1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1RootProcessor.hpp"
  52 #include "gc_implementation/g1/g1StringDedup.hpp"
  53 #include "gc_implementation/g1/g1YCTypes.hpp"
  54 #include "gc_implementation/g1/heapRegion.inline.hpp"
  55 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  56 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  57 #include "gc_implementation/g1/vm_operations_g1.hpp"
  58 #include "gc_implementation/shared/gcHeapSummary.hpp"
  59 #include "gc_implementation/shared/gcTimer.hpp"
  60 #include "gc_implementation/shared/gcTrace.hpp"
  61 #include "gc_implementation/shared/gcTraceTime.hpp"
  62 #include "gc_implementation/shared/isGCActiveMark.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/gcLocker.inline.hpp"
  65 #include "memory/generationSpec.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "memory/referenceProcessor.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  76 
  77 // turn it on so that the contents of the young list (scan-only /
  78 // to-be-collected) are printed at "strategic" points before / during
  79 // / after the collection --- this is useful for debugging
  80 #define YOUNG_LIST_VERBOSE 0
  81 // CURRENT STATUS
  82 // This file is under construction.  Search for "FIXME".
  83 
  84 // INVARIANTS/NOTES
  85 //
  86 // All allocation activity covered by the G1CollectedHeap interface is
  87 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  88 // and allocate_new_tlab, which are the "entry" points to the
  89 // allocation code from the rest of the JVM.  (Note that this does not
  90 // apply to TLAB allocation, which is not part of this interface: it
  91 // is done by clients of this interface.)
  92 
  93 // Local to this file.
  94 
  95 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure() : _concurrent(true) { }
  99 
 100   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 101     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 102     // This path is executed by the concurrent refine or mutator threads,
 103     // concurrently, and so we do not care if card_ptr contains references
 104     // that point into the collection set.
 105     assert(!oops_into_cset, "should be");
 106 
 107     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 108       // Caller will actually yield.
 109       return false;
 110     }
 111     // Otherwise, we finished successfully; return true.
 112     return true;
 113   }
 114 
 115   void set_concurrent(bool b) { _concurrent = b; }
 116 };
 117 
 118 
 119 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 120  private:
 121   size_t _num_processed;
 122 
 123  public:
 124   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 125 
 126   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 127     *card_ptr = CardTableModRefBS::dirty_card_val();
 128     _num_processed++;
 129     return true;
 130   }
 131 
 132   size_t num_processed() const { return _num_processed; }
 133 };
 134 
 135 YoungList::YoungList(G1CollectedHeap* g1h) :
 136     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 137     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 138   guarantee(check_list_empty(false), "just making sure...");
 139 }
 140 
 141 void YoungList::push_region(HeapRegion *hr) {
 142   assert(!hr->is_young(), "should not already be young");
 143   assert(hr->get_next_young_region() == NULL, "cause it should!");
 144 
 145   hr->set_next_young_region(_head);
 146   _head = hr;
 147 
 148   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 149   ++_length;
 150 }
 151 
 152 void YoungList::add_survivor_region(HeapRegion* hr) {
 153   assert(hr->is_survivor(), "should be flagged as survivor region");
 154   assert(hr->get_next_young_region() == NULL, "cause it should!");
 155 
 156   hr->set_next_young_region(_survivor_head);
 157   if (_survivor_head == NULL) {
 158     _survivor_tail = hr;
 159   }
 160   _survivor_head = hr;
 161   ++_survivor_length;
 162 }
 163 
 164 void YoungList::empty_list(HeapRegion* list) {
 165   while (list != NULL) {
 166     HeapRegion* next = list->get_next_young_region();
 167     list->set_next_young_region(NULL);
 168     list->uninstall_surv_rate_group();
 169     // This is called before a Full GC and all the non-empty /
 170     // non-humongous regions at the end of the Full GC will end up as
 171     // old anyway.
 172     list->set_old();
 173     list = next;
 174   }
 175 }
 176 
 177 void YoungList::empty_list() {
 178   assert(check_list_well_formed(), "young list should be well formed");
 179 
 180   empty_list(_head);
 181   _head = NULL;
 182   _length = 0;
 183 
 184   empty_list(_survivor_head);
 185   _survivor_head = NULL;
 186   _survivor_tail = NULL;
 187   _survivor_length = 0;
 188 
 189   _last_sampled_rs_lengths = 0;
 190 
 191   assert(check_list_empty(false), "just making sure...");
 192 }
 193 
 194 bool YoungList::check_list_well_formed() {
 195   bool ret = true;
 196 
 197   uint length = 0;
 198   HeapRegion* curr = _head;
 199   HeapRegion* last = NULL;
 200   while (curr != NULL) {
 201     if (!curr->is_young()) {
 202       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 203                              "incorrectly tagged (y: %d, surv: %d)",
 204                              curr->bottom(), curr->end(),
 205                              curr->is_young(), curr->is_survivor());
 206       ret = false;
 207     }
 208     ++length;
 209     last = curr;
 210     curr = curr->get_next_young_region();
 211   }
 212   ret = ret && (length == _length);
 213 
 214   if (!ret) {
 215     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 216     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 217                            length, _length);
 218   }
 219 
 220   return ret;
 221 }
 222 
 223 bool YoungList::check_list_empty(bool check_sample) {
 224   bool ret = true;
 225 
 226   if (_length != 0) {
 227     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 228                   _length);
 229     ret = false;
 230   }
 231   if (check_sample && _last_sampled_rs_lengths != 0) {
 232     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 233     ret = false;
 234   }
 235   if (_head != NULL) {
 236     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 237     ret = false;
 238   }
 239   if (!ret) {
 240     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 241   }
 242 
 243   return ret;
 244 }
 245 
 246 void
 247 YoungList::rs_length_sampling_init() {
 248   _sampled_rs_lengths = 0;
 249   _curr               = _head;
 250 }
 251 
 252 bool
 253 YoungList::rs_length_sampling_more() {
 254   return _curr != NULL;
 255 }
 256 
 257 void
 258 YoungList::rs_length_sampling_next() {
 259   assert( _curr != NULL, "invariant" );
 260   size_t rs_length = _curr->rem_set()->occupied();
 261 
 262   _sampled_rs_lengths += rs_length;
 263 
 264   // The current region may not yet have been added to the
 265   // incremental collection set (it gets added when it is
 266   // retired as the current allocation region).
 267   if (_curr->in_collection_set()) {
 268     // Update the collection set policy information for this region
 269     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 270   }
 271 
 272   _curr = _curr->get_next_young_region();
 273   if (_curr == NULL) {
 274     _last_sampled_rs_lengths = _sampled_rs_lengths;
 275     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 276   }
 277 }
 278 
 279 void
 280 YoungList::reset_auxilary_lists() {
 281   guarantee( is_empty(), "young list should be empty" );
 282   assert(check_list_well_formed(), "young list should be well formed");
 283 
 284   // Add survivor regions to SurvRateGroup.
 285   _g1h->g1_policy()->note_start_adding_survivor_regions();
 286   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 287 
 288   int young_index_in_cset = 0;
 289   for (HeapRegion* curr = _survivor_head;
 290        curr != NULL;
 291        curr = curr->get_next_young_region()) {
 292     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 293 
 294     // The region is a non-empty survivor so let's add it to
 295     // the incremental collection set for the next evacuation
 296     // pause.
 297     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 298     young_index_in_cset += 1;
 299   }
 300   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 301   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 302 
 303   _head   = _survivor_head;
 304   _length = _survivor_length;
 305   if (_survivor_head != NULL) {
 306     assert(_survivor_tail != NULL, "cause it shouldn't be");
 307     assert(_survivor_length > 0, "invariant");
 308     _survivor_tail->set_next_young_region(NULL);
 309   }
 310 
 311   // Don't clear the survivor list handles until the start of
 312   // the next evacuation pause - we need it in order to re-tag
 313   // the survivor regions from this evacuation pause as 'young'
 314   // at the start of the next.
 315 
 316   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 317 
 318   assert(check_list_well_formed(), "young list should be well formed");
 319 }
 320 
 321 void YoungList::print() {
 322   HeapRegion* lists[] = {_head,   _survivor_head};
 323   const char* names[] = {"YOUNG", "SURVIVOR"};
 324 
 325   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 326     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 327     HeapRegion *curr = lists[list];
 328     if (curr == NULL)
 329       gclog_or_tty->print_cr("  empty");
 330     while (curr != NULL) {
 331       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 332                              HR_FORMAT_PARAMS(curr),
 333                              curr->prev_top_at_mark_start(),
 334                              curr->next_top_at_mark_start(),
 335                              curr->age_in_surv_rate_group_cond());
 336       curr = curr->get_next_young_region();
 337     }
 338   }
 339 
 340   gclog_or_tty->cr();
 341 }
 342 
 343 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 344   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 345 }
 346 
 347 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 348   // The from card cache is not the memory that is actually committed. So we cannot
 349   // take advantage of the zero_filled parameter.
 350   reset_from_card_cache(start_idx, num_regions);
 351 }
 352 
 353 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 354 {
 355   // Claim the right to put the region on the dirty cards region list
 356   // by installing a self pointer.
 357   HeapRegion* next = hr->get_next_dirty_cards_region();
 358   if (next == NULL) {
 359     HeapRegion* res = (HeapRegion*)
 360       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 361                           NULL);
 362     if (res == NULL) {
 363       HeapRegion* head;
 364       do {
 365         // Put the region to the dirty cards region list.
 366         head = _dirty_cards_region_list;
 367         next = (HeapRegion*)
 368           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 369         if (next == head) {
 370           assert(hr->get_next_dirty_cards_region() == hr,
 371                  "hr->get_next_dirty_cards_region() != hr");
 372           if (next == NULL) {
 373             // The last region in the list points to itself.
 374             hr->set_next_dirty_cards_region(hr);
 375           } else {
 376             hr->set_next_dirty_cards_region(next);
 377           }
 378         }
 379       } while (next != head);
 380     }
 381   }
 382 }
 383 
 384 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 385 {
 386   HeapRegion* head;
 387   HeapRegion* hr;
 388   do {
 389     head = _dirty_cards_region_list;
 390     if (head == NULL) {
 391       return NULL;
 392     }
 393     HeapRegion* new_head = head->get_next_dirty_cards_region();
 394     if (head == new_head) {
 395       // The last region.
 396       new_head = NULL;
 397     }
 398     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 399                                           head);
 400   } while (hr != head);
 401   assert(hr != NULL, "invariant");
 402   hr->set_next_dirty_cards_region(NULL);
 403   return hr;
 404 }
 405 
 406 // Returns true if the reference points to an object that
 407 // can move in an incremental collection.
 408 bool G1CollectedHeap::is_scavengable(const void* p) {
 409   HeapRegion* hr = heap_region_containing(p);
 410   return !hr->is_humongous();
 411 }
 412 
 413 // Private methods.
 414 
 415 HeapRegion*
 416 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 417   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 418   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 419     if (!_secondary_free_list.is_empty()) {
 420       if (G1ConcRegionFreeingVerbose) {
 421         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 422                                "secondary_free_list has %u entries",
 423                                _secondary_free_list.length());
 424       }
 425       // It looks as if there are free regions available on the
 426       // secondary_free_list. Let's move them to the free_list and try
 427       // again to allocate from it.
 428       append_secondary_free_list();
 429 
 430       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 431              "empty we should have moved at least one entry to the free_list");
 432       HeapRegion* res = _hrm.allocate_free_region(is_old);
 433       if (G1ConcRegionFreeingVerbose) {
 434         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 435                                "allocated "HR_FORMAT" from secondary_free_list",
 436                                HR_FORMAT_PARAMS(res));
 437       }
 438       return res;
 439     }
 440 
 441     // Wait here until we get notified either when (a) there are no
 442     // more free regions coming or (b) some regions have been moved on
 443     // the secondary_free_list.
 444     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 445   }
 446 
 447   if (G1ConcRegionFreeingVerbose) {
 448     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 449                            "could not allocate from secondary_free_list");
 450   }
 451   return NULL;
 452 }
 453 
 454 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 455   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 456          "the only time we use this to allocate a humongous region is "
 457          "when we are allocating a single humongous region");
 458 
 459   HeapRegion* res;
 460   if (G1StressConcRegionFreeing) {
 461     if (!_secondary_free_list.is_empty()) {
 462       if (G1ConcRegionFreeingVerbose) {
 463         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 464                                "forced to look at the secondary_free_list");
 465       }
 466       res = new_region_try_secondary_free_list(is_old);
 467       if (res != NULL) {
 468         return res;
 469       }
 470     }
 471   }
 472 
 473   res = _hrm.allocate_free_region(is_old);
 474 
 475   if (res == NULL) {
 476     if (G1ConcRegionFreeingVerbose) {
 477       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 478                              "res == NULL, trying the secondary_free_list");
 479     }
 480     res = new_region_try_secondary_free_list(is_old);
 481   }
 482   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 483     // Currently, only attempts to allocate GC alloc regions set
 484     // do_expand to true. So, we should only reach here during a
 485     // safepoint. If this assumption changes we might have to
 486     // reconsider the use of _expand_heap_after_alloc_failure.
 487     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 488 
 489     ergo_verbose1(ErgoHeapSizing,
 490                   "attempt heap expansion",
 491                   ergo_format_reason("region allocation request failed")
 492                   ergo_format_byte("allocation request"),
 493                   word_size * HeapWordSize);
 494     if (expand(word_size * HeapWordSize)) {
 495       // Given that expand() succeeded in expanding the heap, and we
 496       // always expand the heap by an amount aligned to the heap
 497       // region size, the free list should in theory not be empty.
 498       // In either case allocate_free_region() will check for NULL.
 499       res = _hrm.allocate_free_region(is_old);
 500     } else {
 501       _expand_heap_after_alloc_failure = false;
 502     }
 503   }
 504   return res;
 505 }
 506 
 507 HeapWord*
 508 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 509                                                            uint num_regions,
 510                                                            size_t word_size,
 511                                                            AllocationContext_t context) {
 512   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 513   assert(is_humongous(word_size), "word_size should be humongous");
 514   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 515 
 516   // Index of last region in the series + 1.
 517   uint last = first + num_regions;
 518 
 519   // We need to initialize the region(s) we just discovered. This is
 520   // a bit tricky given that it can happen concurrently with
 521   // refinement threads refining cards on these regions and
 522   // potentially wanting to refine the BOT as they are scanning
 523   // those cards (this can happen shortly after a cleanup; see CR
 524   // 6991377). So we have to set up the region(s) carefully and in
 525   // a specific order.
 526 
 527   // The word size sum of all the regions we will allocate.
 528   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 529   assert(word_size <= word_size_sum, "sanity");
 530 
 531   // This will be the "starts humongous" region.
 532   HeapRegion* first_hr = region_at(first);
 533   // The header of the new object will be placed at the bottom of
 534   // the first region.
 535   HeapWord* new_obj = first_hr->bottom();
 536   // This will be the new end of the first region in the series that
 537   // should also match the end of the last region in the series.
 538   HeapWord* new_end = new_obj + word_size_sum;
 539   // This will be the new top of the first region that will reflect
 540   // this allocation.
 541   HeapWord* new_top = new_obj + word_size;
 542 
 543   // First, we need to zero the header of the space that we will be
 544   // allocating. When we update top further down, some refinement
 545   // threads might try to scan the region. By zeroing the header we
 546   // ensure that any thread that will try to scan the region will
 547   // come across the zero klass word and bail out.
 548   //
 549   // NOTE: It would not have been correct to have used
 550   // CollectedHeap::fill_with_object() and make the space look like
 551   // an int array. The thread that is doing the allocation will
 552   // later update the object header to a potentially different array
 553   // type and, for a very short period of time, the klass and length
 554   // fields will be inconsistent. This could cause a refinement
 555   // thread to calculate the object size incorrectly.
 556   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 557 
 558   // We will set up the first region as "starts humongous". This
 559   // will also update the BOT covering all the regions to reflect
 560   // that there is a single object that starts at the bottom of the
 561   // first region.
 562   first_hr->set_starts_humongous(new_top, new_end);
 563   first_hr->set_allocation_context(context);
 564   // Then, if there are any, we will set up the "continues
 565   // humongous" regions.
 566   HeapRegion* hr = NULL;
 567   for (uint i = first + 1; i < last; ++i) {
 568     hr = region_at(i);
 569     hr->set_continues_humongous(first_hr);
 570     hr->set_allocation_context(context);
 571   }
 572   // If we have "continues humongous" regions (hr != NULL), then the
 573   // end of the last one should match new_end.
 574   assert(hr == NULL || hr->end() == new_end, "sanity");
 575 
 576   // Up to this point no concurrent thread would have been able to
 577   // do any scanning on any region in this series. All the top
 578   // fields still point to bottom, so the intersection between
 579   // [bottom,top] and [card_start,card_end] will be empty. Before we
 580   // update the top fields, we'll do a storestore to make sure that
 581   // no thread sees the update to top before the zeroing of the
 582   // object header and the BOT initialization.
 583   OrderAccess::storestore();
 584 
 585   // Now that the BOT and the object header have been initialized,
 586   // we can update top of the "starts humongous" region.
 587   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 588          "new_top should be in this region");
 589   first_hr->set_top(new_top);
 590   if (_hr_printer.is_active()) {
 591     HeapWord* bottom = first_hr->bottom();
 592     HeapWord* end = first_hr->orig_end();
 593     if ((first + 1) == last) {
 594       // the series has a single humongous region
 595       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 596     } else {
 597       // the series has more than one humongous regions
 598       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 599     }
 600   }
 601 
 602   // Now, we will update the top fields of the "continues humongous"
 603   // regions. The reason we need to do this is that, otherwise,
 604   // these regions would look empty and this will confuse parts of
 605   // G1. For example, the code that looks for a consecutive number
 606   // of empty regions will consider them empty and try to
 607   // re-allocate them. We can extend is_empty() to also include
 608   // !is_continues_humongous(), but it is easier to just update the top
 609   // fields here. The way we set top for all regions (i.e., top ==
 610   // end for all regions but the last one, top == new_top for the
 611   // last one) is actually used when we will free up the humongous
 612   // region in free_humongous_region().
 613   hr = NULL;
 614   for (uint i = first + 1; i < last; ++i) {
 615     hr = region_at(i);
 616     if ((i + 1) == last) {
 617       // last continues humongous region
 618       assert(hr->bottom() < new_top && new_top <= hr->end(),
 619              "new_top should fall on this region");
 620       hr->set_top(new_top);
 621       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 622     } else {
 623       // not last one
 624       assert(new_top > hr->end(), "new_top should be above this region");
 625       hr->set_top(hr->end());
 626       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 627     }
 628   }
 629   // If we have continues humongous regions (hr != NULL), then the
 630   // end of the last one should match new_end and its top should
 631   // match new_top.
 632   assert(hr == NULL ||
 633          (hr->end() == new_end && hr->top() == new_top), "sanity");
 634   check_bitmaps("Humongous Region Allocation", first_hr);
 635 
 636   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 637   _allocator->increase_used(first_hr->used());
 638   _humongous_set.add(first_hr);
 639 
 640   return new_obj;
 641 }
 642 
 643 // If could fit into free regions w/o expansion, try.
 644 // Otherwise, if can expand, do so.
 645 // Otherwise, if using ex regions might help, try with ex given back.
 646 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 647   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 648 
 649   verify_region_sets_optional();
 650 
 651   uint first = G1_NO_HRM_INDEX;
 652   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 653 
 654   if (obj_regions == 1) {
 655     // Only one region to allocate, try to use a fast path by directly allocating
 656     // from the free lists. Do not try to expand here, we will potentially do that
 657     // later.
 658     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 659     if (hr != NULL) {
 660       first = hr->hrm_index();
 661     }
 662   } else {
 663     // We can't allocate humongous regions spanning more than one region while
 664     // cleanupComplete() is running, since some of the regions we find to be
 665     // empty might not yet be added to the free list. It is not straightforward
 666     // to know in which list they are on so that we can remove them. We only
 667     // need to do this if we need to allocate more than one region to satisfy the
 668     // current humongous allocation request. If we are only allocating one region
 669     // we use the one-region region allocation code (see above), that already
 670     // potentially waits for regions from the secondary free list.
 671     wait_while_free_regions_coming();
 672     append_secondary_free_list_if_not_empty_with_lock();
 673 
 674     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 675     // are lucky enough to find some.
 676     first = _hrm.find_contiguous_only_empty(obj_regions);
 677     if (first != G1_NO_HRM_INDEX) {
 678       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 679     }
 680   }
 681 
 682   if (first == G1_NO_HRM_INDEX) {
 683     // Policy: We could not find enough regions for the humongous object in the
 684     // free list. Look through the heap to find a mix of free and uncommitted regions.
 685     // If so, try expansion.
 686     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 687     if (first != G1_NO_HRM_INDEX) {
 688       // We found something. Make sure these regions are committed, i.e. expand
 689       // the heap. Alternatively we could do a defragmentation GC.
 690       ergo_verbose1(ErgoHeapSizing,
 691                     "attempt heap expansion",
 692                     ergo_format_reason("humongous allocation request failed")
 693                     ergo_format_byte("allocation request"),
 694                     word_size * HeapWordSize);
 695 
 696       _hrm.expand_at(first, obj_regions);
 697       g1_policy()->record_new_heap_size(num_regions());
 698 
 699 #ifdef ASSERT
 700       for (uint i = first; i < first + obj_regions; ++i) {
 701         HeapRegion* hr = region_at(i);
 702         assert(hr->is_free(), "sanity");
 703         assert(hr->is_empty(), "sanity");
 704         assert(is_on_master_free_list(hr), "sanity");
 705       }
 706 #endif
 707       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 708     } else {
 709       // Policy: Potentially trigger a defragmentation GC.
 710     }
 711   }
 712 
 713   HeapWord* result = NULL;
 714   if (first != G1_NO_HRM_INDEX) {
 715     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 716                                                        word_size, context);
 717     assert(result != NULL, "it should always return a valid result");
 718 
 719     // A successful humongous object allocation changes the used space
 720     // information of the old generation so we need to recalculate the
 721     // sizes and update the jstat counters here.
 722     g1mm()->update_sizes();
 723   }
 724 
 725   verify_region_sets_optional();
 726 
 727   return result;
 728 }
 729 
 730 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 731   assert_heap_not_locked_and_not_at_safepoint();
 732   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 733 
 734   uint dummy_gc_count_before;
 735   uint dummy_gclocker_retry_count = 0;
 736   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 737 }
 738 
 739 HeapWord*
 740 G1CollectedHeap::mem_allocate(size_t word_size,
 741                               bool*  gc_overhead_limit_was_exceeded) {
 742   assert_heap_not_locked_and_not_at_safepoint();
 743 
 744   // Loop until the allocation is satisfied, or unsatisfied after GC.
 745   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 746     uint gc_count_before;
 747 
 748     HeapWord* result = NULL;
 749     if (!is_humongous(word_size)) {
 750       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 751     } else {
 752       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 753     }
 754     if (result != NULL) {
 755       return result;
 756     }
 757 
 758     // Create the garbage collection operation...
 759     VM_G1CollectForAllocation op(gc_count_before, word_size);
 760     op.set_allocation_context(AllocationContext::current());
 761 
 762     // ...and get the VM thread to execute it.
 763     VMThread::execute(&op);
 764 
 765     if (op.prologue_succeeded() && op.pause_succeeded()) {
 766       // If the operation was successful we'll return the result even
 767       // if it is NULL. If the allocation attempt failed immediately
 768       // after a Full GC, it's unlikely we'll be able to allocate now.
 769       HeapWord* result = op.result();
 770       if (result != NULL && !is_humongous(word_size)) {
 771         // Allocations that take place on VM operations do not do any
 772         // card dirtying and we have to do it here. We only have to do
 773         // this for non-humongous allocations, though.
 774         dirty_young_block(result, word_size);
 775       }
 776       return result;
 777     } else {
 778       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 779         return NULL;
 780       }
 781       assert(op.result() == NULL,
 782              "the result should be NULL if the VM op did not succeed");
 783     }
 784 
 785     // Give a warning if we seem to be looping forever.
 786     if ((QueuedAllocationWarningCount > 0) &&
 787         (try_count % QueuedAllocationWarningCount == 0)) {
 788       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 789     }
 790   }
 791 
 792   ShouldNotReachHere();
 793   return NULL;
 794 }
 795 
 796 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 797                                                    AllocationContext_t context,
 798                                                    uint* gc_count_before_ret,
 799                                                    uint* gclocker_retry_count_ret) {
 800   // Make sure you read the note in attempt_allocation_humongous().
 801 
 802   assert_heap_not_locked_and_not_at_safepoint();
 803   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 804          "be called for humongous allocation requests");
 805 
 806   // We should only get here after the first-level allocation attempt
 807   // (attempt_allocation()) failed to allocate.
 808 
 809   // We will loop until a) we manage to successfully perform the
 810   // allocation or b) we successfully schedule a collection which
 811   // fails to perform the allocation. b) is the only case when we'll
 812   // return NULL.
 813   HeapWord* result = NULL;
 814   for (int try_count = 1; /* we'll return */; try_count += 1) {
 815     bool should_try_gc;
 816     uint gc_count_before;
 817 
 818     {
 819       MutexLockerEx x(Heap_lock);
 820       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 821                                                                                     false /* bot_updates */);
 822       if (result != NULL) {
 823         return result;
 824       }
 825 
 826       // If we reach here, attempt_allocation_locked() above failed to
 827       // allocate a new region. So the mutator alloc region should be NULL.
 828       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 829 
 830       if (GC_locker::is_active_and_needs_gc()) {
 831         if (g1_policy()->can_expand_young_list()) {
 832           // No need for an ergo verbose message here,
 833           // can_expand_young_list() does this when it returns true.
 834           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 835                                                                                        false /* bot_updates */);
 836           if (result != NULL) {
 837             return result;
 838           }
 839         }
 840         should_try_gc = false;
 841       } else {
 842         // The GCLocker may not be active but the GCLocker initiated
 843         // GC may not yet have been performed (GCLocker::needs_gc()
 844         // returns true). In this case we do not try this GC and
 845         // wait until the GCLocker initiated GC is performed, and
 846         // then retry the allocation.
