first_hr->bottom();
 535   // This will be the new end of the first region in the series that
 536   // should also match the end of the last region in the series.
 537   HeapWord* new_end = new_obj + word_size_sum;
 538   // This will be the new top of the first region that will reflect
 539   // this allocation.
 540   HeapWord* new_top = new_obj + word_size;
 541 
 542   // First, we need to zero the header of the space that we will be
 543   // allocating. When we update top further down, some refinement
 544   // threads might try to scan the region. By zeroing the header we
 545   // ensure that any thread that will try to scan the region will
 546   // come across the zero klass word and bail out.
 547   //
 548   // NOTE: It would not have been correct to have used
 549   // CollectedHeap::fill_with_object() and make the space look like
 550   // an int array. The thread that is doing the allocation will
 551   // later update the object header to a potentially different array
 552   // type and, for a very short period of time, the klass and length
 553   // fields will be inconsistent. This could cause a refinement
 554   // thread to calculate the object size incorrectly.
 555   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 556 
 557   // We will set up the first region as "starts humongous". This
 558   // will also update the BOT covering all the regions to reflect
 559   // that there is a single object that starts at the bottom of the
 560   // first region.
 561   first_hr->set_starts_humongous(new_top, new_end);
 562   first_hr->set_allocation_context(context);
 563   // Then, if there are any, we will set up the "continues
 564   // humongous" regions.
 565   HeapRegion* hr = NULL;
 566   for (uint i = first + 1; i < last; ++i) {
 567     hr = region_at(i);
 568     hr->set_continues_humongous(first_hr);
 569     hr->set_allocation_context(context);
 570   }
 571   // If we have "continues humongous" regions (hr != NULL), then the
 572   // end of the last one should match new_end.
 573   assert(hr == NULL || hr->end() == new_end, "sanity");
 574 
 575   // Up to this point no concurrent thread would have been able to
 576   // do any scanning on any region in this series. All the top
 577   // fields still point to bottom, so the intersection between
 578   // [bottom,top] and [card_start,card_end] will be empty. Before we
 579   // update the top fields, we'll do a storestore to make sure that
 580   // no thread sees the update to top before the zeroing of the
 581   // object header and the BOT initialization.
 582   OrderAccess::storestore();
 583 
 584   // Now that the BOT and the object header have been initialized,
 585   // we can update top of the "starts humongous" region.
 586   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 587          "new_top should be in this region");
 588   first_hr->set_top(new_top);
 589   if (_hr_printer.is_active()) {
 590     HeapWord* bottom = first_hr->bottom();
 591     HeapWord* end = first_hr->orig_end();
 592     if ((first + 1) == last) {
 593       // the series has a single humongous region
 594       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 595     } else {
 596       // the series has more than one humongous regions
 597       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 598     }
 599   }
 600 
 601   // Now, we will update the top fields of the "continues humongous"
 602   // regions. The reason we need to do this is that, otherwise,
 603   // these regions would look empty and this will confuse parts of
 604   // G1. For example, the code that looks for a consecutive number
 605   // of empty regions will consider them empty and try to
 606   // re-allocate them. We can extend is_empty() to also include
 607   // !is_continues_humongous(), but it is easier to just update the top
 608   // fields here. The way we set top for all regions (i.e., top ==
 609   // end for all regions but the last one, top == new_top for the
 610   // last one) is actually used when we will free up the humongous
 611   // region in free_humongous_region().
 612   hr = NULL;
 613   for (uint i = first + 1; i < last; ++i) {
 614     hr = region_at(i);
 615     if ((i + 1) == last) {
 616       // last continues humongous region
 617       assert(hr->bottom() < new_top && new_top <= hr->end(),
 618              "new_top should fall on this region");
 619       hr->set_top(new_top);
 620       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 621     } else {
 622       // not last one
 623       assert(new_top > hr->end(), "new_top should be above this region");
 624       hr->set_top(hr->end());
 625       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 626     }
 627   }
 628   // If we have continues humongous regions (hr != NULL), then the
 629   // end of the last one should match new_end and its top should
 630   // match new_top.
 631   assert(hr == NULL ||
 632          (hr->end() == new_end && hr->top() == new_top), "sanity");
 633   check_bitmaps("Humongous Region Allocation", first_hr);
 634 
 635   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 636   increase_used(first_hr->used());
 637   _humongous_set.add(first_hr);
 638 
 639   return new_obj;
 640 }
 641 
 642 // If could fit into free regions w/o expansion, try.
 643 // Otherwise, if can expand, do so.
 644 // Otherwise, if using ex regions might help, try with ex given back.
 645 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 646   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 647 
 648   verify_region_sets_optional();
 649 
 650   uint first = G1_NO_HRM_INDEX;
 651   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 652 
 653   if (obj_regions == 1) {
 654     // Only one region to allocate, try to use a fast path by directly allocating
 655     // from the free lists. Do not try to expand here, we will potentially do that
 656     // later.
 657     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 658     if (hr != NULL) {
 659       first = hr->hrm_index();
 660     }
 661   } else {
 662     // We can't allocate humongous regions spanning more than one region while
 663     // cleanupComplete() is running, since some of the regions we find to be
 664     // empty might not yet be added to the free list. It is not straightforward
 665     // to know in which list they are on so that we can remove them. We only
 666     // need to do this if we need to allocate more than one region to satisfy the
 667     // current humongous allocation request. If we are only allocating one region
 668     // we use the one-region region allocation code (see above), that already
 669     // potentially waits for regions from the secondary free list.
 670     wait_while_free_regions_coming();
 671     append_secondary_free_list_if_not_empty_with_lock();
 672 
 673     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 674     // are lucky enough to find some.
 675     first = _hrm.find_contiguous_only_empty(obj_regions);
 676     if (first != G1_NO_HRM_INDEX) {
 677       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 678     }
 679   }
 680 
 681   if (first == G1_NO_HRM_INDEX) {
 682     // Policy: We could not find enough regions for the humongous object in the
 683     // free list. Look through the heap to find a mix of free and uncommitted regions.
 684     // If so, try expansion.
 685     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 686     if (first != G1_NO_HRM_INDEX) {
 687       // We found something. Make sure these regions are committed, i.e. expand
 688       // the heap. Alternatively we could do a defragmentation GC.
 689       ergo_verbose1(ErgoHeapSizing,
 690                     "attempt heap expansion",
 691                     ergo_format_reason("humongous allocation request failed")
 692                     ergo_format_byte("allocation request"),
 693                     word_size * HeapWordSize);
 694 
 695       _hrm.expand_at(first, obj_regions);
 696       g1_policy()->record_new_heap_size(num_regions());
 697 
 698 #ifdef ASSERT
 699       for (uint i = first; i < first + obj_regions; ++i) {
 700         HeapRegion* hr = region_at(i);
 701         assert(hr->is_free(), "sanity");
 702         assert(hr->is_empty(), "sanity");
 703         assert(is_on_master_free_list(hr), "sanity");
 704       }
 705 #endif
 706       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 707     } else {
 708       // Policy: Potentially trigger a defragmentation GC.
 709     }
 710   }
 711 
 712   HeapWord* result = NULL;
 713   if (first != G1_NO_HRM_INDEX) {
 714     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 715                                                        word_size, context);
 716     assert(result != NULL, "it should always return a valid result");
 717 
 718     // A successful humongous object allocation changes the used space
 719     // information of the old generation so we need to recalculate the
 720     // sizes and update the jstat counters here.
 721     g1mm()->update_sizes();
 722   }
 723 
 724   verify_region_sets_optional();
 725 
 726   return result;
 727 }
 728 
 729 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 730   assert_heap_not_locked_and_not_at_safepoint();
 731   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 732 
 733   uint dummy_gc_count_before;
 734   uint dummy_gclocker_retry_count = 0;
 735   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 736 }
 737 
 738 HeapWord*
 739 G1CollectedHeap::mem_allocate(size_t word_size,
 740                               bool*  gc_overhead_limit_was_exceeded) {
 741   assert_heap_not_locked_and_not_at_safepoint();
 742 
 743   // Loop until the allocation is satisfied, or unsatisfied after GC.
 744   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 745     uint gc_count_before;
 746 
 747     HeapWord* result = NULL;
 748     if (!is_humongous(word_size)) {
 749       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 750     } else {
 751       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 752     }
 753     if (result != NULL) {
 754       return result;
 755     }
 756 
 757     // Create the garbage collection operation...
 758     VM_G1CollectForAllocation op(gc_count_before, word_size);
 759     op.set_allocation_context(AllocationContext::current());
 760 
 761     // ...and get the VM thread to execute it.
 762     VMThread::execute(&op);
 763 
 764     if (op.prologue_succeeded() && op.pause_succeeded()) {
 765       // If the operation was successful we'll return the result even
 766       // if it is NULL. If the allocation attempt failed immediately
 767       // after a Full GC, it's unlikely we'll be able to allocate now.
 768       HeapWord* result = op.result();
 769       if (result != NULL && !is_humongous(word_size)) {
 770         // Allocations that take place on VM operations do not do any
 771         // card dirtying and we have to do it here. We only have to do
 772         // this for non-humongous allocations, though.
 773         dirty_young_block(result, word_size);
 774       }
 775       return result;
 776     } else {
 777       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 778         return NULL;
 779       }
 780       assert(op.result() == NULL,
 781              "the result should be NULL if the VM op did not succeed");
 782     }
 783 
 784     // Give a warning if we seem to be looping forever.
 785     if ((QueuedAllocationWarningCount > 0) &&
 786         (try_count % QueuedAllocationWarningCount == 0)) {
 787       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 788     }
 789   }
 790 
 791   ShouldNotReachHere();
 792   return NULL;
 793 }
 794 
 795 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 796                                                    AllocationContext_t context,
 797                                                    uint* gc_count_before_ret,
 798                                                    uint* gclocker_retry_count_ret) {
 799   // Make sure you read the note in attempt_allocation_humongous().
 800 
 801   assert_heap_not_locked_and_not_at_safepoint();
 802   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 803          "be called for humongous allocation requests");
 804 
 805   // We should only get here after the first-level allocation attempt
 806   // (attempt_allocation()) failed to allocate.
 807 
 808   // We will loop until a) we manage to successfully perform the
 809   // allocation or b) we successfully schedule a collection which
 810   // fails to perform the allocation. b) is the only case when we'll
 811   // return NULL.
 812   HeapWord* result = NULL;
 813   for (int try_count = 1; /* we'll return */; try_count += 1) {
 814     bool should_try_gc;
 815     uint gc_count_before;
 816 
 817     {
 818       MutexLockerEx x(Heap_lock);
 819       result = _allocator->attempt_allocation_locked(word_size, context);
 820       if (result != NULL) {
 821         return result;
 822       }
 823 
 824       if (GC_locker::is_active_and_needs_gc()) {
 825         if (g1_policy()->can_expand_young_list()) {
 826           // No need for an ergo verbose message here,
 827           // can_expand_young_list() does this when it returns true.
 828           result = _allocator->attempt_allocation_force(word_size, context);
 829           if (result != NULL) {
 830             return result;
 831           }
 832         }
 833         should_try_gc = false;
 834       } else {
 835         // The GCLocker may not be active but the GCLocker initiated
 836         // GC may not yet have been performed (GCLocker::needs_gc()
 837         // returns true). In this case we do not try this GC and
 838         // wait until the GCLocker initiated GC is performed, and
 839         // then retry the allocation.
 840         if (GC_locker::needs_gc()) {
 841           should_try_gc = false;
 842         } else {
 843           // Read the GC count while still holding the Heap_lock.
 844           gc_count_before = total_collections();
 845           should_try_gc = true;
 846         }
 847       }
 848     }
 849 
 850     if (should_try_gc) {
 851       bool succeeded;
 852       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 853                                    GCCause::_g1_inc_collection_pause);
 854       if (result != NULL) {
 855         assert(succeeded, "only way to get back a non-NULL result");
 856         return result;
 857       }
 858 
 859       if (succeeded) {
 860         // If we get here we successfully scheduled a collection which
 861         // failed to allocate. No point in trying to allocate
 862         // further. We'll just return NULL.
 863         MutexLockerEx x(Heap_lock);
 864         *gc_count_before_ret = total_collections();
 865         return NULL;
 866       }
 867     } else {
 868       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 869         MutexLockerEx x(Heap_lock);
 870         *gc_count_before_ret = total_collections();
 871         return NULL;
 872       }
 873       // The GCLocker is either active or the GCLocker initiated
 874       // GC has not yet been performed. Stall until it is and
 875       // then retry the allocation.
 876       GC_locker::stall_until_clear();
 877       (*gclocker_retry_count_ret) += 1;
 878     }
 879 
 880     // We can reach here if we were unsuccessful in scheduling a
 881     // collection (because another thread beat us to it) or if we were
 882     // stalled due to the GC locker. In either can we should retry the
 883     // allocation attempt in case another thread successfully
 884     // performed a collection and reclaimed enough space. We do the
 885     // first attempt (without holding the Heap_lock) here and the
 886     // follow-on attempt will be at the start of the next loop
 887     // iteration (after taking the Heap_lock).
 888     result = _allocator->attempt_allocation(word_size, context);
 889     if (result != NULL) {
 890       return result;
 891     }
 892 
 893     // Give a warning if we seem to be looping forever.
 894     if ((QueuedAllocationWarningCount > 0) &&
 895         (try_count % QueuedAllocationWarningCount == 0)) {
 896       warning("G1CollectedHeap::attempt_allocation_slow() "
 897               "retries %d times", try_count);
 898     }
 899   }
 900 
 901   ShouldNotReachHere();
 902   return NULL;
 903 }
 904 
 905 void G1CollectedHeap::begin_archive_alloc_range() {
 906   assert_at_safepoint(true /* should_be_vm_thread */);
 907   if (_archive_allocator == NULL) {
 908     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 909   }
 910 }
 911 
 912 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 913   // Allocations in archive regions cannot be of a size that would be considered
 914   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 915   // may be different at archive-restore time.
 916   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 917 }
 918 
 919 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 920   assert_at_safepoint(true /* should_be_vm_thread */);
 921   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 922   if (is_archive_alloc_too_large(word_size)) {
 923     return NULL;
 924   }
 925   return _archive_allocator->archive_mem_allocate(word_size);
 926 }
 927 
 928 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 929                                               size_t end_alignment_in_bytes) {
 930   assert_at_safepoint(true /* should_be_vm_thread */);
 931   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 932 
 933   // Call complete_archive to do the real work, filling in the MemRegion
 934   // array with the archive regions.
 935   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 936   delete _archive_allocator;
 937   _archive_allocator = NULL;
 938 }
 939 
 940 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 941   assert(ranges != NULL, "MemRegion array NULL");
 942   assert(count != 0, "No MemRegions provided");
 943   MemRegion reserved = _hrm.reserved();
 944   for (size_t i = 0; i < count; i++) {
 945     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 946       return false;
 947     }
 948   }
 949   return true;
 950 }
 951 
 952 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 953   assert(!is_init_completed(), "Expect to be called at JVM init time");
 954   assert(ranges != NULL, "MemRegion array NULL");
 955   assert(count != 0, "No MemRegions provided");
 956   MutexLockerEx x(Heap_lock);
 957 
 958   MemRegion reserved = _hrm.reserved();
 959   HeapWord* prev_last_addr = NULL;
 960   HeapRegion* prev_last_region = NULL;
 961 
 962   // Temporarily disable pretouching of heap pages. This interface is used
 963   // when mmap'ing archived heap data in, so pre-touching is wasted.
 964   FlagSetting fs(AlwaysPreTouch, false);
 965 
 966   // Enable archive object checking in G1MarkSweep. We have to let it know
 967   // about each archive range, so that objects in those ranges aren't marked.
 968   G1MarkSweep::enable_archive_object_check();
 969 
 970   // For each specified MemRegion range, allocate the corresponding G1
 971   // regions and mark them as archive regions. We expect the ranges in
 972   // ascending starting address order, without overlap.
 973   for (size_t i = 0; i < count; i++) {
 974     MemRegion curr_range = ranges[i];
 975     HeapWord* start_address = curr_range.start();
 976     size_t word_size = curr_range.word_size();
 977     HeapWord* last_address = curr_range.last();
 978     size_t commits = 0;
 979 
 980     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 981               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 982               p2i(start_address), p2i(last_address)));
 983     guarantee(start_address > prev_last_addr,
 984               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 985               p2i(start_address), p2i(prev_last_addr)));
 986     prev_last_addr = last_address;
 987 
 988     // Check for ranges that start in the same G1 region in which the previous
 989     // range ended, and adjust the start address so we don't try to allocate
 990     // the same region again. If the current range is entirely within that
 991     // region, skip it, just adjusting the recorded top.
 992     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 993     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 994       start_address = start_region->end();
 995       if (start_address > last_address) {
 996         increase_used(word_size * HeapWordSize);
 997         start_region->set_top(last_address + 1);
 998         continue;
 999       }
1000       start_region->set_top(start_address);
1001       curr_range = MemRegion(start_address, last_address + 1);
1002       start_region = _hrm.addr_to_region(start_address);
1003     }
1004 
1005     // Perform the actual region allocation, exiting if it fails.
1006     // Then note how much new space we have allocated.
1007     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1008       return false;
1009     }
1010     increase_used(word_size * HeapWordSize);
1011     if (commits != 0) {
1012       ergo_verbose1(ErgoHeapSizing,
1013                     "attempt heap expansion",
1014                     ergo_format_reason("allocate archive regions")
1015                     ergo_format_byte("total size"),
1016                     HeapRegion::GrainWords * HeapWordSize * commits);
1017     }
1018 
1019     // Mark each G1 region touched by the range as archive, add it to the old set,
1020     // and set the allocation context and top.
1021     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1022     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1023     prev_last_region = last_region;
1024 
1025     while (curr_region != NULL) {
1026       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1027              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1028       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1029       curr_region->set_allocation_context(AllocationContext::system());
1030       curr_region->set_archive();
1031       _old_set.add(curr_region);
1032       if (curr_region != last_region) {
1033         curr_region->set_top(curr_region->end());
1034         curr_region = _hrm.next_region_in_heap(curr_region);
1035       } else {
1036         curr_region->set_top(last_address + 1);
1037         curr_region = NULL;
1038       }
1039     }
1040 
1041     // Notify mark-sweep of the archive range.
1042     G1MarkSweep::set_range_archive(curr_range, true);
1043   }
1044   return true;
1045 }
1046 
1047 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1048   assert(!is_init_completed(), "Expect to be called at JVM init time");
1049   assert(ranges != NULL, "MemRegion array NULL");
1050   assert(count != 0, "No MemRegions provided");
1051   MemRegion reserved = _hrm.reserved();
1052   HeapWord *prev_last_addr = NULL;
1053   HeapRegion* prev_last_region = NULL;
1054 
1055   // For each MemRegion, create filler objects, if needed, in the G1 regions
1056   // that contain the address range. The address range actually within the
1057   // MemRegion will not be modified. That is assumed to have been initialized
1058   // elsewhere, probably via an mmap of archived heap data.
1059   MutexLockerEx x(Heap_lock);
1060   for (size_t i = 0; i < count; i++) {
1061     HeapWord* start_address = ranges[i].start();
1062     HeapWord* last_address = ranges[i].last();
1063 
1064     assert(reserved.contains(start_address) && reserved.contains(last_address),
1065            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1066                    p2i(start_address), p2i(last_address)));
1067     assert(start_address > prev_last_addr,
1068            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1069                    p2i(start_address), p2i(prev_last_addr)));
1070 
1071     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1072     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1073     HeapWord* bottom_address = start_region->bottom();
1074 
1075     // Check for a range beginning in the same region in which the
1076     // previous one ended.
1077     if (start_region == prev_last_region) {
1078       bottom_address = prev_last_addr + 1;
1079     }
1080 
1081     // Verify that the regions were all marked as archive regions by
1082     // alloc_archive_regions.
1083     HeapRegion* curr_region = start_region;
1084     while (curr_region != NULL) {
1085       guarantee(curr_region->is_archive(),
1086                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1087       if (curr_region != last_region) {
1088         curr_region = _hrm.next_region_in_heap(curr_region);
1089       } else {
1090         curr_region = NULL;
1091       }
1092     }
1093 
1094     prev_last_addr = last_address;
1095     prev_last_region = last_region;
1096 
1097     // Fill the memory below the allocated range with dummy object(s),
1098     // if the region bottom does not match the range start, or if the previous
1099     // range ended within the same G1 region, and there is a gap.
1100     if (start_address != bottom_address) {
1101       size_t fill_size = pointer_delta(start_address, bottom_address);
1102       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1103       increase_used(fill_size * HeapWordSize);
1104     }
1105   }
1106 }
1107 
1108 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
1109                                                      uint* gc_count_before_ret,
1110                                                      uint* gclocker_retry_count_ret) {
1111   assert_heap_not_locked_and_not_at_safepoint();
1112   assert(!is_humongous(word_size), "attempt_allocation() should not "
1113          "be called for humongous allocation requests");
1114 
1115   AllocationContext_t context = AllocationContext::current();
1116   HeapWord* result = _allocator->attempt_allocation(word_size, context);
1117 
1118   if (result == NULL) {
1119     result = attempt_allocation_slow(word_size,
1120                                      context,
1121                                      gc_count_before_ret,
1122                                      gclocker_retry_count_ret);
1123   }
1124   assert_heap_not_locked();
1125   if (result != NULL) {
1126     dirty_young_block(result, word_size);
1127   }
1128   return result;
1129 }
1130 
1131 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
1132   assert(!is_init_completed(), "Expect to be called at JVM init time");
1133   assert(ranges != NULL, "MemRegion array NULL");
1134   assert(count != 0, "No MemRegions provided");
1135   MemRegion reserved = _hrm.reserved();
1136   HeapWord* prev_last_addr = NULL;
1137   HeapRegion* prev_last_region = NULL;
1138   size_t size_used = 0;
1139   size_t uncommitted_regions = 0;
1140 
1141   // For each Memregion, free the G1 regions that constitute it, and
1142   // notify mark-sweep that the range is no longer to be considered 'archive.'
1143   MutexLockerEx x(Heap_lock);
1144   for (size_t i = 0; i < count; i++) {
1145     HeapWord* start_address = ranges[i].start();
1146     HeapWord* last_address = ranges[i].last();
1147 
1148     assert(reserved.contains(start_address) && reserved.contains(last_address),
1149            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1150                    p2i(start_address), p2i(last_address)));
1151     assert(start_address > prev_last_addr,
1152            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1153                    p2i(start_address), p2i(prev_last_addr)));
1154     size_used += ranges[i].byte_size();
1155     prev_last_addr = last_address;
1156 
1157     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1158     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1159 
1160     // Check for ranges that start in the same G1 region in which the previous
1161     // range ended, and adjust the start address so we don't try to free
1162     // the same region again. If the current range is entirely within that
1163     // region, skip it.
1164     if (start_region == prev_last_region) {
1165       start_address = start_region->end();
1166       if (start_address > last_address) {
1167         continue;
1168       }
1169       start_region = _hrm.addr_to_region(start_address);
1170     }
1171     prev_last_region = last_region;
1172 
1173     // After verifying that each region was marked as an archive region by
1174     // alloc_archive_regions, set it free and empty and uncommit it.
1175     HeapRegion* curr_region = start_region;
1176     while (curr_region != NULL) {
1177       guarantee(curr_region->is_archive(),
1178                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1179       uint curr_index = curr_region->hrm_index();
1180       _old_set.remove(curr_region);
1181       curr_region->set_free();
1182       curr_region->set_top(curr_region->bottom());
1183       if (curr_region != last_region) {
1184         curr_region = _hrm.next_region_in_heap(curr_region);
1185       } else {
1186         curr_region = NULL;
1187       }
1188       _hrm.shrink_at(curr_index, 1);
1189       uncommitted_regions++;
1190     }
1191 
1192     // Notify mark-sweep that this is no longer an archive range.
1193     G1MarkSweep::set_range_archive(ranges[i], false);
1194   }
1195 
1196   if (uncommitted_regions != 0) {
1197     ergo_verbose1(ErgoHeapSizing,
1198                   "attempt heap shrinking",
1199                   ergo_format_reason("uncommitted archive regions")
1200                   ergo_format_byte("total size"),
1201                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
1202   }
1203   decrease_used(size_used);
1204 }
1205 
1206 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1207                                                         uint* gc_count_before_ret,
1208                                                         uint* gclocker_retry_count_ret) {
1209   // The structure of this method has a lot of similarities to
1210   // attempt_allocation_slow(). The reason these two were not merged
1211   // into a single one is that such a method would require several "if
1212   // allocation is not humongous do this, otherwise do that"
1213   // conditional paths which would obscure its flow. In fact, an early
1214   // version of this code did use a unified method which was harder to
1215   // follow and, as a result, it had subtle bugs that were hard to
1216   // track down. So keeping these two methods separate allows each to
1217   // be more readable. It will be good to keep these two in sync as
1218   // much as possible.
1219 
1220   assert_heap_not_locked_and_not_at_safepoint();
1221   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1222          "should only be called for humongous allocations");
1223 
1224   // Humongous objects can exhaust the heap quickly, so we should check if we
1225   // need to start a marking cycle at each humongous object allocation. We do
1226   // the check before we do the actual allocation. The reason for doing it
1227   // before the allocation is that we avoid having to keep track of the newly
1228   // allocated memory while we do a GC.
1229   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1230                                            word_size)) {
1231     collect(GCCause::_g1_humongous_allocation);
1232   }
1233 
1234   // We will loop until a) we manage to successfully perform the
1235   // allocation or b) we successfully schedule a collection which
1236   // fails to perform the allocation. b) is the only case when we'll
1237   // return NULL.
