1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.code;
  27 
  28 import java.lang.ref.SoftReference;
  29 import java.util.HashSet;
  30 import java.util.HashMap;
  31 import java.util.Locale;
  32 import java.util.Map;
  33 import java.util.Set;
  34 import java.util.WeakHashMap;
  35 
  36 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
  37 import com.sun.tools.javac.code.Lint.LintCategory;
  38 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
  39 import com.sun.tools.javac.comp.Check;
  40 import com.sun.tools.javac.jvm.ClassReader;
  41 import com.sun.tools.javac.util.*;
  42 import static com.sun.tools.javac.code.BoundKind.*;
  43 import static com.sun.tools.javac.code.Flags.*;
  44 import static com.sun.tools.javac.code.Scope.*;
  45 import static com.sun.tools.javac.code.Symbol.*;
  46 import static com.sun.tools.javac.code.Type.*;
  47 import static com.sun.tools.javac.code.TypeTag.*;
  48 import static com.sun.tools.javac.jvm.ClassFile.externalize;
  49 import static com.sun.tools.javac.util.ListBuffer.lb;
  50 
  51 /**
  52  * Utility class containing various operations on types.
  53  *
  54  * <p>Unless other names are more illustrative, the following naming
  55  * conventions should be observed in this file:
  56  *
  57  * <dl>
  58  * <dt>t</dt>
  59  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
  60  * <dt>s</dt>
  61  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
  62  * <dt>ts</dt>
  63  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
  64  * <dt>ss</dt>
  65  * <dd>A second list of types should be named ss.</dd>
  66  * </dl>
  67  *
  68  * <p><b>This is NOT part of any supported API.
  69  * If you write code that depends on this, you do so at your own risk.
  70  * This code and its internal interfaces are subject to change or
  71  * deletion without notice.</b>
  72  */
  73 public class Types {
  74     protected static final Context.Key<Types> typesKey =
  75         new Context.Key<Types>();
  76 
  77     final Symtab syms;
  78     final JavacMessages messages;
  79     final Names names;
  80     final boolean allowBoxing;
  81     final boolean allowCovariantReturns;
  82     final boolean allowObjectToPrimitiveCast;
  83     final boolean allowDefaultMethods;
  84     final ClassReader reader;
  85     final Check chk;
  86     JCDiagnostic.Factory diags;
  87     List<Warner> warnStack = List.nil();
  88     final Name capturedName;
  89     private final FunctionDescriptorLookupError functionDescriptorLookupError;
  90 
  91     public final Warner noWarnings;
  92 
  93     // <editor-fold defaultstate="collapsed" desc="Instantiating">
  94     public static Types instance(Context context) {
  95         Types instance = context.get(typesKey);
  96         if (instance == null)
  97             instance = new Types(context);
  98         return instance;
  99     }
 100 
 101     protected Types(Context context) {
 102         context.put(typesKey, this);
 103         syms = Symtab.instance(context);
 104         names = Names.instance(context);
 105         Source source = Source.instance(context);
 106         allowBoxing = source.allowBoxing();
 107         allowCovariantReturns = source.allowCovariantReturns();
 108         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
 109         allowDefaultMethods = source.allowDefaultMethods();
 110         reader = ClassReader.instance(context);
 111         chk = Check.instance(context);
 112         capturedName = names.fromString("<captured wildcard>");
 113         messages = JavacMessages.instance(context);
 114         diags = JCDiagnostic.Factory.instance(context);
 115         functionDescriptorLookupError = new FunctionDescriptorLookupError();
 116         noWarnings = new Warner(null);
 117     }
 118     // </editor-fold>
 119 
 120     // <editor-fold defaultstate="collapsed" desc="upperBound">
 121     /**
 122      * The "rvalue conversion".<br>
 123      * The upper bound of most types is the type
 124      * itself.  Wildcards, on the other hand have upper
 125      * and lower bounds.
 126      * @param t a type
 127      * @return the upper bound of the given type
 128      */
 129     public Type upperBound(Type t) {
 130         return upperBound.visit(t);
 131     }
 132     // where
 133         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
 134 
 135             @Override
 136             public Type visitWildcardType(WildcardType t, Void ignored) {
 137                 if (t.isSuperBound())
 138                     return t.bound == null ? syms.objectType : t.bound.bound;
 139                 else
 140                     return visit(t.type);
 141             }
 142 
 143             @Override
 144             public Type visitCapturedType(CapturedType t, Void ignored) {
 145                 return visit(t.bound);
 146             }
 147         };
 148     // </editor-fold>
 149 
 150     // <editor-fold defaultstate="collapsed" desc="lowerBound">
 151     /**
 152      * The "lvalue conversion".<br>
 153      * The lower bound of most types is the type
 154      * itself.  Wildcards, on the other hand have upper
 155      * and lower bounds.
 156      * @param t a type
 157      * @return the lower bound of the given type
 158      */
 159     public Type lowerBound(Type t) {
 160         return lowerBound.visit(t);
 161     }
 162     // where
 163         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
 164 
 165             @Override
 166             public Type visitWildcardType(WildcardType t, Void ignored) {
 167                 return t.isExtendsBound() ? syms.botType : visit(t.type);
 168             }
 169 
 170             @Override
 171             public Type visitCapturedType(CapturedType t, Void ignored) {
 172                 return visit(t.getLowerBound());
 173             }
 174         };
 175     // </editor-fold>
 176 
 177     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
 178     /**
 179      * Checks that all the arguments to a class are unbounded
 180      * wildcards or something else that doesn't make any restrictions
 181      * on the arguments. If a class isUnbounded, a raw super- or
 182      * subclass can be cast to it without a warning.
 183      * @param t a type
 184      * @return true iff the given type is unbounded or raw
 185      */
 186     public boolean isUnbounded(Type t) {
 187         return isUnbounded.visit(t);
 188     }
 189     // where
 190         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
 191 
 192             public Boolean visitType(Type t, Void ignored) {
 193                 return true;
 194             }
 195 
 196             @Override
 197             public Boolean visitClassType(ClassType t, Void ignored) {
 198                 List<Type> parms = t.tsym.type.allparams();
 199                 List<Type> args = t.allparams();
 200                 while (parms.nonEmpty()) {
 201                     WildcardType unb = new WildcardType(syms.objectType,
 202                                                         BoundKind.UNBOUND,
 203                                                         syms.boundClass,
 204                                                         (TypeVar)parms.head.unannotatedType());
 205                     if (!containsType(args.head, unb))
 206                         return false;
 207                     parms = parms.tail;
 208                     args = args.tail;
 209                 }
 210                 return true;
 211             }
 212         };
 213     // </editor-fold>
 214 
 215     // <editor-fold defaultstate="collapsed" desc="asSub">
 216     /**
 217      * Return the least specific subtype of t that starts with symbol
 218      * sym.  If none exists, return null.  The least specific subtype
 219      * is determined as follows:
 220      *
 221      * <p>If there is exactly one parameterized instance of sym that is a
 222      * subtype of t, that parameterized instance is returned.<br>
 223      * Otherwise, if the plain type or raw type `sym' is a subtype of
 224      * type t, the type `sym' itself is returned.  Otherwise, null is
 225      * returned.
 226      */
 227     public Type asSub(Type t, Symbol sym) {
 228         return asSub.visit(t, sym);
 229     }
 230     // where
 231         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
 232 
 233             public Type visitType(Type t, Symbol sym) {
 234                 return null;
 235             }
 236 
 237             @Override
 238             public Type visitClassType(ClassType t, Symbol sym) {
 239                 if (t.tsym == sym)
 240                     return t;
 241                 Type base = asSuper(sym.type, t.tsym);
 242                 if (base == null)
 243                     return null;
 244                 ListBuffer<Type> from = new ListBuffer<Type>();
 245                 ListBuffer<Type> to = new ListBuffer<Type>();
 246                 try {
 247                     adapt(base, t, from, to);
 248                 } catch (AdaptFailure ex) {
 249                     return null;
 250                 }
 251                 Type res = subst(sym.type, from.toList(), to.toList());
 252                 if (!isSubtype(res, t))
 253                     return null;
 254                 ListBuffer<Type> openVars = new ListBuffer<Type>();
 255                 for (List<Type> l = sym.type.allparams();
 256                      l.nonEmpty(); l = l.tail)
 257                     if (res.contains(l.head) && !t.contains(l.head))
 258                         openVars.append(l.head);
 259                 if (openVars.nonEmpty()) {
 260                     if (t.isRaw()) {
 261                         // The subtype of a raw type is raw
 262                         res = erasure(res);
 263                     } else {
 264                         // Unbound type arguments default to ?
 265                         List<Type> opens = openVars.toList();
 266                         ListBuffer<Type> qs = new ListBuffer<Type>();
 267                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
 268                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head.unannotatedType()));
 269                         }
 270                         res = subst(res, opens, qs.toList());
 271                     }
 272                 }
 273                 return res;
 274             }
 275 
 276             @Override
 277             public Type visitErrorType(ErrorType t, Symbol sym) {
 278                 return t;
 279             }
 280         };
 281     // </editor-fold>
 282 
 283     // <editor-fold defaultstate="collapsed" desc="isConvertible">
 284     /**
 285      * Is t a subtype of or convertible via boxing/unboxing
 286      * conversion to s?
 287      */
 288     public boolean isConvertible(Type t, Type s, Warner warn) {
 289         if (t.tag == ERROR)
 290             return true;
 291         boolean tPrimitive = t.isPrimitive();
 292         boolean sPrimitive = s.isPrimitive();
 293         if (tPrimitive == sPrimitive) {
 294             return isSubtypeUnchecked(t, s, warn);
 295         }
 296         if (!allowBoxing) return false;
 297         return tPrimitive
 298             ? isSubtype(boxedClass(t).type, s)
 299             : isSubtype(unboxedType(t), s);
 300     }
 301 
 302     /**
 303      * Is t a subtype of or convertiable via boxing/unboxing
 304      * convertions to s?
 305      */
 306     public boolean isConvertible(Type t, Type s) {
 307         return isConvertible(t, s, noWarnings);
 308     }
 309     // </editor-fold>
 310 
 311     // <editor-fold defaultstate="collapsed" desc="findSam">
 312 
 313     /**
 314      * Exception used to report a function descriptor lookup failure. The exception
 315      * wraps a diagnostic that can be used to generate more details error
 316      * messages.
 317      */
 318     public static class FunctionDescriptorLookupError extends RuntimeException {
 319         private static final long serialVersionUID = 0;
 320 
 321         JCDiagnostic diagnostic;
 322 
 323         FunctionDescriptorLookupError() {
 324             this.diagnostic = null;
 325         }
 326 
 327         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
 328             this.diagnostic = diag;
 329             return this;
 330         }
 331 
 332         public JCDiagnostic getDiagnostic() {
 333             return diagnostic;
 334         }
 335     }
 336 
 337     /**
 338      * A cache that keeps track of function descriptors associated with given
 339      * functional interfaces.
 340      */
 341     class DescriptorCache {
 342 
 343         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
 344 
 345         class FunctionDescriptor {
 346             Symbol descSym;
 347 
 348             FunctionDescriptor(Symbol descSym) {
 349                 this.descSym = descSym;
 350             }
 351 
 352             public Symbol getSymbol() {
 353                 return descSym;
 354             }
 355 
 356             public Type getType(Type site) {
 357                 site = removeWildcards(site);
 358                 if (!chk.checkValidGenericType(site)) {
 359                     //if the inferred functional interface type is not well-formed,
 360                     //or if it's not a subtype of the original target, issue an error
 361                     throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
 362                 }
 363                 return memberType(site, descSym);
 364             }
 365         }
 366 
 367         class Entry {
 368             final FunctionDescriptor cachedDescRes;
 369             final int prevMark;
 370 
 371             public Entry(FunctionDescriptor cachedDescRes,
 372                     int prevMark) {
 373                 this.cachedDescRes = cachedDescRes;
 374                 this.prevMark = prevMark;
 375             }
 376 
 377             boolean matches(int mark) {
 378                 return  this.prevMark == mark;
 379             }
 380         }
 381 
 382         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
 383             Entry e = _map.get(origin);
 384             CompoundScope members = membersClosure(origin.type, false);
 385             if (e == null ||
 386                     !e.matches(members.getMark())) {
 387                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
 388                 _map.put(origin, new Entry(descRes, members.getMark()));
 389                 return descRes;
 390             }
 391             else {
 392                 return e.cachedDescRes;
 393             }
 394         }
 395 
 396         /**
 397          * Compute the function descriptor associated with a given functional interface
 398          */
 399         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
 400             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
 401                 //t must be an interface
 402                 throw failure("not.a.functional.intf", origin);
 403             }
 404 
 405             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
 406             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
 407                 Type mtype = memberType(origin.type, sym);
 408                 if (abstracts.isEmpty() ||
 409                         (sym.name == abstracts.first().name &&
 410                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
 411                     abstracts.append(sym);
 412                 } else {
 413                     //the target method(s) should be the only abstract members of t
 414                     throw failure("not.a.functional.intf.1",  origin,
 415                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
 416                 }
 417             }
 418             if (abstracts.isEmpty()) {
 419                 //t must define a suitable non-generic method
 420                 throw failure("not.a.functional.intf.1", origin,
 421                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
 422             } else if (abstracts.size() == 1) {
 423                 return new FunctionDescriptor(abstracts.first());
 424             } else { // size > 1
 425                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
 426                 if (descRes == null) {
 427                     //we can get here if the functional interface is ill-formed
 428                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
 429                     for (Symbol desc : abstracts) {
 430                         String key = desc.type.getThrownTypes().nonEmpty() ?
 431                                 "descriptor.throws" : "descriptor";
 432                         descriptors.append(diags.fragment(key, desc.name,
 433                                 desc.type.getParameterTypes(),
 434                                 desc.type.getReturnType(),
 435                                 desc.type.getThrownTypes()));
 436                     }
 437                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
 438                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
 439                             Kinds.kindName(origin), origin), descriptors.toList());
 440                     throw failure(incompatibleDescriptors);
 441                 }
 442                 return descRes;
 443             }
 444         }
 445 
 446         /**
 447          * Compute a synthetic type for the target descriptor given a list
 448          * of override-equivalent methods in the functional interface type.
 449          * The resulting method type is a method type that is override-equivalent
 450          * and return-type substitutable with each method in the original list.
 451          */
 452         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
 453             //pick argument types - simply take the signature that is a
 454             //subsignature of all other signatures in the list (as per JLS 8.4.2)
 455             List<Symbol> mostSpecific = List.nil();
 456             outer: for (Symbol msym1 : methodSyms) {
 457                 Type mt1 = memberType(origin.type, msym1);
 458                 for (Symbol msym2 : methodSyms) {
 459                     Type mt2 = memberType(origin.type, msym2);
 460                     if (!isSubSignature(mt1, mt2)) {
 461                         continue outer;
 462                     }
 463                 }
 464                 mostSpecific = mostSpecific.prepend(msym1);
 465             }
 466             if (mostSpecific.isEmpty()) {
 467                 return null;
 468             }
 469 
 470 
 471             //pick return types - this is done in two phases: (i) first, the most
 472             //specific return type is chosen using strict subtyping; if this fails,
 473             //a second attempt is made using return type substitutability (see JLS 8.4.5)
 474             boolean phase2 = false;
 475             Symbol bestSoFar = null;
 476             while (bestSoFar == null) {
 477                 outer: for (Symbol msym1 : mostSpecific) {
 478                     Type mt1 = memberType(origin.type, msym1);
 479                     for (Symbol msym2 : methodSyms) {
 480                         Type mt2 = memberType(origin.type, msym2);
 481                         if (phase2 ?
 482                                 !returnTypeSubstitutable(mt1, mt2) :
 483                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
 484                             continue outer;
 485                         }
 486                     }
 487                     bestSoFar = msym1;
 488                 }
 489                 if (phase2) {
 490                     break;
 491                 } else {
 492                     phase2 = true;
 493                 }
 494             }
 495             if (bestSoFar == null) return null;
 496 
 497             //merge thrown types - form the intersection of all the thrown types in
 498             //all the signatures in the list
 499             List<Type> thrown = null;
 500             for (Symbol msym1 : methodSyms) {
 501                 Type mt1 = memberType(origin.type, msym1);
 502                 thrown = (thrown == null) ?
 503                     mt1.getThrownTypes() :
 504                     chk.intersect(mt1.getThrownTypes(), thrown);
 505             }
 506 
 507             final List<Type> thrown1 = thrown;
 508             return new FunctionDescriptor(bestSoFar) {
 509                 @Override
 510                 public Type getType(Type origin) {
 511                     Type mt = memberType(origin, getSymbol());
 512                     return createMethodTypeWithThrown(mt, thrown1);
 513                 }
 514             };
 515         }
 516 
 517         boolean isSubtypeInternal(Type s, Type t) {
 518             return (s.isPrimitive() && t.isPrimitive()) ?
 519                     isSameType(t, s) :
 520                     isSubtype(s, t);
 521         }
 522 
 523         FunctionDescriptorLookupError failure(String msg, Object... args) {
 524             return failure(diags.fragment(msg, args));
 525         }
 526 
 527         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
 528             return functionDescriptorLookupError.setMessage(diag);
 529         }
 530     }
 531 
 532     private DescriptorCache descCache = new DescriptorCache();
 533 
 534     /**
 535      * Find the method descriptor associated to this class symbol - if the
 536      * symbol 'origin' is not a functional interface, an exception is thrown.
 537      */
 538     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
 539         return descCache.get(origin).getSymbol();
 540     }
 541 
 542     /**
 543      * Find the type of the method descriptor associated to this class symbol -
 544      * if the symbol 'origin' is not a functional interface, an exception is thrown.
 545      */
 546     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
 547         return descCache.get(origin.tsym).getType(origin);
 548     }
 549 
 550     /**
 551      * Is given type a functional interface?
