1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.lang.model.element.ElementKind;
  31 import javax.lang.model.type.TypeKind;
  32 import javax.tools.JavaFileObject;
  33 
  34 import com.sun.source.tree.IdentifierTree;
  35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  36 import com.sun.source.tree.MemberSelectTree;
  37 import com.sun.source.tree.TreeVisitor;
  38 import com.sun.source.util.SimpleTreeVisitor;
  39 import com.sun.tools.javac.code.*;
  40 import com.sun.tools.javac.code.Lint.LintCategory;
  41 import com.sun.tools.javac.code.Symbol.*;
  42 import com.sun.tools.javac.code.Type.*;
  43 import com.sun.tools.javac.comp.Check.CheckContext;
  44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  45 import com.sun.tools.javac.comp.Infer.InferenceContext;
  46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  47 import com.sun.tools.javac.jvm.*;
  48 import com.sun.tools.javac.tree.*;
  49 import com.sun.tools.javac.tree.JCTree.*;
  50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  51 import com.sun.tools.javac.util.*;
  52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  53 import com.sun.tools.javac.util.List;
  54 import static com.sun.tools.javac.code.Flags.*;
  55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  56 import static com.sun.tools.javac.code.Flags.BLOCK;
  57 import static com.sun.tools.javac.code.Kinds.*;
  58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
  59 import static com.sun.tools.javac.code.TypeTag.*;
  60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  61 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  62 
  63 /** This is the main context-dependent analysis phase in GJC. It
  64  *  encompasses name resolution, type checking and constant folding as
  65  *  subtasks. Some subtasks involve auxiliary classes.
  66  *  @see Check
  67  *  @see Resolve
  68  *  @see ConstFold
  69  *  @see Infer
  70  *
  71  *  <p><b>This is NOT part of any supported API.
  72  *  If you write code that depends on this, you do so at your own risk.
  73  *  This code and its internal interfaces are subject to change or
  74  *  deletion without notice.</b>
  75  */
  76 public class Attr extends JCTree.Visitor {
  77     protected static final Context.Key<Attr> attrKey =
  78         new Context.Key<Attr>();
  79 
  80     final Names names;
  81     final Log log;
  82     final Symtab syms;
  83     final Resolve rs;
  84     final Infer infer;
  85     final DeferredAttr deferredAttr;
  86     final Check chk;
  87     final Flow flow;
  88     final MemberEnter memberEnter;
  89     final TreeMaker make;
  90     final ConstFold cfolder;
  91     final Enter enter;
  92     final Target target;
  93     final Types types;
  94     final JCDiagnostic.Factory diags;
  95     final Annotate annotate;
  96     final DeferredLintHandler deferredLintHandler;
  97 
  98     public static Attr instance(Context context) {
  99         Attr instance = context.get(attrKey);
 100         if (instance == null)
 101             instance = new Attr(context);
 102         return instance;
 103     }
 104 
 105     protected Attr(Context context) {
 106         context.put(attrKey, this);
 107 
 108         names = Names.instance(context);
 109         log = Log.instance(context);
 110         syms = Symtab.instance(context);
 111         rs = Resolve.instance(context);
 112         chk = Check.instance(context);
 113         flow = Flow.instance(context);
 114         memberEnter = MemberEnter.instance(context);
 115         make = TreeMaker.instance(context);
 116         enter = Enter.instance(context);
 117         infer = Infer.instance(context);
 118         deferredAttr = DeferredAttr.instance(context);
 119         cfolder = ConstFold.instance(context);
 120         target = Target.instance(context);
 121         types = Types.instance(context);
 122         diags = JCDiagnostic.Factory.instance(context);
 123         annotate = Annotate.instance(context);
 124         deferredLintHandler = DeferredLintHandler.instance(context);
 125 
 126         Options options = Options.instance(context);
 127 
 128         Source source = Source.instance(context);
 129         allowGenerics = source.allowGenerics();
 130         allowVarargs = source.allowVarargs();
 131         allowEnums = source.allowEnums();
 132         allowBoxing = source.allowBoxing();
 133         allowCovariantReturns = source.allowCovariantReturns();
 134         allowAnonOuterThis = source.allowAnonOuterThis();
 135         allowStringsInSwitch = source.allowStringsInSwitch();
 136         allowPoly = source.allowPoly();
 137         allowLambda = source.allowLambda();
 138         allowDefaultMethods = source.allowDefaultMethods();
 139         sourceName = source.name;
 140         relax = (options.isSet("-retrofit") ||
 141                  options.isSet("-relax"));
 142         findDiamonds = options.get("findDiamond") != null &&
 143                  source.allowDiamond();
 144         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 145         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
 146 
 147         statInfo = new ResultInfo(NIL, Type.noType);
 148         varInfo = new ResultInfo(VAR, Type.noType);
 149         unknownExprInfo = new ResultInfo(VAL, Type.noType);
 150         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
 151         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
 152         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 153     }
 154 
 155     /** Switch: relax some constraints for retrofit mode.
 156      */
 157     boolean relax;
 158 
 159     /** Switch: support target-typing inference
 160      */
 161     boolean allowPoly;
 162 
 163     /** Switch: support generics?
 164      */
 165     boolean allowGenerics;
 166 
 167     /** Switch: allow variable-arity methods.
 168      */
 169     boolean allowVarargs;
 170 
 171     /** Switch: support enums?
 172      */
 173     boolean allowEnums;
 174 
 175     /** Switch: support boxing and unboxing?
 176      */
 177     boolean allowBoxing;
 178 
 179     /** Switch: support covariant result types?
 180      */
 181     boolean allowCovariantReturns;
 182 
 183     /** Switch: support lambda expressions ?
 184      */
 185     boolean allowLambda;
 186 
 187     /** Switch: support default methods ?
 188      */
 189     boolean allowDefaultMethods;
 190 
 191     /** Switch: allow references to surrounding object from anonymous
 192      * objects during constructor call?
 193      */
 194     boolean allowAnonOuterThis;
 195 
 196     /** Switch: generates a warning if diamond can be safely applied
 197      *  to a given new expression
 198      */
 199     boolean findDiamonds;
 200 
 201     /**
 202      * Internally enables/disables diamond finder feature
 203      */
 204     static final boolean allowDiamondFinder = true;
 205 
 206     /**
 207      * Switch: warn about use of variable before declaration?
 208      * RFE: 6425594
 209      */
 210     boolean useBeforeDeclarationWarning;
 211 
 212     /**
 213      * Switch: generate warnings whenever an anonymous inner class that is convertible
 214      * to a lambda expression is found
 215      */
 216     boolean identifyLambdaCandidate;
 217 
 218     /**
 219      * Switch: allow strings in switch?
 220      */
 221     boolean allowStringsInSwitch;
 222 
 223     /**
 224      * Switch: name of source level; used for error reporting.
 225      */
 226     String sourceName;
 227 
 228     /** Check kind and type of given tree against protokind and prototype.
 229      *  If check succeeds, store type in tree and return it.
 230      *  If check fails, store errType in tree and return it.
 231      *  No checks are performed if the prototype is a method type.
 232      *  It is not necessary in this case since we know that kind and type
 233      *  are correct.
 234      *
 235      *  @param tree     The tree whose kind and type is checked
 236      *  @param ownkind  The computed kind of the tree
 237      *  @param resultInfo  The expected result of the tree
 238      */
 239     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
 240         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 241         Type owntype = found;
 242         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
 243             if (inferenceContext.free(found)) {
 244                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
 245                     @Override
 246                     public void typesInferred(InferenceContext inferenceContext) {
 247                         ResultInfo pendingResult =
 248                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 249                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 250                     }
 251                 });
 252                 return tree.type = resultInfo.pt;
 253             } else {
 254                 if ((ownkind & ~resultInfo.pkind) == 0) {
 255                     owntype = resultInfo.check(tree, owntype);
 256                 } else {
 257                     log.error(tree.pos(), "unexpected.type",
 258                             kindNames(resultInfo.pkind),
 259                             kindName(ownkind));
 260                     owntype = types.createErrorType(owntype);
 261                 }
 262             }
 263         }
 264         tree.type = owntype;
 265         return owntype;
 266     }
 267 
 268     /** Is given blank final variable assignable, i.e. in a scope where it
 269      *  may be assigned to even though it is final?
 270      *  @param v      The blank final variable.
 271      *  @param env    The current environment.
 272      */
 273     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 274         Symbol owner = owner(env);
 275            // owner refers to the innermost variable, method or
 276            // initializer block declaration at this point.
 277         return
 278             v.owner == owner
 279             ||
 280             ((owner.name == names.init ||    // i.e. we are in a constructor
 281               owner.kind == VAR ||           // i.e. we are in a variable initializer
 282               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 283              &&
 284              v.owner == owner.owner
 285              &&
 286              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 287     }
 288 
 289     /**
 290      * Return the innermost enclosing owner symbol in a given attribution context
 291      */
 292     Symbol owner(Env<AttrContext> env) {
 293         while (true) {
 294             switch (env.tree.getTag()) {
 295                 case VARDEF:
 296                     //a field can be owner
 297                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
 298                     if (vsym.owner.kind == TYP) {
 299                         return vsym;
 300                     }
 301                     break;
 302                 case METHODDEF:
 303                     //method def is always an owner
 304                     return ((JCMethodDecl)env.tree).sym;
 305                 case CLASSDEF:
 306                     //class def is always an owner
 307                     return ((JCClassDecl)env.tree).sym;
 308                 case LAMBDA:
 309                     //a lambda is an owner - return a fresh synthetic method symbol
 310                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
 311                 case BLOCK:
 312                     //static/instance init blocks are owner
 313                     Symbol blockSym = env.info.scope.owner;
 314                     if ((blockSym.flags() & BLOCK) != 0) {
 315                         return blockSym;
 316                     }
 317                     break;
 318                 case TOPLEVEL:
 319                     //toplevel is always an owner (for pkge decls)
 320                     return env.info.scope.owner;
 321             }
 322             Assert.checkNonNull(env.next);
 323             env = env.next;
 324         }
 325     }
 326 
 327     /** Check that variable can be assigned to.
 328      *  @param pos    The current source code position.
 329      *  @param v      The assigned varaible
 330      *  @param base   If the variable is referred to in a Select, the part
 331      *                to the left of the `.', null otherwise.
 332      *  @param env    The current environment.
 333      */
 334     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 335         if ((v.flags() & FINAL) != 0 &&
 336             ((v.flags() & HASINIT) != 0
 337              ||
 338              !((base == null ||
 339                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
 340                isAssignableAsBlankFinal(v, env)))) {
 341             if (v.isResourceVariable()) { //TWR resource
 342                 log.error(pos, "try.resource.may.not.be.assigned", v);
 343             } else {
 344                 log.error(pos, "cant.assign.val.to.final.var", v);
 345             }
 346         }
 347     }
 348 
 349     /** Does tree represent a static reference to an identifier?
 350      *  It is assumed that tree is either a SELECT or an IDENT.
 351      *  We have to weed out selects from non-type names here.
 352      *  @param tree    The candidate tree.
 353      */
 354     boolean isStaticReference(JCTree tree) {
 355         if (tree.hasTag(SELECT)) {
 356             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 357             if (lsym == null || lsym.kind != TYP) {
 358                 return false;
 359             }
 360         }
 361         return true;
 362     }
 363 
 364     /** Is this symbol a type?
 365      */
 366     static boolean isType(Symbol sym) {
 367         return sym != null && sym.kind == TYP;
 368     }
 369 
 370     /** The current `this' symbol.
 371      *  @param env    The current environment.
 372      */
 373     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 374         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 375     }
 376 
 377     /** Attribute a parsed identifier.
 378      * @param tree Parsed identifier name
 379      * @param topLevel The toplevel to use
 380      */
 381     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 382         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 383         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 384                                            syms.errSymbol.name,
 385                                            null, null, null, null);
 386         localEnv.enclClass.sym = syms.errSymbol;
 387         return tree.accept(identAttributer, localEnv);
 388     }
 389     // where
 390         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 391         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 392             @Override
 393             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 394                 Symbol site = visit(node.getExpression(), env);
 395                 if (site.kind == ERR)
 396                     return site;
 397                 Name name = (Name)node.getIdentifier();
 398                 if (site.kind == PCK) {
 399                     env.toplevel.packge = (PackageSymbol)site;
 400                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
 401                 } else {
 402                     env.enclClass.sym = (ClassSymbol)site;
 403                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 404                 }
 405             }
 406 
 407             @Override
 408             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 409                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
 410             }
 411         }
 412 
 413     public Type coerce(Type etype, Type ttype) {
 414         return cfolder.coerce(etype, ttype);
 415     }
 416 
 417     public Type attribType(JCTree node, TypeSymbol sym) {
 418         Env<AttrContext> env = enter.typeEnvs.get(sym);
 419         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 420         return attribTree(node, localEnv, unknownTypeInfo);
 421     }
 422 
 423     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 424         // Attribute qualifying package or class.
 425         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 426         return attribTree(s.selected,
 427                        env,
 428                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
 429                        Type.noType));
 430     }
 431 
 432     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 433         breakTree = tree;
 434         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 435         try {
 436             attribExpr(expr, env);
 437         } catch (BreakAttr b) {
 438             return b.env;
 439         } catch (AssertionError ae) {
 440             if (ae.getCause() instanceof BreakAttr) {
 441                 return ((BreakAttr)(ae.getCause())).env;
 442             } else {
 443                 throw ae;
 444             }
 445         } finally {
 446             breakTree = null;
 447             log.useSource(prev);
 448         }
 449         return env;
 450     }
 451 
 452     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 453         breakTree = tree;
 454         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 455         try {
 456             attribStat(stmt, env);
 457         } catch (BreakAttr b) {
 458             return b.env;
 459         } catch (AssertionError ae) {
 460             if (ae.getCause() instanceof BreakAttr) {
 461                 return ((BreakAttr)(ae.getCause())).env;
 462             } else {
 463                 throw ae;
 464             }
 465         } finally {
 466             breakTree = null;
 467             log.useSource(prev);
 468         }
 469         return env;
 470     }
 471 
 472     private JCTree breakTree = null;
 473 
 474     private static class BreakAttr extends RuntimeException {
 475         static final long serialVersionUID = -6924771130405446405L;
 476         private Env<AttrContext> env;
 477         private BreakAttr(Env<AttrContext> env) {
 478             this.env = copyEnv(env);
 479         }
 480 
 481         private Env<AttrContext> copyEnv(Env<AttrContext> env) {
 482             Env<AttrContext> newEnv =
 483                     env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 484             if (newEnv.outer != null) {
 485                 newEnv.outer = copyEnv(newEnv.outer);
 486             }
 487             return newEnv;
 488         }
 489 
 490         private Scope copyScope(Scope sc) {
 491             Scope newScope = new Scope(sc.owner);
 492             List<Symbol> elemsList = List.nil();
 493             while (sc != null) {
 494                 for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
 495                     elemsList = elemsList.prepend(e.sym);
 496                 }
 497                 sc = sc.next;
 498             }
 499             for (Symbol s : elemsList) {
 500                 newScope.enter(s);
 501             }
 502             return newScope;
 503         }
 504     }
 505 
 506     class ResultInfo {
 507         final int pkind;
 508         final Type pt;
 509         final CheckContext checkContext;
 510 
 511         ResultInfo(int pkind, Type pt) {
 512             this(pkind, pt, chk.basicHandler);
 513         }
 514 
 515         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
 516             this.pkind = pkind;
 517             this.pt = pt;
 518             this.checkContext = checkContext;
 519         }
 520 
 521         protected Type check(final DiagnosticPosition pos, final Type found) {
 522             return chk.checkType(pos, found, pt, checkContext);
 523         }
 524 
 525         protected ResultInfo dup(Type newPt) {
 526             return new ResultInfo(pkind, newPt, checkContext);
 527         }
 528 
 529         protected ResultInfo dup(CheckContext newContext) {
 530             return new ResultInfo(pkind, pt, newContext);
 531         }
 532     }
 533 
 534     class RecoveryInfo extends ResultInfo {
 535 
 536         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 537             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
 538                 @Override
 539                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 540                     return deferredAttrContext;
 541                 }
 542                 @Override
 543                 public boolean compatible(Type found, Type req, Warner warn) {
 544                     return true;
 545                 }
 546                 @Override
 547                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 548                     chk.basicHandler.report(pos, details);
 549                 }
 550             });
 551         }
 552 
 553         @Override
 554         protected Type check(DiagnosticPosition pos, Type found) {
 555             return chk.checkNonVoid(pos, super.check(pos, found));
 556         }
 557     }
 558 
 559     final ResultInfo statInfo;
 560     final ResultInfo varInfo;
 561     final ResultInfo unknownExprInfo;
 562     final ResultInfo unknownTypeInfo;
 563     final ResultInfo unknownTypeExprInfo;
 564     final ResultInfo recoveryInfo;
 565 
 566     Type pt() {
 567         return resultInfo.pt;
 568     }
 569 
 570     int pkind() {
 571         return resultInfo.pkind;
 572     }
 573 
 574 /* ************************************************************************
 575  * Visitor methods
 576  *************************************************************************/
 577 
 578     /** Visitor argument: the current environment.
 579      */
 580     Env<AttrContext> env;
 581 
 582     /** Visitor argument: the currently expected attribution result.
 583      */
 584     ResultInfo resultInfo;
 585 
 586     /** Visitor result: the computed type.
 587      */
 588     Type result;
 589 
 590     /** Visitor method: attribute a tree, catching any completion failure
 591      *  exceptions. Return the tree's type.
 592      *
 593      *  @param tree    The tree to be visited.
 594      *  @param env     The environment visitor argument.
 595      *  @param resultInfo   The result info visitor argument.
 596      */
 597     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 598         Env<AttrContext> prevEnv = this.env;
 599         ResultInfo prevResult = this.resultInfo;
 600         try {
 601             this.env = env;
 602             this.resultInfo = resultInfo;
 603             tree.accept(this);
 604             if (tree == breakTree &&
 605                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 606                 throw new BreakAttr(env);
 607             }
 608             return result;
 609         } catch (CompletionFailure ex) {
 610             tree.type = syms.errType;
 611             return chk.completionError(tree.pos(), ex);
 612         } finally {
 613             this.env = prevEnv;
 614             this.resultInfo = prevResult;
 615         }
 616     }
 617 
 618     /** Derived visitor method: attribute an expression tree.
 619      */
 620     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 621         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 622     }
 623 
 624     /** Derived visitor method: attribute an expression tree with
 625      *  no constraints on the computed type.
 626      */
 627     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 628         return attribTree(tree, env, unknownExprInfo);
 629     }
 630 
 631     /** Derived visitor method: attribute a type tree.
 632      */
 633     public Type attribType(JCTree tree, Env<AttrContext> env) {
 634         Type result = attribType(tree, env, Type.noType);
 635         return result;
 636     }
 637 
 638     /** Derived visitor method: attribute a type tree.
 639      */
 640     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 641         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
 642         return result;
 643     }
 644 
 645     /** Derived visitor method: attribute a statement or definition tree.