 847         if (GC_locker::needs_gc()) {
 848           should_try_gc = false;
 849         } else {
 850           // Read the GC count while still holding the Heap_lock.
 851           gc_count_before = total_collections();
 852           should_try_gc = true;
 853         }
 854       }
 855     }
 856 
 857     if (should_try_gc) {
 858       bool succeeded;
 859       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 860                                    GCCause::_g1_inc_collection_pause);
 861       if (result != NULL) {
 862         assert(succeeded, "only way to get back a non-NULL result");
 863         return result;
 864       }
 865 
 866       if (succeeded) {
 867         // If we get here we successfully scheduled a collection which
 868         // failed to allocate. No point in trying to allocate
 869         // further. We'll just return NULL.
 870         MutexLockerEx x(Heap_lock);
 871         *gc_count_before_ret = total_collections();
 872         return NULL;
 873       }
 874     } else {
 875       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 876         MutexLockerEx x(Heap_lock);
 877         *gc_count_before_ret = total_collections();
 878         return NULL;
 879       }
 880       // The GCLocker is either active or the GCLocker initiated
 881       // GC has not yet been performed. Stall until it is and
 882       // then retry the allocation.
 883       GC_locker::stall_until_clear();
 884       (*gclocker_retry_count_ret) += 1;
 885     }
 886 
 887     // We can reach here if we were unsuccessful in scheduling a
 888     // collection (because another thread beat us to it) or if we were
 889     // stalled due to the GC locker. In either can we should retry the
 890     // allocation attempt in case another thread successfully
 891     // performed a collection and reclaimed enough space. We do the
 892     // first attempt (without holding the Heap_lock) here and the
 893     // follow-on attempt will be at the start of the next loop
 894     // iteration (after taking the Heap_lock).
 895     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 896                                                                            false /* bot_updates */);
 897     if (result != NULL) {
 898       return result;
 899     }
 900 
 901     // Give a warning if we seem to be looping forever.
 902     if ((QueuedAllocationWarningCount > 0) &&
 903         (try_count % QueuedAllocationWarningCount == 0)) {
 904       warning("G1CollectedHeap::attempt_allocation_slow() "
 905               "retries %d times", try_count);
 906     }
 907   }
 908 
 909   ShouldNotReachHere();
 910   return NULL;
 911 }
 912 
 913 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 914                                                         uint* gc_count_before_ret,
 915                                                         uint* gclocker_retry_count_ret) {
 916   // The structure of this method has a lot of similarities to
 917   // attempt_allocation_slow(). The reason these two were not merged
 918   // into a single one is that such a method would require several "if
 919   // allocation is not humongous do this, otherwise do that"
 920   // conditional paths which would obscure its flow. In fact, an early
 921   // version of this code did use a unified method which was harder to
 922   // follow and, as a result, it had subtle bugs that were hard to
 923   // track down. So keeping these two methods separate allows each to
 924   // be more readable. It will be good to keep these two in sync as
 925   // much as possible.
 926 
 927   assert_heap_not_locked_and_not_at_safepoint();
 928   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 929          "should only be called for humongous allocations");
 930 
 931   // Humongous objects can exhaust the heap quickly, so we should check if we
 932   // need to start a marking cycle at each humongous object allocation. We do
 933   // the check before we do the actual allocation. The reason for doing it
 934   // before the allocation is that we avoid having to keep track of the newly
 935   // allocated memory while we do a GC.
 936   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 937                                            word_size)) {
 938     collect(GCCause::_g1_humongous_allocation);
 939   }
 940 
 941   // We will loop until a) we manage to successfully perform the
 942   // allocation or b) we successfully schedule a collection which
 943   // fails to perform the allocation. b) is the only case when we'll
 944   // return NULL.
 945   HeapWord* result = NULL;
 946   for (int try_count = 1; /* we'll return */; try_count += 1) {
 947     bool should_try_gc;
 948     uint gc_count_before;
 949 
 950     {
 951       MutexLockerEx x(Heap_lock);
 952 
 953       // Given that humongous objects are not allocated in young
 954       // regions, we'll first try to do the allocation without doing a
 955       // collection hoping that there's enough space in the heap.
 956       result = humongous_obj_allocate(word_size, AllocationContext::current());
 957       if (result != NULL) {
 958         return result;
 959       }
 960 
 961       if (GC_locker::is_active_and_needs_gc()) {
 962         should_try_gc = false;
 963       } else {
 964          // The GCLocker may not be active but the GCLocker initiated
 965         // GC may not yet have been performed (GCLocker::needs_gc()
 966         // returns true). In this case we do not try this GC and
 967         // wait until the GCLocker initiated GC is performed, and
 968         // then retry the allocation.
 969         if (GC_locker::needs_gc()) {
 970           should_try_gc = false;
 971         } else {
 972           // Read the GC count while still holding the Heap_lock.
 973           gc_count_before = total_collections();
 974           should_try_gc = true;
 975         }
 976       }
 977     }
 978 
 979     if (should_try_gc) {
 980       // If we failed to allocate the humongous object, we should try to
 981       // do a collection pause (if we're allowed) in case it reclaims
 982       // enough space for the allocation to succeed after the pause.
 983 
 984       bool succeeded;
 985       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 986                                    GCCause::_g1_humongous_allocation);
 987       if (result != NULL) {
 988         assert(succeeded, "only way to get back a non-NULL result");
 989         return result;
 990       }
 991 
 992       if (succeeded) {
 993         // If we get here we successfully scheduled a collection which
 994         // failed to allocate. No point in trying to allocate
 995         // further. We'll just return NULL.
 996         MutexLockerEx x(Heap_lock);
 997         *gc_count_before_ret = total_collections();
 998         return NULL;
 999       }
1000     } else {
1001       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1002         MutexLockerEx x(Heap_lock);
1003         *gc_count_before_ret = total_collections();
1004         return NULL;
1005       }
1006       // The GCLocker is either active or the GCLocker initiated
1007       // GC has not yet been performed. Stall until it is and
1008       // then retry the allocation.
1009       GC_locker::stall_until_clear();
1010       (*gclocker_retry_count_ret) += 1;
1011     }
1012 
1013     // We can reach here if we were unsuccessful in scheduling a
1014     // collection (because another thread beat us to it) or if we were
1015     // stalled due to the GC locker. In either can we should retry the
1016     // allocation attempt in case another thread successfully
1017     // performed a collection and reclaimed enough space.  Give a
1018     // warning if we seem to be looping forever.
1019 
1020     if ((QueuedAllocationWarningCount > 0) &&
1021         (try_count % QueuedAllocationWarningCount == 0)) {
1022       warning("G1CollectedHeap::attempt_allocation_humongous() "
1023               "retries %d times", try_count);
1024     }
1025   }
1026 
1027   ShouldNotReachHere();
1028   return NULL;
1029 }
1030 
1031 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1032                                                            AllocationContext_t context,
1033                                                            bool expect_null_mutator_alloc_region) {
1034   assert_at_safepoint(true /* should_be_vm_thread */);
1035   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1036                                              !expect_null_mutator_alloc_region,
1037          "the current alloc region was unexpectedly found to be non-NULL");
1038 
1039   if (!is_humongous(word_size)) {
1040     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1041                                                       false /* bot_updates */);
1042   } else {
1043     HeapWord* result = humongous_obj_allocate(word_size, context);
1044     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1045       g1_policy()->set_initiate_conc_mark_if_possible();
1046     }
1047     return result;
1048   }
1049 
1050   ShouldNotReachHere();
1051 }
1052 
1053 class PostMCRemSetClearClosure: public HeapRegionClosure {
1054   G1CollectedHeap* _g1h;
1055   ModRefBarrierSet* _mr_bs;
1056 public:
1057   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1058     _g1h(g1h), _mr_bs(mr_bs) {}
1059 
1060   bool doHeapRegion(HeapRegion* r) {
1061     HeapRegionRemSet* hrrs = r->rem_set();
1062 
1063     if (r->is_continues_humongous()) {
1064       // We'll assert that the strong code root list and RSet is empty
1065       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1066       assert(hrrs->occupied() == 0, "RSet should be empty");
1067       return false;
1068     }
1069 
1070     _g1h->reset_gc_time_stamps(r);
1071     hrrs->clear();
1072     // You might think here that we could clear just the cards
1073     // corresponding to the used region.  But no: if we leave a dirty card
1074     // in a region we might allocate into, then it would prevent that card
1075     // from being enqueued, and cause it to be missed.
1076     // Re: the performance cost: we shouldn't be doing full GC anyway!
1077     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1078 
1079     return false;
1080   }
1081 };
1082 
1083 void G1CollectedHeap::clear_rsets_post_compaction() {
1084   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1085   heap_region_iterate(&rs_clear);
1086 }
1087 
1088 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1089   G1CollectedHeap*   _g1h;
1090   UpdateRSOopClosure _cl;
1091   int                _worker_i;
1092 public:
1093   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1094     _cl(g1->g1_rem_set(), worker_i),
1095     _worker_i(worker_i),
1096     _g1h(g1)
1097   { }
1098 
1099   bool doHeapRegion(HeapRegion* r) {
1100     if (!r->is_continues_humongous()) {
1101       _cl.set_from(r);
1102       r->oop_iterate(&_cl);
1103     }
1104     return false;
1105   }
1106 };
1107 
1108 class ParRebuildRSTask: public AbstractGangTask {
1109   G1CollectedHeap* _g1;
1110   HeapRegionClaimer _hrclaimer;
1111 
1112 public:
1113   ParRebuildRSTask(G1CollectedHeap* g1) :
1114       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1115 
1116   void work(uint worker_id) {
1117     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1118     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1119   }
1120 };
1121 
1122 class PostCompactionPrinterClosure: public HeapRegionClosure {
1123 private:
1124   G1HRPrinter* _hr_printer;
1125 public:
1126   bool doHeapRegion(HeapRegion* hr) {
1127     assert(!hr->is_young(), "not expecting to find young regions");
1128     if (hr->is_free()) {
1129       // We only generate output for non-empty regions.
1130     } else if (hr->is_starts_humongous()) {
1131       if (hr->region_num() == 1) {
1132         // single humongous region
1133         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1134       } else {
1135         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1136       }
1137     } else if (hr->is_continues_humongous()) {
1138       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1139     } else if (hr->is_old()) {
1140       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1141     } else {
1142       ShouldNotReachHere();
1143     }
1144     return false;
1145   }
1146 
1147   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1148     : _hr_printer(hr_printer) { }
1149 };
1150 
1151 void G1CollectedHeap::print_hrm_post_compaction() {
1152   PostCompactionPrinterClosure cl(hr_printer());
1153   heap_region_iterate(&cl);
1154 }
1155 
1156 bool G1CollectedHeap::do_collection(bool explicit_gc,
1157                                     bool clear_all_soft_refs,
1158                                     size_t word_size) {
1159   assert_at_safepoint(true /* should_be_vm_thread */);
1160 
1161   if (GC_locker::check_active_before_gc()) {
1162     return false;
1163   }
1164 
1165   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1166   gc_timer->register_gc_start();
1167 
1168   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1169   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1170 
1171   SvcGCMarker sgcm(SvcGCMarker::FULL);
1172   ResourceMark rm;
1173 
1174   print_heap_before_gc();
1175   trace_heap_before_gc(gc_tracer);
1176 
1177   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1178 
1179   verify_region_sets_optional();
1180 
1181   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1182                            collector_policy()->should_clear_all_soft_refs();
1183 
1184   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1185 
1186   {
1187     IsGCActiveMark x;
1188 
1189     // Timing
1190     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1191     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1192 
1193     {
1194       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1195       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1196       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1197 
1198       g1_policy()->record_full_collection_start();
1199 
1200       // Note: When we have a more flexible GC logging framework that
1201       // allows us to add optional attributes to a GC log record we
1202       // could consider timing and reporting how long we wait in the
1203       // following two methods.
1204       wait_while_free_regions_coming();
1205       // If we start the compaction before the CM threads finish
1206       // scanning the root regions we might trip them over as we'll
1207       // be moving objects / updating references. So let's wait until
1208       // they are done. By telling them to abort, they should complete
1209       // early.
1210       _cm->root_regions()->abort();
1211       _cm->root_regions()->wait_until_scan_finished();
1212       append_secondary_free_list_if_not_empty_with_lock();
1213 
1214       gc_prologue(true);
1215       increment_total_collections(true /* full gc */);
1216       increment_old_marking_cycles_started();
1217 
1218       assert(used() == recalculate_used(), "Should be equal");
1219 
1220       verify_before_gc();
1221 
1222       check_bitmaps("Full GC Start");
1223       pre_full_gc_dump(gc_timer);
1224 
1225       COMPILER2_PRESENT(DerivedPointerTable::clear());
1226 
1227       // Disable discovery and empty the discovered lists
1228       // for the CM ref processor.
1229       ref_processor_cm()->disable_discovery();
1230       ref_processor_cm()->abandon_partial_discovery();
1231       ref_processor_cm()->verify_no_references_recorded();
1232 
1233       // Abandon current iterations of concurrent marking and concurrent
1234       // refinement, if any are in progress. We have to do this before
1235       // wait_until_scan_finished() below.
1236       concurrent_mark()->abort();
1237 
1238       // Make sure we'll choose a new allocation region afterwards.
1239       _allocator->release_mutator_alloc_region();
1240       _allocator->abandon_gc_alloc_regions();
1241       g1_rem_set()->cleanupHRRS();
1242 
1243       // We should call this after we retire any currently active alloc
1244       // regions so that all the ALLOC / RETIRE events are generated
1245       // before the start GC event.
1246       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1247 
1248       // We may have added regions to the current incremental collection
1249       // set between the last GC or pause and now. We need to clear the
1250       // incremental collection set and then start rebuilding it afresh
1251       // after this full GC.
1252       abandon_collection_set(g1_policy()->inc_cset_head());
1253       g1_policy()->clear_incremental_cset();
1254       g1_policy()->stop_incremental_cset_building();
1255 
1256       tear_down_region_sets(false /* free_list_only */);
1257       g1_policy()->set_gcs_are_young(true);
1258 
1259       // See the comments in g1CollectedHeap.hpp and
1260       // G1CollectedHeap::ref_processing_init() about
1261       // how reference processing currently works in G1.
1262 
1263       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1264       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1265 
1266       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1267       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1268 
1269       ref_processor_stw()->enable_discovery();
1270       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1271 
1272       // Do collection work
1273       {
1274         HandleMark hm;  // Discard invalid handles created during gc
1275         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1276       }
1277 
1278       assert(num_free_regions() == 0, "we should not have added any free regions");
1279       rebuild_region_sets(false /* free_list_only */);
1280 
1281       // Enqueue any discovered reference objects that have
1282       // not been removed from the discovered lists.
1283       ref_processor_stw()->enqueue_discovered_references();
1284 
1285       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1286 
1287       MemoryService::track_memory_usage();
1288 
1289       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1290       ref_processor_stw()->verify_no_references_recorded();
1291 
1292       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1293       ClassLoaderDataGraph::purge();
1294       MetaspaceAux::verify_metrics();
1295 
1296       // Note: since we've just done a full GC, concurrent
1297       // marking is no longer active. Therefore we need not
1298       // re-enable reference discovery for the CM ref processor.
1299       // That will be done at the start of the next marking cycle.
1300       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1301       ref_processor_cm()->verify_no_references_recorded();
1302 
1303       reset_gc_time_stamp();
1304       // Since everything potentially moved, we will clear all remembered
1305       // sets, and clear all cards.  Later we will rebuild remembered
1306       // sets. We will also reset the GC time stamps of the regions.
1307       clear_rsets_post_compaction();
1308       check_gc_time_stamps();
1309 
1310       // Resize the heap if necessary.
1311       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1312 
1313       if (_hr_printer.is_active()) {
1314         // We should do this after we potentially resize the heap so
1315         // that all the COMMIT / UNCOMMIT events are generated before
1316         // the end GC event.
1317 
1318         print_hrm_post_compaction();
1319         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1320       }
1321 
1322       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1323       if (hot_card_cache->use_cache()) {
1324         hot_card_cache->reset_card_counts();
1325         hot_card_cache->reset_hot_cache();
1326       }
1327 
1328       // Rebuild remembered sets of all regions.
1329       uint n_workers =
1330         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1331                                                 workers()->active_workers(),
1332                                                 Threads::number_of_non_daemon_threads());
1333       assert(UseDynamicNumberOfGCThreads ||
1334              n_workers == workers()->total_workers(),
1335              "If not dynamic should be using all the  workers");
1336       workers()->set_active_workers(n_workers);
1337       // Set parallel threads in the heap (_n_par_threads) only
1338       // before a parallel phase and always reset it to 0 after
1339       // the phase so that the number of parallel threads does
1340       // no get carried forward to a serial phase where there
1341       // may be code that is "possibly_parallel".
1342       set_par_threads(n_workers);
1343 
1344       ParRebuildRSTask rebuild_rs_task(this);
1345       assert(UseDynamicNumberOfGCThreads ||
1346              workers()->active_workers() == workers()->total_workers(),
1347              "Unless dynamic should use total workers");
1348       // Use the most recent number of  active workers
1349       assert(workers()->active_workers() > 0,
1350              "Active workers not properly set");
1351       set_par_threads(workers()->active_workers());
1352       workers()->run_task(&rebuild_rs_task);
1353       set_par_threads(0);
1354 
1355       // Rebuild the strong code root lists for each region
1356       rebuild_strong_code_roots();
1357 
1358       if (true) { // FIXME
1359         MetaspaceGC::compute_new_size();
1360       }
1361 
1362 #ifdef TRACESPINNING
1363       ParallelTaskTerminator::print_termination_counts();
1364 #endif
1365 
1366       // Discard all rset updates
1367       JavaThread::dirty_card_queue_set().abandon_logs();
1368       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1369 
1370       _young_list->reset_sampled_info();
1371       // At this point there should be no regions in the
1372       // entire heap tagged as young.
1373       assert(check_young_list_empty(true /* check_heap */),
1374              "young list should be empty at this point");
1375 
1376       // Update the number of full collections that have been completed.
1377       increment_old_marking_cycles_completed(false /* concurrent */);
1378 
1379       _hrm.verify_optional();
1380       verify_region_sets_optional();
1381 
1382       verify_after_gc();
1383 
1384       // Clear the previous marking bitmap, if needed for bitmap verification.
1385       // Note we cannot do this when we clear the next marking bitmap in
1386       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1387       // objects marked during a full GC against the previous bitmap.
1388       // But we need to clear it before calling check_bitmaps below since
1389       // the full GC has compacted objects and updated TAMS but not updated
1390       // the prev bitmap.
1391       if (G1VerifyBitmaps) {
1392         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1393       }
1394       check_bitmaps("Full GC End");
1395 
1396       // Start a new incremental collection set for the next pause
1397       assert(g1_policy()->collection_set() == NULL, "must be");
1398       g1_policy()->start_incremental_cset_building();
1399 
1400       clear_cset_fast_test();
1401 
1402       _allocator->init_mutator_alloc_region();
1403 
1404       g1_policy()->record_full_collection_end();
1405 
1406       if (G1Log::fine()) {
1407         g1_policy()->print_heap_transition();
1408       }
1409 
1410       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1411       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1412       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1413       // before any GC notifications are raised.
1414       g1mm()->update_sizes();
1415 
1416       gc_epilogue(true);
1417     }
1418 
1419     if (G1Log::finer()) {
1420       g1_policy()->print_detailed_heap_transition(true /* full */);
1421     }
1422 
1423     print_heap_after_gc();
1424     trace_heap_after_gc(gc_tracer);
1425 
1426     post_full_gc_dump(gc_timer);
1427 
1428     gc_timer->register_gc_end();
1429     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1430   }
1431 
1432   return true;
1433 }
1434 
1435 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1436   // do_collection() will return whether it succeeded in performing
1437   // the GC. Currently, there is no facility on the
1438   // do_full_collection() API to notify the caller than the collection
1439   // did not succeed (e.g., because it was locked out by the GC
1440   // locker). So, right now, we'll ignore the return value.
1441   bool dummy = do_collection(true,                /* explicit_gc */
1442                              clear_all_soft_refs,
1443                              0                    /* word_size */);
1444 }
1445 
1446 // This code is mostly copied from TenuredGeneration.
1447 void
1448 G1CollectedHeap::
1449 resize_if_necessary_after_full_collection(size_t word_size) {
1450   // Include the current allocation, if any, and bytes that will be
1451   // pre-allocated to support collections, as "used".
1452   const size_t used_after_gc = used();
1453   const size_t capacity_after_gc = capacity();
1454   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1455 
1456   // This is enforced in arguments.cpp.
1457   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1458          "otherwise the code below doesn't make sense");
1459 
1460   // We don't have floating point command-line arguments
1461   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1462   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1463   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1464   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1465 
1466   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1467   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1468 
1469   // We have to be careful here as these two calculations can overflow
1470   // 32-bit size_t's.
1471   double used_after_gc_d = (double) used_after_gc;
1472   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1473   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1474 
1475   // Let's make sure that they are both under the max heap size, which
1476   // by default will make them fit into a size_t.
1477   double desired_capacity_upper_bound = (double) max_heap_size;
1478   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1479                                     desired_capacity_upper_bound);
1480   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1481                                     desired_capacity_upper_bound);
1482 
1483   // We can now safely turn them into size_t's.
1484   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1485   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1486 
1487   // This assert only makes sense here, before we adjust them
1488   // with respect to the min and max heap size.
1489   assert(minimum_desired_capacity <= maximum_desired_capacity,
1490          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1491                  "maximum_desired_capacity = "SIZE_FORMAT,
1492                  minimum_desired_capacity, maximum_desired_capacity));
1493 
1494   // Should not be greater than the heap max size. No need to adjust
1495   // it with respect to the heap min size as it's a lower bound (i.e.,
1496   // we'll try to make the capacity larger than it, not smaller).
1497   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1498   // Should not be less than the heap min size. No need to adjust it
1499   // with respect to the heap max size as it's an upper bound (i.e.,
1500   // we'll try to make the capacity smaller than it, not greater).
1501   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1502 
1503   if (capacity_after_gc < minimum_desired_capacity) {
1504     // Don't expand unless it's significant
1505     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1506     ergo_verbose4(ErgoHeapSizing,
1507                   "attempt heap expansion",
1508                   ergo_format_reason("capacity lower than "
1509                                      "min desired capacity after Full GC")
1510                   ergo_format_byte("capacity")
1511                   ergo_format_byte("occupancy")
1512                   ergo_format_byte_perc("min desired capacity"),
1513                   capacity_after_gc, used_after_gc,
1514                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1515     expand(expand_bytes);
1516 
1517     // No expansion, now see if we want to shrink
1518   } else if (capacity_after_gc > maximum_desired_capacity) {
1519     // Capacity too large, compute shrinking size
1520     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1521     ergo_verbose4(ErgoHeapSizing,
1522                   "attempt heap shrinking",
1523                   ergo_format_reason("capacity higher than "
1524                                      "max desired capacity after Full GC")
1525                   ergo_format_byte("capacity")
1526                   ergo_format_byte("occupancy")
1527                   ergo_format_byte_perc("max desired capacity"),
1528                   capacity_after_gc, used_after_gc,
1529                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1530     shrink(shrink_bytes);
1531   }
1532 }
1533 
1534 
1535 HeapWord*
1536 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1537                                            AllocationContext_t context,
1538                                            bool* succeeded) {
1539   assert_at_safepoint(true /* should_be_vm_thread */);
1540 
1541   *succeeded = true;
1542   // Let's attempt the allocation first.
1543   HeapWord* result =
1544     attempt_allocation_at_safepoint(word_size,
1545                                     context,
1546                                     false /* expect_null_mutator_alloc_region */);
1547   if (result != NULL) {
1548     assert(*succeeded, "sanity");
1549     return result;
1550   }
1551 
1552   // In a G1 heap, we're supposed to keep allocation from failing by
1553   // incremental pauses.  Therefore, at least for now, we'll favor
1554   // expansion over collection.  (This might change in the future if we can
1555   // do something smarter than full collection to satisfy a failed alloc.)
1556   result = expand_and_allocate(word_size, context);
1557   if (result != NULL) {
1558     assert(*succeeded, "sanity");
1559     return result;
1560   }
1561 
1562   // Expansion didn't work, we'll try to do a Full GC.
1563   bool gc_succeeded = do_collection(false, /* explicit_gc */
1564                                     false, /* clear_all_soft_refs */
1565                                     word_size);
1566   if (!gc_succeeded) {
1567     *succeeded = false;
1568     return NULL;
1569   }
1570 
1571   // Retry the allocation
1572   result = attempt_allocation_at_safepoint(word_size,
1573                                            context,
1574                                            true /* expect_null_mutator_alloc_region */);
1575   if (result != NULL) {
1576     assert(*succeeded, "sanity");
1577     return result;
1578   }
1579 
1580   // Then, try a Full GC that will collect all soft references.
1581   gc_succeeded = do_collection(false, /* explicit_gc */
1582                                true,  /* clear_all_soft_refs */
1583                                word_size);
1584   if (!gc_succeeded) {
1585     *succeeded = false;
1586     return NULL;
1587   }
1588 
1589   // Retry the allocation once more
1590   result = attempt_allocation_at_safepoint(word_size,
1591                                            context,
1592                                            true /* expect_null_mutator_alloc_region */);
1593   if (result != NULL) {
1594     assert(*succeeded, "sanity");
1595     return result;
1596   }
1597 
1598   assert(!collector_policy()->should_clear_all_soft_refs(),
1599          "Flag should have been handled and cleared prior to this point");
1600 
1601   // What else?  We might try synchronous finalization later.  If the total
1602   // space available is large enough for the allocation, then a more
1603   // complete compaction phase than we've tried so far might be
1604   // appropriate.
1605   assert(*succeeded, "sanity");
1606   return NULL;
1607 }
1608 
1609 // Attempting to expand the heap sufficiently
1610 // to support an allocation of the given "word_size".  If
1611 // successful, perform the allocation and return the address of the
1612 // allocated block, or else "NULL".