 552      */
 553     public boolean isFunctionalInterface(TypeSymbol tsym) {
 554         try {
 555             findDescriptorSymbol(tsym);
 556             return true;
 557         } catch (FunctionDescriptorLookupError ex) {
 558             return false;
 559         }
 560     }
 561 
 562     public boolean isFunctionalInterface(Type site) {
 563         try {
 564             findDescriptorType(site);
 565             return true;
 566         } catch (FunctionDescriptorLookupError ex) {
 567             return false;
 568         }
 569     }
 570 
 571     public Type removeWildcards(Type site) {
 572         Type capturedSite = capture(site);
 573         if (capturedSite != site) {
 574             Type formalInterface = site.tsym.type;
 575             ListBuffer<Type> typeargs = ListBuffer.lb();
 576             List<Type> actualTypeargs = site.getTypeArguments();
 577             List<Type> capturedTypeargs = capturedSite.getTypeArguments();
 578             //simply replace the wildcards with its bound
 579             for (Type t : formalInterface.getTypeArguments()) {
 580                 if (actualTypeargs.head.hasTag(WILDCARD)) {
 581                     WildcardType wt = (WildcardType)actualTypeargs.head.unannotatedType();
 582                     Type bound;
 583                     switch (wt.kind) {
 584                         case EXTENDS:
 585                         case UNBOUND:
 586                             CapturedType capVar = (CapturedType)capturedTypeargs.head.unannotatedType();
 587                             //use declared bound if it doesn't depend on formal type-args
 588                             bound = capVar.bound.containsAny(capturedSite.getTypeArguments()) ?
 589                                     wt.type : capVar.bound;
 590                             break;
 591                         default:
 592                             bound = wt.type;
 593                     }
 594                     typeargs.append(bound);
 595                 } else {
 596                     typeargs.append(actualTypeargs.head);
 597                 }
 598                 actualTypeargs = actualTypeargs.tail;
 599                 capturedTypeargs = capturedTypeargs.tail;
 600             }
 601             return subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
 602         } else {
 603             return site;
 604         }
 605     }
 606     // </editor-fold>
 607 
 608    /**
 609     * Scope filter used to skip methods that should be ignored (such as methods
 610     * overridden by j.l.Object) during function interface conversion interface check
 611     */
 612     class DescriptorFilter implements Filter<Symbol> {
 613 
 614        TypeSymbol origin;
 615 
 616        DescriptorFilter(TypeSymbol origin) {
 617            this.origin = origin;
 618        }
 619 
 620        @Override
 621        public boolean accepts(Symbol sym) {
 622            return sym.kind == Kinds.MTH &&
 623                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
 624                    !overridesObjectMethod(origin, sym) &&
 625                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
 626        }
 627     };
 628 
 629     // <editor-fold defaultstate="collapsed" desc="isSubtype">
 630     /**
 631      * Is t an unchecked subtype of s?
 632      */
 633     public boolean isSubtypeUnchecked(Type t, Type s) {
 634         return isSubtypeUnchecked(t, s, noWarnings);
 635     }
 636     /**
 637      * Is t an unchecked subtype of s?
 638      */
 639     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
 640         boolean result = isSubtypeUncheckedInternal(t, s, warn);
 641         if (result) {
 642             checkUnsafeVarargsConversion(t, s, warn);
 643         }
 644         return result;
 645     }
 646     //where
 647         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
 648             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
 649                 t = t.unannotatedType();
 650                 s = s.unannotatedType();
 651                 if (((ArrayType)t).elemtype.isPrimitive()) {
 652                     return isSameType(elemtype(t), elemtype(s));
 653                 } else {
 654                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
 655                 }
 656             } else if (isSubtype(t, s)) {
 657                 return true;
 658             }
 659             else if (t.tag == TYPEVAR) {
 660                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
 661             }
 662             else if (!s.isRaw()) {
 663                 Type t2 = asSuper(t, s.tsym);
 664                 if (t2 != null && t2.isRaw()) {
 665                     if (isReifiable(s))
 666                         warn.silentWarn(LintCategory.UNCHECKED);
 667                     else
 668                         warn.warn(LintCategory.UNCHECKED);
 669                     return true;
 670                 }
 671             }
 672             return false;
 673         }
 674 
 675         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
 676             if (t.tag != ARRAY || isReifiable(t))
 677                 return;
 678             t = t.unannotatedType();
 679             s = s.unannotatedType();
 680             ArrayType from = (ArrayType)t;
 681             boolean shouldWarn = false;
 682             switch (s.tag) {
 683                 case ARRAY:
 684                     ArrayType to = (ArrayType)s;
 685                     shouldWarn = from.isVarargs() &&
 686                             !to.isVarargs() &&
 687                             !isReifiable(from);
 688                     break;
 689                 case CLASS:
 690                     shouldWarn = from.isVarargs();
 691                     break;
 692             }
 693             if (shouldWarn) {
 694                 warn.warn(LintCategory.VARARGS);
 695             }
 696         }
 697 
 698     /**
 699      * Is t a subtype of s?<br>
 700      * (not defined for Method and ForAll types)
 701      */
 702     final public boolean isSubtype(Type t, Type s) {
 703         return isSubtype(t, s, true);
 704     }
 705     final public boolean isSubtypeNoCapture(Type t, Type s) {
 706         return isSubtype(t, s, false);
 707     }
 708     public boolean isSubtype(Type t, Type s, boolean capture) {
 709         if (t == s)
 710             return true;
 711 
 712         t = t.unannotatedType();
 713         s = s.unannotatedType();
 714 
 715         if (t == s)
 716             return true;
 717 
 718         if (s.isPartial())
 719             return isSuperType(s, t);
 720 
 721         if (s.isCompound()) {
 722             for (Type s2 : interfaces(s).prepend(supertype(s))) {
 723                 if (!isSubtype(t, s2, capture))
 724                     return false;
 725             }
 726             return true;
 727         }
 728 
 729         Type lower = lowerBound(s);
 730         if (s != lower)
 731             return isSubtype(capture ? capture(t) : t, lower, false);
 732 
 733         return isSubtype.visit(capture ? capture(t) : t, s);
 734     }
 735     // where
 736         private TypeRelation isSubtype = new TypeRelation()
 737         {
 738             public Boolean visitType(Type t, Type s) {
 739                 switch (t.tag) {
 740                  case BYTE:
 741                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
 742                  case CHAR:
 743                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
 744                  case SHORT: case INT: case LONG:
 745                  case FLOAT: case DOUBLE:
 746                      return t.getTag().isSubRangeOf(s.getTag());
 747                  case BOOLEAN: case VOID:
 748                      return t.hasTag(s.getTag());
 749                  case TYPEVAR:
 750                      return isSubtypeNoCapture(t.getUpperBound(), s);
 751                  case BOT:
 752                      return
 753                          s.hasTag(BOT) || s.hasTag(CLASS) ||
 754                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
 755                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
 756                  case NONE:
 757                      return false;
 758                  default:
 759                      throw new AssertionError("isSubtype " + t.tag);
 760                  }
 761             }
 762 
 763             private Set<TypePair> cache = new HashSet<TypePair>();
 764 
 765             private boolean containsTypeRecursive(Type t, Type s) {
 766                 TypePair pair = new TypePair(t, s);
 767                 if (cache.add(pair)) {
 768                     try {
 769                         return containsType(t.getTypeArguments(),
 770                                             s.getTypeArguments());
 771                     } finally {
 772                         cache.remove(pair);
 773                     }
 774                 } else {
 775                     return containsType(t.getTypeArguments(),
 776                                         rewriteSupers(s).getTypeArguments());
 777                 }
 778             }
 779 
 780             private Type rewriteSupers(Type t) {
 781                 if (!t.isParameterized())
 782                     return t;
 783                 ListBuffer<Type> from = lb();
 784                 ListBuffer<Type> to = lb();
 785                 adaptSelf(t, from, to);
 786                 if (from.isEmpty())
 787                     return t;
 788                 ListBuffer<Type> rewrite = lb();
 789                 boolean changed = false;
 790                 for (Type orig : to.toList()) {
 791                     Type s = rewriteSupers(orig);
 792                     if (s.isSuperBound() && !s.isExtendsBound()) {
 793                         s = new WildcardType(syms.objectType,
 794                                              BoundKind.UNBOUND,
 795                                              syms.boundClass);
 796                         changed = true;
 797                     } else if (s != orig) {
 798                         s = new WildcardType(upperBound(s),
 799                                              BoundKind.EXTENDS,
 800                                              syms.boundClass);
 801                         changed = true;
 802                     }
 803                     rewrite.append(s);
 804                 }
 805                 if (changed)
 806                     return subst(t.tsym.type, from.toList(), rewrite.toList());
 807                 else
 808                     return t;
 809             }
 810 
 811             @Override
 812             public Boolean visitClassType(ClassType t, Type s) {
 813                 Type sup = asSuper(t, s.tsym);
 814                 return sup != null
 815                     && sup.tsym == s.tsym
 816                     // You're not allowed to write
 817                     //     Vector<Object> vec = new Vector<String>();
 818                     // But with wildcards you can write
 819                     //     Vector<? extends Object> vec = new Vector<String>();
 820                     // which means that subtype checking must be done
 821                     // here instead of same-type checking (via containsType).
 822                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
 823                     && isSubtypeNoCapture(sup.getEnclosingType(),
 824                                           s.getEnclosingType());
 825             }
 826 
 827             @Override
 828             public Boolean visitArrayType(ArrayType t, Type s) {
 829                 if (s.tag == ARRAY) {
 830                     if (t.elemtype.isPrimitive())
 831                         return isSameType(t.elemtype, elemtype(s));
 832                     else
 833                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
 834                 }
 835 
 836                 if (s.tag == CLASS) {
 837                     Name sname = s.tsym.getQualifiedName();
 838                     return sname == names.java_lang_Object
 839                         || sname == names.java_lang_Cloneable
 840                         || sname == names.java_io_Serializable;
 841                 }
 842 
 843                 return false;
 844             }
 845 
 846             @Override
 847             public Boolean visitUndetVar(UndetVar t, Type s) {
 848                 //todo: test against origin needed? or replace with substitution?
 849                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
 850                     return true;
 851                 } else if (s.tag == BOT) {
 852                     //if 's' is 'null' there's no instantiated type U for which
 853                     //U <: s (but 'null' itself, which is not a valid type)
 854                     return false;
 855                 }
 856 
 857                 t.addBound(InferenceBound.UPPER, s, Types.this);
 858                 return true;
 859             }
 860 
 861             @Override
 862             public Boolean visitErrorType(ErrorType t, Type s) {
 863                 return true;
 864             }
 865         };
 866 
 867     /**
 868      * Is t a subtype of every type in given list `ts'?<br>
 869      * (not defined for Method and ForAll types)<br>
 870      * Allows unchecked conversions.
 871      */
 872     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
 873         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
 874             if (!isSubtypeUnchecked(t, l.head, warn))
 875                 return false;
 876         return true;
 877     }
 878 
 879     /**
 880      * Are corresponding elements of ts subtypes of ss?  If lists are
 881      * of different length, return false.
 882      */
 883     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
 884         while (ts.tail != null && ss.tail != null
 885                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
 886                isSubtype(ts.head, ss.head)) {
 887             ts = ts.tail;
 888             ss = ss.tail;
 889         }
 890         return ts.tail == null && ss.tail == null;
 891         /*inlined: ts.isEmpty() && ss.isEmpty();*/
 892     }
 893 
 894     /**
 895      * Are corresponding elements of ts subtypes of ss, allowing
 896      * unchecked conversions?  If lists are of different length,
 897      * return false.
 898      **/
 899     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
 900         while (ts.tail != null && ss.tail != null
 901                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
 902                isSubtypeUnchecked(ts.head, ss.head, warn)) {
 903             ts = ts.tail;
 904             ss = ss.tail;
 905         }
 906         return ts.tail == null && ss.tail == null;
 907         /*inlined: ts.isEmpty() && ss.isEmpty();*/
 908     }
 909     // </editor-fold>
 910 
 911     // <editor-fold defaultstate="collapsed" desc="isSuperType">
 912     /**
 913      * Is t a supertype of s?
 914      */
 915     public boolean isSuperType(Type t, Type s) {
 916         switch (t.tag) {
 917         case ERROR:
 918             return true;
 919         case UNDETVAR: {
 920             UndetVar undet = (UndetVar)t;
 921             if (t == s ||
 922                 undet.qtype == s ||
 923                 s.tag == ERROR ||
 924                 s.tag == BOT) return true;
 925             undet.addBound(InferenceBound.LOWER, s, this);
 926             return true;
 927         }
 928         default:
 929             return isSubtype(s, t);
 930         }
 931     }
 932     // </editor-fold>
 933 
 934     // <editor-fold defaultstate="collapsed" desc="isSameType">
 935     /**
 936      * Are corresponding elements of the lists the same type?  If
 937      * lists are of different length, return false.
 938      */
 939     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
 940         return isSameTypes(ts, ss, false);
 941     }
 942     public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
 943         while (ts.tail != null && ss.tail != null
 944                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
 945                isSameType(ts.head, ss.head, strict)) {
 946             ts = ts.tail;
 947             ss = ss.tail;
 948         }
 949         return ts.tail == null && ss.tail == null;
 950         /*inlined: ts.isEmpty() && ss.isEmpty();*/
 951     }
 952 
 953     /**
 954      * Is t the same type as s?
 955      */
 956     public boolean isSameType(Type t, Type s) {
 957         return isSameType(t, s, false);
 958     }
 959     public boolean isSameType(Type t, Type s, boolean strict) {
 960         return strict ?
 961                 isSameTypeStrict.visit(t, s) :
 962                 isSameTypeLoose.visit(t, s);
 963     }
 964     public boolean isSameAnnotatedType(Type t, Type s) {
 965         return isSameAnnotatedType.visit(t, s);
 966     }
 967     // where
 968         abstract class SameTypeVisitor extends TypeRelation {
 969 
 970             public Boolean visitType(Type t, Type s) {
 971                 if (t == s)
 972                     return true;
 973 
 974                 if (s.isPartial())
 975                     return visit(s, t);
 976 
 977                 switch (t.tag) {
 978                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
 979                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
 980                     return t.tag == s.tag;
 981                 case TYPEVAR: {
 982                     if (s.tag == TYPEVAR) {
 983                         //type-substitution does not preserve type-var types
 984                         //check that type var symbols and bounds are indeed the same
 985                         return sameTypeVars((TypeVar)t.unannotatedType(), (TypeVar)s.unannotatedType());
 986                     }
 987                     else {
 988                         //special case for s == ? super X, where upper(s) = u
 989                         //check that u == t, where u has been set by Type.withTypeVar
 990                         return s.isSuperBound() &&
 991                                 !s.isExtendsBound() &&
 992                                 visit(t, upperBound(s));
 993                     }
 994                 }
 995                 default:
 996                     throw new AssertionError("isSameType " + t.tag);
 997                 }
 998             }
 999 
1000             abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
1001 
1002             @Override
1003             public Boolean visitWildcardType(WildcardType t, Type s) {
1004                 if (s.isPartial())
1005                     return visit(s, t);
1006                 else
1007                     return false;
1008             }
1009 
1010             @Override
1011             public Boolean visitClassType(ClassType t, Type s) {
1012                 if (t == s)
1013                     return true;
1014 
1015                 if (s.isPartial())
1016                     return visit(s, t);
1017 
1018                 if (s.isSuperBound() && !s.isExtendsBound())
1019                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
1020 
1021                 if (t.isCompound() && s.isCompound()) {
1022                     if (!visit(supertype(t), supertype(s)))
1023                         return false;
1024 
1025                     HashSet<UniqueType> set = new HashSet<UniqueType>();
1026                     for (Type x : interfaces(t))
1027                         set.add(new UniqueType(x, Types.this));
1028                     for (Type x : interfaces(s)) {
1029                         if (!set.remove(new UniqueType(x, Types.this)))
1030                             return false;
1031                     }
1032                     return (set.isEmpty());
1033                 }
1034                 return t.tsym == s.tsym
1035                     && visit(t.getEnclosingType(), s.getEnclosingType())
1036                     && containsTypes(t.getTypeArguments(), s.getTypeArguments());
1037             }
1038 
1039             abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
1040 
1041             @Override
1042             public Boolean visitArrayType(ArrayType t, Type s) {
1043                 if (t == s)
1044                     return true;
1045 
1046                 if (s.isPartial())
1047                     return visit(s, t);
1048 
1049                 return s.hasTag(ARRAY)
1050                     && containsTypeEquivalent(t.elemtype, elemtype(s));
1051             }
1052 
1053             @Override
1054             public Boolean visitMethodType(MethodType t, Type s) {
1055                 // isSameType for methods does not take thrown
1056                 // exceptions into account!
1057                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
1058             }
1059 
1060             @Override
1061             public Boolean visitPackageType(PackageType t, Type s) {
1062                 return t == s;
1063             }
1064 
1065             @Override
1066             public Boolean visitForAll(ForAll t, Type s) {
1067                 if (s.tag != FORALL)
1068                     return false;
1069 
1070                 ForAll forAll = (ForAll)s;
1071                 return hasSameBounds(t, forAll)
1072                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
1073             }
1074 
1075             @Override
1076             public Boolean visitUndetVar(UndetVar t, Type s) {
1077                 if (s.tag == WILDCARD)
1078                     // FIXME, this might be leftovers from before capture conversion
1079                     return false;
1080 
1081                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
1082                     return true;
1083 
1084                 t.addBound(InferenceBound.EQ, s, Types.this);
1085 
1086                 return true;
1087             }
1088 
1089             @Override
1090             public Boolean visitErrorType(ErrorType t, Type s) {
1091                 return true;
1092             }
1093         }
1094 
1095         /**
1096          * Standard type-equality relation - type variables are considered
1097          * equals if they share the same type symbol.
1098          */
1099         TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
1100 
1101         private class LooseSameTypeVisitor extends SameTypeVisitor {
1102             @Override
1103             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1104                 return tv1.tsym == tv2.tsym && visit(tv1.getUpperBound(), tv2.getUpperBound());
1105             }
1106             @Override
1107             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1108                 return containsTypeEquivalent(ts1, ts2);
1109             }
1110         };
1111 
1112         /**
1113          * Strict type-equality relation - type variables are considered
1114          * equals if they share the same object identity.