1238   HeapWord* result = NULL;
1239   for (int try_count = 1; /* we'll return */; try_count += 1) {
1240     bool should_try_gc;
1241     uint gc_count_before;
1242 
1243     {
1244       MutexLockerEx x(Heap_lock);
1245 
1246       // Given that humongous objects are not allocated in young
1247       // regions, we'll first try to do the allocation without doing a
1248       // collection hoping that there's enough space in the heap.
1249       result = humongous_obj_allocate(word_size, AllocationContext::current());
1250       if (result != NULL) {
1251         return result;
1252       }
1253 
1254       if (GC_locker::is_active_and_needs_gc()) {
1255         should_try_gc = false;
1256       } else {
1257          // The GCLocker may not be active but the GCLocker initiated
1258         // GC may not yet have been performed (GCLocker::needs_gc()
1259         // returns true). In this case we do not try this GC and
1260         // wait until the GCLocker initiated GC is performed, and
1261         // then retry the allocation.
1262         if (GC_locker::needs_gc()) {
1263           should_try_gc = false;
1264         } else {
1265           // Read the GC count while still holding the Heap_lock.
1266           gc_count_before = total_collections();
1267           should_try_gc = true;
1268         }
1269       }
1270     }
1271 
1272     if (should_try_gc) {
1273       // If we failed to allocate the humongous object, we should try to
1274       // do a collection pause (if we're allowed) in case it reclaims
1275       // enough space for the allocation to succeed after the pause.
1276 
1277       bool succeeded;
1278       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1279                                    GCCause::_g1_humongous_allocation);
1280       if (result != NULL) {
1281         assert(succeeded, "only way to get back a non-NULL result");
1282         return result;
1283       }
1284 
1285       if (succeeded) {
1286         // If we get here we successfully scheduled a collection which
1287         // failed to allocate. No point in trying to allocate
1288         // further. We'll just return NULL.
1289         MutexLockerEx x(Heap_lock);
1290         *gc_count_before_ret = total_collections();
1291         return NULL;
1292       }
1293     } else {
1294       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1295         MutexLockerEx x(Heap_lock);
1296         *gc_count_before_ret = total_collections();
1297         return NULL;
1298       }
1299       // The GCLocker is either active or the GCLocker initiated
1300       // GC has not yet been performed. Stall until it is and
1301       // then retry the allocation.
1302       GC_locker::stall_until_clear();
1303       (*gclocker_retry_count_ret) += 1;
1304     }
1305 
1306     // We can reach here if we were unsuccessful in scheduling a
1307     // collection (because another thread beat us to it) or if we were
1308     // stalled due to the GC locker. In either can we should retry the
1309     // allocation attempt in case another thread successfully
1310     // performed a collection and reclaimed enough space.  Give a
1311     // warning if we seem to be looping forever.
1312 
1313     if ((QueuedAllocationWarningCount > 0) &&
1314         (try_count % QueuedAllocationWarningCount == 0)) {
1315       warning("G1CollectedHeap::attempt_allocation_humongous() "
1316               "retries %d times", try_count);
1317     }
1318   }
1319 
1320   ShouldNotReachHere();
1321   return NULL;
1322 }
1323 
1324 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1325                                                            AllocationContext_t context,
1326                                                            bool expect_null_mutator_alloc_region) {
1327   assert_at_safepoint(true /* should_be_vm_thread */);
1328   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1329          "the current alloc region was unexpectedly found to be non-NULL");
1330 
1331   if (!is_humongous(word_size)) {
1332     return _allocator->attempt_allocation_locked(word_size, context);
1333   } else {
1334     HeapWord* result = humongous_obj_allocate(word_size, context);
1335     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1336       collector_state()->set_initiate_conc_mark_if_possible(true);
1337     }
1338     return result;
1339   }
1340 
1341   ShouldNotReachHere();
1342 }
1343 
1344 class PostMCRemSetClearClosure: public HeapRegionClosure {
1345   G1CollectedHeap* _g1h;
1346   ModRefBarrierSet* _mr_bs;
1347 public:
1348   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1349     _g1h(g1h), _mr_bs(mr_bs) {}
1350 
1351   bool doHeapRegion(HeapRegion* r) {
1352     HeapRegionRemSet* hrrs = r->rem_set();
1353 
1354     if (r->is_continues_humongous()) {
1355       // We'll assert that the strong code root list and RSet is empty
1356       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1357       assert(hrrs->occupied() == 0, "RSet should be empty");
1358       return false;
1359     }
1360 
1361     _g1h->reset_gc_time_stamps(r);
1362     hrrs->clear();
1363     // You might think here that we could clear just the cards
1364     // corresponding to the used region.  But no: if we leave a dirty card
1365     // in a region we might allocate into, then it would prevent that card
1366     // from being enqueued, and cause it to be missed.
1367     // Re: the performance cost: we shouldn't be doing full GC anyway!
1368     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1369 
1370     return false;
1371   }
1372 };
1373 
1374 void G1CollectedHeap::clear_rsets_post_compaction() {
1375   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1376   heap_region_iterate(&rs_clear);
1377 }
1378 
1379 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1380   G1CollectedHeap*   _g1h;
1381   UpdateRSOopClosure _cl;
1382 public:
1383   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1384     _cl(g1->g1_rem_set(), worker_i),
1385     _g1h(g1)
1386   { }
1387 
1388   bool doHeapRegion(HeapRegion* r) {
1389     if (!r->is_continues_humongous()) {
1390       _cl.set_from(r);
1391       r->oop_iterate(&_cl);
1392     }
1393     return false;
1394   }
1395 };
1396 
1397 class ParRebuildRSTask: public AbstractGangTask {
1398   G1CollectedHeap* _g1;
1399   HeapRegionClaimer _hrclaimer;
1400 
1401 public:
1402   ParRebuildRSTask(G1CollectedHeap* g1) :
1403       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1404 
1405   void work(uint worker_id) {
1406     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1407     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1408   }
1409 };
1410 
1411 class PostCompactionPrinterClosure: public HeapRegionClosure {
1412 private:
1413   G1HRPrinter* _hr_printer;
1414 public:
1415   bool doHeapRegion(HeapRegion* hr) {
1416     assert(!hr->is_young(), "not expecting to find young regions");
1417     if (hr->is_free()) {
1418       // We only generate output for non-empty regions.
1419     } else if (hr->is_starts_humongous()) {
1420       if (hr->region_num() == 1) {
1421         // single humongous region
1422         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1423       } else {
1424         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1425       }
1426     } else if (hr->is_continues_humongous()) {
1427       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1428     } else if (hr->is_archive()) {
1429       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1430     } else if (hr->is_old()) {
1431       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1432     } else {
1433       ShouldNotReachHere();
1434     }
1435     return false;
1436   }
1437 
1438   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1439     : _hr_printer(hr_printer) { }
1440 };
1441 
1442 void G1CollectedHeap::print_hrm_post_compaction() {
1443   PostCompactionPrinterClosure cl(hr_printer());
1444   heap_region_iterate(&cl);
1445 }
1446 
1447 bool G1CollectedHeap::do_collection(bool explicit_gc,
1448                                     bool clear_all_soft_refs,
1449                                     size_t word_size) {
1450   assert_at_safepoint(true /* should_be_vm_thread */);
1451 
1452   if (GC_locker::check_active_before_gc()) {
1453     return false;
1454   }
1455 
1456   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1457   gc_timer->register_gc_start();
1458 
1459   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1460   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1461 
1462   SvcGCMarker sgcm(SvcGCMarker::FULL);
1463   ResourceMark rm;
1464 
1465   G1Log::update_level();
1466   print_heap_before_gc();
1467   trace_heap_before_gc(gc_tracer);
1468 
1469   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1470 
1471   verify_region_sets_optional();
1472 
1473   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1474                            collector_policy()->should_clear_all_soft_refs();
1475 
1476   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1477 
1478   {
1479     IsGCActiveMark x;
1480 
1481     // Timing
1482     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1483     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1484 
1485     {
1486       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1487       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1488       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1489 
1490       g1_policy()->record_full_collection_start();
1491 
1492       // Note: When we have a more flexible GC logging framework that
1493       // allows us to add optional attributes to a GC log record we
1494       // could consider timing and reporting how long we wait in the
1495       // following two methods.
1496       wait_while_free_regions_coming();
1497       // If we start the compaction before the CM threads finish
1498       // scanning the root regions we might trip them over as we'll
1499       // be moving objects / updating references. So let's wait until
1500       // they are done. By telling them to abort, they should complete
1501       // early.
1502       _cm->root_regions()->abort();
1503       _cm->root_regions()->wait_until_scan_finished();
1504       append_secondary_free_list_if_not_empty_with_lock();
1505 
1506       gc_prologue(true);
1507       increment_total_collections(true /* full gc */);
1508       increment_old_marking_cycles_started();
1509 
1510       assert(used() == recalculate_used(), "Should be equal");
1511 
1512       verify_before_gc();
1513 
1514       check_bitmaps("Full GC Start");
1515       pre_full_gc_dump(gc_timer);
1516 
1517       COMPILER2_PRESENT(DerivedPointerTable::clear());
1518 
1519       // Disable discovery and empty the discovered lists
1520       // for the CM ref processor.
1521       ref_processor_cm()->disable_discovery();
1522       ref_processor_cm()->abandon_partial_discovery();
1523       ref_processor_cm()->verify_no_references_recorded();
1524 
1525       // Abandon current iterations of concurrent marking and concurrent
1526       // refinement, if any are in progress. We have to do this before
1527       // wait_until_scan_finished() below.
1528       concurrent_mark()->abort();
1529 
1530       // Make sure we'll choose a new allocation region afterwards.
1531       _allocator->release_mutator_alloc_region();
1532       _allocator->abandon_gc_alloc_regions();
1533       g1_rem_set()->cleanupHRRS();
1534 
1535       // We should call this after we retire any currently active alloc
1536       // regions so that all the ALLOC / RETIRE events are generated
1537       // before the start GC event.
1538       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1539 
1540       // We may have added regions to the current incremental collection
1541       // set between the last GC or pause and now. We need to clear the
1542       // incremental collection set and then start rebuilding it afresh
1543       // after this full GC.
1544       abandon_collection_set(g1_policy()->inc_cset_head());
1545       g1_policy()->clear_incremental_cset();
1546       g1_policy()->stop_incremental_cset_building();
1547 
1548       tear_down_region_sets(false /* free_list_only */);
1549       collector_state()->set_gcs_are_young(true);
1550 
1551       // See the comments in g1CollectedHeap.hpp and
1552       // G1CollectedHeap::ref_processing_init() about
1553       // how reference processing currently works in G1.
1554 
1555       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1556       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1557 
1558       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1559       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1560 
1561       ref_processor_stw()->enable_discovery();
1562       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1563 
1564       // Do collection work
1565       {
1566         HandleMark hm;  // Discard invalid handles created during gc
1567         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1568       }
1569 
1570       assert(num_free_regions() == 0, "we should not have added any free regions");
1571       rebuild_region_sets(false /* free_list_only */);
1572 
1573       // Enqueue any discovered reference objects that have
1574       // not been removed from the discovered lists.
1575       ref_processor_stw()->enqueue_discovered_references();
1576 
1577       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1578 
1579       MemoryService::track_memory_usage();
1580 
1581       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1582       ref_processor_stw()->verify_no_references_recorded();
1583 
1584       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1585       ClassLoaderDataGraph::purge();
1586       MetaspaceAux::verify_metrics();
1587 
1588       // Note: since we've just done a full GC, concurrent
1589       // marking is no longer active. Therefore we need not
1590       // re-enable reference discovery for the CM ref processor.
1591       // That will be done at the start of the next marking cycle.
1592       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1593       ref_processor_cm()->verify_no_references_recorded();
1594 
1595       reset_gc_time_stamp();
1596       // Since everything potentially moved, we will clear all remembered
1597       // sets, and clear all cards.  Later we will rebuild remembered
1598       // sets. We will also reset the GC time stamps of the regions.
1599       clear_rsets_post_compaction();
1600       check_gc_time_stamps();
1601 
1602       // Resize the heap if necessary.
1603       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1604 
1605       if (_hr_printer.is_active()) {
1606         // We should do this after we potentially resize the heap so
1607         // that all the COMMIT / UNCOMMIT events are generated before
1608         // the end GC event.
1609 
1610         print_hrm_post_compaction();
1611         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1612       }
1613 
1614       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1615       if (hot_card_cache->use_cache()) {
1616         hot_card_cache->reset_card_counts();
1617         hot_card_cache->reset_hot_cache();
1618       }
1619 
1620       // Rebuild remembered sets of all regions.
1621       uint n_workers =
1622         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1623                                                 workers()->active_workers(),
1624                                                 Threads::number_of_non_daemon_threads());
1625       workers()->set_active_workers(n_workers);
1626 
1627       ParRebuildRSTask rebuild_rs_task(this);
1628       workers()->run_task(&rebuild_rs_task);
1629 
1630       // Rebuild the strong code root lists for each region
1631       rebuild_strong_code_roots();
1632 
1633       if (true) { // FIXME
1634         MetaspaceGC::compute_new_size();
1635       }
1636 
1637 #ifdef TRACESPINNING
1638       ParallelTaskTerminator::print_termination_counts();
1639 #endif
1640 
1641       // Discard all rset updates
1642       JavaThread::dirty_card_queue_set().abandon_logs();
1643       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1644 
1645       _young_list->reset_sampled_info();
1646       // At this point there should be no regions in the
1647       // entire heap tagged as young.
1648       assert(check_young_list_empty(true /* check_heap */),
1649              "young list should be empty at this point");
1650 
1651       // Update the number of full collections that have been completed.
1652       increment_old_marking_cycles_completed(false /* concurrent */);
1653 
1654       _hrm.verify_optional();
1655       verify_region_sets_optional();
1656 
1657       verify_after_gc();
1658 
1659       // Clear the previous marking bitmap, if needed for bitmap verification.
1660       // Note we cannot do this when we clear the next marking bitmap in
1661       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1662       // objects marked during a full GC against the previous bitmap.
1663       // But we need to clear it before calling check_bitmaps below since
1664       // the full GC has compacted objects and updated TAMS but not updated
1665       // the prev bitmap.
1666       if (G1VerifyBitmaps) {
1667         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1668       }
1669       check_bitmaps("Full GC End");
1670 
1671       // Start a new incremental collection set for the next pause
1672       assert(g1_policy()->collection_set() == NULL, "must be");
1673       g1_policy()->start_incremental_cset_building();
1674 
1675       clear_cset_fast_test();
1676 
1677       _allocator->init_mutator_alloc_region();
1678 
1679       g1_policy()->record_full_collection_end();
1680 
1681       if (G1Log::fine()) {
1682         g1_policy()->print_heap_transition();
1683       }
1684 
1685       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1686       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1687       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1688       // before any GC notifications are raised.
1689       g1mm()->update_sizes();
1690 
1691       gc_epilogue(true);
1692     }
1693 
1694     if (G1Log::finer()) {
1695       g1_policy()->print_detailed_heap_transition(true /* full */);
1696     }
1697 
1698     print_heap_after_gc();
1699     trace_heap_after_gc(gc_tracer);
1700 
1701     post_full_gc_dump(gc_timer);
1702 
1703     gc_timer->register_gc_end();
1704     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1705   }
1706 
1707   return true;
1708 }
1709 
1710 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1711   // do_collection() will return whether it succeeded in performing
1712   // the GC. Currently, there is no facility on the
1713   // do_full_collection() API to notify the caller than the collection
1714   // did not succeed (e.g., because it was locked out by the GC
1715   // locker). So, right now, we'll ignore the return value.
1716   bool dummy = do_collection(true,                /* explicit_gc */
1717                              clear_all_soft_refs,
1718                              0                    /* word_size */);
1719 }
1720 
1721 // This code is mostly copied from TenuredGeneration.
1722 void
1723 G1CollectedHeap::
1724 resize_if_necessary_after_full_collection(size_t word_size) {
1725   // Include the current allocation, if any, and bytes that will be
1726   // pre-allocated to support collections, as "used".
1727   const size_t used_after_gc = used();
1728   const size_t capacity_after_gc = capacity();
1729   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1730 
1731   // This is enforced in arguments.cpp.
1732   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1733          "otherwise the code below doesn't make sense");
1734 
1735   // We don't have floating point command-line arguments
1736   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1737   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1738   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1739   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1740 
1741   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1742   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1743 
1744   // We have to be careful here as these two calculations can overflow
1745   // 32-bit size_t's.
1746   double used_after_gc_d = (double) used_after_gc;
1747   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1748   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1749 
1750   // Let's make sure that they are both under the max heap size, which
1751   // by default will make them fit into a size_t.
1752   double desired_capacity_upper_bound = (double) max_heap_size;
1753   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1754                                     desired_capacity_upper_bound);
1755   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1756                                     desired_capacity_upper_bound);
1757 
1758   // We can now safely turn them into size_t's.
1759   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1760   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1761 
1762   // This assert only makes sense here, before we adjust them
1763   // with respect to the min and max heap size.
1764   assert(minimum_desired_capacity <= maximum_desired_capacity,
1765          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1766                  "maximum_desired_capacity = " SIZE_FORMAT,
1767                  minimum_desired_capacity, maximum_desired_capacity));
1768 
1769   // Should not be greater than the heap max size. No need to adjust
1770   // it with respect to the heap min size as it's a lower bound (i.e.,
1771   // we'll try to make the capacity larger than it, not smaller).
1772   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1773   // Should not be less than the heap min size. No need to adjust it
1774   // with respect to the heap max size as it's an upper bound (i.e.,
1775   // we'll try to make the capacity smaller than it, not greater).
1776   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1777 
1778   if (capacity_after_gc < minimum_desired_capacity) {
1779     // Don't expand unless it's significant
1780     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1781     ergo_verbose4(ErgoHeapSizing,
1782                   "attempt heap expansion",
1783                   ergo_format_reason("capacity lower than "
1784                                      "min desired capacity after Full GC")
1785                   ergo_format_byte("capacity")
1786                   ergo_format_byte("occupancy")
1787                   ergo_format_byte_perc("min desired capacity"),
1788                   capacity_after_gc, used_after_gc,
1789                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1790     expand(expand_bytes);
1791 
1792     // No expansion, now see if we want to shrink
1793   } else if (capacity_after_gc > maximum_desired_capacity) {
1794     // Capacity too large, compute shrinking size
1795     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1796     ergo_verbose4(ErgoHeapSizing,
1797                   "attempt heap shrinking",
1798                   ergo_format_reason("capacity higher than "
1799                                      "max desired capacity after Full GC")
1800                   ergo_format_byte("capacity")
1801                   ergo_format_byte("occupancy")
1802                   ergo_format_byte_perc("max desired capacity"),
1803                   capacity_after_gc, used_after_gc,
1804                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1805     shrink(shrink_bytes);
1806   }
1807 }
1808 
1809 
1810 HeapWord*
1811 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1812                                            AllocationContext_t context,
1813                                            bool* succeeded) {
1814   assert_at_safepoint(true /* should_be_vm_thread */);
1815 
1816   *succeeded = true;
1817   // Let's attempt the allocation first.
1818   HeapWord* result =
1819     attempt_allocation_at_safepoint(word_size,
1820                                     context,
1821                                     false /* expect_null_mutator_alloc_region */);
1822   if (result != NULL) {
1823     assert(*succeeded, "sanity");
1824     return result;
1825   }
1826 
1827   // In a G1 heap, we're supposed to keep allocation from failing by
1828   // incremental pauses.  Therefore, at least for now, we'll favor
1829   // expansion over collection.  (This might change in the future if we can
1830   // do something smarter than full collection to satisfy a failed alloc.)
1831   result = expand_and_allocate(word_size, context);
1832   if (result != NULL) {
1833     assert(*succeeded, "sanity");
1834     return result;
1835   }
1836 
1837   // Expansion didn't work, we'll try to do a Full GC.
1838   bool gc_succeeded = do_collection(false, /* explicit_gc */
1839                                     false, /* clear_all_soft_refs */
1840                                     word_size);
1841   if (!gc_succeeded) {
1842     *succeeded = false;
1843     return NULL;
1844   }
1845 
1846   // Retry the allocation
1847   result = attempt_allocation_at_safepoint(word_size,
1848                                            context,
1849                                            true /* expect_null_mutator_alloc_region */);
1850   if (result != NULL) {
1851     assert(*succeeded, "sanity");
1852     return result;
1853   }
1854 
1855   // Then, try a Full GC that will collect all soft references.
1856   gc_succeeded = do_collection(false, /* explicit_gc */
1857                                true,  /* clear_all_soft_refs */
1858                                word_size);
1859   if (!gc_succeeded) {
1860     *succeeded = false;
1861     return NULL;
1862   }
1863 
1864   // Retry the allocation once more
1865   result = attempt_allocation_at_safepoint(word_size,
1866                                            context,
1867                                            true /* expect_null_mutator_alloc_region */);
1868   if (result != NULL) {
1869     assert(*succeeded, "sanity");
1870     return result;
1871   }
1872 
1873   assert(!collector_policy()->should_clear_all_soft_refs(),
1874          "Flag should have been handled and cleared prior to this point");
1875 
1876   // What else?  We might try synchronous finalization later.  If the total
1877   // space available is large enough for the allocation, then a more
1878   // complete compaction phase than we've tried so far might be
1879   // appropriate.
1880   assert(*succeeded, "sanity");
1881   return NULL;
1882 }
1883 
1884 // Attempting to expand the heap sufficiently
1885 // to support an allocation of the given "word_size".  If
1886 // successful, perform the allocation and return the address of the
1887 // allocated block, or else "NULL".
1888 
1889 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1890   assert_at_safepoint(true /* should_be_vm_thread */);
1891 
1892   verify_region_sets_optional();
1893 
1894   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1895   ergo_verbose1(ErgoHeapSizing,
1896                 "attempt heap expansion",
1897                 ergo_format_reason("allocation request failed")
1898                 ergo_format_byte("allocation request"),
1899                 word_size * HeapWordSize);
1900   if (expand(expand_bytes)) {
1901     _hrm.verify_optional();
1902     verify_region_sets_optional();
1903     return attempt_allocation_at_safepoint(word_size,
1904                                            context,
1905                                            false /* expect_null_mutator_alloc_region */);
1906   }
1907   return NULL;
1908 }
1909 
1910 bool G1CollectedHeap::expand(size_t expand_bytes) {
1911   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1912   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1913                                        HeapRegion::GrainBytes);
1914   ergo_verbose2(ErgoHeapSizing,
1915                 "expand the heap",
1916                 ergo_format_byte("requested expansion amount")
1917                 ergo_format_byte("attempted expansion amount"),
1918                 expand_bytes, aligned_expand_bytes);
1919 
1920   if (is_maximal_no_gc()) {
1921     ergo_verbose0(ErgoHeapSizing,
1922                       "did not expand the heap",
1923                       ergo_format_reason("heap already fully expanded"));
1924     return false;
1925   }
1926 
1927   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1928   assert(regions_to_expand > 0, "Must expand by at least one region");
1929 
1930   uint expanded_by = _hrm.expand_by(regions_to_expand);
1931 
1932   if (expanded_by > 0) {
1933     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1934     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1935     g1_policy()->record_new_heap_size(num_regions());
1936   } else {
1937     ergo_verbose0(ErgoHeapSizing,
1938                   "did not expand the heap",
1939                   ergo_format_reason("heap expansion operation failed"));
1940     // The expansion of the virtual storage space was unsuccessful.
1941     // Let's see if it was because we ran out of swap.
1942     if (G1ExitOnExpansionFailure &&
1943         _hrm.available() >= regions_to_expand) {
1944       // We had head room...
1945       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1946     }
1947   }
1948   return regions_to_expand > 0;
1949 }
1950 
1951 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1952   size_t aligned_shrink_bytes =
1953     ReservedSpace::page_align_size_down(shrink_bytes);
1954   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1955                                          HeapRegion::GrainBytes);
1956   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1957 
1958   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1959   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1960 
1961   ergo_verbose3(ErgoHeapSizing,
1962                 "shrink the heap",
1963                 ergo_format_byte("requested shrinking amount")
1964                 ergo_format_byte("aligned shrinking amount")
1965                 ergo_format_byte("attempted shrinking amount"),
1966                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1967   if (num_regions_removed > 0) {
1968     g1_policy()->record_new_heap_size(num_regions());
1969   } else {
1970     ergo_verbose0(ErgoHeapSizing,
1971                   "did not shrink the heap",
1972                   ergo_format_reason("heap shrinking operation failed"));
1973   }
1974 }
1975 
1976 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1977   verify_region_sets_optional();
1978 
1979   // We should only reach here at the end of a Full GC which means we
1980   // should not not be holding to any GC alloc regions. The method
1981   // below will make sure of that and do any remaining clean up.
1982   _allocator->abandon_gc_alloc_regions();
1983 
1984   // Instead of tearing down / rebuilding the free lists here, we
1985   // could instead use the remove_all_pending() method on free_list to
1986   // remove only the ones that we need to remove.
1987   tear_down_region_sets(true /* free_list_only */);
1988   shrink_helper(shrink_bytes);
1989   rebuild_region_sets(true /* free_list_only */);
1990 
1991   _hrm.verify_optional();
1992   verify_region_sets_optional();
1993 }
1994 
1995 // Public methods.