1613 
1614 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1615   assert_at_safepoint(true /* should_be_vm_thread */);
1616 
1617   verify_region_sets_optional();
1618 
1619   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1620   ergo_verbose1(ErgoHeapSizing,
1621                 "attempt heap expansion",
1622                 ergo_format_reason("allocation request failed")
1623                 ergo_format_byte("allocation request"),
1624                 word_size * HeapWordSize);
1625   if (expand(expand_bytes)) {
1626     _hrm.verify_optional();
1627     verify_region_sets_optional();
1628     return attempt_allocation_at_safepoint(word_size,
1629                                            context,
1630                                            false /* expect_null_mutator_alloc_region */);
1631   }
1632   return NULL;
1633 }
1634 
1635 bool G1CollectedHeap::expand(size_t expand_bytes) {
1636   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1637   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1638                                        HeapRegion::GrainBytes);
1639   ergo_verbose2(ErgoHeapSizing,
1640                 "expand the heap",
1641                 ergo_format_byte("requested expansion amount")
1642                 ergo_format_byte("attempted expansion amount"),
1643                 expand_bytes, aligned_expand_bytes);
1644 
1645   if (is_maximal_no_gc()) {
1646     ergo_verbose0(ErgoHeapSizing,
1647                       "did not expand the heap",
1648                       ergo_format_reason("heap already fully expanded"));
1649     return false;
1650   }
1651 
1652   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1653   assert(regions_to_expand > 0, "Must expand by at least one region");
1654 
1655   uint expanded_by = _hrm.expand_by(regions_to_expand);
1656 
1657   if (expanded_by > 0) {
1658     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1659     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1660     g1_policy()->record_new_heap_size(num_regions());
1661   } else {
1662     ergo_verbose0(ErgoHeapSizing,
1663                   "did not expand the heap",
1664                   ergo_format_reason("heap expansion operation failed"));
1665     // The expansion of the virtual storage space was unsuccessful.
1666     // Let's see if it was because we ran out of swap.
1667     if (G1ExitOnExpansionFailure &&
1668         _hrm.available() >= regions_to_expand) {
1669       // We had head room...
1670       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1671     }
1672   }
1673   return regions_to_expand > 0;
1674 }
1675 
1676 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1677   size_t aligned_shrink_bytes =
1678     ReservedSpace::page_align_size_down(shrink_bytes);
1679   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1680                                          HeapRegion::GrainBytes);
1681   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1682 
1683   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1684   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1685 
1686   ergo_verbose3(ErgoHeapSizing,
1687                 "shrink the heap",
1688                 ergo_format_byte("requested shrinking amount")
1689                 ergo_format_byte("aligned shrinking amount")
1690                 ergo_format_byte("attempted shrinking amount"),
1691                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1692   if (num_regions_removed > 0) {
1693     g1_policy()->record_new_heap_size(num_regions());
1694   } else {
1695     ergo_verbose0(ErgoHeapSizing,
1696                   "did not shrink the heap",
1697                   ergo_format_reason("heap shrinking operation failed"));
1698   }
1699 }
1700 
1701 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1702   verify_region_sets_optional();
1703 
1704   // We should only reach here at the end of a Full GC which means we
1705   // should not not be holding to any GC alloc regions. The method
1706   // below will make sure of that and do any remaining clean up.
1707   _allocator->abandon_gc_alloc_regions();
1708 
1709   // Instead of tearing down / rebuilding the free lists here, we
1710   // could instead use the remove_all_pending() method on free_list to
1711   // remove only the ones that we need to remove.
1712   tear_down_region_sets(true /* free_list_only */);
1713   shrink_helper(shrink_bytes);
1714   rebuild_region_sets(true /* free_list_only */);
1715 
1716   _hrm.verify_optional();
1717   verify_region_sets_optional();
1718 }
1719 
1720 // Public methods.
1721 
1722 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1723 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1724 #endif // _MSC_VER
1725 
1726 
1727 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1728   CollectedHeap(),
1729   _g1_policy(policy_),
1730   _dirty_card_queue_set(false),
1731   _into_cset_dirty_card_queue_set(false),
1732   _is_alive_closure_cm(this),
1733   _is_alive_closure_stw(this),
1734   _ref_processor_cm(NULL),
1735   _ref_processor_stw(NULL),
1736   _bot_shared(NULL),
1737   _evac_failure_scan_stack(NULL),
1738   _mark_in_progress(false),
1739   _cg1r(NULL),
1740   _g1mm(NULL),
1741   _refine_cte_cl(NULL),
1742   _full_collection(false),
1743   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1744   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1745   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1746   _humongous_reclaim_candidates(),
1747   _has_humongous_reclaim_candidates(false),
1748   _free_regions_coming(false),
1749   _young_list(new YoungList(this)),
1750   _gc_time_stamp(0),
1751   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1752   _old_plab_stats(OldPLABSize, PLABWeight),
1753   _expand_heap_after_alloc_failure(true),
1754   _surviving_young_words(NULL),
1755   _old_marking_cycles_started(0),
1756   _old_marking_cycles_completed(0),
1757   _concurrent_cycle_started(false),
1758   _heap_summary_sent(false),
1759   _in_cset_fast_test(),
1760   _dirty_cards_region_list(NULL),
1761   _worker_cset_start_region(NULL),
1762   _worker_cset_start_region_time_stamp(NULL),
1763   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1764   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1765   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1766   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1767 
1768   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1769                           /* are_GC_task_threads */true,
1770                           /* are_ConcurrentGC_threads */false);
1771   _workers->initialize_workers();
1772 
1773   _allocator = G1Allocator::create_allocator(this);
1774   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1775 
1776   int n_queues = MAX2((int)ParallelGCThreads, 1);
1777   _task_queues = new RefToScanQueueSet(n_queues);
1778 
1779   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1780   assert(n_rem_sets > 0, "Invariant.");
1781 
1782   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1783   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1784   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1785 
1786   for (int i = 0; i < n_queues; i++) {
1787     RefToScanQueue* q = new RefToScanQueue();
1788     q->initialize();
1789     _task_queues->register_queue(i, q);
1790     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1791   }
1792   clear_cset_start_regions();
1793 
1794   // Initialize the G1EvacuationFailureALot counters and flags.
1795   NOT_PRODUCT(reset_evacuation_should_fail();)
1796 
1797   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1798 }
1799 
1800 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1801                                                                  size_t size,
1802                                                                  size_t translation_factor) {
1803   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1804   // Allocate a new reserved space, preferring to use large pages.
1805   ReservedSpace rs(size, preferred_page_size);
1806   G1RegionToSpaceMapper* result  =
1807     G1RegionToSpaceMapper::create_mapper(rs,
1808                                          size,
1809                                          rs.alignment(),
1810                                          HeapRegion::GrainBytes,
1811                                          translation_factor,
1812                                          mtGC);
1813   if (TracePageSizes) {
1814     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1815                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1816   }
1817   return result;
1818 }
1819 
1820 jint G1CollectedHeap::initialize() {
1821   CollectedHeap::pre_initialize();
1822   os::enable_vtime();
1823 
1824   G1Log::init();
1825 
1826   // Necessary to satisfy locking discipline assertions.
1827 
1828   MutexLocker x(Heap_lock);
1829 
1830   // We have to initialize the printer before committing the heap, as
1831   // it will be used then.
1832   _hr_printer.set_active(G1PrintHeapRegions);
1833 
1834   // While there are no constraints in the GC code that HeapWordSize
1835   // be any particular value, there are multiple other areas in the
1836   // system which believe this to be true (e.g. oop->object_size in some
1837   // cases incorrectly returns the size in wordSize units rather than
1838   // HeapWordSize).
1839   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1840 
1841   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1842   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1843   size_t heap_alignment = collector_policy()->heap_alignment();
1844 
1845   // Ensure that the sizes are properly aligned.
1846   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1847   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1848   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1849 
1850   _refine_cte_cl = new RefineCardTableEntryClosure();
1851 
1852   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1853 
1854   // Reserve the maximum.
1855 
1856   // When compressed oops are enabled, the preferred heap base
1857   // is calculated by subtracting the requested size from the
1858   // 32Gb boundary and using the result as the base address for
1859   // heap reservation. If the requested size is not aligned to
1860   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1861   // into the ReservedHeapSpace constructor) then the actual
1862   // base of the reserved heap may end up differing from the
1863   // address that was requested (i.e. the preferred heap base).
1864   // If this happens then we could end up using a non-optimal
1865   // compressed oops mode.
1866 
1867   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1868                                                  heap_alignment);
1869 
1870   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1871 
1872   // Create the barrier set for the entire reserved region.
1873   G1SATBCardTableLoggingModRefBS* bs
1874     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1875   bs->initialize();
1876   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1877   set_barrier_set(bs);
1878 
1879   // Also create a G1 rem set.
1880   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1881 
1882   // Carve out the G1 part of the heap.
1883 
1884   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1885   G1RegionToSpaceMapper* heap_storage =
1886     G1RegionToSpaceMapper::create_mapper(g1_rs,
1887                                          g1_rs.size(),
1888                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1889                                          HeapRegion::GrainBytes,
1890                                          1,
1891                                          mtJavaHeap);
1892   heap_storage->set_mapping_changed_listener(&_listener);
1893 
1894   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1895   G1RegionToSpaceMapper* bot_storage =
1896     create_aux_memory_mapper("Block offset table",
1897                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1898                              G1BlockOffsetSharedArray::N_bytes);
1899 
1900   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1901   G1RegionToSpaceMapper* cardtable_storage =
1902     create_aux_memory_mapper("Card table",
1903                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1904                              G1BlockOffsetSharedArray::N_bytes);
1905 
1906   G1RegionToSpaceMapper* card_counts_storage =
1907     create_aux_memory_mapper("Card counts table",
1908                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1909                              G1BlockOffsetSharedArray::N_bytes);
1910 
1911   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1912   G1RegionToSpaceMapper* prev_bitmap_storage =
1913     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
1914   G1RegionToSpaceMapper* next_bitmap_storage =
1915     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
1916 
1917   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1918   g1_barrier_set()->initialize(cardtable_storage);
1919    // Do later initialization work for concurrent refinement.
1920   _cg1r->init(card_counts_storage);
1921 
1922   // 6843694 - ensure that the maximum region index can fit
1923   // in the remembered set structures.
1924   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1925   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1926 
1927   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1928   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1929   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1930             "too many cards per region");
1931 
1932   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1933 
1934   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1935 
1936   {
1937     HeapWord* start = _hrm.reserved().start();
1938     HeapWord* end = _hrm.reserved().end();
1939     size_t granularity = HeapRegion::GrainBytes;
1940 
1941     _in_cset_fast_test.initialize(start, end, granularity);
1942     _humongous_reclaim_candidates.initialize(start, end, granularity);
1943   }
1944 
1945   // Create the ConcurrentMark data structure and thread.
1946   // (Must do this late, so that "max_regions" is defined.)
1947   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1948   if (_cm == NULL || !_cm->completed_initialization()) {
1949     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1950     return JNI_ENOMEM;
1951   }
1952   _cmThread = _cm->cmThread();
1953 
1954   // Initialize the from_card cache structure of HeapRegionRemSet.
1955   HeapRegionRemSet::init_heap(max_regions());
1956 
1957   // Now expand into the initial heap size.
1958   if (!expand(init_byte_size)) {
1959     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1960     return JNI_ENOMEM;
1961   }
1962 
1963   // Perform any initialization actions delegated to the policy.
1964   g1_policy()->init();
1965 
1966   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1967                                                SATB_Q_FL_lock,
1968                                                G1SATBProcessCompletedThreshold,
1969                                                Shared_SATB_Q_lock);
1970 
1971   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1972                                                 DirtyCardQ_CBL_mon,
1973                                                 DirtyCardQ_FL_lock,
1974                                                 concurrent_g1_refine()->yellow_zone(),
1975                                                 concurrent_g1_refine()->red_zone(),
1976                                                 Shared_DirtyCardQ_lock);
1977 
1978   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1979                                     DirtyCardQ_CBL_mon,
1980                                     DirtyCardQ_FL_lock,
1981                                     -1, // never trigger processing
1982                                     -1, // no limit on length
1983                                     Shared_DirtyCardQ_lock,
1984                                     &JavaThread::dirty_card_queue_set());
1985 
1986   // Initialize the card queue set used to hold cards containing
1987   // references into the collection set.
1988   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1989                                              DirtyCardQ_CBL_mon,
1990                                              DirtyCardQ_FL_lock,
1991                                              -1, // never trigger processing
1992                                              -1, // no limit on length
1993                                              Shared_DirtyCardQ_lock,
1994                                              &JavaThread::dirty_card_queue_set());
1995 
1996   // Here we allocate the dummy HeapRegion that is required by the
1997   // G1AllocRegion class.
1998   HeapRegion* dummy_region = _hrm.get_dummy_region();
1999 
2000   // We'll re-use the same region whether the alloc region will
2001   // require BOT updates or not and, if it doesn't, then a non-young
2002   // region will complain that it cannot support allocations without
2003   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2004   dummy_region->set_eden();
2005   // Make sure it's full.
2006   dummy_region->set_top(dummy_region->end());
2007   G1AllocRegion::setup(this, dummy_region);
2008 
2009   _allocator->init_mutator_alloc_region();
2010 
2011   // Do create of the monitoring and management support so that
2012   // values in the heap have been properly initialized.
2013   _g1mm = new G1MonitoringSupport(this);
2014 
2015   G1StringDedup::initialize();
2016 
2017   return JNI_OK;
2018 }
2019 
2020 void G1CollectedHeap::stop() {
2021   // Stop all concurrent threads. We do this to make sure these threads
2022   // do not continue to execute and access resources (e.g. gclog_or_tty)
2023   // that are destroyed during shutdown.
2024   _cg1r->stop();
2025   _cmThread->stop();
2026   if (G1StringDedup::is_enabled()) {
2027     G1StringDedup::stop();
2028   }
2029 }
2030 
2031 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2032   return HeapRegion::max_region_size();
2033 }
2034 
2035 void G1CollectedHeap::post_initialize() {
2036   CollectedHeap::post_initialize();
2037   ref_processing_init();
2038 }
2039 
2040 void G1CollectedHeap::ref_processing_init() {
2041   // Reference processing in G1 currently works as follows:
2042   //
2043   // * There are two reference processor instances. One is
2044   //   used to record and process discovered references
2045   //   during concurrent marking; the other is used to
2046   //   record and process references during STW pauses
2047   //   (both full and incremental).
2048   // * Both ref processors need to 'span' the entire heap as
2049   //   the regions in the collection set may be dotted around.
2050   //
2051   // * For the concurrent marking ref processor:
2052   //   * Reference discovery is enabled at initial marking.
2053   //   * Reference discovery is disabled and the discovered
2054   //     references processed etc during remarking.
2055   //   * Reference discovery is MT (see below).
2056   //   * Reference discovery requires a barrier (see below).
2057   //   * Reference processing may or may not be MT
2058   //     (depending on the value of ParallelRefProcEnabled
2059   //     and ParallelGCThreads).
2060   //   * A full GC disables reference discovery by the CM
2061   //     ref processor and abandons any entries on it's
2062   //     discovered lists.
2063   //
2064   // * For the STW processor:
2065   //   * Non MT discovery is enabled at the start of a full GC.
2066   //   * Processing and enqueueing during a full GC is non-MT.
2067   //   * During a full GC, references are processed after marking.
2068   //
2069   //   * Discovery (may or may not be MT) is enabled at the start
2070   //     of an incremental evacuation pause.
2071   //   * References are processed near the end of a STW evacuation pause.
2072   //   * For both types of GC:
2073   //     * Discovery is atomic - i.e. not concurrent.
2074   //     * Reference discovery will not need a barrier.
2075 
2076   MemRegion mr = reserved_region();
2077 
2078   // Concurrent Mark ref processor
2079   _ref_processor_cm =
2080     new ReferenceProcessor(mr,    // span
2081                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2082                                 // mt processing
2083                            (int) ParallelGCThreads,
2084                                 // degree of mt processing
2085                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2086                                 // mt discovery
2087                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2088                                 // degree of mt discovery
2089                            false,
2090                                 // Reference discovery is not atomic
2091                            &_is_alive_closure_cm);
2092                                 // is alive closure
2093                                 // (for efficiency/performance)
2094 
2095   // STW ref processor
2096   _ref_processor_stw =
2097     new ReferenceProcessor(mr,    // span
2098                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2099                                 // mt processing
2100                            MAX2((int)ParallelGCThreads, 1),
2101                                 // degree of mt processing
2102                            (ParallelGCThreads > 1),
2103                                 // mt discovery
2104                            MAX2((int)ParallelGCThreads, 1),
2105                                 // degree of mt discovery
2106                            true,
2107                                 // Reference discovery is atomic
2108                            &_is_alive_closure_stw);
2109                                 // is alive closure
2110                                 // (for efficiency/performance)
2111 }
2112 
2113 size_t G1CollectedHeap::capacity() const {
2114   return _hrm.length() * HeapRegion::GrainBytes;
2115 }
2116 
2117 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2118   assert(!hr->is_continues_humongous(), "pre-condition");
2119   hr->reset_gc_time_stamp();
2120   if (hr->is_starts_humongous()) {
2121     uint first_index = hr->hrm_index() + 1;
2122     uint last_index = hr->last_hc_index();
2123     for (uint i = first_index; i < last_index; i += 1) {
2124       HeapRegion* chr = region_at(i);
2125       assert(chr->is_continues_humongous(), "sanity");
2126       chr->reset_gc_time_stamp();
2127     }
2128   }
2129 }
2130 
2131 #ifndef PRODUCT
2132 
2133 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2134 private:
2135   unsigned _gc_time_stamp;
2136   bool _failures;
2137 
2138 public:
2139   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2140     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2141 
2142   virtual bool doHeapRegion(HeapRegion* hr) {
2143     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2144     if (_gc_time_stamp != region_gc_time_stamp) {
2145       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2146                              "expected %d", HR_FORMAT_PARAMS(hr),
2147                              region_gc_time_stamp, _gc_time_stamp);
2148       _failures = true;
2149     }
2150     return false;
2151   }
2152 
2153   bool failures() { return _failures; }
2154 };
2155 
2156 void G1CollectedHeap::check_gc_time_stamps() {
2157   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2158   heap_region_iterate(&cl);
2159   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2160 }
2161 #endif // PRODUCT
2162 
2163 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2164                                                  DirtyCardQueue* into_cset_dcq,
2165                                                  bool concurrent,
2166                                                  uint worker_i) {
2167   // Clean cards in the hot card cache
2168   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2169   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2170 
2171   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2172   size_t n_completed_buffers = 0;
2173   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2174     n_completed_buffers++;
2175   }
2176   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2177   dcqs.clear_n_completed_buffers();
2178   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2179 }
2180 
2181 
2182 // Computes the sum of the storage used by the various regions.
2183 size_t G1CollectedHeap::used() const {
2184   return _allocator->used();
2185 }
2186 
2187 size_t G1CollectedHeap::used_unlocked() const {
2188   return _allocator->used_unlocked();
2189 }
2190 
2191 class SumUsedClosure: public HeapRegionClosure {
2192   size_t _used;
2193 public:
2194   SumUsedClosure() : _used(0) {}
2195   bool doHeapRegion(HeapRegion* r) {
2196     if (!r->is_continues_humongous()) {
2197       _used += r->used();
2198     }
2199     return false;
2200   }
2201   size_t result() { return _used; }
2202 };
2203 
2204 size_t G1CollectedHeap::recalculate_used() const {
2205   double recalculate_used_start = os::elapsedTime();
2206 
2207   SumUsedClosure blk;
2208   heap_region_iterate(&blk);
2209 
2210   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2211   return blk.result();
2212 }
2213 
2214 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2215   switch (cause) {
2216     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2217     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2218     case GCCause::_g1_humongous_allocation: return true;
2219     case GCCause::_update_allocation_context_stats_inc: return true;
2220     case GCCause::_wb_conc_mark:            return true;
2221     default:                                return false;
2222   }
2223 }
2224 
2225 #ifndef PRODUCT
2226 void G1CollectedHeap::allocate_dummy_regions() {
2227   // Let's fill up most of the region
2228   size_t word_size = HeapRegion::GrainWords - 1024;
2229   // And as a result the region we'll allocate will be humongous.
2230   guarantee(is_humongous(word_size), "sanity");
2231 
2232   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2233     // Let's use the existing mechanism for the allocation
2234     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2235                                                  AllocationContext::system());
2236     if (dummy_obj != NULL) {
2237       MemRegion mr(dummy_obj, word_size);
2238       CollectedHeap::fill_with_object(mr);
2239     } else {
2240       // If we can't allocate once, we probably cannot allocate
2241       // again. Let's get out of the loop.
2242       break;
2243     }
2244   }
2245 }
2246 #endif // !PRODUCT
2247 
2248 void G1CollectedHeap::increment_old_marking_cycles_started() {
2249   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2250     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2251     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2252     _old_marking_cycles_started, _old_marking_cycles_completed));
2253 
2254   _old_marking_cycles_started++;
2255 }
2256 
2257 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2258   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2259 
2260   // We assume that if concurrent == true, then the caller is a
2261   // concurrent thread that was joined the Suspendible Thread
2262   // Set. If there's ever a cheap way to check this, we should add an
2263   // assert here.
2264 
2265   // Given that this method is called at the end of a Full GC or of a
2266   // concurrent cycle, and those can be nested (i.e., a Full GC can
2267   // interrupt a concurrent cycle), the number of full collections
2268   // completed should be either one (in the case where there was no
2269   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2270   // behind the number of full collections started.
2271 
2272   // This is the case for the inner caller, i.e. a Full GC.
2273   assert(concurrent ||
2274          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2275          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2276          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2277                  "is inconsistent with _old_marking_cycles_completed = %u",
2278                  _old_marking_cycles_started, _old_marking_cycles_completed));
2279 
2280   // This is the case for the outer caller, i.e. the concurrent cycle.
2281   assert(!concurrent ||
2282          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2283          err_msg("for outer caller (concurrent cycle): "
2284                  "_old_marking_cycles_started = %u "
2285                  "is inconsistent with _old_marking_cycles_completed = %u",
2286                  _old_marking_cycles_started, _old_marking_cycles_completed));
2287 
2288   _old_marking_cycles_completed += 1;
2289 
2290   // We need to clear the "in_progress" flag in the CM thread before
2291   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2292   // is set) so that if a waiter requests another System.gc() it doesn't
2293   // incorrectly see that a marking cycle is still in progress.
2294   if (concurrent) {
2295     _cmThread->clear_in_progress();
2296   }
2297 
2298   // This notify_all() will ensure that a thread that called
2299   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2300   // and it's waiting for a full GC to finish will be woken up. It is
2301   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2302   FullGCCount_lock->notify_all();
2303 }
2304 
2305 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2306   _concurrent_cycle_started = true;
2307   _gc_timer_cm->register_gc_start(start_time);
2308 
2309   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2310   trace_heap_before_gc(_gc_tracer_cm);
2311 }
2312 
2313 void G1CollectedHeap::register_concurrent_cycle_end() {
2314   if (_concurrent_cycle_started) {
2315     if (_cm->has_aborted()) {
2316       _gc_tracer_cm->report_concurrent_mode_failure();
2317     }
2318 
2319     _gc_timer_cm->register_gc_end();
2320     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2321 
2322     // Clear state variables to prepare for the next concurrent cycle.
2323     _concurrent_cycle_started = false;
2324     _heap_summary_sent = false;
2325   }
2326 }
2327 
2328 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2329   if (_concurrent_cycle_started) {
2330     // This function can be called when:
2331     //  the cleanup pause is run
2332     //  the concurrent cycle is aborted before the cleanup pause.
2333     //  the concurrent cycle is aborted after the cleanup pause,
2334     //   but before the concurrent cycle end has been registered.
2335     // Make sure that we only send the heap information once.
2336     if (!_heap_summary_sent) {
2337       trace_heap_after_gc(_gc_tracer_cm);
2338       _heap_summary_sent = true;
2339     }
2340   }
2341 }
2342 
2343 G1YCType G1CollectedHeap::yc_type() {
2344   bool is_young = g1_policy()->gcs_are_young();
2345   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2346   bool is_during_mark = mark_in_progress();
2347 
2348   if (is_initial_mark) {
2349     return InitialMark;
2350   } else if (is_during_mark) {
2351     return DuringMark;
2352   } else if (is_young) {
2353     return Normal;
2354   } else {
2355     return Mixed;
2356   }
2357 }
2358 
2359 void G1CollectedHeap::collect(GCCause::Cause cause) {
2360   assert_heap_not_locked();
2361 
2362   uint gc_count_before;
2363   uint old_marking_count_before;
2364   uint full_gc_count_before;
2365   bool retry_gc;
2366 
2367   do {
2368     retry_gc = false;
2369 
2370     {
2371       MutexLocker ml(Heap_lock);
2372 
2373       // Read the GC count while holding the Heap_lock
2374       gc_count_before = total_collections();
2375       full_gc_count_before = total_full_collections();
2376       old_marking_count_before = _old_marking_cycles_started;
2377     }
2378 
2379     if (should_do_concurrent_full_gc(cause)) {
2380       // Schedule an initial-mark evacuation pause that will start a
2381       // concurrent cycle. We're setting word_size to 0 which means that
2382       // we are not requesting a post-GC allocation.
2383       VM_G1IncCollectionPause op(gc_count_before,
2384                                  0,     /* word_size */
2385                                  true,  /* should_initiate_conc_mark */
2386                                  g1_policy()->max_pause_time_ms(),
2387                                  cause);
2388       op.set_allocation_context(AllocationContext::current());
2389 
2390       VMThread::execute(&op);
2391       if (!op.pause_succeeded()) {
2392         if (old_marking_count_before == _old_marking_cycles_started) {
2393           retry_gc = op.should_retry_gc();
2394         } else {
2395           // A Full GC happened while we were trying to schedule the
2396           // initial-mark GC. No point in starting a new cycle given
2397           // that the whole heap was collected anyway.
2398         }
2399 
2400         if (retry_gc) {
2401           if (GC_locker::is_active_and_needs_gc()) {
2402             GC_locker::stall_until_clear();
2403           }
2404         }
2405       }
2406     } else {
2407       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2408           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2409 
2410         // Schedule a standard evacuation pause. We're setting word_size
2411         // to 0 which means that we are not requesting a post-GC allocation.