 646      */
 647     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 648         return attribTree(tree, env, statInfo);
 649     }
 650 
 651     /** Attribute a list of expressions, returning a list of types.
 652      */
 653     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 654         ListBuffer<Type> ts = new ListBuffer<Type>();
 655         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 656             ts.append(attribExpr(l.head, env, pt));
 657         return ts.toList();
 658     }
 659 
 660     /** Attribute a list of statements, returning nothing.
 661      */
 662     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 663         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 664             attribStat(l.head, env);
 665     }
 666 
 667     /** Attribute the arguments in a method call, returning a list of types.
 668      */
 669     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
 670         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 671         for (JCExpression arg : trees) {
 672             Type argtype = allowPoly && deferredAttr.isDeferred(env, arg) ?
 673                     deferredAttr.new DeferredType(arg, env) :
 674                     chk.checkNonVoid(arg, attribExpr(arg, env, Infer.anyPoly));
 675             argtypes.append(argtype);
 676         }
 677         return argtypes.toList();
 678     }
 679 
 680     /** Attribute a type argument list, returning a list of types.
 681      *  Caller is responsible for calling checkRefTypes.
 682      */
 683     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 684         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 685         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 686             argtypes.append(attribType(l.head, env));
 687         return argtypes.toList();
 688     }
 689 
 690     /** Attribute a type argument list, returning a list of types.
 691      *  Check that all the types are references.
 692      */
 693     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 694         List<Type> types = attribAnyTypes(trees, env);
 695         return chk.checkRefTypes(trees, types);
 696     }
 697 
 698     /**
 699      * Attribute type variables (of generic classes or methods).
 700      * Compound types are attributed later in attribBounds.
 701      * @param typarams the type variables to enter
 702      * @param env      the current environment
 703      */
 704     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 705         for (JCTypeParameter tvar : typarams) {
 706             TypeVar a = (TypeVar)tvar.type;
 707             a.tsym.flags_field |= UNATTRIBUTED;
 708             a.bound = Type.noType;
 709             if (!tvar.bounds.isEmpty()) {
 710                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 711                 for (JCExpression bound : tvar.bounds.tail)
 712                     bounds = bounds.prepend(attribType(bound, env));
 713                 types.setBounds(a, bounds.reverse());
 714             } else {
 715                 // if no bounds are given, assume a single bound of
 716                 // java.lang.Object.
 717                 types.setBounds(a, List.of(syms.objectType));
 718             }
 719             a.tsym.flags_field &= ~UNATTRIBUTED;
 720         }
 721         for (JCTypeParameter tvar : typarams) {
 722             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 723         }
 724     }
 725 
 726     /**
 727      * Attribute the type references in a list of annotations.
 728      */
 729     void attribAnnotationTypes(List<JCAnnotation> annotations,
 730                                Env<AttrContext> env) {
 731         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 732             JCAnnotation a = al.head;
 733             attribType(a.annotationType, env);
 734         }
 735     }
 736 
 737     /**
 738      * Attribute a "lazy constant value".
 739      *  @param env         The env for the const value
 740      *  @param initializer The initializer for the const value
 741      *  @param type        The expected type, or null
 742      *  @see VarSymbol#setLazyConstValue
 743      */
 744     public Object attribLazyConstantValue(Env<AttrContext> env,
 745                                       JCTree.JCExpression initializer,
 746                                       Type type) {
 747 
 748         // in case no lint value has been set up for this env, scan up
 749         // env stack looking for smallest enclosing env for which it is set.
 750         Env<AttrContext> lintEnv = env;
 751         while (lintEnv.info.lint == null)
 752             lintEnv = lintEnv.next;
 753 
 754         // Having found the enclosing lint value, we can initialize the lint value for this class
 755         // ... but ...
 756         // There's a problem with evaluating annotations in the right order, such that
 757         // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
 758         // null. In that case, calling augment will throw an NPE. To avoid this, for now we
 759         // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
 760         if (env.info.enclVar.annotations.pendingCompletion()) {
 761             env.info.lint = lintEnv.info.lint;
 762         } else {
 763             env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.annotations,
 764                                                       env.info.enclVar.flags());
 765         }
 766 
 767         Lint prevLint = chk.setLint(env.info.lint);
 768         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 769 
 770         try {
 771             memberEnter.typeAnnotate(initializer, env, env.info.enclVar);
 772             annotate.flush();
 773             Type itype = attribExpr(initializer, env, type);
 774             if (itype.constValue() != null)
 775                 return coerce(itype, type).constValue();
 776             else
 777                 return null;
 778         } finally {
 779             env.info.lint = prevLint;
 780             log.useSource(prevSource);
 781         }
 782     }
 783 
 784     /** Attribute type reference in an `extends' or `implements' clause.
 785      *  Supertypes of anonymous inner classes are usually already attributed.
 786      *
 787      *  @param tree              The tree making up the type reference.
 788      *  @param env               The environment current at the reference.
 789      *  @param classExpected     true if only a class is expected here.
 790      *  @param interfaceExpected true if only an interface is expected here.
 791      */
 792     Type attribBase(JCTree tree,
 793                     Env<AttrContext> env,
 794                     boolean classExpected,
 795                     boolean interfaceExpected,
 796                     boolean checkExtensible) {
 797         Type t = tree.type != null ?
 798             tree.type :
 799             attribType(tree, env);
 800         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 801     }
 802     Type checkBase(Type t,
 803                    JCTree tree,
 804                    Env<AttrContext> env,
 805                    boolean classExpected,
 806                    boolean interfaceExpected,
 807                    boolean checkExtensible) {
 808         if (t.isErroneous())
 809             return t;
 810         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 811             // check that type variable is already visible
 812             if (t.getUpperBound() == null) {
 813                 log.error(tree.pos(), "illegal.forward.ref");
 814                 return types.createErrorType(t);
 815             }
 816         } else {
 817             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
 818         }
 819         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 820             log.error(tree.pos(), "intf.expected.here");
 821             // return errType is necessary since otherwise there might
 822             // be undetected cycles which cause attribution to loop
 823             return types.createErrorType(t);
 824         } else if (checkExtensible &&
 825                    classExpected &&
 826                    (t.tsym.flags() & INTERFACE) != 0) {
 827                 log.error(tree.pos(), "no.intf.expected.here");
 828             return types.createErrorType(t);
 829         }
 830         if (checkExtensible &&
 831             ((t.tsym.flags() & FINAL) != 0)) {
 832             log.error(tree.pos(),
 833                       "cant.inherit.from.final", t.tsym);
 834         }
 835         chk.checkNonCyclic(tree.pos(), t);
 836         return t;
 837     }
 838 
 839     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 840         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 841         id.type = env.info.scope.owner.type;
 842         id.sym = env.info.scope.owner;
 843         return id.type;
 844     }
 845 
 846     public void visitClassDef(JCClassDecl tree) {
 847         // Local classes have not been entered yet, so we need to do it now:
 848         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
 849             enter.classEnter(tree, env);
 850 
 851         ClassSymbol c = tree.sym;
 852         if (c == null) {
 853             // exit in case something drastic went wrong during enter.
 854             result = null;
 855         } else {
 856             // make sure class has been completed:
 857             c.complete();
 858 
 859             // If this class appears as an anonymous class
 860             // in a superclass constructor call where
 861             // no explicit outer instance is given,
 862             // disable implicit outer instance from being passed.
 863             // (This would be an illegal access to "this before super").
 864             if (env.info.isSelfCall &&
 865                 env.tree.hasTag(NEWCLASS) &&
 866                 ((JCNewClass) env.tree).encl == null)
 867             {
 868                 c.flags_field |= NOOUTERTHIS;
 869             }
 870             attribClass(tree.pos(), c);
 871             result = tree.type = c.type;
 872         }
 873     }
 874 
 875     public void visitMethodDef(JCMethodDecl tree) {
 876         MethodSymbol m = tree.sym;
 877         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 878 
 879         Lint lint = env.info.lint.augment(m.annotations, m.flags());
 880         Lint prevLint = chk.setLint(lint);
 881         MethodSymbol prevMethod = chk.setMethod(m);
 882         try {
 883             deferredLintHandler.flush(tree.pos());
 884             chk.checkDeprecatedAnnotation(tree.pos(), m);
 885 
 886 
 887             // Create a new environment with local scope
 888             // for attributing the method.
 889             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 890             localEnv.info.lint = lint;
 891 
 892             attribStats(tree.typarams, localEnv);
 893 
 894             // If we override any other methods, check that we do so properly.
 895             // JLS ???
 896             if (m.isStatic()) {
 897                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 898             } else {
 899                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 900             }
 901             chk.checkOverride(tree, m);
 902 
 903             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 904                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
 905             }
 906 
 907             // Enter all type parameters into the local method scope.
 908             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 909                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 910 
 911             ClassSymbol owner = env.enclClass.sym;
 912             if ((owner.flags() & ANNOTATION) != 0 &&
 913                 tree.params.nonEmpty())
 914                 log.error(tree.params.head.pos(),
 915                           "intf.annotation.members.cant.have.params");
 916 
 917             // Attribute all value parameters.
 918             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 919                 attribStat(l.head, localEnv);
 920             }
 921 
 922             chk.checkVarargsMethodDecl(localEnv, tree);
 923 
 924             // Check that type parameters are well-formed.
 925             chk.validate(tree.typarams, localEnv);
 926 
 927             // Check that result type is well-formed.
 928             chk.validate(tree.restype, localEnv);
 929 
 930             // Check that receiver type is well-formed.
 931             if (tree.recvparam != null) {
 932                 // Use a new environment to check the receiver parameter.
 933                 // Otherwise I get "might not have been initialized" errors.
 934                 // Is there a better way?
 935                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
 936                 attribType(tree.recvparam, newEnv);
 937                 chk.validate(tree.recvparam, newEnv);
 938                 if (!(tree.recvparam.type == m.owner.type || types.isSameType(tree.recvparam.type, m.owner.type))) {
 939                     // The == covers the common non-generic case, but for generic classes we need isSameType;
 940                     // note that equals didn't work.
 941                     log.error(tree.recvparam.pos(), "incorrect.receiver.type");
 942                 }
 943             }
 944 
 945             // annotation method checks
 946             if ((owner.flags() & ANNOTATION) != 0) {
 947                 // annotation method cannot have throws clause
 948                 if (tree.thrown.nonEmpty()) {
 949                     log.error(tree.thrown.head.pos(),
 950                             "throws.not.allowed.in.intf.annotation");
 951                 }
 952                 // annotation method cannot declare type-parameters
 953                 if (tree.typarams.nonEmpty()) {
 954                     log.error(tree.typarams.head.pos(),
 955                             "intf.annotation.members.cant.have.type.params");
 956                 }
 957                 // validate annotation method's return type (could be an annotation type)
 958                 chk.validateAnnotationType(tree.restype);
 959                 // ensure that annotation method does not clash with members of Object/Annotation
 960                 chk.validateAnnotationMethod(tree.pos(), m);
 961 
 962                 if (tree.defaultValue != null) {
 963                     // if default value is an annotation, check it is a well-formed
 964                     // annotation value (e.g. no duplicate values, no missing values, etc.)
 965                     chk.validateAnnotationTree(tree.defaultValue);
 966                 }
 967             }
 968 
 969             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
 970                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
 971 
 972             if (tree.body == null) {
 973                 // Empty bodies are only allowed for
 974                 // abstract, native, or interface methods, or for methods
 975                 // in a retrofit signature class.
 976                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
 977                     !relax)
 978                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
 979                 if (tree.defaultValue != null) {
 980                     if ((owner.flags() & ANNOTATION) == 0)
 981                         log.error(tree.pos(),
 982                                   "default.allowed.in.intf.annotation.member");
 983                 }
 984             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
 985                 if ((owner.flags() & INTERFACE) != 0) {
 986                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
 987                 } else {
 988                     log.error(tree.pos(), "abstract.meth.cant.have.body");
 989                 }
 990             } else if ((tree.mods.flags & NATIVE) != 0) {
 991                 log.error(tree.pos(), "native.meth.cant.have.body");
 992             } else {
 993                 // Add an implicit super() call unless an explicit call to
 994                 // super(...) or this(...) is given
 995                 // or we are compiling class java.lang.Object.
 996                 if (tree.name == names.init && owner.type != syms.objectType) {
 997                     JCBlock body = tree.body;
 998                     if (body.stats.isEmpty() ||
 999                         !TreeInfo.isSelfCall(body.stats.head)) {
1000                         body.stats = body.stats.
1001                             prepend(memberEnter.SuperCall(make.at(body.pos),
1002                                                           List.<Type>nil(),
1003                                                           List.<JCVariableDecl>nil(),
1004                                                           false));
1005                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1006                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1007                                TreeInfo.isSuperCall(body.stats.head)) {
1008                         // enum constructors are not allowed to call super
1009                         // directly, so make sure there aren't any super calls
1010                         // in enum constructors, except in the compiler
1011                         // generated one.
1012                         log.error(tree.body.stats.head.pos(),
1013                                   "call.to.super.not.allowed.in.enum.ctor",
1014                                   env.enclClass.sym);
1015                     }
1016                 }
1017 
1018                 // Attribute all type annotations in the body
1019                 memberEnter.typeAnnotate(tree.body, localEnv, m);
1020                 annotate.flush();
1021 
1022                 // Attribute method body.
1023                 attribStat(tree.body, localEnv);
1024             }
1025 
1026             localEnv.info.scope.leave();
1027             result = tree.type = m.type;
1028             chk.validateAnnotations(tree.mods.annotations, m);
1029         }
1030         finally {
1031             chk.setLint(prevLint);
1032             chk.setMethod(prevMethod);
1033         }
1034     }
1035 
1036     public void visitVarDef(JCVariableDecl tree) {
1037         // Local variables have not been entered yet, so we need to do it now:
1038         if (env.info.scope.owner.kind == MTH) {
1039             if (tree.sym != null) {
1040                 // parameters have already been entered
1041                 env.info.scope.enter(tree.sym);
1042             } else {
1043                 memberEnter.memberEnter(tree, env);
1044                 annotate.flush();
1045             }
1046         } else {
1047             if (tree.init != null) {
1048                 // Field initializer expression need to be entered.
1049                 memberEnter.typeAnnotate(tree.init, env, tree.sym);
1050                 annotate.flush();
1051             }
1052         }
1053 
1054         VarSymbol v = tree.sym;
1055         Lint lint = env.info.lint.augment(v.annotations, v.flags());
1056         Lint prevLint = chk.setLint(lint);
1057 
1058         // Check that the variable's declared type is well-formed.
1059         chk.validate(tree.vartype, env);
1060         deferredLintHandler.flush(tree.pos());
1061 
1062         try {
1063             chk.checkDeprecatedAnnotation(tree.pos(), v);
1064 
1065             if (tree.init != null) {
1066                 if ((v.flags_field & FINAL) != 0 &&
1067                         !tree.init.hasTag(NEWCLASS) &&
1068                         !tree.init.hasTag(LAMBDA) &&
1069                         !tree.init.hasTag(REFERENCE)) {
1070                     // In this case, `v' is final.  Ensure that it's initializer is
1071                     // evaluated.
1072                     v.getConstValue(); // ensure initializer is evaluated
1073                 } else {
1074                     // Attribute initializer in a new environment
1075                     // with the declared variable as owner.
1076                     // Check that initializer conforms to variable's declared type.
1077                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1078                     initEnv.info.lint = lint;
1079                     // In order to catch self-references, we set the variable's
1080                     // declaration position to maximal possible value, effectively
1081                     // marking the variable as undefined.
1082                     initEnv.info.enclVar = v;
1083                     attribExpr(tree.init, initEnv, v.type);
1084                 }
1085             }
1086             result = tree.type = v.type;
1087             chk.validateAnnotations(tree.mods.annotations, v);
1088         }
1089         finally {
1090             chk.setLint(prevLint);
1091         }
1092     }
1093 
1094     public void visitSkip(JCSkip tree) {
1095         result = null;
1096     }
1097 
1098     public void visitBlock(JCBlock tree) {
1099         if (env.info.scope.owner.kind == TYP) {
1100             // Block is a static or instance initializer;
1101             // let the owner of the environment be a freshly
1102             // created BLOCK-method.
1103             Env<AttrContext> localEnv =
1104                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
1105             localEnv.info.scope.owner =
1106                 new MethodSymbol(tree.flags | BLOCK |
1107                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1108                     env.info.scope.owner);
1109             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1110 
1111             // Attribute all type annotations in the block
1112             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner);
1113             annotate.flush();
1114 
1115             attribStats(tree.stats, localEnv);
1116         } else {
1117             // Create a new local environment with a local scope.
1118             Env<AttrContext> localEnv =
1119                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1120             try {
1121                 attribStats(tree.stats, localEnv);
1122             } finally {
1123                 localEnv.info.scope.leave();
1124             }
1125         }
1126         result = null;
1127     }
1128 
1129     public void visitDoLoop(JCDoWhileLoop tree) {
1130         attribStat(tree.body, env.dup(tree));
1131         attribExpr(tree.cond, env, syms.booleanType);
1132         result = null;
1133     }
1134 
1135     public void visitWhileLoop(JCWhileLoop tree) {
1136         attribExpr(tree.cond, env, syms.booleanType);
1137         attribStat(tree.body, env.dup(tree));
1138         result = null;
1139     }
1140 
1141     public void visitForLoop(JCForLoop tree) {
1142         Env<AttrContext> loopEnv =
1143             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1144         try {
1145             attribStats(tree.init, loopEnv);
1146             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1147             loopEnv.tree = tree; // before, we were not in loop!
1148             attribStats(tree.step, loopEnv);
1149             attribStat(tree.body, loopEnv);
1150             result = null;
1151         }
1152         finally {
1153             loopEnv.info.scope.leave();
1154         }
1155     }
1156 
1157     public void visitForeachLoop(JCEnhancedForLoop tree) {
1158         Env<AttrContext> loopEnv =
1159             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1160         try {
1161             attribStat(tree.var, loopEnv);
1162             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
1163             chk.checkNonVoid(tree.pos(), exprType);
1164             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1165             if (elemtype == null) {
1166                 // or perhaps expr implements Iterable<T>?
1167                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1168                 if (base == null) {
1169                     log.error(tree.expr.pos(),
1170                             "foreach.not.applicable.to.type",
1171                             exprType,
1172                             diags.fragment("type.req.array.or.iterable"));
1173                     elemtype = types.createErrorType(exprType);
1174                 } else {
1175                     List<Type> iterableParams = base.allparams();
1176                     elemtype = iterableParams.isEmpty()
1177                         ? syms.objectType
1178                         : types.upperBound(iterableParams.head);
1179                 }
1180             }
1181             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1182             loopEnv.tree = tree; // before, we were not in loop!