1996 
1997 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1998 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1999 #endif // _MSC_VER
2000 
2001 
2002 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
2003   CollectedHeap(),
2004   _g1_policy(policy_),
2005   _dirty_card_queue_set(false),
2006   _into_cset_dirty_card_queue_set(false),
2007   _is_alive_closure_cm(this),
2008   _is_alive_closure_stw(this),
2009   _ref_processor_cm(NULL),
2010   _ref_processor_stw(NULL),
2011   _bot_shared(NULL),
2012   _cg1r(NULL),
2013   _g1mm(NULL),
2014   _refine_cte_cl(NULL),
2015   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
2016   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
2017   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
2018   _humongous_reclaim_candidates(),
2019   _has_humongous_reclaim_candidates(false),
2020   _archive_allocator(NULL),
2021   _free_regions_coming(false),
2022   _young_list(new YoungList(this)),
2023   _gc_time_stamp(0),
2024   _summary_bytes_used(0),
2025   _survivor_evac_stats(YoungPLABSize, PLABWeight),
2026   _old_evac_stats(OldPLABSize, PLABWeight),
2027   _expand_heap_after_alloc_failure(true),
2028   _surviving_young_words(NULL),
2029   _old_marking_cycles_started(0),
2030   _old_marking_cycles_completed(0),
2031   _heap_summary_sent(false),
2032   _in_cset_fast_test(),
2033   _dirty_cards_region_list(NULL),
2034   _worker_cset_start_region(NULL),
2035   _worker_cset_start_region_time_stamp(NULL),
2036   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
2037   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
2038   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
2039   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
2040 
2041   _workers = new WorkGang("GC Thread", ParallelGCThreads,
2042                           /* are_GC_task_threads */true,
2043                           /* are_ConcurrentGC_threads */false);
2044   _workers->initialize_workers();
2045 
2046   _allocator = G1Allocator::create_allocator(this);
2047   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
2048 
2049   // Override the default _filler_array_max_size so that no humongous filler
2050   // objects are created.
2051   _filler_array_max_size = _humongous_object_threshold_in_words;
2052 
2053   uint n_queues = ParallelGCThreads;
2054   _task_queues = new RefToScanQueueSet(n_queues);
2055 
2056   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
2057   assert(n_rem_sets > 0, "Invariant.");
2058 
2059   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
2060   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
2061   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
2062 
2063   for (uint i = 0; i < n_queues; i++) {
2064     RefToScanQueue* q = new RefToScanQueue();
2065     q->initialize();
2066     _task_queues->register_queue(i, q);
2067     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
2068   }
2069   clear_cset_start_regions();
2070 
2071   // Initialize the G1EvacuationFailureALot counters and flags.
2072   NOT_PRODUCT(reset_evacuation_should_fail();)
2073 
2074   guarantee(_task_queues != NULL, "task_queues allocation failure.");
2075 }
2076 
2077 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
2078                                                                  size_t size,
2079                                                                  size_t translation_factor) {
2080   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
2081   // Allocate a new reserved space, preferring to use large pages.
2082   ReservedSpace rs(size, preferred_page_size);
2083   G1RegionToSpaceMapper* result  =
2084     G1RegionToSpaceMapper::create_mapper(rs,
2085                                          size,
2086                                          rs.alignment(),
2087                                          HeapRegion::GrainBytes,
2088                                          translation_factor,
2089                                          mtGC);
2090   if (TracePageSizes) {
2091     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2092                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2093   }
2094   return result;
2095 }
2096 
2097 jint G1CollectedHeap::initialize() {
2098   CollectedHeap::pre_initialize();
2099   os::enable_vtime();
2100 
2101   G1Log::init();
2102 
2103   // Necessary to satisfy locking discipline assertions.
2104 
2105   MutexLocker x(Heap_lock);
2106 
2107   // We have to initialize the printer before committing the heap, as
2108   // it will be used then.
2109   _hr_printer.set_active(G1PrintHeapRegions);
2110 
2111   // While there are no constraints in the GC code that HeapWordSize
2112   // be any particular value, there are multiple other areas in the
2113   // system which believe this to be true (e.g. oop->object_size in some
2114   // cases incorrectly returns the size in wordSize units rather than
2115   // HeapWordSize).
2116   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2117 
2118   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2119   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2120   size_t heap_alignment = collector_policy()->heap_alignment();
2121 
2122   // Ensure that the sizes are properly aligned.
2123   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2124   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2125   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2126 
2127   _refine_cte_cl = new RefineCardTableEntryClosure();
2128 
2129   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2130 
2131   // Reserve the maximum.
2132 
2133   // When compressed oops are enabled, the preferred heap base
2134   // is calculated by subtracting the requested size from the
2135   // 32Gb boundary and using the result as the base address for
2136   // heap reservation. If the requested size is not aligned to
2137   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2138   // into the ReservedHeapSpace constructor) then the actual
2139   // base of the reserved heap may end up differing from the
2140   // address that was requested (i.e. the preferred heap base).
2141   // If this happens then we could end up using a non-optimal
2142   // compressed oops mode.
2143 
2144   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2145                                                  heap_alignment);
2146 
2147   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2148 
2149   // Create the barrier set for the entire reserved region.
2150   G1SATBCardTableLoggingModRefBS* bs
2151     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2152   bs->initialize();
2153   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2154   set_barrier_set(bs);
2155 
2156   // Also create a G1 rem set.
2157   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2158 
2159   // Carve out the G1 part of the heap.
2160 
2161   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2162   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2163   G1RegionToSpaceMapper* heap_storage =
2164     G1RegionToSpaceMapper::create_mapper(g1_rs,
2165                                          g1_rs.size(),
2166                                          page_size,
2167                                          HeapRegion::GrainBytes,
2168                                          1,
2169                                          mtJavaHeap);
2170   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2171                        max_byte_size, page_size,
2172                        heap_rs.base(),
2173                        heap_rs.size());
2174   heap_storage->set_mapping_changed_listener(&_listener);
2175 
2176   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2177   G1RegionToSpaceMapper* bot_storage =
2178     create_aux_memory_mapper("Block offset table",
2179                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2180                              G1BlockOffsetSharedArray::heap_map_factor());
2181 
2182   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2183   G1RegionToSpaceMapper* cardtable_storage =
2184     create_aux_memory_mapper("Card table",
2185                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2186                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2187 
2188   G1RegionToSpaceMapper* card_counts_storage =
2189     create_aux_memory_mapper("Card counts table",
2190                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2191                              G1CardCounts::heap_map_factor());
2192 
2193   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2194   G1RegionToSpaceMapper* prev_bitmap_storage =
2195     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2196   G1RegionToSpaceMapper* next_bitmap_storage =
2197     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2198 
2199   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2200   g1_barrier_set()->initialize(cardtable_storage);
2201    // Do later initialization work for concurrent refinement.
2202   _cg1r->init(card_counts_storage);
2203 
2204   // 6843694 - ensure that the maximum region index can fit
2205   // in the remembered set structures.
2206   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2207   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2208 
2209   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2210   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2211   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2212             "too many cards per region");
2213 
2214   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2215 
2216   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2217 
2218   {
2219     HeapWord* start = _hrm.reserved().start();
2220     HeapWord* end = _hrm.reserved().end();
2221     size_t granularity = HeapRegion::GrainBytes;
2222 
2223     _in_cset_fast_test.initialize(start, end, granularity);
2224     _humongous_reclaim_candidates.initialize(start, end, granularity);
2225   }
2226 
2227   // Create the ConcurrentMark data structure and thread.
2228   // (Must do this late, so that "max_regions" is defined.)
2229   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2230   if (_cm == NULL || !_cm->completed_initialization()) {
2231     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2232     return JNI_ENOMEM;
2233   }
2234   _cmThread = _cm->cmThread();
2235 
2236   // Initialize the from_card cache structure of HeapRegionRemSet.
2237   HeapRegionRemSet::init_heap(max_regions());
2238 
2239   // Now expand into the initial heap size.
2240   if (!expand(init_byte_size)) {
2241     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2242     return JNI_ENOMEM;
2243   }
2244 
2245   // Perform any initialization actions delegated to the policy.
2246   g1_policy()->init();
2247 
2248   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2249                                                SATB_Q_FL_lock,
2250                                                G1SATBProcessCompletedThreshold,
2251                                                Shared_SATB_Q_lock);
2252 
2253   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2254                                                 DirtyCardQ_CBL_mon,
2255                                                 DirtyCardQ_FL_lock,
2256                                                 concurrent_g1_refine()->yellow_zone(),
2257                                                 concurrent_g1_refine()->red_zone(),
2258                                                 Shared_DirtyCardQ_lock);
2259 
2260   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2261                                     DirtyCardQ_CBL_mon,
2262                                     DirtyCardQ_FL_lock,
2263                                     -1, // never trigger processing
2264                                     -1, // no limit on length
2265                                     Shared_DirtyCardQ_lock,
2266                                     &JavaThread::dirty_card_queue_set());
2267 
2268   // Initialize the card queue set used to hold cards containing
2269   // references into the collection set.
2270   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2271                                              DirtyCardQ_CBL_mon,
2272                                              DirtyCardQ_FL_lock,
2273                                              -1, // never trigger processing
2274                                              -1, // no limit on length
2275                                              Shared_DirtyCardQ_lock,
2276                                              &JavaThread::dirty_card_queue_set());
2277 
2278   // Here we allocate the dummy HeapRegion that is required by the
2279   // G1AllocRegion class.
2280   HeapRegion* dummy_region = _hrm.get_dummy_region();
2281 
2282   // We'll re-use the same region whether the alloc region will
2283   // require BOT updates or not and, if it doesn't, then a non-young
2284   // region will complain that it cannot support allocations without
2285   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2286   dummy_region->set_eden();
2287   // Make sure it's full.
2288   dummy_region->set_top(dummy_region->end());
2289   G1AllocRegion::setup(this, dummy_region);
2290 
2291   _allocator->init_mutator_alloc_region();
2292 
2293   // Do create of the monitoring and management support so that
2294   // values in the heap have been properly initialized.
2295   _g1mm = new G1MonitoringSupport(this);
2296 
2297   G1StringDedup::initialize();
2298 
2299   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2300   for (uint i = 0; i < ParallelGCThreads; i++) {
2301     new (&_preserved_objs[i]) OopAndMarkOopStack();
2302   }
2303 
2304   return JNI_OK;
2305 }
2306 
2307 void G1CollectedHeap::stop() {
2308   // Stop all concurrent threads. We do this to make sure these threads
2309   // do not continue to execute and access resources (e.g. gclog_or_tty)
2310   // that are destroyed during shutdown.
2311   _cg1r->stop();
2312   _cmThread->stop();
2313   if (G1StringDedup::is_enabled()) {
2314     G1StringDedup::stop();
2315   }
2316 }
2317 
2318 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2319   return HeapRegion::max_region_size();
2320 }
2321 
2322 void G1CollectedHeap::post_initialize() {
2323   CollectedHeap::post_initialize();
2324   ref_processing_init();
2325 }
2326 
2327 void G1CollectedHeap::ref_processing_init() {
2328   // Reference processing in G1 currently works as follows:
2329   //
2330   // * There are two reference processor instances. One is
2331   //   used to record and process discovered references
2332   //   during concurrent marking; the other is used to
2333   //   record and process references during STW pauses
2334   //   (both full and incremental).
2335   // * Both ref processors need to 'span' the entire heap as
2336   //   the regions in the collection set may be dotted around.
2337   //
2338   // * For the concurrent marking ref processor:
2339   //   * Reference discovery is enabled at initial marking.
2340   //   * Reference discovery is disabled and the discovered
2341   //     references processed etc during remarking.
2342   //   * Reference discovery is MT (see below).
2343   //   * Reference discovery requires a barrier (see below).
2344   //   * Reference processing may or may not be MT
2345   //     (depending on the value of ParallelRefProcEnabled
2346   //     and ParallelGCThreads).
2347   //   * A full GC disables reference discovery by the CM
2348   //     ref processor and abandons any entries on it's
2349   //     discovered lists.
2350   //
2351   // * For the STW processor:
2352   //   * Non MT discovery is enabled at the start of a full GC.
2353   //   * Processing and enqueueing during a full GC is non-MT.
2354   //   * During a full GC, references are processed after marking.
2355   //
2356   //   * Discovery (may or may not be MT) is enabled at the start
2357   //     of an incremental evacuation pause.
2358   //   * References are processed near the end of a STW evacuation pause.
2359   //   * For both types of GC:
2360   //     * Discovery is atomic - i.e. not concurrent.
2361   //     * Reference discovery will not need a barrier.
2362 
2363   MemRegion mr = reserved_region();
2364 
2365   // Concurrent Mark ref processor
2366   _ref_processor_cm =
2367     new ReferenceProcessor(mr,    // span
2368                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2369                                 // mt processing
2370                            ParallelGCThreads,
2371                                 // degree of mt processing
2372                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2373                                 // mt discovery
2374                            MAX2(ParallelGCThreads, ConcGCThreads),
2375                                 // degree of mt discovery
2376                            false,
2377                                 // Reference discovery is not atomic
2378                            &_is_alive_closure_cm);
2379                                 // is alive closure
2380                                 // (for efficiency/performance)
2381 
2382   // STW ref processor
2383   _ref_processor_stw =
2384     new ReferenceProcessor(mr,    // span
2385                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2386                                 // mt processing
2387                            ParallelGCThreads,
2388                                 // degree of mt processing
2389                            (ParallelGCThreads > 1),
2390                                 // mt discovery
2391                            ParallelGCThreads,
2392                                 // degree of mt discovery
2393                            true,
2394                                 // Reference discovery is atomic
2395                            &_is_alive_closure_stw);
2396                                 // is alive closure
2397                                 // (for efficiency/performance)
2398 }
2399 
2400 size_t G1CollectedHeap::capacity() const {
2401   return _hrm.length() * HeapRegion::GrainBytes;
2402 }
2403 
2404 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2405   assert(!hr->is_continues_humongous(), "pre-condition");
2406   hr->reset_gc_time_stamp();
2407   if (hr->is_starts_humongous()) {
2408     uint first_index = hr->hrm_index() + 1;
2409     uint last_index = hr->last_hc_index();
2410     for (uint i = first_index; i < last_index; i += 1) {
2411       HeapRegion* chr = region_at(i);
2412       assert(chr->is_continues_humongous(), "sanity");
2413       chr->reset_gc_time_stamp();
2414     }
2415   }
2416 }
2417 
2418 #ifndef PRODUCT
2419 
2420 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2421 private:
2422   unsigned _gc_time_stamp;
2423   bool _failures;
2424 
2425 public:
2426   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2427     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2428 
2429   virtual bool doHeapRegion(HeapRegion* hr) {
2430     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2431     if (_gc_time_stamp != region_gc_time_stamp) {
2432       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2433                              "expected %d", HR_FORMAT_PARAMS(hr),
2434                              region_gc_time_stamp, _gc_time_stamp);
2435       _failures = true;
2436     }
2437     return false;
2438   }
2439 
2440   bool failures() { return _failures; }
2441 };
2442 
2443 void G1CollectedHeap::check_gc_time_stamps() {
2444   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2445   heap_region_iterate(&cl);
2446   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2447 }
2448 #endif // PRODUCT
2449 
2450 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2451                                                  DirtyCardQueue* into_cset_dcq,
2452                                                  bool concurrent,
2453                                                  uint worker_i) {
2454   // Clean cards in the hot card cache
2455   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2456   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2457 
2458   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2459   size_t n_completed_buffers = 0;
2460   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2461     n_completed_buffers++;
2462   }
2463   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2464   dcqs.clear_n_completed_buffers();
2465   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2466 }
2467 
2468 // Computes the sum of the storage used by the various regions.
2469 size_t G1CollectedHeap::used() const {
2470   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2471   if (_archive_allocator != NULL) {
2472     result += _archive_allocator->used();
2473   }
2474   return result;
2475 }
2476 
2477 size_t G1CollectedHeap::used_unlocked() const {
2478   return _summary_bytes_used;
2479 }
2480 
2481 class SumUsedClosure: public HeapRegionClosure {
2482   size_t _used;
2483 public:
2484   SumUsedClosure() : _used(0) {}
2485   bool doHeapRegion(HeapRegion* r) {
2486     if (!r->is_continues_humongous()) {
2487       _used += r->used();
2488     }
2489     return false;
2490   }
2491   size_t result() { return _used; }
2492 };
2493 
2494 size_t G1CollectedHeap::recalculate_used() const {
2495   double recalculate_used_start = os::elapsedTime();
2496 
2497   SumUsedClosure blk;
2498   heap_region_iterate(&blk);
2499 
2500   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2501   return blk.result();
2502 }
2503 
2504 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2505   switch (cause) {
2506     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2507     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2508     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2509     case GCCause::_g1_humongous_allocation: return true;
2510     case GCCause::_update_allocation_context_stats_inc: return true;
2511     case GCCause::_wb_conc_mark:            return true;
2512     default:                                return false;
2513   }
2514 }
2515 
2516 #ifndef PRODUCT
2517 void G1CollectedHeap::allocate_dummy_regions() {
2518   // Let's fill up most of the region
2519   size_t word_size = HeapRegion::GrainWords - 1024;
2520   // And as a result the region we'll allocate will be humongous.
2521   guarantee(is_humongous(word_size), "sanity");
2522 
2523   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2524     // Let's use the existing mechanism for the allocation
2525     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2526                                                  AllocationContext::system());
2527     if (dummy_obj != NULL) {
2528       MemRegion mr(dummy_obj, word_size);
2529       CollectedHeap::fill_with_object(mr);
2530     } else {
2531       // If we can't allocate once, we probably cannot allocate
2532       // again. Let's get out of the loop.
2533       break;
2534     }
2535   }
2536 }
2537 #endif // !PRODUCT
2538 
2539 void G1CollectedHeap::increment_old_marking_cycles_started() {
2540   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2541     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2542     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2543     _old_marking_cycles_started, _old_marking_cycles_completed));
2544 
2545   _old_marking_cycles_started++;
2546 }
2547 
2548 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2549   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2550 
2551   // We assume that if concurrent == true, then the caller is a
2552   // concurrent thread that was joined the Suspendible Thread
2553   // Set. If there's ever a cheap way to check this, we should add an
2554   // assert here.
2555 
2556   // Given that this method is called at the end of a Full GC or of a
2557   // concurrent cycle, and those can be nested (i.e., a Full GC can
2558   // interrupt a concurrent cycle), the number of full collections
2559   // completed should be either one (in the case where there was no
2560   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2561   // behind the number of full collections started.
2562 
2563   // This is the case for the inner caller, i.e. a Full GC.
2564   assert(concurrent ||
2565          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2566          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2567          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2568                  "is inconsistent with _old_marking_cycles_completed = %u",
2569                  _old_marking_cycles_started, _old_marking_cycles_completed));
2570 
2571   // This is the case for the outer caller, i.e. the concurrent cycle.
2572   assert(!concurrent ||
2573          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2574          err_msg("for outer caller (concurrent cycle): "
2575                  "_old_marking_cycles_started = %u "
2576                  "is inconsistent with _old_marking_cycles_completed = %u",
2577                  _old_marking_cycles_started, _old_marking_cycles_completed));
2578 
2579   _old_marking_cycles_completed += 1;
2580 
2581   // We need to clear the "in_progress" flag in the CM thread before
2582   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2583   // is set) so that if a waiter requests another System.gc() it doesn't
2584   // incorrectly see that a marking cycle is still in progress.
2585   if (concurrent) {
2586     _cmThread->set_idle();
2587   }
2588 
2589   // This notify_all() will ensure that a thread that called
2590   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2591   // and it's waiting for a full GC to finish will be woken up. It is
2592   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2593   FullGCCount_lock->notify_all();
2594 }
2595 
2596 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2597   collector_state()->set_concurrent_cycle_started(true);
2598   _gc_timer_cm->register_gc_start(start_time);
2599 
2600   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2601   trace_heap_before_gc(_gc_tracer_cm);
2602 }
2603 
2604 void G1CollectedHeap::register_concurrent_cycle_end() {
2605   if (collector_state()->concurrent_cycle_started()) {
2606     if (_cm->has_aborted()) {
2607       _gc_tracer_cm->report_concurrent_mode_failure();
2608     }
2609 
2610     _gc_timer_cm->register_gc_end();
2611     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2612 
2613     // Clear state variables to prepare for the next concurrent cycle.
2614      collector_state()->set_concurrent_cycle_started(false);
2615     _heap_summary_sent = false;
2616   }
2617 }
2618 
2619 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2620   if (collector_state()->concurrent_cycle_started()) {
2621     // This function can be called when:
2622     //  the cleanup pause is run
2623     //  the concurrent cycle is aborted before the cleanup pause.
2624     //  the concurrent cycle is aborted after the cleanup pause,
2625     //   but before the concurrent cycle end has been registered.
2626     // Make sure that we only send the heap information once.
2627     if (!_heap_summary_sent) {
2628       trace_heap_after_gc(_gc_tracer_cm);
2629       _heap_summary_sent = true;
2630     }
2631   }
2632 }
2633 
2634 void G1CollectedHeap::collect(GCCause::Cause cause) {
2635   assert_heap_not_locked();
2636 
2637   uint gc_count_before;
2638   uint old_marking_count_before;
2639   uint full_gc_count_before;
2640   bool retry_gc;
2641 
2642   do {
2643     retry_gc = false;
2644 
2645     {
2646       MutexLocker ml(Heap_lock);
2647 
2648       // Read the GC count while holding the Heap_lock
2649       gc_count_before = total_collections();
2650       full_gc_count_before = total_full_collections();
2651       old_marking_count_before = _old_marking_cycles_started;
2652     }
2653 
2654     if (should_do_concurrent_full_gc(cause)) {
2655       // Schedule an initial-mark evacuation pause that will start a
2656       // concurrent cycle. We're setting word_size to 0 which means that
2657       // we are not requesting a post-GC allocation.
2658       VM_G1IncCollectionPause op(gc_count_before,
2659                                  0,     /* word_size */
2660                                  true,  /* should_initiate_conc_mark */
2661                                  g1_policy()->max_pause_time_ms(),
2662                                  cause);
2663       op.set_allocation_context(AllocationContext::current());
2664 
2665       VMThread::execute(&op);
2666       if (!op.pause_succeeded()) {
2667         if (old_marking_count_before == _old_marking_cycles_started) {
2668           retry_gc = op.should_retry_gc();
2669         } else {
2670           // A Full GC happened while we were trying to schedule the
2671           // initial-mark GC. No point in starting a new cycle given
2672           // that the whole heap was collected anyway.
2673         }
2674 
2675         if (retry_gc) {
2676           if (GC_locker::is_active_and_needs_gc()) {
2677             GC_locker::stall_until_clear();
2678           }
2679         }
2680       }
2681     } else {
2682       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2683           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2684 
2685         // Schedule a standard evacuation pause. We're setting word_size
2686         // to 0 which means that we are not requesting a post-GC allocation.
2687         VM_G1IncCollectionPause op(gc_count_before,
2688                                    0,     /* word_size */
2689                                    false, /* should_initiate_conc_mark */
2690                                    g1_policy()->max_pause_time_ms(),
2691                                    cause);
2692         VMThread::execute(&op);
2693       } else {
2694         // Schedule a Full GC.
2695         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2696         VMThread::execute(&op);
2697       }
2698     }
2699   } while (retry_gc);
2700 }
2701 
2702 bool G1CollectedHeap::is_in(const void* p) const {
2703   if (_hrm.reserved().contains(p)) {
2704     // Given that we know that p is in the reserved space,
2705     // heap_region_containing_raw() should successfully
2706     // return the containing region.
2707     HeapRegion* hr = heap_region_containing_raw(p);
2708     return hr->is_in(p);
2709   } else {
2710     return false;
2711   }
2712 }
2713 
2714 #ifdef ASSERT
2715 bool G1CollectedHeap::is_in_exact(const void* p) const {
2716   bool contains = reserved_region().contains(p);
2717   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2718   if (contains && available) {
2719     return true;
2720   } else {
2721     return false;
2722   }
2723 }
2724 #endif
2725 
2726 bool G1CollectedHeap::obj_in_cs(oop obj) {
2727   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2728   return r != NULL && r->in_collection_set();
2729 }
2730 
2731 // Iteration functions.
2732 
2733 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2734 
2735 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2736   ExtendedOopClosure* _cl;
2737 public:
2738   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2739   bool doHeapRegion(HeapRegion* r) {
2740     if (!r->is_continues_humongous()) {
2741       r->oop_iterate(_cl);
2742     }
2743     return false;
2744   }
2745 };
2746 
2747 // Iterates an ObjectClosure over all objects within a HeapRegion.
2748 
2749 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2750   ObjectClosure* _cl;
2751 public:
2752   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2753   bool doHeapRegion(HeapRegion* r) {
2754     if (!r->is_continues_humongous()) {
2755       r->object_iterate(_cl);
2756     }
2757     return false;
2758   }
2759 };
2760 
2761 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2762   IterateObjectClosureRegionClosure blk(cl);
2763   heap_region_iterate(&blk);
2764 }
2765 
2766 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2767   _hrm.iterate(cl);
2768 }
2769 
2770 void
2771 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2772                                          uint worker_id,
2773                                          HeapRegionClaimer *hrclaimer,
2774                                          bool concurrent) const {
2775   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2776 }
2777 
2778 // Clear the cached CSet starting regions and (more importantly)
2779 // the time stamps. Called when we reset the GC time stamp.
2780 void G1CollectedHeap::clear_cset_start_regions() {
2781   assert(_worker_cset_start_region != NULL, "sanity");
2782   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2783 
2784   for (uint i = 0; i < ParallelGCThreads; i++) {
2785     _worker_cset_start_region[i] = NULL;
2786     _worker_cset_start_region_time_stamp[i] = 0;
2787   }
2788 }
2789 
2790 // Given the id of a worker, obtain or calculate a suitable
2791 // starting region for iterating over the current collection set.