2412         VM_G1IncCollectionPause op(gc_count_before,
2413                                    0,     /* word_size */
2414                                    false, /* should_initiate_conc_mark */
2415                                    g1_policy()->max_pause_time_ms(),
2416                                    cause);
2417         VMThread::execute(&op);
2418       } else {
2419         // Schedule a Full GC.
2420         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2421         VMThread::execute(&op);
2422       }
2423     }
2424   } while (retry_gc);
2425 }
2426 
2427 bool G1CollectedHeap::is_in(const void* p) const {
2428   if (_hrm.reserved().contains(p)) {
2429     // Given that we know that p is in the reserved space,
2430     // heap_region_containing_raw() should successfully
2431     // return the containing region.
2432     HeapRegion* hr = heap_region_containing_raw(p);
2433     return hr->is_in(p);
2434   } else {
2435     return false;
2436   }
2437 }
2438 
2439 #ifdef ASSERT
2440 bool G1CollectedHeap::is_in_exact(const void* p) const {
2441   bool contains = reserved_region().contains(p);
2442   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2443   if (contains && available) {
2444     return true;
2445   } else {
2446     return false;
2447   }
2448 }
2449 #endif
2450 
2451 // Iteration functions.
2452 
2453 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2454 
2455 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2456   ExtendedOopClosure* _cl;
2457 public:
2458   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2459   bool doHeapRegion(HeapRegion* r) {
2460     if (!r->is_continues_humongous()) {
2461       r->oop_iterate(_cl);
2462     }
2463     return false;
2464   }
2465 };
2466 
2467 // Iterates an ObjectClosure over all objects within a HeapRegion.
2468 
2469 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2470   ObjectClosure* _cl;
2471 public:
2472   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2473   bool doHeapRegion(HeapRegion* r) {
2474     if (!r->is_continues_humongous()) {
2475       r->object_iterate(_cl);
2476     }
2477     return false;
2478   }
2479 };
2480 
2481 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2482   IterateObjectClosureRegionClosure blk(cl);
2483   heap_region_iterate(&blk);
2484 }
2485 
2486 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2487   _hrm.iterate(cl);
2488 }
2489 
2490 void
2491 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2492                                          uint worker_id,
2493                                          HeapRegionClaimer *hrclaimer,
2494                                          bool concurrent) const {
2495   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2496 }
2497 
2498 // Clear the cached CSet starting regions and (more importantly)
2499 // the time stamps. Called when we reset the GC time stamp.
2500 void G1CollectedHeap::clear_cset_start_regions() {
2501   assert(_worker_cset_start_region != NULL, "sanity");
2502   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2503 
2504   int n_queues = MAX2((int)ParallelGCThreads, 1);
2505   for (int i = 0; i < n_queues; i++) {
2506     _worker_cset_start_region[i] = NULL;
2507     _worker_cset_start_region_time_stamp[i] = 0;
2508   }
2509 }
2510 
2511 // Given the id of a worker, obtain or calculate a suitable
2512 // starting region for iterating over the current collection set.
2513 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2514   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2515 
2516   HeapRegion* result = NULL;
2517   unsigned gc_time_stamp = get_gc_time_stamp();
2518 
2519   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2520     // Cached starting region for current worker was set
2521     // during the current pause - so it's valid.
2522     // Note: the cached starting heap region may be NULL
2523     // (when the collection set is empty).
2524     result = _worker_cset_start_region[worker_i];
2525     assert(result == NULL || result->in_collection_set(), "sanity");
2526     return result;
2527   }
2528 
2529   // The cached entry was not valid so let's calculate
2530   // a suitable starting heap region for this worker.
2531 
2532   // We want the parallel threads to start their collection
2533   // set iteration at different collection set regions to
2534   // avoid contention.
2535   // If we have:
2536   //          n collection set regions
2537   //          p threads
2538   // Then thread t will start at region floor ((t * n) / p)
2539 
2540   result = g1_policy()->collection_set();
2541   uint cs_size = g1_policy()->cset_region_length();
2542   uint active_workers = workers()->active_workers();
2543   assert(UseDynamicNumberOfGCThreads ||
2544            active_workers == workers()->total_workers(),
2545            "Unless dynamic should use total workers");
2546 
2547   uint end_ind   = (cs_size * worker_i) / active_workers;
2548   uint start_ind = 0;
2549 
2550   if (worker_i > 0 &&
2551       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2552     // Previous workers starting region is valid
2553     // so let's iterate from there
2554     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2555     result = _worker_cset_start_region[worker_i - 1];
2556   }
2557 
2558   for (uint i = start_ind; i < end_ind; i++) {
2559     result = result->next_in_collection_set();
2560   }
2561 
2562   // Note: the calculated starting heap region may be NULL
2563   // (when the collection set is empty).
2564   assert(result == NULL || result->in_collection_set(), "sanity");
2565   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2566          "should be updated only once per pause");
2567   _worker_cset_start_region[worker_i] = result;
2568   OrderAccess::storestore();
2569   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2570   return result;
2571 }
2572 
2573 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2574   HeapRegion* r = g1_policy()->collection_set();
2575   while (r != NULL) {
2576     HeapRegion* next = r->next_in_collection_set();
2577     if (cl->doHeapRegion(r)) {
2578       cl->incomplete();
2579       return;
2580     }
2581     r = next;
2582   }
2583 }
2584 
2585 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2586                                                   HeapRegionClosure *cl) {
2587   if (r == NULL) {
2588     // The CSet is empty so there's nothing to do.
2589     return;
2590   }
2591 
2592   assert(r->in_collection_set(),
2593          "Start region must be a member of the collection set.");
2594   HeapRegion* cur = r;
2595   while (cur != NULL) {
2596     HeapRegion* next = cur->next_in_collection_set();
2597     if (cl->doHeapRegion(cur) && false) {
2598       cl->incomplete();
2599       return;
2600     }
2601     cur = next;
2602   }
2603   cur = g1_policy()->collection_set();
2604   while (cur != r) {
2605     HeapRegion* next = cur->next_in_collection_set();
2606     if (cl->doHeapRegion(cur) && false) {
2607       cl->incomplete();
2608       return;
2609     }
2610     cur = next;
2611   }
2612 }
2613 
2614 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2615   HeapRegion* result = _hrm.next_region_in_heap(from);
2616   while (result != NULL && result->is_humongous()) {
2617     result = _hrm.next_region_in_heap(result);
2618   }
2619   return result;
2620 }
2621 
2622 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2623   HeapRegion* hr = heap_region_containing(addr);
2624   return hr->block_start(addr);
2625 }
2626 
2627 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2628   HeapRegion* hr = heap_region_containing(addr);
2629   return hr->block_size(addr);
2630 }
2631 
2632 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2633   HeapRegion* hr = heap_region_containing(addr);
2634   return hr->block_is_obj(addr);
2635 }
2636 
2637 bool G1CollectedHeap::supports_tlab_allocation() const {
2638   return true;
2639 }
2640 
2641 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2642   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2643 }
2644 
2645 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2646   return young_list()->eden_used_bytes();
2647 }
2648 
2649 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2650 // must be smaller than the humongous object limit.
2651 size_t G1CollectedHeap::max_tlab_size() const {
2652   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2653 }
2654 
2655 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2656   // Return the remaining space in the cur alloc region, but not less than
2657   // the min TLAB size.
2658 
2659   // Also, this value can be at most the humongous object threshold,
2660   // since we can't allow tlabs to grow big enough to accommodate
2661   // humongous objects.
2662 
2663   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2664   size_t max_tlab = max_tlab_size() * wordSize;
2665   if (hr == NULL) {
2666     return max_tlab;
2667   } else {
2668     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2669   }
2670 }
2671 
2672 size_t G1CollectedHeap::max_capacity() const {
2673   return _hrm.reserved().byte_size();
2674 }
2675 
2676 jlong G1CollectedHeap::millis_since_last_gc() {
2677   // assert(false, "NYI");
2678   return 0;
2679 }
2680 
2681 void G1CollectedHeap::prepare_for_verify() {
2682   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2683     ensure_parsability(false);
2684   }
2685   g1_rem_set()->prepare_for_verify();
2686 }
2687 
2688 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2689                                               VerifyOption vo) {
2690   switch (vo) {
2691   case VerifyOption_G1UsePrevMarking:
2692     return hr->obj_allocated_since_prev_marking(obj);
2693   case VerifyOption_G1UseNextMarking:
2694     return hr->obj_allocated_since_next_marking(obj);
2695   case VerifyOption_G1UseMarkWord:
2696     return false;
2697   default:
2698     ShouldNotReachHere();
2699   }
2700   return false; // keep some compilers happy
2701 }
2702 
2703 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2704   switch (vo) {
2705   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2706   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2707   case VerifyOption_G1UseMarkWord:    return NULL;
2708   default:                            ShouldNotReachHere();
2709   }
2710   return NULL; // keep some compilers happy
2711 }
2712 
2713 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2714   switch (vo) {
2715   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2716   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2717   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2718   default:                            ShouldNotReachHere();
2719   }
2720   return false; // keep some compilers happy
2721 }
2722 
2723 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2724   switch (vo) {
2725   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2726   case VerifyOption_G1UseNextMarking: return "NTAMS";
2727   case VerifyOption_G1UseMarkWord:    return "NONE";
2728   default:                            ShouldNotReachHere();
2729   }
2730   return NULL; // keep some compilers happy
2731 }
2732 
2733 class VerifyRootsClosure: public OopClosure {
2734 private:
2735   G1CollectedHeap* _g1h;
2736   VerifyOption     _vo;
2737   bool             _failures;
2738 public:
2739   // _vo == UsePrevMarking -> use "prev" marking information,
2740   // _vo == UseNextMarking -> use "next" marking information,
2741   // _vo == UseMarkWord    -> use mark word from object header.
2742   VerifyRootsClosure(VerifyOption vo) :
2743     _g1h(G1CollectedHeap::heap()),
2744     _vo(vo),
2745     _failures(false) { }
2746 
2747   bool failures() { return _failures; }
2748 
2749   template <class T> void do_oop_nv(T* p) {
2750     T heap_oop = oopDesc::load_heap_oop(p);
2751     if (!oopDesc::is_null(heap_oop)) {
2752       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2753       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2754         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2755                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2756         if (_vo == VerifyOption_G1UseMarkWord) {
2757           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2758         }
2759         obj->print_on(gclog_or_tty);
2760         _failures = true;
2761       }
2762     }
2763   }
2764 
2765   void do_oop(oop* p)       { do_oop_nv(p); }
2766   void do_oop(narrowOop* p) { do_oop_nv(p); }
2767 };
2768 
2769 class G1VerifyCodeRootOopClosure: public OopClosure {
2770   G1CollectedHeap* _g1h;
2771   OopClosure* _root_cl;
2772   nmethod* _nm;
2773   VerifyOption _vo;
2774   bool _failures;
2775 
2776   template <class T> void do_oop_work(T* p) {
2777     // First verify that this root is live
2778     _root_cl->do_oop(p);
2779 
2780     if (!G1VerifyHeapRegionCodeRoots) {
2781       // We're not verifying the code roots attached to heap region.
2782       return;
2783     }
2784 
2785     // Don't check the code roots during marking verification in a full GC
2786     if (_vo == VerifyOption_G1UseMarkWord) {
2787       return;
2788     }
2789 
2790     // Now verify that the current nmethod (which contains p) is
2791     // in the code root list of the heap region containing the
2792     // object referenced by p.
2793 
2794     T heap_oop = oopDesc::load_heap_oop(p);
2795     if (!oopDesc::is_null(heap_oop)) {
2796       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2797 
2798       // Now fetch the region containing the object
2799       HeapRegion* hr = _g1h->heap_region_containing(obj);
2800       HeapRegionRemSet* hrrs = hr->rem_set();
2801       // Verify that the strong code root list for this region
2802       // contains the nmethod
2803       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2804         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2805                               "from nmethod "PTR_FORMAT" not in strong "
2806                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2807                               p, _nm, hr->bottom(), hr->end());
2808         _failures = true;
2809       }
2810     }
2811   }
2812 
2813 public:
2814   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2815     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2816 
2817   void do_oop(oop* p) { do_oop_work(p); }
2818   void do_oop(narrowOop* p) { do_oop_work(p); }
2819 
2820   void set_nmethod(nmethod* nm) { _nm = nm; }
2821   bool failures() { return _failures; }
2822 };
2823 
2824 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2825   G1VerifyCodeRootOopClosure* _oop_cl;
2826 
2827 public:
2828   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2829     _oop_cl(oop_cl) {}
2830 
2831   void do_code_blob(CodeBlob* cb) {
2832     nmethod* nm = cb->as_nmethod_or_null();
2833     if (nm != NULL) {
2834       _oop_cl->set_nmethod(nm);
2835       nm->oops_do(_oop_cl);
2836     }
2837   }
2838 };
2839 
2840 class YoungRefCounterClosure : public OopClosure {
2841   G1CollectedHeap* _g1h;
2842   int              _count;
2843  public:
2844   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2845   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2846   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2847 
2848   int count() { return _count; }
2849   void reset_count() { _count = 0; };
2850 };
2851 
2852 class VerifyKlassClosure: public KlassClosure {
2853   YoungRefCounterClosure _young_ref_counter_closure;
2854   OopClosure *_oop_closure;
2855  public:
2856   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2857   void do_klass(Klass* k) {
2858     k->oops_do(_oop_closure);
2859 
2860     _young_ref_counter_closure.reset_count();
2861     k->oops_do(&_young_ref_counter_closure);
2862     if (_young_ref_counter_closure.count() > 0) {
2863       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2864     }
2865   }
2866 };
2867 
2868 class VerifyLivenessOopClosure: public OopClosure {
2869   G1CollectedHeap* _g1h;
2870   VerifyOption _vo;
2871 public:
2872   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2873     _g1h(g1h), _vo(vo)
2874   { }
2875   void do_oop(narrowOop *p) { do_oop_work(p); }
2876   void do_oop(      oop *p) { do_oop_work(p); }
2877 
2878   template <class T> void do_oop_work(T *p) {
2879     oop obj = oopDesc::load_decode_heap_oop(p);
2880     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2881               "Dead object referenced by a not dead object");
2882   }
2883 };
2884 
2885 class VerifyObjsInRegionClosure: public ObjectClosure {
2886 private:
2887   G1CollectedHeap* _g1h;
2888   size_t _live_bytes;
2889   HeapRegion *_hr;
2890   VerifyOption _vo;
2891 public:
2892   // _vo == UsePrevMarking -> use "prev" marking information,
2893   // _vo == UseNextMarking -> use "next" marking information,
2894   // _vo == UseMarkWord    -> use mark word from object header.
2895   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2896     : _live_bytes(0), _hr(hr), _vo(vo) {
2897     _g1h = G1CollectedHeap::heap();
2898   }
2899   void do_object(oop o) {
2900     VerifyLivenessOopClosure isLive(_g1h, _vo);
2901     assert(o != NULL, "Huh?");
2902     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2903       // If the object is alive according to the mark word,
2904       // then verify that the marking information agrees.
2905       // Note we can't verify the contra-positive of the
2906       // above: if the object is dead (according to the mark
2907       // word), it may not be marked, or may have been marked
2908       // but has since became dead, or may have been allocated
2909       // since the last marking.
2910       if (_vo == VerifyOption_G1UseMarkWord) {
2911         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2912       }
2913 
2914       o->oop_iterate_no_header(&isLive);
2915       if (!_hr->obj_allocated_since_prev_marking(o)) {
2916         size_t obj_size = o->size();    // Make sure we don't overflow
2917         _live_bytes += (obj_size * HeapWordSize);
2918       }
2919     }
2920   }
2921   size_t live_bytes() { return _live_bytes; }
2922 };
2923 
2924 class PrintObjsInRegionClosure : public ObjectClosure {
2925   HeapRegion *_hr;
2926   G1CollectedHeap *_g1;
2927 public:
2928   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2929     _g1 = G1CollectedHeap::heap();
2930   };
2931 
2932   void do_object(oop o) {
2933     if (o != NULL) {
2934       HeapWord *start = (HeapWord *) o;
2935       size_t word_sz = o->size();
2936       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2937                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2938                           (void*) o, word_sz,
2939                           _g1->isMarkedPrev(o),
2940                           _g1->isMarkedNext(o),
2941                           _hr->obj_allocated_since_prev_marking(o));
2942       HeapWord *end = start + word_sz;
2943       HeapWord *cur;
2944       int *val;
2945       for (cur = start; cur < end; cur++) {
2946         val = (int *) cur;
2947         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
2948       }
2949     }
2950   }
2951 };
2952 
2953 class VerifyRegionClosure: public HeapRegionClosure {
2954 private:
2955   bool             _par;
2956   VerifyOption     _vo;
2957   bool             _failures;
2958 public:
2959   // _vo == UsePrevMarking -> use "prev" marking information,
2960   // _vo == UseNextMarking -> use "next" marking information,
2961   // _vo == UseMarkWord    -> use mark word from object header.
2962   VerifyRegionClosure(bool par, VerifyOption vo)
2963     : _par(par),
2964       _vo(vo),
2965       _failures(false) {}
2966 
2967   bool failures() {
2968     return _failures;
2969   }
2970 
2971   bool doHeapRegion(HeapRegion* r) {
2972     if (!r->is_continues_humongous()) {
2973       bool failures = false;
2974       r->verify(_vo, &failures);
2975       if (failures) {
2976         _failures = true;
2977       } else {
2978         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2979         r->object_iterate(&not_dead_yet_cl);
2980         if (_vo != VerifyOption_G1UseNextMarking) {
2981           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2982             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2983                                    "max_live_bytes "SIZE_FORMAT" "
2984                                    "< calculated "SIZE_FORMAT,
2985                                    r->bottom(), r->end(),
2986                                    r->max_live_bytes(),
2987                                  not_dead_yet_cl.live_bytes());
2988             _failures = true;
2989           }
2990         } else {
2991           // When vo == UseNextMarking we cannot currently do a sanity
2992           // check on the live bytes as the calculation has not been
2993           // finalized yet.
2994         }
2995       }
2996     }
2997     return false; // stop the region iteration if we hit a failure
2998   }
2999 };
3000 
3001 // This is the task used for parallel verification of the heap regions
3002 
3003 class G1ParVerifyTask: public AbstractGangTask {
3004 private:
3005   G1CollectedHeap*  _g1h;
3006   VerifyOption      _vo;
3007   bool              _failures;
3008   HeapRegionClaimer _hrclaimer;
3009 
3010 public:
3011   // _vo == UsePrevMarking -> use "prev" marking information,
3012   // _vo == UseNextMarking -> use "next" marking information,
3013   // _vo == UseMarkWord    -> use mark word from object header.
3014   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3015       AbstractGangTask("Parallel verify task"),
3016       _g1h(g1h),
3017       _vo(vo),
3018       _failures(false),
3019       _hrclaimer(g1h->workers()->active_workers()) {}
3020 
3021   bool failures() {
3022     return _failures;
3023   }
3024 
3025   void work(uint worker_id) {
3026     HandleMark hm;
3027     VerifyRegionClosure blk(true, _vo);
3028     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3029     if (blk.failures()) {
3030       _failures = true;
3031     }
3032   }
3033 };
3034 
3035 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3036   if (SafepointSynchronize::is_at_safepoint()) {
3037     assert(Thread::current()->is_VM_thread(),
3038            "Expected to be executed serially by the VM thread at this point");
3039 
3040     if (!silent) { gclog_or_tty->print("Roots "); }
3041     VerifyRootsClosure rootsCl(vo);
3042     VerifyKlassClosure klassCl(this, &rootsCl);
3043     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3044 
3045     // We apply the relevant closures to all the oops in the
3046     // system dictionary, class loader data graph, the string table
3047     // and the nmethods in the code cache.
3048     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3049     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3050 
3051     {
3052       G1RootProcessor root_processor(this);
3053       root_processor.process_all_roots(&rootsCl,
3054                                        &cldCl,
3055                                        &blobsCl);
3056     }
3057 
3058     bool failures = rootsCl.failures() || codeRootsCl.failures();
3059 
3060     if (vo != VerifyOption_G1UseMarkWord) {
3061       // If we're verifying during a full GC then the region sets
3062       // will have been torn down at the start of the GC. Therefore
3063       // verifying the region sets will fail. So we only verify
3064       // the region sets when not in a full GC.
3065       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3066       verify_region_sets();
3067     }
3068 
3069     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3070     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3071 
3072       G1ParVerifyTask task(this, vo);
3073       assert(UseDynamicNumberOfGCThreads ||
3074         workers()->active_workers() == workers()->total_workers(),
3075         "If not dynamic should be using all the workers");
3076       int n_workers = workers()->active_workers();
3077       set_par_threads(n_workers);
3078       workers()->run_task(&task);
3079       set_par_threads(0);
3080       if (task.failures()) {
3081         failures = true;
3082       }
3083 
3084     } else {
3085       VerifyRegionClosure blk(false, vo);
3086       heap_region_iterate(&blk);
3087       if (blk.failures()) {
3088         failures = true;
3089       }
3090     }
3091 
3092     if (G1StringDedup::is_enabled()) {
3093       if (!silent) gclog_or_tty->print("StrDedup ");
3094       G1StringDedup::verify();
3095     }
3096 
3097     if (failures) {
3098       gclog_or_tty->print_cr("Heap:");
3099       // It helps to have the per-region information in the output to
3100       // help us track down what went wrong. This is why we call
3101       // print_extended_on() instead of print_on().
3102       print_extended_on(gclog_or_tty);
3103       gclog_or_tty->cr();
3104       gclog_or_tty->flush();
3105     }
3106     guarantee(!failures, "there should not have been any failures");
3107   } else {
3108     if (!silent) {
3109       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3110       if (G1StringDedup::is_enabled()) {
3111         gclog_or_tty->print(", StrDedup");
3112       }
3113       gclog_or_tty->print(") ");
3114     }
3115   }
3116 }
3117 
3118 void G1CollectedHeap::verify(bool silent) {
3119   verify(silent, VerifyOption_G1UsePrevMarking);
3120 }
3121 
3122 double G1CollectedHeap::verify(bool guard, const char* msg) {
3123   double verify_time_ms = 0.0;
3124 
3125   if (guard && total_collections() >= VerifyGCStartAt) {
3126     double verify_start = os::elapsedTime();
3127     HandleMark hm;  // Discard invalid handles created during verification
3128     prepare_for_verify();
3129     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3130     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3131   }
3132 
3133   return verify_time_ms;
3134 }
3135 
3136 void G1CollectedHeap::verify_before_gc() {
3137   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3138   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3139 }
3140 
3141 void G1CollectedHeap::verify_after_gc() {
3142   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3143   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3144 }
3145 
3146 class PrintRegionClosure: public HeapRegionClosure {
3147   outputStream* _st;
3148 public:
3149   PrintRegionClosure(outputStream* st) : _st(st) {}
3150   bool doHeapRegion(HeapRegion* r) {
3151     r->print_on(_st);
3152     return false;
3153   }
3154 };
3155 
3156 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3157                                        const HeapRegion* hr,
3158                                        const VerifyOption vo) const {
3159   switch (vo) {
3160   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3161   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3162   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3163   default:                            ShouldNotReachHere();
3164   }
3165   return false; // keep some compilers happy
3166 }
3167 
3168 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3169                                        const VerifyOption vo) const {
3170   switch (vo) {
3171   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3172   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3173   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3174   default:                            ShouldNotReachHere();
3175   }
3176   return false; // keep some compilers happy
3177 }
3178 
3179 void G1CollectedHeap::print_on(outputStream* st) const {
3180   st->print(" %-20s", "garbage-first heap");
3181   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3182             capacity()/K, used_unlocked()/K);
3183   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3184             _hrm.reserved().start(),
3185             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3186             _hrm.reserved().end());
3187   st->cr();
3188   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3189   uint young_regions = _young_list->length();
3190   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3191             (size_t) young_regions * HeapRegion::GrainBytes / K);
3192   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3193   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3194             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3195   st->cr();
3196   MetaspaceAux::print_on(st);
3197 }
3198 
3199 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3200   print_on(st);
3201 
3202   // Print the per-region information.
3203   st->cr();
3204   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3205                "HS=humongous(starts), HC=humongous(continues), "
3206                "CS=collection set, F=free, TS=gc time stamp, "
3207                "PTAMS=previous top-at-mark-start, "
3208                "NTAMS=next top-at-mark-start)");
3209   PrintRegionClosure blk(st);
3210   heap_region_iterate(&blk);
3211 }
3212 
3213 void G1CollectedHeap::print_on_error(outputStream* st) const {
3214   this->CollectedHeap::print_on_error(st);
3215 
3216   if (_cm != NULL) {
3217     st->cr();
3218     _cm->print_on_error(st);
3219   }
3220 }
3221 
3222 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3223   workers()->print_worker_threads_on(st);
3224   _cmThread->print_on(st);
3225   st->cr();
3226   _cm->print_worker_threads_on(st);
3227   _cg1r->print_worker_threads_on(st);
3228   if (G1StringDedup::is_enabled()) {
3229     G1StringDedup::print_worker_threads_on(st);
3230   }
3231 }
3232 
3233 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3234   workers()->threads_do(tc);
3235   tc->do_thread(_cmThread);
3236   _cg1r->threads_do(tc);
3237   if (G1StringDedup::is_enabled()) {
3238     G1StringDedup::threads_do(tc);
3239   }
3240 }
3241 
3242 void G1CollectedHeap::print_tracing_info() const {
3243   // We'll overload this to mean "trace GC pause statistics."
3244   if (TraceYoungGenTime || TraceOldGenTime) {
3245     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3246     // to that.
3247     g1_policy()->print_tracing_info();
3248   }
3249   if (G1SummarizeRSetStats) {
3250     g1_rem_set()->print_summary_info();
3251   }
3252   if (G1SummarizeConcMark) {
3253     concurrent_mark()->print_summary_info();
3254   }
3255   g1_policy()->print_yg_surv_rate_info();
3256 }
3257 
3258 #ifndef PRODUCT
3259 // Helpful for debugging RSet issues.