1115          */
1116         TypeRelation isSameTypeStrict = new SameTypeVisitor() {
1117             @Override
1118             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1119                 return tv1 == tv2;
1120             }
1121             @Override
1122             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1123                 return isSameTypes(ts1, ts2, true);
1124             }
1125 
1126             @Override
1127             public Boolean visitWildcardType(WildcardType t, Type s) {
1128                 if (!s.hasTag(WILDCARD)) {
1129                     return false;
1130                 } else {
1131                     WildcardType t2 = (WildcardType)s.unannotatedType();
1132                     return t.kind == t2.kind &&
1133                             isSameType(t.type, t2.type, true);
1134                 }
1135             }
1136         };
1137 
1138         /**
1139          * A version of LooseSameTypeVisitor that takes AnnotatedTypes
1140          * into account.
1141          */
1142         TypeRelation isSameAnnotatedType = new LooseSameTypeVisitor() {
1143             @Override
1144             public Boolean visitAnnotatedType(AnnotatedType t, Type s) {
1145                 if (!s.isAnnotated())
1146                     return false;
1147                 if (!t.getAnnotationMirrors().containsAll(s.getAnnotationMirrors()))
1148                     return false;
1149                 if (!s.getAnnotationMirrors().containsAll(t.getAnnotationMirrors()))
1150                     return false;
1151                 return visit(t.underlyingType, s);
1152             }
1153         };
1154     // </editor-fold>
1155 
1156     // <editor-fold defaultstate="collapsed" desc="Contains Type">
1157     public boolean containedBy(Type t, Type s) {
1158         switch (t.tag) {
1159         case UNDETVAR:
1160             if (s.tag == WILDCARD) {
1161                 UndetVar undetvar = (UndetVar)t;
1162                 WildcardType wt = (WildcardType)s.unannotatedType();
1163                 switch(wt.kind) {
1164                     case UNBOUND: //similar to ? extends Object
1165                     case EXTENDS: {
1166                         Type bound = upperBound(s);
1167                         undetvar.addBound(InferenceBound.UPPER, bound, this);
1168                         break;
1169                     }
1170                     case SUPER: {
1171                         Type bound = lowerBound(s);
1172                         undetvar.addBound(InferenceBound.LOWER, bound, this);
1173                         break;
1174                     }
1175                 }
1176                 return true;
1177             } else {
1178                 return isSameType(t, s);
1179             }
1180         case ERROR:
1181             return true;
1182         default:
1183             return containsType(s, t);
1184         }
1185     }
1186 
1187     boolean containsType(List<Type> ts, List<Type> ss) {
1188         while (ts.nonEmpty() && ss.nonEmpty()
1189                && containsType(ts.head, ss.head)) {
1190             ts = ts.tail;
1191             ss = ss.tail;
1192         }
1193         return ts.isEmpty() && ss.isEmpty();
1194     }
1195 
1196     /**
1197      * Check if t contains s.
1198      *
1199      * <p>T contains S if:
1200      *
1201      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
1202      *
1203      * <p>This relation is only used by ClassType.isSubtype(), that
1204      * is,
1205      *
1206      * <p>{@code C<S> <: C<T> if T contains S.}
1207      *
1208      * <p>Because of F-bounds, this relation can lead to infinite
1209      * recursion.  Thus we must somehow break that recursion.  Notice
1210      * that containsType() is only called from ClassType.isSubtype().
1211      * Since the arguments have already been checked against their
1212      * bounds, we know:
1213      *
1214      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
1215      *
1216      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
1217      *
1218      * @param t a type
1219      * @param s a type
1220      */
1221     public boolean containsType(Type t, Type s) {
1222         return containsType.visit(t, s);
1223     }
1224     // where
1225         private TypeRelation containsType = new TypeRelation() {
1226 
1227             private Type U(Type t) {
1228                 while (t.tag == WILDCARD) {
1229                     WildcardType w = (WildcardType)t.unannotatedType();
1230                     if (w.isSuperBound())
1231                         return w.bound == null ? syms.objectType : w.bound.bound;
1232                     else
1233                         t = w.type;
1234                 }
1235                 return t;
1236             }
1237 
1238             private Type L(Type t) {
1239                 while (t.tag == WILDCARD) {
1240                     WildcardType w = (WildcardType)t.unannotatedType();
1241                     if (w.isExtendsBound())
1242                         return syms.botType;
1243                     else
1244                         t = w.type;
1245                 }
1246                 return t;
1247             }
1248 
1249             public Boolean visitType(Type t, Type s) {
1250                 if (s.isPartial())
1251                     return containedBy(s, t);
1252                 else
1253                     return isSameType(t, s);
1254             }
1255 
1256 //            void debugContainsType(WildcardType t, Type s) {
1257 //                System.err.println();
1258 //                System.err.format(" does %s contain %s?%n", t, s);
1259 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
1260 //                                  upperBound(s), s, t, U(t),
1261 //                                  t.isSuperBound()
1262 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
1263 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
1264 //                                  L(t), t, s, lowerBound(s),
1265 //                                  t.isExtendsBound()
1266 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
1267 //                System.err.println();
1268 //            }
1269 
1270             @Override
1271             public Boolean visitWildcardType(WildcardType t, Type s) {
1272                 if (s.isPartial())
1273                     return containedBy(s, t);
1274                 else {
1275 //                    debugContainsType(t, s);
1276                     return isSameWildcard(t, s)
1277                         || isCaptureOf(s, t)
1278                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
1279                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
1280                 }
1281             }
1282 
1283             @Override
1284             public Boolean visitUndetVar(UndetVar t, Type s) {
1285                 if (s.tag != WILDCARD)
1286                     return isSameType(t, s);
1287                 else
1288                     return false;
1289             }
1290 
1291             @Override
1292             public Boolean visitErrorType(ErrorType t, Type s) {
1293                 return true;
1294             }
1295         };
1296 
1297     public boolean isCaptureOf(Type s, WildcardType t) {
1298         if (s.tag != TYPEVAR || !((TypeVar)s.unannotatedType()).isCaptured())
1299             return false;
1300         return isSameWildcard(t, ((CapturedType)s.unannotatedType()).wildcard);
1301     }
1302 
1303     public boolean isSameWildcard(WildcardType t, Type s) {
1304         if (s.tag != WILDCARD)
1305             return false;
1306         WildcardType w = (WildcardType)s.unannotatedType();
1307         return w.kind == t.kind && w.type == t.type;
1308     }
1309 
1310     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
1311         while (ts.nonEmpty() && ss.nonEmpty()
1312                && containsTypeEquivalent(ts.head, ss.head)) {
1313             ts = ts.tail;
1314             ss = ss.tail;
1315         }
1316         return ts.isEmpty() && ss.isEmpty();
1317     }
1318     // </editor-fold>
1319 
1320     /**
1321      * Can t and s be compared for equality?  Any primitive ==
1322      * primitive or primitive == object comparisons here are an error.
1323      * Unboxing and correct primitive == primitive comparisons are
1324      * already dealt with in Attr.visitBinary.
1325      *
1326      */
1327     public boolean isEqualityComparable(Type s, Type t, Warner warn) {
1328         if (t.isNumeric() && s.isNumeric())
1329             return true;
1330 
1331         boolean tPrimitive = t.isPrimitive();
1332         boolean sPrimitive = s.isPrimitive();
1333         if (!tPrimitive && !sPrimitive) {
1334             return isCastable(s, t, warn) || isCastable(t, s, warn);
1335         } else {
1336             return false;
1337         }
1338     }
1339 
1340     // <editor-fold defaultstate="collapsed" desc="isCastable">
1341     public boolean isCastable(Type t, Type s) {
1342         return isCastable(t, s, noWarnings);
1343     }
1344 
1345     /**
1346      * Is t is castable to s?<br>
1347      * s is assumed to be an erased type.<br>
1348      * (not defined for Method and ForAll types).
1349      */
1350     public boolean isCastable(Type t, Type s, Warner warn) {
1351         if (t == s)
1352             return true;
1353 
1354         if (t.isPrimitive() != s.isPrimitive())
1355             return allowBoxing && (
1356                     isConvertible(t, s, warn)
1357                     || (allowObjectToPrimitiveCast &&
1358                         s.isPrimitive() &&
1359                         isSubtype(boxedClass(s).type, t)));
1360         if (warn != warnStack.head) {
1361             try {
1362                 warnStack = warnStack.prepend(warn);
1363                 checkUnsafeVarargsConversion(t, s, warn);
1364                 return isCastable.visit(t,s);
1365             } finally {
1366                 warnStack = warnStack.tail;
1367             }
1368         } else {
1369             return isCastable.visit(t,s);
1370         }
1371     }
1372     // where
1373         private TypeRelation isCastable = new TypeRelation() {
1374 
1375             public Boolean visitType(Type t, Type s) {
1376                 if (s.tag == ERROR)
1377                     return true;
1378 
1379                 switch (t.tag) {
1380                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1381                 case DOUBLE:
1382                     return s.isNumeric();
1383                 case BOOLEAN:
1384                     return s.tag == BOOLEAN;
1385                 case VOID:
1386                     return false;
1387                 case BOT:
1388                     return isSubtype(t, s);
1389                 default:
1390                     throw new AssertionError();
1391                 }
1392             }
1393 
1394             @Override
1395             public Boolean visitWildcardType(WildcardType t, Type s) {
1396                 return isCastable(upperBound(t), s, warnStack.head);
1397             }
1398 
1399             @Override
1400             public Boolean visitClassType(ClassType t, Type s) {
1401                 if (s.tag == ERROR || s.tag == BOT)
1402                     return true;
1403 
1404                 if (s.tag == TYPEVAR) {
1405                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
1406                         warnStack.head.warn(LintCategory.UNCHECKED);
1407                         return true;
1408                     } else {
1409                         return false;
1410                     }
1411                 }
1412 
1413                 if (t.isCompound() || s.isCompound()) {
1414                     return !t.isCompound() ?
1415                             visitIntersectionType((IntersectionClassType)s.unannotatedType(), t, true) :
1416                             visitIntersectionType((IntersectionClassType)t.unannotatedType(), s, false);
1417                 }
1418 
1419                 if (s.tag == CLASS || s.tag == ARRAY) {
1420                     boolean upcast;
1421                     if ((upcast = isSubtype(erasure(t), erasure(s)))
1422                         || isSubtype(erasure(s), erasure(t))) {
1423                         if (!upcast && s.tag == ARRAY) {
1424                             if (!isReifiable(s))
1425                                 warnStack.head.warn(LintCategory.UNCHECKED);
1426                             return true;
1427                         } else if (s.isRaw()) {
1428                             return true;
1429                         } else if (t.isRaw()) {
1430                             if (!isUnbounded(s))
1431                                 warnStack.head.warn(LintCategory.UNCHECKED);
1432                             return true;
1433                         }
1434                         // Assume |a| <: |b|
1435                         final Type a = upcast ? t : s;
1436                         final Type b = upcast ? s : t;
1437                         final boolean HIGH = true;
1438                         final boolean LOW = false;
1439                         final boolean DONT_REWRITE_TYPEVARS = false;
1440                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
1441                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
1442                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
1443                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
1444                         Type lowSub = asSub(bLow, aLow.tsym);
1445                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1446                         if (highSub == null) {
1447                             final boolean REWRITE_TYPEVARS = true;
1448                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
1449                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
1450                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
1451                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
1452                             lowSub = asSub(bLow, aLow.tsym);
1453                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1454                         }
1455                         if (highSub != null) {
1456                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
1457                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
1458                             }
1459                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
1460                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
1461                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
1462                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
1463                                 if (upcast ? giveWarning(a, b) :
1464                                     giveWarning(b, a))
1465                                     warnStack.head.warn(LintCategory.UNCHECKED);
1466                                 return true;
1467                             }
1468                         }
1469                         if (isReifiable(s))
1470                             return isSubtypeUnchecked(a, b);
1471                         else
1472                             return isSubtypeUnchecked(a, b, warnStack.head);
1473                     }
1474 
1475                     // Sidecast
1476                     if (s.tag == CLASS) {
1477                         if ((s.tsym.flags() & INTERFACE) != 0) {
1478                             return ((t.tsym.flags() & FINAL) == 0)
1479                                 ? sideCast(t, s, warnStack.head)
1480                                 : sideCastFinal(t, s, warnStack.head);
1481                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
1482                             return ((s.tsym.flags() & FINAL) == 0)
1483                                 ? sideCast(t, s, warnStack.head)
1484                                 : sideCastFinal(t, s, warnStack.head);
1485                         } else {
1486                             // unrelated class types
1487                             return false;
1488                         }
1489                     }
1490                 }
1491                 return false;
1492             }
1493 
1494             boolean visitIntersectionType(IntersectionClassType ict, Type s, boolean reverse) {
1495                 Warner warn = noWarnings;
1496                 for (Type c : ict.getComponents()) {
1497                     warn.clear();
1498                     if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
1499                         return false;
1500                 }
1501                 if (warn.hasLint(LintCategory.UNCHECKED))
1502                     warnStack.head.warn(LintCategory.UNCHECKED);
1503                 return true;
1504             }
1505 
1506             @Override
1507             public Boolean visitArrayType(ArrayType t, Type s) {
1508                 switch (s.tag) {
1509                 case ERROR:
1510                 case BOT:
1511                     return true;
1512                 case TYPEVAR:
1513                     if (isCastable(s, t, noWarnings)) {
1514                         warnStack.head.warn(LintCategory.UNCHECKED);
1515                         return true;
1516                     } else {
1517                         return false;
1518                     }
1519                 case CLASS:
1520                     return isSubtype(t, s);
1521                 case ARRAY:
1522                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
1523                         return elemtype(t).tag == elemtype(s).tag;
1524                     } else {
1525                         return visit(elemtype(t), elemtype(s));
1526                     }
1527                 default:
1528                     return false;
1529                 }
1530             }
1531 
1532             @Override
1533             public Boolean visitTypeVar(TypeVar t, Type s) {
1534                 switch (s.tag) {
1535                 case ERROR:
1536                 case BOT:
1537                     return true;
1538                 case TYPEVAR:
1539                     if (isSubtype(t, s)) {
1540                         return true;
1541                     } else if (isCastable(t.bound, s, noWarnings)) {
1542                         warnStack.head.warn(LintCategory.UNCHECKED);
1543                         return true;
1544                     } else {
1545                         return false;
1546                     }
1547                 default:
1548                     return isCastable(t.bound, s, warnStack.head);
1549                 }
1550             }
1551 
1552             @Override
1553             public Boolean visitErrorType(ErrorType t, Type s) {
1554                 return true;
1555             }
1556         };
1557     // </editor-fold>
1558 
1559     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
1560     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
1561         while (ts.tail != null && ss.tail != null) {
1562             if (disjointType(ts.head, ss.head)) return true;
1563             ts = ts.tail;
1564             ss = ss.tail;
1565         }
1566         return false;
1567     }
1568 
1569     /**
1570      * Two types or wildcards are considered disjoint if it can be
1571      * proven that no type can be contained in both. It is
1572      * conservative in that it is allowed to say that two types are
1573      * not disjoint, even though they actually are.
1574      *
1575      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
1576      * {@code X} and {@code Y} are not disjoint.
1577      */
1578     public boolean disjointType(Type t, Type s) {
1579         return disjointType.visit(t, s);
1580     }
1581     // where
1582         private TypeRelation disjointType = new TypeRelation() {
1583 
1584             private Set<TypePair> cache = new HashSet<TypePair>();
1585 
1586             public Boolean visitType(Type t, Type s) {
1587                 if (s.tag == WILDCARD)
1588                     return visit(s, t);
1589                 else
1590                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
1591             }
1592 
1593             private boolean isCastableRecursive(Type t, Type s) {
1594                 TypePair pair = new TypePair(t, s);
1595                 if (cache.add(pair)) {
1596                     try {
1597                         return Types.this.isCastable(t, s);
1598                     } finally {
1599                         cache.remove(pair);
1600                     }
1601                 } else {
1602                     return true;
1603                 }
1604             }
1605 
1606             private boolean notSoftSubtypeRecursive(Type t, Type s) {
1607                 TypePair pair = new TypePair(t, s);
1608                 if (cache.add(pair)) {
1609                     try {
1610                         return Types.this.notSoftSubtype(t, s);
1611                     } finally {
1612                         cache.remove(pair);
1613                     }
1614                 } else {
1615                     return false;
1616                 }
1617             }
1618 
1619             @Override
1620             public Boolean visitWildcardType(WildcardType t, Type s) {
1621                 if (t.isUnbound())
1622                     return false;
1623 
1624                 if (s.tag != WILDCARD) {
1625                     if (t.isExtendsBound())
1626                         return notSoftSubtypeRecursive(s, t.type);
1627                     else // isSuperBound()
1628                         return notSoftSubtypeRecursive(t.type, s);
1629                 }
1630 
1631                 if (s.isUnbound())
1632                     return false;
1633 
1634                 if (t.isExtendsBound()) {
1635                     if (s.isExtendsBound())
1636                         return !isCastableRecursive(t.type, upperBound(s));
1637                     else if (s.isSuperBound())
1638                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
1639                 } else if (t.isSuperBound()) {
1640                     if (s.isExtendsBound())
1641                         return notSoftSubtypeRecursive(t.type, upperBound(s));
1642                 }
1643                 return false;
1644             }
1645         };
1646     // </editor-fold>
1647 
1648     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
1649     /**
1650      * Returns the lower bounds of the formals of a method.
1651      */
1652     public List<Type> lowerBoundArgtypes(Type t) {
1653         return lowerBounds(t.getParameterTypes());
1654     }
1655     public List<Type> lowerBounds(List<Type> ts) {
1656         return map(ts, lowerBoundMapping);
1657     }
1658     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
1659             public Type apply(Type t) {
1660                 return lowerBound(t);
1661             }
1662         };
1663     // </editor-fold>
1664 
1665     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
1666     /**
1667      * This relation answers the question: is impossible that
1668      * something of type `t' can be a subtype of `s'? This is
1669      * different from the question "is `t' not a subtype of `s'?"
1670      * when type variables are involved: Integer is not a subtype of T
1671      * where {@code <T extends Number>} but it is not true that Integer cannot
1672      * possibly be a subtype of T.