2792 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2793   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2794 
2795   HeapRegion* result = NULL;
2796   unsigned gc_time_stamp = get_gc_time_stamp();
2797 
2798   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2799     // Cached starting region for current worker was set
2800     // during the current pause - so it's valid.
2801     // Note: the cached starting heap region may be NULL
2802     // (when the collection set is empty).
2803     result = _worker_cset_start_region[worker_i];
2804     assert(result == NULL || result->in_collection_set(), "sanity");
2805     return result;
2806   }
2807 
2808   // The cached entry was not valid so let's calculate
2809   // a suitable starting heap region for this worker.
2810 
2811   // We want the parallel threads to start their collection
2812   // set iteration at different collection set regions to
2813   // avoid contention.
2814   // If we have:
2815   //          n collection set regions
2816   //          p threads
2817   // Then thread t will start at region floor ((t * n) / p)
2818 
2819   result = g1_policy()->collection_set();
2820   uint cs_size = g1_policy()->cset_region_length();
2821   uint active_workers = workers()->active_workers();
2822 
2823   uint end_ind   = (cs_size * worker_i) / active_workers;
2824   uint start_ind = 0;
2825 
2826   if (worker_i > 0 &&
2827       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2828     // Previous workers starting region is valid
2829     // so let's iterate from there
2830     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2831     result = _worker_cset_start_region[worker_i - 1];
2832   }
2833 
2834   for (uint i = start_ind; i < end_ind; i++) {
2835     result = result->next_in_collection_set();
2836   }
2837 
2838   // Note: the calculated starting heap region may be NULL
2839   // (when the collection set is empty).
2840   assert(result == NULL || result->in_collection_set(), "sanity");
2841   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2842          "should be updated only once per pause");
2843   _worker_cset_start_region[worker_i] = result;
2844   OrderAccess::storestore();
2845   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2846   return result;
2847 }
2848 
2849 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2850   HeapRegion* r = g1_policy()->collection_set();
2851   while (r != NULL) {
2852     HeapRegion* next = r->next_in_collection_set();
2853     if (cl->doHeapRegion(r)) {
2854       cl->incomplete();
2855       return;
2856     }
2857     r = next;
2858   }
2859 }
2860 
2861 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2862                                                   HeapRegionClosure *cl) {
2863   if (r == NULL) {
2864     // The CSet is empty so there's nothing to do.
2865     return;
2866   }
2867 
2868   assert(r->in_collection_set(),
2869          "Start region must be a member of the collection set.");
2870   HeapRegion* cur = r;
2871   while (cur != NULL) {
2872     HeapRegion* next = cur->next_in_collection_set();
2873     if (cl->doHeapRegion(cur) && false) {
2874       cl->incomplete();
2875       return;
2876     }
2877     cur = next;
2878   }
2879   cur = g1_policy()->collection_set();
2880   while (cur != r) {
2881     HeapRegion* next = cur->next_in_collection_set();
2882     if (cl->doHeapRegion(cur) && false) {
2883       cl->incomplete();
2884       return;
2885     }
2886     cur = next;
2887   }
2888 }
2889 
2890 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2891   HeapRegion* result = _hrm.next_region_in_heap(from);
2892   while (result != NULL && result->is_pinned()) {
2893     result = _hrm.next_region_in_heap(result);
2894   }
2895   return result;
2896 }
2897 
2898 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2899   HeapRegion* hr = heap_region_containing(addr);
2900   return hr->block_start(addr);
2901 }
2902 
2903 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2904   HeapRegion* hr = heap_region_containing(addr);
2905   return hr->block_size(addr);
2906 }
2907 
2908 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2909   HeapRegion* hr = heap_region_containing(addr);
2910   return hr->block_is_obj(addr);
2911 }
2912 
2913 bool G1CollectedHeap::supports_tlab_allocation() const {
2914   return true;
2915 }
2916 
2917 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2918   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2919 }
2920 
2921 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2922   return young_list()->eden_used_bytes();
2923 }
2924 
2925 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2926 // must be smaller than the humongous object limit.
2927 size_t G1CollectedHeap::max_tlab_size() const {
2928   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2929 }
2930 
2931 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2932   AllocationContext_t context = AllocationContext::current();
2933   return _allocator->unsafe_max_tlab_alloc(context);
2934 }
2935 
2936 size_t G1CollectedHeap::max_capacity() const {
2937   return _hrm.reserved().byte_size();
2938 }
2939 
2940 jlong G1CollectedHeap::millis_since_last_gc() {
2941   // assert(false, "NYI");
2942   return 0;
2943 }
2944 
2945 void G1CollectedHeap::prepare_for_verify() {
2946   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2947     ensure_parsability(false);
2948   }
2949   g1_rem_set()->prepare_for_verify();
2950 }
2951 
2952 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2953                                               VerifyOption vo) {
2954   switch (vo) {
2955   case VerifyOption_G1UsePrevMarking:
2956     return hr->obj_allocated_since_prev_marking(obj);
2957   case VerifyOption_G1UseNextMarking:
2958     return hr->obj_allocated_since_next_marking(obj);
2959   case VerifyOption_G1UseMarkWord:
2960     return false;
2961   default:
2962     ShouldNotReachHere();
2963   }
2964   return false; // keep some compilers happy
2965 }
2966 
2967 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2968   switch (vo) {
2969   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2970   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2971   case VerifyOption_G1UseMarkWord:    return NULL;
2972   default:                            ShouldNotReachHere();
2973   }
2974   return NULL; // keep some compilers happy
2975 }
2976 
2977 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2978   switch (vo) {
2979   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2980   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2981   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2982   default:                            ShouldNotReachHere();
2983   }
2984   return false; // keep some compilers happy
2985 }
2986 
2987 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2988   switch (vo) {
2989   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2990   case VerifyOption_G1UseNextMarking: return "NTAMS";
2991   case VerifyOption_G1UseMarkWord:    return "NONE";
2992   default:                            ShouldNotReachHere();
2993   }
2994   return NULL; // keep some compilers happy
2995 }
2996 
2997 class VerifyRootsClosure: public OopClosure {
2998 private:
2999   G1CollectedHeap* _g1h;
3000   VerifyOption     _vo;
3001   bool             _failures;
3002 public:
3003   // _vo == UsePrevMarking -> use "prev" marking information,
3004   // _vo == UseNextMarking -> use "next" marking information,
3005   // _vo == UseMarkWord    -> use mark word from object header.
3006   VerifyRootsClosure(VerifyOption vo) :
3007     _g1h(G1CollectedHeap::heap()),
3008     _vo(vo),
3009     _failures(false) { }
3010 
3011   bool failures() { return _failures; }
3012 
3013   template <class T> void do_oop_nv(T* p) {
3014     T heap_oop = oopDesc::load_heap_oop(p);
3015     if (!oopDesc::is_null(heap_oop)) {
3016       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3017       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3018         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
3019                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
3020         if (_vo == VerifyOption_G1UseMarkWord) {
3021           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
3022         }
3023         obj->print_on(gclog_or_tty);
3024         _failures = true;
3025       }
3026     }
3027   }
3028 
3029   void do_oop(oop* p)       { do_oop_nv(p); }
3030   void do_oop(narrowOop* p) { do_oop_nv(p); }
3031 };
3032 
3033 class G1VerifyCodeRootOopClosure: public OopClosure {
3034   G1CollectedHeap* _g1h;
3035   OopClosure* _root_cl;
3036   nmethod* _nm;
3037   VerifyOption _vo;
3038   bool _failures;
3039 
3040   template <class T> void do_oop_work(T* p) {
3041     // First verify that this root is live
3042     _root_cl->do_oop(p);
3043 
3044     if (!G1VerifyHeapRegionCodeRoots) {
3045       // We're not verifying the code roots attached to heap region.
3046       return;
3047     }
3048 
3049     // Don't check the code roots during marking verification in a full GC
3050     if (_vo == VerifyOption_G1UseMarkWord) {
3051       return;
3052     }
3053 
3054     // Now verify that the current nmethod (which contains p) is
3055     // in the code root list of the heap region containing the
3056     // object referenced by p.
3057 
3058     T heap_oop = oopDesc::load_heap_oop(p);
3059     if (!oopDesc::is_null(heap_oop)) {
3060       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3061 
3062       // Now fetch the region containing the object
3063       HeapRegion* hr = _g1h->heap_region_containing(obj);
3064       HeapRegionRemSet* hrrs = hr->rem_set();
3065       // Verify that the strong code root list for this region
3066       // contains the nmethod
3067       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3068         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
3069                                "from nmethod " PTR_FORMAT " not in strong "
3070                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
3071                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3072         _failures = true;
3073       }
3074     }
3075   }
3076 
3077 public:
3078   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3079     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3080 
3081   void do_oop(oop* p) { do_oop_work(p); }
3082   void do_oop(narrowOop* p) { do_oop_work(p); }
3083 
3084   void set_nmethod(nmethod* nm) { _nm = nm; }
3085   bool failures() { return _failures; }
3086 };
3087 
3088 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3089   G1VerifyCodeRootOopClosure* _oop_cl;
3090 
3091 public:
3092   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3093     _oop_cl(oop_cl) {}
3094 
3095   void do_code_blob(CodeBlob* cb) {
3096     nmethod* nm = cb->as_nmethod_or_null();
3097     if (nm != NULL) {
3098       _oop_cl->set_nmethod(nm);
3099       nm->oops_do(_oop_cl);
3100     }
3101   }
3102 };
3103 
3104 class YoungRefCounterClosure : public OopClosure {
3105   G1CollectedHeap* _g1h;
3106   int              _count;
3107  public:
3108   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3109   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3110   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3111 
3112   int count() { return _count; }
3113   void reset_count() { _count = 0; };
3114 };
3115 
3116 class VerifyKlassClosure: public KlassClosure {
3117   YoungRefCounterClosure _young_ref_counter_closure;
3118   OopClosure *_oop_closure;
3119  public:
3120   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3121   void do_klass(Klass* k) {
3122     k->oops_do(_oop_closure);
3123 
3124     _young_ref_counter_closure.reset_count();
3125     k->oops_do(&_young_ref_counter_closure);
3126     if (_young_ref_counter_closure.count() > 0) {
3127       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3128     }
3129   }
3130 };
3131 
3132 class VerifyLivenessOopClosure: public OopClosure {
3133   G1CollectedHeap* _g1h;
3134   VerifyOption _vo;
3135 public:
3136   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3137     _g1h(g1h), _vo(vo)
3138   { }
3139   void do_oop(narrowOop *p) { do_oop_work(p); }
3140   void do_oop(      oop *p) { do_oop_work(p); }
3141 
3142   template <class T> void do_oop_work(T *p) {
3143     oop obj = oopDesc::load_decode_heap_oop(p);
3144     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3145               "Dead object referenced by a not dead object");
3146   }
3147 };
3148 
3149 class VerifyObjsInRegionClosure: public ObjectClosure {
3150 private:
3151   G1CollectedHeap* _g1h;
3152   size_t _live_bytes;
3153   HeapRegion *_hr;
3154   VerifyOption _vo;
3155 public:
3156   // _vo == UsePrevMarking -> use "prev" marking information,
3157   // _vo == UseNextMarking -> use "next" marking information,
3158   // _vo == UseMarkWord    -> use mark word from object header.
3159   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3160     : _live_bytes(0), _hr(hr), _vo(vo) {
3161     _g1h = G1CollectedHeap::heap();
3162   }
3163   void do_object(oop o) {
3164     VerifyLivenessOopClosure isLive(_g1h, _vo);
3165     assert(o != NULL, "Huh?");
3166     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3167       // If the object is alive according to the mark word,
3168       // then verify that the marking information agrees.
3169       // Note we can't verify the contra-positive of the
3170       // above: if the object is dead (according to the mark
3171       // word), it may not be marked, or may have been marked
3172       // but has since became dead, or may have been allocated
3173       // since the last marking.
3174       if (_vo == VerifyOption_G1UseMarkWord) {
3175         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3176       }
3177 
3178       o->oop_iterate_no_header(&isLive);
3179       if (!_hr->obj_allocated_since_prev_marking(o)) {
3180         size_t obj_size = o->size();    // Make sure we don't overflow
3181         _live_bytes += (obj_size * HeapWordSize);
3182       }
3183     }
3184   }
3185   size_t live_bytes() { return _live_bytes; }
3186 };
3187 
3188 class VerifyArchiveOopClosure: public OopClosure {
3189 public:
3190   VerifyArchiveOopClosure(HeapRegion *hr) { }
3191   void do_oop(narrowOop *p) { do_oop_work(p); }
3192   void do_oop(      oop *p) { do_oop_work(p); }
3193 
3194   template <class T> void do_oop_work(T *p) {
3195     oop obj = oopDesc::load_decode_heap_oop(p);
3196     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3197               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3198                       p2i(p), p2i(obj)));
3199   }
3200 };
3201 
3202 class VerifyArchiveRegionClosure: public ObjectClosure {
3203 public:
3204   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3205   // Verify that all object pointers are to archive regions.
3206   void do_object(oop o) {
3207     VerifyArchiveOopClosure checkOop(NULL);
3208     assert(o != NULL, "Should not be here for NULL oops");
3209     o->oop_iterate_no_header(&checkOop);
3210   }
3211 };
3212 
3213 class VerifyRegionClosure: public HeapRegionClosure {
3214 private:
3215   bool             _par;
3216   VerifyOption     _vo;
3217   bool             _failures;
3218 public:
3219   // _vo == UsePrevMarking -> use "prev" marking information,
3220   // _vo == UseNextMarking -> use "next" marking information,
3221   // _vo == UseMarkWord    -> use mark word from object header.
3222   VerifyRegionClosure(bool par, VerifyOption vo)
3223     : _par(par),
3224       _vo(vo),
3225       _failures(false) {}
3226 
3227   bool failures() {
3228     return _failures;
3229   }
3230 
3231   bool doHeapRegion(HeapRegion* r) {
3232     // For archive regions, verify there are no heap pointers to
3233     // non-pinned regions. For all others, verify liveness info.
3234     if (r->is_archive()) {
3235       VerifyArchiveRegionClosure verify_oop_pointers(r);
3236       r->object_iterate(&verify_oop_pointers);
3237       return true;
3238     }
3239     if (!r->is_continues_humongous()) {
3240       bool failures = false;
3241       r->verify(_vo, &failures);
3242       if (failures) {
3243         _failures = true;
3244       } else {
3245         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3246         r->object_iterate(&not_dead_yet_cl);
3247         if (_vo != VerifyOption_G1UseNextMarking) {
3248           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3249             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3250                                    "max_live_bytes " SIZE_FORMAT " "
3251                                    "< calculated " SIZE_FORMAT,
3252                                    p2i(r->bottom()), p2i(r->end()),
3253                                    r->max_live_bytes(),
3254                                  not_dead_yet_cl.live_bytes());
3255             _failures = true;
3256           }
3257         } else {
3258           // When vo == UseNextMarking we cannot currently do a sanity
3259           // check on the live bytes as the calculation has not been
3260           // finalized yet.
3261         }
3262       }
3263     }
3264     return false; // stop the region iteration if we hit a failure
3265   }
3266 };
3267 
3268 // This is the task used for parallel verification of the heap regions
3269 
3270 class G1ParVerifyTask: public AbstractGangTask {
3271 private:
3272   G1CollectedHeap*  _g1h;
3273   VerifyOption      _vo;
3274   bool              _failures;
3275   HeapRegionClaimer _hrclaimer;
3276 
3277 public:
3278   // _vo == UsePrevMarking -> use "prev" marking information,
3279   // _vo == UseNextMarking -> use "next" marking information,
3280   // _vo == UseMarkWord    -> use mark word from object header.
3281   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3282       AbstractGangTask("Parallel verify task"),
3283       _g1h(g1h),
3284       _vo(vo),
3285       _failures(false),
3286       _hrclaimer(g1h->workers()->active_workers()) {}
3287 
3288   bool failures() {
3289     return _failures;
3290   }
3291 
3292   void work(uint worker_id) {
3293     HandleMark hm;
3294     VerifyRegionClosure blk(true, _vo);
3295     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3296     if (blk.failures()) {
3297       _failures = true;
3298     }
3299   }
3300 };
3301 
3302 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3303   if (SafepointSynchronize::is_at_safepoint()) {
3304     assert(Thread::current()->is_VM_thread(),
3305            "Expected to be executed serially by the VM thread at this point");
3306 
3307     if (!silent) { gclog_or_tty->print("Roots "); }
3308     VerifyRootsClosure rootsCl(vo);
3309     VerifyKlassClosure klassCl(this, &rootsCl);
3310     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3311 
3312     // We apply the relevant closures to all the oops in the
3313     // system dictionary, class loader data graph, the string table
3314     // and the nmethods in the code cache.
3315     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3316     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3317 
3318     {
3319       G1RootProcessor root_processor(this, 1);
3320       root_processor.process_all_roots(&rootsCl,
3321                                        &cldCl,
3322                                        &blobsCl);
3323     }
3324 
3325     bool failures = rootsCl.failures() || codeRootsCl.failures();
3326 
3327     if (vo != VerifyOption_G1UseMarkWord) {
3328       // If we're verifying during a full GC then the region sets
3329       // will have been torn down at the start of the GC. Therefore
3330       // verifying the region sets will fail. So we only verify
3331       // the region sets when not in a full GC.
3332       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3333       verify_region_sets();
3334     }
3335 
3336     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3337     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3338 
3339       G1ParVerifyTask task(this, vo);
3340       workers()->run_task(&task);
3341       if (task.failures()) {
3342         failures = true;
3343       }
3344 
3345     } else {
3346       VerifyRegionClosure blk(false, vo);
3347       heap_region_iterate(&blk);
3348       if (blk.failures()) {
3349         failures = true;
3350       }
3351     }
3352 
3353     if (G1StringDedup::is_enabled()) {
3354       if (!silent) gclog_or_tty->print("StrDedup ");
3355       G1StringDedup::verify();
3356     }
3357 
3358     if (failures) {
3359       gclog_or_tty->print_cr("Heap:");
3360       // It helps to have the per-region information in the output to
3361       // help us track down what went wrong. This is why we call
3362       // print_extended_on() instead of print_on().
3363       print_extended_on(gclog_or_tty);
3364       gclog_or_tty->cr();
3365       gclog_or_tty->flush();
3366     }
3367     guarantee(!failures, "there should not have been any failures");
3368   } else {
3369     if (!silent) {
3370       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3371       if (G1StringDedup::is_enabled()) {
3372         gclog_or_tty->print(", StrDedup");
3373       }
3374       gclog_or_tty->print(") ");
3375     }
3376   }
3377 }
3378 
3379 void G1CollectedHeap::verify(bool silent) {
3380   verify(silent, VerifyOption_G1UsePrevMarking);
3381 }
3382 
3383 double G1CollectedHeap::verify(bool guard, const char* msg) {
3384   double verify_time_ms = 0.0;
3385 
3386   if (guard && total_collections() >= VerifyGCStartAt) {
3387     double verify_start = os::elapsedTime();
3388     HandleMark hm;  // Discard invalid handles created during verification
3389     prepare_for_verify();
3390     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3391     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3392   }
3393 
3394   return verify_time_ms;
3395 }
3396 
3397 void G1CollectedHeap::verify_before_gc() {
3398   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3399   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3400 }
3401 
3402 void G1CollectedHeap::verify_after_gc() {
3403   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3404   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3405 }
3406 
3407 class PrintRegionClosure: public HeapRegionClosure {
3408   outputStream* _st;
3409 public:
3410   PrintRegionClosure(outputStream* st) : _st(st) {}
3411   bool doHeapRegion(HeapRegion* r) {
3412     r->print_on(_st);
3413     return false;
3414   }
3415 };
3416 
3417 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3418                                        const HeapRegion* hr,
3419                                        const VerifyOption vo) const {
3420   switch (vo) {
3421   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3422   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3423   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3424   default:                            ShouldNotReachHere();
3425   }
3426   return false; // keep some compilers happy
3427 }
3428 
3429 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3430                                        const VerifyOption vo) const {
3431   switch (vo) {
3432   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3433   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3434   case VerifyOption_G1UseMarkWord: {
3435     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3436     return !obj->is_gc_marked() && !hr->is_archive();
3437   }
3438   default:                            ShouldNotReachHere();
3439   }
3440   return false; // keep some compilers happy
3441 }
3442 
3443 void G1CollectedHeap::print_on(outputStream* st) const {
3444   st->print(" %-20s", "garbage-first heap");
3445   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3446             capacity()/K, used_unlocked()/K);
3447   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3448             p2i(_hrm.reserved().start()),
3449             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3450             p2i(_hrm.reserved().end()));
3451   st->cr();
3452   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3453   uint young_regions = _young_list->length();
3454   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3455             (size_t) young_regions * HeapRegion::GrainBytes / K);
3456   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3457   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3458             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3459   st->cr();
3460   MetaspaceAux::print_on(st);
3461 }
3462 
3463 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3464   print_on(st);
3465 
3466   // Print the per-region information.
3467   st->cr();
3468   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3469                "HS=humongous(starts), HC=humongous(continues), "
3470                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3471                "PTAMS=previous top-at-mark-start, "
3472                "NTAMS=next top-at-mark-start)");
3473   PrintRegionClosure blk(st);
3474   heap_region_iterate(&blk);
3475 }
3476 
3477 void G1CollectedHeap::print_on_error(outputStream* st) const {
3478   this->CollectedHeap::print_on_error(st);
3479 
3480   if (_cm != NULL) {
3481     st->cr();
3482     _cm->print_on_error(st);
3483   }
3484 }
3485 
3486 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3487   workers()->print_worker_threads_on(st);
3488   _cmThread->print_on(st);
3489   st->cr();
3490   _cm->print_worker_threads_on(st);
3491   _cg1r->print_worker_threads_on(st);
3492   if (G1StringDedup::is_enabled()) {
3493     G1StringDedup::print_worker_threads_on(st);
3494   }
3495 }
3496 
3497 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3498   workers()->threads_do(tc);
3499   tc->do_thread(_cmThread);
3500   _cg1r->threads_do(tc);
3501   if (G1StringDedup::is_enabled()) {
3502     G1StringDedup::threads_do(tc);
3503   }
3504 }
3505 
3506 void G1CollectedHeap::print_tracing_info() const {
3507   // We'll overload this to mean "trace GC pause statistics."
3508   if (TraceYoungGenTime || TraceOldGenTime) {
3509     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3510     // to that.
3511     g1_policy()->print_tracing_info();
3512   }
3513   if (G1SummarizeRSetStats) {
3514     g1_rem_set()->print_summary_info();
3515   }
3516   if (G1SummarizeConcMark) {
3517     concurrent_mark()->print_summary_info();
3518   }
3519   g1_policy()->print_yg_surv_rate_info();
3520 }
3521 
3522 #ifndef PRODUCT
3523 // Helpful for debugging RSet issues.
3524 
3525 class PrintRSetsClosure : public HeapRegionClosure {
3526 private:
3527   const char* _msg;
3528   size_t _occupied_sum;
3529 
3530 public:
3531   bool doHeapRegion(HeapRegion* r) {
3532     HeapRegionRemSet* hrrs = r->rem_set();
3533     size_t occupied = hrrs->occupied();
3534     _occupied_sum += occupied;
3535 
3536     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3537                            HR_FORMAT_PARAMS(r));
3538     if (occupied == 0) {
3539       gclog_or_tty->print_cr("  RSet is empty");
3540     } else {
3541       hrrs->print();
3542     }
3543     gclog_or_tty->print_cr("----------");
3544     return false;
3545   }
3546 
3547   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3548     gclog_or_tty->cr();
3549     gclog_or_tty->print_cr("========================================");
3550     gclog_or_tty->print_cr("%s", msg);
3551     gclog_or_tty->cr();
3552   }
3553 
3554   ~PrintRSetsClosure() {
3555     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3556     gclog_or_tty->print_cr("========================================");
3557     gclog_or_tty->cr();
3558   }
3559 };
3560 
3561 void G1CollectedHeap::print_cset_rsets() {
3562   PrintRSetsClosure cl("Printing CSet RSets");
3563   collection_set_iterate(&cl);
3564 }
3565 
3566 void G1CollectedHeap::print_all_rsets() {
3567   PrintRSetsClosure cl("Printing All RSets");;
3568   heap_region_iterate(&cl);
3569 }
3570 #endif // PRODUCT
3571 
3572 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3573   YoungList* young_list = heap()->young_list();
3574 
3575   size_t eden_used_bytes = young_list->eden_used_bytes();
3576   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3577 
3578   size_t eden_capacity_bytes =
3579     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3580 
3581   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3582   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3583 }
3584 
3585 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3586   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3587                        stats->unused(), stats->used(), stats->region_end_waste(),
3588                        stats->regions_filled(), stats->direct_allocated(),
3589                        stats->failure_used(), stats->failure_waste());
3590 }
3591 
3592 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3593   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3594   gc_tracer->report_gc_heap_summary(when, heap_summary);
3595 
3596   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3597   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3598 }
3599 
3600 
3601 G1CollectedHeap* G1CollectedHeap::heap() {
3602   CollectedHeap* heap = Universe::heap();
3603   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3604   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3605   return (G1CollectedHeap*)heap;
3606 }
3607 
3608 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3609   // always_do_update_barrier = false;
3610   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3611   // Fill TLAB's and such
3612   accumulate_statistics_all_tlabs();
3613   ensure_parsability(true);
3614 
3615   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3616       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3617     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3618   }
3619 }
3620 
3621 void G1CollectedHeap::gc_epilogue(bool full) {
3622 
3623   if (G1SummarizeRSetStats &&
3624       (G1SummarizeRSetStatsPeriod > 0) &&
3625       // we are at the end of the GC. Total collections has already been increased.