3260 
3261 class PrintRSetsClosure : public HeapRegionClosure {
3262 private:
3263   const char* _msg;
3264   size_t _occupied_sum;
3265 
3266 public:
3267   bool doHeapRegion(HeapRegion* r) {
3268     HeapRegionRemSet* hrrs = r->rem_set();
3269     size_t occupied = hrrs->occupied();
3270     _occupied_sum += occupied;
3271 
3272     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3273                            HR_FORMAT_PARAMS(r));
3274     if (occupied == 0) {
3275       gclog_or_tty->print_cr("  RSet is empty");
3276     } else {
3277       hrrs->print();
3278     }
3279     gclog_or_tty->print_cr("----------");
3280     return false;
3281   }
3282 
3283   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3284     gclog_or_tty->cr();
3285     gclog_or_tty->print_cr("========================================");
3286     gclog_or_tty->print_cr("%s", msg);
3287     gclog_or_tty->cr();
3288   }
3289 
3290   ~PrintRSetsClosure() {
3291     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3292     gclog_or_tty->print_cr("========================================");
3293     gclog_or_tty->cr();
3294   }
3295 };
3296 
3297 void G1CollectedHeap::print_cset_rsets() {
3298   PrintRSetsClosure cl("Printing CSet RSets");
3299   collection_set_iterate(&cl);
3300 }
3301 
3302 void G1CollectedHeap::print_all_rsets() {
3303   PrintRSetsClosure cl("Printing All RSets");;
3304   heap_region_iterate(&cl);
3305 }
3306 #endif // PRODUCT
3307 
3308 G1CollectedHeap* G1CollectedHeap::heap() {
3309   CollectedHeap* heap = Universe::heap();
3310   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3311   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3312   return (G1CollectedHeap*)heap;
3313 }
3314 
3315 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3316   // always_do_update_barrier = false;
3317   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3318   // Fill TLAB's and such
3319   accumulate_statistics_all_tlabs();
3320   ensure_parsability(true);
3321 
3322   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3323       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3324     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3325   }
3326 }
3327 
3328 void G1CollectedHeap::gc_epilogue(bool full) {
3329 
3330   if (G1SummarizeRSetStats &&
3331       (G1SummarizeRSetStatsPeriod > 0) &&
3332       // we are at the end of the GC. Total collections has already been increased.
3333       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3334     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3335   }
3336 
3337   // FIXME: what is this about?
3338   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3339   // is set.
3340   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3341                         "derived pointer present"));
3342   // always_do_update_barrier = true;
3343 
3344   resize_all_tlabs();
3345   allocation_context_stats().update(full);
3346 
3347   // We have just completed a GC. Update the soft reference
3348   // policy with the new heap occupancy
3349   Universe::update_heap_info_at_gc();
3350 }
3351 
3352 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3353                                                uint gc_count_before,
3354                                                bool* succeeded,
3355                                                GCCause::Cause gc_cause) {
3356   assert_heap_not_locked_and_not_at_safepoint();
3357   g1_policy()->record_stop_world_start();
3358   VM_G1IncCollectionPause op(gc_count_before,
3359                              word_size,
3360                              false, /* should_initiate_conc_mark */
3361                              g1_policy()->max_pause_time_ms(),
3362                              gc_cause);
3363 
3364   op.set_allocation_context(AllocationContext::current());
3365   VMThread::execute(&op);
3366 
3367   HeapWord* result = op.result();
3368   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3369   assert(result == NULL || ret_succeeded,
3370          "the result should be NULL if the VM did not succeed");
3371   *succeeded = ret_succeeded;
3372 
3373   assert_heap_not_locked();
3374   return result;
3375 }
3376 
3377 void
3378 G1CollectedHeap::doConcurrentMark() {
3379   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3380   if (!_cmThread->in_progress()) {
3381     _cmThread->set_started();
3382     CGC_lock->notify();
3383   }
3384 }
3385 
3386 size_t G1CollectedHeap::pending_card_num() {
3387   size_t extra_cards = 0;
3388   JavaThread *curr = Threads::first();
3389   while (curr != NULL) {
3390     DirtyCardQueue& dcq = curr->dirty_card_queue();
3391     extra_cards += dcq.size();
3392     curr = curr->next();
3393   }
3394   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3395   size_t buffer_size = dcqs.buffer_size();
3396   size_t buffer_num = dcqs.completed_buffers_num();
3397 
3398   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3399   // in bytes - not the number of 'entries'. We need to convert
3400   // into a number of cards.
3401   return (buffer_size * buffer_num + extra_cards) / oopSize;
3402 }
3403 
3404 size_t G1CollectedHeap::cards_scanned() {
3405   return g1_rem_set()->cardsScanned();
3406 }
3407 
3408 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3409  private:
3410   size_t _total_humongous;
3411   size_t _candidate_humongous;
3412 
3413   DirtyCardQueue _dcq;
3414 
3415   // We don't nominate objects with many remembered set entries, on
3416   // the assumption that such objects are likely still live.
3417   bool is_remset_small(HeapRegion* region) const {
3418     HeapRegionRemSet* const rset = region->rem_set();
3419     return G1EagerReclaimHumongousObjectsWithStaleRefs
3420       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3421       : rset->is_empty();
3422   }
3423 
3424   bool is_typeArray_region(HeapRegion* region) const {
3425     return oop(region->bottom())->is_typeArray();
3426   }
3427 
3428   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3429     assert(region->is_starts_humongous(), "Must start a humongous object");
3430 
3431     // Candidate selection must satisfy the following constraints
3432     // while concurrent marking is in progress:
3433     //
3434     // * In order to maintain SATB invariants, an object must not be
3435     // reclaimed if it was allocated before the start of marking and
3436     // has not had its references scanned.  Such an object must have
3437     // its references (including type metadata) scanned to ensure no
3438     // live objects are missed by the marking process.  Objects
3439     // allocated after the start of concurrent marking don't need to
3440     // be scanned.
3441     //
3442     // * An object must not be reclaimed if it is on the concurrent
3443     // mark stack.  Objects allocated after the start of concurrent
3444     // marking are never pushed on the mark stack.
3445     //
3446     // Nominating only objects allocated after the start of concurrent
3447     // marking is sufficient to meet both constraints.  This may miss
3448     // some objects that satisfy the constraints, but the marking data
3449     // structures don't support efficiently performing the needed
3450     // additional tests or scrubbing of the mark stack.
3451     //
3452     // However, we presently only nominate is_typeArray() objects.
3453     // A humongous object containing references induces remembered
3454     // set entries on other regions.  In order to reclaim such an
3455     // object, those remembered sets would need to be cleaned up.
3456     //
3457     // We also treat is_typeArray() objects specially, allowing them
3458     // to be reclaimed even if allocated before the start of
3459     // concurrent mark.  For this we rely on mark stack insertion to
3460     // exclude is_typeArray() objects, preventing reclaiming an object
3461     // that is in the mark stack.  We also rely on the metadata for
3462     // such objects to be built-in and so ensured to be kept live.
3463     // Frequent allocation and drop of large binary blobs is an
3464     // important use case for eager reclaim, and this special handling
3465     // may reduce needed headroom.
3466 
3467     return is_typeArray_region(region) && is_remset_small(region);
3468   }
3469 
3470  public:
3471   RegisterHumongousWithInCSetFastTestClosure()
3472   : _total_humongous(0),
3473     _candidate_humongous(0),
3474     _dcq(&JavaThread::dirty_card_queue_set()) {
3475   }
3476 
3477   virtual bool doHeapRegion(HeapRegion* r) {
3478     if (!r->is_starts_humongous()) {
3479       return false;
3480     }
3481     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3482 
3483     bool is_candidate = humongous_region_is_candidate(g1h, r);
3484     uint rindex = r->hrm_index();
3485     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3486     if (is_candidate) {
3487       _candidate_humongous++;
3488       g1h->register_humongous_region_with_cset(rindex);
3489       // Is_candidate already filters out humongous object with large remembered sets.
3490       // If we have a humongous object with a few remembered sets, we simply flush these
3491       // remembered set entries into the DCQS. That will result in automatic
3492       // re-evaluation of their remembered set entries during the following evacuation
3493       // phase.
3494       if (!r->rem_set()->is_empty()) {
3495         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3496                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3497         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3498         HeapRegionRemSetIterator hrrs(r->rem_set());
3499         size_t card_index;
3500         while (hrrs.has_next(card_index)) {
3501           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3502           // The remembered set might contain references to already freed
3503           // regions. Filter out such entries to avoid failing card table
3504           // verification.
3505           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3506             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3507               *card_ptr = CardTableModRefBS::dirty_card_val();
3508               _dcq.enqueue(card_ptr);
3509             }
3510           }
3511         }
3512         r->rem_set()->clear_locked();
3513       }
3514       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3515     }
3516     _total_humongous++;
3517 
3518     return false;
3519   }
3520 
3521   size_t total_humongous() const { return _total_humongous; }
3522   size_t candidate_humongous() const { return _candidate_humongous; }
3523 
3524   void flush_rem_set_entries() { _dcq.flush(); }
3525 };
3526 
3527 void G1CollectedHeap::register_humongous_regions_with_cset() {
3528   if (!G1EagerReclaimHumongousObjects) {
3529     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3530     return;
3531   }
3532   double time = os::elapsed_counter();
3533 
3534   // Collect reclaim candidate information and register candidates with cset.
3535   RegisterHumongousWithInCSetFastTestClosure cl;
3536   heap_region_iterate(&cl);
3537 
3538   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3539   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3540                                                                   cl.total_humongous(),
3541                                                                   cl.candidate_humongous());
3542   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3543 
3544   // Finally flush all remembered set entries to re-check into the global DCQS.
3545   cl.flush_rem_set_entries();
3546 }
3547 
3548 void
3549 G1CollectedHeap::setup_surviving_young_words() {
3550   assert(_surviving_young_words == NULL, "pre-condition");
3551   uint array_length = g1_policy()->young_cset_region_length();
3552   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3553   if (_surviving_young_words == NULL) {
3554     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3555                           "Not enough space for young surv words summary.");
3556   }
3557   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3558 #ifdef ASSERT
3559   for (uint i = 0;  i < array_length; ++i) {
3560     assert( _surviving_young_words[i] == 0, "memset above" );
3561   }
3562 #endif // !ASSERT
3563 }
3564 
3565 void
3566 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3567   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3568   uint array_length = g1_policy()->young_cset_region_length();
3569   for (uint i = 0; i < array_length; ++i) {
3570     _surviving_young_words[i] += surv_young_words[i];
3571   }
3572 }
3573 
3574 void
3575 G1CollectedHeap::cleanup_surviving_young_words() {
3576   guarantee( _surviving_young_words != NULL, "pre-condition" );
3577   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3578   _surviving_young_words = NULL;
3579 }
3580 
3581 #ifdef ASSERT
3582 class VerifyCSetClosure: public HeapRegionClosure {
3583 public:
3584   bool doHeapRegion(HeapRegion* hr) {
3585     // Here we check that the CSet region's RSet is ready for parallel
3586     // iteration. The fields that we'll verify are only manipulated
3587     // when the region is part of a CSet and is collected. Afterwards,
3588     // we reset these fields when we clear the region's RSet (when the
3589     // region is freed) so they are ready when the region is
3590     // re-allocated. The only exception to this is if there's an
3591     // evacuation failure and instead of freeing the region we leave
3592     // it in the heap. In that case, we reset these fields during
3593     // evacuation failure handling.
3594     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3595 
3596     // Here's a good place to add any other checks we'd like to
3597     // perform on CSet regions.
3598     return false;
3599   }
3600 };
3601 #endif // ASSERT
3602 
3603 #if TASKQUEUE_STATS
3604 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3605   st->print_raw_cr("GC Task Stats");
3606   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3607   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3608 }
3609 
3610 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3611   print_taskqueue_stats_hdr(st);
3612 
3613   TaskQueueStats totals;
3614   const int n = workers()->total_workers();
3615   for (int i = 0; i < n; ++i) {
3616     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3617     totals += task_queue(i)->stats;
3618   }
3619   st->print_raw("tot "); totals.print(st); st->cr();
3620 
3621   DEBUG_ONLY(totals.verify());
3622 }
3623 
3624 void G1CollectedHeap::reset_taskqueue_stats() {
3625   const int n = workers()->total_workers();
3626   for (int i = 0; i < n; ++i) {
3627     task_queue(i)->stats.reset();
3628   }
3629 }
3630 #endif // TASKQUEUE_STATS
3631 
3632 void G1CollectedHeap::log_gc_header() {
3633   if (!G1Log::fine()) {
3634     return;
3635   }
3636 
3637   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3638 
3639   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3640     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3641     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3642 
3643   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3644 }
3645 
3646 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3647   if (!G1Log::fine()) {
3648     return;
3649   }
3650 
3651   if (G1Log::finer()) {
3652     if (evacuation_failed()) {
3653       gclog_or_tty->print(" (to-space exhausted)");
3654     }
3655     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3656     g1_policy()->phase_times()->note_gc_end();
3657     g1_policy()->phase_times()->print(pause_time_sec);
3658     g1_policy()->print_detailed_heap_transition();
3659   } else {
3660     if (evacuation_failed()) {
3661       gclog_or_tty->print("--");
3662     }
3663     g1_policy()->print_heap_transition();
3664     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3665   }
3666   gclog_or_tty->flush();
3667 }
3668 
3669 bool
3670 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3671   assert_at_safepoint(true /* should_be_vm_thread */);
3672   guarantee(!is_gc_active(), "collection is not reentrant");
3673 
3674   if (GC_locker::check_active_before_gc()) {
3675     return false;
3676   }
3677 
3678   _gc_timer_stw->register_gc_start();
3679 
3680   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3681 
3682   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3683   ResourceMark rm;
3684 
3685   print_heap_before_gc();
3686   trace_heap_before_gc(_gc_tracer_stw);
3687 
3688   verify_region_sets_optional();
3689   verify_dirty_young_regions();
3690 
3691   // This call will decide whether this pause is an initial-mark
3692   // pause. If it is, during_initial_mark_pause() will return true
3693   // for the duration of this pause.
3694   g1_policy()->decide_on_conc_mark_initiation();
3695 
3696   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3697   assert(!g1_policy()->during_initial_mark_pause() ||
3698           g1_policy()->gcs_are_young(), "sanity");
3699 
3700   // We also do not allow mixed GCs during marking.
3701   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3702 
3703   // Record whether this pause is an initial mark. When the current
3704   // thread has completed its logging output and it's safe to signal
3705   // the CM thread, the flag's value in the policy has been reset.
3706   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3707 
3708   // Inner scope for scope based logging, timers, and stats collection
3709   {
3710     EvacuationInfo evacuation_info;
3711 
3712     if (g1_policy()->during_initial_mark_pause()) {
3713       // We are about to start a marking cycle, so we increment the
3714       // full collection counter.
3715       increment_old_marking_cycles_started();
3716       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3717     }
3718 
3719     _gc_tracer_stw->report_yc_type(yc_type());
3720 
3721     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3722 
3723     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3724                                                                   workers()->active_workers(),
3725                                                                   Threads::number_of_non_daemon_threads());
3726     assert(UseDynamicNumberOfGCThreads ||
3727            active_workers == workers()->total_workers(),
3728            "If not dynamic should be using all the  workers");
3729     workers()->set_active_workers(active_workers);
3730 
3731     double pause_start_sec = os::elapsedTime();
3732     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3733     log_gc_header();
3734 
3735     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3736     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3737 
3738     // If the secondary_free_list is not empty, append it to the
3739     // free_list. No need to wait for the cleanup operation to finish;
3740     // the region allocation code will check the secondary_free_list
3741     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3742     // set, skip this step so that the region allocation code has to
3743     // get entries from the secondary_free_list.
3744     if (!G1StressConcRegionFreeing) {
3745       append_secondary_free_list_if_not_empty_with_lock();
3746     }
3747 
3748     assert(check_young_list_well_formed(), "young list should be well formed");
3749 
3750     // Don't dynamically change the number of GC threads this early.  A value of
3751     // 0 is used to indicate serial work.  When parallel work is done,
3752     // it will be set.
3753 
3754     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3755       IsGCActiveMark x;
3756 
3757       gc_prologue(false);
3758       increment_total_collections(false /* full gc */);
3759       increment_gc_time_stamp();
3760 
3761       verify_before_gc();
3762 
3763       check_bitmaps("GC Start");
3764 
3765       COMPILER2_PRESENT(DerivedPointerTable::clear());
3766 
3767       // Please see comment in g1CollectedHeap.hpp and
3768       // G1CollectedHeap::ref_processing_init() to see how
3769       // reference processing currently works in G1.
3770 
3771       // Enable discovery in the STW reference processor
3772       ref_processor_stw()->enable_discovery();
3773 
3774       {
3775         // We want to temporarily turn off discovery by the
3776         // CM ref processor, if necessary, and turn it back on
3777         // on again later if we do. Using a scoped
3778         // NoRefDiscovery object will do this.
3779         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3780 
3781         // Forget the current alloc region (we might even choose it to be part
3782         // of the collection set!).
3783         _allocator->release_mutator_alloc_region();
3784 
3785         // We should call this after we retire the mutator alloc
3786         // region(s) so that all the ALLOC / RETIRE events are generated
3787         // before the start GC event.
3788         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3789 
3790         // This timing is only used by the ergonomics to handle our pause target.
3791         // It is unclear why this should not include the full pause. We will
3792         // investigate this in CR 7178365.
3793         //
3794         // Preserving the old comment here if that helps the investigation:
3795         //
3796         // The elapsed time induced by the start time below deliberately elides
3797         // the possible verification above.
3798         double sample_start_time_sec = os::elapsedTime();
3799 
3800 #if YOUNG_LIST_VERBOSE
3801         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3802         _young_list->print();
3803         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3804 #endif // YOUNG_LIST_VERBOSE
3805 
3806         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3807 
3808         double scan_wait_start = os::elapsedTime();
3809         // We have to wait until the CM threads finish scanning the
3810         // root regions as it's the only way to ensure that all the
3811         // objects on them have been correctly scanned before we start
3812         // moving them during the GC.
3813         bool waited = _cm->root_regions()->wait_until_scan_finished();
3814         double wait_time_ms = 0.0;
3815         if (waited) {
3816           double scan_wait_end = os::elapsedTime();
3817           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3818         }
3819         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3820 
3821 #if YOUNG_LIST_VERBOSE
3822         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3823         _young_list->print();
3824 #endif // YOUNG_LIST_VERBOSE
3825 
3826         if (g1_policy()->during_initial_mark_pause()) {
3827           concurrent_mark()->checkpointRootsInitialPre();
3828         }
3829 
3830 #if YOUNG_LIST_VERBOSE
3831         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3832         _young_list->print();
3833         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3834 #endif // YOUNG_LIST_VERBOSE
3835 
3836         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3837 
3838         register_humongous_regions_with_cset();
3839 
3840         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3841 
3842         _cm->note_start_of_gc();
3843         // We should not verify the per-thread SATB buffers given that
3844         // we have not filtered them yet (we'll do so during the
3845         // GC). We also call this after finalize_cset() to
3846         // ensure that the CSet has been finalized.
3847         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3848                                  true  /* verify_enqueued_buffers */,
3849                                  false /* verify_thread_buffers */,
3850                                  true  /* verify_fingers */);
3851 
3852         if (_hr_printer.is_active()) {
3853           HeapRegion* hr = g1_policy()->collection_set();
3854           while (hr != NULL) {
3855             _hr_printer.cset(hr);
3856             hr = hr->next_in_collection_set();
3857           }
3858         }
3859 
3860 #ifdef ASSERT
3861         VerifyCSetClosure cl;
3862         collection_set_iterate(&cl);
3863 #endif // ASSERT
3864 
3865         setup_surviving_young_words();
3866 
3867         // Initialize the GC alloc regions.
3868         _allocator->init_gc_alloc_regions(evacuation_info);
3869 
3870         // Actually do the work...
3871         evacuate_collection_set(evacuation_info);
3872 
3873         // We do this to mainly verify the per-thread SATB buffers
3874         // (which have been filtered by now) since we didn't verify
3875         // them earlier. No point in re-checking the stacks / enqueued
3876         // buffers given that the CSet has not changed since last time
3877         // we checked.
3878         _cm->verify_no_cset_oops(false /* verify_stacks */,
3879                                  false /* verify_enqueued_buffers */,
3880                                  true  /* verify_thread_buffers */,
3881                                  true  /* verify_fingers */);
3882 
3883         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3884 
3885         eagerly_reclaim_humongous_regions();
3886 
3887         g1_policy()->clear_collection_set();
3888 
3889         cleanup_surviving_young_words();
3890 
3891         // Start a new incremental collection set for the next pause.
3892         g1_policy()->start_incremental_cset_building();
3893 
3894         clear_cset_fast_test();
3895 
3896         _young_list->reset_sampled_info();
3897 
3898         // Don't check the whole heap at this point as the
3899         // GC alloc regions from this pause have been tagged
3900         // as survivors and moved on to the survivor list.
3901         // Survivor regions will fail the !is_young() check.
3902         assert(check_young_list_empty(false /* check_heap */),
3903           "young list should be empty");
3904 
3905 #if YOUNG_LIST_VERBOSE
3906         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3907         _young_list->print();
3908 #endif // YOUNG_LIST_VERBOSE
3909 
3910         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3911                                              _young_list->first_survivor_region(),
3912                                              _young_list->last_survivor_region());
3913 
3914         _young_list->reset_auxilary_lists();
3915 
3916         if (evacuation_failed()) {
3917           _allocator->set_used(recalculate_used());
3918           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3919           for (uint i = 0; i < n_queues; i++) {
3920             if (_evacuation_failed_info_array[i].has_failed()) {
3921               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3922             }
3923           }
3924         } else {
3925           // The "used" of the the collection set have already been subtracted
3926           // when they were freed.  Add in the bytes evacuated.
3927           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3928         }
3929 
3930         if (g1_policy()->during_initial_mark_pause()) {
3931           // We have to do this before we notify the CM threads that
3932           // they can start working to make sure that all the
3933           // appropriate initialization is done on the CM object.
3934           concurrent_mark()->checkpointRootsInitialPost();
3935           set_marking_started();
3936           // Note that we don't actually trigger the CM thread at
3937           // this point. We do that later when we're sure that
3938           // the current thread has completed its logging output.
3939         }
3940 
3941         allocate_dummy_regions();
3942 
3943 #if YOUNG_LIST_VERBOSE
3944         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3945         _young_list->print();
3946         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3947 #endif // YOUNG_LIST_VERBOSE
3948 
3949         _allocator->init_mutator_alloc_region();
3950 
3951         {
3952           size_t expand_bytes = g1_policy()->expansion_amount();
3953           if (expand_bytes > 0) {
3954             size_t bytes_before = capacity();
3955             // No need for an ergo verbose message here,
3956             // expansion_amount() does this when it returns a value > 0.
3957             if (!expand(expand_bytes)) {
3958               // We failed to expand the heap. Cannot do anything about it.
3959             }
3960           }
3961         }
3962 
3963         // We redo the verification but now wrt to the new CSet which
3964         // has just got initialized after the previous CSet was freed.
3965         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3966                                  true  /* verify_enqueued_buffers */,
3967                                  true  /* verify_thread_buffers */,
3968                                  true  /* verify_fingers */);
3969         _cm->note_end_of_gc();
3970 
3971         // This timing is only used by the ergonomics to handle our pause target.
3972         // It is unclear why this should not include the full pause. We will
3973         // investigate this in CR 7178365.
3974         double sample_end_time_sec = os::elapsedTime();
3975         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3976         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3977 
3978         MemoryService::track_memory_usage();
3979 
3980         // In prepare_for_verify() below we'll need to scan the deferred
3981         // update buffers to bring the RSets up-to-date if
3982         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3983         // the update buffers we'll probably need to scan cards on the
3984         // regions we just allocated to (i.e., the GC alloc
3985         // regions). However, during the last GC we called
3986         // set_saved_mark() on all the GC alloc regions, so card
3987         // scanning might skip the [saved_mark_word()...top()] area of
3988         // those regions (i.e., the area we allocated objects into
3989         // during the last GC). But it shouldn't. Given that
3990         // saved_mark_word() is conditional on whether the GC time stamp
3991         // on the region is current or not, by incrementing the GC time
3992         // stamp here we invalidate all the GC time stamps on all the
3993         // regions and saved_mark_word() will simply return top() for
3994         // all the regions. This is a nicer way of ensuring this rather
3995         // than iterating over the regions and fixing them. In fact, the
3996         // GC time stamp increment here also ensures that
3997         // saved_mark_word() will return top() between pauses, i.e.,
3998         // during concurrent refinement. So we don't need the
3999         // is_gc_active() check to decided which top to use when
4000         // scanning cards (see CR 7039627).
4001         increment_gc_time_stamp();
4002 
4003         verify_after_gc();
4004         check_bitmaps("GC End");
4005 
4006         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4007         ref_processor_stw()->verify_no_references_recorded();
4008 
4009         // CM reference discovery will be re-enabled if necessary.
4010       }
4011 
4012       // We should do this after we potentially expand the heap so
4013       // that all the COMMIT events are generated before the end GC
4014       // event, and after we retire the GC alloc regions so that all
4015       // RETIRE events are generated before the end GC event.
4016       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4017 
4018 #ifdef TRACESPINNING
4019       ParallelTaskTerminator::print_termination_counts();
4020 #endif
4021 
4022       gc_epilogue(false);
4023     }
4024 
4025     // Print the remainder of the GC log output.
4026     log_gc_footer(os::elapsedTime() - pause_start_sec);
4027 
4028     // It is not yet to safe to tell the concurrent mark to
4029     // start as we have some optional output below. We don't want the
4030     // output from the concurrent mark thread interfering with this
4031     // logging output either.
4032 
4033     _hrm.verify_optional();
4034     verify_region_sets_optional();
4035 
4036     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4037     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4038 
4039     print_heap_after_gc();
4040     trace_heap_after_gc(_gc_tracer_stw);
4041 
4042     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4043     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4044     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4045     // before any GC notifications are raised.
4046     g1mm()->update_sizes();
4047 
4048     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4049     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4050     _gc_timer_stw->register_gc_end();
4051     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4052   }
4053   // It should now be safe to tell the concurrent mark thread to start
4054   // without its logging output interfering with the logging output
4055   // that came from the pause.