1183             attribStat(tree.body, loopEnv);
1184             result = null;
1185         }
1186         finally {
1187             loopEnv.info.scope.leave();
1188         }
1189     }
1190 
1191     public void visitLabelled(JCLabeledStatement tree) {
1192         // Check that label is not used in an enclosing statement
1193         Env<AttrContext> env1 = env;
1194         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1195             if (env1.tree.hasTag(LABELLED) &&
1196                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1197                 log.error(tree.pos(), "label.already.in.use",
1198                           tree.label);
1199                 break;
1200             }
1201             env1 = env1.next;
1202         }
1203 
1204         attribStat(tree.body, env.dup(tree));
1205         result = null;
1206     }
1207 
1208     public void visitSwitch(JCSwitch tree) {
1209         Type seltype = attribExpr(tree.selector, env);
1210 
1211         Env<AttrContext> switchEnv =
1212             env.dup(tree, env.info.dup(env.info.scope.dup()));
1213 
1214         try {
1215 
1216             boolean enumSwitch =
1217                 allowEnums &&
1218                 (seltype.tsym.flags() & Flags.ENUM) != 0;
1219             boolean stringSwitch = false;
1220             if (types.isSameType(seltype, syms.stringType)) {
1221                 if (allowStringsInSwitch) {
1222                     stringSwitch = true;
1223                 } else {
1224                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1225                 }
1226             }
1227             if (!enumSwitch && !stringSwitch)
1228                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1229 
1230             // Attribute all cases and
1231             // check that there are no duplicate case labels or default clauses.
1232             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
1233             boolean hasDefault = false;      // Is there a default label?
1234             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1235                 JCCase c = l.head;
1236                 Env<AttrContext> caseEnv =
1237                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1238                 try {
1239                     if (c.pat != null) {
1240                         if (enumSwitch) {
1241                             Symbol sym = enumConstant(c.pat, seltype);
1242                             if (sym == null) {
1243                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1244                             } else if (!labels.add(sym)) {
1245                                 log.error(c.pos(), "duplicate.case.label");
1246                             }
1247                         } else {
1248                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
1249                             if (!pattype.hasTag(ERROR)) {
1250                                 if (pattype.constValue() == null) {
1251                                     log.error(c.pat.pos(),
1252                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
1253                                 } else if (labels.contains(pattype.constValue())) {
1254                                     log.error(c.pos(), "duplicate.case.label");
1255                                 } else {
1256                                     labels.add(pattype.constValue());
1257                                 }
1258                             }
1259                         }
1260                     } else if (hasDefault) {
1261                         log.error(c.pos(), "duplicate.default.label");
1262                     } else {
1263                         hasDefault = true;
1264                     }
1265                     attribStats(c.stats, caseEnv);
1266                 } finally {
1267                     caseEnv.info.scope.leave();
1268                     addVars(c.stats, switchEnv.info.scope);
1269                 }
1270             }
1271 
1272             result = null;
1273         }
1274         finally {
1275             switchEnv.info.scope.leave();
1276         }
1277     }
1278     // where
1279         /** Add any variables defined in stats to the switch scope. */
1280         private static void addVars(List<JCStatement> stats, Scope switchScope) {
1281             for (;stats.nonEmpty(); stats = stats.tail) {
1282                 JCTree stat = stats.head;
1283                 if (stat.hasTag(VARDEF))
1284                     switchScope.enter(((JCVariableDecl) stat).sym);
1285             }
1286         }
1287     // where
1288     /** Return the selected enumeration constant symbol, or null. */
1289     private Symbol enumConstant(JCTree tree, Type enumType) {
1290         if (!tree.hasTag(IDENT)) {
1291             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
1292             return syms.errSymbol;
1293         }
1294         JCIdent ident = (JCIdent)tree;
1295         Name name = ident.name;
1296         for (Scope.Entry e = enumType.tsym.members().lookup(name);
1297              e.scope != null; e = e.next()) {
1298             if (e.sym.kind == VAR) {
1299                 Symbol s = ident.sym = e.sym;
1300                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1301                 ident.type = s.type;
1302                 return ((s.flags_field & Flags.ENUM) == 0)
1303                     ? null : s;
1304             }
1305         }
1306         return null;
1307     }
1308 
1309     public void visitSynchronized(JCSynchronized tree) {
1310         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1311         attribStat(tree.body, env);
1312         result = null;
1313     }
1314 
1315     public void visitTry(JCTry tree) {
1316         // Create a new local environment with a local
1317         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1318         try {
1319             boolean isTryWithResource = tree.resources.nonEmpty();
1320             // Create a nested environment for attributing the try block if needed
1321             Env<AttrContext> tryEnv = isTryWithResource ?
1322                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1323                 localEnv;
1324             try {
1325                 // Attribute resource declarations
1326                 for (JCTree resource : tree.resources) {
1327                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1328                         @Override
1329                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1330                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1331                         }
1332                     };
1333                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
1334                     if (resource.hasTag(VARDEF)) {
1335                         attribStat(resource, tryEnv);
1336                         twrResult.check(resource, resource.type);
1337 
1338                         //check that resource type cannot throw InterruptedException
1339                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1340 
1341                         VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
1342                         var.setData(ElementKind.RESOURCE_VARIABLE);
1343                     } else {
1344                         attribTree(resource, tryEnv, twrResult);
1345                     }
1346                 }
1347                 // Attribute body
1348                 attribStat(tree.body, tryEnv);
1349             } finally {
1350                 if (isTryWithResource)
1351                     tryEnv.info.scope.leave();
1352             }
1353 
1354             // Attribute catch clauses
1355             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1356                 JCCatch c = l.head;
1357                 Env<AttrContext> catchEnv =
1358                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1359                 try {
1360                     Type ctype = attribStat(c.param, catchEnv);
1361                     if (TreeInfo.isMultiCatch(c)) {
1362                         //multi-catch parameter is implicitly marked as final
1363                         c.param.sym.flags_field |= FINAL | UNION;
1364                     }
1365                     if (c.param.sym.kind == Kinds.VAR) {
1366                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1367                     }
1368                     chk.checkType(c.param.vartype.pos(),
1369                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1370                                   syms.throwableType);
1371                     attribStat(c.body, catchEnv);
1372                 } finally {
1373                     catchEnv.info.scope.leave();
1374                 }
1375             }
1376 
1377             // Attribute finalizer
1378             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1379             result = null;
1380         }
1381         finally {
1382             localEnv.info.scope.leave();
1383         }
1384     }
1385 
1386     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1387         if (!resource.isErroneous() &&
1388             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1389             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1390             Symbol close = syms.noSymbol;
1391             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1392             try {
1393                 close = rs.resolveQualifiedMethod(pos,
1394                         env,
1395                         resource,
1396                         names.close,
1397                         List.<Type>nil(),
1398                         List.<Type>nil());
1399             }
1400             finally {
1401                 log.popDiagnosticHandler(discardHandler);
1402             }
1403             if (close.kind == MTH &&
1404                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1405                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1406                     env.info.lint.isEnabled(LintCategory.TRY)) {
1407                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1408             }
1409         }
1410     }
1411 
1412     public void visitConditional(JCConditional tree) {
1413         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1414 
1415         tree.polyKind = (!allowPoly ||
1416                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
1417                 isBooleanOrNumeric(env, tree)) ?
1418                 PolyKind.STANDALONE : PolyKind.POLY;
1419 
1420         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1421             //cannot get here (i.e. it means we are returning from void method - which is already an error)
1422             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1423             result = tree.type = types.createErrorType(resultInfo.pt);
1424             return;
1425         }
1426 
1427         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1428                 unknownExprInfo :
1429                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1430                     //this will use enclosing check context to check compatibility of
1431                     //subexpression against target type; if we are in a method check context,
1432                     //depending on whether boxing is allowed, we could have incompatibilities
1433                     @Override
1434                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
1435                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1436                     }
1437                 });
1438 
1439         Type truetype = attribTree(tree.truepart, env, condInfo);
1440         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1441 
1442         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1443         if (condtype.constValue() != null &&
1444                 truetype.constValue() != null &&
1445                 falsetype.constValue() != null &&
1446                 !owntype.hasTag(NONE)) {
1447             //constant folding
1448             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1449         }
1450         result = check(tree, owntype, VAL, resultInfo);
1451     }
1452     //where
1453         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1454             switch (tree.getTag()) {
1455                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1456                               ((JCLiteral)tree).typetag == BOOLEAN ||
1457                               ((JCLiteral)tree).typetag == BOT;
1458                 case LAMBDA: case REFERENCE: return false;
1459                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1460                 case CONDEXPR:
1461                     JCConditional condTree = (JCConditional)tree;
1462                     return isBooleanOrNumeric(env, condTree.truepart) &&
1463                             isBooleanOrNumeric(env, condTree.falsepart);
1464                 case APPLY:
1465                     JCMethodInvocation speculativeMethodTree =
1466                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1467                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
1468                     return types.unboxedTypeOrType(owntype).isPrimitive();
1469                 case NEWCLASS:
1470                     JCExpression className =
1471                             removeClassParams.translate(((JCNewClass)tree).clazz);
1472                     JCExpression speculativeNewClassTree =
1473                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1474                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
1475                 default:
1476                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1477                     speculativeType = types.unboxedTypeOrType(speculativeType);
1478                     return speculativeType.isPrimitive();
1479             }
1480         }
1481         //where
1482             TreeTranslator removeClassParams = new TreeTranslator() {
1483                 @Override
1484                 public void visitTypeApply(JCTypeApply tree) {
1485                     result = translate(tree.clazz);
1486                 }
1487             };
1488 
1489         /** Compute the type of a conditional expression, after
1490          *  checking that it exists.  See JLS 15.25. Does not take into
1491          *  account the special case where condition and both arms
1492          *  are constants.
1493          *
1494          *  @param pos      The source position to be used for error
1495          *                  diagnostics.
1496          *  @param thentype The type of the expression's then-part.
1497          *  @param elsetype The type of the expression's else-part.
1498          */
1499         private Type condType(DiagnosticPosition pos,
1500                                Type thentype, Type elsetype) {
1501             // If same type, that is the result
1502             if (types.isSameType(thentype, elsetype))
1503                 return thentype.baseType();
1504 
1505             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
1506                 ? thentype : types.unboxedType(thentype);
1507             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
1508                 ? elsetype : types.unboxedType(elsetype);
1509 
1510             // Otherwise, if both arms can be converted to a numeric
1511             // type, return the least numeric type that fits both arms
1512             // (i.e. return larger of the two, or return int if one
1513             // arm is short, the other is char).
1514             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1515                 // If one arm has an integer subrange type (i.e., byte,
1516                 // short, or char), and the other is an integer constant
1517                 // that fits into the subrange, return the subrange type.
1518                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) && elseUnboxed.hasTag(INT) &&
1519                     types.isAssignable(elseUnboxed, thenUnboxed))
1520                     return thenUnboxed.baseType();
1521                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) && thenUnboxed.hasTag(INT) &&
1522                     types.isAssignable(thenUnboxed, elseUnboxed))
1523                     return elseUnboxed.baseType();
1524 
1525                 for (TypeTag tag : TypeTag.values()) {
1526                     if (tag.ordinal() >= TypeTag.getTypeTagCount()) break;
1527                     Type candidate = syms.typeOfTag[tag.ordinal()];
1528                     if (candidate != null &&
1529                         candidate.isPrimitive() &&
1530                         types.isSubtype(thenUnboxed, candidate) &&
1531                         types.isSubtype(elseUnboxed, candidate))
1532                         return candidate;
1533                 }
1534             }
1535 
1536             // Those were all the cases that could result in a primitive
1537             if (allowBoxing) {
1538                 if (thentype.isPrimitive())
1539                     thentype = types.boxedClass(thentype).type;
1540                 if (elsetype.isPrimitive())
1541                     elsetype = types.boxedClass(elsetype).type;
1542             }
1543 
1544             if (types.isSubtype(thentype, elsetype))
1545                 return elsetype.baseType();
1546             if (types.isSubtype(elsetype, thentype))
1547                 return thentype.baseType();
1548 
1549             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1550                 log.error(pos, "neither.conditional.subtype",
1551                           thentype, elsetype);
1552                 return thentype.baseType();
1553             }
1554 
1555             // both are known to be reference types.  The result is
1556             // lub(thentype,elsetype). This cannot fail, as it will
1557             // always be possible to infer "Object" if nothing better.
1558             return types.lub(thentype.baseType(), elsetype.baseType());
1559         }
1560 
1561     public void visitIf(JCIf tree) {
1562         attribExpr(tree.cond, env, syms.booleanType);
1563         attribStat(tree.thenpart, env);
1564         if (tree.elsepart != null)
1565             attribStat(tree.elsepart, env);
1566         chk.checkEmptyIf(tree);
1567         result = null;
1568     }
1569 
1570     public void visitExec(JCExpressionStatement tree) {
1571         //a fresh environment is required for 292 inference to work properly ---
1572         //see Infer.instantiatePolymorphicSignatureInstance()
1573         Env<AttrContext> localEnv = env.dup(tree);
1574         attribExpr(tree.expr, localEnv);
1575         result = null;
1576     }
1577 
1578     public void visitBreak(JCBreak tree) {
1579         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1580         result = null;
1581     }
1582 
1583     public void visitContinue(JCContinue tree) {
1584         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1585         result = null;
1586     }
1587     //where
1588         /** Return the target of a break or continue statement, if it exists,
1589          *  report an error if not.
1590          *  Note: The target of a labelled break or continue is the
1591          *  (non-labelled) statement tree referred to by the label,
1592          *  not the tree representing the labelled statement itself.
1593          *
1594          *  @param pos     The position to be used for error diagnostics
1595          *  @param tag     The tag of the jump statement. This is either
1596          *                 Tree.BREAK or Tree.CONTINUE.
1597          *  @param label   The label of the jump statement, or null if no
1598          *                 label is given.
1599          *  @param env     The environment current at the jump statement.
1600          */
1601         private JCTree findJumpTarget(DiagnosticPosition pos,
1602                                     JCTree.Tag tag,
1603                                     Name label,
1604                                     Env<AttrContext> env) {
1605             // Search environments outwards from the point of jump.
1606             Env<AttrContext> env1 = env;
1607             LOOP:
1608             while (env1 != null) {
1609                 switch (env1.tree.getTag()) {
1610                     case LABELLED:
1611                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1612                         if (label == labelled.label) {
1613                             // If jump is a continue, check that target is a loop.
1614                             if (tag == CONTINUE) {
1615                                 if (!labelled.body.hasTag(DOLOOP) &&
1616                                         !labelled.body.hasTag(WHILELOOP) &&
1617                                         !labelled.body.hasTag(FORLOOP) &&
1618                                         !labelled.body.hasTag(FOREACHLOOP))
1619                                     log.error(pos, "not.loop.label", label);
1620                                 // Found labelled statement target, now go inwards
1621                                 // to next non-labelled tree.
1622                                 return TreeInfo.referencedStatement(labelled);
1623                             } else {
1624                                 return labelled;
1625                             }
1626                         }
1627                         break;
1628                     case DOLOOP:
1629                     case WHILELOOP:
1630                     case FORLOOP:
1631                     case FOREACHLOOP:
1632                         if (label == null) return env1.tree;
1633                         break;
1634                     case SWITCH:
1635                         if (label == null && tag == BREAK) return env1.tree;
1636                         break;
1637                     case LAMBDA:
1638                     case METHODDEF:
1639                     case CLASSDEF:
1640                         break LOOP;
1641                     default:
1642                 }
1643                 env1 = env1.next;
1644             }
1645             if (label != null)
1646                 log.error(pos, "undef.label", label);
1647             else if (tag == CONTINUE)
1648                 log.error(pos, "cont.outside.loop");
1649             else
1650                 log.error(pos, "break.outside.switch.loop");
1651             return null;
1652         }
1653 
1654     public void visitReturn(JCReturn tree) {
1655         // Check that there is an enclosing method which is
1656         // nested within than the enclosing class.
1657         if (env.info.returnResult == null) {
1658             log.error(tree.pos(), "ret.outside.meth");
1659         } else {
1660             // Attribute return expression, if it exists, and check that
1661             // it conforms to result type of enclosing method.
1662             if (tree.expr != null) {
1663                 if (env.info.returnResult.pt.hasTag(VOID)) {
1664                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1665                               diags.fragment("unexpected.ret.val"));
1666                 }
1667                 attribTree(tree.expr, env, env.info.returnResult);
1668             } else if (!env.info.returnResult.pt.hasTag(VOID)) {
1669                 env.info.returnResult.checkContext.report(tree.pos(),
1670                               diags.fragment("missing.ret.val"));
1671             }
1672         }
1673         result = null;
1674     }
1675 
1676     public void visitThrow(JCThrow tree) {
1677         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1678         if (allowPoly) {
1679             chk.checkType(tree, owntype, syms.throwableType);
1680         }
1681         result = null;
1682     }
1683 
1684     public void visitAssert(JCAssert tree) {
1685         attribExpr(tree.cond, env, syms.booleanType);
1686         if (tree.detail != null) {
1687             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1688         }
1689         result = null;
1690     }
1691 
1692      /** Visitor method for method invocations.
1693      *  NOTE: The method part of an application will have in its type field
1694      *        the return type of the method, not the method's type itself!
1695      */
1696     public void visitApply(JCMethodInvocation tree) {
1697         // The local environment of a method application is
1698         // a new environment nested in the current one.
1699         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1700 
1701         // The types of the actual method arguments.
1702         List<Type> argtypes;
1703 
1704         // The types of the actual method type arguments.
1705         List<Type> typeargtypes = null;
1706 
1707         Name methName = TreeInfo.name(tree.meth);
1708 
1709         boolean isConstructorCall =
1710             methName == names._this || methName == names._super;
1711 
1712         if (isConstructorCall) {
1713             // We are seeing a ...this(...) or ...super(...) call.
1714             // Check that this is the first statement in a constructor.
1715             if (checkFirstConstructorStat(tree, env)) {
1716 
1717                 // Record the fact
1718                 // that this is a constructor call (using isSelfCall).
1719                 localEnv.info.isSelfCall = true;
1720 
1721                 // Attribute arguments, yielding list of argument types.
1722                 argtypes = attribArgs(tree.args, localEnv);
1723                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1724 
1725                 // Variable `site' points to the class in which the called
1726                 // constructor is defined.
1727                 Type site = env.enclClass.sym.type;
1728                 if (methName == names._super) {
1729                     if (site == syms.objectType) {
1730                         log.error(tree.meth.pos(), "no.superclass", site);
1731                         site = types.createErrorType(syms.objectType);
1732                     } else {
1733                         site = types.supertype(site);
1734                     }
1735                 }
1736 
1737                 if (site.hasTag(CLASS)) {
1738                     Type encl = site.getEnclosingType();
1739                     while (encl != null && encl.hasTag(TYPEVAR))
1740                         encl = encl.getUpperBound();
1741                     if (encl.hasTag(CLASS)) {
1742                         // we are calling a nested class
1743 
1744                         if (tree.meth.hasTag(SELECT)) {
1745                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1746 
1747                             // We are seeing a prefixed call, of the form
1748                             //     <expr>.super(...).
1749                             // Check that the prefix expression conforms
1750                             // to the outer instance type of the class.
