/* * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package com.sun.tools.javac.jvm; import java.util.*; import com.sun.tools.javac.util.*; import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; import com.sun.tools.javac.util.List; import com.sun.tools.javac.code.*; import com.sun.tools.javac.code.Attribute.TypeCompound; import com.sun.tools.javac.code.Symbol.VarSymbol; import com.sun.tools.javac.comp.*; import com.sun.tools.javac.tree.*; import com.sun.tools.javac.code.Symbol.*; import com.sun.tools.javac.code.Type.*; import com.sun.tools.javac.jvm.Code.*; import com.sun.tools.javac.jvm.Items.*; import com.sun.tools.javac.tree.EndPosTable; import com.sun.tools.javac.tree.JCTree.*; import static com.sun.tools.javac.code.Flags.*; import static com.sun.tools.javac.code.Kinds.*; import static com.sun.tools.javac.code.TypeTag.*; import static com.sun.tools.javac.jvm.ByteCodes.*; import static com.sun.tools.javac.jvm.CRTFlags.*; import static com.sun.tools.javac.main.Option.*; import static com.sun.tools.javac.tree.JCTree.Tag.*; /** This pass maps flat Java (i.e. without inner classes) to bytecodes. * *

This is NOT part of any supported API. * If you write code that depends on this, you do so at your own risk. * This code and its internal interfaces are subject to change or * deletion without notice. */ public class Gen extends JCTree.Visitor { protected static final Context.Key genKey = new Context.Key(); private final Log log; private final Symtab syms; private final Check chk; private final Resolve rs; private final TreeMaker make; private final Names names; private final Target target; private final Type stringBufferType; private final Map stringBufferAppend; private Name accessDollar; private final Types types; private final Lower lower; /** Switch: GJ mode? */ private final boolean allowGenerics; /** Set when Miranda method stubs are to be generated. */ private final boolean generateIproxies; /** Format of stackmap tables to be generated. */ private final Code.StackMapFormat stackMap; /** A type that serves as the expected type for all method expressions. */ private final Type methodType; public static Gen instance(Context context) { Gen instance = context.get(genKey); if (instance == null) instance = new Gen(context); return instance; } /* Constant pool, reset by genClass. */ private Pool pool; protected Gen(Context context) { context.put(genKey, this); names = Names.instance(context); log = Log.instance(context); syms = Symtab.instance(context); chk = Check.instance(context); rs = Resolve.instance(context); make = TreeMaker.instance(context); target = Target.instance(context); types = Types.instance(context); methodType = new MethodType(null, null, null, syms.methodClass); allowGenerics = Source.instance(context).allowGenerics(); stringBufferType = target.useStringBuilder() ? syms.stringBuilderType : syms.stringBufferType; stringBufferAppend = new HashMap(); accessDollar = names. fromString("access" + target.syntheticNameChar()); lower = Lower.instance(context); Options options = Options.instance(context); lineDebugInfo = options.isUnset(G_CUSTOM) || options.isSet(G_CUSTOM, "lines"); varDebugInfo = options.isUnset(G_CUSTOM) ? options.isSet(G) : options.isSet(G_CUSTOM, "vars"); genCrt = options.isSet(XJCOV); debugCode = options.isSet("debugcode"); allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic"); pool = new Pool(types); generateIproxies = target.requiresIproxy() || options.isSet("miranda"); if (target.generateStackMapTable()) { // ignore cldc because we cannot have both stackmap formats this.stackMap = StackMapFormat.JSR202; } else { if (target.generateCLDCStackmap()) { this.stackMap = StackMapFormat.CLDC; } else { this.stackMap = StackMapFormat.NONE; } } // by default, avoid jsr's for simple finalizers int setjsrlimit = 50; String jsrlimitString = options.get("jsrlimit"); if (jsrlimitString != null) { try { setjsrlimit = Integer.parseInt(jsrlimitString); } catch (NumberFormatException ex) { // ignore ill-formed numbers for jsrlimit } } this.jsrlimit = setjsrlimit; this.useJsrLocally = false; // reset in visitTry } /** Switches */ private