4056 
4057   if (should_start_conc_mark) {
4058     // CAUTION: after the doConcurrentMark() call below,
4059     // the concurrent marking thread(s) could be running
4060     // concurrently with us. Make sure that anything after
4061     // this point does not assume that we are the only GC thread
4062     // running. Note: of course, the actual marking work will
4063     // not start until the safepoint itself is released in
4064     // SuspendibleThreadSet::desynchronize().
4065     doConcurrentMark();
4066   }
4067 
4068   return true;
4069 }
4070 
4071 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4072   _drain_in_progress = false;
4073   set_evac_failure_closure(cl);
4074   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4075 }
4076 
4077 void G1CollectedHeap::finalize_for_evac_failure() {
4078   assert(_evac_failure_scan_stack != NULL &&
4079          _evac_failure_scan_stack->length() == 0,
4080          "Postcondition");
4081   assert(!_drain_in_progress, "Postcondition");
4082   delete _evac_failure_scan_stack;
4083   _evac_failure_scan_stack = NULL;
4084 }
4085 
4086 void G1CollectedHeap::remove_self_forwarding_pointers() {
4087   double remove_self_forwards_start = os::elapsedTime();
4088 
4089   set_par_threads();
4090   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4091   workers()->run_task(&rsfp_task);
4092   set_par_threads(0);
4093 
4094   // Now restore saved marks, if any.
4095   assert(_objs_with_preserved_marks.size() ==
4096             _preserved_marks_of_objs.size(), "Both or none.");
4097   while (!_objs_with_preserved_marks.is_empty()) {
4098     oop obj = _objs_with_preserved_marks.pop();
4099     markOop m = _preserved_marks_of_objs.pop();
4100     obj->set_mark(m);
4101   }
4102   _objs_with_preserved_marks.clear(true);
4103   _preserved_marks_of_objs.clear(true);
4104 
4105   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4106 }
4107 
4108 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4109   _evac_failure_scan_stack->push(obj);
4110 }
4111 
4112 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4113   assert(_evac_failure_scan_stack != NULL, "precondition");
4114 
4115   while (_evac_failure_scan_stack->length() > 0) {
4116      oop obj = _evac_failure_scan_stack->pop();
4117      _evac_failure_closure->set_region(heap_region_containing(obj));
4118      obj->oop_iterate_backwards(_evac_failure_closure);
4119   }
4120 }
4121 
4122 oop
4123 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4124                                                oop old) {
4125   assert(obj_in_cs(old),
4126          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4127                  (HeapWord*) old));
4128   markOop m = old->mark();
4129   oop forward_ptr = old->forward_to_atomic(old);
4130   if (forward_ptr == NULL) {
4131     // Forward-to-self succeeded.
4132     assert(_par_scan_state != NULL, "par scan state");
4133     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4134     uint queue_num = _par_scan_state->queue_num();
4135 
4136     _evacuation_failed = true;
4137     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4138     if (_evac_failure_closure != cl) {
4139       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4140       assert(!_drain_in_progress,
4141              "Should only be true while someone holds the lock.");
4142       // Set the global evac-failure closure to the current thread's.
4143       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4144       set_evac_failure_closure(cl);
4145       // Now do the common part.
4146       handle_evacuation_failure_common(old, m);
4147       // Reset to NULL.
4148       set_evac_failure_closure(NULL);
4149     } else {
4150       // The lock is already held, and this is recursive.
4151       assert(_drain_in_progress, "This should only be the recursive case.");
4152       handle_evacuation_failure_common(old, m);
4153     }
4154     return old;
4155   } else {
4156     // Forward-to-self failed. Either someone else managed to allocate
4157     // space for this object (old != forward_ptr) or they beat us in
4158     // self-forwarding it (old == forward_ptr).
4159     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4160            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4161                    "should not be in the CSet",
4162                    (HeapWord*) old, (HeapWord*) forward_ptr));
4163     return forward_ptr;
4164   }
4165 }
4166 
4167 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4168   preserve_mark_if_necessary(old, m);
4169 
4170   HeapRegion* r = heap_region_containing(old);
4171   if (!r->evacuation_failed()) {
4172     r->set_evacuation_failed(true);
4173     _hr_printer.evac_failure(r);
4174   }
4175 
4176   push_on_evac_failure_scan_stack(old);
4177 
4178   if (!_drain_in_progress) {
4179     // prevent recursion in copy_to_survivor_space()
4180     _drain_in_progress = true;
4181     drain_evac_failure_scan_stack();
4182     _drain_in_progress = false;
4183   }
4184 }
4185 
4186 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4187   assert(evacuation_failed(), "Oversaving!");
4188   // We want to call the "for_promotion_failure" version only in the
4189   // case of a promotion failure.
4190   if (m->must_be_preserved_for_promotion_failure(obj)) {
4191     _objs_with_preserved_marks.push(obj);
4192     _preserved_marks_of_objs.push(m);
4193   }
4194 }
4195 
4196 void G1ParCopyHelper::mark_object(oop obj) {
4197   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4198 
4199   // We know that the object is not moving so it's safe to read its size.
4200   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4201 }
4202 
4203 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4204   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4205   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4206   assert(from_obj != to_obj, "should not be self-forwarded");
4207 
4208   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4209   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4210 
4211   // The object might be in the process of being copied by another
4212   // worker so we cannot trust that its to-space image is
4213   // well-formed. So we have to read its size from its from-space
4214   // image which we know should not be changing.
4215   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4216 }
4217 
4218 template <class T>
4219 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4220   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4221     _scanned_klass->record_modified_oops();
4222   }
4223 }
4224 
4225 template <G1Barrier barrier, G1Mark do_mark_object>
4226 template <class T>
4227 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4228   T heap_oop = oopDesc::load_heap_oop(p);
4229 
4230   if (oopDesc::is_null(heap_oop)) {
4231     return;
4232   }
4233 
4234   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4235 
4236   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4237 
4238   const InCSetState state = _g1->in_cset_state(obj);
4239   if (state.is_in_cset()) {
4240     oop forwardee;
4241     markOop m = obj->mark();
4242     if (m->is_marked()) {
4243       forwardee = (oop) m->decode_pointer();
4244     } else {
4245       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4246     }
4247     assert(forwardee != NULL, "forwardee should not be NULL");
4248     oopDesc::encode_store_heap_oop(p, forwardee);
4249     if (do_mark_object != G1MarkNone && forwardee != obj) {
4250       // If the object is self-forwarded we don't need to explicitly
4251       // mark it, the evacuation failure protocol will do so.
4252       mark_forwarded_object(obj, forwardee);
4253     }
4254 
4255     if (barrier == G1BarrierKlass) {
4256       do_klass_barrier(p, forwardee);
4257     }
4258   } else {
4259     if (state.is_humongous()) {
4260       _g1->set_humongous_is_live(obj);
4261     }
4262     // The object is not in collection set. If we're a root scanning
4263     // closure during an initial mark pause then attempt to mark the object.
4264     if (do_mark_object == G1MarkFromRoot) {
4265       mark_object(obj);
4266     }
4267   }
4268 
4269   if (barrier == G1BarrierEvac) {
4270     _par_scan_state->update_rs(_from, p, _worker_id);
4271   }
4272 }
4273 
4274 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4275 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4276 
4277 class G1ParEvacuateFollowersClosure : public VoidClosure {
4278 protected:
4279   G1CollectedHeap*              _g1h;
4280   G1ParScanThreadState*         _par_scan_state;
4281   RefToScanQueueSet*            _queues;
4282   ParallelTaskTerminator*       _terminator;
4283 
4284   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4285   RefToScanQueueSet*      queues()         { return _queues; }
4286   ParallelTaskTerminator* terminator()     { return _terminator; }
4287 
4288 public:
4289   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4290                                 G1ParScanThreadState* par_scan_state,
4291                                 RefToScanQueueSet* queues,
4292                                 ParallelTaskTerminator* terminator)
4293     : _g1h(g1h), _par_scan_state(par_scan_state),
4294       _queues(queues), _terminator(terminator) {}
4295 
4296   void do_void();
4297 
4298 private:
4299   inline bool offer_termination();
4300 };
4301 
4302 bool G1ParEvacuateFollowersClosure::offer_termination() {
4303   G1ParScanThreadState* const pss = par_scan_state();
4304   pss->start_term_time();
4305   const bool res = terminator()->offer_termination();
4306   pss->end_term_time();
4307   return res;
4308 }
4309 
4310 void G1ParEvacuateFollowersClosure::do_void() {
4311   G1ParScanThreadState* const pss = par_scan_state();
4312   pss->trim_queue();
4313   do {
4314     pss->steal_and_trim_queue(queues());
4315   } while (!offer_termination());
4316 }
4317 
4318 class G1KlassScanClosure : public KlassClosure {
4319  G1ParCopyHelper* _closure;
4320  bool             _process_only_dirty;
4321  int              _count;
4322  public:
4323   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4324       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4325   void do_klass(Klass* klass) {
4326     // If the klass has not been dirtied we know that there's
4327     // no references into  the young gen and we can skip it.
4328    if (!_process_only_dirty || klass->has_modified_oops()) {
4329       // Clean the klass since we're going to scavenge all the metadata.
4330       klass->clear_modified_oops();
4331 
4332       // Tell the closure that this klass is the Klass to scavenge
4333       // and is the one to dirty if oops are left pointing into the young gen.
4334       _closure->set_scanned_klass(klass);
4335 
4336       klass->oops_do(_closure);
4337 
4338       _closure->set_scanned_klass(NULL);
4339     }
4340     _count++;
4341   }
4342 };
4343 
4344 class G1ParTask : public AbstractGangTask {
4345 protected:
4346   G1CollectedHeap*       _g1h;
4347   RefToScanQueueSet      *_queues;
4348   G1RootProcessor*       _root_processor;
4349   ParallelTaskTerminator _terminator;
4350   uint _n_workers;
4351 
4352   Mutex _stats_lock;
4353   Mutex* stats_lock() { return &_stats_lock; }
4354 
4355 public:
4356   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4357     : AbstractGangTask("G1 collection"),
4358       _g1h(g1h),
4359       _queues(task_queues),
4360       _root_processor(root_processor),
4361       _terminator(0, _queues),
4362       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4363   {}
4364 
4365   RefToScanQueueSet* queues() { return _queues; }
4366 
4367   RefToScanQueue *work_queue(int i) {
4368     return queues()->queue(i);
4369   }
4370 
4371   ParallelTaskTerminator* terminator() { return &_terminator; }
4372 
4373   virtual void set_for_termination(int active_workers) {
4374     _root_processor->set_num_workers(active_workers);
4375     terminator()->reset_for_reuse(active_workers);
4376     _n_workers = active_workers;
4377   }
4378 
4379   // Helps out with CLD processing.
4380   //
4381   // During InitialMark we need to:
4382   // 1) Scavenge all CLDs for the young GC.
4383   // 2) Mark all objects directly reachable from strong CLDs.
4384   template <G1Mark do_mark_object>
4385   class G1CLDClosure : public CLDClosure {
4386     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4387     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4388     G1KlassScanClosure                                _klass_in_cld_closure;
4389     bool                                              _claim;
4390 
4391    public:
4392     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4393                  bool only_young, bool claim)
4394         : _oop_closure(oop_closure),
4395           _oop_in_klass_closure(oop_closure->g1(),
4396                                 oop_closure->pss(),
4397                                 oop_closure->rp()),
4398           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4399           _claim(claim) {
4400 
4401     }
4402 
4403     void do_cld(ClassLoaderData* cld) {
4404       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4405     }
4406   };
4407 
4408   void work(uint worker_id) {
4409     if (worker_id >= _n_workers) return;  // no work needed this round
4410 
4411     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4412 
4413     {
4414       ResourceMark rm;
4415       HandleMark   hm;
4416 
4417       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4418 
4419       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4420       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4421 
4422       pss.set_evac_failure_closure(&evac_failure_cl);
4423 
4424       bool only_young = _g1h->g1_policy()->gcs_are_young();
4425 
4426       // Non-IM young GC.
4427       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4428       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4429                                                                                only_young, // Only process dirty klasses.
4430                                                                                false);     // No need to claim CLDs.
4431       // IM young GC.
4432       //    Strong roots closures.
4433       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4434       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4435                                                                                false, // Process all klasses.
4436                                                                                true); // Need to claim CLDs.
4437       //    Weak roots closures.
4438       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4439       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4440                                                                                     false, // Process all klasses.
4441                                                                                     true); // Need to claim CLDs.
4442 
4443       OopClosure* strong_root_cl;
4444       OopClosure* weak_root_cl;
4445       CLDClosure* strong_cld_cl;
4446       CLDClosure* weak_cld_cl;
4447 
4448       bool trace_metadata = false;
4449 
4450       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4451         // We also need to mark copied objects.
4452         strong_root_cl = &scan_mark_root_cl;
4453         strong_cld_cl  = &scan_mark_cld_cl;
4454         if (ClassUnloadingWithConcurrentMark) {
4455           weak_root_cl = &scan_mark_weak_root_cl;
4456           weak_cld_cl  = &scan_mark_weak_cld_cl;
4457           trace_metadata = true;
4458         } else {
4459           weak_root_cl = &scan_mark_root_cl;
4460           weak_cld_cl  = &scan_mark_cld_cl;
4461         }
4462       } else {
4463         strong_root_cl = &scan_only_root_cl;
4464         weak_root_cl   = &scan_only_root_cl;
4465         strong_cld_cl  = &scan_only_cld_cl;
4466         weak_cld_cl    = &scan_only_cld_cl;
4467       }
4468 
4469       pss.start_strong_roots();
4470 
4471       _root_processor->evacuate_roots(strong_root_cl,
4472                                       weak_root_cl,
4473                                       strong_cld_cl,
4474                                       weak_cld_cl,
4475                                       trace_metadata,
4476                                       worker_id);
4477 
4478       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4479       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4480                                             weak_root_cl,
4481                                             worker_id);
4482       pss.end_strong_roots();
4483 
4484       {
4485         double start = os::elapsedTime();
4486         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4487         evac.do_void();
4488         double elapsed_sec = os::elapsedTime() - start;
4489         double term_sec = pss.term_time();
4490         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4491         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4492         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4493       }
4494       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4495       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4496 
4497       if (PrintTerminationStats) {
4498         MutexLocker x(stats_lock());
4499         pss.print_termination_stats(worker_id);
4500       }
4501 
4502       assert(pss.queue_is_empty(), "should be empty");
4503 
4504       // Close the inner scope so that the ResourceMark and HandleMark
4505       // destructors are executed here and are included as part of the
4506       // "GC Worker Time".
4507     }
4508     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4509   }
4510 };
4511 
4512 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4513 private:
4514   BoolObjectClosure* _is_alive;
4515   int _initial_string_table_size;
4516   int _initial_symbol_table_size;
4517 
4518   bool  _process_strings;
4519   int _strings_processed;
4520   int _strings_removed;
4521 
4522   bool  _process_symbols;
4523   int _symbols_processed;
4524   int _symbols_removed;
4525 
4526 public:
4527   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4528     AbstractGangTask("String/Symbol Unlinking"),
4529     _is_alive(is_alive),
4530     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4531     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4532 
4533     _initial_string_table_size = StringTable::the_table()->table_size();
4534     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4535     if (process_strings) {
4536       StringTable::clear_parallel_claimed_index();
4537     }
4538     if (process_symbols) {
4539       SymbolTable::clear_parallel_claimed_index();
4540     }
4541   }
4542 
4543   ~G1StringSymbolTableUnlinkTask() {
4544     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4545               err_msg("claim value %d after unlink less than initial string table size %d",
4546                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4547     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4548               err_msg("claim value %d after unlink less than initial symbol table size %d",
4549                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4550 
4551     if (G1TraceStringSymbolTableScrubbing) {
4552       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4553                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4554                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4555                              strings_processed(), strings_removed(),
4556                              symbols_processed(), symbols_removed());
4557     }
4558   }
4559 
4560   void work(uint worker_id) {
4561     int strings_processed = 0;
4562     int strings_removed = 0;
4563     int symbols_processed = 0;
4564     int symbols_removed = 0;
4565     if (_process_strings) {
4566       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4567       Atomic::add(strings_processed, &_strings_processed);
4568       Atomic::add(strings_removed, &_strings_removed);
4569     }
4570     if (_process_symbols) {
4571       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4572       Atomic::add(symbols_processed, &_symbols_processed);
4573       Atomic::add(symbols_removed, &_symbols_removed);
4574     }
4575   }
4576 
4577   size_t strings_processed() const { return (size_t)_strings_processed; }
4578   size_t strings_removed()   const { return (size_t)_strings_removed; }
4579 
4580   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4581   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4582 };
4583 
4584 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4585 private:
4586   static Monitor* _lock;
4587 
4588   BoolObjectClosure* const _is_alive;
4589   const bool               _unloading_occurred;
4590   const uint               _num_workers;
4591 
4592   // Variables used to claim nmethods.
4593   nmethod* _first_nmethod;
4594   volatile nmethod* _claimed_nmethod;
4595 
4596   // The list of nmethods that need to be processed by the second pass.
4597   volatile nmethod* _postponed_list;
4598   volatile uint     _num_entered_barrier;
4599 
4600  public:
4601   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4602       _is_alive(is_alive),
4603       _unloading_occurred(unloading_occurred),
4604       _num_workers(num_workers),
4605       _first_nmethod(NULL),
4606       _claimed_nmethod(NULL),
4607       _postponed_list(NULL),
4608       _num_entered_barrier(0)
4609   {
4610     nmethod::increase_unloading_clock();
4611     // Get first alive nmethod
4612     NMethodIterator iter = NMethodIterator();
4613     if(iter.next_alive()) {
4614       _first_nmethod = iter.method();
4615     }
4616     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4617   }
4618 
4619   ~G1CodeCacheUnloadingTask() {
4620     CodeCache::verify_clean_inline_caches();
4621 
4622     CodeCache::set_needs_cache_clean(false);
4623     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4624 
4625     CodeCache::verify_icholder_relocations();
4626   }
4627 
4628  private:
4629   void add_to_postponed_list(nmethod* nm) {
4630       nmethod* old;
4631       do {
4632         old = (nmethod*)_postponed_list;
4633         nm->set_unloading_next(old);
4634       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4635   }
4636 
4637   void clean_nmethod(nmethod* nm) {
4638     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4639 
4640     if (postponed) {
4641       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4642       add_to_postponed_list(nm);
4643     }
4644 
4645     // Mark that this thread has been cleaned/unloaded.
4646     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4647     nm->set_unloading_clock(nmethod::global_unloading_clock());
4648   }
4649 
4650   void clean_nmethod_postponed(nmethod* nm) {
4651     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4652   }
4653 
4654   static const int MaxClaimNmethods = 16;
4655 
4656   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4657     nmethod* first;
4658     NMethodIterator last;
4659 
4660     do {
4661       *num_claimed_nmethods = 0;
4662 
4663       first = (nmethod*)_claimed_nmethod;
4664       last = NMethodIterator(first);
4665 
4666       if (first != NULL) {
4667 
4668         for (int i = 0; i < MaxClaimNmethods; i++) {
4669           if (!last.next_alive()) {
4670             break;
4671           }
4672           claimed_nmethods[i] = last.method();
4673           (*num_claimed_nmethods)++;
4674         }
4675       }
4676 
4677     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4678   }
4679 
4680   nmethod* claim_postponed_nmethod() {
4681     nmethod* claim;
4682     nmethod* next;
4683 
4684     do {
4685       claim = (nmethod*)_postponed_list;
4686       if (claim == NULL) {
4687         return NULL;
4688       }
4689 
4690       next = claim->unloading_next();
4691 
4692     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4693 
4694     return claim;
4695   }
4696 
4697  public:
4698   // Mark that we're done with the first pass of nmethod cleaning.
4699   void barrier_mark(uint worker_id) {
4700     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4701     _num_entered_barrier++;
4702     if (_num_entered_barrier == _num_workers) {
4703       ml.notify_all();
4704     }
4705   }
4706 
4707   // See if we have to wait for the other workers to
4708   // finish their first-pass nmethod cleaning work.
4709   void barrier_wait(uint worker_id) {
4710     if (_num_entered_barrier < _num_workers) {
4711       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4712       while (_num_entered_barrier < _num_workers) {
4713           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4714       }
4715     }
4716   }
4717 
4718   // Cleaning and unloading of nmethods. Some work has to be postponed
4719   // to the second pass, when we know which nmethods survive.
4720   void work_first_pass(uint worker_id) {
4721     // The first nmethods is claimed by the first worker.
4722     if (worker_id == 0 && _first_nmethod != NULL) {
4723       clean_nmethod(_first_nmethod);
4724       _first_nmethod = NULL;
4725     }
4726 
4727     int num_claimed_nmethods;
4728     nmethod* claimed_nmethods[MaxClaimNmethods];
4729 
4730     while (true) {
4731       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4732 
4733       if (num_claimed_nmethods == 0) {
4734         break;
4735       }
4736 
4737       for (int i = 0; i < num_claimed_nmethods; i++) {
4738         clean_nmethod(claimed_nmethods[i]);
4739       }
4740     }
4741   }
4742 
4743   void work_second_pass(uint worker_id) {
4744     nmethod* nm;
4745     // Take care of postponed nmethods.
4746     while ((nm = claim_postponed_nmethod()) != NULL) {
4747       clean_nmethod_postponed(nm);
4748     }
4749   }
4750 };
4751 
4752 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4753 
4754 class G1KlassCleaningTask : public StackObj {
4755   BoolObjectClosure*                      _is_alive;
4756   volatile jint                           _clean_klass_tree_claimed;
4757   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4758 
4759  public:
4760   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4761       _is_alive(is_alive),
4762       _clean_klass_tree_claimed(0),
4763       _klass_iterator() {
4764   }
4765 
4766  private:
4767   bool claim_clean_klass_tree_task() {
4768     if (_clean_klass_tree_claimed) {
4769       return false;
4770     }
4771 
4772     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4773   }
4774 
4775   InstanceKlass* claim_next_klass() {
4776     Klass* klass;
4777     do {
4778       klass =_klass_iterator.next_klass();
4779     } while (klass != NULL && !klass->oop_is_instance());
4780 
4781     return (InstanceKlass*)klass;
4782   }
4783 
4784 public:
4785 
4786   void clean_klass(InstanceKlass* ik) {
4787     ik->clean_implementors_list(_is_alive);
4788     ik->clean_method_data(_is_alive);
4789 
4790     // G1 specific cleanup work that has
4791     // been moved here to be done in parallel.
4792     ik->clean_dependent_nmethods();
4793   }
4794 
4795   void work() {
4796     ResourceMark rm;
4797 
4798     // One worker will clean the subklass/sibling klass tree.
4799     if (claim_clean_klass_tree_task()) {
4800       Klass::clean_subklass_tree(_is_alive);
4801     }
4802 
4803     // All workers will help cleaning the classes,
4804     InstanceKlass* klass;
4805     while ((klass = claim_next_klass()) != NULL) {
4806       clean_klass(klass);
4807     }
4808   }
4809 };
4810 
4811 // To minimize the remark pause times, the tasks below are done in parallel.
4812 class G1ParallelCleaningTask : public AbstractGangTask {
4813 private:
4814   G1StringSymbolTableUnlinkTask _string_symbol_task;
4815   G1CodeCacheUnloadingTask      _code_cache_task;
4816   G1KlassCleaningTask           _klass_cleaning_task;
4817 
4818 public:
4819   // The constructor is run in the VMThread.
4820   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4821       AbstractGangTask("Parallel Cleaning"),
4822       _string_symbol_task(is_alive, process_strings, process_symbols),
4823       _code_cache_task(num_workers, is_alive, unloading_occurred),
4824       _klass_cleaning_task(is_alive) {
4825   }
4826 
4827   // The parallel work done by all worker threads.
4828   void work(uint worker_id) {
4829     // Do first pass of code cache cleaning.
4830     _code_cache_task.work_first_pass(worker_id);
4831 
4832     // Let the threads mark that the first pass is done.
4833     _code_cache_task.barrier_mark(worker_id);
4834 
4835     // Clean the Strings and Symbols.
4836     _string_symbol_task.work(worker_id);
4837 
4838     // Wait for all workers to finish the first code cache cleaning pass.
4839     _code_cache_task.barrier_wait(worker_id);
4840 
4841     // Do the second code cache cleaning work, which realize on
4842     // the liveness information gathered during the first pass.
4843     _code_cache_task.work_second_pass(worker_id);
4844 
4845     // Clean all klasses that were not unloaded.
4846     _klass_cleaning_task.work();
4847   }
4848 };
4849 
4850 
4851 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4852                                         bool process_strings,
4853                                         bool process_symbols,
4854                                         bool class_unloading_occurred) {
4855   uint n_workers = workers()->active_workers();
4856 
4857   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4858                                         n_workers, class_unloading_occurred);
4859   set_par_threads(n_workers);
4860   workers()->run_task(&g1_unlink_task);
4861   set_par_threads(0);
4862 }
4863 
4864 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4865                                                      bool process_strings, bool process_symbols) {
4866   {
4867     uint n_workers = workers()->active_workers();
4868     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4869     set_par_threads(n_workers);
4870     workers()->run_task(&g1_unlink_task);
4871     set_par_threads(0);
4872   }
4873 
4874   if (G1StringDedup::is_enabled()) {
4875     G1StringDedup::unlink(is_alive);
4876   }
4877 }
4878 
4879 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4880  private:
4881   DirtyCardQueueSet* _queue;
4882  public:
4883   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4884 
4885   virtual void work(uint worker_id) {
4886     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4887     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4888 
4889     RedirtyLoggedCardTableEntryClosure cl;
4890     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4891 
4892     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4893   }
4894 };
4895 
4896 void G1CollectedHeap::redirty_logged_cards() {
4897   double redirty_logged_cards_start = os::elapsedTime();
4898 
4899   uint n_workers = workers()->active_workers();
4900 
4901   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4902   dirty_card_queue_set().reset_for_par_iteration();
4903   set_par_threads(n_workers);
4904   workers()->run_task(&redirty_task);
4905   set_par_threads(0);
4906 
4907   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4908   dcq.merge_bufferlists(&dirty_card_queue_set());
4909   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4910 
4911   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4912 }
4913 
4914 // Weak Reference Processing support
4915 
4916 // An always "is_alive" closure that is used to preserve referents.