1751                             chk.checkRefType(qualifier.pos(),
1752                                              attribExpr(qualifier, localEnv,
1753                                                         encl));
1754                         } else if (methName == names._super) {
1755                             // qualifier omitted; check for existence
1756                             // of an appropriate implicit qualifier.
1757                             rs.resolveImplicitThis(tree.meth.pos(),
1758                                                    localEnv, site, true);
1759                         }
1760                     } else if (tree.meth.hasTag(SELECT)) {
1761                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1762                                   site.tsym);
1763                     }
1764 
1765                     // if we're calling a java.lang.Enum constructor,
1766                     // prefix the implicit String and int parameters
1767                     if (site.tsym == syms.enumSym && allowEnums)
1768                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1769 
1770                     // Resolve the called constructor under the assumption
1771                     // that we are referring to a superclass instance of the
1772                     // current instance (JLS ???).
1773                     boolean selectSuperPrev = localEnv.info.selectSuper;
1774                     localEnv.info.selectSuper = true;
1775                     localEnv.info.pendingResolutionPhase = null;
1776                     Symbol sym = rs.resolveConstructor(
1777                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1778                     localEnv.info.selectSuper = selectSuperPrev;
1779 
1780                     // Set method symbol to resolved constructor...
1781                     TreeInfo.setSymbol(tree.meth, sym);
1782 
1783                     // ...and check that it is legal in the current context.
1784                     // (this will also set the tree's type)
1785                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1786                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
1787                 }
1788                 // Otherwise, `site' is an error type and we do nothing
1789             }
1790             result = tree.type = syms.voidType;
1791         } else {
1792             // Otherwise, we are seeing a regular method call.
1793             // Attribute the arguments, yielding list of argument types, ...
1794             argtypes = attribArgs(tree.args, localEnv);
1795             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1796 
1797             // ... and attribute the method using as a prototype a methodtype
1798             // whose formal argument types is exactly the list of actual
1799             // arguments (this will also set the method symbol).
1800             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1801             localEnv.info.pendingResolutionPhase = null;
1802             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(VAL, mpt, resultInfo.checkContext));
1803 
1804             // Compute the result type.
1805             Type restype = mtype.getReturnType();
1806             if (restype.hasTag(WILDCARD))
1807                 throw new AssertionError(mtype);
1808 
1809             Type qualifier = (tree.meth.hasTag(SELECT))
1810                     ? ((JCFieldAccess) tree.meth).selected.type
1811                     : env.enclClass.sym.type;
1812             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1813 
1814             chk.checkRefTypes(tree.typeargs, typeargtypes);
1815 
1816             // Check that value of resulting type is admissible in the
1817             // current context.  Also, capture the return type
1818             result = check(tree, capture(restype), VAL, resultInfo);
1819 
1820             if (localEnv.info.lastResolveVarargs())
1821                 Assert.check(result.isErroneous() || tree.varargsElement != null);
1822         }
1823         chk.validate(tree.typeargs, localEnv);
1824     }
1825     //where
1826         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1827             if (allowCovariantReturns &&
1828                     methodName == names.clone &&
1829                 types.isArray(qualifierType)) {
1830                 // as a special case, array.clone() has a result that is
1831                 // the same as static type of the array being cloned
1832                 return qualifierType;
1833             } else if (allowGenerics &&
1834                     methodName == names.getClass &&
1835                     argtypes.isEmpty()) {
1836                 // as a special case, x.getClass() has type Class<? extends |X|>
1837                 return new ClassType(restype.getEnclosingType(),
1838                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
1839                                                                BoundKind.EXTENDS,
1840                                                                syms.boundClass)),
1841                               restype.tsym);
1842             } else {
1843                 return restype;
1844             }
1845         }
1846 
1847         /** Check that given application node appears as first statement
1848          *  in a constructor call.
1849          *  @param tree   The application node
1850          *  @param env    The environment current at the application.
1851          */
1852         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1853             JCMethodDecl enclMethod = env.enclMethod;
1854             if (enclMethod != null && enclMethod.name == names.init) {
1855                 JCBlock body = enclMethod.body;
1856                 if (body.stats.head.hasTag(EXEC) &&
1857                     ((JCExpressionStatement) body.stats.head).expr == tree)
1858                     return true;
1859             }
1860             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1861                       TreeInfo.name(tree.meth));
1862             return false;
1863         }
1864 
1865         /** Obtain a method type with given argument types.
1866          */
1867         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1868             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1869             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1870         }
1871 
1872     public void visitNewClass(final JCNewClass tree) {
1873         Type owntype = types.createErrorType(tree.type);
1874 
1875         // The local environment of a class creation is
1876         // a new environment nested in the current one.
1877         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1878 
1879         // The anonymous inner class definition of the new expression,
1880         // if one is defined by it.
1881         JCClassDecl cdef = tree.def;
1882 
1883         // If enclosing class is given, attribute it, and
1884         // complete class name to be fully qualified
1885         JCExpression clazz = tree.clazz; // Class field following new
1886         JCExpression clazzid;            // Identifier in class field
1887         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1888         annoclazzid = null;
1889 
1890         if (clazz.hasTag(TYPEAPPLY)) {
1891             clazzid = ((JCTypeApply) clazz).clazz;
1892             if (clazzid.hasTag(ANNOTATED_TYPE)) {
1893                 annoclazzid = (JCAnnotatedType) clazzid;
1894                 clazzid = annoclazzid.underlyingType;
1895             }
1896         } else {
1897             if (clazz.hasTag(ANNOTATED_TYPE)) {
1898                 annoclazzid = (JCAnnotatedType) clazz;
1899                 clazzid = annoclazzid.underlyingType;
1900             } else {
1901                 clazzid = clazz;
1902             }
1903         }
1904 
1905         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1906 
1907         if (tree.encl != null) {
1908             // We are seeing a qualified new, of the form
1909             //    <expr>.new C <...> (...) ...
1910             // In this case, we let clazz stand for the name of the
1911             // allocated class C prefixed with the type of the qualifier
1912             // expression, so that we can
1913             // resolve it with standard techniques later. I.e., if
1914             // <expr> has type T, then <expr>.new C <...> (...)
1915             // yields a clazz T.C.
1916             Type encltype = chk.checkRefType(tree.encl.pos(),
1917                                              attribExpr(tree.encl, env));
1918             // TODO 308: in <expr>.new C, do we also want to add the type annotations
1919             // from expr to the combined type, or not? Yes, do this.
1920             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1921                                                  ((JCIdent) clazzid).name);
1922 
1923             if (clazz.hasTag(ANNOTATED_TYPE)) {
1924                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1925                 List<JCAnnotation> annos = annoType.annotations;
1926 
1927                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1928                     clazzid1 = make.at(tree.pos).
1929                         TypeApply(clazzid1,
1930                                   ((JCTypeApply) clazz).arguments);
1931                 }
1932 
1933                 clazzid1 = make.at(tree.pos).
1934                     AnnotatedType(annos, clazzid1);
1935             } else if (clazz.hasTag(TYPEAPPLY)) {
1936                 clazzid1 = make.at(tree.pos).
1937                     TypeApply(clazzid1,
1938                               ((JCTypeApply) clazz).arguments);
1939             }
1940 
1941             clazz = clazzid1;
1942         }
1943 
1944         // Attribute clazz expression and store
1945         // symbol + type back into the attributed tree.
1946         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
1947             attribIdentAsEnumType(env, (JCIdent)clazz) :
1948             attribType(clazz, env);
1949 
1950         clazztype = chk.checkDiamond(tree, clazztype);
1951         chk.validate(clazz, localEnv);
1952         if (tree.encl != null) {
1953             // We have to work in this case to store
1954             // symbol + type back into the attributed tree.
1955             tree.clazz.type = clazztype;
1956             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1957             clazzid.type = ((JCIdent) clazzid).sym.type;
1958             if (annoclazzid != null) {
1959                 annoclazzid.type = clazzid.type;
1960             }
1961             if (!clazztype.isErroneous()) {
1962                 if (cdef != null && clazztype.tsym.isInterface()) {
1963                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1964                 } else if (clazztype.tsym.isStatic()) {
1965                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1966                 }
1967             }
1968         } else if (!clazztype.tsym.isInterface() &&
1969                    clazztype.getEnclosingType().hasTag(CLASS)) {
1970             // Check for the existence of an apropos outer instance
1971             rs.resolveImplicitThis(tree.pos(), env, clazztype);
1972         }
1973 
1974         // Attribute constructor arguments.
1975         List<Type> argtypes = attribArgs(tree.args, localEnv);
1976         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
1977 
1978         // If we have made no mistakes in the class type...
1979         if (clazztype.hasTag(CLASS)) {
1980             // Enums may not be instantiated except implicitly
1981             if (allowEnums &&
1982                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
1983                 (!env.tree.hasTag(VARDEF) ||
1984                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
1985                  ((JCVariableDecl) env.tree).init != tree))
1986                 log.error(tree.pos(), "enum.cant.be.instantiated");
1987             // Check that class is not abstract
1988             if (cdef == null &&
1989                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
1990                 log.error(tree.pos(), "abstract.cant.be.instantiated",
1991                           clazztype.tsym);
1992             } else if (cdef != null && clazztype.tsym.isInterface()) {
1993                 // Check that no constructor arguments are given to
1994                 // anonymous classes implementing an interface
1995                 if (!argtypes.isEmpty())
1996                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
1997 
1998                 if (!typeargtypes.isEmpty())
1999                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2000 
2001                 // Error recovery: pretend no arguments were supplied.
2002                 argtypes = List.nil();
2003                 typeargtypes = List.nil();
2004             } else if (TreeInfo.isDiamond(tree)) {
2005                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2006                             clazztype.tsym.type.getTypeArguments(),
2007                             clazztype.tsym);
2008 
2009                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2010                 diamondEnv.info.selectSuper = cdef != null;
2011                 diamondEnv.info.pendingResolutionPhase = null;
2012 
2013                 //if the type of the instance creation expression is a class type
2014                 //apply method resolution inference (JLS 15.12.2.7). The return type
2015                 //of the resolved constructor will be a partially instantiated type
2016                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2017                             diamondEnv,
2018                             site,
2019                             argtypes,
2020                             typeargtypes);
2021                 tree.constructor = constructor.baseSymbol();
2022 
2023                 final TypeSymbol csym = clazztype.tsym;
2024                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2025                     @Override
2026                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2027                         enclosingContext.report(tree.clazz,
2028                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2029                     }
2030                 });
2031                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2032                 constructorType = checkId(tree, site,
2033                         constructor,
2034                         diamondEnv,
2035                         diamondResult);
2036 
2037                 tree.clazz.type = types.createErrorType(clazztype);
2038                 if (!constructorType.isErroneous()) {
2039                     tree.clazz.type = clazztype = constructorType.getReturnType();
2040                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2041                 }
2042                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2043             }
2044 
2045             // Resolve the called constructor under the assumption
2046             // that we are referring to a superclass instance of the
2047             // current instance (JLS ???).
2048             else {
2049                 //the following code alters some of the fields in the current
2050                 //AttrContext - hence, the current context must be dup'ed in
2051                 //order to avoid downstream failures
2052                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2053                 rsEnv.info.selectSuper = cdef != null;
2054                 rsEnv.info.pendingResolutionPhase = null;
2055                 tree.constructor = rs.resolveConstructor(
2056                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2057                 if (cdef == null) { //do not check twice!
2058                     tree.constructorType = checkId(tree,
2059                             clazztype,
2060                             tree.constructor,
2061                             rsEnv,
2062                             new ResultInfo(MTH, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2063                     if (rsEnv.info.lastResolveVarargs())
2064                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2065                 }
2066                 findDiamondIfNeeded(localEnv, tree, clazztype);
2067             }
2068 
2069             if (cdef != null) {
2070                 // We are seeing an anonymous class instance creation.
2071                 // In this case, the class instance creation
2072                 // expression
2073                 //
2074                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2075                 //
2076                 // is represented internally as
2077                 //
2078                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2079                 //
2080                 // This expression is then *transformed* as follows:
2081                 //
2082                 // (1) add a STATIC flag to the class definition
2083                 //     if the current environment is static
2084                 // (2) add an extends or implements clause
2085                 // (3) add a constructor.
2086                 //
2087                 // For instance, if C is a class, and ET is the type of E,
2088                 // the expression
2089                 //
2090                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2091                 //
2092                 // is translated to (where X is a fresh name and typarams is the
2093                 // parameter list of the super constructor):
2094                 //
2095                 //   new <typeargs1>X(<*nullchk*>E, args) where
2096                 //     X extends C<typargs2> {
2097                 //       <typarams> X(ET e, args) {
2098                 //         e.<typeargs1>super(args)
2099                 //       }
2100                 //       ...
2101                 //     }
2102                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
2103 
2104                 if (clazztype.tsym.isInterface()) {
2105                     cdef.implementing = List.of(clazz);
2106                 } else {
2107                     cdef.extending = clazz;
2108                 }
2109 
2110                 attribStat(cdef, localEnv);
2111 
2112                 checkLambdaCandidate(tree, cdef.sym, clazztype);
2113 
2114                 // If an outer instance is given,
2115                 // prefix it to the constructor arguments
2116                 // and delete it from the new expression
2117                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2118                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2119                     argtypes = argtypes.prepend(tree.encl.type);
2120                     tree.encl = null;
2121                 }
2122 
2123                 // Reassign clazztype and recompute constructor.
2124                 clazztype = cdef.sym.type;
2125                 Symbol sym = tree.constructor = rs.resolveConstructor(
2126                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
2127                 Assert.check(sym.kind < AMBIGUOUS);
2128                 tree.constructor = sym;
2129                 tree.constructorType = checkId(tree,
2130                     clazztype,
2131                     tree.constructor,
2132                     localEnv,
2133                     new ResultInfo(VAL, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2134             }
2135 
2136             if (tree.constructor != null && tree.constructor.kind == MTH)
2137                 owntype = clazztype;
2138         }
2139         result = check(tree, owntype, VAL, resultInfo);
2140         chk.validate(tree.typeargs, localEnv);
2141     }
2142     //where
2143         void findDiamondIfNeeded(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
2144             if (tree.def == null &&
2145                     !clazztype.isErroneous() &&
2146                     clazztype.getTypeArguments().nonEmpty() &&
2147                     findDiamonds) {
2148                 JCTypeApply ta = (JCTypeApply)tree.clazz;
2149                 List<JCExpression> prevTypeargs = ta.arguments;
2150                 try {
2151                     //create a 'fake' diamond AST node by removing type-argument trees
2152                     ta.arguments = List.nil();
2153                     ResultInfo findDiamondResult = new ResultInfo(VAL,
2154                             resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
2155                     Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
2156                     Type polyPt = allowPoly ?
2157                             syms.objectType :
2158                             clazztype;
2159                     if (!inferred.isErroneous() &&
2160                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings)) {
2161                         String key = types.isSameType(clazztype, inferred) ?
2162                             "diamond.redundant.args" :
2163                             "diamond.redundant.args.1";
2164                         log.warning(tree.clazz.pos(), key, clazztype, inferred);
2165                     }
2166                 } finally {
2167                     ta.arguments = prevTypeargs;
2168                 }
2169             }
2170         }
2171 
2172             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
2173                 if (allowLambda &&
2174                         identifyLambdaCandidate &&
2175                         clazztype.hasTag(CLASS) &&
2176                         !pt().hasTag(NONE) &&
2177                         types.isFunctionalInterface(clazztype.tsym)) {
2178                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
2179                     int count = 0;
2180                     boolean found = false;
2181                     for (Symbol sym : csym.members().getElements()) {
2182                         if ((sym.flags() & SYNTHETIC) != 0 ||
2183                                 sym.isConstructor()) continue;
2184                         count++;
2185                         if (sym.kind != MTH ||
2186                                 !sym.name.equals(descriptor.name)) continue;
2187                         Type mtype = types.memberType(clazztype, sym);
2188                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
2189                             found = true;
2190                         }
2191                     }
2192                     if (found && count == 1) {
2193                         log.note(tree.def, "potential.lambda.found");
2194                     }
2195                 }
2196             }
2197 
2198     /** Make an attributed null check tree.
2199      */
2200     public JCExpression makeNullCheck(JCExpression arg) {
2201         // optimization: X.this is never null; skip null check
2202         Name name = TreeInfo.name(arg);
2203         if (name == names._this || name == names._super) return arg;
2204 
2205         JCTree.Tag optag = NULLCHK;
2206         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2207         tree.operator = syms.nullcheck;
2208         tree.type = arg.type;
2209         return tree;
2210     }
2211 
2212     public void visitNewArray(JCNewArray tree) {
2213         Type owntype = types.createErrorType(tree.type);
2214         Env<AttrContext> localEnv = env.dup(tree);
2215         Type elemtype;
2216         if (tree.elemtype != null) {
2217             elemtype = attribType(tree.elemtype, localEnv);
2218             chk.validate(tree.elemtype, localEnv);
2219             owntype = elemtype;
2220             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2221                 attribExpr(l.head, localEnv, syms.intType);
2222                 owntype = new ArrayType(owntype, syms.arrayClass);
2223             }
2224         } else {
2225             // we are seeing an untyped aggregate { ... }
2226             // this is allowed only if the prototype is an array
2227             if (pt().hasTag(ARRAY)) {
2228                 elemtype = types.elemtype(pt());
2229             } else {
2230                 if (!pt().hasTag(ERROR)) {
2231                     log.error(tree.pos(), "illegal.initializer.for.type",
2232                               pt());
2233                 }
2234                 elemtype = types.createErrorType(pt());
2235             }
2236         }
2237         if (tree.elems != null) {
2238             attribExprs(tree.elems, localEnv, elemtype);
2239             owntype = new ArrayType(elemtype, syms.arrayClass);
2240         }
2241         if (!types.isReifiable(elemtype))
2242             log.error(tree.pos(), "generic.array.creation");
2243         result = check(tree, owntype, VAL, resultInfo);
2244     }
2245 
2246     /*
2247      * A lambda expression can only be attributed when a target-type is available.
2248      * In addition, if the target-type is that of a functional interface whose
2249      * descriptor contains inference variables in argument position the lambda expression
2250      * is 'stuck' (see DeferredAttr).