final boolean lineDebugInfo; private final boolean varDebugInfo; private final boolean genCrt; private final boolean debugCode; private final boolean allowInvokedynamic; /** Default limit of (approximate) size of finalizer to inline. * Zero means always use jsr. 100 or greater means never use * jsr. */ private final int jsrlimit; /** True if jsr is used. */ private boolean useJsrLocally; /** Code buffer, set by genMethod. */ private Code code; /** Items structure, set by genMethod. */ private Items items; /** Environment for symbol lookup, set by genClass */ private Env attrEnv; /** The top level tree. */ private JCCompilationUnit toplevel; /** The number of code-gen errors in this class. */ private int nerrs = 0; /** An object containing mappings of syntax trees to their * ending source positions. */ EndPosTable endPosTable; /** Generate code to load an integer constant. * @param n The integer to be loaded. */ void loadIntConst(int n) { items.makeImmediateItem(syms.intType, n).load(); } /** The opcode that loads a zero constant of a given type code. * @param tc The given type code (@see ByteCode). */ public static int zero(int tc) { switch(tc) { case INTcode: case BYTEcode: case SHORTcode: case CHARcode: return iconst_0; case LONGcode: return lconst_0; case FLOATcode: return fconst_0; case DOUBLEcode: return dconst_0; default: throw new AssertionError("zero"); } } /** The opcode that loads a one constant of a given type code. * @param tc The given type code (@see ByteCode). */ public static int one(int tc) { return zero(tc) + 1; } /** Generate code to load -1 of the given type code (either int or long). * @param tc The given type code (@see ByteCode). */ void emitMinusOne(int tc) { if (tc == LONGcode) { items.makeImmediateItem(syms.longType, new Long(-1)).load(); } else { code.emitop0(iconst_m1); } } /** Construct a symbol to reflect the qualifying type that should * appear in the byte code as per JLS 13.1. * * For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except * for those cases where we need to work around VM bugs). * * For {@literal target <= 1.1}: If qualified variable or method is defined in a * non-accessible class, clone it with the qualifier class as owner. * * @param sym The accessed symbol * @param site The qualifier's type. */ Symbol binaryQualifier(Symbol sym, Type site) { if (site.hasTag(ARRAY)) { if (sym == syms.lengthVar || sym.owner != syms.arrayClass) return sym; // array clone can be qualified by the array type in later targets Symbol qualifier = target.arrayBinaryCompatibility() ? new ClassSymbol(Flags.PUBLIC, site.tsym.name, site, syms.noSymbol) : syms.objectType.tsym; return sym.clone(qualifier); } if (sym.owner == site.tsym || (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) { return sym; } if (!target.obeyBinaryCompatibility()) return rs.isAccessible(attrEnv, (TypeSymbol)sym.owner) ? sym : sym.clone(site.tsym); if (!target.interfaceFieldsBinaryCompatibility()) { if ((sym.owner.flags() & INTERFACE) != 0 && sym.kind == VAR) return sym; } // leave alone methods inherited from Object // JLS 13.1. if (sym.owner == syms.objectType.tsym) return sym; if (!target.interfaceObjectOverridesBinaryCompatibility()) { if ((sym.owner.flags() & INTERFACE) != 0 && syms.objectType.tsym.members().lookup(sym.name).scope != null) return sym; } return sym.clone(site.tsym); } /** Insert a reference to given type in the constant pool, * checking for an array with too many dimensions; * return the reference's index. * @param type The type for which a reference is inserted. */ int makeRef(DiagnosticPosition pos, Type type) { checkDimension(pos, type); if (type.isAnnotated()) { // Treat annotated types separately - we don't want // to collapse all of them - at least for annotated // exceptions. // TODO: review this. return pool.put((Object)type); } else { return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type); } } /** Check if the given type is an array with too many dimensions. */ private void checkDimension(DiagnosticPosition pos, Type t) { switch (t.getTag()) { case METHOD: checkDimension(pos, t.getReturnType()); for (List args = t.getParameterTypes(); args.nonEmpty(); args = args.tail) checkDimension(pos, args.head); break; case ARRAY: if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) { log.error(pos, "limit.dimensions"); nerrs++; } break; default: break; } } /** Create a tempory variable. * @param type The variable's type. */ LocalItem makeTemp(Type type) { VarSymbol v = new VarSymbol(Flags.SYNTHETIC, names.empty, type, env.enclMethod.sym); code.newLocal(v); return items.makeLocalItem(v); } /** Generate code to call a non-private method or constructor. * @param pos Position to be used for error reporting. * @param site The type of which the method is a member. * @param name The method's name. * @param argtypes The method's argument types. * @param isStatic A flag that indicates whether we call a * static or instance method. */ void callMethod(DiagnosticPosition pos, Type site, Name name, List argtypes, boolean isStatic) { Symbol msym = rs. resolveInternalMethod(pos, attrEnv, site, name, argtypes, null); if (isStatic) items.makeStaticItem(msym).invoke(); else items.makeMemberItem(msym, name == names.init).invoke(); } /** Is the given method definition an access method * resulting from a qualified super? This is signified by an odd * access code. */ private boolean isAccessSuper(JCMethodDecl enclMethod) { return (enclMethod.mods.flags & SYNTHETIC) != 0 && isOddAccessName(enclMethod.name); } /** Does given name start with "access$" and end in an odd digit? */ private boolean isOddAccessName(Name name) { return name.startsWith(accessDollar) && (name.getByteAt(name.getByteLength() - 1) & 1) == 1; } /* ************************************************************************ * Non-local exits *************************************************************************/ /** Generate code to invoke the finalizer associated with given * environment. * Any calls to finalizers are appended to the environments `cont' chain. * Mark beginning of gap in catch all range for finalizer. */ void genFinalizer(Env env) { if (code.isAlive() && env.info.finalize != null) env.info.finalize.gen(); } /** Generate code to call all finalizers of structures aborted by * a non-local * exit. Return target environment of the non-local exit. * @param target The tree representing the structure that's aborted * @param env The environment current at the non-local exit. */ Env unwind(JCTree target, Env env) { Env env1 = env; while (true) { genFinalizer(env1); if (env1.tree == target) break; env1 = env1.next; } return env1; } /** Mark end of gap in catch-all range for finalizer. * @param env the environment which might contain the finalizer * (if it does, env.info.gaps != null). */ void endFinalizerGap(Env env) { if (env.info.gaps != null && env.info.gaps.length() % 2 == 1) env.info.gaps.append(code.curPc()); } /** Mark end of all gaps in catch-all ranges for finalizers of environments * lying between, and including to two environments. * @param from the most deeply nested environment to mark * @param to the least deeply nested environment to mark */ void endFinalizerGaps(Env from, Env to) { Env last = null; while (last != to) { endFinalizerGap(from); last = from; from = from.next; } } /** Do any of the structures aborted by a non-local exit have * finalizers that require an empty stack? * @param target The tree representing the structure that's aborted * @param env The environment current at the non-local exit. */ boolean hasFinally(JCTree target, Env env) { while (env.tree != target) { if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer()) return true; env = env.next; } return false; } /* ************************************************************************ * Normalizing class-members. *************************************************************************/ /** Distribute member initializer code into constructors and {@code } * method. * @param defs The list of class member declarations. * @param c The enclosing class. */ List normalizeDefs(List defs, ClassSymbol c) { ListBuffer initCode = new ListBuffer(); ListBuffer initTAs = new ListBuffer(); ListBuffer clinitCode = new ListBuffer(); ListBuffer clinitTAs = new