1673      */
1674     public boolean notSoftSubtype(Type t, Type s) {
1675         if (t == s) return false;
1676         if (t.tag == TYPEVAR) {
1677             TypeVar tv = (TypeVar) t;
1678             return !isCastable(tv.bound,
1679                                relaxBound(s),
1680                                noWarnings);
1681         }
1682         if (s.tag != WILDCARD)
1683             s = upperBound(s);
1684 
1685         return !isSubtype(t, relaxBound(s));
1686     }
1687 
1688     private Type relaxBound(Type t) {
1689         if (t.tag == TYPEVAR) {
1690             while (t.tag == TYPEVAR)
1691                 t = t.getUpperBound();
1692             t = rewriteQuantifiers(t, true, true);
1693         }
1694         return t;
1695     }
1696     // </editor-fold>
1697 
1698     // <editor-fold defaultstate="collapsed" desc="isReifiable">
1699     public boolean isReifiable(Type t) {
1700         return isReifiable.visit(t);
1701     }
1702     // where
1703         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
1704 
1705             public Boolean visitType(Type t, Void ignored) {
1706                 return true;
1707             }
1708 
1709             @Override
1710             public Boolean visitClassType(ClassType t, Void ignored) {
1711                 if (t.isCompound())
1712                     return false;
1713                 else {
1714                     if (!t.isParameterized())
1715                         return true;
1716 
1717                     for (Type param : t.allparams()) {
1718                         if (!param.isUnbound())
1719                             return false;
1720                     }
1721                     return true;
1722                 }
1723             }
1724 
1725             @Override
1726             public Boolean visitArrayType(ArrayType t, Void ignored) {
1727                 return visit(t.elemtype);
1728             }
1729 
1730             @Override
1731             public Boolean visitTypeVar(TypeVar t, Void ignored) {
1732                 return false;
1733             }
1734         };
1735     // </editor-fold>
1736 
1737     // <editor-fold defaultstate="collapsed" desc="Array Utils">
1738     public boolean isArray(Type t) {
1739         while (t.tag == WILDCARD)
1740             t = upperBound(t);
1741         return t.tag == ARRAY;
1742     }
1743 
1744     /**
1745      * The element type of an array.
1746      */
1747     public Type elemtype(Type t) {
1748         switch (t.tag) {
1749         case WILDCARD:
1750             return elemtype(upperBound(t));
1751         case ARRAY:
1752             t = t.unannotatedType();
1753             return ((ArrayType)t).elemtype;
1754         case FORALL:
1755             return elemtype(((ForAll)t).qtype);
1756         case ERROR:
1757             return t;
1758         default:
1759             return null;
1760         }
1761     }
1762 
1763     public Type elemtypeOrType(Type t) {
1764         Type elemtype = elemtype(t);
1765         return elemtype != null ?
1766             elemtype :
1767             t;
1768     }
1769 
1770     /**
1771      * Mapping to take element type of an arraytype
1772      */
1773     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
1774         public Type apply(Type t) { return elemtype(t); }
1775     };
1776 
1777     /**
1778      * The number of dimensions of an array type.
1779      */
1780     public int dimensions(Type t) {
1781         int result = 0;
1782         while (t.tag == ARRAY) {
1783             result++;
1784             t = elemtype(t);
1785         }
1786         return result;
1787     }
1788 
1789     /**
1790      * Returns an ArrayType with the component type t
1791      *
1792      * @param t The component type of the ArrayType
1793      * @return the ArrayType for the given component
1794      */
1795     public ArrayType makeArrayType(Type t) {
1796         if (t.tag == VOID ||
1797             t.tag == PACKAGE) {
1798             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
1799         }
1800         return new ArrayType(t, syms.arrayClass);
1801     }
1802     // </editor-fold>
1803 
1804     // <editor-fold defaultstate="collapsed" desc="asSuper">
1805     /**
1806      * Return the (most specific) base type of t that starts with the
1807      * given symbol.  If none exists, return null.
1808      *
1809      * @param t a type
1810      * @param sym a symbol
1811      */
1812     public Type asSuper(Type t, Symbol sym) {
1813         return asSuper.visit(t, sym);
1814     }
1815     // where
1816         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
1817 
1818             public Type visitType(Type t, Symbol sym) {
1819                 return null;
1820             }
1821 
1822             @Override
1823             public Type visitClassType(ClassType t, Symbol sym) {
1824                 if (t.tsym == sym)
1825                     return t;
1826 
1827                 Type st = supertype(t);
1828                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
1829                     Type x = asSuper(st, sym);
1830                     if (x != null)
1831                         return x;
1832                 }
1833                 if ((sym.flags() & INTERFACE) != 0) {
1834                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
1835                         Type x = asSuper(l.head, sym);
1836                         if (x != null)
1837                             return x;
1838                     }
1839                 }
1840                 return null;
1841             }
1842 
1843             @Override
1844             public Type visitArrayType(ArrayType t, Symbol sym) {
1845                 return isSubtype(t, sym.type) ? sym.type : null;
1846             }
1847 
1848             @Override
1849             public Type visitTypeVar(TypeVar t, Symbol sym) {
1850                 if (t.tsym == sym)
1851                     return t;
1852                 else
1853                     return asSuper(t.bound, sym);
1854             }
1855 
1856             @Override
1857             public Type visitErrorType(ErrorType t, Symbol sym) {
1858                 return t;
1859             }
1860         };
1861 
1862     /**
1863      * Return the base type of t or any of its outer types that starts
1864      * with the given symbol.  If none exists, return null.
1865      *
1866      * @param t a type
1867      * @param sym a symbol
1868      */
1869     public Type asOuterSuper(Type t, Symbol sym) {
1870         switch (t.tag) {
1871         case CLASS:
1872             do {
1873                 Type s = asSuper(t, sym);
1874                 if (s != null) return s;
1875                 t = t.getEnclosingType();
1876             } while (t.tag == CLASS);
1877             return null;
1878         case ARRAY:
1879             return isSubtype(t, sym.type) ? sym.type : null;
1880         case TYPEVAR:
1881             return asSuper(t, sym);
1882         case ERROR:
1883             return t;
1884         default:
1885             return null;
1886         }
1887     }
1888 
1889     /**
1890      * Return the base type of t or any of its enclosing types that
1891      * starts with the given symbol.  If none exists, return null.
1892      *
1893      * @param t a type
1894      * @param sym a symbol
1895      */
1896     public Type asEnclosingSuper(Type t, Symbol sym) {
1897         switch (t.tag) {
1898         case CLASS:
1899             do {
1900                 Type s = asSuper(t, sym);
1901                 if (s != null) return s;
1902                 Type outer = t.getEnclosingType();
1903                 t = (outer.tag == CLASS) ? outer :
1904                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
1905                     Type.noType;
1906             } while (t.tag == CLASS);
1907             return null;
1908         case ARRAY:
1909             return isSubtype(t, sym.type) ? sym.type : null;
1910         case TYPEVAR:
1911             return asSuper(t, sym);
1912         case ERROR:
1913             return t;
1914         default:
1915             return null;
1916         }
1917     }
1918     // </editor-fold>
1919 
1920     // <editor-fold defaultstate="collapsed" desc="memberType">
1921     /**
1922      * The type of given symbol, seen as a member of t.
1923      *
1924      * @param t a type
1925      * @param sym a symbol
1926      */
1927     public Type memberType(Type t, Symbol sym) {
1928         return (sym.flags() & STATIC) != 0
1929             ? sym.type
1930             : memberType.visit(t, sym);
1931         }
1932     // where
1933         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
1934 
1935             public Type visitType(Type t, Symbol sym) {
1936                 return sym.type;
1937             }
1938 
1939             @Override
1940             public Type visitWildcardType(WildcardType t, Symbol sym) {
1941                 return memberType(upperBound(t), sym);
1942             }
1943 
1944             @Override
1945             public Type visitClassType(ClassType t, Symbol sym) {
1946                 Symbol owner = sym.owner;
1947                 long flags = sym.flags();
1948                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
1949                     Type base = asOuterSuper(t, owner);
1950                     //if t is an intersection type T = CT & I1 & I2 ... & In
1951                     //its supertypes CT, I1, ... In might contain wildcards
1952                     //so we need to go through capture conversion
1953                     base = t.isCompound() ? capture(base) : base;
1954                     if (base != null) {
1955                         List<Type> ownerParams = owner.type.allparams();
1956                         List<Type> baseParams = base.allparams();
1957                         if (ownerParams.nonEmpty()) {
1958                             if (baseParams.isEmpty()) {
1959                                 // then base is a raw type
1960                                 return erasure(sym.type);
1961                             } else {
1962                                 return subst(sym.type, ownerParams, baseParams);
1963                             }
1964                         }
1965                     }
1966                 }
1967                 return sym.type;
1968             }
1969 
1970             @Override
1971             public Type visitTypeVar(TypeVar t, Symbol sym) {
1972                 return memberType(t.bound, sym);
1973             }
1974 
1975             @Override
1976             public Type visitErrorType(ErrorType t, Symbol sym) {
1977                 return t;
1978             }
1979         };
1980     // </editor-fold>
1981 
1982     // <editor-fold defaultstate="collapsed" desc="isAssignable">
1983     public boolean isAssignable(Type t, Type s) {
1984         return isAssignable(t, s, noWarnings);
1985     }
1986 
1987     /**
1988      * Is t assignable to s?<br>
1989      * Equivalent to subtype except for constant values and raw
1990      * types.<br>
1991      * (not defined for Method and ForAll types)
1992      */
1993     public boolean isAssignable(Type t, Type s, Warner warn) {
1994         if (t.tag == ERROR)
1995             return true;
1996         if (t.tag.isSubRangeOf(INT) && t.constValue() != null) {
1997             int value = ((Number)t.constValue()).intValue();
1998             switch (s.tag) {
1999             case BYTE:
2000                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
2001                     return true;
2002                 break;
2003             case CHAR:
2004                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
2005                     return true;
2006                 break;
2007             case SHORT:
2008                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
2009                     return true;
2010                 break;
2011             case INT:
2012                 return true;
2013             case CLASS:
2014                 switch (unboxedType(s).tag) {
2015                 case BYTE:
2016                 case CHAR:
2017                 case SHORT:
2018                     return isAssignable(t, unboxedType(s), warn);
2019                 }
2020                 break;
2021             }
2022         }
2023         return isConvertible(t, s, warn);
2024     }
2025     // </editor-fold>
2026 
2027     // <editor-fold defaultstate="collapsed" desc="erasure">
2028     /**
2029      * The erasure of t {@code |t|} -- the type that results when all
2030      * type parameters in t are deleted.
2031      */
2032     public Type erasure(Type t) {
2033         return eraseNotNeeded(t)? t : erasure(t, false);
2034     }
2035     //where
2036     private boolean eraseNotNeeded(Type t) {
2037         // We don't want to erase primitive types and String type as that
2038         // operation is idempotent. Also, erasing these could result in loss
2039         // of information such as constant values attached to such types.
2040         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
2041     }
2042 
2043     private Type erasure(Type t, boolean recurse) {
2044         if (t.isPrimitive())
2045             return t; /* fast special case */
2046         else
2047             return erasure.visit(t, recurse);
2048         }
2049     // where
2050         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
2051             public Type visitType(Type t, Boolean recurse) {
2052                 if (t.isPrimitive())
2053                     return t; /*fast special case*/
2054                 else
2055                     return t.map(recurse ? erasureRecFun : erasureFun);
2056             }
2057 
2058             @Override
2059             public Type visitWildcardType(WildcardType t, Boolean recurse) {
2060                 return erasure(upperBound(t), recurse);
2061             }
2062 
2063             @Override
2064             public Type visitClassType(ClassType t, Boolean recurse) {
2065                 Type erased = t.tsym.erasure(Types.this);
2066                 if (recurse) {
2067                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
2068                 }
2069                 return erased;
2070             }
2071 
2072             @Override
2073             public Type visitTypeVar(TypeVar t, Boolean recurse) {
2074                 return erasure(t.bound, recurse);
2075             }
2076 
2077             @Override
2078             public Type visitErrorType(ErrorType t, Boolean recurse) {
2079                 return t;
2080             }
2081 
2082             @Override
2083             public Type visitAnnotatedType(AnnotatedType t, Boolean recurse) {
2084                 Type erased = erasure(t.underlyingType, recurse);
2085                 if (erased.isAnnotated()) {
2086                     // This can only happen when the underlying type is a
2087                     // type variable and the upper bound of it is annotated.
2088                     // The annotation on the type variable overrides the one
2089                     // on the bound.
2090                     erased = ((AnnotatedType)erased).underlyingType;
2091                 }
2092                 return new AnnotatedType(t.typeAnnotations, erased);
2093             }
2094         };
2095 
2096     private Mapping erasureFun = new Mapping ("erasure") {
2097             public Type apply(Type t) { return erasure(t); }
2098         };
2099 
2100     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
2101         public Type apply(Type t) { return erasureRecursive(t); }
2102     };
2103 
2104     public List<Type> erasure(List<Type> ts) {
2105         return Type.map(ts, erasureFun);
2106     }
2107 
2108     public Type erasureRecursive(Type t) {
2109         return erasure(t, true);
2110     }
2111 
2112     public List<Type> erasureRecursive(List<Type> ts) {
2113         return Type.map(ts, erasureRecFun);
2114     }
2115     // </editor-fold>
2116 
2117     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
2118     /**
2119      * Make a compound type from non-empty list of types
2120      *
2121      * @param bounds            the types from which the compound type is formed
2122      * @param supertype         is objectType if all bounds are interfaces,
2123      *                          null otherwise.
2124      */
2125     public Type makeCompoundType(List<Type> bounds) {
2126         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
2127     }
2128     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
2129         Assert.check(bounds.nonEmpty());
2130         Type firstExplicitBound = bounds.head;
2131         if (allInterfaces) {
2132             bounds = bounds.prepend(syms.objectType);
2133         }
2134         ClassSymbol bc =
2135             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
2136                             Type.moreInfo
2137                                 ? names.fromString(bounds.toString())
2138                                 : names.empty,
2139                             null,
2140                             syms.noSymbol);
2141         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
2142         bc.erasure_field = (bounds.head.tag == TYPEVAR) ?
2143                 syms.objectType : // error condition, recover
2144                 erasure(firstExplicitBound);
2145         bc.members_field = new Scope(bc);
2146         return bc.type;
2147     }
2148 
2149     /**
2150      * A convenience wrapper for {@link #makeCompoundType(List)}; the
2151      * arguments are converted to a list and passed to the other
2152      * method.  Note that this might cause a symbol completion.
2153      * Hence, this version of makeCompoundType may not be called
2154      * during a classfile read.
2155      */
2156     public Type makeCompoundType(Type bound1, Type bound2) {
2157         return makeCompoundType(List.of(bound1, bound2));
2158     }
2159     // </editor-fold>
2160 
2161     // <editor-fold defaultstate="collapsed" desc="supertype">
2162     public Type supertype(Type t) {
2163         return supertype.visit(t);
2164     }
2165     // where
2166         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
2167 
2168             public Type visitType(Type t, Void ignored) {
2169                 // A note on wildcards: there is no good way to
2170                 // determine a supertype for a super bounded wildcard.
2171                 return null;
2172             }
2173 
2174             @Override
2175             public Type visitClassType(ClassType t, Void ignored) {
2176                 if (t.supertype_field == null) {
2177                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
2178                     // An interface has no superclass; its supertype is Object.
2179                     if (t.isInterface())
2180                         supertype = ((ClassType)t.tsym.type).supertype_field;
2181                     if (t.supertype_field == null) {
2182                         List<Type> actuals = classBound(t).allparams();
2183                         List<Type> formals = t.tsym.type.allparams();
2184                         if (t.hasErasedSupertypes()) {
2185                             t.supertype_field = erasureRecursive(supertype);
2186                         } else if (formals.nonEmpty()) {
2187                             t.supertype_field = subst(supertype, formals, actuals);
2188                         }
2189                         else {
2190                             t.supertype_field = supertype;
2191                         }
2192                     }
2193                 }
2194                 return t.supertype_field;
2195             }
2196 
2197             /**
2198              * The supertype is always a class type. If the type
2199              * variable's bounds start with a class type, this is also
2200              * the supertype.  Otherwise, the supertype is
2201              * java.lang.Object.
2202              */
2203             @Override
2204             public Type visitTypeVar(TypeVar t, Void ignored) {
2205                 if (t.bound.tag == TYPEVAR ||
2206                     (!t.bound.isCompound() && !t.bound.isInterface())) {
2207                     return t.bound;
2208                 } else {
2209                     return supertype(t.bound);
2210                 }
2211             }
2212 
2213             @Override
2214             public Type visitArrayType(ArrayType t, Void ignored) {
2215                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
2216                     return arraySuperType();
2217                 else
2218                     return new ArrayType(supertype(t.elemtype), t.tsym);
2219             }
2220 
2221             @Override
2222             public Type visitErrorType(ErrorType t, Void ignored) {
2223                 return t;
2224             }
2225         };
2226     // </editor-fold>
2227 
2228     // <editor-fold defaultstate="collapsed" desc="interfaces">
2229     /**
2230      * Return the interfaces implemented by this class.
2231      */
2232     public List<Type> interfaces(Type t) {
2233         return interfaces.visit(t);
2234     }
2235     // where
2236         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
2237 
2238             public List<Type> visitType(Type t, Void ignored) {
2239                 return List.nil();
2240             }
2241 
2242             @Override
2243             public List<Type> visitClassType(ClassType t, Void ignored) {
2244                 if (t.interfaces_field == null) {
2245                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
2246                     if (t.interfaces_field == null) {
2247                         // If t.interfaces_field is null, then t must
2248                         // be a parameterized type (not to be confused
2249                         // with a generic type declaration).
2250                         // Terminology:
2251                         //    Parameterized type: List<String>
2252                         //    Generic type declaration: class List<E> { ... }
2253                         // So t corresponds to List<String> and
2254                         // t.tsym.type corresponds to List<E>.
2255                         // The reason t must be parameterized type is
2256                         // that completion will happen as a side
2257                         // effect of calling
2258                         // ClassSymbol.getInterfaces.  Since
2259                         // t.interfaces_field is null after
2260                         // completion, we can assume that t is not the
2261                         // type of a class/interface declaration.