2251      */
2252     @Override
2253     public void visitLambda(final JCLambda that) {
2254         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2255             if (pt().hasTag(NONE)) {
2256                 //lambda only allowed in assignment or method invocation/cast context
2257                 log.error(that.pos(), "unexpected.lambda");
2258             }
2259             result = that.type = types.createErrorType(pt());
2260             return;
2261         }
2262         //create an environment for attribution of the lambda expression
2263         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2264         boolean needsRecovery =
2265                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2266         try {
2267             Type target = pt();
2268             List<Type> explicitParamTypes = null;
2269             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2270                 //attribute lambda parameters
2271                 attribStats(that.params, localEnv);
2272                 explicitParamTypes = TreeInfo.types(that.params);
2273                 target = infer.instantiateFunctionalInterface(that, target, explicitParamTypes, resultInfo.checkContext);
2274             }
2275 
2276             Type lambdaType;
2277             if (pt() != Type.recoveryType) {
2278                 target = targetChecker.visit(target, that);
2279                 lambdaType = types.findDescriptorType(target);
2280                 chk.checkFunctionalInterface(that, target);
2281             } else {
2282                 target = Type.recoveryType;
2283                 lambdaType = fallbackDescriptorType(that);
2284             }
2285 
2286             setFunctionalInfo(that, pt(), lambdaType, target, resultInfo.checkContext.inferenceContext());
2287 
2288             if (lambdaType.hasTag(FORALL)) {
2289                 //lambda expression target desc cannot be a generic method
2290                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2291                         lambdaType, kindName(target.tsym), target.tsym));
2292                 result = that.type = types.createErrorType(pt());
2293                 return;
2294             }
2295 
2296             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2297                 //add param type info in the AST
2298                 List<Type> actuals = lambdaType.getParameterTypes();
2299                 List<JCVariableDecl> params = that.params;
2300 
2301                 boolean arityMismatch = false;
2302 
2303                 while (params.nonEmpty()) {
2304                     if (actuals.isEmpty()) {
2305                         //not enough actuals to perform lambda parameter inference
2306                         arityMismatch = true;
2307                     }
2308                     //reset previously set info
2309                     Type argType = arityMismatch ?
2310                             syms.errType :
2311                             actuals.head;
2312                     params.head.vartype = make.Type(argType);
2313                     params.head.sym = null;
2314                     actuals = actuals.isEmpty() ?
2315                             actuals :
2316                             actuals.tail;
2317                     params = params.tail;
2318                 }
2319 
2320                 //attribute lambda parameters
2321                 attribStats(that.params, localEnv);
2322 
2323                 if (arityMismatch) {
2324                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2325                         result = that.type = types.createErrorType(target);
2326                         return;
2327                 }
2328             }
2329 
2330             //from this point on, no recovery is needed; if we are in assignment context
2331             //we will be able to attribute the whole lambda body, regardless of errors;
2332             //if we are in a 'check' method context, and the lambda is not compatible
2333             //with the target-type, it will be recovered anyway in Attr.checkId
2334             needsRecovery = false;
2335 
2336             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2337                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2338                     new FunctionalReturnContext(resultInfo.checkContext);
2339 
2340             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2341                 recoveryInfo :
2342                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
2343             localEnv.info.returnResult = bodyResultInfo;
2344 
2345             Log.DeferredDiagnosticHandler lambdaDeferredHandler = new Log.DeferredDiagnosticHandler(log);
2346             try {
2347                 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2348                     attribTree(that.getBody(), localEnv, bodyResultInfo);
2349                 } else {
2350                     JCBlock body = (JCBlock)that.body;
2351                     attribStats(body.stats, localEnv);
2352                 }
2353 
2354                 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.SPECULATIVE) {
2355                     //check for errors in lambda body
2356                     for (JCDiagnostic deferredDiag : lambdaDeferredHandler.getDiagnostics()) {
2357                         if (deferredDiag.getKind() == JCDiagnostic.Kind.ERROR) {
2358                             resultInfo.checkContext
2359                                     .report(that, diags.fragment("bad.arg.types.in.lambda", TreeInfo.types(that.params)));
2360                             //we mark the lambda as erroneous - this is crucial in the recovery step
2361                             //as parameter-dependent type error won't be reported in that stage,
2362                             //meaning that a lambda will be deemed erroeneous only if there is
2363                             //a target-independent error (which will cause method diagnostic
2364                             //to be skipped).
2365                             result = that.type = types.createErrorType(target);
2366                             return;
2367                         }
2368                     }
2369                 }
2370             } finally {
2371                 lambdaDeferredHandler.reportDeferredDiagnostics();
2372                 log.popDiagnosticHandler(lambdaDeferredHandler);
2373             }
2374 
2375             result = check(that, target, VAL, resultInfo);
2376 
2377             boolean isSpeculativeRound =
2378                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2379 
2380             postAttr(that);
2381             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2382 
2383             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext, isSpeculativeRound);
2384 
2385             if (!isSpeculativeRound) {
2386                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, target);
2387             }
2388             result = check(that, target, VAL, resultInfo);
2389         } catch (Types.FunctionDescriptorLookupError ex) {
2390             JCDiagnostic cause = ex.getDiagnostic();
2391             resultInfo.checkContext.report(that, cause);
2392             result = that.type = types.createErrorType(pt());
2393             return;
2394         } finally {
2395             localEnv.info.scope.leave();
2396             if (needsRecovery) {
2397                 attribTree(that, env, recoveryInfo);
2398             }
2399         }
2400     }
2401     //where
2402         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2403 
2404             @Override
2405             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2406                 return t.isCompound() ?
2407                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2408             }
2409 
2410             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2411                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2412                 Type target = null;
2413                 for (Type bound : ict.getExplicitComponents()) {
2414                     TypeSymbol boundSym = bound.tsym;
2415                     if (types.isFunctionalInterface(boundSym) &&
2416                             types.findDescriptorSymbol(boundSym) == desc) {
2417                         target = bound;
2418                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2419                         //bound must be an interface
2420                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
2421                     }
2422                 }
2423                 return target != null ?
2424                         target :
2425                         ict.getExplicitComponents().head; //error recovery
2426             }
2427 
2428             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2429                 ListBuffer<Type> targs = ListBuffer.lb();
2430                 ListBuffer<Type> supertypes = ListBuffer.lb();
2431                 for (Type i : ict.interfaces_field) {
2432                     if (i.isParameterized()) {
2433                         targs.appendList(i.tsym.type.allparams());
2434                     }
2435                     supertypes.append(i.tsym.type);
2436                 }
2437                 IntersectionClassType notionalIntf =
2438                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
2439                 notionalIntf.allparams_field = targs.toList();
2440                 notionalIntf.tsym.flags_field |= INTERFACE;
2441                 return notionalIntf.tsym;
2442             }
2443 
2444             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2445                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2446                         diags.fragment(key, args)));
2447             }
2448         };
2449 
2450         private Type fallbackDescriptorType(JCExpression tree) {
2451             switch (tree.getTag()) {
2452                 case LAMBDA:
2453                     JCLambda lambda = (JCLambda)tree;
2454                     List<Type> argtypes = List.nil();
2455                     for (JCVariableDecl param : lambda.params) {
2456                         argtypes = param.vartype != null ?
2457                                 argtypes.append(param.vartype.type) :
2458                                 argtypes.append(syms.errType);
2459                     }
2460                     return new MethodType(argtypes, Type.recoveryType,
2461                             List.of(syms.throwableType), syms.methodClass);
2462                 case REFERENCE:
2463                     return new MethodType(List.<Type>nil(), Type.recoveryType,
2464                             List.of(syms.throwableType), syms.methodClass);
2465                 default:
2466                     Assert.error("Cannot get here!");
2467             }
2468             return null;
2469         }
2470 
2471         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2472                 final InferenceContext inferenceContext, final Type... ts) {
2473             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2474         }
2475 
2476         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2477                 final InferenceContext inferenceContext, final List<Type> ts) {
2478             if (inferenceContext.free(ts)) {
2479                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2480                     @Override
2481                     public void typesInferred(InferenceContext inferenceContext) {
2482                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2483                     }
2484                 });
2485             } else {
2486                 for (Type t : ts) {
2487                     rs.checkAccessibleType(env, t);
2488                 }
2489             }
2490         }
2491 
2492         /**
2493          * Lambda/method reference have a special check context that ensures
2494          * that i.e. a lambda return type is compatible with the expected
2495          * type according to both the inherited context and the assignment
2496          * context.
2497          */
2498         class FunctionalReturnContext extends Check.NestedCheckContext {
2499 
2500             FunctionalReturnContext(CheckContext enclosingContext) {
2501                 super(enclosingContext);
2502             }
2503 
2504             @Override
2505             public boolean compatible(Type found, Type req, Warner warn) {
2506                 //return type must be compatible in both current context and assignment context
2507                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req), warn);
2508             }
2509 
2510             @Override
2511             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2512                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2513             }
2514         }
2515 
2516         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2517 
2518             JCExpression expr;
2519 
2520             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2521                 super(enclosingContext);
2522                 this.expr = expr;
2523             }
2524 
2525             @Override
2526             public boolean compatible(Type found, Type req, Warner warn) {
2527                 //a void return is compatible with an expression statement lambda
2528                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2529                         super.compatible(found, req, warn);
2530             }
2531         }
2532 
2533         /**
2534         * Lambda compatibility. Check that given return types, thrown types, parameter types
2535         * are compatible with the expected functional interface descriptor. This means that:
2536         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2537         * types must be compatible with the return type of the expected descriptor;
2538         * (iii) thrown types must be 'included' in the thrown types list of the expected
2539         * descriptor.
2540         */
2541         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext, boolean speculativeAttr) {
2542             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
2543 
2544             //return values have already been checked - but if lambda has no return
2545             //values, we must ensure that void/value compatibility is correct;
2546             //this amounts at checking that, if a lambda body can complete normally,
2547             //the descriptor's return type must be void
2548             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2549                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2550                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2551                         diags.fragment("missing.ret.val", returnType)));
2552             }
2553 
2554             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes());
2555             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2556                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2557             }
2558 
2559             if (!speculativeAttr) {
2560                 List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
2561                 if (chk.unhandled(tree.inferredThrownTypes == null ? List.<Type>nil() : tree.inferredThrownTypes, thrownTypes).nonEmpty()) {
2562                     log.error(tree, "incompatible.thrown.types.in.lambda", tree.inferredThrownTypes);
2563                 }
2564             }
2565         }
2566 
2567         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2568             Env<AttrContext> lambdaEnv;
2569             Symbol owner = env.info.scope.owner;
2570             if (owner.kind == VAR && owner.owner.kind == TYP) {
2571                 //field initializer
2572                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
2573                 lambdaEnv.info.scope.owner =
2574                     new MethodSymbol(0, names.empty, null,
2575                                      env.info.scope.owner);
2576             } else {
2577                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2578             }
2579             return lambdaEnv;
2580         }
2581 
2582     @Override
2583     public void visitReference(final JCMemberReference that) {
2584         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2585             if (pt().hasTag(NONE)) {
2586                 //method reference only allowed in assignment or method invocation/cast context
2587                 log.error(that.pos(), "unexpected.mref");
2588             }
2589             result = that.type = types.createErrorType(pt());
2590             return;
2591         }
2592         final Env<AttrContext> localEnv = env.dup(that);
2593         try {
2594             //attribute member reference qualifier - if this is a constructor
2595             //reference, the expected kind must be a type
2596             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2597 
2598             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2599                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2600             }
2601 
2602             if (exprType.isErroneous()) {
2603                 //if the qualifier expression contains problems,
2604                 //give up attribution of method reference
2605                 result = that.type = exprType;
2606                 return;
2607             }
2608 
2609             if (TreeInfo.isStaticSelector(that.expr, names) &&
2610                     (that.getMode() != ReferenceMode.NEW || !that.expr.type.isRaw())) {
2611                 //if the qualifier is a type, validate it
2612                 chk.validate(that.expr, env);
2613             }
2614 
2615             //attrib type-arguments
2616             List<Type> typeargtypes = List.nil();
2617             if (that.typeargs != null) {
2618                 typeargtypes = attribTypes(that.typeargs, localEnv);
2619             }
2620 
2621             Type target;
2622             Type desc;
2623             if (pt() != Type.recoveryType) {
2624                 target = targetChecker.visit(pt(), that);
2625                 desc = types.findDescriptorType(target);
2626                 chk.checkFunctionalInterface(that, target);
2627             } else {
2628                 target = Type.recoveryType;
2629                 desc = fallbackDescriptorType(that);
2630             }
2631 
2632             setFunctionalInfo(that, pt(), desc, target, resultInfo.checkContext.inferenceContext());
2633             List<Type> argtypes = desc.getParameterTypes();
2634 
2635             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult =
2636                     rs.resolveMemberReference(that.pos(), localEnv, that,
2637                         that.expr.type, that.name, argtypes, typeargtypes, true, rs.resolveMethodCheck);
2638 
2639             Symbol refSym = refResult.fst;
2640             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2641 
2642             if (refSym.kind != MTH) {
2643                 boolean targetError;
2644                 switch (refSym.kind) {
2645                     case ABSENT_MTH:
2646                         targetError = false;
2647                         break;
2648                     case WRONG_MTH:
2649                     case WRONG_MTHS:
2650                     case AMBIGUOUS:
2651                     case HIDDEN:
2652                     case STATICERR:
2653                     case MISSING_ENCL:
2654                         targetError = true;
2655                         break;
2656                     default:
2657                         Assert.error("unexpected result kind " + refSym.kind);
2658                         targetError = false;
2659                 }
2660 
2661                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2662                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2663 
2664                 JCDiagnostic.DiagnosticType diagKind = targetError ?
2665                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2666 
2667                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2668                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2669 
2670                 if (targetError && target == Type.recoveryType) {
2671                     //a target error doesn't make sense during recovery stage
2672                     //as we don't know what actual parameter types are
2673                     result = that.type = target;
2674                     return;
2675                 } else {
2676                     if (targetError) {
2677                         resultInfo.checkContext.report(that, diag);
2678                     } else {
2679                         log.report(diag);
2680                     }
2681                     result = that.type = types.createErrorType(target);
2682                     return;
2683                 }
2684             }
2685 
2686             that.sym = refSym.baseSymbol();
2687             that.kind = lookupHelper.referenceKind(that.sym);
2688             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2689 
2690             if (desc.getReturnType() == Type.recoveryType) {
2691                 // stop here
2692                 result = that.type = target;
2693                 return;
2694             }
2695 
2696             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2697 
2698                 if (!that.kind.isUnbound() &&
2699                         that.getMode() == ReferenceMode.INVOKE &&
2700                         TreeInfo.isStaticSelector(that.expr, names) &&
2701                         !that.sym.isStatic()) {
2702                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2703                             diags.fragment("non-static.cant.be.ref", Kinds.kindName(refSym), refSym));
2704                     result = that.type = types.createErrorType(target);
2705                     return;
2706                 }
2707 
2708                 if (that.kind.isUnbound() &&
2709                         that.getMode() == ReferenceMode.INVOKE &&
2710                         TreeInfo.isStaticSelector(that.expr, names) &&
2711                         that.sym.isStatic()) {
2712                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2713                             diags.fragment("static.method.in.unbound.lookup", Kinds.kindName(refSym), refSym));
2714                     result = that.type = types.createErrorType(target);
2715                     return;
2716                 }
2717 
2718                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2719                         exprType.getTypeArguments().nonEmpty()) {
2720                     //static ref with class type-args
2721                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2722                             diags.fragment("static.mref.with.targs"));
2723                     result = that.type = types.createErrorType(target);
2724                     return;
2725                 }
2726 
2727                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
2728                         !that.kind.isUnbound()) {
2729                     //no static bound mrefs
2730                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2731                             diags.fragment("static.bound.mref"));
2732                     result = that.type = types.createErrorType(target);
2733                     return;
2734                 }
2735 
2736                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2737                     // Check that super-qualified symbols are not abstract (JLS)
2738                     rs.checkNonAbstract(that.pos(), that.sym);
2739                 }
2740             }
2741 
2742             that.sym = refSym.baseSymbol();
2743             that.kind = lookupHelper.referenceKind(that.sym);
2744 
2745             ResultInfo checkInfo =
2746                     resultInfo.dup(newMethodTemplate(
2747                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2748                         lookupHelper.argtypes,
2749                         typeargtypes));
2750 
2751             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2752 
2753             if (!refType.isErroneous()) {
2754                 refType = types.createMethodTypeWithReturn(refType,
2755                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2756             }
2757 
2758             //go ahead with standard method reference compatibility check - note that param check
2759             //is a no-op (as this has been taken care during method applicability)
2760             boolean isSpeculativeRound =
2761                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2762             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2763             if (!isSpeculativeRound) {
2764                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
2765             }
2766             result = check(that, target, VAL, resultInfo);
2767         } catch (Types.FunctionDescriptorLookupError ex) {
2768             JCDiagnostic cause = ex.getDiagnostic();
2769             resultInfo.checkContext.report(that, cause);
2770             result = that.type = types.createErrorType(pt());
2771             return;
2772         }
2773     }
2774     //where
2775         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2776             //if this is a constructor reference, the expected kind must be a type
2777             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
2778         }
2779 
2780 
2781     @SuppressWarnings("fallthrough")
2782     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2783         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
2784 
2785         Type resType;
2786         switch (tree.getMode()) {
2787             case NEW:
2788                 if (!tree.expr.type.isRaw()) {
2789                     resType = tree.expr.type;
2790                     break;
2791                 }
2792             default:
2793                 resType = refType.getReturnType();
2794         }
2795 
2796         Type incompatibleReturnType = resType;
2797 
2798         if (returnType.hasTag(VOID)) {
2799             incompatibleReturnType = null;
2800         }
2801 
2802         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2803             if (resType.isErroneous() ||
2804                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2805                 incompatibleReturnType = null;
2806             }
2807         }
2808 
2809         if (incompatibleReturnType != null) {
2810             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2811                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2812         }
2813 
2814         if (!speculativeAttr) {
2815             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
2816             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2817                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2818             }
2819         }
2820     }
2821 
2822     /**
2823      * Set functional type info on the underlying AST. Note: as the target descriptor
2824      * might contain inference variables, we might need to register an hook in the
2825      * current inference context.
2826      */
2827     private void setFunctionalInfo(final JCFunctionalExpression fExpr, final Type pt,
2828             final Type descriptorType, final Type primaryTarget, InferenceContext inferenceContext) {
2829         if (inferenceContext.free(descriptorType)) {
2830             inferenceContext.addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2831                 public void typesInferred(InferenceContext inferenceContext) {
2832                     setFunctionalInfo(fExpr, pt, inferenceContext.asInstType(descriptorType),
2833                             inferenceContext.asInstType(primaryTarget), inferenceContext);
2834                 }
2835             });
2836         } else {
2837             ListBuffer<TypeSymbol> targets = ListBuffer.lb();
2838             if (pt.hasTag(CLASS)) {
2839                 if (pt.isCompound()) {
2840                     targets.append(primaryTarget.tsym); //this goes first
2841                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2842                         if (t != primaryTarget) {
2843                             targets.append(t.tsym);
2844                         }
2845                     }
2846                 } else {
2847                     targets.append(pt.tsym);
2848                 }
2849             }
2850             fExpr.targets = targets.toList();
2851             fExpr.descriptorType = descriptorType;
2852         }
2853     }
2854 
2855     public void visitParens(JCParens tree) {
2856         Type owntype = attribTree(tree.expr, env, resultInfo);
2857         result = check(tree, owntype, pkind(), resultInfo);
2858         Symbol sym = TreeInfo.symbol(tree);
2859         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
2860             log.error(tree.pos(), "illegal.start.of.type");
2861     }
2862 
2863     public void visitAssign(JCAssign tree) {
2864         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
2865         Type capturedType = capture(owntype);
2866         attribExpr(tree.rhs, env, owntype);
2867         result = check(tree, capturedType, VAL, resultInfo);
2868     }
2869 
2870     public void visitAssignop(JCAssignOp tree) {
2871         // Attribute arguments.