ListBuffer(); ListBuffer methodDefs = new ListBuffer(); // Sort definitions into three listbuffers: // - initCode for instance initializers // - clinitCode for class initializers // - methodDefs for method definitions for (List l = defs; l.nonEmpty(); l = l.tail) { JCTree def = l.head; switch (def.getTag()) { case BLOCK: JCBlock block = (JCBlock)def; if ((block.flags & STATIC) != 0) clinitCode.append(block); else initCode.append(block); break; case METHODDEF: methodDefs.append(def); break; case VARDEF: JCVariableDecl vdef = (JCVariableDecl) def; VarSymbol sym = vdef.sym; checkDimension(vdef.pos(), sym.type); if (vdef.init != null) { if ((sym.flags() & STATIC) == 0) { // Always initialize instance variables. JCStatement init = make.at(vdef.pos()). Assignment(sym, vdef.init); initCode.append(init); endPosTable.replaceTree(vdef, init); initTAs.addAll(getAndRemoveNonFieldTAs(sym)); } else if (sym.getConstValue() == null) { // Initialize class (static) variables only if // they are not compile-time constants. JCStatement init = make.at(vdef.pos). Assignment(sym, vdef.init); clinitCode.append(init); endPosTable.replaceTree(vdef, init); clinitTAs.addAll(getAndRemoveNonFieldTAs(sym)); } else { checkStringConstant(vdef.init.pos(), sym.getConstValue()); } } break; default: Assert.error(); } } // Insert any instance initializers into all constructors. if (initCode.length() != 0) { List inits = initCode.toList(); initTAs.addAll(c.getInitTypeAttributes()); List initTAlist = initTAs.toList(); for (JCTree t : methodDefs) { normalizeMethod((JCMethodDecl)t, inits, initTAlist); } } // If there are class initializers, create a method // that contains them as its body. if (clinitCode.length() != 0) { MethodSymbol clinit = new MethodSymbol( STATIC | (c.flags() & STRICTFP), names.clinit, new MethodType( List.nil(), syms.voidType, List.nil(), syms.methodClass), c); c.members().enter(clinit); List clinitStats = clinitCode.toList(); JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats); block.endpos = TreeInfo.endPos(clinitStats.last()); methodDefs.append(make.MethodDef(clinit, block)); if (!clinitTAs.isEmpty()) clinit.appendUniqueTypeAttributes(clinitTAs.toList()); if (!c.getClassInitTypeAttributes().isEmpty()) clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes()); } // Return all method definitions. return methodDefs.toList(); } private List getAndRemoveNonFieldTAs(VarSymbol sym) { List tas = sym.getRawTypeAttributes(); ListBuffer fieldTAs = new ListBuffer(); ListBuffer nonfieldTAs = new ListBuffer(); for (TypeCompound ta : tas) { if (ta.position.type == TargetType.FIELD) { fieldTAs.add(ta); } else { nonfieldTAs.add(ta); } } sym.setTypeAttributes(fieldTAs.toList()); return nonfieldTAs.toList(); } /** Check a constant value and report if it is a string that is * too large. */ private void checkStringConstant(DiagnosticPosition pos, Object constValue) { if (nerrs != 0 || // only complain about a long string once constValue == null || !(constValue instanceof String) || ((String)constValue).length() < Pool.MAX_STRING_LENGTH) return; log.error(pos, "limit.string"); nerrs++; } /** Insert instance initializer code into initial constructor. * @param md The tree potentially representing a * constructor's definition. * @param initCode The list of instance initializer statements. * @param initTAs Type annotations from the initializer expression. */ void normalizeMethod(JCMethodDecl md, List initCode, List initTAs) { if (md.name == names.init && TreeInfo.isInitialConstructor(md)) { // We are seeing a constructor that does not call another // constructor of the same class. List stats = md.body.stats; ListBuffer newstats = new ListBuffer(); if (stats.nonEmpty()) { // Copy initializers of synthetic variables generated in // the translation of inner classes. while (TreeInfo.isSyntheticInit(stats.head)) { newstats.append(stats.head); stats = stats.tail; } // Copy superclass constructor call newstats.append(stats.head); stats = stats.tail; // Copy remaining synthetic initializers. while (stats.nonEmpty() && TreeInfo.isSyntheticInit(stats.head)) { newstats.append(stats.head); stats = stats.tail; } // Now insert the initializer code. newstats.appendList(initCode); // And copy all remaining statements. while (stats.nonEmpty()) { newstats.append(stats.head); stats = stats.tail; } } md.body.stats = newstats.toList(); if (md.body.endpos == Position.NOPOS) md.body.endpos = TreeInfo.endPos(md.body.stats.last()); md.sym.appendUniqueTypeAttributes(initTAs); } } /* ******************************************************************** * Adding miranda methods *********************************************************************/ /** Add abstract methods for all methods defined in one of * the interfaces of a given class, * provided they are not already implemented in the class. * * @param c The class whose interfaces are searched for methods * for which Miranda methods should be added. */ void implementInterfaceMethods(ClassSymbol c) { implementInterfaceMethods(c, c); } /** Add abstract methods for all methods defined in one of * the interfaces of a given class, * provided they are not already implemented in the class. * * @param c The class whose interfaces are searched for methods * for which Miranda methods should be added. * @param site The class in which a definition may be needed. */ void implementInterfaceMethods(ClassSymbol c, ClassSymbol site) { for (List l = types.interfaces(c.type); l.nonEmpty(); l = l.tail) { ClassSymbol i = (ClassSymbol)l.head.tsym; for (Scope.Entry e = i.members().elems; e != null; e = e.sibling) { if (e.sym.kind == MTH && (e.sym.flags() & STATIC) == 0) { MethodSymbol absMeth = (MethodSymbol)e.sym; MethodSymbol implMeth = absMeth.binaryImplementation(site, types); if (implMeth == null) addAbstractMethod(site, absMeth); else if ((implMeth.flags() & IPROXY) != 0) adjustAbstractMethod(site, implMeth, absMeth); } } implementInterfaceMethods(i, site); } } /** Add an abstract methods to a class * which implicitly implements a method defined in some interface * implemented by the class. These methods are called "Miranda methods". * Enter the newly created method into its enclosing class scope. * Note that it is not entered into the class tree, as the emitter * doesn't need to see it there to emit an abstract method. * * @param c The class to which the Miranda method is added. * @param m The interface method symbol for which a Miranda method * is added. */ private void addAbstractMethod(ClassSymbol c, MethodSymbol m) { MethodSymbol absMeth = new MethodSymbol( m.flags() | IPROXY | SYNTHETIC, m.name, m.type, // was c.type.memberType(m), but now only !generics supported c); c.members().enter(absMeth); // add to symbol table } private void adjustAbstractMethod(ClassSymbol c, MethodSymbol pm, MethodSymbol im) { MethodType pmt = (MethodType)pm.type; Type imt = types.memberType(c.type, im); pmt.thrown = chk.intersect(pmt.getThrownTypes(), imt.getThrownTypes()); } /* ************************************************************************ * Traversal methods *************************************************************************/ /** Visitor argument: The current environment. */ Env env; /** Visitor argument: The expected type (prototype). */ Type pt; /** Visitor result: The item representing the computed value. */ Item result; /** Visitor method: generate code for a definition, catching and reporting * any completion failures. * @param tree The definition to be visited. * @param env The environment current at the definition. */ public void genDef(JCTree tree, Env env) { Env prevEnv = this.env; try { this.env = env; tree.accept(this); } catch (CompletionFailure ex) { chk.completionError(tree.pos(), ex); } finally { this.env = prevEnv; } } /** Derived visitor method: check whether CharacterRangeTable * should be emitted, if so, put a new entry into CRTable * and call method to generate bytecode. * If not, just call method to generate bytecode. * @see #genStat(JCTree, Env) * * @param tree The tree to be visited. * @param env The environment to use. * @param crtFlags The CharacterRangeTable flags * indicating type of the entry. */ public void genStat(JCTree tree, Env env, int crtFlags) { if (!genCrt) { genStat(tree, env); return; } int startpc = code.curPc(); genStat(tree, env); if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK; code.crt.put(tree, crtFlags, startpc, code.curPc()); } /** Derived visitor method: generate code for a statement. */ public void genStat(JCTree tree, Env env) { if (code.isAlive()) { code.statBegin(tree.pos); genDef(tree, env); } else if (env.info.isSwitch && tree.hasTag(VARDEF)) { // variables whose declarations are in a switch // can be used even if the decl is unreachable. code.newLocal(((JCVariableDecl) tree).sym); } } /** Derived visitor method: check whether CharacterRangeTable * should be emitted, if so, put a new entry into CRTable * and call method to generate bytecode. * If not, just call method to generate bytecode. * @see #genStats(List, Env) * * @param trees The list of trees to be visited. * @param env The environment to use. * @param crtFlags The CharacterRangeTable flags * indicating type of the entry. */ public void genStats(List trees, Env env, int crtFlags) { if (!genCrt) { genStats(trees, env); return; } if (trees.length() == 1) { // mark one statement with the flags genStat(trees.head, env, crtFlags | CRT_STATEMENT); } else { int startpc = code.curPc(); genStats(trees, env); code.crt.put(trees, crtFlags, startpc, code.curPc()); } } /** Derived visitor method: generate code for a list of statements. */ public void genStats(List trees, Env env) { for (List l = trees; l.nonEmpty(); l = l.tail) genStat(l.head, env, CRT_STATEMENT); } /** Derived visitor method: check whether CharacterRangeTable * should be emitted, if so, put a new entry into CRTable * and call method to generate bytecode. * If not, just call method to generate bytecode. * @see #genCond(JCTree,boolean) * * @param tree The tree to be visited. * @param crtFlags The CharacterRangeTable flags * indicating type of the entry. */ public CondItem genCond(JCTree tree, int crtFlags) { if (!genCrt) return genCond(tree, false); int startpc = code.curPc(); CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0); code.crt.put(tree, crtFlags, startpc, code.curPc()); return item; } /** Derived visitor method: generate code for a boolean * expression in a control-flow context. * @param _tree The expression to be visited. * @param markBranches The flag to indicate that the condition is * a flow controller so produced conditions * should contain a proper tree to generate * CharacterRangeTable branches for them. */ public CondItem genCond(JCTree _tree, boolean markBranches) { JCTree inner_tree = TreeInfo.skipParens(_tree); if (inner_tree.hasTag(CONDEXPR)) { JCConditional tree = (JCConditional)inner_tree; CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER); if (cond.isTrue()) { code.resolve(cond.trueJumps); CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET); if (markBranches) result.tree = tree.truepart; return result; } if (cond.isFalse()) { code.resolve(cond.falseJumps); CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET); if (markBranches) result.tree = tree.falsepart; return result; } Chain secondJumps = cond.jumpFalse(); code.resolve(cond.trueJumps); CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET); if (markBranches) first.tree = tree.truepart; Chain falseJumps = first.jumpFalse(); code.resolve(first.trueJumps); Chain trueJumps = code.branch(goto_); code.resolve(secondJumps); CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET); CondItem result = items.makeCondItem(second.opcode, Code.mergeChains(trueJumps, second.trueJumps), Code.mergeChains(falseJumps, second.falseJumps)); if (markBranches) result.tree = tree.falsepart; return result; } else { CondItem result = genExpr(_tree, syms.booleanType).mkCond(); if (markBranches) result.tree = _tree; return result; } } /** Visitor class for expressions which might be constant expressions. * This class is a subset of TreeScanner. Intended to visit trees pruned by * Lower as long as constant expressions looking for references to any * ClassSymbol. Any such reference will be added to the constant pool so * automated tools can detect class dependencies better. */ class ClassReferenceVisitor extends JCTree.Visitor { @Override public