3626       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3627     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3628   }
3629 
3630   // FIXME: what is this about?
3631   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3632   // is set.
3633   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3634                         "derived pointer present"));
3635   // always_do_update_barrier = true;
3636 
3637   resize_all_tlabs();
3638   allocation_context_stats().update(full);
3639 
3640   // We have just completed a GC. Update the soft reference
3641   // policy with the new heap occupancy
3642   Universe::update_heap_info_at_gc();
3643 }
3644 
3645 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3646                                                uint gc_count_before,
3647                                                bool* succeeded,
3648                                                GCCause::Cause gc_cause) {
3649   assert_heap_not_locked_and_not_at_safepoint();
3650   g1_policy()->record_stop_world_start();
3651   VM_G1IncCollectionPause op(gc_count_before,
3652                              word_size,
3653                              false, /* should_initiate_conc_mark */
3654                              g1_policy()->max_pause_time_ms(),
3655                              gc_cause);
3656 
3657   op.set_allocation_context(AllocationContext::current());
3658   VMThread::execute(&op);
3659 
3660   HeapWord* result = op.result();
3661   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3662   assert(result == NULL || ret_succeeded,
3663          "the result should be NULL if the VM did not succeed");
3664   *succeeded = ret_succeeded;
3665 
3666   assert_heap_not_locked();
3667   return result;
3668 }
3669 
3670 void
3671 G1CollectedHeap::doConcurrentMark() {
3672   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3673   if (!_cmThread->in_progress()) {
3674     _cmThread->set_started();
3675     CGC_lock->notify();
3676   }
3677 }
3678 
3679 size_t G1CollectedHeap::pending_card_num() {
3680   size_t extra_cards = 0;
3681   JavaThread *curr = Threads::first();
3682   while (curr != NULL) {
3683     DirtyCardQueue& dcq = curr->dirty_card_queue();
3684     extra_cards += dcq.size();
3685     curr = curr->next();
3686   }
3687   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3688   size_t buffer_size = dcqs.buffer_size();
3689   size_t buffer_num = dcqs.completed_buffers_num();
3690 
3691   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3692   // in bytes - not the number of 'entries'. We need to convert
3693   // into a number of cards.
3694   return (buffer_size * buffer_num + extra_cards) / oopSize;
3695 }
3696 
3697 size_t G1CollectedHeap::cards_scanned() {
3698   return g1_rem_set()->cardsScanned();
3699 }
3700 
3701 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3702  private:
3703   size_t _total_humongous;
3704   size_t _candidate_humongous;
3705 
3706   DirtyCardQueue _dcq;
3707 
3708   // We don't nominate objects with many remembered set entries, on
3709   // the assumption that such objects are likely still live.
3710   bool is_remset_small(HeapRegion* region) const {
3711     HeapRegionRemSet* const rset = region->rem_set();
3712     return G1EagerReclaimHumongousObjectsWithStaleRefs
3713       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3714       : rset->is_empty();
3715   }
3716 
3717   bool is_typeArray_region(HeapRegion* region) const {
3718     return oop(region->bottom())->is_typeArray();
3719   }
3720 
3721   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3722     assert(region->is_starts_humongous(), "Must start a humongous object");
3723 
3724     // Candidate selection must satisfy the following constraints
3725     // while concurrent marking is in progress:
3726     //
3727     // * In order to maintain SATB invariants, an object must not be
3728     // reclaimed if it was allocated before the start of marking and
3729     // has not had its references scanned.  Such an object must have
3730     // its references (including type metadata) scanned to ensure no
3731     // live objects are missed by the marking process.  Objects
3732     // allocated after the start of concurrent marking don't need to
3733     // be scanned.
3734     //
3735     // * An object must not be reclaimed if it is on the concurrent
3736     // mark stack.  Objects allocated after the start of concurrent
3737     // marking are never pushed on the mark stack.
3738     //
3739     // Nominating only objects allocated after the start of concurrent
3740     // marking is sufficient to meet both constraints.  This may miss
3741     // some objects that satisfy the constraints, but the marking data
3742     // structures don't support efficiently performing the needed
3743     // additional tests or scrubbing of the mark stack.
3744     //
3745     // However, we presently only nominate is_typeArray() objects.
3746     // A humongous object containing references induces remembered
3747     // set entries on other regions.  In order to reclaim such an
3748     // object, those remembered sets would need to be cleaned up.
3749     //
3750     // We also treat is_typeArray() objects specially, allowing them
3751     // to be reclaimed even if allocated before the start of
3752     // concurrent mark.  For this we rely on mark stack insertion to
3753     // exclude is_typeArray() objects, preventing reclaiming an object
3754     // that is in the mark stack.  We also rely on the metadata for
3755     // such objects to be built-in and so ensured to be kept live.
3756     // Frequent allocation and drop of large binary blobs is an
3757     // important use case for eager reclaim, and this special handling
3758     // may reduce needed headroom.
3759 
3760     return is_typeArray_region(region) && is_remset_small(region);
3761   }
3762 
3763  public:
3764   RegisterHumongousWithInCSetFastTestClosure()
3765   : _total_humongous(0),
3766     _candidate_humongous(0),
3767     _dcq(&JavaThread::dirty_card_queue_set()) {
3768   }
3769 
3770   virtual bool doHeapRegion(HeapRegion* r) {
3771     if (!r->is_starts_humongous()) {
3772       return false;
3773     }
3774     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3775 
3776     bool is_candidate = humongous_region_is_candidate(g1h, r);
3777     uint rindex = r->hrm_index();
3778     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3779     if (is_candidate) {
3780       _candidate_humongous++;
3781       g1h->register_humongous_region_with_cset(rindex);
3782       // Is_candidate already filters out humongous object with large remembered sets.
3783       // If we have a humongous object with a few remembered sets, we simply flush these
3784       // remembered set entries into the DCQS. That will result in automatic
3785       // re-evaluation of their remembered set entries during the following evacuation
3786       // phase.
3787       if (!r->rem_set()->is_empty()) {
3788         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3789                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3790         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3791         HeapRegionRemSetIterator hrrs(r->rem_set());
3792         size_t card_index;
3793         while (hrrs.has_next(card_index)) {
3794           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3795           // The remembered set might contain references to already freed
3796           // regions. Filter out such entries to avoid failing card table
3797           // verification.
3798           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3799             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3800               *card_ptr = CardTableModRefBS::dirty_card_val();
3801               _dcq.enqueue(card_ptr);
3802             }
3803           }
3804         }
3805         r->rem_set()->clear_locked();
3806       }
3807       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3808     }
3809     _total_humongous++;
3810 
3811     return false;
3812   }
3813 
3814   size_t total_humongous() const { return _total_humongous; }
3815   size_t candidate_humongous() const { return _candidate_humongous; }
3816 
3817   void flush_rem_set_entries() { _dcq.flush(); }
3818 };
3819 
3820 void G1CollectedHeap::register_humongous_regions_with_cset() {
3821   if (!G1EagerReclaimHumongousObjects) {
3822     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3823     return;
3824   }
3825   double time = os::elapsed_counter();
3826 
3827   // Collect reclaim candidate information and register candidates with cset.
3828   RegisterHumongousWithInCSetFastTestClosure cl;
3829   heap_region_iterate(&cl);
3830 
3831   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3832   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3833                                                                   cl.total_humongous(),
3834                                                                   cl.candidate_humongous());
3835   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3836 
3837   // Finally flush all remembered set entries to re-check into the global DCQS.
3838   cl.flush_rem_set_entries();
3839 }
3840 
3841 void G1CollectedHeap::setup_surviving_young_words() {
3842   assert(_surviving_young_words == NULL, "pre-condition");
3843   uint array_length = g1_policy()->young_cset_region_length();
3844   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3845   if (_surviving_young_words == NULL) {
3846     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3847                           "Not enough space for young surv words summary.");
3848   }
3849   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3850 #ifdef ASSERT
3851   for (uint i = 0;  i < array_length; ++i) {
3852     assert( _surviving_young_words[i] == 0, "memset above" );
3853   }
3854 #endif // !ASSERT
3855 }
3856 
3857 void G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3858   assert_at_safepoint(true);
3859   uint array_length = g1_policy()->young_cset_region_length();
3860   for (uint i = 0; i < array_length; ++i) {
3861     _surviving_young_words[i] += surv_young_words[i];
3862   }
3863 }
3864 
3865 void G1CollectedHeap::cleanup_surviving_young_words() {
3866   guarantee( _surviving_young_words != NULL, "pre-condition" );
3867   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3868   _surviving_young_words = NULL;
3869 }
3870 
3871 #ifdef ASSERT
3872 class VerifyCSetClosure: public HeapRegionClosure {
3873 public:
3874   bool doHeapRegion(HeapRegion* hr) {
3875     // Here we check that the CSet region's RSet is ready for parallel
3876     // iteration. The fields that we'll verify are only manipulated
3877     // when the region is part of a CSet and is collected. Afterwards,
3878     // we reset these fields when we clear the region's RSet (when the
3879     // region is freed) so they are ready when the region is
3880     // re-allocated. The only exception to this is if there's an
3881     // evacuation failure and instead of freeing the region we leave
3882     // it in the heap. In that case, we reset these fields during
3883     // evacuation failure handling.
3884     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3885 
3886     // Here's a good place to add any other checks we'd like to
3887     // perform on CSet regions.
3888     return false;
3889   }
3890 };
3891 #endif // ASSERT
3892 
3893 uint G1CollectedHeap::num_task_queues() const {
3894   return _task_queues->size();
3895 }
3896 
3897 #if TASKQUEUE_STATS
3898 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3899   st->print_raw_cr("GC Task Stats");
3900   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3901   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3902 }
3903 
3904 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3905   print_taskqueue_stats_hdr(st);
3906 
3907   TaskQueueStats totals;
3908   const uint n = num_task_queues();
3909   for (uint i = 0; i < n; ++i) {
3910     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3911     totals += task_queue(i)->stats;
3912   }
3913   st->print_raw("tot "); totals.print(st); st->cr();
3914 
3915   DEBUG_ONLY(totals.verify());
3916 }
3917 
3918 void G1CollectedHeap::reset_taskqueue_stats() {
3919   const uint n = num_task_queues();
3920   for (uint i = 0; i < n; ++i) {
3921     task_queue(i)->stats.reset();
3922   }
3923 }
3924 #endif // TASKQUEUE_STATS
3925 
3926 void G1CollectedHeap::log_gc_header() {
3927   if (!G1Log::fine()) {
3928     return;
3929   }
3930 
3931   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3932 
3933   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3934     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3935     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3936 
3937   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3938 }
3939 
3940 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3941   if (!G1Log::fine()) {
3942     return;
3943   }
3944 
3945   if (G1Log::finer()) {
3946     if (evacuation_failed()) {
3947       gclog_or_tty->print(" (to-space exhausted)");
3948     }
3949     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3950     g1_policy()->phase_times()->note_gc_end();
3951     g1_policy()->phase_times()->print(pause_time_sec);
3952     g1_policy()->print_detailed_heap_transition();
3953   } else {
3954     if (evacuation_failed()) {
3955       gclog_or_tty->print("--");
3956     }
3957     g1_policy()->print_heap_transition();
3958     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3959   }
3960   gclog_or_tty->flush();
3961 }
3962 
3963 void G1CollectedHeap::wait_for_root_region_scanning() {
3964   double scan_wait_start = os::elapsedTime();
3965   // We have to wait until the CM threads finish scanning the
3966   // root regions as it's the only way to ensure that all the
3967   // objects on them have been correctly scanned before we start
3968   // moving them during the GC.
3969   bool waited = _cm->root_regions()->wait_until_scan_finished();
3970   double wait_time_ms = 0.0;
3971   if (waited) {
3972     double scan_wait_end = os::elapsedTime();
3973     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3974   }
3975   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3976 }
3977 
3978 bool
3979 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3980   assert_at_safepoint(true /* should_be_vm_thread */);
3981   guarantee(!is_gc_active(), "collection is not reentrant");
3982 
3983   if (GC_locker::check_active_before_gc()) {
3984     return false;
3985   }
3986 
3987   _gc_timer_stw->register_gc_start();
3988 
3989   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3990 
3991   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3992   ResourceMark rm;
3993 
3994   wait_for_root_region_scanning();
3995 
3996   G1Log::update_level();
3997   print_heap_before_gc();
3998   trace_heap_before_gc(_gc_tracer_stw);
3999 
4000   verify_region_sets_optional();
4001   verify_dirty_young_regions();
4002 
4003   // This call will decide whether this pause is an initial-mark
4004   // pause. If it is, during_initial_mark_pause() will return true
4005   // for the duration of this pause.
4006   g1_policy()->decide_on_conc_mark_initiation();
4007 
4008   // We do not allow initial-mark to be piggy-backed on a mixed GC.
4009   assert(!collector_state()->during_initial_mark_pause() ||
4010           collector_state()->gcs_are_young(), "sanity");
4011 
4012   // We also do not allow mixed GCs during marking.
4013   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
4014 
4015   // Record whether this pause is an initial mark. When the current
4016   // thread has completed its logging output and it's safe to signal
4017   // the CM thread, the flag's value in the policy has been reset.
4018   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
4019 
4020   // Inner scope for scope based logging, timers, and stats collection
4021   {
4022     EvacuationInfo evacuation_info;
4023 
4024     if (collector_state()->during_initial_mark_pause()) {
4025       // We are about to start a marking cycle, so we increment the
4026       // full collection counter.
4027       increment_old_marking_cycles_started();
4028       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
4029     }
4030 
4031     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
4032 
4033     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
4034 
4035     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
4036                                                                   workers()->active_workers(),
4037                                                                   Threads::number_of_non_daemon_threads());
4038     workers()->set_active_workers(active_workers);
4039 
4040     double pause_start_sec = os::elapsedTime();
4041     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
4042     log_gc_header();
4043 
4044     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
4045     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
4046 
4047     // If the secondary_free_list is not empty, append it to the
4048     // free_list. No need to wait for the cleanup operation to finish;
4049     // the region allocation code will check the secondary_free_list
4050     // and wait if necessary. If the G1StressConcRegionFreeing flag is
4051     // set, skip this step so that the region allocation code has to
4052     // get entries from the secondary_free_list.
4053     if (!G1StressConcRegionFreeing) {
4054       append_secondary_free_list_if_not_empty_with_lock();
4055     }
4056 
4057     assert(check_young_list_well_formed(), "young list should be well formed");
4058 
4059     // Don't dynamically change the number of GC threads this early.  A value of
4060     // 0 is used to indicate serial work.  When parallel work is done,
4061     // it will be set.
4062 
4063     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
4064       IsGCActiveMark x;
4065 
4066       gc_prologue(false);
4067       increment_total_collections(false /* full gc */);
4068       increment_gc_time_stamp();
4069 
4070       verify_before_gc();
4071 
4072       check_bitmaps("GC Start");
4073 
4074       COMPILER2_PRESENT(DerivedPointerTable::clear());
4075 
4076       // Please see comment in g1CollectedHeap.hpp and
4077       // G1CollectedHeap::ref_processing_init() to see how
4078       // reference processing currently works in G1.
4079 
4080       // Enable discovery in the STW reference processor
4081       ref_processor_stw()->enable_discovery();
4082 
4083       {
4084         // We want to temporarily turn off discovery by the
4085         // CM ref processor, if necessary, and turn it back on
4086         // on again later if we do. Using a scoped
4087         // NoRefDiscovery object will do this.
4088         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4089 
4090         // Forget the current alloc region (we might even choose it to be part
4091         // of the collection set!).
4092         _allocator->release_mutator_alloc_region();
4093 
4094         // We should call this after we retire the mutator alloc
4095         // region(s) so that all the ALLOC / RETIRE events are generated
4096         // before the start GC event.
4097         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4098 
4099         // This timing is only used by the ergonomics to handle our pause target.
4100         // It is unclear why this should not include the full pause. We will
4101         // investigate this in CR 7178365.
4102         //
4103         // Preserving the old comment here if that helps the investigation:
4104         //
4105         // The elapsed time induced by the start time below deliberately elides
4106         // the possible verification above.
4107         double sample_start_time_sec = os::elapsedTime();
4108 
4109 #if YOUNG_LIST_VERBOSE
4110         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4111         _young_list->print();
4112         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4113 #endif // YOUNG_LIST_VERBOSE
4114 
4115         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4116 
4117 #if YOUNG_LIST_VERBOSE
4118         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4119         _young_list->print();
4120 #endif // YOUNG_LIST_VERBOSE
4121 
4122         if (collector_state()->during_initial_mark_pause()) {
4123           concurrent_mark()->checkpointRootsInitialPre();
4124         }
4125 
4126 #if YOUNG_LIST_VERBOSE
4127         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4128         _young_list->print();
4129         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4130 #endif // YOUNG_LIST_VERBOSE
4131 
4132         g1_policy()->finalize_cset(target_pause_time_ms);
4133 
4134         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
4135 
4136         register_humongous_regions_with_cset();
4137 
4138         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4139 
4140         _cm->note_start_of_gc();
4141         // We call this after finalize_cset() to
4142         // ensure that the CSet has been finalized.
4143         _cm->verify_no_cset_oops();
4144 
4145         if (_hr_printer.is_active()) {
4146           HeapRegion* hr = g1_policy()->collection_set();
4147           while (hr != NULL) {
4148             _hr_printer.cset(hr);
4149             hr = hr->next_in_collection_set();
4150           }
4151         }
4152 
4153 #ifdef ASSERT
4154         VerifyCSetClosure cl;
4155         collection_set_iterate(&cl);
4156 #endif // ASSERT
4157 
4158         setup_surviving_young_words();
4159 
4160         // Initialize the GC alloc regions.
4161         _allocator->init_gc_alloc_regions(evacuation_info);
4162 
4163         // Actually do the work...
4164         evacuate_collection_set(evacuation_info);
4165 
4166         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4167 
4168         eagerly_reclaim_humongous_regions();
4169 
4170         g1_policy()->clear_collection_set();
4171 
4172         cleanup_surviving_young_words();
4173 
4174         // Start a new incremental collection set for the next pause.
4175         g1_policy()->start_incremental_cset_building();
4176 
4177         clear_cset_fast_test();
4178 
4179         _young_list->reset_sampled_info();
4180 
4181         // Don't check the whole heap at this point as the
4182         // GC alloc regions from this pause have been tagged
4183         // as survivors and moved on to the survivor list.
4184         // Survivor regions will fail the !is_young() check.
4185         assert(check_young_list_empty(false /* check_heap */),
4186           "young list should be empty");
4187 
4188 #if YOUNG_LIST_VERBOSE
4189         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4190         _young_list->print();
4191 #endif // YOUNG_LIST_VERBOSE
4192 
4193         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4194                                              _young_list->first_survivor_region(),
4195                                              _young_list->last_survivor_region());
4196 
4197         _young_list->reset_auxilary_lists();
4198 
4199         if (evacuation_failed()) {
4200           set_used(recalculate_used());
4201           if (_archive_allocator != NULL) {
4202             _archive_allocator->clear_used();
4203           }
4204           for (uint i = 0; i < ParallelGCThreads; i++) {
4205             if (_evacuation_failed_info_array[i].has_failed()) {
4206               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4207             }
4208           }
4209         } else {
4210           // The "used" of the the collection set have already been subtracted
4211           // when they were freed.  Add in the bytes evacuated.
4212           increase_used(g1_policy()->bytes_copied_during_gc());
4213         }
4214 
4215         if (collector_state()->during_initial_mark_pause()) {
4216           // We have to do this before we notify the CM threads that
4217           // they can start working to make sure that all the
4218           // appropriate initialization is done on the CM object.
4219           concurrent_mark()->checkpointRootsInitialPost();
4220           collector_state()->set_mark_in_progress(true);
4221           // Note that we don't actually trigger the CM thread at
4222           // this point. We do that later when we're sure that
4223           // the current thread has completed its logging output.
4224         }
4225 
4226         allocate_dummy_regions();
4227 
4228 #if YOUNG_LIST_VERBOSE
4229         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4230         _young_list->print();
4231         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4232 #endif // YOUNG_LIST_VERBOSE
4233 
4234         _allocator->init_mutator_alloc_region();
4235 
4236         {
4237           size_t expand_bytes = g1_policy()->expansion_amount();
4238           if (expand_bytes > 0) {
4239             size_t bytes_before = capacity();
4240             // No need for an ergo verbose message here,
4241             // expansion_amount() does this when it returns a value > 0.
4242             if (!expand(expand_bytes)) {
4243               // We failed to expand the heap. Cannot do anything about it.
4244             }
4245           }
4246         }
4247 
4248         // We redo the verification but now wrt to the new CSet which
4249         // has just got initialized after the previous CSet was freed.
4250         _cm->verify_no_cset_oops();
4251         _cm->note_end_of_gc();
4252 
4253         // This timing is only used by the ergonomics to handle our pause target.
4254         // It is unclear why this should not include the full pause. We will
4255         // investigate this in CR 7178365.
4256         double sample_end_time_sec = os::elapsedTime();
4257         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4258         g1_policy()->record_collection_pause_end(pause_time_ms);
4259 
4260         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
4261         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
4262 
4263         MemoryService::track_memory_usage();
4264 
4265         // In prepare_for_verify() below we'll need to scan the deferred
4266         // update buffers to bring the RSets up-to-date if
4267         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4268         // the update buffers we'll probably need to scan cards on the
4269         // regions we just allocated to (i.e., the GC alloc
4270         // regions). However, during the last GC we called
4271         // set_saved_mark() on all the GC alloc regions, so card
4272         // scanning might skip the [saved_mark_word()...top()] area of
4273         // those regions (i.e., the area we allocated objects into
4274         // during the last GC). But it shouldn't. Given that
4275         // saved_mark_word() is conditional on whether the GC time stamp
4276         // on the region is current or not, by incrementing the GC time
4277         // stamp here we invalidate all the GC time stamps on all the
4278         // regions and saved_mark_word() will simply return top() for
4279         // all the regions. This is a nicer way of ensuring this rather
4280         // than iterating over the regions and fixing them. In fact, the
4281         // GC time stamp increment here also ensures that
4282         // saved_mark_word() will return top() between pauses, i.e.,
4283         // during concurrent refinement. So we don't need the
4284         // is_gc_active() check to decided which top to use when
4285         // scanning cards (see CR 7039627).
4286         increment_gc_time_stamp();
4287 
4288         verify_after_gc();
4289         check_bitmaps("GC End");
4290 
4291         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4292         ref_processor_stw()->verify_no_references_recorded();
4293 
4294         // CM reference discovery will be re-enabled if necessary.
4295       }
4296 
4297       // We should do this after we potentially expand the heap so
4298       // that all the COMMIT events are generated before the end GC
4299       // event, and after we retire the GC alloc regions so that all
4300       // RETIRE events are generated before the end GC event.
4301       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4302 
4303 #ifdef TRACESPINNING
4304       ParallelTaskTerminator::print_termination_counts();
4305 #endif
4306 
4307       gc_epilogue(false);
4308     }
4309 
4310     // Print the remainder of the GC log output.
4311     log_gc_footer(os::elapsedTime() - pause_start_sec);
4312 
4313     // It is not yet to safe to tell the concurrent mark to
4314     // start as we have some optional output below. We don't want the
4315     // output from the concurrent mark thread interfering with this
4316     // logging output either.
4317 
4318     _hrm.verify_optional();
4319     verify_region_sets_optional();
4320 
4321     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4322     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4323 
4324     print_heap_after_gc();
4325     trace_heap_after_gc(_gc_tracer_stw);
4326 
4327     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4328     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4329     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4330     // before any GC notifications are raised.
4331     g1mm()->update_sizes();
4332 
4333     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4334     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4335     _gc_timer_stw->register_gc_end();
4336     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4337   }
4338   // It should now be safe to tell the concurrent mark thread to start
4339   // without its logging output interfering with the logging output
4340   // that came from the pause.
4341 
4342   if (should_start_conc_mark) {
4343     // CAUTION: after the doConcurrentMark() call below,
4344     // the concurrent marking thread(s) could be running
4345     // concurrently with us. Make sure that anything after
4346     // this point does not assume that we are the only GC thread
4347     // running. Note: of course, the actual marking work will
4348     // not start until the safepoint itself is released in
4349     // SuspendibleThreadSet::desynchronize().
4350     doConcurrentMark();
4351   }
4352 
4353   return true;
4354 }
4355 
4356 void G1CollectedHeap::remove_self_forwarding_pointers() {
4357   double remove_self_forwards_start = os::elapsedTime();
4358 
4359   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4360   workers()->run_task(&rsfp_task);
4361 
4362   // Now restore saved marks, if any.
4363   for (uint i = 0; i < ParallelGCThreads; i++) {
4364     OopAndMarkOopStack& cur = _preserved_objs[i];
4365     while (!cur.is_empty()) {
4366       OopAndMarkOop elem = cur.pop();
4367       elem.set_mark();
4368     }
4369     cur.clear(true);
4370   }
4371 
4372   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4373 }
4374 
4375 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4376   if (!_evacuation_failed) {
4377     _evacuation_failed = true;
4378   }
4379 
4380   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4381 
4382   // We want to call the "for_promotion_failure" version only in the
4383   // case of a promotion failure.
4384   if (m->must_be_preserved_for_promotion_failure(obj)) {
4385     OopAndMarkOop elem(obj, m);
4386     _preserved_objs[worker_id].push(elem);
4387   }
4388 }
4389 
4390 void G1ParCopyHelper::mark_object(oop obj) {
4391   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4392 
4393   // We know that the object is not moving so it's safe to read its size.