4917 // If the object is non-null then it's alive.  Used in the preservation
4918 // of referent objects that are pointed to by reference objects
4919 // discovered by the CM ref processor.
4920 class G1AlwaysAliveClosure: public BoolObjectClosure {
4921   G1CollectedHeap* _g1;
4922 public:
4923   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4924   bool do_object_b(oop p) {
4925     if (p != NULL) {
4926       return true;
4927     }
4928     return false;
4929   }
4930 };
4931 
4932 bool G1STWIsAliveClosure::do_object_b(oop p) {
4933   // An object is reachable if it is outside the collection set,
4934   // or is inside and copied.
4935   return !_g1->obj_in_cs(p) || p->is_forwarded();
4936 }
4937 
4938 // Non Copying Keep Alive closure
4939 class G1KeepAliveClosure: public OopClosure {
4940   G1CollectedHeap* _g1;
4941 public:
4942   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4943   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4944   void do_oop(oop* p) {
4945     oop obj = *p;
4946     assert(obj != NULL, "the caller should have filtered out NULL values");
4947 
4948     const InCSetState cset_state = _g1->in_cset_state(obj);
4949     if (!cset_state.is_in_cset_or_humongous()) {
4950       return;
4951     }
4952     if (cset_state.is_in_cset()) {
4953       assert( obj->is_forwarded(), "invariant" );
4954       *p = obj->forwardee();
4955     } else {
4956       assert(!obj->is_forwarded(), "invariant" );
4957       assert(cset_state.is_humongous(),
4958              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4959       _g1->set_humongous_is_live(obj);
4960     }
4961   }
4962 };
4963 
4964 // Copying Keep Alive closure - can be called from both
4965 // serial and parallel code as long as different worker
4966 // threads utilize different G1ParScanThreadState instances
4967 // and different queues.
4968 
4969 class G1CopyingKeepAliveClosure: public OopClosure {
4970   G1CollectedHeap*         _g1h;
4971   OopClosure*              _copy_non_heap_obj_cl;
4972   G1ParScanThreadState*    _par_scan_state;
4973 
4974 public:
4975   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4976                             OopClosure* non_heap_obj_cl,
4977                             G1ParScanThreadState* pss):
4978     _g1h(g1h),
4979     _copy_non_heap_obj_cl(non_heap_obj_cl),
4980     _par_scan_state(pss)
4981   {}
4982 
4983   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4984   virtual void do_oop(      oop* p) { do_oop_work(p); }
4985 
4986   template <class T> void do_oop_work(T* p) {
4987     oop obj = oopDesc::load_decode_heap_oop(p);
4988 
4989     if (_g1h->is_in_cset_or_humongous(obj)) {
4990       // If the referent object has been forwarded (either copied
4991       // to a new location or to itself in the event of an
4992       // evacuation failure) then we need to update the reference
4993       // field and, if both reference and referent are in the G1
4994       // heap, update the RSet for the referent.
4995       //
4996       // If the referent has not been forwarded then we have to keep
4997       // it alive by policy. Therefore we have copy the referent.
4998       //
4999       // If the reference field is in the G1 heap then we can push
5000       // on the PSS queue. When the queue is drained (after each
5001       // phase of reference processing) the object and it's followers
5002       // will be copied, the reference field set to point to the
5003       // new location, and the RSet updated. Otherwise we need to
5004       // use the the non-heap or metadata closures directly to copy
5005       // the referent object and update the pointer, while avoiding
5006       // updating the RSet.
5007 
5008       if (_g1h->is_in_g1_reserved(p)) {
5009         _par_scan_state->push_on_queue(p);
5010       } else {
5011         assert(!Metaspace::contains((const void*)p),
5012                err_msg("Unexpectedly found a pointer from metadata: "
5013                               PTR_FORMAT, p));
5014         _copy_non_heap_obj_cl->do_oop(p);
5015       }
5016     }
5017   }
5018 };
5019 
5020 // Serial drain queue closure. Called as the 'complete_gc'
5021 // closure for each discovered list in some of the
5022 // reference processing phases.
5023 
5024 class G1STWDrainQueueClosure: public VoidClosure {
5025 protected:
5026   G1CollectedHeap* _g1h;
5027   G1ParScanThreadState* _par_scan_state;
5028 
5029   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5030 
5031 public:
5032   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5033     _g1h(g1h),
5034     _par_scan_state(pss)
5035   { }
5036 
5037   void do_void() {
5038     G1ParScanThreadState* const pss = par_scan_state();
5039     pss->trim_queue();
5040   }
5041 };
5042 
5043 // Parallel Reference Processing closures
5044 
5045 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5046 // processing during G1 evacuation pauses.
5047 
5048 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5049 private:
5050   G1CollectedHeap*   _g1h;
5051   RefToScanQueueSet* _queues;
5052   FlexibleWorkGang*  _workers;
5053   int                _active_workers;
5054 
5055 public:
5056   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5057                         FlexibleWorkGang* workers,
5058                         RefToScanQueueSet *task_queues,
5059                         int n_workers) :
5060     _g1h(g1h),
5061     _queues(task_queues),
5062     _workers(workers),
5063     _active_workers(n_workers)
5064   {
5065     assert(n_workers > 0, "shouldn't call this otherwise");
5066   }
5067 
5068   // Executes the given task using concurrent marking worker threads.
5069   virtual void execute(ProcessTask& task);
5070   virtual void execute(EnqueueTask& task);
5071 };
5072 
5073 // Gang task for possibly parallel reference processing
5074 
5075 class G1STWRefProcTaskProxy: public AbstractGangTask {
5076   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5077   ProcessTask&     _proc_task;
5078   G1CollectedHeap* _g1h;
5079   RefToScanQueueSet *_task_queues;
5080   ParallelTaskTerminator* _terminator;
5081 
5082 public:
5083   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5084                      G1CollectedHeap* g1h,
5085                      RefToScanQueueSet *task_queues,
5086                      ParallelTaskTerminator* terminator) :
5087     AbstractGangTask("Process reference objects in parallel"),
5088     _proc_task(proc_task),
5089     _g1h(g1h),
5090     _task_queues(task_queues),
5091     _terminator(terminator)
5092   {}
5093 
5094   virtual void work(uint worker_id) {
5095     // The reference processing task executed by a single worker.
5096     ResourceMark rm;
5097     HandleMark   hm;
5098 
5099     G1STWIsAliveClosure is_alive(_g1h);
5100 
5101     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5102     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5103 
5104     pss.set_evac_failure_closure(&evac_failure_cl);
5105 
5106     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5107 
5108     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5109 
5110     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5111 
5112     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5113       // We also need to mark copied objects.
5114       copy_non_heap_cl = &copy_mark_non_heap_cl;
5115     }
5116 
5117     // Keep alive closure.
5118     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5119 
5120     // Complete GC closure
5121     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5122 
5123     // Call the reference processing task's work routine.
5124     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5125 
5126     // Note we cannot assert that the refs array is empty here as not all
5127     // of the processing tasks (specifically phase2 - pp2_work) execute
5128     // the complete_gc closure (which ordinarily would drain the queue) so
5129     // the queue may not be empty.
5130   }
5131 };
5132 
5133 // Driver routine for parallel reference processing.
5134 // Creates an instance of the ref processing gang
5135 // task and has the worker threads execute it.
5136 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5137   assert(_workers != NULL, "Need parallel worker threads.");
5138 
5139   ParallelTaskTerminator terminator(_active_workers, _queues);
5140   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5141 
5142   _g1h->set_par_threads(_active_workers);
5143   _workers->run_task(&proc_task_proxy);
5144   _g1h->set_par_threads(0);
5145 }
5146 
5147 // Gang task for parallel reference enqueueing.
5148 
5149 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5150   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5151   EnqueueTask& _enq_task;
5152 
5153 public:
5154   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5155     AbstractGangTask("Enqueue reference objects in parallel"),
5156     _enq_task(enq_task)
5157   { }
5158 
5159   virtual void work(uint worker_id) {
5160     _enq_task.work(worker_id);
5161   }
5162 };
5163 
5164 // Driver routine for parallel reference enqueueing.
5165 // Creates an instance of the ref enqueueing gang
5166 // task and has the worker threads execute it.
5167 
5168 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5169   assert(_workers != NULL, "Need parallel worker threads.");
5170 
5171   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5172 
5173   _g1h->set_par_threads(_active_workers);
5174   _workers->run_task(&enq_task_proxy);
5175   _g1h->set_par_threads(0);
5176 }
5177 
5178 // End of weak reference support closures
5179 
5180 // Abstract task used to preserve (i.e. copy) any referent objects
5181 // that are in the collection set and are pointed to by reference
5182 // objects discovered by the CM ref processor.
5183 
5184 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5185 protected:
5186   G1CollectedHeap* _g1h;
5187   RefToScanQueueSet      *_queues;
5188   ParallelTaskTerminator _terminator;
5189   uint _n_workers;
5190 
5191 public:
5192   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5193     AbstractGangTask("ParPreserveCMReferents"),
5194     _g1h(g1h),
5195     _queues(task_queues),
5196     _terminator(workers, _queues),
5197     _n_workers(workers)
5198   { }
5199 
5200   void work(uint worker_id) {
5201     ResourceMark rm;
5202     HandleMark   hm;
5203 
5204     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5205     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5206 
5207     pss.set_evac_failure_closure(&evac_failure_cl);
5208 
5209     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5210 
5211     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5212 
5213     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5214 
5215     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5216 
5217     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5218       // We also need to mark copied objects.
5219       copy_non_heap_cl = &copy_mark_non_heap_cl;
5220     }
5221 
5222     // Is alive closure
5223     G1AlwaysAliveClosure always_alive(_g1h);
5224 
5225     // Copying keep alive closure. Applied to referent objects that need
5226     // to be copied.
5227     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5228 
5229     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5230 
5231     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5232     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5233 
5234     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5235     // So this must be true - but assert just in case someone decides to
5236     // change the worker ids.
5237     assert(worker_id < limit, "sanity");
5238     assert(!rp->discovery_is_atomic(), "check this code");
5239 
5240     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5241     for (uint idx = worker_id; idx < limit; idx += stride) {
5242       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5243 
5244       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5245       while (iter.has_next()) {
5246         // Since discovery is not atomic for the CM ref processor, we
5247         // can see some null referent objects.
5248         iter.load_ptrs(DEBUG_ONLY(true));
5249         oop ref = iter.obj();
5250 
5251         // This will filter nulls.
5252         if (iter.is_referent_alive()) {
5253           iter.make_referent_alive();
5254         }
5255         iter.move_to_next();
5256       }
5257     }
5258 
5259     // Drain the queue - which may cause stealing
5260     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5261     drain_queue.do_void();
5262     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5263     assert(pss.queue_is_empty(), "should be");
5264   }
5265 };
5266 
5267 // Weak Reference processing during an evacuation pause (part 1).
5268 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5269   double ref_proc_start = os::elapsedTime();
5270 
5271   ReferenceProcessor* rp = _ref_processor_stw;
5272   assert(rp->discovery_enabled(), "should have been enabled");
5273 
5274   // Any reference objects, in the collection set, that were 'discovered'
5275   // by the CM ref processor should have already been copied (either by
5276   // applying the external root copy closure to the discovered lists, or
5277   // by following an RSet entry).
5278   //
5279   // But some of the referents, that are in the collection set, that these
5280   // reference objects point to may not have been copied: the STW ref
5281   // processor would have seen that the reference object had already
5282   // been 'discovered' and would have skipped discovering the reference,
5283   // but would not have treated the reference object as a regular oop.
5284   // As a result the copy closure would not have been applied to the
5285   // referent object.
5286   //
5287   // We need to explicitly copy these referent objects - the references
5288   // will be processed at the end of remarking.
5289   //
5290   // We also need to do this copying before we process the reference
5291   // objects discovered by the STW ref processor in case one of these
5292   // referents points to another object which is also referenced by an
5293   // object discovered by the STW ref processor.
5294 
5295   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5296 
5297   set_par_threads(no_of_gc_workers);
5298   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5299                                                  no_of_gc_workers,
5300                                                  _task_queues);
5301 
5302   workers()->run_task(&keep_cm_referents);
5303 
5304   set_par_threads(0);
5305 
5306   // Closure to test whether a referent is alive.
5307   G1STWIsAliveClosure is_alive(this);
5308 
5309   // Even when parallel reference processing is enabled, the processing
5310   // of JNI refs is serial and performed serially by the current thread
5311   // rather than by a worker. The following PSS will be used for processing
5312   // JNI refs.
5313 
5314   // Use only a single queue for this PSS.
5315   G1ParScanThreadState            pss(this, 0, NULL);
5316 
5317   // We do not embed a reference processor in the copying/scanning
5318   // closures while we're actually processing the discovered
5319   // reference objects.
5320   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5321 
5322   pss.set_evac_failure_closure(&evac_failure_cl);
5323 
5324   assert(pss.queue_is_empty(), "pre-condition");
5325 
5326   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5327 
5328   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5329 
5330   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5331 
5332   if (g1_policy()->during_initial_mark_pause()) {
5333     // We also need to mark copied objects.
5334     copy_non_heap_cl = &copy_mark_non_heap_cl;
5335   }
5336 
5337   // Keep alive closure.
5338   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5339 
5340   // Serial Complete GC closure
5341   G1STWDrainQueueClosure drain_queue(this, &pss);
5342 
5343   // Setup the soft refs policy...
5344   rp->setup_policy(false);
5345 
5346   ReferenceProcessorStats stats;
5347   if (!rp->processing_is_mt()) {
5348     // Serial reference processing...
5349     stats = rp->process_discovered_references(&is_alive,
5350                                               &keep_alive,
5351                                               &drain_queue,
5352                                               NULL,
5353                                               _gc_timer_stw,
5354                                               _gc_tracer_stw->gc_id());
5355   } else {
5356     // Parallel reference processing
5357     assert(rp->num_q() == no_of_gc_workers, "sanity");
5358     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5359 
5360     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5361     stats = rp->process_discovered_references(&is_alive,
5362                                               &keep_alive,
5363                                               &drain_queue,
5364                                               &par_task_executor,
5365                                               _gc_timer_stw,
5366                                               _gc_tracer_stw->gc_id());
5367   }
5368 
5369   _gc_tracer_stw->report_gc_reference_stats(stats);
5370 
5371   // We have completed copying any necessary live referent objects.
5372   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5373 
5374   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5375   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5376 }
5377 
5378 // Weak Reference processing during an evacuation pause (part 2).
5379 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5380   double ref_enq_start = os::elapsedTime();
5381 
5382   ReferenceProcessor* rp = _ref_processor_stw;
5383   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5384 
5385   // Now enqueue any remaining on the discovered lists on to
5386   // the pending list.
5387   if (!rp->processing_is_mt()) {
5388     // Serial reference processing...
5389     rp->enqueue_discovered_references();
5390   } else {
5391     // Parallel reference enqueueing
5392 
5393     assert(no_of_gc_workers == workers()->active_workers(),
5394            "Need to reset active workers");
5395     assert(rp->num_q() == no_of_gc_workers, "sanity");
5396     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5397 
5398     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5399     rp->enqueue_discovered_references(&par_task_executor);
5400   }
5401 
5402   rp->verify_no_references_recorded();
5403   assert(!rp->discovery_enabled(), "should have been disabled");
5404 
5405   // FIXME
5406   // CM's reference processing also cleans up the string and symbol tables.
5407   // Should we do that here also? We could, but it is a serial operation
5408   // and could significantly increase the pause time.
5409 
5410   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5411   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5412 }
5413 
5414 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5415   _expand_heap_after_alloc_failure = true;
5416   _evacuation_failed = false;
5417 
5418   // Should G1EvacuationFailureALot be in effect for this GC?
5419   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5420 
5421   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5422 
5423   // Disable the hot card cache.
5424   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5425   hot_card_cache->reset_hot_cache_claimed_index();
5426   hot_card_cache->set_use_cache(false);
5427 
5428   const uint n_workers = workers()->active_workers();
5429   assert(UseDynamicNumberOfGCThreads ||
5430          n_workers == workers()->total_workers(),
5431          "If not dynamic should be using all the  workers");
5432   set_par_threads(n_workers);
5433 
5434 
5435   init_for_evac_failure(NULL);
5436 
5437   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5438   double start_par_time_sec = os::elapsedTime();
5439   double end_par_time_sec;
5440 
5441   {
5442     G1RootProcessor root_processor(this);
5443     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5444     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5445     if (g1_policy()->during_initial_mark_pause()) {
5446       ClassLoaderDataGraph::clear_claimed_marks();
5447     }
5448 
5449      // The individual threads will set their evac-failure closures.
5450      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5451      // These tasks use ShareHeap::_process_strong_tasks
5452      assert(UseDynamicNumberOfGCThreads ||
5453             workers()->active_workers() == workers()->total_workers(),
5454             "If not dynamic should be using all the  workers");
5455     workers()->run_task(&g1_par_task);
5456     end_par_time_sec = os::elapsedTime();
5457 
5458     // Closing the inner scope will execute the destructor
5459     // for the G1RootProcessor object. We record the current
5460     // elapsed time before closing the scope so that time
5461     // taken for the destructor is NOT included in the
5462     // reported parallel time.
5463   }
5464 
5465   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5466 
5467   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5468   phase_times->record_par_time(par_time_ms);
5469 
5470   double code_root_fixup_time_ms =
5471         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5472   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5473 
5474   set_par_threads(0);
5475 
5476   // Process any discovered reference objects - we have
5477   // to do this _before_ we retire the GC alloc regions
5478   // as we may have to copy some 'reachable' referent
5479   // objects (and their reachable sub-graphs) that were
5480   // not copied during the pause.
5481   process_discovered_references(n_workers);
5482 
5483   if (G1StringDedup::is_enabled()) {
5484     double fixup_start = os::elapsedTime();
5485 
5486     G1STWIsAliveClosure is_alive(this);
5487     G1KeepAliveClosure keep_alive(this);
5488     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5489 
5490     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5491     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5492   }
5493 
5494   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5495   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5496 
5497   // Reset and re-enable the hot card cache.
5498   // Note the counts for the cards in the regions in the
5499   // collection set are reset when the collection set is freed.
5500   hot_card_cache->reset_hot_cache();
5501   hot_card_cache->set_use_cache(true);
5502 
5503   purge_code_root_memory();
5504 
5505   finalize_for_evac_failure();
5506 
5507   if (evacuation_failed()) {
5508     remove_self_forwarding_pointers();
5509 
5510     // Reset the G1EvacuationFailureALot counters and flags
5511     // Note: the values are reset only when an actual
5512     // evacuation failure occurs.
5513     NOT_PRODUCT(reset_evacuation_should_fail();)
5514   }
5515 
5516   // Enqueue any remaining references remaining on the STW
5517   // reference processor's discovered lists. We need to do
5518   // this after the card table is cleaned (and verified) as
5519   // the act of enqueueing entries on to the pending list
5520   // will log these updates (and dirty their associated
5521   // cards). We need these updates logged to update any
5522   // RSets.
5523   enqueue_discovered_references(n_workers);
5524 
5525   redirty_logged_cards();
5526   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5527 }
5528 
5529 void G1CollectedHeap::free_region(HeapRegion* hr,
5530                                   FreeRegionList* free_list,
5531                                   bool par,
5532                                   bool locked) {
5533   assert(!hr->is_free(), "the region should not be free");
5534   assert(!hr->is_empty(), "the region should not be empty");
5535   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5536   assert(free_list != NULL, "pre-condition");
5537 
5538   if (G1VerifyBitmaps) {
5539     MemRegion mr(hr->bottom(), hr->end());
5540     concurrent_mark()->clearRangePrevBitmap(mr);
5541   }
5542 
5543   // Clear the card counts for this region.
5544   // Note: we only need to do this if the region is not young
5545   // (since we don't refine cards in young regions).
5546   if (!hr->is_young()) {
5547     _cg1r->hot_card_cache()->reset_card_counts(hr);
5548   }
5549   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5550   free_list->add_ordered(hr);
5551 }
5552 
5553 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5554                                      FreeRegionList* free_list,
5555                                      bool par) {
5556   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5557   assert(free_list != NULL, "pre-condition");
5558 
5559   size_t hr_capacity = hr->capacity();
5560   // We need to read this before we make the region non-humongous,
5561   // otherwise the information will be gone.
5562   uint last_index = hr->last_hc_index();
5563   hr->clear_humongous();
5564   free_region(hr, free_list, par);
5565 
5566   uint i = hr->hrm_index() + 1;
5567   while (i < last_index) {
5568     HeapRegion* curr_hr = region_at(i);
5569     assert(curr_hr->is_continues_humongous(), "invariant");
5570     curr_hr->clear_humongous();
5571     free_region(curr_hr, free_list, par);
5572     i += 1;
5573   }
5574 }
5575 
5576 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5577                                        const HeapRegionSetCount& humongous_regions_removed) {
5578   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5579     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5580     _old_set.bulk_remove(old_regions_removed);
5581     _humongous_set.bulk_remove(humongous_regions_removed);
5582   }
5583 
5584 }
5585 
5586 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5587   assert(list != NULL, "list can't be null");
5588   if (!list->is_empty()) {
5589     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5590     _hrm.insert_list_into_free_list(list);
5591   }
5592 }
5593 
5594 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5595   _allocator->decrease_used(bytes);
5596 }
5597 
5598 class G1ParCleanupCTTask : public AbstractGangTask {
5599   G1SATBCardTableModRefBS* _ct_bs;
5600   G1CollectedHeap* _g1h;
5601   HeapRegion* volatile _su_head;
5602 public:
5603   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5604                      G1CollectedHeap* g1h) :
5605     AbstractGangTask("G1 Par Cleanup CT Task"),
5606     _ct_bs(ct_bs), _g1h(g1h) { }
5607 
5608   void work(uint worker_id) {
5609     HeapRegion* r;
5610     while (r = _g1h->pop_dirty_cards_region()) {
5611       clear_cards(r);
5612     }
5613   }
5614 
5615   void clear_cards(HeapRegion* r) {
5616     // Cards of the survivors should have already been dirtied.
5617     if (!r->is_survivor()) {
5618       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5619     }
5620   }
5621 };
5622 
5623 #ifndef PRODUCT
5624 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5625   G1CollectedHeap* _g1h;
5626   G1SATBCardTableModRefBS* _ct_bs;
5627 public:
5628   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5629     : _g1h(g1h), _ct_bs(ct_bs) { }
5630   virtual bool doHeapRegion(HeapRegion* r) {
5631     if (r->is_survivor()) {
5632       _g1h->verify_dirty_region(r);
5633     } else {
5634       _g1h->verify_not_dirty_region(r);
5635     }
5636     return false;
5637   }
5638 };
5639 
5640 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5641   // All of the region should be clean.
5642   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5643   MemRegion mr(hr->bottom(), hr->end());
5644   ct_bs->verify_not_dirty_region(mr);
5645 }
5646 
5647 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5648   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5649   // dirty allocated blocks as they allocate them. The thread that
5650   // retires each region and replaces it with a new one will do a
5651   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5652   // not dirty that area (one less thing to have to do while holding
5653   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5654   // is dirty.
5655   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5656   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5657   if (hr->is_young()) {
5658     ct_bs->verify_g1_young_region(mr);
5659   } else {
5660     ct_bs->verify_dirty_region(mr);
5661   }
5662 }
5663 
5664 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5665   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5666   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5667     verify_dirty_region(hr);
5668   }
5669 }
5670 
5671 void G1CollectedHeap::verify_dirty_young_regions() {
5672   verify_dirty_young_list(_young_list->first_region());
5673 }
5674 
5675 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5676                                                HeapWord* tams, HeapWord* end) {
5677   guarantee(tams <= end,
5678             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5679   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5680   if (result < end) {
5681     gclog_or_tty->cr();
5682     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5683                            bitmap_name, result);
5684     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5685                            bitmap_name, tams, end);
5686     return false;
5687   }
5688   return true;
5689 }
5690 
5691 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5692   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5693   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5694 
5695   HeapWord* bottom = hr->bottom();
5696   HeapWord* ptams  = hr->prev_top_at_mark_start();
5697   HeapWord* ntams  = hr->next_top_at_mark_start();
5698   HeapWord* end    = hr->end();
5699 
5700   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5701 
5702   bool res_n = true;
5703   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5704   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5705   // if we happen to be in that state.
5706   if (mark_in_progress() || !_cmThread->in_progress()) {
5707     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5708   }
5709   if (!res_p || !res_n) {
5710     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5711                            HR_FORMAT_PARAMS(hr));
5712     gclog_or_tty->print_cr("#### Caller: %s", caller);
5713     return false;
5714   }
5715   return true;
5716 }
5717 
5718 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5719   if (!G1VerifyBitmaps) return;
5720 
5721   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5722 }
5723 
5724 class G1VerifyBitmapClosure : public HeapRegionClosure {
5725 private:
5726   const char* _caller;
5727   G1CollectedHeap* _g1h;
5728   bool _failures;
5729 
5730 public:
5731   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5732     _caller(caller), _g1h(g1h), _failures(false) { }
5733 
5734   bool failures() { return _failures; }
5735 
5736   virtual bool doHeapRegion(HeapRegion* hr) {
5737     if (hr->is_continues_humongous()) return false;
5738 
5739     bool result = _g1h->verify_bitmaps(_caller, hr);
5740     if (!result) {
5741       _failures = true;
5742     }
5743     return false;
5744   }
5745 };
5746 
5747 void G1CollectedHeap::check_bitmaps(const char* caller) {
5748   if (!G1VerifyBitmaps) return;
5749 
5750   G1VerifyBitmapClosure cl(caller, this);
5751   heap_region_iterate(&cl);
5752   guarantee(!cl.failures(), "bitmap verification");
5753 }
5754 
5755 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5756  private:
5757   bool _failures;
5758  public:
5759   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5760 
5761   virtual bool doHeapRegion(HeapRegion* hr) {
5762     uint i = hr->hrm_index();
5763     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5764     if (hr->is_humongous()) {
5765       if (hr->in_collection_set()) {
5766         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5767         _failures = true;
5768         return true;
5769       }
5770       if (cset_state.is_in_cset()) {
5771         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5772         _failures = true;
5773         return true;
5774       }
5775       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5776         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5777         _failures = true;
5778         return true;
5779       }
5780     } else {
5781       if (cset_state.is_humongous()) {
5782         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5783         _failures = true;
5784         return true;
5785       }
5786       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5787         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5788                                hr->in_collection_set(), cset_state.value(), i);
5789         _failures = true;
5790         return true;
5791       }
5792       if (cset_state.is_in_cset()) {
5793         if (hr->is_young() != (cset_state.is_young())) {
5794           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5795                                  hr->is_young(), cset_state.value(), i);
5796           _failures = true;
5797           return true;
5798         }
5799         if (hr->is_old() != (cset_state.is_old())) {
5800           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5801                                  hr->is_old(), cset_state.value(), i);
5802           _failures = true;
5803           return true;
5804         }
5805       }
5806     }
5807     return false;
5808   }
5809 
5810   bool failures() const { return _failures; }
5811 };
5812 
5813 bool G1CollectedHeap::check_cset_fast_test() {
5814   G1CheckCSetFastTableClosure cl;
5815   _hrm.iterate(&cl);
5816   return !cl.failures();
5817 }
5818 #endif // PRODUCT
5819 
5820 void G1CollectedHeap::cleanUpCardTable() {
5821   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5822   double start = os::elapsedTime();
5823 
5824   {
5825     // Iterate over the dirty cards region list.