2872         Type owntype = attribTree(tree.lhs, env, varInfo);
2873         Type operand = attribExpr(tree.rhs, env);
2874         // Find operator.
2875         Symbol operator = tree.operator = rs.resolveBinaryOperator(
2876             tree.pos(), tree.getTag().noAssignOp(), env,
2877             owntype, operand);
2878 
2879         if (operator.kind == MTH &&
2880                 !owntype.isErroneous() &&
2881                 !operand.isErroneous()) {
2882             chk.checkOperator(tree.pos(),
2883                               (OperatorSymbol)operator,
2884                               tree.getTag().noAssignOp(),
2885                               owntype,
2886                               operand);
2887             chk.checkDivZero(tree.rhs.pos(), operator, operand);
2888             chk.checkCastable(tree.rhs.pos(),
2889                               operator.type.getReturnType(),
2890                               owntype);
2891         }
2892         result = check(tree, owntype, VAL, resultInfo);
2893     }
2894 
2895     public void visitUnary(JCUnary tree) {
2896         // Attribute arguments.
2897         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
2898             ? attribTree(tree.arg, env, varInfo)
2899             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
2900 
2901         // Find operator.
2902         Symbol operator = tree.operator =
2903             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
2904 
2905         Type owntype = types.createErrorType(tree.type);
2906         if (operator.kind == MTH &&
2907                 !argtype.isErroneous()) {
2908             owntype = (tree.getTag().isIncOrDecUnaryOp())
2909                 ? tree.arg.type
2910                 : operator.type.getReturnType();
2911             int opc = ((OperatorSymbol)operator).opcode;
2912 
2913             // If the argument is constant, fold it.
2914             if (argtype.constValue() != null) {
2915                 Type ctype = cfolder.fold1(opc, argtype);
2916                 if (ctype != null) {
2917                     owntype = cfolder.coerce(ctype, owntype);
2918 
2919                     // Remove constant types from arguments to
2920                     // conserve space. The parser will fold concatenations
2921                     // of string literals; the code here also
2922                     // gets rid of intermediate results when some of the
2923                     // operands are constant identifiers.
2924                     if (tree.arg.type.tsym == syms.stringType.tsym) {
2925                         tree.arg.type = syms.stringType;
2926                     }
2927                 }
2928             }
2929         }
2930         result = check(tree, owntype, VAL, resultInfo);
2931     }
2932 
2933     public void visitBinary(JCBinary tree) {
2934         // Attribute arguments.
2935         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
2936         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
2937 
2938         // Find operator.
2939         Symbol operator = tree.operator =
2940             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
2941 
2942         Type owntype = types.createErrorType(tree.type);
2943         if (operator.kind == MTH &&
2944                 !left.isErroneous() &&
2945                 !right.isErroneous()) {
2946             owntype = operator.type.getReturnType();
2947             int opc = chk.checkOperator(tree.lhs.pos(),
2948                                         (OperatorSymbol)operator,
2949                                         tree.getTag(),
2950                                         left,
2951                                         right);
2952 
2953             // If both arguments are constants, fold them.
2954             if (left.constValue() != null && right.constValue() != null) {
2955                 Type ctype = cfolder.fold2(opc, left, right);
2956                 if (ctype != null) {
2957                     owntype = cfolder.coerce(ctype, owntype);
2958 
2959                     // Remove constant types from arguments to
2960                     // conserve space. The parser will fold concatenations
2961                     // of string literals; the code here also
2962                     // gets rid of intermediate results when some of the
2963                     // operands are constant identifiers.
2964                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
2965                         tree.lhs.type = syms.stringType;
2966                     }
2967                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
2968                         tree.rhs.type = syms.stringType;
2969                     }
2970                 }
2971             }
2972 
2973             // Check that argument types of a reference ==, != are
2974             // castable to each other, (JLS???).
2975             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
2976                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
2977                     log.error(tree.pos(), "incomparable.types", left, right);
2978                 }
2979             }
2980 
2981             chk.checkDivZero(tree.rhs.pos(), operator, right);
2982         }
2983         result = check(tree, owntype, VAL, resultInfo);
2984     }
2985 
2986     public void visitTypeCast(final JCTypeCast tree) {
2987         Type clazztype = attribType(tree.clazz, env);
2988         chk.validate(tree.clazz, env, false);
2989         //a fresh environment is required for 292 inference to work properly ---
2990         //see Infer.instantiatePolymorphicSignatureInstance()
2991         Env<AttrContext> localEnv = env.dup(tree);
2992         //should we propagate the target type?
2993         final ResultInfo castInfo;
2994         JCExpression expr = TreeInfo.skipParens(tree.expr);
2995         boolean isPoly = expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE);
2996         if (isPoly) {
2997             //expression is a poly - we need to propagate target type info
2998             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
2999                 @Override
3000                 public boolean compatible(Type found, Type req, Warner warn) {
3001                     return types.isCastable(found, req, warn);
3002                 }
3003             });
3004         } else {
3005             //standalone cast - target-type info is not propagated
3006             castInfo = unknownExprInfo;
3007         }
3008         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3009         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3010         if (exprtype.constValue() != null)
3011             owntype = cfolder.coerce(exprtype, owntype);
3012         result = check(tree, capture(owntype), VAL, resultInfo);
3013         if (!isPoly)
3014             chk.checkRedundantCast(localEnv, tree);
3015     }
3016 
3017     public void visitTypeTest(JCInstanceOf tree) {
3018         Type exprtype = chk.checkNullOrRefType(
3019             tree.expr.pos(), attribExpr(tree.expr, env));
3020         Type clazztype = chk.checkReifiableReferenceType(
3021             tree.clazz.pos(), attribType(tree.clazz, env));
3022         chk.validate(tree.clazz, env, false);
3023         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3024         result = check(tree, syms.booleanType, VAL, resultInfo);
3025     }
3026 
3027     public void visitIndexed(JCArrayAccess tree) {
3028         Type owntype = types.createErrorType(tree.type);
3029         Type atype = attribExpr(tree.indexed, env);
3030         attribExpr(tree.index, env, syms.intType);
3031         if (types.isArray(atype))
3032             owntype = types.elemtype(atype);
3033         else if (!atype.hasTag(ERROR))
3034             log.error(tree.pos(), "array.req.but.found", atype);
3035         if ((pkind() & VAR) == 0) owntype = capture(owntype);
3036         result = check(tree, owntype, VAR, resultInfo);
3037     }
3038 
3039     public void visitIdent(JCIdent tree) {
3040         Symbol sym;
3041 
3042         // Find symbol
3043         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3044             // If we are looking for a method, the prototype `pt' will be a
3045             // method type with the type of the call's arguments as parameters.
3046             env.info.pendingResolutionPhase = null;
3047             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3048         } else if (tree.sym != null && tree.sym.kind != VAR) {
3049             sym = tree.sym;
3050         } else {
3051             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3052         }
3053         tree.sym = sym;
3054 
3055         // (1) Also find the environment current for the class where
3056         //     sym is defined (`symEnv').
3057         // Only for pre-tiger versions (1.4 and earlier):
3058         // (2) Also determine whether we access symbol out of an anonymous
3059         //     class in a this or super call.  This is illegal for instance
3060         //     members since such classes don't carry a this$n link.
3061         //     (`noOuterThisPath').
3062         Env<AttrContext> symEnv = env;
3063         boolean noOuterThisPath = false;
3064         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3065             (sym.kind & (VAR | MTH | TYP)) != 0 &&
3066             sym.owner.kind == TYP &&
3067             tree.name != names._this && tree.name != names._super) {
3068 
3069             // Find environment in which identifier is defined.
3070             while (symEnv.outer != null &&
3071                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3072                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3073                     noOuterThisPath = !allowAnonOuterThis;
3074                 symEnv = symEnv.outer;
3075             }
3076         }
3077 
3078         // If symbol is a variable, ...
3079         if (sym.kind == VAR) {
3080             VarSymbol v = (VarSymbol)sym;
3081 
3082             // ..., evaluate its initializer, if it has one, and check for
3083             // illegal forward reference.
3084             checkInit(tree, env, v, false);
3085 
3086             // If we are expecting a variable (as opposed to a value), check
3087             // that the variable is assignable in the current environment.
3088             if (pkind() == VAR)
3089                 checkAssignable(tree.pos(), v, null, env);
3090         }
3091 
3092         // In a constructor body,
3093         // if symbol is a field or instance method, check that it is
3094         // not accessed before the supertype constructor is called.
3095         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3096             (sym.kind & (VAR | MTH)) != 0 &&
3097             sym.owner.kind == TYP &&
3098             (sym.flags() & STATIC) == 0) {
3099             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
3100         }
3101         Env<AttrContext> env1 = env;
3102         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
3103             // If the found symbol is inaccessible, then it is
3104             // accessed through an enclosing instance.  Locate this
3105             // enclosing instance:
3106             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3107                 env1 = env1.outer;
3108         }
3109         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3110     }
3111 
3112     public void visitSelect(JCFieldAccess tree) {
3113         // Determine the expected kind of the qualifier expression.
3114         int skind = 0;
3115         if (tree.name == names._this || tree.name == names._super ||
3116             tree.name == names._class)
3117         {
3118             skind = TYP;
3119         } else {
3120             if ((pkind() & PCK) != 0) skind = skind | PCK;
3121             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
3122             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
3123         }
3124 
3125         // Attribute the qualifier expression, and determine its symbol (if any).
3126         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3127         if ((pkind() & (PCK | TYP)) == 0)
3128             site = capture(site); // Capture field access
3129 
3130         // don't allow T.class T[].class, etc
3131         if (skind == TYP) {
3132             Type elt = site;
3133             while (elt.hasTag(ARRAY))
3134                 elt = ((ArrayType)elt).elemtype;
3135             if (elt.hasTag(TYPEVAR)) {
3136                 log.error(tree.pos(), "type.var.cant.be.deref");
3137                 result = types.createErrorType(tree.type);
3138                 return;
3139             }
3140         }
3141 
3142         // If qualifier symbol is a type or `super', assert `selectSuper'
3143         // for the selection. This is relevant for determining whether
3144         // protected symbols are accessible.
3145         Symbol sitesym = TreeInfo.symbol(tree.selected);
3146         boolean selectSuperPrev = env.info.selectSuper;
3147         env.info.selectSuper =
3148             sitesym != null &&
3149             sitesym.name == names._super;
3150 
3151         // Determine the symbol represented by the selection.
3152         env.info.pendingResolutionPhase = null;
3153         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3154         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
3155             site = capture(site);
3156             sym = selectSym(tree, sitesym, site, env, resultInfo);
3157         }
3158         boolean varArgs = env.info.lastResolveVarargs();
3159         tree.sym = sym;
3160 
3161         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3162             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
3163             site = capture(site);
3164         }
3165 
3166         // If that symbol is a variable, ...
3167         if (sym.kind == VAR) {
3168             VarSymbol v = (VarSymbol)sym;
3169 
3170             // ..., evaluate its initializer, if it has one, and check for
3171             // illegal forward reference.
3172             checkInit(tree, env, v, true);
3173 
3174             // If we are expecting a variable (as opposed to a value), check
3175             // that the variable is assignable in the current environment.
3176             if (pkind() == VAR)
3177                 checkAssignable(tree.pos(), v, tree.selected, env);
3178         }
3179 
3180         if (sitesym != null &&
3181                 sitesym.kind == VAR &&
3182                 ((VarSymbol)sitesym).isResourceVariable() &&
3183                 sym.kind == MTH &&
3184                 sym.name.equals(names.close) &&
3185                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3186                 env.info.lint.isEnabled(LintCategory.TRY)) {
3187             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3188         }
3189 
3190         // Disallow selecting a type from an expression
3191         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
3192             tree.type = check(tree.selected, pt(),
3193                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
3194         }
3195 
3196         if (isType(sitesym)) {
3197             if (sym.name == names._this) {
3198                 // If `C' is the currently compiled class, check that
3199                 // C.this' does not appear in a call to a super(...)
3200                 if (env.info.isSelfCall &&
3201                     site.tsym == env.enclClass.sym) {
3202                     chk.earlyRefError(tree.pos(), sym);
3203                 }
3204             } else {
3205                 // Check if type-qualified fields or methods are static (JLS)
3206                 if ((sym.flags() & STATIC) == 0 &&
3207                     !env.next.tree.hasTag(REFERENCE) &&
3208                     sym.name != names._super &&
3209                     (sym.kind == VAR || sym.kind == MTH)) {
3210                     rs.accessBase(rs.new StaticError(sym),
3211                               tree.pos(), site, sym.name, true);
3212                 }
3213             }
3214         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
3215             // If the qualified item is not a type and the selected item is static, report
3216             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3217             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
3218         }
3219 
3220         // If we are selecting an instance member via a `super', ...
3221         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3222 
3223             // Check that super-qualified symbols are not abstract (JLS)
3224             rs.checkNonAbstract(tree.pos(), sym);
3225 
3226             if (site.isRaw()) {
3227                 // Determine argument types for site.
3228                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3229                 if (site1 != null) site = site1;
3230             }
3231         }
3232 
3233         env.info.selectSuper = selectSuperPrev;
3234         result = checkId(tree, site, sym, env, resultInfo);
3235     }
3236     //where
3237         /** Determine symbol referenced by a Select expression,
3238          *
3239          *  @param tree   The select tree.
3240          *  @param site   The type of the selected expression,
3241          *  @param env    The current environment.
3242          *  @param resultInfo The current result.
3243          */
3244         private Symbol selectSym(JCFieldAccess tree,
3245                                  Symbol location,
3246                                  Type site,
3247                                  Env<AttrContext> env,
3248                                  ResultInfo resultInfo) {
3249             DiagnosticPosition pos = tree.pos();
3250             Name name = tree.name;
3251             switch (site.getTag()) {
3252             case PACKAGE:
3253                 return rs.accessBase(
3254                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3255                     pos, location, site, name, true);
3256             case ARRAY:
3257             case CLASS:
3258                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3259                     return rs.resolveQualifiedMethod(
3260                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3261                 } else if (name == names._this || name == names._super) {
3262                     return rs.resolveSelf(pos, env, site.tsym, name);
3263                 } else if (name == names._class) {
3264                     // In this case, we have already made sure in
3265                     // visitSelect that qualifier expression is a type.
3266                     Type t = syms.classType;
3267                     List<Type> typeargs = allowGenerics
3268                         ? List.of(types.erasure(site))
3269                         : List.<Type>nil();
3270                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3271                     return new VarSymbol(
3272                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3273                 } else {
3274                     // We are seeing a plain identifier as selector.
3275                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3276                     if ((resultInfo.pkind & ERRONEOUS) == 0)
3277                         sym = rs.accessBase(sym, pos, location, site, name, true);
3278                     return sym;
3279                 }
3280             case WILDCARD:
3281                 throw new AssertionError(tree);
3282             case TYPEVAR:
3283                 // Normally, site.getUpperBound() shouldn't be null.
3284                 // It should only happen during memberEnter/attribBase
3285                 // when determining the super type which *must* beac
3286                 // done before attributing the type variables.  In
3287                 // other words, we are seeing this illegal program:
3288                 // class B<T> extends A<T.foo> {}
3289                 Symbol sym = (site.getUpperBound() != null)
3290                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3291                     : null;
3292                 if (sym == null) {
3293                     log.error(pos, "type.var.cant.be.deref");
3294                     return syms.errSymbol;
3295                 } else {
3296                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3297                         rs.new AccessError(env, site, sym) :
3298                                 sym;
3299                     rs.accessBase(sym2, pos, location, site, name, true);
3300                     return sym;
3301                 }
3302             case ERROR:
3303                 // preserve identifier names through errors
3304                 return types.createErrorType(name, site.tsym, site).tsym;
3305             default:
3306                 // The qualifier expression is of a primitive type -- only
3307                 // .class is allowed for these.
3308                 if (name == names._class) {
3309                     // In this case, we have already made sure in Select that
3310                     // qualifier expression is a type.
3311                     Type t = syms.classType;
3312                     Type arg = types.boxedClass(site).type;
3313                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3314                     return new VarSymbol(
3315                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3316                 } else {
3317                     log.error(pos, "cant.deref", site);
3318                     return syms.errSymbol;
3319                 }
3320             }
3321         }
3322 
3323         /** Determine type of identifier or select expression and check that
3324          *  (1) the referenced symbol is not deprecated
3325          *  (2) the symbol's type is safe (@see checkSafe)
3326          *  (3) if symbol is a variable, check that its type and kind are
3327          *      compatible with the prototype and protokind.
3328          *  (4) if symbol is an instance field of a raw type,
3329          *      which is being assigned to, issue an unchecked warning if its
3330          *      type changes under erasure.
3331          *  (5) if symbol is an instance method of a raw type, issue an
3332          *      unchecked warning if its argument types change under erasure.
3333          *  If checks succeed:
3334          *    If symbol is a constant, return its constant type
3335          *    else if symbol is a method, return its result type
3336          *    otherwise return its type.
3337          *  Otherwise return errType.
3338          *
3339          *  @param tree       The syntax tree representing the identifier
3340          *  @param site       If this is a select, the type of the selected
3341          *                    expression, otherwise the type of the current class.
3342          *  @param sym        The symbol representing the identifier.
3343          *  @param env        The current environment.
3344          *  @param resultInfo    The expected result
3345          */
3346         Type checkId(JCTree tree,
3347                      Type site,
3348                      Symbol sym,
3349                      Env<AttrContext> env,
3350                      ResultInfo resultInfo) {
3351             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3352                     checkMethodId(tree, site, sym, env, resultInfo) :
3353                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3354         }
3355 
3356         Type checkMethodId(JCTree tree,
3357                      Type site,
3358                      Symbol sym,
3359                      Env<AttrContext> env,
3360                      ResultInfo resultInfo) {
3361             boolean isPolymorhicSignature =
3362                 sym.kind == MTH && ((MethodSymbol)sym.baseSymbol()).isSignaturePolymorphic(types);
3363             return isPolymorhicSignature ?
3364                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3365                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
3366         }
3367 
3368         Type checkSigPolyMethodId(JCTree tree,
3369                      Type site,
3370                      Symbol sym,
3371                      Env<AttrContext> env,
3372                      ResultInfo resultInfo) {
3373             //recover original symbol for signature polymorphic methods
3374             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3375             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3376             return sym.type;
3377         }
3378 
3379         Type checkMethodIdInternal(JCTree tree,
3380                      Type site,
3381                      Symbol sym,
3382                      Env<AttrContext> env,
3383                      ResultInfo resultInfo) {
3384             Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3385             Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3386             resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3387             return owntype;
3388         }
3389 
3390         Type checkIdInternal(JCTree tree,
3391                      Type site,
3392                      Symbol sym,
3393                      Type pt,
3394                      Env<AttrContext> env,
3395                      ResultInfo resultInfo) {
3396             if (pt.isErroneous()) {
3397                 return types.createErrorType(site);
3398             }
3399             Type owntype; // The computed type of this identifier occurrence.
3400             switch (sym.kind) {
3401             case TYP:
3402                 // For types, the computed type equals the symbol's type,
3403                 // except for two situations:
3404                 owntype = sym.type;
3405                 if (owntype.hasTag(CLASS)) {
3406                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3407                     Type ownOuter = owntype.getEnclosingType();
3408 
3409                     // (a) If the symbol's type is parameterized, erase it
3410                     // because no type parameters were given.