4394   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4395 }
4396 
4397 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4398   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4399   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4400   assert(from_obj != to_obj, "should not be self-forwarded");
4401 
4402   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4403   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4404 
4405   // The object might be in the process of being copied by another
4406   // worker so we cannot trust that its to-space image is
4407   // well-formed. So we have to read its size from its from-space
4408   // image which we know should not be changing.
4409   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4410 }
4411 
4412 template <class T>
4413 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4414   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4415     _scanned_klass->record_modified_oops();
4416   }
4417 }
4418 
4419 template <G1Barrier barrier, G1Mark do_mark_object>
4420 template <class T>
4421 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4422   T heap_oop = oopDesc::load_heap_oop(p);
4423 
4424   if (oopDesc::is_null(heap_oop)) {
4425     return;
4426   }
4427 
4428   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4429 
4430   assert(_worker_id == _par_scan_state->worker_id(), "sanity");
4431 
4432   const InCSetState state = _g1->in_cset_state(obj);
4433   if (state.is_in_cset()) {
4434     oop forwardee;
4435     markOop m = obj->mark();
4436     if (m->is_marked()) {
4437       forwardee = (oop) m->decode_pointer();
4438     } else {
4439       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4440     }
4441     assert(forwardee != NULL, "forwardee should not be NULL");
4442     oopDesc::encode_store_heap_oop(p, forwardee);
4443     if (do_mark_object != G1MarkNone && forwardee != obj) {
4444       // If the object is self-forwarded we don't need to explicitly
4445       // mark it, the evacuation failure protocol will do so.
4446       mark_forwarded_object(obj, forwardee);
4447     }
4448 
4449     if (barrier == G1BarrierKlass) {
4450       do_klass_barrier(p, forwardee);
4451     }
4452   } else {
4453     if (state.is_humongous()) {
4454       _g1->set_humongous_is_live(obj);
4455     }
4456     // The object is not in collection set. If we're a root scanning
4457     // closure during an initial mark pause then attempt to mark the object.
4458     if (do_mark_object == G1MarkFromRoot) {
4459       mark_object(obj);
4460     }
4461   }
4462 }
4463 
4464 class G1ParEvacuateFollowersClosure : public VoidClosure {
4465 private:
4466   double _start_term;
4467   double _term_time;
4468   size_t _term_attempts;
4469 
4470   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4471   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4472 protected:
4473   G1CollectedHeap*              _g1h;
4474   G1ParScanThreadState*         _par_scan_state;
4475   RefToScanQueueSet*            _queues;
4476   ParallelTaskTerminator*       _terminator;
4477 
4478   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4479   RefToScanQueueSet*      queues()         { return _queues; }
4480   ParallelTaskTerminator* terminator()     { return _terminator; }
4481 
4482 public:
4483   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4484                                 G1ParScanThreadState* par_scan_state,
4485                                 RefToScanQueueSet* queues,
4486                                 ParallelTaskTerminator* terminator)
4487     : _g1h(g1h), _par_scan_state(par_scan_state),
4488       _queues(queues), _terminator(terminator),
4489       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4490 
4491   void do_void();
4492 
4493   double term_time() const { return _term_time; }
4494   size_t term_attempts() const { return _term_attempts; }
4495 
4496 private:
4497   inline bool offer_termination();
4498 };
4499 
4500 bool G1ParEvacuateFollowersClosure::offer_termination() {
4501   G1ParScanThreadState* const pss = par_scan_state();
4502   start_term_time();
4503   const bool res = terminator()->offer_termination();
4504   end_term_time();
4505   return res;
4506 }
4507 
4508 void G1ParEvacuateFollowersClosure::do_void() {
4509   G1ParScanThreadState* const pss = par_scan_state();
4510   pss->trim_queue();
4511   do {
4512     pss->steal_and_trim_queue(queues());
4513   } while (!offer_termination());
4514 }
4515 
4516 class G1KlassScanClosure : public KlassClosure {
4517  G1ParCopyHelper* _closure;
4518  bool             _process_only_dirty;
4519  int              _count;
4520  public:
4521   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4522       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4523   void do_klass(Klass* klass) {
4524     // If the klass has not been dirtied we know that there's
4525     // no references into  the young gen and we can skip it.
4526    if (!_process_only_dirty || klass->has_modified_oops()) {
4527       // Clean the klass since we're going to scavenge all the metadata.
4528       klass->clear_modified_oops();
4529 
4530       // Tell the closure that this klass is the Klass to scavenge
4531       // and is the one to dirty if oops are left pointing into the young gen.
4532       _closure->set_scanned_klass(klass);
4533 
4534       klass->oops_do(_closure);
4535 
4536       _closure->set_scanned_klass(NULL);
4537     }
4538     _count++;
4539   }
4540 };
4541 
4542 class G1ParTask : public AbstractGangTask {
4543 protected:
4544   G1CollectedHeap*       _g1h;
4545   G1ParScanThreadState** _pss;
4546   RefToScanQueueSet*     _queues;
4547   G1RootProcessor*       _root_processor;
4548   ParallelTaskTerminator _terminator;
4549   uint _n_workers;
4550 
4551 public:
4552   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadState** per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4553     : AbstractGangTask("G1 collection"),
4554       _g1h(g1h),
4555       _pss(per_thread_states),
4556       _queues(task_queues),
4557       _root_processor(root_processor),
4558       _terminator(n_workers, _queues),
4559       _n_workers(n_workers)
4560   {}
4561 
4562   RefToScanQueueSet* queues() { return _queues; }
4563 
4564   RefToScanQueue *work_queue(int i) {
4565     return queues()->queue(i);
4566   }
4567 
4568   ParallelTaskTerminator* terminator() { return &_terminator; }
4569 
4570   // Helps out with CLD processing.
4571   //
4572   // During InitialMark we need to:
4573   // 1) Scavenge all CLDs for the young GC.
4574   // 2) Mark all objects directly reachable from strong CLDs.
4575   template <G1Mark do_mark_object>
4576   class G1CLDClosure : public CLDClosure {
4577     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4578     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4579     G1KlassScanClosure                                _klass_in_cld_closure;
4580     bool                                              _claim;
4581 
4582    public:
4583     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4584                  bool only_young, bool claim)
4585         : _oop_closure(oop_closure),
4586           _oop_in_klass_closure(oop_closure->g1(),
4587                                 oop_closure->pss()),
4588           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4589           _claim(claim) {
4590 
4591     }
4592 
4593     void do_cld(ClassLoaderData* cld) {
4594       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4595     }
4596   };
4597 
4598   void work(uint worker_id) {
4599     if (worker_id >= _n_workers) return;  // no work needed this round
4600 
4601     double start_sec = os::elapsedTime();
4602     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4603 
4604     {
4605       ResourceMark rm;
4606       HandleMark   hm;
4607 
4608       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4609 
4610       G1ParScanThreadState*           pss = _pss[worker_id];
4611       pss->set_ref_processor(rp);
4612 
4613       bool only_young = _g1h->collector_state()->gcs_are_young();
4614 
4615       // Non-IM young GC.
4616       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, pss);
4617       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4618                                                                                only_young, // Only process dirty klasses.
4619                                                                                false);     // No need to claim CLDs.
4620       // IM young GC.
4621       //    Strong roots closures.
4622       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, pss);
4623       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4624                                                                                false, // Process all klasses.
4625                                                                                true); // Need to claim CLDs.
4626       //    Weak roots closures.
4627       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, pss);
4628       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4629                                                                                     false, // Process all klasses.
4630                                                                                     true); // Need to claim CLDs.
4631 
4632       OopClosure* strong_root_cl;
4633       OopClosure* weak_root_cl;
4634       CLDClosure* strong_cld_cl;
4635       CLDClosure* weak_cld_cl;
4636 
4637       bool trace_metadata = false;
4638 
4639       if (_g1h->collector_state()->during_initial_mark_pause()) {
4640         // We also need to mark copied objects.
4641         strong_root_cl = &scan_mark_root_cl;
4642         strong_cld_cl  = &scan_mark_cld_cl;
4643         if (ClassUnloadingWithConcurrentMark) {
4644           weak_root_cl = &scan_mark_weak_root_cl;
4645           weak_cld_cl  = &scan_mark_weak_cld_cl;
4646           trace_metadata = true;
4647         } else {
4648           weak_root_cl = &scan_mark_root_cl;
4649           weak_cld_cl  = &scan_mark_cld_cl;
4650         }
4651       } else {
4652         strong_root_cl = &scan_only_root_cl;
4653         weak_root_cl   = &scan_only_root_cl;
4654         strong_cld_cl  = &scan_only_cld_cl;
4655         weak_cld_cl    = &scan_only_cld_cl;
4656       }
4657 
4658       double start_strong_roots_sec = os::elapsedTime();
4659       _root_processor->evacuate_roots(strong_root_cl,
4660                                       weak_root_cl,
4661                                       strong_cld_cl,
4662                                       weak_cld_cl,
4663                                       trace_metadata,
4664                                       worker_id);
4665 
4666       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4667       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4668                                             weak_root_cl,
4669                                             worker_id);
4670       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4671 
4672       double term_sec = 0.0;
4673       size_t evac_term_attempts = 0;
4674       {
4675         double start = os::elapsedTime();
4676         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4677         evac.do_void();
4678 
4679         evac_term_attempts = evac.term_attempts();
4680         term_sec = evac.term_time();
4681         double elapsed_sec = os::elapsedTime() - start;
4682         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4683         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4684         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4685       }
4686 
4687       assert(pss->queue_is_empty(), "should be empty");
4688 
4689       if (PrintTerminationStats) {
4690         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4691         size_t lab_waste;
4692         size_t lab_undo_waste;
4693         pss->waste(lab_waste, lab_undo_waste);
4694         _g1h->print_termination_stats(gclog_or_tty,
4695                                       worker_id,
4696                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4697                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4698                                       term_sec * 1000.0,                          /* evac term time */
4699                                       evac_term_attempts,                         /* evac term attempts */
4700                                       lab_waste,                                  /* alloc buffer waste */
4701                                       lab_undo_waste                              /* undo waste */
4702                                       );
4703       }
4704 
4705       // Close the inner scope so that the ResourceMark and HandleMark
4706       // destructors are executed here and are included as part of the
4707       // "GC Worker Time".
4708     }
4709     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4710   }
4711 };
4712 
4713 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4714   st->print_raw_cr("GC Termination Stats");
4715   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4716   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4717   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4718 }
4719 
4720 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4721                                               uint worker_id,
4722                                               double elapsed_ms,
4723                                               double strong_roots_ms,
4724                                               double term_ms,
4725                                               size_t term_attempts,
4726                                               size_t alloc_buffer_waste,
4727                                               size_t undo_waste) const {
4728   st->print_cr("%3d %9.2f %9.2f %6.2f "
4729                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4730                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4731                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4732                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4733                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4734                alloc_buffer_waste * HeapWordSize / K,
4735                undo_waste * HeapWordSize / K);
4736 }
4737 
4738 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4739 private:
4740   BoolObjectClosure* _is_alive;
4741   int _initial_string_table_size;
4742   int _initial_symbol_table_size;
4743 
4744   bool  _process_strings;
4745   int _strings_processed;
4746   int _strings_removed;
4747 
4748   bool  _process_symbols;
4749   int _symbols_processed;
4750   int _symbols_removed;
4751 
4752 public:
4753   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4754     AbstractGangTask("String/Symbol Unlinking"),
4755     _is_alive(is_alive),
4756     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4757     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4758 
4759     _initial_string_table_size = StringTable::the_table()->table_size();
4760     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4761     if (process_strings) {
4762       StringTable::clear_parallel_claimed_index();
4763     }
4764     if (process_symbols) {
4765       SymbolTable::clear_parallel_claimed_index();
4766     }
4767   }
4768 
4769   ~G1StringSymbolTableUnlinkTask() {
4770     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4771               err_msg("claim value %d after unlink less than initial string table size %d",
4772                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4773     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4774               err_msg("claim value %d after unlink less than initial symbol table size %d",
4775                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4776 
4777     if (G1TraceStringSymbolTableScrubbing) {
4778       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4779                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4780                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4781                              strings_processed(), strings_removed(),
4782                              symbols_processed(), symbols_removed());
4783     }
4784   }
4785 
4786   void work(uint worker_id) {
4787     int strings_processed = 0;
4788     int strings_removed = 0;
4789     int symbols_processed = 0;
4790     int symbols_removed = 0;
4791     if (_process_strings) {
4792       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4793       Atomic::add(strings_processed, &_strings_processed);
4794       Atomic::add(strings_removed, &_strings_removed);
4795     }
4796     if (_process_symbols) {
4797       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4798       Atomic::add(symbols_processed, &_symbols_processed);
4799       Atomic::add(symbols_removed, &_symbols_removed);
4800     }
4801   }
4802 
4803   size_t strings_processed() const { return (size_t)_strings_processed; }
4804   size_t strings_removed()   const { return (size_t)_strings_removed; }
4805 
4806   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4807   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4808 };
4809 
4810 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4811 private:
4812   static Monitor* _lock;
4813 
4814   BoolObjectClosure* const _is_alive;
4815   const bool               _unloading_occurred;
4816   const uint               _num_workers;
4817 
4818   // Variables used to claim nmethods.
4819   nmethod* _first_nmethod;
4820   volatile nmethod* _claimed_nmethod;
4821 
4822   // The list of nmethods that need to be processed by the second pass.
4823   volatile nmethod* _postponed_list;
4824   volatile uint     _num_entered_barrier;
4825 
4826  public:
4827   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4828       _is_alive(is_alive),
4829       _unloading_occurred(unloading_occurred),
4830       _num_workers(num_workers),
4831       _first_nmethod(NULL),
4832       _claimed_nmethod(NULL),
4833       _postponed_list(NULL),
4834       _num_entered_barrier(0)
4835   {
4836     nmethod::increase_unloading_clock();
4837     // Get first alive nmethod
4838     NMethodIterator iter = NMethodIterator();
4839     if(iter.next_alive()) {
4840       _first_nmethod = iter.method();
4841     }
4842     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4843   }
4844 
4845   ~G1CodeCacheUnloadingTask() {
4846     CodeCache::verify_clean_inline_caches();
4847 
4848     CodeCache::set_needs_cache_clean(false);
4849     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4850 
4851     CodeCache::verify_icholder_relocations();
4852   }
4853 
4854  private:
4855   void add_to_postponed_list(nmethod* nm) {
4856       nmethod* old;
4857       do {
4858         old = (nmethod*)_postponed_list;
4859         nm->set_unloading_next(old);
4860       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4861   }
4862 
4863   void clean_nmethod(nmethod* nm) {
4864     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4865 
4866     if (postponed) {
4867       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4868       add_to_postponed_list(nm);
4869     }
4870 
4871     // Mark that this thread has been cleaned/unloaded.
4872     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4873     nm->set_unloading_clock(nmethod::global_unloading_clock());
4874   }
4875 
4876   void clean_nmethod_postponed(nmethod* nm) {
4877     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4878   }
4879 
4880   static const int MaxClaimNmethods = 16;
4881 
4882   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4883     nmethod* first;
4884     NMethodIterator last;
4885 
4886     do {
4887       *num_claimed_nmethods = 0;
4888 
4889       first = (nmethod*)_claimed_nmethod;
4890       last = NMethodIterator(first);
4891 
4892       if (first != NULL) {
4893 
4894         for (int i = 0; i < MaxClaimNmethods; i++) {
4895           if (!last.next_alive()) {
4896             break;
4897           }
4898           claimed_nmethods[i] = last.method();
4899           (*num_claimed_nmethods)++;
4900         }
4901       }
4902 
4903     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4904   }
4905 
4906   nmethod* claim_postponed_nmethod() {
4907     nmethod* claim;
4908     nmethod* next;
4909 
4910     do {
4911       claim = (nmethod*)_postponed_list;
4912       if (claim == NULL) {
4913         return NULL;
4914       }
4915 
4916       next = claim->unloading_next();
4917 
4918     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4919 
4920     return claim;
4921   }
4922 
4923  public:
4924   // Mark that we're done with the first pass of nmethod cleaning.
4925   void barrier_mark(uint worker_id) {
4926     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4927     _num_entered_barrier++;
4928     if (_num_entered_barrier == _num_workers) {
4929       ml.notify_all();
4930     }
4931   }
4932 
4933   // See if we have to wait for the other workers to
4934   // finish their first-pass nmethod cleaning work.
4935   void barrier_wait(uint worker_id) {
4936     if (_num_entered_barrier < _num_workers) {
4937       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4938       while (_num_entered_barrier < _num_workers) {
4939           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4940       }
4941     }
4942   }
4943 
4944   // Cleaning and unloading of nmethods. Some work has to be postponed
4945   // to the second pass, when we know which nmethods survive.
4946   void work_first_pass(uint worker_id) {
4947     // The first nmethods is claimed by the first worker.
4948     if (worker_id == 0 && _first_nmethod != NULL) {
4949       clean_nmethod(_first_nmethod);
4950       _first_nmethod = NULL;
4951     }
4952 
4953     int num_claimed_nmethods;
4954     nmethod* claimed_nmethods[MaxClaimNmethods];
4955 
4956     while (true) {
4957       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4958 
4959       if (num_claimed_nmethods == 0) {
4960         break;
4961       }
4962 
4963       for (int i = 0; i < num_claimed_nmethods; i++) {
4964         clean_nmethod(claimed_nmethods[i]);
4965       }
4966     }
4967   }
4968 
4969   void work_second_pass(uint worker_id) {
4970     nmethod* nm;
4971     // Take care of postponed nmethods.
4972     while ((nm = claim_postponed_nmethod()) != NULL) {
4973       clean_nmethod_postponed(nm);
4974     }
4975   }
4976 };
4977 
4978 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4979 
4980 class G1KlassCleaningTask : public StackObj {
4981   BoolObjectClosure*                      _is_alive;
4982   volatile jint                           _clean_klass_tree_claimed;
4983   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4984 
4985  public:
4986   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4987       _is_alive(is_alive),
4988       _clean_klass_tree_claimed(0),
4989       _klass_iterator() {
4990   }
4991 
4992  private:
4993   bool claim_clean_klass_tree_task() {
4994     if (_clean_klass_tree_claimed) {
4995       return false;
4996     }
4997 
4998     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4999   }
5000 
5001   InstanceKlass* claim_next_klass() {
5002     Klass* klass;
5003     do {
5004       klass =_klass_iterator.next_klass();
5005     } while (klass != NULL && !klass->oop_is_instance());
5006 
5007     return (InstanceKlass*)klass;
5008   }
5009 
5010 public:
5011 
5012   void clean_klass(InstanceKlass* ik) {
5013     ik->clean_implementors_list(_is_alive);
5014     ik->clean_method_data(_is_alive);
5015 
5016     // G1 specific cleanup work that has
5017     // been moved here to be done in parallel.
5018     ik->clean_dependent_nmethods();
5019   }
5020 
5021   void work() {
5022     ResourceMark rm;
5023 
5024     // One worker will clean the subklass/sibling klass tree.
5025     if (claim_clean_klass_tree_task()) {
5026       Klass::clean_subklass_tree(_is_alive);
5027     }
5028 
5029     // All workers will help cleaning the classes,
5030     InstanceKlass* klass;
5031     while ((klass = claim_next_klass()) != NULL) {
5032       clean_klass(klass);
5033     }
5034   }
5035 };
5036 
5037 // To minimize the remark pause times, the tasks below are done in parallel.
5038 class G1ParallelCleaningTask : public AbstractGangTask {
5039 private:
5040   G1StringSymbolTableUnlinkTask _string_symbol_task;
5041   G1CodeCacheUnloadingTask      _code_cache_task;
5042   G1KlassCleaningTask           _klass_cleaning_task;
5043 
5044 public:
5045   // The constructor is run in the VMThread.
5046   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5047       AbstractGangTask("Parallel Cleaning"),
5048       _string_symbol_task(is_alive, process_strings, process_symbols),
5049       _code_cache_task(num_workers, is_alive, unloading_occurred),
5050       _klass_cleaning_task(is_alive) {
5051   }
5052 
5053   // The parallel work done by all worker threads.
5054   void work(uint worker_id) {
5055     // Do first pass of code cache cleaning.
5056     _code_cache_task.work_first_pass(worker_id);
5057 
5058     // Let the threads mark that the first pass is done.
5059     _code_cache_task.barrier_mark(worker_id);
5060 
5061     // Clean the Strings and Symbols.
5062     _string_symbol_task.work(worker_id);
5063 
5064     // Wait for all workers to finish the first code cache cleaning pass.
5065     _code_cache_task.barrier_wait(worker_id);
5066 
5067     // Do the second code cache cleaning work, which realize on
5068     // the liveness information gathered during the first pass.
5069     _code_cache_task.work_second_pass(worker_id);
5070 
5071     // Clean all klasses that were not unloaded.
5072     _klass_cleaning_task.work();
5073   }
5074 };
5075 
5076 
5077 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5078                                         bool process_strings,
5079                                         bool process_symbols,
5080                                         bool class_unloading_occurred) {
5081   uint n_workers = workers()->active_workers();
5082 
5083   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5084                                         n_workers, class_unloading_occurred);
5085   workers()->run_task(&g1_unlink_task);
5086 }
5087 
5088 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5089                                                      bool process_strings, bool process_symbols) {
5090   {
5091     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5092     workers()->run_task(&g1_unlink_task);
5093   }
5094 
5095   if (G1StringDedup::is_enabled()) {
5096     G1StringDedup::unlink(is_alive);
5097   }
5098 }
5099 
5100 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5101  private:
5102   DirtyCardQueueSet* _queue;
5103  public:
5104   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5105 
5106   virtual void work(uint worker_id) {
5107     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5108     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5109 
5110     RedirtyLoggedCardTableEntryClosure cl;
5111     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5112 
5113     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5114   }
5115 };
5116 
5117 void G1CollectedHeap::redirty_logged_cards() {
5118   double redirty_logged_cards_start = os::elapsedTime();
5119 
5120   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5121   dirty_card_queue_set().reset_for_par_iteration();
5122   workers()->run_task(&redirty_task);
5123 
5124   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5125   dcq.merge_bufferlists(&dirty_card_queue_set());
5126   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5127 
5128   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5129 }
5130 
5131 // Weak Reference Processing support
5132 
5133 // An always "is_alive" closure that is used to preserve referents.
5134 // If the object is non-null then it's alive.  Used in the preservation
5135 // of referent objects that are pointed to by reference objects
5136 // discovered by the CM ref processor.
5137 class G1AlwaysAliveClosure: public BoolObjectClosure {
5138   G1CollectedHeap* _g1;
5139 public:
5140   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5141   bool do_object_b(oop p) {
5142     if (p != NULL) {
5143       return true;
5144     }
5145     return false;
5146   }
5147 };
5148 
5149 bool G1STWIsAliveClosure::do_object_b(oop p) {
5150   // An object is reachable if it is outside the collection set,
5151   // or is inside and copied.
5152   return !_g1->is_in_cset(p) || p->is_forwarded();
5153 }
5154 
5155 // Non Copying Keep Alive closure
5156 class G1KeepAliveClosure: public OopClosure {
5157   G1CollectedHeap* _g1;
5158 public:
5159   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5160   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5161   void do_oop(oop* p) {
5162     oop obj = *p;
5163     assert(obj != NULL, "the caller should have filtered out NULL values");
5164 
5165     const InCSetState cset_state = _g1->in_cset_state(obj);
5166     if (!cset_state.is_in_cset_or_humongous()) {
5167       return;
5168     }
5169     if (cset_state.is_in_cset()) {
5170       assert( obj->is_forwarded(), "invariant" );
5171       *p = obj->forwardee();
5172     } else {
5173       assert(!obj->is_forwarded(), "invariant" );
5174       assert(cset_state.is_humongous(),
5175              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5176       _g1->set_humongous_is_live(obj);
5177     }
5178   }
5179 };
5180 
5181 // Copying Keep Alive closure - can be called from both
5182 // serial and parallel code as long as different worker
5183 // threads utilize different G1ParScanThreadState instances
5184 // and different queues.
5185 
5186 class G1CopyingKeepAliveClosure: public OopClosure {
5187   G1CollectedHeap*         _g1h;
5188   OopClosure*              _copy_non_heap_obj_cl;
5189   G1ParScanThreadState*    _par_scan_state;
5190 
5191 public:
5192   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5193                             OopClosure* non_heap_obj_cl,
5194                             G1ParScanThreadState* pss):
5195     _g1h(g1h),
5196     _copy_non_heap_obj_cl(non_heap_obj_cl),
5197     _par_scan_state(pss)
5198   {}
5199 
5200   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5201   virtual void do_oop(      oop* p) { do_oop_work(p); }
5202 
5203   template <class T> void do_oop_work(T* p) {
5204     oop obj = oopDesc::load_decode_heap_oop(p);
5205 
5206     if (_g1h->is_in_cset_or_humongous(obj)) {
5207       // If the referent object has been forwarded (either copied
5208       // to a new location or to itself in the event of an
5209       // evacuation failure) then we need to update the reference
5210       // field and, if both reference and referent are in the G1
5211       // heap, update the RSet for the referent.
5212       //
5213       // If the referent has not been forwarded then we have to keep
5214       // it alive by policy. Therefore we have copy the referent.
5215       //
5216       // If the reference field is in the G1 heap then we can push
5217       // on the PSS queue. When the queue is drained (after each
5218       // phase of reference processing) the object and it's followers
5219       // will be copied, the reference field set to point to the
5220       // new location, and the RSet updated. Otherwise we need to
5221       // use the the non-heap or metadata closures directly to copy
5222       // the referent object and update the pointer, while avoiding
5223       // updating the RSet.