5826     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5827 
5828     set_par_threads();
5829     workers()->run_task(&cleanup_task);
5830     set_par_threads(0);
5831 #ifndef PRODUCT
5832     if (G1VerifyCTCleanup || VerifyAfterGC) {
5833       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5834       heap_region_iterate(&cleanup_verifier);
5835     }
5836 #endif
5837   }
5838 
5839   double elapsed = os::elapsedTime() - start;
5840   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5841 }
5842 
5843 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5844   size_t pre_used = 0;
5845   FreeRegionList local_free_list("Local List for CSet Freeing");
5846 
5847   double young_time_ms     = 0.0;
5848   double non_young_time_ms = 0.0;
5849 
5850   // Since the collection set is a superset of the the young list,
5851   // all we need to do to clear the young list is clear its
5852   // head and length, and unlink any young regions in the code below
5853   _young_list->clear();
5854 
5855   G1CollectorPolicy* policy = g1_policy();
5856 
5857   double start_sec = os::elapsedTime();
5858   bool non_young = true;
5859 
5860   HeapRegion* cur = cs_head;
5861   int age_bound = -1;
5862   size_t rs_lengths = 0;
5863 
5864   while (cur != NULL) {
5865     assert(!is_on_master_free_list(cur), "sanity");
5866     if (non_young) {
5867       if (cur->is_young()) {
5868         double end_sec = os::elapsedTime();
5869         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5870         non_young_time_ms += elapsed_ms;
5871 
5872         start_sec = os::elapsedTime();
5873         non_young = false;
5874       }
5875     } else {
5876       if (!cur->is_young()) {
5877         double end_sec = os::elapsedTime();
5878         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5879         young_time_ms += elapsed_ms;
5880 
5881         start_sec = os::elapsedTime();
5882         non_young = true;
5883       }
5884     }
5885 
5886     rs_lengths += cur->rem_set()->occupied_locked();
5887 
5888     HeapRegion* next = cur->next_in_collection_set();
5889     assert(cur->in_collection_set(), "bad CS");
5890     cur->set_next_in_collection_set(NULL);
5891     clear_in_cset(cur);
5892 
5893     if (cur->is_young()) {
5894       int index = cur->young_index_in_cset();
5895       assert(index != -1, "invariant");
5896       assert((uint) index < policy->young_cset_region_length(), "invariant");
5897       size_t words_survived = _surviving_young_words[index];
5898       cur->record_surv_words_in_group(words_survived);
5899 
5900       // At this point the we have 'popped' cur from the collection set
5901       // (linked via next_in_collection_set()) but it is still in the
5902       // young list (linked via next_young_region()). Clear the
5903       // _next_young_region field.
5904       cur->set_next_young_region(NULL);
5905     } else {
5906       int index = cur->young_index_in_cset();
5907       assert(index == -1, "invariant");
5908     }
5909 
5910     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5911             (!cur->is_young() && cur->young_index_in_cset() == -1),
5912             "invariant" );
5913 
5914     if (!cur->evacuation_failed()) {
5915       MemRegion used_mr = cur->used_region();
5916 
5917       // And the region is empty.
5918       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5919       pre_used += cur->used();
5920       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5921     } else {
5922       cur->uninstall_surv_rate_group();
5923       if (cur->is_young()) {
5924         cur->set_young_index_in_cset(-1);
5925       }
5926       cur->set_evacuation_failed(false);
5927       // The region is now considered to be old.
5928       cur->set_old();
5929       _old_set.add(cur);
5930       evacuation_info.increment_collectionset_used_after(cur->used());
5931     }
5932     cur = next;
5933   }
5934 
5935   evacuation_info.set_regions_freed(local_free_list.length());
5936   policy->record_max_rs_lengths(rs_lengths);
5937   policy->cset_regions_freed();
5938 
5939   double end_sec = os::elapsedTime();
5940   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5941 
5942   if (non_young) {
5943     non_young_time_ms += elapsed_ms;
5944   } else {
5945     young_time_ms += elapsed_ms;
5946   }
5947 
5948   prepend_to_freelist(&local_free_list);
5949   decrement_summary_bytes(pre_used);
5950   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5951   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5952 }
5953 
5954 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5955  private:
5956   FreeRegionList* _free_region_list;
5957   HeapRegionSet* _proxy_set;
5958   HeapRegionSetCount _humongous_regions_removed;
5959   size_t _freed_bytes;
5960  public:
5961 
5962   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5963     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5964   }
5965 
5966   virtual bool doHeapRegion(HeapRegion* r) {
5967     if (!r->is_starts_humongous()) {
5968       return false;
5969     }
5970 
5971     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5972 
5973     oop obj = (oop)r->bottom();
5974     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5975 
5976     // The following checks whether the humongous object is live are sufficient.
5977     // The main additional check (in addition to having a reference from the roots
5978     // or the young gen) is whether the humongous object has a remembered set entry.
5979     //
5980     // A humongous object cannot be live if there is no remembered set for it
5981     // because:
5982     // - there can be no references from within humongous starts regions referencing
5983     // the object because we never allocate other objects into them.
5984     // (I.e. there are no intra-region references that may be missed by the
5985     // remembered set)
5986     // - as soon there is a remembered set entry to the humongous starts region
5987     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5988     // until the end of a concurrent mark.
5989     //
5990     // It is not required to check whether the object has been found dead by marking
5991     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5992     // all objects allocated during that time are considered live.
5993     // SATB marking is even more conservative than the remembered set.
5994     // So if at this point in the collection there is no remembered set entry,
5995     // nobody has a reference to it.
5996     // At the start of collection we flush all refinement logs, and remembered sets
5997     // are completely up-to-date wrt to references to the humongous object.
5998     //
5999     // Other implementation considerations:
6000     // - never consider object arrays at this time because they would pose
6001     // considerable effort for cleaning up the the remembered sets. This is
6002     // required because stale remembered sets might reference locations that
6003     // are currently allocated into.
6004     uint region_idx = r->hrm_index();
6005     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6006         !r->rem_set()->is_empty()) {
6007 
6008       if (G1TraceEagerReclaimHumongousObjects) {
6009         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6010                                region_idx,
6011                                obj->size()*HeapWordSize,
6012                                r->bottom(),
6013                                r->region_num(),
6014                                r->rem_set()->occupied(),
6015                                r->rem_set()->strong_code_roots_list_length(),
6016                                next_bitmap->isMarked(r->bottom()),
6017                                g1h->is_humongous_reclaim_candidate(region_idx),
6018                                obj->is_typeArray()
6019                               );
6020       }
6021 
6022       return false;
6023     }
6024 
6025     guarantee(obj->is_typeArray(),
6026               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6027                       PTR_FORMAT " is not.",
6028                       r->bottom()));
6029 
6030     if (G1TraceEagerReclaimHumongousObjects) {
6031       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6032                              region_idx,
6033                              obj->size()*HeapWordSize,
6034                              r->bottom(),
6035                              r->region_num(),
6036                              r->rem_set()->occupied(),
6037                              r->rem_set()->strong_code_roots_list_length(),
6038                              next_bitmap->isMarked(r->bottom()),
6039                              g1h->is_humongous_reclaim_candidate(region_idx),
6040                              obj->is_typeArray()
6041                             );
6042     }
6043     // Need to clear mark bit of the humongous object if already set.
6044     if (next_bitmap->isMarked(r->bottom())) {
6045       next_bitmap->clear(r->bottom());
6046     }
6047     _freed_bytes += r->used();
6048     r->set_containing_set(NULL);
6049     _humongous_regions_removed.increment(1u, r->capacity());
6050     g1h->free_humongous_region(r, _free_region_list, false);
6051 
6052     return false;
6053   }
6054 
6055   HeapRegionSetCount& humongous_free_count() {
6056     return _humongous_regions_removed;
6057   }
6058 
6059   size_t bytes_freed() const {
6060     return _freed_bytes;
6061   }
6062 
6063   size_t humongous_reclaimed() const {
6064     return _humongous_regions_removed.length();
6065   }
6066 };
6067 
6068 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6069   assert_at_safepoint(true);
6070 
6071   if (!G1EagerReclaimHumongousObjects ||
6072       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6073     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6074     return;
6075   }
6076 
6077   double start_time = os::elapsedTime();
6078 
6079   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6080 
6081   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6082   heap_region_iterate(&cl);
6083 
6084   HeapRegionSetCount empty_set;
6085   remove_from_old_sets(empty_set, cl.humongous_free_count());
6086 
6087   G1HRPrinter* hrp = hr_printer();
6088   if (hrp->is_active()) {
6089     FreeRegionListIterator iter(&local_cleanup_list);
6090     while (iter.more_available()) {
6091       HeapRegion* hr = iter.get_next();
6092       hrp->cleanup(hr);
6093     }
6094   }
6095 
6096   prepend_to_freelist(&local_cleanup_list);
6097   decrement_summary_bytes(cl.bytes_freed());
6098 
6099   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6100                                                                     cl.humongous_reclaimed());
6101 }
6102 
6103 // This routine is similar to the above but does not record
6104 // any policy statistics or update free lists; we are abandoning
6105 // the current incremental collection set in preparation of a
6106 // full collection. After the full GC we will start to build up
6107 // the incremental collection set again.
6108 // This is only called when we're doing a full collection
6109 // and is immediately followed by the tearing down of the young list.
6110 
6111 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6112   HeapRegion* cur = cs_head;
6113 
6114   while (cur != NULL) {
6115     HeapRegion* next = cur->next_in_collection_set();
6116     assert(cur->in_collection_set(), "bad CS");
6117     cur->set_next_in_collection_set(NULL);
6118     clear_in_cset(cur);
6119     cur->set_young_index_in_cset(-1);
6120     cur = next;
6121   }
6122 }
6123 
6124 void G1CollectedHeap::set_free_regions_coming() {
6125   if (G1ConcRegionFreeingVerbose) {
6126     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6127                            "setting free regions coming");
6128   }
6129 
6130   assert(!free_regions_coming(), "pre-condition");
6131   _free_regions_coming = true;
6132 }
6133 
6134 void G1CollectedHeap::reset_free_regions_coming() {
6135   assert(free_regions_coming(), "pre-condition");
6136 
6137   {
6138     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6139     _free_regions_coming = false;
6140     SecondaryFreeList_lock->notify_all();
6141   }
6142 
6143   if (G1ConcRegionFreeingVerbose) {
6144     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6145                            "reset free regions coming");
6146   }
6147 }
6148 
6149 void G1CollectedHeap::wait_while_free_regions_coming() {
6150   // Most of the time we won't have to wait, so let's do a quick test
6151   // first before we take the lock.
6152   if (!free_regions_coming()) {
6153     return;
6154   }
6155 
6156   if (G1ConcRegionFreeingVerbose) {
6157     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6158                            "waiting for free regions");
6159   }
6160 
6161   {
6162     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6163     while (free_regions_coming()) {
6164       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6165     }
6166   }
6167 
6168   if (G1ConcRegionFreeingVerbose) {
6169     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6170                            "done waiting for free regions");
6171   }
6172 }
6173 
6174 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6175   _young_list->push_region(hr);
6176 }
6177 
6178 class NoYoungRegionsClosure: public HeapRegionClosure {
6179 private:
6180   bool _success;
6181 public:
6182   NoYoungRegionsClosure() : _success(true) { }
6183   bool doHeapRegion(HeapRegion* r) {
6184     if (r->is_young()) {
6185       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6186                              r->bottom(), r->end());
6187       _success = false;
6188     }
6189     return false;
6190   }
6191   bool success() { return _success; }
6192 };
6193 
6194 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6195   bool ret = _young_list->check_list_empty(check_sample);
6196 
6197   if (check_heap) {
6198     NoYoungRegionsClosure closure;
6199     heap_region_iterate(&closure);
6200     ret = ret && closure.success();
6201   }
6202 
6203   return ret;
6204 }
6205 
6206 class TearDownRegionSetsClosure : public HeapRegionClosure {
6207 private:
6208   HeapRegionSet *_old_set;
6209 
6210 public:
6211   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6212 
6213   bool doHeapRegion(HeapRegion* r) {
6214     if (r->is_old()) {
6215       _old_set->remove(r);
6216     } else {
6217       // We ignore free regions, we'll empty the free list afterwards.
6218       // We ignore young regions, we'll empty the young list afterwards.
6219       // We ignore humongous regions, we're not tearing down the
6220       // humongous regions set.
6221       assert(r->is_free() || r->is_young() || r->is_humongous(),
6222              "it cannot be another type");
6223     }
6224     return false;
6225   }
6226 
6227   ~TearDownRegionSetsClosure() {
6228     assert(_old_set->is_empty(), "post-condition");
6229   }
6230 };
6231 
6232 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6233   assert_at_safepoint(true /* should_be_vm_thread */);
6234 
6235   if (!free_list_only) {
6236     TearDownRegionSetsClosure cl(&_old_set);
6237     heap_region_iterate(&cl);
6238 
6239     // Note that emptying the _young_list is postponed and instead done as
6240     // the first step when rebuilding the regions sets again. The reason for
6241     // this is that during a full GC string deduplication needs to know if
6242     // a collected region was young or old when the full GC was initiated.
6243   }
6244   _hrm.remove_all_free_regions();
6245 }
6246 
6247 class RebuildRegionSetsClosure : public HeapRegionClosure {
6248 private:
6249   bool            _free_list_only;
6250   HeapRegionSet*   _old_set;
6251   HeapRegionManager*   _hrm;
6252   size_t          _total_used;
6253 
6254 public:
6255   RebuildRegionSetsClosure(bool free_list_only,
6256                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6257     _free_list_only(free_list_only),
6258     _old_set(old_set), _hrm(hrm), _total_used(0) {
6259     assert(_hrm->num_free_regions() == 0, "pre-condition");
6260     if (!free_list_only) {
6261       assert(_old_set->is_empty(), "pre-condition");
6262     }
6263   }
6264 
6265   bool doHeapRegion(HeapRegion* r) {
6266     if (r->is_continues_humongous()) {
6267       return false;
6268     }
6269 
6270     if (r->is_empty()) {
6271       // Add free regions to the free list
6272       r->set_free();
6273       r->set_allocation_context(AllocationContext::system());
6274       _hrm->insert_into_free_list(r);
6275     } else if (!_free_list_only) {
6276       assert(!r->is_young(), "we should not come across young regions");
6277 
6278       if (r->is_humongous()) {
6279         // We ignore humongous regions, we left the humongous set unchanged
6280       } else {
6281         // Objects that were compacted would have ended up on regions
6282         // that were previously old or free.
6283         assert(r->is_free() || r->is_old(), "invariant");
6284         // We now consider them old, so register as such.
6285         r->set_old();
6286         _old_set->add(r);
6287       }
6288       _total_used += r->used();
6289     }
6290 
6291     return false;
6292   }
6293 
6294   size_t total_used() {
6295     return _total_used;
6296   }
6297 };
6298 
6299 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6300   assert_at_safepoint(true /* should_be_vm_thread */);
6301 
6302   if (!free_list_only) {
6303     _young_list->empty_list();
6304   }
6305 
6306   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6307   heap_region_iterate(&cl);
6308 
6309   if (!free_list_only) {
6310     _allocator->set_used(cl.total_used());
6311   }
6312   assert(_allocator->used_unlocked() == recalculate_used(),
6313          err_msg("inconsistent _allocator->used_unlocked(), "
6314                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6315                  _allocator->used_unlocked(), recalculate_used()));
6316 }
6317 
6318 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6319   _refine_cte_cl->set_concurrent(concurrent);
6320 }
6321 
6322 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6323   HeapRegion* hr = heap_region_containing(p);
6324   return hr->is_in(p);
6325 }
6326 
6327 // Methods for the mutator alloc region
6328 
6329 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6330                                                       bool force) {
6331   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6332   assert(!force || g1_policy()->can_expand_young_list(),
6333          "if force is true we should be able to expand the young list");
6334   bool young_list_full = g1_policy()->is_young_list_full();
6335   if (force || !young_list_full) {
6336     HeapRegion* new_alloc_region = new_region(word_size,
6337                                               false /* is_old */,
6338                                               false /* do_expand */);
6339     if (new_alloc_region != NULL) {
6340       set_region_short_lived_locked(new_alloc_region);
6341       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6342       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6343       return new_alloc_region;
6344     }
6345   }
6346   return NULL;
6347 }
6348 
6349 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6350                                                   size_t allocated_bytes) {
6351   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6352   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6353 
6354   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6355   _allocator->increase_used(allocated_bytes);
6356   _hr_printer.retire(alloc_region);
6357   // We update the eden sizes here, when the region is retired,
6358   // instead of when it's allocated, since this is the point that its
6359   // used space has been recored in _summary_bytes_used.
6360   g1mm()->update_eden_size();
6361 }
6362 
6363 void G1CollectedHeap::set_par_threads() {
6364   // Don't change the number of workers.  Use the value previously set
6365   // in the workgroup.
6366   uint n_workers = workers()->active_workers();
6367   assert(UseDynamicNumberOfGCThreads ||
6368            n_workers == workers()->total_workers(),
6369       "Otherwise should be using the total number of workers");
6370   if (n_workers == 0) {
6371     assert(false, "Should have been set in prior evacuation pause.");
6372     n_workers = ParallelGCThreads;
6373     workers()->set_active_workers(n_workers);
6374   }
6375   set_par_threads(n_workers);
6376 }
6377 
6378 // Methods for the GC alloc regions
6379 
6380 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6381                                                  uint count,
6382                                                  InCSetState dest) {
6383   assert(FreeList_lock->owned_by_self(), "pre-condition");
6384 
6385   if (count < g1_policy()->max_regions(dest)) {
6386     const bool is_survivor = (dest.is_young());
6387     HeapRegion* new_alloc_region = new_region(word_size,
6388                                               !is_survivor,
6389                                               true /* do_expand */);
6390     if (new_alloc_region != NULL) {
6391       // We really only need to do this for old regions given that we
6392       // should never scan survivors. But it doesn't hurt to do it
6393       // for survivors too.
6394       new_alloc_region->record_timestamp();
6395       if (is_survivor) {
6396         new_alloc_region->set_survivor();
6397         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6398         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6399       } else {
6400         new_alloc_region->set_old();
6401         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6402         check_bitmaps("Old Region Allocation", new_alloc_region);
6403       }
6404       bool during_im = g1_policy()->during_initial_mark_pause();
6405       new_alloc_region->note_start_of_copying(during_im);
6406       return new_alloc_region;
6407     }
6408   }
6409   return NULL;
6410 }
6411 
6412 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6413                                              size_t allocated_bytes,
6414                                              InCSetState dest) {
6415   bool during_im = g1_policy()->during_initial_mark_pause();
6416   alloc_region->note_end_of_copying(during_im);
6417   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6418   if (dest.is_young()) {
6419     young_list()->add_survivor_region(alloc_region);
6420   } else {
6421     _old_set.add(alloc_region);
6422   }
6423   _hr_printer.retire(alloc_region);
6424 }
6425 
6426 // Heap region set verification
6427 
6428 class VerifyRegionListsClosure : public HeapRegionClosure {
6429 private:
6430   HeapRegionSet*   _old_set;
6431   HeapRegionSet*   _humongous_set;
6432   HeapRegionManager*   _hrm;
6433 
6434 public:
6435   HeapRegionSetCount _old_count;
6436   HeapRegionSetCount _humongous_count;
6437   HeapRegionSetCount _free_count;
6438 
6439   VerifyRegionListsClosure(HeapRegionSet* old_set,
6440                            HeapRegionSet* humongous_set,
6441                            HeapRegionManager* hrm) :
6442     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6443     _old_count(), _humongous_count(), _free_count(){ }
6444 
6445   bool doHeapRegion(HeapRegion* hr) {
6446     if (hr->is_continues_humongous()) {
6447       return false;
6448     }
6449 
6450     if (hr->is_young()) {
6451       // TODO
6452     } else if (hr->is_starts_humongous()) {
6453       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6454       _humongous_count.increment(1u, hr->capacity());
6455     } else if (hr->is_empty()) {
6456       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6457       _free_count.increment(1u, hr->capacity());
6458     } else if (hr->is_old()) {
6459       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6460       _old_count.increment(1u, hr->capacity());
6461     } else {
6462       ShouldNotReachHere();
6463     }
6464     return false;
6465   }
6466 
6467   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6468     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6469     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6470         old_set->total_capacity_bytes(), _old_count.capacity()));
6471 
6472     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6473     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6474         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6475 
6476     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6477     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6478         free_list->total_capacity_bytes(), _free_count.capacity()));
6479   }
6480 };
6481 
6482 void G1CollectedHeap::verify_region_sets() {
6483   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6484 
6485   // First, check the explicit lists.
6486   _hrm.verify();
6487   {
6488     // Given that a concurrent operation might be adding regions to
6489     // the secondary free list we have to take the lock before
6490     // verifying it.
6491     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6492     _secondary_free_list.verify_list();
6493   }
6494 
6495   // If a concurrent region freeing operation is in progress it will
6496   // be difficult to correctly attributed any free regions we come
6497   // across to the correct free list given that they might belong to
6498   // one of several (free_list, secondary_free_list, any local lists,
6499   // etc.). So, if that's the case we will skip the rest of the
6500   // verification operation. Alternatively, waiting for the concurrent
6501   // operation to complete will have a non-trivial effect on the GC's
6502   // operation (no concurrent operation will last longer than the
6503   // interval between two calls to verification) and it might hide
6504   // any issues that we would like to catch during testing.
6505   if (free_regions_coming()) {
6506     return;
6507   }
6508 
6509   // Make sure we append the secondary_free_list on the free_list so
6510   // that all free regions we will come across can be safely
6511   // attributed to the free_list.
6512   append_secondary_free_list_if_not_empty_with_lock();
6513 
6514   // Finally, make sure that the region accounting in the lists is
6515   // consistent with what we see in the heap.
6516 
6517   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6518   heap_region_iterate(&cl);
6519   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6520 }
6521 
6522 // Optimized nmethod scanning
6523 
6524 class RegisterNMethodOopClosure: public OopClosure {
6525   G1CollectedHeap* _g1h;
6526   nmethod* _nm;
6527 
6528   template <class T> void do_oop_work(T* p) {
6529     T heap_oop = oopDesc::load_heap_oop(p);
6530     if (!oopDesc::is_null(heap_oop)) {
6531       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6532       HeapRegion* hr = _g1h->heap_region_containing(obj);
6533       assert(!hr->is_continues_humongous(),
6534              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6535                      " starting at "HR_FORMAT,
6536                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6537 
6538       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6539       hr->add_strong_code_root_locked(_nm);
6540     }
6541   }
6542 
6543 public:
6544   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6545     _g1h(g1h), _nm(nm) {}
6546 
6547   void do_oop(oop* p)       { do_oop_work(p); }
6548   void do_oop(narrowOop* p) { do_oop_work(p); }
6549 };
6550 
6551 class UnregisterNMethodOopClosure: public OopClosure {
6552   G1CollectedHeap* _g1h;
6553   nmethod* _nm;
6554 
6555   template <class T> void do_oop_work(T* p) {
6556     T heap_oop = oopDesc::load_heap_oop(p);
6557     if (!oopDesc::is_null(heap_oop)) {
6558       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6559       HeapRegion* hr = _g1h->heap_region_containing(obj);
6560       assert(!hr->is_continues_humongous(),
6561              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6562                      " starting at "HR_FORMAT,
6563                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6564 
6565       hr->remove_strong_code_root(_nm);
6566     }
6567   }
6568 
6569 public:
6570   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6571     _g1h(g1h), _nm(nm) {}
6572 
6573   void do_oop(oop* p)       { do_oop_work(p); }
6574   void do_oop(narrowOop* p) { do_oop_work(p); }
6575 };
6576 
6577 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6578   CollectedHeap::register_nmethod(nm);
6579 
6580   guarantee(nm != NULL, "sanity");
6581   RegisterNMethodOopClosure reg_cl(this, nm);
6582   nm->oops_do(&reg_cl);
6583 }
6584 
6585 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6586   CollectedHeap::unregister_nmethod(nm);
6587 
6588   guarantee(nm != NULL, "sanity");
6589   UnregisterNMethodOopClosure reg_cl(this, nm);
6590   nm->oops_do(&reg_cl, true);
6591 }
6592 
6593 void G1CollectedHeap::purge_code_root_memory() {
6594   double purge_start = os::elapsedTime();
6595   G1CodeRootSet::purge();
6596   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6597   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6598 }
6599 
6600 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6601   G1CollectedHeap* _g1h;
6602 
6603 public:
6604   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6605     _g1h(g1h) {}
6606 
6607   void do_code_blob(CodeBlob* cb) {
6608     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6609     if (nm == NULL) {
6610       return;
6611     }
6612 
6613     if (ScavengeRootsInCode) {
6614       _g1h->register_nmethod(nm);
6615     }
6616   }
6617 };
6618 
6619 void G1CollectedHeap::rebuild_strong_code_roots() {
6620   RebuildStrongCodeRootClosure blob_cl(this);
6621   CodeCache::blobs_do(&blob_cl);
6622 }