3411                     // We recover generic outer type later in visitTypeApply.
3412                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3413                         owntype = types.erasure(owntype);
3414                     }
3415 
3416                     // (b) If the symbol's type is an inner class, then
3417                     // we have to interpret its outer type as a superclass
3418                     // of the site type. Example:
3419                     //
3420                     // class Tree<A> { class Visitor { ... } }
3421                     // class PointTree extends Tree<Point> { ... }
3422                     // ...PointTree.Visitor...
3423                     //
3424                     // Then the type of the last expression above is
3425                     // Tree<Point>.Visitor.
3426                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3427                         Type normOuter = site;
3428                         if (normOuter.hasTag(CLASS)) {
3429                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3430                             if (site.isAnnotated()) {
3431                                 // Propagate any type annotations.
3432                                 // TODO: should asEnclosingSuper do this?
3433                                 // Note that the type annotations in site will be updated
3434                                 // by annotateType. Therefore, modify site instead
3435                                 // of creating a new AnnotatedType.
3436                                 ((AnnotatedType)site).underlyingType = normOuter;
3437                                 normOuter = site;
3438                             }
3439                         }
3440                         if (normOuter == null) // perhaps from an import
3441                             normOuter = types.erasure(ownOuter);
3442                         if (normOuter != ownOuter)
3443                             owntype = new ClassType(
3444                                 normOuter, List.<Type>nil(), owntype.tsym);
3445                     }
3446                 }
3447                 break;
3448             case VAR:
3449                 VarSymbol v = (VarSymbol)sym;
3450                 // Test (4): if symbol is an instance field of a raw type,
3451                 // which is being assigned to, issue an unchecked warning if
3452                 // its type changes under erasure.
3453                 if (allowGenerics &&
3454                     resultInfo.pkind == VAR &&
3455                     v.owner.kind == TYP &&
3456                     (v.flags() & STATIC) == 0 &&
3457                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3458                     Type s = types.asOuterSuper(site, v.owner);
3459                     if (s != null &&
3460                         s.isRaw() &&
3461                         !types.isSameType(v.type, v.erasure(types))) {
3462                         chk.warnUnchecked(tree.pos(),
3463                                           "unchecked.assign.to.var",
3464                                           v, s);
3465                     }
3466                 }
3467                 // The computed type of a variable is the type of the
3468                 // variable symbol, taken as a member of the site type.
3469                 owntype = (sym.owner.kind == TYP &&
3470                            sym.name != names._this && sym.name != names._super)
3471                     ? types.memberType(site, sym)
3472                     : sym.type;
3473 
3474                 // If the variable is a constant, record constant value in
3475                 // computed type.
3476                 if (v.getConstValue() != null && isStaticReference(tree))
3477                     owntype = owntype.constType(v.getConstValue());
3478 
3479                 if (resultInfo.pkind == VAL) {
3480                     owntype = capture(owntype); // capture "names as expressions"
3481                 }
3482                 break;
3483             case MTH: {
3484                 owntype = checkMethod(site, sym,
3485                         new ResultInfo(VAL, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3486                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3487                         resultInfo.pt.getTypeArguments());
3488                 break;
3489             }
3490             case PCK: case ERR:
3491                 owntype = sym.type;
3492                 break;
3493             default:
3494                 throw new AssertionError("unexpected kind: " + sym.kind +
3495                                          " in tree " + tree);
3496             }
3497 
3498             // Test (1): emit a `deprecation' warning if symbol is deprecated.
3499             // (for constructors, the error was given when the constructor was
3500             // resolved)
3501 
3502             if (sym.name != names.init) {
3503                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3504                 chk.checkSunAPI(tree.pos(), sym);
3505                 chk.checkProfile(tree.pos(), sym);
3506             }
3507 
3508             // Test (3): if symbol is a variable, check that its type and
3509             // kind are compatible with the prototype and protokind.
3510             return check(tree, owntype, sym.kind, resultInfo);
3511         }
3512 
3513         /** Check that variable is initialized and evaluate the variable's
3514          *  initializer, if not yet done. Also check that variable is not
3515          *  referenced before it is defined.
3516          *  @param tree    The tree making up the variable reference.
3517          *  @param env     The current environment.
3518          *  @param v       The variable's symbol.
3519          */
3520         private void checkInit(JCTree tree,
3521                                Env<AttrContext> env,
3522                                VarSymbol v,
3523                                boolean onlyWarning) {
3524 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3525 //                             tree.pos + " " + v.pos + " " +
3526 //                             Resolve.isStatic(env));//DEBUG
3527 
3528             // A forward reference is diagnosed if the declaration position
3529             // of the variable is greater than the current tree position
3530             // and the tree and variable definition occur in the same class
3531             // definition.  Note that writes don't count as references.
3532             // This check applies only to class and instance
3533             // variables.  Local variables follow different scope rules,
3534             // and are subject to definite assignment checking.
3535             if ((env.info.enclVar == v || v.pos > tree.pos) &&
3536                 v.owner.kind == TYP &&
3537                 canOwnInitializer(owner(env)) &&
3538                 v.owner == env.info.scope.owner.enclClass() &&
3539                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3540                 (!env.tree.hasTag(ASSIGN) ||
3541                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3542                 String suffix = (env.info.enclVar == v) ?
3543                                 "self.ref" : "forward.ref";
3544                 if (!onlyWarning || isStaticEnumField(v)) {
3545                     log.error(tree.pos(), "illegal." + suffix);
3546                 } else if (useBeforeDeclarationWarning) {
3547                     log.warning(tree.pos(), suffix, v);
3548                 }
3549             }
3550 
3551             v.getConstValue(); // ensure initializer is evaluated
3552 
3553             checkEnumInitializer(tree, env, v);
3554         }
3555 
3556         /**
3557          * Check for illegal references to static members of enum.  In
3558          * an enum type, constructors and initializers may not
3559          * reference its static members unless they are constant.
3560          *
3561          * @param tree    The tree making up the variable reference.
3562          * @param env     The current environment.
3563          * @param v       The variable's symbol.
3564          * @jls  section 8.9 Enums
3565          */
3566         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3567             // JLS:
3568             //
3569             // "It is a compile-time error to reference a static field
3570             // of an enum type that is not a compile-time constant
3571             // (15.28) from constructors, instance initializer blocks,
3572             // or instance variable initializer expressions of that
3573             // type. It is a compile-time error for the constructors,
3574             // instance initializer blocks, or instance variable
3575             // initializer expressions of an enum constant e to refer
3576             // to itself or to an enum constant of the same type that
3577             // is declared to the right of e."
3578             if (isStaticEnumField(v)) {
3579                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
3580 
3581                 if (enclClass == null || enclClass.owner == null)
3582                     return;
3583 
3584                 // See if the enclosing class is the enum (or a
3585                 // subclass thereof) declaring v.  If not, this
3586                 // reference is OK.
3587                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3588                     return;
3589 
3590                 // If the reference isn't from an initializer, then
3591                 // the reference is OK.
3592                 if (!Resolve.isInitializer(env))
3593                     return;
3594 
3595                 log.error(tree.pos(), "illegal.enum.static.ref");
3596             }
3597         }
3598 
3599         /** Is the given symbol a static, non-constant field of an Enum?
3600          *  Note: enum literals should not be regarded as such
3601          */
3602         private boolean isStaticEnumField(VarSymbol v) {
3603             return Flags.isEnum(v.owner) &&
3604                    Flags.isStatic(v) &&
3605                    !Flags.isConstant(v) &&
3606                    v.name != names._class;
3607         }
3608 
3609         /** Can the given symbol be the owner of code which forms part
3610          *  if class initialization? This is the case if the symbol is
3611          *  a type or field, or if the symbol is the synthetic method.
3612          *  owning a block.
3613          */
3614         private boolean canOwnInitializer(Symbol sym) {
3615             return
3616                 (sym.kind & (VAR | TYP)) != 0 ||
3617                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
3618         }
3619 
3620     Warner noteWarner = new Warner();
3621 
3622     /**
3623      * Check that method arguments conform to its instantiation.
3624      **/
3625     public Type checkMethod(Type site,
3626                             Symbol sym,
3627                             ResultInfo resultInfo,
3628                             Env<AttrContext> env,
3629                             final List<JCExpression> argtrees,
3630                             List<Type> argtypes,
3631                             List<Type> typeargtypes) {
3632         // Test (5): if symbol is an instance method of a raw type, issue
3633         // an unchecked warning if its argument types change under erasure.
3634         if (allowGenerics &&
3635             (sym.flags() & STATIC) == 0 &&
3636             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3637             Type s = types.asOuterSuper(site, sym.owner);
3638             if (s != null && s.isRaw() &&
3639                 !types.isSameTypes(sym.type.getParameterTypes(),
3640                                    sym.erasure(types).getParameterTypes())) {
3641                 chk.warnUnchecked(env.tree.pos(),
3642                                   "unchecked.call.mbr.of.raw.type",
3643                                   sym, s);
3644             }
3645         }
3646 
3647         if (env.info.defaultSuperCallSite != null) {
3648             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3649                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3650                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3651                 List<MethodSymbol> icand_sup =
3652                         types.interfaceCandidates(sup, (MethodSymbol)sym);
3653                 if (icand_sup.nonEmpty() &&
3654                         icand_sup.head != sym &&
3655                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3656                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3657                         diags.fragment("overridden.default", sym, sup));
3658                     break;
3659                 }
3660             }
3661             env.info.defaultSuperCallSite = null;
3662         }
3663 
3664         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3665             JCMethodInvocation app = (JCMethodInvocation)env.tree;
3666             if (app.meth.hasTag(SELECT) &&
3667                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3668                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3669             }
3670         }
3671 
3672         // Compute the identifier's instantiated type.
3673         // For methods, we need to compute the instance type by
3674         // Resolve.instantiate from the symbol's type as well as
3675         // any type arguments and value arguments.
3676         noteWarner.clear();
3677         try {
3678             Type owntype = rs.checkMethod(
3679                     env,
3680                     site,
3681                     sym,
3682                     resultInfo,
3683                     argtypes,
3684                     typeargtypes,
3685                     noteWarner);
3686 
3687             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3688                     noteWarner.hasNonSilentLint(LintCategory.UNCHECKED));
3689         } catch (Infer.InferenceException ex) {
3690             //invalid target type - propagate exception outwards or report error
3691             //depending on the current check context
3692             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3693             return types.createErrorType(site);
3694         } catch (Resolve.InapplicableMethodException ex) {
3695             Assert.error(ex.getDiagnostic().getMessage(Locale.getDefault()));
3696             return null;
3697         }
3698     }
3699 
3700     public void visitLiteral(JCLiteral tree) {
3701         result = check(
3702             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
3703     }
3704     //where
3705     /** Return the type of a literal with given type tag.
3706      */
3707     Type litType(TypeTag tag) {
3708         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3709     }
3710 
3711     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3712         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
3713     }
3714 
3715     public void visitTypeArray(JCArrayTypeTree tree) {
3716         Type etype = attribType(tree.elemtype, env);
3717         Type type = new ArrayType(etype, syms.arrayClass);
3718         result = check(tree, type, TYP, resultInfo);
3719     }
3720 
3721     /** Visitor method for parameterized types.
3722      *  Bound checking is left until later, since types are attributed
3723      *  before supertype structure is completely known
3724      */
3725     public void visitTypeApply(JCTypeApply tree) {
3726         Type owntype = types.createErrorType(tree.type);
3727 
3728         // Attribute functor part of application and make sure it's a class.
3729         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3730 
3731         // Attribute type parameters
3732         List<Type> actuals = attribTypes(tree.arguments, env);
3733 
3734         if (clazztype.hasTag(CLASS)) {
3735             List<Type> formals = clazztype.tsym.type.getTypeArguments();
3736             if (actuals.isEmpty()) //diamond
3737                 actuals = formals;
3738 
3739             if (actuals.length() == formals.length()) {
3740                 List<Type> a = actuals;
3741                 List<Type> f = formals;
3742                 while (a.nonEmpty()) {
3743                     a.head = a.head.withTypeVar(f.head);
3744                     a = a.tail;
3745                     f = f.tail;
3746                 }
3747                 // Compute the proper generic outer
3748                 Type clazzOuter = clazztype.getEnclosingType();
3749                 if (clazzOuter.hasTag(CLASS)) {
3750                     Type site;
3751                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3752                     if (clazz.hasTag(IDENT)) {
3753                         site = env.enclClass.sym.type;
3754                     } else if (clazz.hasTag(SELECT)) {
3755                         site = ((JCFieldAccess) clazz).selected.type;
3756                     } else throw new AssertionError(""+tree);
3757                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3758                         if (site.hasTag(CLASS))
3759                             site = types.asOuterSuper(site, clazzOuter.tsym);
3760                         if (site == null)
3761                             site = types.erasure(clazzOuter);
3762                         clazzOuter = site;
3763                     }
3764                 }
3765                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
3766             } else {
3767                 if (formals.length() != 0) {
3768                     log.error(tree.pos(), "wrong.number.type.args",
3769                               Integer.toString(formals.length()));
3770                 } else {
3771                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3772                 }
3773                 owntype = types.createErrorType(tree.type);
3774             }
3775         }
3776         result = check(tree, owntype, TYP, resultInfo);
3777     }
3778 
3779     public void visitTypeUnion(JCTypeUnion tree) {
3780         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
3781         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3782         for (JCExpression typeTree : tree.alternatives) {
3783             Type ctype = attribType(typeTree, env);
3784             ctype = chk.checkType(typeTree.pos(),
3785                           chk.checkClassType(typeTree.pos(), ctype),
3786                           syms.throwableType);
3787             if (!ctype.isErroneous()) {
3788                 //check that alternatives of a union type are pairwise
3789                 //unrelated w.r.t. subtyping
3790                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
3791                     for (Type t : multicatchTypes) {
3792                         boolean sub = types.isSubtype(ctype, t);
3793                         boolean sup = types.isSubtype(t, ctype);
3794                         if (sub || sup) {
3795                             //assume 'a' <: 'b'
3796                             Type a = sub ? ctype : t;
3797                             Type b = sub ? t : ctype;
3798                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
3799                         }
3800                     }
3801                 }
3802                 multicatchTypes.append(ctype);
3803                 if (all_multicatchTypes != null)
3804                     all_multicatchTypes.append(ctype);
3805             } else {
3806                 if (all_multicatchTypes == null) {
3807                     all_multicatchTypes = ListBuffer.lb();
3808                     all_multicatchTypes.appendList(multicatchTypes);
3809                 }
3810                 all_multicatchTypes.append(ctype);
3811             }
3812         }
3813         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
3814         if (t.hasTag(CLASS)) {
3815             List<Type> alternatives =
3816                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
3817             t = new UnionClassType((ClassType) t, alternatives);
3818         }
3819         tree.type = result = t;
3820     }
3821 
3822     public void visitTypeIntersection(JCTypeIntersection tree) {
3823         attribTypes(tree.bounds, env);
3824         tree.type = result = checkIntersection(tree, tree.bounds);
3825     }
3826 
3827     public void visitTypeParameter(JCTypeParameter tree) {
3828         TypeVar typeVar = (TypeVar) tree.type;
3829 
3830         if (tree.annotations != null && tree.annotations.nonEmpty()) {
3831             AnnotatedType antype = new AnnotatedType(typeVar);
3832             annotateType(antype, tree.annotations);
3833             tree.type = antype;
3834         }
3835 
3836         if (!typeVar.bound.isErroneous()) {
3837             //fixup type-parameter bound computed in 'attribTypeVariables'
3838             typeVar.bound = checkIntersection(tree, tree.bounds);
3839         }
3840     }
3841 
3842     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
3843         Set<Type> boundSet = new HashSet<Type>();
3844         if (bounds.nonEmpty()) {
3845             // accept class or interface or typevar as first bound.
3846             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
3847             boundSet.add(types.erasure(bounds.head.type));
3848             if (bounds.head.type.isErroneous()) {
3849                 return bounds.head.type;
3850             }
3851             else if (bounds.head.type.hasTag(TYPEVAR)) {
3852                 // if first bound was a typevar, do not accept further bounds.
3853                 if (bounds.tail.nonEmpty()) {
3854                     log.error(bounds.tail.head.pos(),
3855                               "type.var.may.not.be.followed.by.other.bounds");
3856                     return bounds.head.type;
3857                 }
3858             } else {
3859                 // if first bound was a class or interface, accept only interfaces
3860                 // as further bounds.
3861                 for (JCExpression bound : bounds.tail) {
3862                     bound.type = checkBase(bound.type, bound, env, false, true, false);
3863                     if (bound.type.isErroneous()) {
3864                         bounds = List.of(bound);
3865                     }
3866                     else if (bound.type.hasTag(CLASS)) {
3867                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
3868                     }
3869                 }
3870             }
3871         }
3872 
3873         if (bounds.length() == 0) {
3874             return syms.objectType;
3875         } else if (bounds.length() == 1) {
3876             return bounds.head.type;
3877         } else {
3878             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
3879             if (tree.hasTag(TYPEINTERSECTION)) {
3880                 ((IntersectionClassType)owntype).intersectionKind =
3881                         IntersectionClassType.IntersectionKind.EXPLICIT;
3882             }
3883             // ... the variable's bound is a class type flagged COMPOUND
3884             // (see comment for TypeVar.bound).
3885             // In this case, generate a class tree that represents the
3886             // bound class, ...
3887             JCExpression extending;
3888             List<JCExpression> implementing;
3889             if (!bounds.head.type.isInterface()) {
3890                 extending = bounds.head;
3891                 implementing = bounds.tail;
3892             } else {
3893                 extending = null;
3894                 implementing = bounds;
3895             }
3896             JCClassDecl cd = make.at(tree).ClassDef(
3897                 make.Modifiers(PUBLIC | ABSTRACT),
3898                 names.empty, List.<JCTypeParameter>nil(),
3899                 extending, implementing, List.<JCTree>nil());
3900 
3901             ClassSymbol c = (ClassSymbol)owntype.tsym;
3902             Assert.check((c.flags() & COMPOUND) != 0);
3903             cd.sym = c;
3904             c.sourcefile = env.toplevel.sourcefile;
3905 
3906             // ... and attribute the bound class
3907             c.flags_field |= UNATTRIBUTED;
3908             Env<AttrContext> cenv = enter.classEnv(cd, env);
3909             enter.typeEnvs.put(c, cenv);
3910             attribClass(c);
3911             return owntype;
3912         }
3913     }
3914 
3915     public void visitWildcard(JCWildcard tree) {
3916         //- System.err.println("visitWildcard("+tree+");");//DEBUG
3917         Type type = (tree.kind.kind == BoundKind.UNBOUND)
3918             ? syms.objectType
3919             : attribType(tree.inner, env);
3920         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
3921                                               tree.kind.kind,
3922                                               syms.boundClass),
3923                        TYP, resultInfo);
3924     }
3925 
3926     public void visitAnnotation(JCAnnotation tree) {
3927         log.error(tree.pos(), "annotation.not.valid.for.type", pt());
3928         result = tree.type = syms.errType;
3929     }
3930 
3931     public void visitAnnotatedType(JCAnnotatedType tree) {
3932         Type underlyingType = attribType(tree.getUnderlyingType(), env);
3933         this.attribAnnotationTypes(tree.annotations, env);
3934         AnnotatedType antype = new AnnotatedType(underlyingType);
3935         annotateType(antype, tree.annotations);
3936         result = tree.type = antype;
3937     }
3938 
3939     /**
3940      * Apply the annotations to the particular type.