2262                         Assert.check(t != t.tsym.type, t);
2263                         List<Type> actuals = t.allparams();
2264                         List<Type> formals = t.tsym.type.allparams();
2265                         if (t.hasErasedSupertypes()) {
2266                             t.interfaces_field = erasureRecursive(interfaces);
2267                         } else if (formals.nonEmpty()) {
2268                             t.interfaces_field =
2269                                 upperBounds(subst(interfaces, formals, actuals));
2270                         }
2271                         else {
2272                             t.interfaces_field = interfaces;
2273                         }
2274                     }
2275                 }
2276                 return t.interfaces_field;
2277             }
2278 
2279             @Override
2280             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
2281                 if (t.bound.isCompound())
2282                     return interfaces(t.bound);
2283 
2284                 if (t.bound.isInterface())
2285                     return List.of(t.bound);
2286 
2287                 return List.nil();
2288             }
2289         };
2290 
2291     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
2292         for (Type i2 : interfaces(origin.type)) {
2293             if (isym == i2.tsym) return true;
2294         }
2295         return false;
2296     }
2297     // </editor-fold>
2298 
2299     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
2300     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
2301 
2302     public boolean isDerivedRaw(Type t) {
2303         Boolean result = isDerivedRawCache.get(t);
2304         if (result == null) {
2305             result = isDerivedRawInternal(t);
2306             isDerivedRawCache.put(t, result);
2307         }
2308         return result;
2309     }
2310 
2311     public boolean isDerivedRawInternal(Type t) {
2312         if (t.isErroneous())
2313             return false;
2314         return
2315             t.isRaw() ||
2316             supertype(t) != null && isDerivedRaw(supertype(t)) ||
2317             isDerivedRaw(interfaces(t));
2318     }
2319 
2320     public boolean isDerivedRaw(List<Type> ts) {
2321         List<Type> l = ts;
2322         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
2323         return l.nonEmpty();
2324     }
2325     // </editor-fold>
2326 
2327     // <editor-fold defaultstate="collapsed" desc="setBounds">
2328     /**
2329      * Set the bounds field of the given type variable to reflect a
2330      * (possibly multiple) list of bounds.
2331      * @param t                 a type variable
2332      * @param bounds            the bounds, must be nonempty
2333      * @param supertype         is objectType if all bounds are interfaces,
2334      *                          null otherwise.
2335      */
2336     public void setBounds(TypeVar t, List<Type> bounds) {
2337         setBounds(t, bounds, bounds.head.tsym.isInterface());
2338     }
2339 
2340     /**
2341      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
2342      * third parameter is computed directly, as follows: if all
2343      * all bounds are interface types, the computed supertype is Object,
2344      * otherwise the supertype is simply left null (in this case, the supertype
2345      * is assumed to be the head of the bound list passed as second argument).
2346      * Note that this check might cause a symbol completion. Hence, this version of
2347      * setBounds may not be called during a classfile read.
2348      */
2349     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
2350         t.bound = bounds.tail.isEmpty() ?
2351                 bounds.head :
2352                 makeCompoundType(bounds, allInterfaces);
2353         t.rank_field = -1;
2354     }
2355     // </editor-fold>
2356 
2357     // <editor-fold defaultstate="collapsed" desc="getBounds">
2358     /**
2359      * Return list of bounds of the given type variable.
2360      */
2361     public List<Type> getBounds(TypeVar t) {
2362         if (t.bound.hasTag(NONE))
2363             return List.nil();
2364         else if (t.bound.isErroneous() || !t.bound.isCompound())
2365             return List.of(t.bound);
2366         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
2367             return interfaces(t).prepend(supertype(t));
2368         else
2369             // No superclass was given in bounds.
2370             // In this case, supertype is Object, erasure is first interface.
2371             return interfaces(t);
2372     }
2373     // </editor-fold>
2374 
2375     // <editor-fold defaultstate="collapsed" desc="classBound">
2376     /**
2377      * If the given type is a (possibly selected) type variable,
2378      * return the bounding class of this type, otherwise return the
2379      * type itself.
2380      */
2381     public Type classBound(Type t) {
2382         return classBound.visit(t);
2383     }
2384     // where
2385         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
2386 
2387             public Type visitType(Type t, Void ignored) {
2388                 return t;
2389             }
2390 
2391             @Override
2392             public Type visitClassType(ClassType t, Void ignored) {
2393                 Type outer1 = classBound(t.getEnclosingType());
2394                 if (outer1 != t.getEnclosingType())
2395                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
2396                 else
2397                     return t;
2398             }
2399 
2400             @Override
2401             public Type visitTypeVar(TypeVar t, Void ignored) {
2402                 return classBound(supertype(t));
2403             }
2404 
2405             @Override
2406             public Type visitErrorType(ErrorType t, Void ignored) {
2407                 return t;
2408             }
2409         };
2410     // </editor-fold>
2411 
2412     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
2413     /**
2414      * Returns true iff the first signature is a <em>sub
2415      * signature</em> of the other.  This is <b>not</b> an equivalence
2416      * relation.
2417      *
2418      * @jls section 8.4.2.
2419      * @see #overrideEquivalent(Type t, Type s)
2420      * @param t first signature (possibly raw).
2421      * @param s second signature (could be subjected to erasure).
2422      * @return true if t is a sub signature of s.
2423      */
2424     public boolean isSubSignature(Type t, Type s) {
2425         return isSubSignature(t, s, true);
2426     }
2427 
2428     public boolean isSubSignature(Type t, Type s, boolean strict) {
2429         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
2430     }
2431 
2432     /**
2433      * Returns true iff these signatures are related by <em>override
2434      * equivalence</em>.  This is the natural extension of
2435      * isSubSignature to an equivalence relation.
2436      *
2437      * @jls section 8.4.2.
2438      * @see #isSubSignature(Type t, Type s)
2439      * @param t a signature (possible raw, could be subjected to
2440      * erasure).
2441      * @param s a signature (possible raw, could be subjected to
2442      * erasure).
2443      * @return true if either argument is a sub signature of the other.
2444      */
2445     public boolean overrideEquivalent(Type t, Type s) {
2446         return hasSameArgs(t, s) ||
2447             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
2448     }
2449 
2450     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
2451         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
2452             if (msym.overrides(e.sym, origin, Types.this, true)) {
2453                 return true;
2454             }
2455         }
2456         return false;
2457     }
2458 
2459     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
2460     class ImplementationCache {
2461 
2462         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
2463                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
2464 
2465         class Entry {
2466             final MethodSymbol cachedImpl;
2467             final Filter<Symbol> implFilter;
2468             final boolean checkResult;
2469             final int prevMark;
2470 
2471             public Entry(MethodSymbol cachedImpl,
2472                     Filter<Symbol> scopeFilter,
2473                     boolean checkResult,
2474                     int prevMark) {
2475                 this.cachedImpl = cachedImpl;
2476                 this.implFilter = scopeFilter;
2477                 this.checkResult = checkResult;
2478                 this.prevMark = prevMark;
2479             }
2480 
2481             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
2482                 return this.implFilter == scopeFilter &&
2483                         this.checkResult == checkResult &&
2484                         this.prevMark == mark;
2485             }
2486         }
2487 
2488         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2489             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
2490             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
2491             if (cache == null) {
2492                 cache = new HashMap<TypeSymbol, Entry>();
2493                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
2494             }
2495             Entry e = cache.get(origin);
2496             CompoundScope members = membersClosure(origin.type, true);
2497             if (e == null ||
2498                     !e.matches(implFilter, checkResult, members.getMark())) {
2499                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
2500                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
2501                 return impl;
2502             }
2503             else {
2504                 return e.cachedImpl;
2505             }
2506         }
2507 
2508         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2509             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
2510                 while (t.tag == TYPEVAR)
2511                     t = t.getUpperBound();
2512                 TypeSymbol c = t.tsym;
2513                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
2514                      e.scope != null;
2515                      e = e.next(implFilter)) {
2516                     if (e.sym != null &&
2517                              e.sym.overrides(ms, origin, Types.this, checkResult))
2518                         return (MethodSymbol)e.sym;
2519                 }
2520             }
2521             return null;
2522         }
2523     }
2524 
2525     private ImplementationCache implCache = new ImplementationCache();
2526 
2527     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2528         return implCache.get(ms, origin, checkResult, implFilter);
2529     }
2530     // </editor-fold>
2531 
2532     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
2533     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
2534 
2535         private WeakHashMap<TypeSymbol, Entry> _map =
2536                 new WeakHashMap<TypeSymbol, Entry>();
2537 
2538         class Entry {
2539             final boolean skipInterfaces;
2540             final CompoundScope compoundScope;
2541 
2542             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
2543                 this.skipInterfaces = skipInterfaces;
2544                 this.compoundScope = compoundScope;
2545             }
2546 
2547             boolean matches(boolean skipInterfaces) {
2548                 return this.skipInterfaces == skipInterfaces;
2549             }
2550         }
2551 
2552         List<TypeSymbol> seenTypes = List.nil();
2553 
2554         /** members closure visitor methods **/
2555 
2556         public CompoundScope visitType(Type t, Boolean skipInterface) {
2557             return null;
2558         }
2559 
2560         @Override
2561         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
2562             if (seenTypes.contains(t.tsym)) {
2563                 //this is possible when an interface is implemented in multiple
2564                 //superclasses, or when a classs hierarchy is circular - in such
2565                 //cases we don't need to recurse (empty scope is returned)
2566                 return new CompoundScope(t.tsym);
2567             }
2568             try {
2569                 seenTypes = seenTypes.prepend(t.tsym);
2570                 ClassSymbol csym = (ClassSymbol)t.tsym;
2571                 Entry e = _map.get(csym);
2572                 if (e == null || !e.matches(skipInterface)) {
2573                     CompoundScope membersClosure = new CompoundScope(csym);
2574                     if (!skipInterface) {
2575                         for (Type i : interfaces(t)) {
2576                             membersClosure.addSubScope(visit(i, skipInterface));
2577                         }
2578                     }
2579                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
2580                     membersClosure.addSubScope(csym.members());
2581                     e = new Entry(skipInterface, membersClosure);
2582                     _map.put(csym, e);
2583                 }
2584                 return e.compoundScope;
2585             }
2586             finally {
2587                 seenTypes = seenTypes.tail;
2588             }
2589         }
2590 
2591         @Override
2592         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
2593             return visit(t.getUpperBound(), skipInterface);
2594         }
2595     }
2596 
2597     private MembersClosureCache membersCache = new MembersClosureCache();
2598 
2599     public CompoundScope membersClosure(Type site, boolean skipInterface) {
2600         return membersCache.visit(site, skipInterface);
2601     }
2602     // </editor-fold>
2603 
2604 
2605     //where
2606     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
2607         Filter<Symbol> filter = new MethodFilter(ms, site);
2608         List<MethodSymbol> candidates = List.nil();
2609             for (Symbol s : membersClosure(site, false).getElements(filter)) {
2610                 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
2611                     return List.of((MethodSymbol)s);
2612                 } else if (!candidates.contains(s)) {
2613                     candidates = candidates.prepend((MethodSymbol)s);
2614                 }
2615             }
2616             return prune(candidates);
2617         }
2618 
2619     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
2620         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
2621         for (MethodSymbol m1 : methods) {
2622             boolean isMin_m1 = true;
2623             for (MethodSymbol m2 : methods) {
2624                 if (m1 == m2) continue;
2625                 if (m2.owner != m1.owner &&
2626                         asSuper(m2.owner.type, m1.owner) != null) {
2627                     isMin_m1 = false;
2628                     break;
2629                 }
2630             }
2631             if (isMin_m1)
2632                 methodsMin.append(m1);
2633         }
2634         return methodsMin.toList();
2635     }
2636     // where
2637             private class MethodFilter implements Filter<Symbol> {
2638 
2639                 Symbol msym;
2640                 Type site;
2641 
2642                 MethodFilter(Symbol msym, Type site) {
2643                     this.msym = msym;
2644                     this.site = site;
2645                 }
2646 
2647                 public boolean accepts(Symbol s) {
2648                     return s.kind == Kinds.MTH &&
2649                             s.name == msym.name &&
2650                             s.isInheritedIn(site.tsym, Types.this) &&
2651                             overrideEquivalent(memberType(site, s), memberType(site, msym));
2652                 }
2653             };
2654     // </editor-fold>
2655 
2656     /**
2657      * Does t have the same arguments as s?  It is assumed that both
2658      * types are (possibly polymorphic) method types.  Monomorphic
2659      * method types "have the same arguments", if their argument lists
2660      * are equal.  Polymorphic method types "have the same arguments",
2661      * if they have the same arguments after renaming all type
2662      * variables of one to corresponding type variables in the other,
2663      * where correspondence is by position in the type parameter list.
2664      */
2665     public boolean hasSameArgs(Type t, Type s) {
2666         return hasSameArgs(t, s, true);
2667     }
2668 
2669     public boolean hasSameArgs(Type t, Type s, boolean strict) {
2670         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
2671     }
2672 
2673     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
2674         return hasSameArgs.visit(t, s);
2675     }
2676     // where
2677         private class HasSameArgs extends TypeRelation {
2678 
2679             boolean strict;
2680 
2681             public HasSameArgs(boolean strict) {
2682                 this.strict = strict;
2683             }
2684 
2685             public Boolean visitType(Type t, Type s) {
2686                 throw new AssertionError();
2687             }
2688 
2689             @Override
2690             public Boolean visitMethodType(MethodType t, Type s) {
2691                 return s.tag == METHOD
2692                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
2693             }
2694 
2695             @Override
2696             public Boolean visitForAll(ForAll t, Type s) {
2697                 if (s.tag != FORALL)
2698                     return strict ? false : visitMethodType(t.asMethodType(), s);
2699 
2700                 ForAll forAll = (ForAll)s;
2701                 return hasSameBounds(t, forAll)
2702                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
2703             }
2704 
2705             @Override
2706             public Boolean visitErrorType(ErrorType t, Type s) {
2707                 return false;
2708             }
2709         };
2710 
2711         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
2712         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
2713 
2714     // </editor-fold>
2715 
2716     // <editor-fold defaultstate="collapsed" desc="subst">
2717     public List<Type> subst(List<Type> ts,
2718                             List<Type> from,
2719                             List<Type> to) {
2720         return new Subst(from, to).subst(ts);
2721     }
2722 
2723     /**
2724      * Substitute all occurrences of a type in `from' with the
2725      * corresponding type in `to' in 't'. Match lists `from' and `to'
2726      * from the right: If lists have different length, discard leading
2727      * elements of the longer list.
2728      */
2729     public Type subst(Type t, List<Type> from, List<Type> to) {
2730         return new Subst(from, to).subst(t);
2731     }
2732 
2733     private class Subst extends UnaryVisitor<Type> {
2734         List<Type> from;
2735         List<Type> to;
2736 
2737         public Subst(List<Type> from, List<Type> to) {
2738             int fromLength = from.length();
2739             int toLength = to.length();
2740             while (fromLength > toLength) {
2741                 fromLength--;
2742                 from = from.tail;
2743             }
2744             while (fromLength < toLength) {
2745                 toLength--;
2746                 to = to.tail;
2747             }
2748             this.from = from;
2749             this.to = to;
2750         }
2751 
2752         Type subst(Type t) {
2753             if (from.tail == null)
2754                 return t;
2755             else
2756                 return visit(t);
2757             }
2758 
2759         List<Type> subst(List<Type> ts) {
2760             if (from.tail == null)
2761                 return ts;
2762             boolean wild = false;
2763             if (ts.nonEmpty() && from.nonEmpty()) {
2764                 Type head1 = subst(ts.head);
2765                 List<Type> tail1 = subst(ts.tail);
2766                 if (head1 != ts.head || tail1 != ts.tail)
2767                     return tail1.prepend(head1);
2768             }
2769             return ts;
2770         }
2771 
2772         public Type visitType(Type t, Void ignored) {
2773             return t;
2774         }
2775 
2776         @Override
2777         public Type visitMethodType(MethodType t, Void ignored) {
2778             List<Type> argtypes = subst(t.argtypes);
2779             Type restype = subst(t.restype);
2780             List<Type> thrown = subst(t.thrown);
2781             if (argtypes == t.argtypes &&
2782                 restype == t.restype &&
2783                 thrown == t.thrown)
2784                 return t;
2785             else
2786                 return new MethodType(argtypes, restype, thrown, t.tsym);
2787         }
2788 
2789         @Override
2790         public Type visitTypeVar(TypeVar t, Void ignored) {
2791             for (List<Type> from = this.from, to = this.to;
2792                  from.nonEmpty();
2793                  from = from.tail, to = to.tail) {
2794                 if (t == from.head) {
2795                     return to.head.withTypeVar(t);
2796                 }
2797             }
2798             return t;
2799         }
2800 
2801         @Override
2802         public Type visitClassType(ClassType t, Void ignored) {
2803             if (!t.isCompound()) {
2804                 List<Type> typarams = t.getTypeArguments();
2805                 List<Type> typarams1 = subst(typarams);
2806                 Type outer = t.getEnclosingType();
2807                 Type outer1 = subst(outer);
2808                 if (typarams1 == typarams && outer1 == outer)
2809                     return t;
2810                 else
2811                     return new ClassType(outer1, typarams1, t.tsym);
2812             } else {
2813                 Type st = subst(supertype(t));
2814                 List<Type> is = upperBounds(subst(interfaces(t)));
2815                 if (st == supertype(t) && is == interfaces(t))
2816                     return t;
2817                 else
2818                     return makeCompoundType(is.prepend(st));
2819             }
2820         }
2821 
2822         @Override
2823         public Type visitWildcardType(WildcardType t, Void ignored) {
2824             Type bound = t.type;
2825             if (t.kind != BoundKind.UNBOUND)
2826                 bound = subst(bound);
2827             if (bound == t.type) {
2828                 return t;
2829             } else {
2830                 if (t.isExtendsBound() && bound.isExtendsBound())
2831                     bound = upperBound(bound);
2832                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
2833             }
2834         }
2835 
2836         @Override
2837         public Type visitArrayType(ArrayType t, Void ignored) {
2838             Type elemtype = subst(t.elemtype);
2839             if (elemtype == t.elemtype)
2840                 return t;
2841             else
2842                 return new ArrayType(upperBound(elemtype), t.tsym);
2843         }
2844 
2845         @Override
2846         public Type visitForAll(ForAll t, Void ignored) {
2847             if (Type.containsAny(to, t.tvars)) {
2848                 //perform alpha-renaming of free-variables in 't'
2849                 //if 'to' types contain variables that are free in 't'
2850                 List<Type> freevars = newInstances(t.tvars);
2851                 t = new ForAll(freevars,
2852                         Types.this.subst(t.qtype, t.tvars, freevars));
2853             }
2854             List<Type> tvars1 = substBounds(t.tvars, from, to);
2855             Type qtype1 = subst(t.qtype);
2856             if (tvars1 == t.tvars && qtype1 == t.qtype) {
2857                 return t;
2858             } else if (tvars1 == t.tvars) {
2859                 return new ForAll(tvars1, qtype1);
2860             } else {
2861                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
2862             }
2863         }
2864 
2865         @Override
2866         public Type visitErrorType(ErrorType t, Void ignored) {
2867             return t;
2868         }
2869     }
2870 
2871     public List<Type> substBounds(List<Type> tvars,
2872                                   List<Type> from,
2873                                   List<Type> to) {
2874         if (tvars.isEmpty())
2875             return tvars;
2876         ListBuffer<Type> newBoundsBuf = lb();
2877         boolean changed = false;
2878         // calculate new bounds
2879         for (Type t : tvars) {
2880             TypeVar tv = (TypeVar) t;
2881             Type bound = subst(tv.bound, from, to);
2882             if (bound != tv.bound)
2883                 changed = true;
2884             newBoundsBuf.append(bound);
2885         }
2886         if (!changed)
2887             return tvars;
2888         ListBuffer<Type> newTvars = lb();
2889         // create new type variables without bounds
2890         for (Type t : tvars) {
2891             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
2892         }
2893         // the new bounds should use the new type variables in place
2894         // of the old
2895         List<Type> newBounds = newBoundsBuf.toList();
2896         from = tvars;
2897         to = newTvars.toList();
2898         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
2899             newBounds.head = subst(newBounds.head, from, to);
2900         }
2901         newBounds = newBoundsBuf.toList();
2902         // set the bounds of new type variables to the new bounds
2903         for (Type t : newTvars.toList()) {
2904             TypeVar tv = (TypeVar) t;
2905             tv.bound = newBounds.head;
2906             newBounds = newBounds.tail;
2907         }
2908         return newTvars.toList();
2909     }
2910 
2911     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
2912         Type bound1 = subst(t.bound, from, to);
2913         if (bound1 == t.bound)
2914             return t;
2915         else {
2916             // create new type variable without bounds
2917             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
2918             // the new bound should use the new type variable in place
2919             // of the old
2920             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
2921             return tv;
2922         }
2923     }
2924     // </editor-fold>
2925 
2926     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
2927     /**
2928      * Does t have the same bounds for quantified variables as s?