5224 
5225       if (_g1h->is_in_g1_reserved(p)) {
5226         _par_scan_state->push_on_queue(p);
5227       } else {
5228         assert(!Metaspace::contains((const void*)p),
5229                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5230         _copy_non_heap_obj_cl->do_oop(p);
5231       }
5232     }
5233   }
5234 };
5235 
5236 // Serial drain queue closure. Called as the 'complete_gc'
5237 // closure for each discovered list in some of the
5238 // reference processing phases.
5239 
5240 class G1STWDrainQueueClosure: public VoidClosure {
5241 protected:
5242   G1CollectedHeap* _g1h;
5243   G1ParScanThreadState* _par_scan_state;
5244 
5245   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5246 
5247 public:
5248   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5249     _g1h(g1h),
5250     _par_scan_state(pss)
5251   { }
5252 
5253   void do_void() {
5254     G1ParScanThreadState* const pss = par_scan_state();
5255     pss->trim_queue();
5256   }
5257 };
5258 
5259 // Parallel Reference Processing closures
5260 
5261 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5262 // processing during G1 evacuation pauses.
5263 
5264 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5265 private:
5266   G1CollectedHeap*        _g1h;
5267   G1ParScanThreadState**  _pss;
5268   RefToScanQueueSet*      _queues;
5269   WorkGang*               _workers;
5270   uint                    _active_workers;
5271 
5272 public:
5273   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5274                            G1ParScanThreadState** per_thread_states,
5275                            WorkGang* workers,
5276                            RefToScanQueueSet *task_queues,
5277                            uint n_workers) :
5278     _g1h(g1h),
5279     _pss(per_thread_states),
5280     _queues(task_queues),
5281     _workers(workers),
5282     _active_workers(n_workers)
5283   {
5284     assert(n_workers > 0, "shouldn't call this otherwise");
5285   }
5286 
5287   // Executes the given task using concurrent marking worker threads.
5288   virtual void execute(ProcessTask& task);
5289   virtual void execute(EnqueueTask& task);
5290 };
5291 
5292 // Gang task for possibly parallel reference processing
5293 
5294 class G1STWRefProcTaskProxy: public AbstractGangTask {
5295   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5296   ProcessTask&     _proc_task;
5297   G1CollectedHeap* _g1h;
5298   G1ParScanThreadState** _pss;
5299   RefToScanQueueSet* _task_queues;
5300   ParallelTaskTerminator* _terminator;
5301 
5302 public:
5303   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5304                         G1CollectedHeap* g1h,
5305                         G1ParScanThreadState** per_thread_states,
5306                         RefToScanQueueSet *task_queues,
5307                         ParallelTaskTerminator* terminator) :
5308     AbstractGangTask("Process reference objects in parallel"),
5309     _proc_task(proc_task),
5310     _g1h(g1h),
5311     _pss(per_thread_states),
5312     _task_queues(task_queues),
5313     _terminator(terminator)
5314   {}
5315 
5316   virtual void work(uint worker_id) {
5317     // The reference processing task executed by a single worker.
5318     ResourceMark rm;
5319     HandleMark   hm;
5320 
5321     G1STWIsAliveClosure is_alive(_g1h);
5322 
5323     G1ParScanThreadState*           pss = _pss[worker_id];
5324     pss->set_ref_processor(NULL);
5325 
5326     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, pss);
5327 
5328     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, pss);
5329 
5330     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5331 
5332     if (_g1h->collector_state()->during_initial_mark_pause()) {
5333       // We also need to mark copied objects.
5334       copy_non_heap_cl = &copy_mark_non_heap_cl;
5335     }
5336 
5337     // Keep alive closure.
5338     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, pss);
5339 
5340     // Complete GC closure
5341     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
5342 
5343     // Call the reference processing task's work routine.
5344     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5345 
5346     // Note we cannot assert that the refs array is empty here as not all
5347     // of the processing tasks (specifically phase2 - pp2_work) execute
5348     // the complete_gc closure (which ordinarily would drain the queue) so
5349     // the queue may not be empty.
5350   }
5351 };
5352 
5353 // Driver routine for parallel reference processing.
5354 // Creates an instance of the ref processing gang
5355 // task and has the worker threads execute it.
5356 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5357   assert(_workers != NULL, "Need parallel worker threads.");
5358 
5359   ParallelTaskTerminator terminator(_active_workers, _queues);
5360   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
5361 
5362   _workers->run_task(&proc_task_proxy);
5363 }
5364 
5365 // Gang task for parallel reference enqueueing.
5366 
5367 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5368   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5369   EnqueueTask& _enq_task;
5370 
5371 public:
5372   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5373     AbstractGangTask("Enqueue reference objects in parallel"),
5374     _enq_task(enq_task)
5375   { }
5376 
5377   virtual void work(uint worker_id) {
5378     _enq_task.work(worker_id);
5379   }
5380 };
5381 
5382 // Driver routine for parallel reference enqueueing.
5383 // Creates an instance of the ref enqueueing gang
5384 // task and has the worker threads execute it.
5385 
5386 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5387   assert(_workers != NULL, "Need parallel worker threads.");
5388 
5389   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5390 
5391   _workers->run_task(&enq_task_proxy);
5392 }
5393 
5394 // End of weak reference support closures
5395 
5396 // Abstract task used to preserve (i.e. copy) any referent objects
5397 // that are in the collection set and are pointed to by reference
5398 // objects discovered by the CM ref processor.
5399 
5400 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5401 protected:
5402   G1CollectedHeap*       _g1h;
5403   G1ParScanThreadState** _pss;
5404   RefToScanQueueSet*     _queues;
5405   ParallelTaskTerminator _terminator;
5406   uint _n_workers;
5407 
5408 public:
5409   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadState** per_thread_states, int workers, RefToScanQueueSet *task_queues) :
5410     AbstractGangTask("ParPreserveCMReferents"),
5411     _g1h(g1h),
5412     _pss(per_thread_states),
5413     _queues(task_queues),
5414     _terminator(workers, _queues),
5415     _n_workers(workers)
5416   { }
5417 
5418   void work(uint worker_id) {
5419     ResourceMark rm;
5420     HandleMark   hm;
5421 
5422     G1ParScanThreadState*          pss = _pss[worker_id];
5423     pss->set_ref_processor(NULL);
5424     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5425 
5426     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, pss);
5427 
5428     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, pss);
5429 
5430     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5431 
5432     if (_g1h->collector_state()->during_initial_mark_pause()) {
5433       // We also need to mark copied objects.
5434       copy_non_heap_cl = &copy_mark_non_heap_cl;
5435     }
5436 
5437     // Is alive closure
5438     G1AlwaysAliveClosure always_alive(_g1h);
5439 
5440     // Copying keep alive closure. Applied to referent objects that need
5441     // to be copied.
5442     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, pss);
5443 
5444     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5445 
5446     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5447     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5448 
5449     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5450     // So this must be true - but assert just in case someone decides to
5451     // change the worker ids.
5452     assert(worker_id < limit, "sanity");
5453     assert(!rp->discovery_is_atomic(), "check this code");
5454 
5455     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5456     for (uint idx = worker_id; idx < limit; idx += stride) {
5457       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5458 
5459       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5460       while (iter.has_next()) {
5461         // Since discovery is not atomic for the CM ref processor, we
5462         // can see some null referent objects.
5463         iter.load_ptrs(DEBUG_ONLY(true));
5464         oop ref = iter.obj();
5465 
5466         // This will filter nulls.
5467         if (iter.is_referent_alive()) {
5468           iter.make_referent_alive();
5469         }
5470         iter.move_to_next();
5471       }
5472     }
5473 
5474     // Drain the queue - which may cause stealing
5475     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5476     drain_queue.do_void();
5477     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5478     assert(pss->queue_is_empty(), "should be");
5479   }
5480 };
5481 
5482 // Weak Reference processing during an evacuation pause (part 1).
5483 void G1CollectedHeap::process_discovered_references(G1ParScanThreadState** per_thread_states) {
5484   double ref_proc_start = os::elapsedTime();
5485 
5486   ReferenceProcessor* rp = _ref_processor_stw;
5487   assert(rp->discovery_enabled(), "should have been enabled");
5488 
5489   // Any reference objects, in the collection set, that were 'discovered'
5490   // by the CM ref processor should have already been copied (either by
5491   // applying the external root copy closure to the discovered lists, or
5492   // by following an RSet entry).
5493   //
5494   // But some of the referents, that are in the collection set, that these
5495   // reference objects point to may not have been copied: the STW ref
5496   // processor would have seen that the reference object had already
5497   // been 'discovered' and would have skipped discovering the reference,
5498   // but would not have treated the reference object as a regular oop.
5499   // As a result the copy closure would not have been applied to the
5500   // referent object.
5501   //
5502   // We need to explicitly copy these referent objects - the references
5503   // will be processed at the end of remarking.
5504   //
5505   // We also need to do this copying before we process the reference
5506   // objects discovered by the STW ref processor in case one of these
5507   // referents points to another object which is also referenced by an
5508   // object discovered by the STW ref processor.
5509 
5510   uint no_of_gc_workers = workers()->active_workers();
5511 
5512   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5513                                                  per_thread_states,
5514                                                  no_of_gc_workers,
5515                                                  _task_queues);
5516 
5517   workers()->run_task(&keep_cm_referents);
5518 
5519   // Closure to test whether a referent is alive.
5520   G1STWIsAliveClosure is_alive(this);
5521 
5522   // Even when parallel reference processing is enabled, the processing
5523   // of JNI refs is serial and performed serially by the current thread
5524   // rather than by a worker. The following PSS will be used for processing
5525   // JNI refs.
5526 
5527   // Use only a single queue for this PSS.
5528   G1ParScanThreadState*           pss = per_thread_states[0];
5529   pss->set_ref_processor(NULL);
5530   assert(pss->queue_is_empty(), "pre-condition");
5531 
5532   // We do not embed a reference processor in the copying/scanning
5533   // closures while we're actually processing the discovered
5534   // reference objects.
5535 
5536   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, pss);
5537 
5538   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, pss);
5539 
5540   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5541 
5542   if (collector_state()->during_initial_mark_pause()) {
5543     // We also need to mark copied objects.
5544     copy_non_heap_cl = &copy_mark_non_heap_cl;
5545   }
5546 
5547   // Keep alive closure.
5548   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, pss);
5549 
5550   // Serial Complete GC closure
5551   G1STWDrainQueueClosure drain_queue(this, pss);
5552 
5553   // Setup the soft refs policy...
5554   rp->setup_policy(false);
5555 
5556   ReferenceProcessorStats stats;
5557   if (!rp->processing_is_mt()) {
5558     // Serial reference processing...
5559     stats = rp->process_discovered_references(&is_alive,
5560                                               &keep_alive,
5561                                               &drain_queue,
5562                                               NULL,
5563                                               _gc_timer_stw,
5564                                               _gc_tracer_stw->gc_id());
5565   } else {
5566     // Parallel reference processing
5567     assert(rp->num_q() == no_of_gc_workers, "sanity");
5568     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5569 
5570     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5571     stats = rp->process_discovered_references(&is_alive,
5572                                               &keep_alive,
5573                                               &drain_queue,
5574                                               &par_task_executor,
5575                                               _gc_timer_stw,
5576                                               _gc_tracer_stw->gc_id());
5577   }
5578 
5579   _gc_tracer_stw->report_gc_reference_stats(stats);
5580 
5581   // We have completed copying any necessary live referent objects.
5582   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5583 
5584   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5585   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5586 }
5587 
5588 // Weak Reference processing during an evacuation pause (part 2).
5589 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadState** per_thread_states) {
5590   double ref_enq_start = os::elapsedTime();
5591 
5592   ReferenceProcessor* rp = _ref_processor_stw;
5593   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5594 
5595   // Now enqueue any remaining on the discovered lists on to
5596   // the pending list.
5597   if (!rp->processing_is_mt()) {
5598     // Serial reference processing...
5599     rp->enqueue_discovered_references();
5600   } else {
5601     // Parallel reference enqueueing
5602 
5603     uint n_workers = workers()->active_workers();
5604 
5605     assert(rp->num_q() == n_workers, "sanity");
5606     assert(n_workers <= rp->max_num_q(), "sanity");
5607 
5608     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5609     rp->enqueue_discovered_references(&par_task_executor);
5610   }
5611 
5612   rp->verify_no_references_recorded();
5613   assert(!rp->discovery_enabled(), "should have been disabled");
5614 
5615   // FIXME
5616   // CM's reference processing also cleans up the string and symbol tables.
5617   // Should we do that here also? We could, but it is a serial operation
5618   // and could significantly increase the pause time.
5619 
5620   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5621   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5622 }
5623 
5624 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5625   _expand_heap_after_alloc_failure = true;
5626   _evacuation_failed = false;
5627 
5628   // Should G1EvacuationFailureALot be in effect for this GC?
5629   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5630 
5631   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5632 
5633   // Disable the hot card cache.
5634   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5635   hot_card_cache->reset_hot_cache_claimed_index();
5636   hot_card_cache->set_use_cache(false);
5637 
5638   const uint n_workers = workers()->active_workers();
5639 
5640   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5641   double start_par_time_sec = os::elapsedTime();
5642   double end_par_time_sec;
5643 
5644   G1ParScanThreadState** per_thread_states = NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC);
5645   for (uint i = 0; i < n_workers; i++) {
5646     per_thread_states[i] = new_par_scan_state(i);
5647   }
5648 
5649   {
5650     G1RootProcessor root_processor(this, n_workers);
5651     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5652     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5653     if (collector_state()->during_initial_mark_pause()) {
5654       ClassLoaderDataGraph::clear_claimed_marks();
5655     }
5656 
5657     // The individual threads will set their evac-failure closures.
5658     if (PrintTerminationStats) {
5659       print_termination_stats_hdr(gclog_or_tty);
5660     }
5661 
5662     workers()->run_task(&g1_par_task);
5663     end_par_time_sec = os::elapsedTime();
5664 
5665     // Closing the inner scope will execute the destructor
5666     // for the G1RootProcessor object. We record the current
5667     // elapsed time before closing the scope so that time
5668     // taken for the destructor is NOT included in the
5669     // reported parallel time.
5670   }
5671 
5672   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5673 
5674   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5675   phase_times->record_par_time(par_time_ms);
5676 
5677   double code_root_fixup_time_ms =
5678         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5679   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5680 
5681   // Process any discovered reference objects - we have
5682   // to do this _before_ we retire the GC alloc regions
5683   // as we may have to copy some 'reachable' referent
5684   // objects (and their reachable sub-graphs) that were
5685   // not copied during the pause.
5686   process_discovered_references(per_thread_states);
5687 
5688   if (G1StringDedup::is_enabled()) {
5689     double fixup_start = os::elapsedTime();
5690 
5691     G1STWIsAliveClosure is_alive(this);
5692     G1KeepAliveClosure keep_alive(this);
5693     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5694 
5695     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5696     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5697   }
5698 
5699   _allocator->release_gc_alloc_regions(evacuation_info);
5700   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5701 
5702   for (uint i = 0; i < n_workers; i++) {
5703     G1ParScanThreadState* pss = per_thread_states[i];
5704     delete pss;
5705   }
5706   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, per_thread_states);
5707 
5708   record_obj_copy_mem_stats();
5709 
5710   // Reset and re-enable the hot card cache.
5711   // Note the counts for the cards in the regions in the
5712   // collection set are reset when the collection set is freed.
5713   hot_card_cache->reset_hot_cache();
5714   hot_card_cache->set_use_cache(true);
5715 
5716   purge_code_root_memory();
5717 
5718   if (evacuation_failed()) {
5719     remove_self_forwarding_pointers();
5720 
5721     // Reset the G1EvacuationFailureALot counters and flags
5722     // Note: the values are reset only when an actual
5723     // evacuation failure occurs.
5724     NOT_PRODUCT(reset_evacuation_should_fail();)
5725   }
5726 
5727   // Enqueue any remaining references remaining on the STW
5728   // reference processor's discovered lists. We need to do
5729   // this after the card table is cleaned (and verified) as
5730   // the act of enqueueing entries on to the pending list
5731   // will log these updates (and dirty their associated
5732   // cards). We need these updates logged to update any
5733   // RSets.
5734   enqueue_discovered_references(per_thread_states);
5735 
5736   redirty_logged_cards();
5737   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5738 }
5739 
5740 void G1CollectedHeap::record_obj_copy_mem_stats() {
5741   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5742                                                create_g1_evac_summary(&_old_evac_stats));
5743 }
5744 
5745 void G1CollectedHeap::free_region(HeapRegion* hr,
5746                                   FreeRegionList* free_list,
5747                                   bool par,
5748                                   bool locked) {
5749   assert(!hr->is_free(), "the region should not be free");
5750   assert(!hr->is_empty(), "the region should not be empty");
5751   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5752   assert(free_list != NULL, "pre-condition");
5753 
5754   if (G1VerifyBitmaps) {
5755     MemRegion mr(hr->bottom(), hr->end());
5756     concurrent_mark()->clearRangePrevBitmap(mr);
5757   }
5758 
5759   // Clear the card counts for this region.
5760   // Note: we only need to do this if the region is not young
5761   // (since we don't refine cards in young regions).
5762   if (!hr->is_young()) {
5763     _cg1r->hot_card_cache()->reset_card_counts(hr);
5764   }
5765   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5766   free_list->add_ordered(hr);
5767 }
5768 
5769 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5770                                      FreeRegionList* free_list,
5771                                      bool par) {
5772   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5773   assert(free_list != NULL, "pre-condition");
5774 
5775   size_t hr_capacity = hr->capacity();
5776   // We need to read this before we make the region non-humongous,
5777   // otherwise the information will be gone.
5778   uint last_index = hr->last_hc_index();
5779   hr->clear_humongous();
5780   free_region(hr, free_list, par);
5781 
5782   uint i = hr->hrm_index() + 1;
5783   while (i < last_index) {
5784     HeapRegion* curr_hr = region_at(i);
5785     assert(curr_hr->is_continues_humongous(), "invariant");
5786     curr_hr->clear_humongous();
5787     free_region(curr_hr, free_list, par);
5788     i += 1;
5789   }
5790 }
5791 
5792 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5793                                        const HeapRegionSetCount& humongous_regions_removed) {
5794   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5795     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5796     _old_set.bulk_remove(old_regions_removed);
5797     _humongous_set.bulk_remove(humongous_regions_removed);
5798   }
5799 
5800 }
5801 
5802 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5803   assert(list != NULL, "list can't be null");
5804   if (!list->is_empty()) {
5805     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5806     _hrm.insert_list_into_free_list(list);
5807   }
5808 }
5809 
5810 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5811   decrease_used(bytes);
5812 }
5813 
5814 class G1ParCleanupCTTask : public AbstractGangTask {
5815   G1SATBCardTableModRefBS* _ct_bs;
5816   G1CollectedHeap* _g1h;
5817   HeapRegion* volatile _su_head;
5818 public:
5819   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5820                      G1CollectedHeap* g1h) :
5821     AbstractGangTask("G1 Par Cleanup CT Task"),
5822     _ct_bs(ct_bs), _g1h(g1h) { }
5823 
5824   void work(uint worker_id) {
5825     HeapRegion* r;
5826     while (r = _g1h->pop_dirty_cards_region()) {
5827       clear_cards(r);
5828     }
5829   }
5830 
5831   void clear_cards(HeapRegion* r) {
5832     // Cards of the survivors should have already been dirtied.
5833     if (!r->is_survivor()) {
5834       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5835     }
5836   }
5837 };
5838 
5839 #ifndef PRODUCT
5840 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5841   G1CollectedHeap* _g1h;
5842   G1SATBCardTableModRefBS* _ct_bs;
5843 public:
5844   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5845     : _g1h(g1h), _ct_bs(ct_bs) { }
5846   virtual bool doHeapRegion(HeapRegion* r) {
5847     if (r->is_survivor()) {
5848       _g1h->verify_dirty_region(r);
5849     } else {
5850       _g1h->verify_not_dirty_region(r);
5851     }
5852     return false;
5853   }
5854 };
5855 
5856 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5857   // All of the region should be clean.
5858   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5859   MemRegion mr(hr->bottom(), hr->end());
5860   ct_bs->verify_not_dirty_region(mr);
5861 }
5862 
5863 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5864   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5865   // dirty allocated blocks as they allocate them. The thread that
5866   // retires each region and replaces it with a new one will do a
5867   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5868   // not dirty that area (one less thing to have to do while holding
5869   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5870   // is dirty.
5871   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5872   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5873   if (hr->is_young()) {
5874     ct_bs->verify_g1_young_region(mr);
5875   } else {
5876     ct_bs->verify_dirty_region(mr);
5877   }
5878 }
5879 
5880 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5881   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5882   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5883     verify_dirty_region(hr);
5884   }
5885 }
5886 
5887 void G1CollectedHeap::verify_dirty_young_regions() {
5888   verify_dirty_young_list(_young_list->first_region());
5889 }
5890 
5891 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5892                                                HeapWord* tams, HeapWord* end) {
5893   guarantee(tams <= end,
5894             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
5895   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5896   if (result < end) {
5897     gclog_or_tty->cr();
5898     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5899                            bitmap_name, p2i(result));
5900     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5901                            bitmap_name, p2i(tams), p2i(end));
5902     return false;
5903   }
5904   return true;
5905 }
5906 
5907 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5908   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5909   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5910 
5911   HeapWord* bottom = hr->bottom();
5912   HeapWord* ptams  = hr->prev_top_at_mark_start();
5913   HeapWord* ntams  = hr->next_top_at_mark_start();
5914   HeapWord* end    = hr->end();
5915 
5916   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5917 
5918   bool res_n = true;
5919   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5920   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5921   // if we happen to be in that state.
5922   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5923     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5924   }
5925   if (!res_p || !res_n) {
5926     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5927                            HR_FORMAT_PARAMS(hr));
5928     gclog_or_tty->print_cr("#### Caller: %s", caller);
5929     return false;
5930   }
5931   return true;
5932 }
5933 
5934 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5935   if (!G1VerifyBitmaps) return;
5936 
5937   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5938 }
5939 
5940 class G1VerifyBitmapClosure : public HeapRegionClosure {
5941 private:
5942   const char* _caller;
5943   G1CollectedHeap* _g1h;
5944   bool _failures;
5945 
5946 public:
5947   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5948     _caller(caller), _g1h(g1h), _failures(false) { }
5949 
5950   bool failures() { return _failures; }
5951 
5952   virtual bool doHeapRegion(HeapRegion* hr) {
5953     if (hr->is_continues_humongous()) return false;
5954 
5955     bool result = _g1h->verify_bitmaps(_caller, hr);
5956     if (!result) {
5957       _failures = true;
5958     }
5959     return false;
5960   }
5961 };
5962 
5963 void G1CollectedHeap::check_bitmaps(const char* caller) {
5964   if (!G1VerifyBitmaps) return;
5965 
5966   G1VerifyBitmapClosure cl(caller, this);
5967   heap_region_iterate(&cl);
5968   guarantee(!cl.failures(), "bitmap verification");
5969 }
5970 
5971 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5972  private:
5973   bool _failures;
5974  public:
5975   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5976 
5977   virtual bool doHeapRegion(HeapRegion* hr) {
5978     uint i = hr->hrm_index();
5979     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5980     if (hr->is_humongous()) {
5981       if (hr->in_collection_set()) {
5982         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5983         _failures = true;
5984         return true;
5985       }
5986       if (cset_state.is_in_cset()) {
5987         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5988         _failures = true;
5989         return true;
5990       }
5991       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5992         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5993         _failures = true;
5994         return true;
5995       }
5996     } else {
5997       if (cset_state.is_humongous()) {
5998         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5999         _failures = true;
6000         return true;
6001       }
6002       if (hr->in_collection_set() != cset_state.is_in_cset()) {
6003         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
6004                                hr->in_collection_set(), cset_state.value(), i);
6005         _failures = true;
6006         return true;
6007       }
6008       if (cset_state.is_in_cset()) {
6009         if (hr->is_young() != (cset_state.is_young())) {
6010           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
6011                                  hr->is_young(), cset_state.value(), i);
6012           _failures = true;
6013           return true;
6014         }
6015         if (hr->is_old() != (cset_state.is_old())) {
6016           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
6017                                  hr->is_old(), cset_state.value(), i);
6018           _failures = true;
6019           return true;
6020         }
6021       }
6022     }
6023     return false;
6024   }
6025 
6026   bool failures() const { return _failures; }
6027 };
6028 
6029 bool G1CollectedHeap::check_cset_fast_test() {
6030   G1CheckCSetFastTableClosure cl;
6031   _hrm.iterate(&cl);
6032   return !cl.failures();
6033 }
6034 #endif // PRODUCT
6035 
6036 void G1CollectedHeap::cleanUpCardTable() {
6037   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6038   double start = os::elapsedTime();
6039 
6040   {
6041     // Iterate over the dirty cards region list.