3941      */
3942     public void annotateType(final AnnotatedType type, final List<JCAnnotation> annotations) {
3943         if (annotations.isEmpty())
3944             return;
3945         annotate.typeAnnotation(new Annotate.Annotator() {
3946             @Override
3947             public String toString() {
3948                 return "annotate " + annotations + " onto " + type;
3949             }
3950             @Override
3951             public void enterAnnotation() {
3952                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
3953                 type.typeAnnotations = compounds;
3954             }
3955         });
3956     }
3957 
3958     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
3959         if (annotations.isEmpty())
3960             return List.nil();
3961 
3962         ListBuffer<Attribute.TypeCompound> buf = ListBuffer.lb();
3963         for (JCAnnotation anno : annotations) {
3964             buf.append((Attribute.TypeCompound) anno.attribute);
3965         }
3966         return buf.toList();
3967     }
3968 
3969     public void visitErroneous(JCErroneous tree) {
3970         if (tree.errs != null)
3971             for (JCTree err : tree.errs)
3972                 attribTree(err, env, new ResultInfo(ERR, pt()));
3973         result = tree.type = syms.errType;
3974     }
3975 
3976     /** Default visitor method for all other trees.
3977      */
3978     public void visitTree(JCTree tree) {
3979         throw new AssertionError();
3980     }
3981 
3982     /**
3983      * Attribute an env for either a top level tree or class declaration.
3984      */
3985     public void attrib(Env<AttrContext> env) {
3986         if (env.tree.hasTag(TOPLEVEL))
3987             attribTopLevel(env);
3988         else
3989             attribClass(env.tree.pos(), env.enclClass.sym);
3990     }
3991 
3992     /**
3993      * Attribute a top level tree. These trees are encountered when the
3994      * package declaration has annotations.
3995      */
3996     public void attribTopLevel(Env<AttrContext> env) {
3997         JCCompilationUnit toplevel = env.toplevel;
3998         try {
3999             annotate.flush();
4000             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
4001         } catch (CompletionFailure ex) {
4002             chk.completionError(toplevel.pos(), ex);
4003         }
4004     }
4005 
4006     /** Main method: attribute class definition associated with given class symbol.
4007      *  reporting completion failures at the given position.
4008      *  @param pos The source position at which completion errors are to be
4009      *             reported.
4010      *  @param c   The class symbol whose definition will be attributed.
4011      */
4012     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4013         try {
4014             annotate.flush();
4015             attribClass(c);
4016         } catch (CompletionFailure ex) {
4017             chk.completionError(pos, ex);
4018         }
4019     }
4020 
4021     /** Attribute class definition associated with given class symbol.
4022      *  @param c   The class symbol whose definition will be attributed.
4023      */
4024     void attribClass(ClassSymbol c) throws CompletionFailure {
4025         if (c.type.hasTag(ERROR)) return;
4026 
4027         // Check for cycles in the inheritance graph, which can arise from
4028         // ill-formed class files.
4029         chk.checkNonCyclic(null, c.type);
4030 
4031         Type st = types.supertype(c.type);
4032         if ((c.flags_field & Flags.COMPOUND) == 0) {
4033             // First, attribute superclass.
4034             if (st.hasTag(CLASS))
4035                 attribClass((ClassSymbol)st.tsym);
4036 
4037             // Next attribute owner, if it is a class.
4038             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4039                 attribClass((ClassSymbol)c.owner);
4040         }
4041 
4042         // The previous operations might have attributed the current class
4043         // if there was a cycle. So we test first whether the class is still
4044         // UNATTRIBUTED.
4045         if ((c.flags_field & UNATTRIBUTED) != 0) {
4046             c.flags_field &= ~UNATTRIBUTED;
4047 
4048             // Get environment current at the point of class definition.
4049             Env<AttrContext> env = enter.typeEnvs.get(c);
4050 
4051             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
4052             // because the annotations were not available at the time the env was created. Therefore,
4053             // we look up the environment chain for the first enclosing environment for which the
4054             // lint value is set. Typically, this is the parent env, but might be further if there
4055             // are any envs created as a result of TypeParameter nodes.
4056             Env<AttrContext> lintEnv = env;
4057             while (lintEnv.info.lint == null)
4058                 lintEnv = lintEnv.next;
4059 
4060             // Having found the enclosing lint value, we can initialize the lint value for this class
4061             env.info.lint = lintEnv.info.lint.augment(c.annotations, c.flags());
4062 
4063             Lint prevLint = chk.setLint(env.info.lint);
4064             JavaFileObject prev = log.useSource(c.sourcefile);
4065             ResultInfo prevReturnRes = env.info.returnResult;
4066 
4067             try {
4068                 env.info.returnResult = null;
4069                 // java.lang.Enum may not be subclassed by a non-enum
4070                 if (st.tsym == syms.enumSym &&
4071                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4072                     log.error(env.tree.pos(), "enum.no.subclassing");
4073 
4074                 // Enums may not be extended by source-level classes
4075                 if (st.tsym != null &&
4076                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4077                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4078                     log.error(env.tree.pos(), "enum.types.not.extensible");
4079                 }
4080                 attribClassBody(env, c);
4081 
4082                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4083                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4084             } finally {
4085                 env.info.returnResult = prevReturnRes;
4086                 log.useSource(prev);
4087                 chk.setLint(prevLint);
4088             }
4089 
4090         }
4091     }
4092 
4093     public void visitImport(JCImport tree) {
4094         // nothing to do
4095     }
4096 
4097     /** Finish the attribution of a class. */
4098     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4099         JCClassDecl tree = (JCClassDecl)env.tree;
4100         Assert.check(c == tree.sym);
4101 
4102         // Validate annotations
4103         chk.validateAnnotations(tree.mods.annotations, c);
4104 
4105         // Validate type parameters, supertype and interfaces.
4106         attribStats(tree.typarams, env);
4107         if (!c.isAnonymous()) {
4108             //already checked if anonymous
4109             chk.validate(tree.typarams, env);
4110             chk.validate(tree.extending, env);
4111             chk.validate(tree.implementing, env);
4112         }
4113 
4114         // If this is a non-abstract class, check that it has no abstract
4115         // methods or unimplemented methods of an implemented interface.
4116         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4117             if (!relax)
4118                 chk.checkAllDefined(tree.pos(), c);
4119         }
4120 
4121         if ((c.flags() & ANNOTATION) != 0) {
4122             if (tree.implementing.nonEmpty())
4123                 log.error(tree.implementing.head.pos(),
4124                           "cant.extend.intf.annotation");
4125             if (tree.typarams.nonEmpty())
4126                 log.error(tree.typarams.head.pos(),
4127                           "intf.annotation.cant.have.type.params");
4128 
4129             // If this annotation has a @Repeatable, validate
4130             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
4131             if (repeatable != null) {
4132                 // get diagnostic position for error reporting
4133                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4134                 Assert.checkNonNull(cbPos);
4135 
4136                 chk.validateRepeatable(c, repeatable, cbPos);
4137             }
4138         } else {
4139             // Check that all extended classes and interfaces
4140             // are compatible (i.e. no two define methods with same arguments
4141             // yet different return types).  (JLS 8.4.6.3)
4142             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4143             if (allowDefaultMethods) {
4144                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4145             }
4146         }
4147 
4148         // Check that class does not import the same parameterized interface
4149         // with two different argument lists.
4150         chk.checkClassBounds(tree.pos(), c.type);
4151 
4152         tree.type = c.type;
4153 
4154         for (List<JCTypeParameter> l = tree.typarams;
4155              l.nonEmpty(); l = l.tail) {
4156              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
4157         }
4158 
4159         // Check that a generic class doesn't extend Throwable
4160         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4161             log.error(tree.extending.pos(), "generic.throwable");
4162 
4163         // Check that all methods which implement some
4164         // method conform to the method they implement.
4165         chk.checkImplementations(tree);
4166 
4167         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4168         checkAutoCloseable(tree.pos(), env, c.type);
4169 
4170         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4171             // Attribute declaration
4172             attribStat(l.head, env);
4173             // Check that declarations in inner classes are not static (JLS 8.1.2)
4174             // Make an exception for static constants.
4175             if (c.owner.kind != PCK &&
4176                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4177                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4178                 Symbol sym = null;
4179                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4180                 if (sym == null ||
4181                     sym.kind != VAR ||
4182                     ((VarSymbol) sym).getConstValue() == null)
4183                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4184             }
4185         }
4186 
4187         // Check for cycles among non-initial constructors.
4188         chk.checkCyclicConstructors(tree);
4189 
4190         // Check for cycles among annotation elements.
4191         chk.checkNonCyclicElements(tree);
4192 
4193         // Check for proper use of serialVersionUID
4194         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4195             isSerializable(c) &&
4196             (c.flags() & Flags.ENUM) == 0 &&
4197             (c.flags() & ABSTRACT) == 0) {
4198             checkSerialVersionUID(tree, c);
4199         }
4200 
4201         // Correctly organize the postions of the type annotations
4202         TypeAnnotations.organizeTypeAnnotationsBodies(this.syms, this.names, this.log, tree);
4203 
4204         // Check type annotations applicability rules
4205         validateTypeAnnotations(tree);
4206     }
4207         // where
4208         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4209         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4210             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4211                 if (types.isSameType(al.head.annotationType.type, t))
4212                     return al.head.pos();
4213             }
4214 
4215             return null;
4216         }
4217 
4218         /** check if a class is a subtype of Serializable, if that is available. */
4219         private boolean isSerializable(ClassSymbol c) {
4220             try {
4221                 syms.serializableType.complete();
4222             }
4223             catch (CompletionFailure e) {
4224                 return false;
4225             }
4226             return types.isSubtype(c.type, syms.serializableType);
4227         }
4228 
4229         /** Check that an appropriate serialVersionUID member is defined. */
4230         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4231 
4232             // check for presence of serialVersionUID
4233             Scope.Entry e = c.members().lookup(names.serialVersionUID);
4234             while (e.scope != null && e.sym.kind != VAR) e = e.next();
4235             if (e.scope == null) {
4236                 log.warning(LintCategory.SERIAL,
4237                         tree.pos(), "missing.SVUID", c);
4238                 return;
4239             }
4240 
4241             // check that it is static final
4242             VarSymbol svuid = (VarSymbol)e.sym;
4243             if ((svuid.flags() & (STATIC | FINAL)) !=
4244                 (STATIC | FINAL))
4245                 log.warning(LintCategory.SERIAL,
4246                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4247 
4248             // check that it is long
4249             else if (!svuid.type.hasTag(LONG))
4250                 log.warning(LintCategory.SERIAL,
4251                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4252 
4253             // check constant
4254             else if (svuid.getConstValue() == null)
4255                 log.warning(LintCategory.SERIAL,
4256                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4257         }
4258 
4259     private Type capture(Type type) {
4260         //do not capture free types
4261         return resultInfo.checkContext.inferenceContext().free(type) ?
4262                 type : types.capture(type);
4263     }
4264 
4265     private void validateTypeAnnotations(JCTree tree) {
4266         tree.accept(typeAnnotationsValidator);
4267     }
4268     //where
4269     private final JCTree.Visitor typeAnnotationsValidator =
4270         new TreeScanner() {
4271         public void visitAnnotation(JCAnnotation tree) {
4272             if (tree.hasTag(TYPE_ANNOTATION)) {
4273                 // TODO: It seems to WMD as if the annotation in
4274                 // parameters, in particular also the recvparam, are never
4275                 // of type JCTypeAnnotation and therefore never checked!
4276                 // Luckily this check doesn't really do anything that isn't
4277                 // also done elsewhere.
4278                 chk.validateTypeAnnotation(tree, false);
4279             }
4280             super.visitAnnotation(tree);
4281         }
4282         public void visitTypeParameter(JCTypeParameter tree) {
4283             chk.validateTypeAnnotations(tree.annotations, true);
4284             scan(tree.bounds);
4285             // Don't call super.
4286             // This is needed because above we call validateTypeAnnotation with
4287             // false, which would forbid annotations on type parameters.
4288             // super.visitTypeParameter(tree);
4289         }
4290         public void visitMethodDef(JCMethodDecl tree) {
4291             // Static methods cannot have receiver type annotations.
4292             // In test case FailOver15.java, the nested method getString has
4293             // a null sym, because an unknown class is instantiated.
4294             // I would say it's safe to skip.
4295             if (tree.sym != null && (tree.sym.flags() & Flags.STATIC) != 0) {
4296                 if (tree.recvparam != null) {
4297                     // TODO: better error message. Is the pos good?
4298                     log.error(tree.recvparam.pos(), "annotation.type.not.applicable");
4299                 }
4300             }
4301             if (tree.restype != null && tree.restype.type != null) {
4302                 validateAnnotatedType(tree.restype, tree.restype.type);
4303             }
4304             super.visitMethodDef(tree);
4305         }
4306         public void visitVarDef(final JCVariableDecl tree) {
4307             if (tree.sym != null && tree.sym.type != null)
4308                 validateAnnotatedType(tree, tree.sym.type);
4309             super.visitVarDef(tree);
4310         }
4311         public void visitTypeCast(JCTypeCast tree) {
4312             if (tree.clazz != null && tree.clazz.type != null)
4313                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4314             super.visitTypeCast(tree);
4315         }
4316         public void visitTypeTest(JCInstanceOf tree) {
4317             if (tree.clazz != null && tree.clazz.type != null)
4318                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4319             super.visitTypeTest(tree);
4320         }
4321         // TODO: what else do we need?
4322         // public void visitNewClass(JCNewClass tree) {
4323         // public void visitNewArray(JCNewArray tree) {
4324 
4325         /* I would want to model this after
4326          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4327          * and override visitSelect and visitTypeApply.
4328          * However, we only set the annotated type in the top-level type
4329          * of the symbol.
4330          * Therefore, we need to override each individual location where a type
4331          * can occur.
4332          */
4333         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4334             if (type.getEnclosingType() != null &&
4335                     type != type.getEnclosingType()) {
4336                 validateEnclosingAnnotatedType(errtree, type.getEnclosingType());
4337             }
4338             for (Type targ : type.getTypeArguments()) {
4339                 validateAnnotatedType(errtree, targ);
4340             }
4341         }
4342         private void validateEnclosingAnnotatedType(final JCTree errtree, final Type type) {
4343             validateAnnotatedType(errtree, type);
4344             if (type.tsym != null &&
4345                     type.tsym.isStatic() &&
4346                     type.getAnnotationMirrors().nonEmpty()) {
4347                     // Enclosing static classes cannot have type annotations.
4348                 log.error(errtree.pos(), "cant.annotate.static.class");
4349             }
4350         }
4351     };
4352 
4353     // <editor-fold desc="post-attribution visitor">
4354 
4355     /**
4356      * Handle missing types/symbols in an AST. This routine is useful when
4357      * the compiler has encountered some errors (which might have ended up
4358      * terminating attribution abruptly); if the compiler is used in fail-over
4359      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4360      * prevents NPE to be progagated during subsequent compilation steps.
4361      */
4362     public void postAttr(JCTree tree) {
4363         new PostAttrAnalyzer().scan(tree);
4364     }
4365 
4366     class PostAttrAnalyzer extends TreeScanner {
4367 
4368         private void initTypeIfNeeded(JCTree that) {
4369             if (that.type == null) {
4370                 that.type = syms.unknownType;
4371             }
4372         }
4373 
4374         @Override
4375         public void scan(JCTree tree) {
4376             if (tree == null) return;
4377             if (tree instanceof JCExpression) {
4378                 initTypeIfNeeded(tree);
4379             }
4380             super.scan(tree);
4381         }
4382 
4383         @Override
4384         public void visitIdent(JCIdent that) {
4385             if (that.sym == null) {
4386                 that.sym = syms.unknownSymbol;
4387             }
4388         }
4389 
4390         @Override
4391         public void visitSelect(JCFieldAccess that) {
4392             if (that.sym == null) {
4393                 that.sym = syms.unknownSymbol;
4394             }
4395             super.visitSelect(that);
4396         }
4397 
4398         @Override
4399         public void visitClassDef(JCClassDecl that) {
4400             initTypeIfNeeded(that);
4401             if (that.sym == null) {
4402                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4403             }
4404             super.visitClassDef(that);
4405         }
4406 
4407         @Override
4408         public void visitMethodDef(JCMethodDecl that) {
4409             initTypeIfNeeded(that);
4410             if (that.sym == null) {
4411                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4412             }
4413             super.visitMethodDef(that);
4414         }
4415 
4416         @Override
4417         public void visitVarDef(JCVariableDecl that) {
4418             initTypeIfNeeded(that);
4419             if (that.sym == null) {
4420                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4421                 that.sym.adr = 0;
4422             }
4423             super.visitVarDef(that);
4424         }
4425 
4426         @Override
4427         public void visitNewClass(JCNewClass that) {
4428             if (that.constructor == null) {
4429                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
4430             }
4431             if (that.constructorType == null) {
4432                 that.constructorType = syms.unknownType;
4433             }
4434             super.visitNewClass(that);
4435         }
4436 
4437         @Override
4438         public void visitAssignop(JCAssignOp that) {
4439             if (that.operator == null)
4440                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4441             super.visitAssignop(that);
4442         }
4443 
4444         @Override
4445         public void visitBinary(JCBinary that) {
4446             if (that.operator == null)
4447                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4448             super.visitBinary(that);
4449         }
4450 
4451         @Override
4452         public void visitUnary(JCUnary that) {
4453             if (that.operator == null)
4454                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4455             super.visitUnary(that);
4456         }
4457 
4458         @Override
4459         public void visitLambda(JCLambda that) {
4460             super.visitLambda(that);
4461             if (that.descriptorType == null) {
4462                 that.descriptorType = syms.unknownType;
4463             }
4464             if (that.targets == null) {
4465                 that.targets = List.nil();
4466             }
4467         }
4468 
4469         @Override
4470         public void visitReference(JCMemberReference that) {
4471             super.visitReference(that);
4472             if (that.sym == null) {
4473                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
4474             }
4475             if (that.descriptorType == null) {
4476                 that.descriptorType = syms.unknownType;
4477             }
4478             if (that.targets == null) {
4479                 that.targets = List.nil();
4480             }
4481         }
4482     }
4483     // </editor-fold>
4484 }