2929      */
2930     boolean hasSameBounds(ForAll t, ForAll s) {
2931         List<Type> l1 = t.tvars;
2932         List<Type> l2 = s.tvars;
2933         while (l1.nonEmpty() && l2.nonEmpty() &&
2934                isSameType(l1.head.getUpperBound(),
2935                           subst(l2.head.getUpperBound(),
2936                                 s.tvars,
2937                                 t.tvars))) {
2938             l1 = l1.tail;
2939             l2 = l2.tail;
2940         }
2941         return l1.isEmpty() && l2.isEmpty();
2942     }
2943     // </editor-fold>
2944 
2945     // <editor-fold defaultstate="collapsed" desc="newInstances">
2946     /** Create new vector of type variables from list of variables
2947      *  changing all recursive bounds from old to new list.
2948      */
2949     public List<Type> newInstances(List<Type> tvars) {
2950         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
2951         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
2952             TypeVar tv = (TypeVar) l.head;
2953             tv.bound = subst(tv.bound, tvars, tvars1);
2954         }
2955         return tvars1;
2956     }
2957     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
2958             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
2959         };
2960     // </editor-fold>
2961 
2962     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
2963         return original.accept(methodWithParameters, newParams);
2964     }
2965     // where
2966         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
2967             public Type visitType(Type t, List<Type> newParams) {
2968                 throw new IllegalArgumentException("Not a method type: " + t);
2969             }
2970             public Type visitMethodType(MethodType t, List<Type> newParams) {
2971                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
2972             }
2973             public Type visitForAll(ForAll t, List<Type> newParams) {
2974                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
2975             }
2976         };
2977 
2978     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
2979         return original.accept(methodWithThrown, newThrown);
2980     }
2981     // where
2982         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
2983             public Type visitType(Type t, List<Type> newThrown) {
2984                 throw new IllegalArgumentException("Not a method type: " + t);
2985             }
2986             public Type visitMethodType(MethodType t, List<Type> newThrown) {
2987                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
2988             }
2989             public Type visitForAll(ForAll t, List<Type> newThrown) {
2990                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
2991             }
2992         };
2993 
2994     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
2995         return original.accept(methodWithReturn, newReturn);
2996     }
2997     // where
2998         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
2999             public Type visitType(Type t, Type newReturn) {
3000                 throw new IllegalArgumentException("Not a method type: " + t);
3001             }
3002             public Type visitMethodType(MethodType t, Type newReturn) {
3003                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
3004             }
3005             public Type visitForAll(ForAll t, Type newReturn) {
3006                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
3007             }
3008         };
3009 
3010     // <editor-fold defaultstate="collapsed" desc="createErrorType">
3011     public Type createErrorType(Type originalType) {
3012         return new ErrorType(originalType, syms.errSymbol);
3013     }
3014 
3015     public Type createErrorType(ClassSymbol c, Type originalType) {
3016         return new ErrorType(c, originalType);
3017     }
3018 
3019     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
3020         return new ErrorType(name, container, originalType);
3021     }
3022     // </editor-fold>
3023 
3024     // <editor-fold defaultstate="collapsed" desc="rank">
3025     /**
3026      * The rank of a class is the length of the longest path between
3027      * the class and java.lang.Object in the class inheritance
3028      * graph. Undefined for all but reference types.
3029      */
3030     public int rank(Type t) {
3031         t = t.unannotatedType();
3032         switch(t.tag) {
3033         case CLASS: {
3034             ClassType cls = (ClassType)t;
3035             if (cls.rank_field < 0) {
3036                 Name fullname = cls.tsym.getQualifiedName();
3037                 if (fullname == names.java_lang_Object)
3038                     cls.rank_field = 0;
3039                 else {
3040                     int r = rank(supertype(cls));
3041                     for (List<Type> l = interfaces(cls);
3042                          l.nonEmpty();
3043                          l = l.tail) {
3044                         if (rank(l.head) > r)
3045                             r = rank(l.head);
3046                     }
3047                     cls.rank_field = r + 1;
3048                 }
3049             }
3050             return cls.rank_field;
3051         }
3052         case TYPEVAR: {
3053             TypeVar tvar = (TypeVar)t;
3054             if (tvar.rank_field < 0) {
3055                 int r = rank(supertype(tvar));
3056                 for (List<Type> l = interfaces(tvar);
3057                      l.nonEmpty();
3058                      l = l.tail) {
3059                     if (rank(l.head) > r) r = rank(l.head);
3060                 }
3061                 tvar.rank_field = r + 1;
3062             }
3063             return tvar.rank_field;
3064         }
3065         case ERROR:
3066             return 0;
3067         default:
3068             throw new AssertionError();
3069         }
3070     }
3071     // </editor-fold>
3072 
3073     /**
3074      * Helper method for generating a string representation of a given type
3075      * accordingly to a given locale
3076      */
3077     public String toString(Type t, Locale locale) {
3078         return Printer.createStandardPrinter(messages).visit(t, locale);
3079     }
3080 
3081     /**
3082      * Helper method for generating a string representation of a given type
3083      * accordingly to a given locale
3084      */
3085     public String toString(Symbol t, Locale locale) {
3086         return Printer.createStandardPrinter(messages).visit(t, locale);
3087     }
3088 
3089     // <editor-fold defaultstate="collapsed" desc="toString">
3090     /**
3091      * This toString is slightly more descriptive than the one on Type.
3092      *
3093      * @deprecated Types.toString(Type t, Locale l) provides better support
3094      * for localization
3095      */
3096     @Deprecated
3097     public String toString(Type t) {
3098         if (t.tag == FORALL) {
3099             ForAll forAll = (ForAll)t;
3100             return typaramsString(forAll.tvars) + forAll.qtype;
3101         }
3102         return "" + t;
3103     }
3104     // where
3105         private String typaramsString(List<Type> tvars) {
3106             StringBuilder s = new StringBuilder();
3107             s.append('<');
3108             boolean first = true;
3109             for (Type t : tvars) {
3110                 if (!first) s.append(", ");
3111                 first = false;
3112                 appendTyparamString(((TypeVar)t.unannotatedType()), s);
3113             }
3114             s.append('>');
3115             return s.toString();
3116         }
3117         private void appendTyparamString(TypeVar t, StringBuilder buf) {
3118             buf.append(t);
3119             if (t.bound == null ||
3120                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
3121                 return;
3122             buf.append(" extends "); // Java syntax; no need for i18n
3123             Type bound = t.bound;
3124             if (!bound.isCompound()) {
3125                 buf.append(bound);
3126             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
3127                 buf.append(supertype(t));
3128                 for (Type intf : interfaces(t)) {
3129                     buf.append('&');
3130                     buf.append(intf);
3131                 }
3132             } else {
3133                 // No superclass was given in bounds.
3134                 // In this case, supertype is Object, erasure is first interface.
3135                 boolean first = true;
3136                 for (Type intf : interfaces(t)) {
3137                     if (!first) buf.append('&');
3138                     first = false;
3139                     buf.append(intf);
3140                 }
3141             }
3142         }
3143     // </editor-fold>
3144 
3145     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
3146     /**
3147      * A cache for closures.
3148      *
3149      * <p>A closure is a list of all the supertypes and interfaces of
3150      * a class or interface type, ordered by ClassSymbol.precedes
3151      * (that is, subclasses come first, arbitrary but fixed
3152      * otherwise).
3153      */
3154     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
3155 
3156     /**
3157      * Returns the closure of a class or interface type.
3158      */
3159     public List<Type> closure(Type t) {
3160         List<Type> cl = closureCache.get(t);
3161         if (cl == null) {
3162             Type st = supertype(t);
3163             if (!t.isCompound()) {
3164                 if (st.tag == CLASS) {
3165                     cl = insert(closure(st), t);
3166                 } else if (st.tag == TYPEVAR) {
3167                     cl = closure(st).prepend(t);
3168                 } else {
3169                     cl = List.of(t);
3170                 }
3171             } else {
3172                 cl = closure(supertype(t));
3173             }
3174             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
3175                 cl = union(cl, closure(l.head));
3176             closureCache.put(t, cl);
3177         }
3178         return cl;
3179     }
3180 
3181     /**
3182      * Insert a type in a closure
3183      */
3184     public List<Type> insert(List<Type> cl, Type t) {
3185         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
3186             return cl.prepend(t);
3187         } else if (cl.head.tsym.precedes(t.tsym, this)) {
3188             return insert(cl.tail, t).prepend(cl.head);
3189         } else {
3190             return cl;
3191         }
3192     }
3193 
3194     /**
3195      * Form the union of two closures
3196      */
3197     public List<Type> union(List<Type> cl1, List<Type> cl2) {
3198         if (cl1.isEmpty()) {
3199             return cl2;
3200         } else if (cl2.isEmpty()) {
3201             return cl1;
3202         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
3203             return union(cl1.tail, cl2).prepend(cl1.head);
3204         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
3205             return union(cl1, cl2.tail).prepend(cl2.head);
3206         } else {
3207             return union(cl1.tail, cl2.tail).prepend(cl1.head);
3208         }
3209     }
3210 
3211     /**
3212      * Intersect two closures
3213      */
3214     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
3215         if (cl1 == cl2)
3216             return cl1;
3217         if (cl1.isEmpty() || cl2.isEmpty())
3218             return List.nil();
3219         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
3220             return intersect(cl1.tail, cl2);
3221         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
3222             return intersect(cl1, cl2.tail);
3223         if (isSameType(cl1.head, cl2.head))
3224             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
3225         if (cl1.head.tsym == cl2.head.tsym &&
3226             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
3227             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
3228                 Type merge = merge(cl1.head,cl2.head);
3229                 return intersect(cl1.tail, cl2.tail).prepend(merge);
3230             }
3231             if (cl1.head.isRaw() || cl2.head.isRaw())
3232                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
3233         }
3234         return intersect(cl1.tail, cl2.tail);
3235     }
3236     // where
3237         class TypePair {
3238             final Type t1;
3239             final Type t2;
3240             TypePair(Type t1, Type t2) {
3241                 this.t1 = t1;
3242                 this.t2 = t2;
3243             }
3244             @Override
3245             public int hashCode() {
3246                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
3247             }
3248             @Override
3249             public boolean equals(Object obj) {
3250                 if (!(obj instanceof TypePair))
3251                     return false;
3252                 TypePair typePair = (TypePair)obj;
3253                 return isSameType(t1, typePair.t1)
3254                     && isSameType(t2, typePair.t2);
3255             }
3256         }
3257         Set<TypePair> mergeCache = new HashSet<TypePair>();
3258         private Type merge(Type c1, Type c2) {
3259             ClassType class1 = (ClassType) c1;
3260             List<Type> act1 = class1.getTypeArguments();
3261             ClassType class2 = (ClassType) c2;
3262             List<Type> act2 = class2.getTypeArguments();
3263             ListBuffer<Type> merged = new ListBuffer<Type>();
3264             List<Type> typarams = class1.tsym.type.getTypeArguments();
3265 
3266             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
3267                 if (containsType(act1.head, act2.head)) {
3268                     merged.append(act1.head);
3269                 } else if (containsType(act2.head, act1.head)) {
3270                     merged.append(act2.head);
3271                 } else {
3272                     TypePair pair = new TypePair(c1, c2);
3273                     Type m;
3274                     if (mergeCache.add(pair)) {
3275                         m = new WildcardType(lub(upperBound(act1.head),
3276                                                  upperBound(act2.head)),
3277                                              BoundKind.EXTENDS,
3278                                              syms.boundClass);
3279                         mergeCache.remove(pair);
3280                     } else {
3281                         m = new WildcardType(syms.objectType,
3282                                              BoundKind.UNBOUND,
3283                                              syms.boundClass);
3284                     }
3285                     merged.append(m.withTypeVar(typarams.head));
3286                 }
3287                 act1 = act1.tail;
3288                 act2 = act2.tail;
3289                 typarams = typarams.tail;
3290             }
3291             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
3292             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
3293         }
3294 
3295     /**
3296      * Return the minimum type of a closure, a compound type if no
3297      * unique minimum exists.
3298      */
3299     private Type compoundMin(List<Type> cl) {
3300         if (cl.isEmpty()) return syms.objectType;
3301         List<Type> compound = closureMin(cl);
3302         if (compound.isEmpty())
3303             return null;
3304         else if (compound.tail.isEmpty())
3305             return compound.head;
3306         else
3307             return makeCompoundType(compound);
3308     }
3309 
3310     /**
3311      * Return the minimum types of a closure, suitable for computing
3312      * compoundMin or glb.
3313      */
3314     private List<Type> closureMin(List<Type> cl) {
3315         ListBuffer<Type> classes = lb();
3316         ListBuffer<Type> interfaces = lb();
3317         while (!cl.isEmpty()) {
3318             Type current = cl.head;
3319             if (current.isInterface())
3320                 interfaces.append(current);
3321             else
3322                 classes.append(current);
3323             ListBuffer<Type> candidates = lb();
3324             for (Type t : cl.tail) {
3325                 if (!isSubtypeNoCapture(current, t))
3326                     candidates.append(t);
3327             }
3328             cl = candidates.toList();
3329         }
3330         return classes.appendList(interfaces).toList();
3331     }
3332 
3333     /**
3334      * Return the least upper bound of pair of types.  if the lub does
3335      * not exist return null.
3336      */
3337     public Type lub(Type t1, Type t2) {
3338         return lub(List.of(t1, t2));
3339     }
3340 
3341     /**
3342      * Return the least upper bound (lub) of set of types.  If the lub
3343      * does not exist return the type of null (bottom).