6042     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6043 
6044     workers()->run_task(&cleanup_task);
6045 #ifndef PRODUCT
6046     if (G1VerifyCTCleanup || VerifyAfterGC) {
6047       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6048       heap_region_iterate(&cleanup_verifier);
6049     }
6050 #endif
6051   }
6052 
6053   double elapsed = os::elapsedTime() - start;
6054   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6055 }
6056 
6057 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6058   size_t pre_used = 0;
6059   FreeRegionList local_free_list("Local List for CSet Freeing");
6060 
6061   double young_time_ms     = 0.0;
6062   double non_young_time_ms = 0.0;
6063 
6064   // Since the collection set is a superset of the the young list,
6065   // all we need to do to clear the young list is clear its
6066   // head and length, and unlink any young regions in the code below
6067   _young_list->clear();
6068 
6069   G1CollectorPolicy* policy = g1_policy();
6070 
6071   double start_sec = os::elapsedTime();
6072   bool non_young = true;
6073 
6074   HeapRegion* cur = cs_head;
6075   int age_bound = -1;
6076   size_t rs_lengths = 0;
6077 
6078   while (cur != NULL) {
6079     assert(!is_on_master_free_list(cur), "sanity");
6080     if (non_young) {
6081       if (cur->is_young()) {
6082         double end_sec = os::elapsedTime();
6083         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6084         non_young_time_ms += elapsed_ms;
6085 
6086         start_sec = os::elapsedTime();
6087         non_young = false;
6088       }
6089     } else {
6090       if (!cur->is_young()) {
6091         double end_sec = os::elapsedTime();
6092         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6093         young_time_ms += elapsed_ms;
6094 
6095         start_sec = os::elapsedTime();
6096         non_young = true;
6097       }
6098     }
6099 
6100     rs_lengths += cur->rem_set()->occupied_locked();
6101 
6102     HeapRegion* next = cur->next_in_collection_set();
6103     assert(cur->in_collection_set(), "bad CS");
6104     cur->set_next_in_collection_set(NULL);
6105     clear_in_cset(cur);
6106 
6107     if (cur->is_young()) {
6108       int index = cur->young_index_in_cset();
6109       assert(index != -1, "invariant");
6110       assert((uint) index < policy->young_cset_region_length(), "invariant");
6111       size_t words_survived = _surviving_young_words[index];
6112       cur->record_surv_words_in_group(words_survived);
6113 
6114       // At this point the we have 'popped' cur from the collection set
6115       // (linked via next_in_collection_set()) but it is still in the
6116       // young list (linked via next_young_region()). Clear the
6117       // _next_young_region field.
6118       cur->set_next_young_region(NULL);
6119     } else {
6120       int index = cur->young_index_in_cset();
6121       assert(index == -1, "invariant");
6122     }
6123 
6124     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6125             (!cur->is_young() && cur->young_index_in_cset() == -1),
6126             "invariant" );
6127 
6128     if (!cur->evacuation_failed()) {
6129       MemRegion used_mr = cur->used_region();
6130 
6131       // And the region is empty.
6132       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6133       pre_used += cur->used();
6134       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6135     } else {
6136       cur->uninstall_surv_rate_group();
6137       if (cur->is_young()) {
6138         cur->set_young_index_in_cset(-1);
6139       }
6140       cur->set_evacuation_failed(false);
6141       // The region is now considered to be old.
6142       cur->set_old();
6143       // Do some allocation statistics accounting. Regions that failed evacuation
6144       // are always made old, so there is no need to update anything in the young
6145       // gen statistics, but we need to update old gen statistics.
6146       size_t used_words = cur->marked_bytes() / HeapWordSize;
6147       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
6148       _old_set.add(cur);
6149       evacuation_info.increment_collectionset_used_after(cur->used());
6150     }
6151     cur = next;
6152   }
6153 
6154   evacuation_info.set_regions_freed(local_free_list.length());
6155   policy->record_max_rs_lengths(rs_lengths);
6156   policy->cset_regions_freed();
6157 
6158   double end_sec = os::elapsedTime();
6159   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6160 
6161   if (non_young) {
6162     non_young_time_ms += elapsed_ms;
6163   } else {
6164     young_time_ms += elapsed_ms;
6165   }
6166 
6167   prepend_to_freelist(&local_free_list);
6168   decrement_summary_bytes(pre_used);
6169   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6170   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6171 }
6172 
6173 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6174  private:
6175   FreeRegionList* _free_region_list;
6176   HeapRegionSet* _proxy_set;
6177   HeapRegionSetCount _humongous_regions_removed;
6178   size_t _freed_bytes;
6179  public:
6180 
6181   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6182     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6183   }
6184 
6185   virtual bool doHeapRegion(HeapRegion* r) {
6186     if (!r->is_starts_humongous()) {
6187       return false;
6188     }
6189 
6190     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6191 
6192     oop obj = (oop)r->bottom();
6193     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6194 
6195     // The following checks whether the humongous object is live are sufficient.
6196     // The main additional check (in addition to having a reference from the roots
6197     // or the young gen) is whether the humongous object has a remembered set entry.
6198     //
6199     // A humongous object cannot be live if there is no remembered set for it
6200     // because:
6201     // - there can be no references from within humongous starts regions referencing
6202     // the object because we never allocate other objects into them.
6203     // (I.e. there are no intra-region references that may be missed by the
6204     // remembered set)
6205     // - as soon there is a remembered set entry to the humongous starts region
6206     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6207     // until the end of a concurrent mark.
6208     //
6209     // It is not required to check whether the object has been found dead by marking
6210     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6211     // all objects allocated during that time are considered live.
6212     // SATB marking is even more conservative than the remembered set.
6213     // So if at this point in the collection there is no remembered set entry,
6214     // nobody has a reference to it.
6215     // At the start of collection we flush all refinement logs, and remembered sets
6216     // are completely up-to-date wrt to references to the humongous object.
6217     //
6218     // Other implementation considerations:
6219     // - never consider object arrays at this time because they would pose
6220     // considerable effort for cleaning up the the remembered sets. This is
6221     // required because stale remembered sets might reference locations that
6222     // are currently allocated into.
6223     uint region_idx = r->hrm_index();
6224     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6225         !r->rem_set()->is_empty()) {
6226 
6227       if (G1TraceEagerReclaimHumongousObjects) {
6228         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6229                                region_idx,
6230                                (size_t)obj->size() * HeapWordSize,
6231                                p2i(r->bottom()),
6232                                r->region_num(),
6233                                r->rem_set()->occupied(),
6234                                r->rem_set()->strong_code_roots_list_length(),
6235                                next_bitmap->isMarked(r->bottom()),
6236                                g1h->is_humongous_reclaim_candidate(region_idx),
6237                                obj->is_typeArray()
6238                               );
6239       }
6240 
6241       return false;
6242     }
6243 
6244     guarantee(obj->is_typeArray(),
6245               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6246                       PTR_FORMAT " is not.",
6247                       p2i(r->bottom())));
6248 
6249     if (G1TraceEagerReclaimHumongousObjects) {
6250       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6251                              region_idx,
6252                              (size_t)obj->size() * HeapWordSize,
6253                              p2i(r->bottom()),
6254                              r->region_num(),
6255                              r->rem_set()->occupied(),
6256                              r->rem_set()->strong_code_roots_list_length(),
6257                              next_bitmap->isMarked(r->bottom()),
6258                              g1h->is_humongous_reclaim_candidate(region_idx),
6259                              obj->is_typeArray()
6260                             );
6261     }
6262     // Need to clear mark bit of the humongous object if already set.
6263     if (next_bitmap->isMarked(r->bottom())) {
6264       next_bitmap->clear(r->bottom());
6265     }
6266     _freed_bytes += r->used();
6267     r->set_containing_set(NULL);
6268     _humongous_regions_removed.increment(1u, r->capacity());
6269     g1h->free_humongous_region(r, _free_region_list, false);
6270 
6271     return false;
6272   }
6273 
6274   HeapRegionSetCount& humongous_free_count() {
6275     return _humongous_regions_removed;
6276   }
6277 
6278   size_t bytes_freed() const {
6279     return _freed_bytes;
6280   }
6281 
6282   size_t humongous_reclaimed() const {
6283     return _humongous_regions_removed.length();
6284   }
6285 };
6286 
6287 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6288   assert_at_safepoint(true);
6289 
6290   if (!G1EagerReclaimHumongousObjects ||
6291       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6292     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6293     return;
6294   }
6295 
6296   double start_time = os::elapsedTime();
6297 
6298   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6299 
6300   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6301   heap_region_iterate(&cl);
6302 
6303   HeapRegionSetCount empty_set;
6304   remove_from_old_sets(empty_set, cl.humongous_free_count());
6305 
6306   G1HRPrinter* hrp = hr_printer();
6307   if (hrp->is_active()) {
6308     FreeRegionListIterator iter(&local_cleanup_list);
6309     while (iter.more_available()) {
6310       HeapRegion* hr = iter.get_next();
6311       hrp->cleanup(hr);
6312     }
6313   }
6314 
6315   prepend_to_freelist(&local_cleanup_list);
6316   decrement_summary_bytes(cl.bytes_freed());
6317 
6318   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6319                                                                     cl.humongous_reclaimed());
6320 }
6321 
6322 // This routine is similar to the above but does not record
6323 // any policy statistics or update free lists; we are abandoning
6324 // the current incremental collection set in preparation of a
6325 // full collection. After the full GC we will start to build up
6326 // the incremental collection set again.
6327 // This is only called when we're doing a full collection
6328 // and is immediately followed by the tearing down of the young list.
6329 
6330 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6331   HeapRegion* cur = cs_head;
6332 
6333   while (cur != NULL) {
6334     HeapRegion* next = cur->next_in_collection_set();
6335     assert(cur->in_collection_set(), "bad CS");
6336     cur->set_next_in_collection_set(NULL);
6337     clear_in_cset(cur);
6338     cur->set_young_index_in_cset(-1);
6339     cur = next;
6340   }
6341 }
6342 
6343 void G1CollectedHeap::set_free_regions_coming() {
6344   if (G1ConcRegionFreeingVerbose) {
6345     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6346                            "setting free regions coming");
6347   }
6348 
6349   assert(!free_regions_coming(), "pre-condition");
6350   _free_regions_coming = true;
6351 }
6352 
6353 void G1CollectedHeap::reset_free_regions_coming() {
6354   assert(free_regions_coming(), "pre-condition");
6355 
6356   {
6357     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6358     _free_regions_coming = false;
6359     SecondaryFreeList_lock->notify_all();
6360   }
6361 
6362   if (G1ConcRegionFreeingVerbose) {
6363     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6364                            "reset free regions coming");
6365   }
6366 }
6367 
6368 void G1CollectedHeap::wait_while_free_regions_coming() {
6369   // Most of the time we won't have to wait, so let's do a quick test
6370   // first before we take the lock.
6371   if (!free_regions_coming()) {
6372     return;
6373   }
6374 
6375   if (G1ConcRegionFreeingVerbose) {
6376     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6377                            "waiting for free regions");
6378   }
6379 
6380   {
6381     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6382     while (free_regions_coming()) {
6383       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6384     }
6385   }
6386 
6387   if (G1ConcRegionFreeingVerbose) {
6388     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6389                            "done waiting for free regions");
6390   }
6391 }
6392 
6393 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
6394   return _allocator->is_retained_old_region(hr);
6395 }
6396 
6397 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6398   _young_list->push_region(hr);
6399 }
6400 
6401 class NoYoungRegionsClosure: public HeapRegionClosure {
6402 private:
6403   bool _success;
6404 public:
6405   NoYoungRegionsClosure() : _success(true) { }
6406   bool doHeapRegion(HeapRegion* r) {
6407     if (r->is_young()) {
6408       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6409                              p2i(r->bottom()), p2i(r->end()));
6410       _success = false;
6411     }
6412     return false;
6413   }
6414   bool success() { return _success; }
6415 };
6416 
6417 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6418   bool ret = _young_list->check_list_empty(check_sample);
6419 
6420   if (check_heap) {
6421     NoYoungRegionsClosure closure;
6422     heap_region_iterate(&closure);
6423     ret = ret && closure.success();
6424   }
6425 
6426   return ret;
6427 }
6428 
6429 class TearDownRegionSetsClosure : public HeapRegionClosure {
6430 private:
6431   HeapRegionSet *_old_set;
6432 
6433 public:
6434   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6435 
6436   bool doHeapRegion(HeapRegion* r) {
6437     if (r->is_old()) {
6438       _old_set->remove(r);
6439     } else {
6440       // We ignore free regions, we'll empty the free list afterwards.
6441       // We ignore young regions, we'll empty the young list afterwards.
6442       // We ignore humongous regions, we're not tearing down the
6443       // humongous regions set.
6444       assert(r->is_free() || r->is_young() || r->is_humongous(),
6445              "it cannot be another type");
6446     }
6447     return false;
6448   }
6449 
6450   ~TearDownRegionSetsClosure() {
6451     assert(_old_set->is_empty(), "post-condition");
6452   }
6453 };
6454 
6455 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6456   assert_at_safepoint(true /* should_be_vm_thread */);
6457 
6458   if (!free_list_only) {
6459     TearDownRegionSetsClosure cl(&_old_set);
6460     heap_region_iterate(&cl);
6461 
6462     // Note that emptying the _young_list is postponed and instead done as
6463     // the first step when rebuilding the regions sets again. The reason for
6464     // this is that during a full GC string deduplication needs to know if
6465     // a collected region was young or old when the full GC was initiated.
6466   }
6467   _hrm.remove_all_free_regions();
6468 }
6469 
6470 void G1CollectedHeap::increase_used(size_t bytes) {
6471   _summary_bytes_used += bytes;
6472 }
6473 
6474 void G1CollectedHeap::decrease_used(size_t bytes) {
6475   assert(_summary_bytes_used >= bytes,
6476          err_msg("invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6477                  _summary_bytes_used, bytes));
6478   _summary_bytes_used -= bytes;
6479 }
6480 
6481 void G1CollectedHeap::set_used(size_t bytes) {
6482   _summary_bytes_used = bytes;
6483 }
6484 
6485 class RebuildRegionSetsClosure : public HeapRegionClosure {
6486 private:
6487   bool            _free_list_only;
6488   HeapRegionSet*   _old_set;
6489   HeapRegionManager*   _hrm;
6490   size_t          _total_used;
6491 
6492 public:
6493   RebuildRegionSetsClosure(bool free_list_only,
6494                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6495     _free_list_only(free_list_only),
6496     _old_set(old_set), _hrm(hrm), _total_used(0) {
6497     assert(_hrm->num_free_regions() == 0, "pre-condition");
6498     if (!free_list_only) {
6499       assert(_old_set->is_empty(), "pre-condition");
6500     }
6501   }
6502 
6503   bool doHeapRegion(HeapRegion* r) {
6504     if (r->is_continues_humongous()) {
6505       return false;
6506     }
6507 
6508     if (r->is_empty()) {
6509       // Add free regions to the free list
6510       r->set_free();
6511       r->set_allocation_context(AllocationContext::system());
6512       _hrm->insert_into_free_list(r);
6513     } else if (!_free_list_only) {
6514       assert(!r->is_young(), "we should not come across young regions");
6515 
6516       if (r->is_humongous()) {
6517         // We ignore humongous regions. We left the humongous set unchanged.
6518       } else {
6519         // Objects that were compacted would have ended up on regions
6520         // that were previously old or free.  Archive regions (which are
6521         // old) will not have been touched.
6522         assert(r->is_free() || r->is_old(), "invariant");
6523         // We now consider them old, so register as such. Leave
6524         // archive regions set that way, however, while still adding
6525         // them to the old set.
6526         if (!r->is_archive()) {
6527           r->set_old();
6528         }
6529         _old_set->add(r);
6530       }
6531       _total_used += r->used();
6532     }
6533 
6534     return false;
6535   }
6536 
6537   size_t total_used() {
6538     return _total_used;
6539   }
6540 };
6541 
6542 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6543   assert_at_safepoint(true /* should_be_vm_thread */);
6544 
6545   if (!free_list_only) {
6546     _young_list->empty_list();
6547   }
6548 
6549   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6550   heap_region_iterate(&cl);
6551 
6552   if (!free_list_only) {
6553     set_used(cl.total_used());
6554     if (_archive_allocator != NULL) {
6555       _archive_allocator->clear_used();
6556     }
6557   }
6558   assert(used_unlocked() == recalculate_used(),
6559          err_msg("inconsistent used_unlocked(), "
6560                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6561                  used_unlocked(), recalculate_used()));
6562 }
6563 
6564 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6565   _refine_cte_cl->set_concurrent(concurrent);
6566 }
6567 
6568 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6569   HeapRegion* hr = heap_region_containing(p);
6570   return hr->is_in(p);
6571 }
6572 
6573 // Methods for the mutator alloc region
6574 
6575 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6576                                                       bool force) {
6577   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6578   assert(!force || g1_policy()->can_expand_young_list(),
6579          "if force is true we should be able to expand the young list");
6580   bool young_list_full = g1_policy()->is_young_list_full();
6581   if (force || !young_list_full) {
6582     HeapRegion* new_alloc_region = new_region(word_size,
6583                                               false /* is_old */,
6584                                               false /* do_expand */);
6585     if (new_alloc_region != NULL) {
6586       set_region_short_lived_locked(new_alloc_region);
6587       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6588       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6589       return new_alloc_region;
6590     }
6591   }
6592   return NULL;
6593 }
6594 
6595 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6596                                                   size_t allocated_bytes) {
6597   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6598   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6599 
6600   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6601   increase_used(allocated_bytes);
6602   _hr_printer.retire(alloc_region);
6603   // We update the eden sizes here, when the region is retired,
6604   // instead of when it's allocated, since this is the point that its
6605   // used space has been recored in _summary_bytes_used.
6606   g1mm()->update_eden_size();
6607 }
6608 
6609 // Methods for the GC alloc regions
6610 
6611 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6612                                                  uint count,
6613                                                  InCSetState dest) {
6614   assert(FreeList_lock->owned_by_self(), "pre-condition");
6615 
6616   if (count < g1_policy()->max_regions(dest)) {
6617     const bool is_survivor = (dest.is_young());
6618     HeapRegion* new_alloc_region = new_region(word_size,
6619                                               !is_survivor,
6620                                               true /* do_expand */);
6621     if (new_alloc_region != NULL) {
6622       // We really only need to do this for old regions given that we
6623       // should never scan survivors. But it doesn't hurt to do it
6624       // for survivors too.
6625       new_alloc_region->record_timestamp();
6626       if (is_survivor) {
6627         new_alloc_region->set_survivor();
6628         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6629         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6630       } else {
6631         new_alloc_region->set_old();
6632         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6633         check_bitmaps("Old Region Allocation", new_alloc_region);
6634       }
6635       bool during_im = collector_state()->during_initial_mark_pause();
6636       new_alloc_region->note_start_of_copying(during_im);
6637       return new_alloc_region;
6638     }
6639   }
6640   return NULL;
6641 }
6642 
6643 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6644                                              size_t allocated_bytes,
6645                                              InCSetState dest) {
6646   bool during_im = collector_state()->during_initial_mark_pause();
6647   alloc_region->note_end_of_copying(during_im);
6648   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6649   if (dest.is_young()) {
6650     young_list()->add_survivor_region(alloc_region);
6651   } else {
6652     _old_set.add(alloc_region);
6653   }
6654   _hr_printer.retire(alloc_region);
6655 }
6656 
6657 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6658   bool expanded = false;
6659   uint index = _hrm.find_highest_free(&expanded);
6660 
6661   if (index != G1_NO_HRM_INDEX) {
6662     if (expanded) {
6663       ergo_verbose1(ErgoHeapSizing,
6664                     "attempt heap expansion",
6665                     ergo_format_reason("requested address range outside heap bounds")
6666                     ergo_format_byte("region size"),
6667                     HeapRegion::GrainWords * HeapWordSize);
6668     }
6669     _hrm.allocate_free_regions_starting_at(index, 1);
6670     return region_at(index);
6671   }
6672   return NULL;
6673 }
6674 
6675 // Heap region set verification
6676 
6677 class VerifyRegionListsClosure : public HeapRegionClosure {
6678 private:
6679   HeapRegionSet*   _old_set;
6680   HeapRegionSet*   _humongous_set;
6681   HeapRegionManager*   _hrm;
6682 
6683 public:
6684   HeapRegionSetCount _old_count;
6685   HeapRegionSetCount _humongous_count;
6686   HeapRegionSetCount _free_count;
6687 
6688   VerifyRegionListsClosure(HeapRegionSet* old_set,
6689                            HeapRegionSet* humongous_set,
6690                            HeapRegionManager* hrm) :
6691     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6692     _old_count(), _humongous_count(), _free_count(){ }
6693 
6694   bool doHeapRegion(HeapRegion* hr) {
6695     if (hr->is_continues_humongous()) {
6696       return false;
6697     }
6698 
6699     if (hr->is_young()) {
6700       // TODO
6701     } else if (hr->is_starts_humongous()) {
6702       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6703       _humongous_count.increment(1u, hr->capacity());
6704     } else if (hr->is_empty()) {
6705       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6706       _free_count.increment(1u, hr->capacity());
6707     } else if (hr->is_old()) {
6708       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6709       _old_count.increment(1u, hr->capacity());
6710     } else {
6711       // There are no other valid region types. Check for one invalid
6712       // one we can identify: pinned without old or humongous set.
6713       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6714       ShouldNotReachHere();
6715     }
6716     return false;
6717   }
6718 
6719   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6720     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6721     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6722         old_set->total_capacity_bytes(), _old_count.capacity()));
6723 
6724     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6725     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6726         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6727 
6728     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6729     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6730         free_list->total_capacity_bytes(), _free_count.capacity()));
6731   }
6732 };
6733 
6734 void G1CollectedHeap::verify_region_sets() {
6735   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6736 
6737   // First, check the explicit lists.
6738   _hrm.verify();
6739   {
6740     // Given that a concurrent operation might be adding regions to
6741     // the secondary free list we have to take the lock before
6742     // verifying it.
6743     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6744     _secondary_free_list.verify_list();
6745   }
6746 
6747   // If a concurrent region freeing operation is in progress it will
6748   // be difficult to correctly attributed any free regions we come
6749   // across to the correct free list given that they might belong to
6750   // one of several (free_list, secondary_free_list, any local lists,
6751   // etc.). So, if that's the case we will skip the rest of the
6752   // verification operation. Alternatively, waiting for the concurrent
6753   // operation to complete will have a non-trivial effect on the GC's
6754   // operation (no concurrent operation will last longer than the
6755   // interval between two calls to verification) and it might hide
6756   // any issues that we would like to catch during testing.
6757   if (free_regions_coming()) {
6758     return;
6759   }
6760 
6761   // Make sure we append the secondary_free_list on the free_list so
6762   // that all free regions we will come across can be safely
6763   // attributed to the free_list.
6764   append_secondary_free_list_if_not_empty_with_lock();
6765 
6766   // Finally, make sure that the region accounting in the lists is
6767   // consistent with what we see in the heap.
6768 
6769   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6770   heap_region_iterate(&cl);
6771   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6772 }
6773 
6774 // Optimized nmethod scanning
6775 
6776 class RegisterNMethodOopClosure: public OopClosure {
6777   G1CollectedHeap* _g1h;
6778   nmethod* _nm;
6779 
6780   template <class T> void do_oop_work(T* p) {
6781     T heap_oop = oopDesc::load_heap_oop(p);
6782     if (!oopDesc::is_null(heap_oop)) {
6783       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6784       HeapRegion* hr = _g1h->heap_region_containing(obj);
6785       assert(!hr->is_continues_humongous(),
6786              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6787                      " starting at " HR_FORMAT,
6788                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6789 
6790       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6791       hr->add_strong_code_root_locked(_nm);
6792     }
6793   }
6794 
6795 public:
6796   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6797     _g1h(g1h), _nm(nm) {}
6798 
6799   void do_oop(oop* p)       { do_oop_work(p); }
6800   void do_oop(narrowOop* p) { do_oop_work(p); }
6801 };
6802 
6803 class UnregisterNMethodOopClosure: public OopClosure {
6804   G1CollectedHeap* _g1h;
6805   nmethod* _nm;
6806 
6807   template <class T> void do_oop_work(T* p) {
6808     T heap_oop = oopDesc::load_heap_oop(p);
6809     if (!oopDesc::is_null(heap_oop)) {
6810       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6811       HeapRegion* hr = _g1h->heap_region_containing(obj);
6812       assert(!hr->is_continues_humongous(),
6813              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6814                      " starting at " HR_FORMAT,
6815                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6816 
6817       hr->remove_strong_code_root(_nm);
6818     }
6819   }
6820 
6821 public:
6822   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6823     _g1h(g1h), _nm(nm) {}
6824 
6825   void do_oop(oop* p)       { do_oop_work(p); }
6826   void do_oop(narrowOop* p) { do_oop_work(p); }
6827 };
6828 
6829 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6830   CollectedHeap::register_nmethod(nm);
6831 
6832   guarantee(nm != NULL, "sanity");
6833   RegisterNMethodOopClosure reg_cl(this, nm);
6834   nm->oops_do(&reg_cl);
6835 }
6836 
6837 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6838   CollectedHeap::unregister_nmethod(nm);
6839 
6840   guarantee(nm != NULL, "sanity");
6841   UnregisterNMethodOopClosure reg_cl(this, nm);
6842   nm->oops_do(&reg_cl, true);
6843 }
6844 
6845 void G1CollectedHeap::purge_code_root_memory() {
6846   double purge_start = os::elapsedTime();
6847   G1CodeRootSet::purge();
6848   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6849   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6850 }
6851 
6852 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6853   G1CollectedHeap* _g1h;
6854 
6855 public:
6856   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6857     _g1h(g1h) {}
6858 
6859   void do_code_blob(CodeBlob* cb) {
6860     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6861     if (nm == NULL) {
6862       return;
6863     }
6864 
6865     if (ScavengeRootsInCode) {
6866       _g1h->register_nmethod(nm);
6867     }
6868   }
6869 };
6870 
6871 void G1CollectedHeap::rebuild_strong_code_roots() {
6872   RebuildStrongCodeRootClosure blob_cl(this);
6873   CodeCache::blobs_do(&blob_cl);
6874 }