3344      */
3345     public Type lub(List<Type> ts) {
3346         final int ARRAY_BOUND = 1;
3347         final int CLASS_BOUND = 2;
3348         int boundkind = 0;
3349         for (Type t : ts) {
3350             switch (t.tag) {
3351             case CLASS:
3352                 boundkind |= CLASS_BOUND;
3353                 break;
3354             case ARRAY:
3355                 boundkind |= ARRAY_BOUND;
3356                 break;
3357             case  TYPEVAR:
3358                 do {
3359                     t = t.getUpperBound();
3360                 } while (t.tag == TYPEVAR);
3361                 if (t.tag == ARRAY) {
3362                     boundkind |= ARRAY_BOUND;
3363                 } else {
3364                     boundkind |= CLASS_BOUND;
3365                 }
3366                 break;
3367             default:
3368                 if (t.isPrimitive())
3369                     return syms.errType;
3370             }
3371         }
3372         switch (boundkind) {
3373         case 0:
3374             return syms.botType;
3375 
3376         case ARRAY_BOUND:
3377             // calculate lub(A[], B[])
3378             List<Type> elements = Type.map(ts, elemTypeFun);
3379             for (Type t : elements) {
3380                 if (t.isPrimitive()) {
3381                     // if a primitive type is found, then return
3382                     // arraySuperType unless all the types are the
3383                     // same
3384                     Type first = ts.head;
3385                     for (Type s : ts.tail) {
3386                         if (!isSameType(first, s)) {
3387                              // lub(int[], B[]) is Cloneable & Serializable
3388                             return arraySuperType();
3389                         }
3390                     }
3391                     // all the array types are the same, return one
3392                     // lub(int[], int[]) is int[]
3393                     return first;
3394                 }
3395             }
3396             // lub(A[], B[]) is lub(A, B)[]
3397             return new ArrayType(lub(elements), syms.arrayClass);
3398 
3399         case CLASS_BOUND:
3400             // calculate lub(A, B)
3401             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
3402                 ts = ts.tail;
3403             Assert.check(!ts.isEmpty());
3404             //step 1 - compute erased candidate set (EC)
3405             List<Type> cl = erasedSupertypes(ts.head);
3406             for (Type t : ts.tail) {
3407                 if (t.tag == CLASS || t.tag == TYPEVAR)
3408                     cl = intersect(cl, erasedSupertypes(t));
3409             }
3410             //step 2 - compute minimal erased candidate set (MEC)
3411             List<Type> mec = closureMin(cl);
3412             //step 3 - for each element G in MEC, compute lci(Inv(G))
3413             List<Type> candidates = List.nil();
3414             for (Type erasedSupertype : mec) {
3415                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
3416                 for (Type t : ts) {
3417                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
3418                 }
3419                 candidates = candidates.appendList(lci);
3420             }
3421             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
3422             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
3423             return compoundMin(candidates);
3424 
3425         default:
3426             // calculate lub(A, B[])
3427             List<Type> classes = List.of(arraySuperType());
3428             for (Type t : ts) {
3429                 if (t.tag != ARRAY) // Filter out any arrays
3430                     classes = classes.prepend(t);
3431             }
3432             // lub(A, B[]) is lub(A, arraySuperType)
3433             return lub(classes);
3434         }
3435     }
3436     // where
3437         List<Type> erasedSupertypes(Type t) {
3438             ListBuffer<Type> buf = lb();
3439             for (Type sup : closure(t)) {
3440                 if (sup.tag == TYPEVAR) {
3441                     buf.append(sup);
3442                 } else {
3443                     buf.append(erasure(sup));
3444                 }
3445             }
3446             return buf.toList();
3447         }
3448 
3449         private Type arraySuperType = null;
3450         private Type arraySuperType() {
3451             // initialized lazily to avoid problems during compiler startup
3452             if (arraySuperType == null) {
3453                 synchronized (this) {
3454                     if (arraySuperType == null) {
3455                         // JLS 10.8: all arrays implement Cloneable and Serializable.
3456                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
3457                                                                   syms.cloneableType), true);
3458                     }
3459                 }
3460             }
3461             return arraySuperType;
3462         }
3463     // </editor-fold>
3464 
3465     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
3466     public Type glb(List<Type> ts) {
3467         Type t1 = ts.head;
3468         for (Type t2 : ts.tail) {
3469             if (t1.isErroneous())
3470                 return t1;
3471             t1 = glb(t1, t2);
3472         }
3473         return t1;
3474     }
3475     //where
3476     public Type glb(Type t, Type s) {
3477         if (s == null)
3478             return t;
3479         else if (t.isPrimitive() || s.isPrimitive())
3480             return syms.errType;
3481         else if (isSubtypeNoCapture(t, s))
3482             return t;
3483         else if (isSubtypeNoCapture(s, t))
3484             return s;
3485 
3486         List<Type> closure = union(closure(t), closure(s));
3487         List<Type> bounds = closureMin(closure);
3488 
3489         if (bounds.isEmpty()) {             // length == 0
3490             return syms.objectType;
3491         } else if (bounds.tail.isEmpty()) { // length == 1
3492             return bounds.head;
3493         } else {                            // length > 1
3494             int classCount = 0;
3495             for (Type bound : bounds)
3496                 if (!bound.isInterface())
3497                     classCount++;
3498             if (classCount > 1)
3499                 return createErrorType(t);
3500         }
3501         return makeCompoundType(bounds);
3502     }
3503     // </editor-fold>
3504 
3505     // <editor-fold defaultstate="collapsed" desc="hashCode">
3506     /**
3507      * Compute a hash code on a type.
3508      */
3509     public int hashCode(Type t) {
3510         return hashCode.visit(t);
3511     }
3512     // where
3513         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
3514 
3515             public Integer visitType(Type t, Void ignored) {
3516                 return t.tag.ordinal();
3517             }
3518 
3519             @Override
3520             public Integer visitClassType(ClassType t, Void ignored) {
3521                 int result = visit(t.getEnclosingType());
3522                 result *= 127;
3523                 result += t.tsym.flatName().hashCode();
3524                 for (Type s : t.getTypeArguments()) {
3525                     result *= 127;
3526                     result += visit(s);
3527                 }
3528                 return result;
3529             }
3530 
3531             @Override
3532             public Integer visitMethodType(MethodType t, Void ignored) {
3533                 int h = METHOD.ordinal();
3534                 for (List<Type> thisargs = t.argtypes;
3535                      thisargs.tail != null;
3536                      thisargs = thisargs.tail)
3537                     h = (h << 5) + visit(thisargs.head);
3538                 return (h << 5) + visit(t.restype);
3539             }
3540 
3541             @Override
3542             public Integer visitWildcardType(WildcardType t, Void ignored) {
3543                 int result = t.kind.hashCode();
3544                 if (t.type != null) {
3545                     result *= 127;
3546                     result += visit(t.type);
3547                 }
3548                 return result;
3549             }
3550 
3551             @Override
3552             public Integer visitArrayType(ArrayType t, Void ignored) {
3553                 return visit(t.elemtype) + 12;
3554             }
3555 
3556             @Override
3557             public Integer visitTypeVar(TypeVar t, Void ignored) {
3558                 return System.identityHashCode(t.tsym);
3559             }
3560 
3561             @Override
3562             public Integer visitUndetVar(UndetVar t, Void ignored) {
3563                 return System.identityHashCode(t);
3564             }
3565 
3566             @Override
3567             public Integer visitErrorType(ErrorType t, Void ignored) {
3568                 return 0;
3569             }
3570         };
3571     // </editor-fold>
3572 
3573     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
3574     /**
3575      * Does t have a result that is a subtype of the result type of s,
3576      * suitable for covariant returns?  It is assumed that both types
3577      * are (possibly polymorphic) method types.  Monomorphic method
3578      * types are handled in the obvious way.  Polymorphic method types
3579      * require renaming all type variables of one to corresponding
3580      * type variables in the other, where correspondence is by
3581      * position in the type parameter list. */
3582     public boolean resultSubtype(Type t, Type s, Warner warner) {
3583         List<Type> tvars = t.getTypeArguments();
3584         List<Type> svars = s.getTypeArguments();
3585         Type tres = t.getReturnType();
3586         Type sres = subst(s.getReturnType(), svars, tvars);
3587         return covariantReturnType(tres, sres, warner);
3588     }
3589 
3590     /**
3591      * Return-Type-Substitutable.
3592      * @jls section 8.4.5
3593      */
3594     public boolean returnTypeSubstitutable(Type r1, Type r2) {
3595         if (hasSameArgs(r1, r2))
3596             return resultSubtype(r1, r2, noWarnings);
3597         else
3598             return covariantReturnType(r1.getReturnType(),
3599                                        erasure(r2.getReturnType()),
3600                                        noWarnings);
3601     }
3602 
3603     public boolean returnTypeSubstitutable(Type r1,
3604                                            Type r2, Type r2res,
3605                                            Warner warner) {
3606         if (isSameType(r1.getReturnType(), r2res))
3607             return true;
3608         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
3609             return false;
3610 
3611         if (hasSameArgs(r1, r2))
3612             return covariantReturnType(r1.getReturnType(), r2res, warner);
3613         if (!allowCovariantReturns)
3614             return false;
3615         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
3616             return true;
3617         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
3618             return false;
3619         warner.warn(LintCategory.UNCHECKED);
3620         return true;
3621     }
3622 
3623     /**
3624      * Is t an appropriate return type in an overrider for a
3625      * method that returns s?
3626      */
3627     public boolean covariantReturnType(Type t, Type s, Warner warner) {
3628         return
3629             isSameType(t, s) ||
3630             allowCovariantReturns &&
3631             !t.isPrimitive() &&
3632             !s.isPrimitive() &&
3633             isAssignable(t, s, warner);
3634     }
3635     // </editor-fold>
3636 
3637     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
3638     /**
3639      * Return the class that boxes the given primitive.
3640      */
3641     public ClassSymbol boxedClass(Type t) {
3642         return reader.enterClass(syms.boxedName[t.tag.ordinal()]);
3643     }
3644 
3645     /**
3646      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
3647      */
3648     public Type boxedTypeOrType(Type t) {
3649         return t.isPrimitive() ?
3650             boxedClass(t).type :
3651             t;
3652     }
3653 
3654     /**
3655      * Return the primitive type corresponding to a boxed type.
3656      */
3657     public Type unboxedType(Type t) {
3658         if (allowBoxing) {
3659             for (int i=0; i<syms.boxedName.length; i++) {
3660                 Name box = syms.boxedName[i];
3661                 if (box != null &&
3662                     asSuper(t, reader.enterClass(box)) != null)
3663                     return syms.typeOfTag[i];
3664             }
3665         }
3666         return Type.noType;
3667     }
3668 
3669     /**
3670      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
3671      */
3672     public Type unboxedTypeOrType(Type t) {
3673         Type unboxedType = unboxedType(t);
3674         return unboxedType.tag == NONE ? t : unboxedType;
3675     }
3676     // </editor-fold>
3677 
3678     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
3679     /*
3680      * JLS 5.1.10 Capture Conversion:
3681      *
3682      * Let G name a generic type declaration with n formal type
3683      * parameters A1 ... An with corresponding bounds U1 ... Un. There
3684      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
3685      * where, for 1 <= i <= n:
3686      *
3687      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
3688      *   Si is a fresh type variable whose upper bound is
3689      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
3690      *   type.
3691      *
3692      * + If Ti is a wildcard type argument of the form ? extends Bi,
3693      *   then Si is a fresh type variable whose upper bound is
3694      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
3695      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
3696      *   a compile-time error if for any two classes (not interfaces)
3697      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
3698      *
3699      * + If Ti is a wildcard type argument of the form ? super Bi,
3700      *   then Si is a fresh type variable whose upper bound is
3701      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
3702      *
3703      * + Otherwise, Si = Ti.
3704      *
3705      * Capture conversion on any type other than a parameterized type
3706      * (4.5) acts as an identity conversion (5.1.1). Capture
3707      * conversions never require a special action at run time and
3708      * therefore never throw an exception at run time.
3709      *
3710      * Capture conversion is not applied recursively.
3711      */
3712     /**
3713      * Capture conversion as specified by the JLS.
3714      */
3715 
3716     public List<Type> capture(List<Type> ts) {
3717         List<Type> buf = List.nil();
3718         for (Type t : ts) {
3719             buf = buf.prepend(capture(t));
3720         }
3721         return buf.reverse();
3722     }
3723     public Type capture(Type t) {
3724         if (t.tag != CLASS)
3725             return t;
3726         if (t.getEnclosingType() != Type.noType) {
3727             Type capturedEncl = capture(t.getEnclosingType());
3728             if (capturedEncl != t.getEnclosingType()) {
3729                 Type type1 = memberType(capturedEncl, t.tsym);
3730                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
3731             }
3732         }
3733         t = t.unannotatedType();
3734         ClassType cls = (ClassType)t;
3735         if (cls.isRaw() || !cls.isParameterized())
3736             return cls;
3737 
3738         ClassType G = (ClassType)cls.asElement().asType();
3739         List<Type> A = G.getTypeArguments();
3740         List<Type> T = cls.getTypeArguments();
3741         List<Type> S = freshTypeVariables(T);
3742 
3743         List<Type> currentA = A;
3744         List<Type> currentT = T;
3745         List<Type> currentS = S;
3746         boolean captured = false;
3747         while (!currentA.isEmpty() &&
3748                !currentT.isEmpty() &&
3749                !currentS.isEmpty()) {
3750             if (currentS.head != currentT.head) {
3751                 captured = true;
3752                 WildcardType Ti = (WildcardType)currentT.head.unannotatedType();
3753                 Type Ui = currentA.head.getUpperBound();
3754                 CapturedType Si = (CapturedType)currentS.head.unannotatedType();
3755                 if (Ui == null)
3756                     Ui = syms.objectType;
3757                 switch (Ti.kind) {
3758                 case UNBOUND:
3759                     Si.bound = subst(Ui, A, S);
3760                     Si.lower = syms.botType;
3761                     break;
3762                 case EXTENDS:
3763                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
3764                     Si.lower = syms.botType;
3765                     break;
3766                 case SUPER:
3767                     Si.bound = subst(Ui, A, S);
3768                     Si.lower = Ti.getSuperBound();
3769                     break;
3770                 }
3771                 if (Si.bound == Si.lower)
3772                     currentS.head = Si.bound;
3773             }
3774             currentA = currentA.tail;
3775             currentT = currentT.tail;
3776             currentS = currentS.tail;
3777         }
3778         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
3779             return erasure(t); // some "rare" type involved
3780 
3781         if (captured)
3782             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
3783         else
3784             return t;
3785     }
3786     // where
3787         public List<Type> freshTypeVariables(List<Type> types) {
3788             ListBuffer<Type> result = lb();
3789             for (Type t : types) {
3790                 if (t.tag == WILDCARD) {
3791                     t = t.unannotatedType();
3792                     Type bound = ((WildcardType)t).getExtendsBound();
3793                     if (bound == null)
3794                         bound = syms.objectType;
3795                     result.append(new CapturedType(capturedName,
3796                                                    syms.noSymbol,
3797                                                    bound,
3798                                                    syms.botType,
3799                                                    (WildcardType)t));
3800                 } else {
3801                     result.append(t);
3802                 }
3803             }
3804             return result.toList();
3805         }
3806     // </editor-fold>
3807 
3808     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
3809     private List<Type> upperBounds(List<Type> ss) {
3810         if (ss.isEmpty()) return ss;
3811         Type head = upperBound(ss.head);
3812         List<Type> tail = upperBounds(ss.tail);
3813         if (head != ss.head || tail != ss.tail)
3814             return tail.prepend(head);
3815         else
3816             return ss;
3817     }
3818 
3819     private boolean sideCast(Type from, Type to, Warner warn) {
3820         // We are casting from type $from$ to type $to$, which are
3821         // non-final unrelated types.  This method
3822         // tries to reject a cast by transferring type parameters
3823         // from $to$ to $from$ by common superinterfaces.
3824         boolean reverse = false;
3825         Type target = to;
3826         if ((to.tsym.flags() & INTERFACE) == 0) {
3827             Assert.check((from.tsym.flags() & INTERFACE) != 0);
3828             reverse = true;
3829             to = from;
3830             from = target;
3831         }
3832         List<Type> commonSupers = superClosure(to, erasure(from));
3833         boolean giveWarning = commonSupers.isEmpty();
3834         // The arguments to the supers could be unified here to
3835         // get a more accurate analysis
3836         while (commonSupers.nonEmpty()) {
3837             Type t1 = asSuper(from, commonSupers.head.tsym);
3838             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
3839             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
3840                 return false;
3841             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
3842             commonSupers = commonSupers.tail;
3843         }
3844         if (giveWarning && !isReifiable(reverse ? from : to))
3845             warn.warn(LintCategory.UNCHECKED);
3846         if (!allowCovariantReturns)
3847             // reject if there is a common method signature with
3848             // incompatible return types.
3849             chk.checkCompatibleAbstracts(warn.pos(), from, to);
3850         return true;
3851     }
3852 
3853     private boolean sideCastFinal(Type from, Type to, Warner warn) {
3854         // We are casting from type $from$ to type $to$, which are
3855         // unrelated types one of which is final and the other of
3856         // which is an interface.  This method
3857         // tries to reject a cast by transferring type parameters
3858         // from the final class to the interface.
3859         boolean reverse = false;
3860         Type target = to;
3861         if ((to.tsym.flags() & INTERFACE) == 0) {
3862             Assert.check((from.tsym.flags() & INTERFACE) != 0);
3863             reverse = true;
3864             to = from;
3865             from = target;
3866         }
3867         Assert.check((from.tsym.flags() & FINAL) != 0);
3868         Type t1 = asSuper(from, to.tsym);
3869         if (t1 == null) return false;
3870         Type t2 = to;
3871         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
3872             return false;
3873         if (!allowCovariantReturns)
3874             // reject if there is a common method signature with
3875             // incompatible return types.
3876             chk.checkCompatibleAbstracts(warn.pos(), from, to);
3877         if (!isReifiable(target) &&
3878             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
3879             warn.warn(LintCategory.UNCHECKED);
3880         return true;
3881     }
3882 
3883     private boolean giveWarning(Type from, Type to) {
3884         List<Type> bounds = to.isCompound() ?
3885                 ((IntersectionClassType)to.unannotatedType()).getComponents() : List.of(to);
3886         for (Type b : bounds) {
3887             Type subFrom = asSub(from, b.tsym);
3888             if (b.isParameterized() &&
3889                     (!(isUnbounded(b) ||
3890                     isSubtype(from, b) ||
3891                     ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
3892                 return true;
3893             }
3894         }
3895         return false;
3896     }
3897 
3898     private List<Type> superClosure(Type t, Type s) {
3899         List<Type> cl = List.nil();
3900         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
3901             if (isSubtype(s, erasure(l.head))) {
3902                 cl = insert(cl, l.head);
3903             } else {
3904                 cl = union(cl, superClosure(l.head, s));
3905             }
3906         }
3907         return cl;
3908     }
3909 
3910     private boolean containsTypeEquivalent(Type t, Type s) {
3911         return
3912             isSameType(t, s) || // shortcut
3913             containsType(t, s) && containsType(s, t);
3914     }
3915 
3916     // <editor-fold defaultstate="collapsed" desc="adapt">
3917     /**
3918      * Adapt a type by computing a substitution which maps a source
3919      * type to a target type.
3920      *
3921      * @param source    the source type
3922      * @param target    the target type
3923      * @param from      the type variables of the computed substitution
3924      * @param to        the types of the computed substitution.
3925      */
3926     public void adapt(Type source,
3927                        Type target,
3928                        ListBuffer<Type> from,
3929                        ListBuffer<Type> to) throws AdaptFailure {
3930         new Adapter(from, to).adapt(source, target);
3931     }
3932 
3933     class Adapter extends SimpleVisitor<Void, Type> {
3934 
3935         ListBuffer<Type> from;
3936         ListBuffer<Type> to;
3937         Map<Symbol,Type> mapping;
3938 
3939         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
3940             this.from = from;
3941             this.to = to;
3942             mapping = new HashMap<Symbol,Type>();
3943         }
3944 
3945         public void adapt(Type source, Type target) throws AdaptFailure {
3946             visit(source, target);
3947             List<Type> fromList = from.toList();
3948             List<Type> toList = to.toList();
3949             while (!fromList.isEmpty()) {
3950                 Type val = mapping.get(fromList.head.tsym);
3951                 if (toList.head != val)
3952                     toList.head = val;
3953                 fromList = fromList.tail;
3954                 toList = toList.tail;
3955             }
3956         }
3957 
3958         @Override
3959         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
3960             if (target.tag == CLASS)
3961                 adaptRecursive(source.allparams(), target.allparams());
3962             return null;
3963         }
3964 
3965         @Override
3966         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
3967             if (target.tag == ARRAY)
3968                 adaptRecursive(elemtype(source), elemtype(target));
3969             return null;
3970         }
3971 
3972         @Override
3973         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
3974             if (source.isExtendsBound())
3975                 adaptRecursive(upperBound(source), upperBound(target));
3976             else if (source.isSuperBound())
3977                 adaptRecursive(lowerBound(source), lowerBound(target));
3978             return null;
3979         }
3980 
3981         @Override
3982         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
3983             // Check to see if there is
3984             // already a mapping for $source$, in which case
3985             // the old mapping will be merged with the new
3986             Type val = mapping.get(source.tsym);
3987             if (val != null) {
3988                 if (val.isSuperBound() && target.isSuperBound()) {
3989                     val = isSubtype(lowerBound(val), lowerBound(target))
3990                         ? target : val;
3991                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
3992                     val = isSubtype(upperBound(val), upperBound(target))
3993                         ? val : target;
3994                 } else if (!isSameType(val, target)) {
3995                     throw new AdaptFailure();
3996                 }
3997             } else {
3998                 val = target;
3999                 from.append(source);
4000                 to.append(target);
4001             }
4002             mapping.put(source.tsym, val);
4003             return null;
4004         }
4005 
4006         @Override
4007         public Void visitType(Type source, Type target) {
4008             return null;
4009         }
4010 
4011         private Set<TypePair> cache = new HashSet<TypePair>();
4012 
4013         private void adaptRecursive(Type source, Type target) {
4014             TypePair pair = new TypePair(source, target);
4015             if (cache.add(pair)) {
4016                 try {
4017                     visit(source, target);
4018                 } finally {
4019                     cache.remove(pair);
4020                 }
4021             }
4022         }
4023 
4024         private void adaptRecursive(List<Type> source, List<Type> target) {
4025             if (source.length() == target.length()) {
4026                 while (source.nonEmpty()) {
4027                     adaptRecursive(source.head, target.head);
4028                     source = source.tail;
4029                     target = target.tail;
4030                 }
4031             }
4032         }
4033     }
4034 
4035     public static class AdaptFailure extends RuntimeException {
4036         static final long serialVersionUID = -7490231548272701566L;
4037     }
4038 
4039     private void adaptSelf(Type t,
4040                            ListBuffer<Type> from,
4041                            ListBuffer<Type> to) {
4042         try {
4043             //if (t.tsym.type != t)
4044                 adapt(t.tsym.type, t, from, to);
4045         } catch (AdaptFailure ex) {
4046             // Adapt should never fail calculating a mapping from
4047             // t.tsym.type to t as there can be no merge problem.
4048             throw new AssertionError(ex);
4049         }
4050     }
4051     // </editor-fold>
4052 
4053     /**
4054      * Rewrite all type variables (universal quantifiers) in the given
4055      * type to wildcards (existential quantifiers).  This is used to
4056      * determine if a cast is allowed.  For example, if high is true
4057      * and {@code T <: Number}, then {@code List<T>} is rewritten to
4058      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
4059      * List<? extends Number>} a {@code List<T>} can be cast to {@code
4060      * List<Integer>} with a warning.
4061      * @param t a type
4062      * @param high if true return an upper bound; otherwise a lower
4063      * bound
4064      * @param rewriteTypeVars only rewrite captured wildcards if false;
4065      * otherwise rewrite all type variables
4066      * @return the type rewritten with wildcards (existential
4067      * quantifiers) only
4068      */
4069     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
4070         return new Rewriter(high, rewriteTypeVars).visit(t);
4071     }
4072 
4073     class Rewriter extends UnaryVisitor<Type> {
4074 
4075         boolean high;
4076         boolean rewriteTypeVars;
4077 
4078         Rewriter(boolean high, boolean rewriteTypeVars) {
4079             this.high = high;
4080             this.rewriteTypeVars = rewriteTypeVars;
4081         }
4082 
4083         @Override
4084         public Type visitClassType(ClassType t, Void s) {
4085             ListBuffer<Type> rewritten = new ListBuffer<Type>();
4086             boolean changed = false;
4087             for (Type arg : t.allparams()) {
4088                 Type bound = visit(arg);
4089                 if (arg != bound) {
4090                     changed = true;
4091                 }
4092                 rewritten.append(bound);
4093             }
4094             if (changed)
4095                 return subst(t.tsym.type,
4096                         t.tsym.type.allparams(),
4097                         rewritten.toList());
4098             else
4099                 return t;
4100         }
4101 
4102         public Type visitType(Type t, Void s) {
4103             return high ? upperBound(t) : lowerBound(t);
4104         }
4105 
4106         @Override
4107         public Type visitCapturedType(CapturedType t, Void s) {
4108             Type w_bound = t.wildcard.type;
4109             Type bound = w_bound.contains(t) ?
4110                         erasure(w_bound) :
4111                         visit(w_bound);
4112             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
4113         }
4114 
4115         @Override
4116         public Type visitTypeVar(TypeVar t, Void s) {
4117             if (rewriteTypeVars) {
4118                 Type bound = t.bound.contains(t) ?
4119                         erasure(t.bound) :
4120                         visit(t.bound);
4121                 return rewriteAsWildcardType(bound, t, EXTENDS);
4122             } else {
4123                 return t;
4124             }
4125         }
4126 
4127         @Override
4128         public Type visitWildcardType(WildcardType t, Void s) {
4129             Type bound2 = visit(t.type);
4130             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
4131         }
4132 
4133         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
4134             switch (bk) {
4135                case EXTENDS: return high ?
4136                        makeExtendsWildcard(B(bound), formal) :
4137                        makeExtendsWildcard(syms.objectType, formal);
4138                case SUPER: return high ?
4139                        makeSuperWildcard(syms.botType, formal) :
4140                        makeSuperWildcard(B(bound), formal);
4141                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
4142                default:
4143                    Assert.error("Invalid bound kind " + bk);
4144                    return null;
4145             }
4146         }
4147 
4148         Type B(Type t) {
4149             while (t.tag == WILDCARD) {
4150                 WildcardType w = (WildcardType)t.unannotatedType();
4151                 t = high ?
4152                     w.getExtendsBound() :
4153                     w.getSuperBound();
4154                 if (t == null) {
4155                     t = high ? syms.objectType : syms.botType;
4156                 }
4157             }
4158             return t;
4159         }
4160     }
4161 
4162 
4163     /**
4164      * Create a wildcard with the given upper (extends) bound; create
4165      * an unbounded wildcard if bound is Object.
4166      *
4167      * @param bound the upper bound
4168      * @param formal the formal type parameter that will be
4169      * substituted by the wildcard
4170      */
4171     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
4172         if (bound == syms.objectType) {
4173             return new WildcardType(syms.objectType,
4174                                     BoundKind.UNBOUND,
4175                                     syms.boundClass,
4176                                     formal);
4177         } else {
4178             return new WildcardType(bound,
4179                                     BoundKind.EXTENDS,
4180                                     syms.boundClass,
4181                                     formal);
4182         }
4183     }
4184 
4185     /**
4186      * Create a wildcard with the given lower (super) bound; create an
4187      * unbounded wildcard if bound is bottom (type of {@code null}).
4188      *
4189      * @param bound the lower bound
4190      * @param formal the formal type parameter that will be
4191      * substituted by the wildcard
4192      */
4193     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
4194         if (bound.tag == BOT) {
4195             return new WildcardType(syms.objectType,
4196                                     BoundKind.UNBOUND,
4197                                     syms.boundClass,
4198                                     formal);
4199         } else {
4200             return new WildcardType(bound,
4201                                     BoundKind.SUPER,
4202                                     syms.boundClass,
4203                                     formal);
4204         }
4205     }
4206 
4207     /**
4208      * A wrapper for a type that allows use in sets.
4209      */
4210     public static class UniqueType {
4211         public final Type type;
4212         final Types types;
4213 
4214         public UniqueType(Type type, Types types) {
4215             this.type = type;
4216             this.types = types;
4217         }
4218 
4219         public int hashCode() {
4220             return types.hashCode(type);
4221         }
4222 
4223         public boolean equals(Object obj) {
4224             return (obj instanceof UniqueType) &&
4225                 types.isSameAnnotatedType(type, ((UniqueType)obj).type);
4226         }
4227 
4228         public String toString() {
4229             return type.toString();
4230         }
4231 
4232     }
4233     // </editor-fold>
4234 
4235     // <editor-fold defaultstate="collapsed" desc="Visitors">
4236     /**
4237      * A default visitor for types.  All visitor methods except
4238      * visitType are implemented by delegating to visitType.  Concrete
4239      * subclasses must provide an implementation of visitType and can
4240      * override other methods as needed.
4241      *
4242      * @param <R> the return type of the operation implemented by this
4243      * visitor; use Void if no return type is needed.
4244      * @param <S> the type of the second argument (the first being the
4245      * type itself) of the operation implemented by this visitor; use
4246      * Void if a second argument is not needed.
4247      */
4248     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
4249         final public R visit(Type t, S s)               { return t.accept(this, s); }
4250         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
4251         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
4252         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
4253         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
4254         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
4255         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
4256         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
4257         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
4258         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
4259         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
4260         // Pretend annotations don't exist
4261         public R visitAnnotatedType(AnnotatedType t, S s) { return visit(t.underlyingType, s); }
4262     }
4263 
4264     /**
4265      * A default visitor for symbols.  All visitor methods except
4266      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
4267      * subclasses must provide an implementation of visitSymbol and can
4268      * override other methods as needed.
4269      *
4270      * @param <R> the return type of the operation implemented by this
4271      * visitor; use Void if no return type is needed.
4272      * @param <S> the type of the second argument (the first being the
4273      * symbol itself) of the operation implemented by this visitor; use
4274      * Void if a second argument is not needed.
4275      */
4276     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
4277         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
4278         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
4279         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
4280         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
4281         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
4282         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
4283         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
4284     }
4285 
4286     /**
4287      * A <em>simple</em> visitor for types.  This visitor is simple as
4288      * captured wildcards, for-all types (generic methods), and
4289      * undetermined type variables (part of inference) are hidden.
4290      * Captured wildcards are hidden by treating them as type
4291      * variables and the rest are hidden by visiting their qtypes.
4292      *
4293      * @param <R> the return type of the operation implemented by this
4294      * visitor; use Void if no return type is needed.
4295      * @param <S> the type of the second argument (the first being the
4296      * type itself) of the operation implemented by this visitor; use
4297      * Void if a second argument is not needed.
4298      */
4299     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
4300         @Override
4301         public R visitCapturedType(CapturedType t, S s) {
4302             return visitTypeVar(t, s);
4303         }
4304         @Override
4305         public R visitForAll(ForAll t, S s) {
4306             return visit(t.qtype, s);
4307         }
4308         @Override
4309         public R visitUndetVar(UndetVar t, S s) {
4310             return visit(t.qtype, s);
4311         }
4312     }
4313 
4314     /**
4315      * A plain relation on types.  That is a 2-ary function on the
4316      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
4317      * <!-- In plain text: Type x Type -> Boolean -->
4318      */
4319     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
4320 
4321     /**
4322      * A convenience visitor for implementing operations that only
4323      * require one argument (the type itself), that is, unary
4324      * operations.
4325      *
4326      * @param <R> the return type of the operation implemented by this
4327      * visitor; use Void if no return type is needed.
4328      */
4329     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
4330         final public R visit(Type t) { return t.accept(this, null); }
4331     }
4332 
4333     /**
4334      * A visitor for implementing a mapping from types to types.  The
4335      * default behavior of this class is to implement the identity
4336      * mapping (mapping a type to itself).  This can be overridden in
4337      * subclasses.
4338      *
4339      * @param <S> the type of the second argument (the first being the
4340      * type itself) of this mapping; use Void if a second argument is
4341      * not needed.
4342      */
4343     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
4344         final public Type visit(Type t) { return t.accept(this, null); }
4345         public Type visitType(Type t, S s) { return t; }
4346     }
4347     // </editor-fold>
4348 
4349 
4350     // <editor-fold defaultstate="collapsed" desc="Annotation support">
4351 
4352     public RetentionPolicy getRetention(Attribute.Compound a) {
4353         return getRetention(a.type.tsym);
4354     }
4355 
4356     public RetentionPolicy getRetention(Symbol sym) {
4357         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
4358         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
4359         if (c != null) {
4360             Attribute value = c.member(names.value);
4361             if (value != null && value instanceof Attribute.Enum) {
4362                 Name levelName = ((Attribute.Enum)value).value.name;
4363                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
4364                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
4365                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
4366                 else ;// /* fail soft */ throw new AssertionError(levelName);
4367             }
4368         }
4369         return vis;
4370     }
4371     // </editor-fold>
4372 
4373     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
4374 
4375     public static abstract class SignatureGenerator {
4376 
4377         private final Types types;
4378 
4379         protected abstract void append(char ch);
4380         protected abstract void append(byte[] ba);
4381         protected abstract void append(Name name);
4382         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
4383 
4384         protected SignatureGenerator(Types types) {
4385             this.types = types;
4386         }
4387 
4388         /**
4389          * Assemble signature of given type in string buffer.
4390          */
4391         public void assembleSig(Type type) {
4392             type = type.unannotatedType();
4393             switch (type.getTag()) {
4394                 case BYTE:
4395                     append('B');
4396                     break;
4397                 case SHORT:
4398                     append('S');
4399                     break;
4400                 case CHAR:
4401                     append('C');
4402                     break;
4403                 case INT:
4404                     append('I');
4405                     break;
4406                 case LONG:
4407                     append('J');
4408                     break;
4409                 case FLOAT:
4410                     append('F');
4411                     break;
4412                 case DOUBLE:
4413                     append('D');
4414                     break;
4415                 case BOOLEAN:
4416                     append('Z');
4417                     break;
4418                 case VOID:
4419                     append('V');
4420                     break;
4421                 case CLASS:
4422                     append('L');
4423                     assembleClassSig(type);
4424                     append(';');
4425                     break;
4426                 case ARRAY:
4427                     ArrayType at = (ArrayType) type;
4428                     append('[');
4429                     assembleSig(at.elemtype);
4430                     break;
4431                 case METHOD:
4432                     MethodType mt = (MethodType) type;
4433                     append('(');
4434                     assembleSig(mt.argtypes);
4435                     append(')');
4436                     assembleSig(mt.restype);
4437                     if (hasTypeVar(mt.thrown)) {
4438                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
4439                             append('^');
4440                             assembleSig(l.head);
4441                         }
4442                     }
4443                     break;
4444                 case WILDCARD: {
4445                     Type.WildcardType ta = (Type.WildcardType) type;
4446                     switch (ta.kind) {
4447                         case SUPER:
4448                             append('-');
4449                             assembleSig(ta.type);
4450                             break;
4451                         case EXTENDS:
4452                             append('+');
4453                             assembleSig(ta.type);
4454                             break;
4455                         case UNBOUND:
4456                             append('*');
4457                             break;
4458                         default:
4459                             throw new AssertionError(ta.kind);
4460                     }
4461                     break;
4462                 }
4463                 case TYPEVAR:
4464                     append('T');
4465                     append(type.tsym.name);
4466                     append(';');
4467                     break;
4468                 case FORALL:
4469                     Type.ForAll ft = (Type.ForAll) type;
4470                     assembleParamsSig(ft.tvars);
4471                     assembleSig(ft.qtype);
4472                     break;
4473                 default:
4474                     throw new AssertionError("typeSig " + type.getTag());
4475             }
4476         }
4477 
4478         public boolean hasTypeVar(List<Type> l) {
4479             while (l.nonEmpty()) {
4480                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
4481                     return true;
4482                 }
4483                 l = l.tail;
4484             }
4485             return false;
4486         }
4487 
4488         public void assembleClassSig(Type type) {
4489             type = type.unannotatedType();
4490             ClassType ct = (ClassType) type;
4491             ClassSymbol c = (ClassSymbol) ct.tsym;
4492             classReference(c);
4493             Type outer = ct.getEnclosingType();
4494             if (outer.allparams().nonEmpty()) {
4495                 boolean rawOuter =
4496                         c.owner.kind == Kinds.MTH || // either a local class
4497                         c.name == types.names.empty; // or anonymous
4498                 assembleClassSig(rawOuter
4499                         ? types.erasure(outer)
4500                         : outer);
4501                 append('.');
4502                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
4503                 append(rawOuter
4504                         ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
4505                         : c.name);
4506             } else {
4507                 append(externalize(c.flatname));
4508             }
4509             if (ct.getTypeArguments().nonEmpty()) {
4510                 append('<');
4511                 assembleSig(ct.getTypeArguments());
4512                 append('>');
4513             }
4514         }
4515 
4516         public void assembleParamsSig(List<Type> typarams) {
4517             append('<');
4518             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
4519                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
4520                 append(tvar.tsym.name);
4521                 List<Type> bounds = types.getBounds(tvar);
4522                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
4523                     append(':');
4524                 }
4525                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
4526                     append(':');
4527                     assembleSig(l.head);
4528                 }
4529             }
4530             append('>');
4531         }
4532 
4533         private void assembleSig(List<Type> types) {
4534             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
4535                 assembleSig(ts.head);
4536             }
4537         }
4538     }
4539     // </editor-fold>
4540 }