void visitTree(JCTree tree) {} @Override public void visitBinary(JCBinary tree) { tree.lhs.accept(this); tree.rhs.accept(this); } @Override public void visitSelect(JCFieldAccess tree) { if (tree.selected.type.hasTag(CLASS)) { makeRef(tree.selected.pos(), tree.selected.type); } } @Override public void visitIdent(JCIdent tree) { if (tree.sym.owner instanceof ClassSymbol) { pool.put(tree.sym.owner); } } @Override public void visitConditional(JCConditional tree) { tree.cond.accept(this); tree.truepart.accept(this); tree.falsepart.accept(this); } @Override public void visitUnary(JCUnary tree) { tree.arg.accept(this); } @Override public void visitParens(JCParens tree) { tree.expr.accept(this); } @Override public void visitTypeCast(JCTypeCast tree) { tree.expr.accept(this); } } private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor(); /** Visitor method: generate code for an expression, catching and reporting * any completion failures. * @param tree The expression to be visited. * @param pt The expression's expected type (proto-type). */ public Item genExpr(JCTree tree, Type pt) { Type prevPt = this.pt; try { if (tree.type.constValue() != null) { // Short circuit any expressions which are constants tree.accept(classReferenceVisitor); checkStringConstant(tree.pos(), tree.type.constValue()); result = items.makeImmediateItem(tree.type, tree.type.constValue()); } else { this.pt = pt; tree.accept(this); } return result.coerce(pt); } catch (CompletionFailure ex) { chk.completionError(tree.pos(), ex); code.state.stacksize = 1; return items.makeStackItem(pt); } finally { this.pt = prevPt; } } /** Derived visitor method: generate code for a list of method arguments. * @param trees The argument expressions to be visited. * @param pts The expression's expected types (i.e. the formal parameter * types of the invoked method). */ public void genArgs(List trees, List pts) { for (List l = trees; l.nonEmpty(); l = l.tail) { genExpr(l.head, pts.head).load(); pts = pts.tail; } // require lists be of same length Assert.check(pts.isEmpty()); } /* ************************************************************************ * Visitor methods for statements and definitions *************************************************************************/ /** Thrown when the byte code size exceeds limit. */ public static class CodeSizeOverflow extends RuntimeException { private static final long serialVersionUID = 0; public CodeSizeOverflow() {} } public void visitMethodDef(JCMethodDecl tree) { // Create a new local environment that points pack at method // definition. Env localEnv = env.dup(tree); localEnv.enclMethod = tree; // The expected type of every return statement in this method // is the method's return type. this.pt = tree.sym.erasure(types).getReturnType(); checkDimension(tree.pos(), tree.sym.erasure(types)); genMethod(tree, localEnv, false); } //where /** Generate code for a method. * @param tree The tree representing the method definition. * @param env The environment current for the method body. * @param fatcode A flag that indicates whether all jumps are * within 32K. We first invoke this method under * the assumption that fatcode == false, i.e. all * jumps are within 32K. If this fails, fatcode * is set to true and we try again. */ void genMethod(JCMethodDecl tree, Env env, boolean fatcode) { MethodSymbol meth = tree.sym; int extras = 0; // Count up extra parameters if (meth.isConstructor()) { extras++; if (meth.enclClass().isInner() && !meth.enclClass().isStatic()) { extras++; } } else if ((tree.mods.flags & STATIC) == 0) { extras++; } // System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras > ClassFile.MAX_PARAMETERS) { log.error(tree.pos(), "limit.parameters"); nerrs++; } else if (tree.body != null) { // Create a new code structure and initialize it. int startpcCrt = initCode(tree, env, fatcode); try { genStat(tree.body, env); } catch (CodeSizeOverflow e) { // Failed due to code limit, try again with jsr/ret startpcCrt = initCode(tree, env, fatcode); genStat(tree.body, env); } if (code.state.stacksize != 0) { log.error(tree.body.pos(), "stack.sim.error", tree); throw new AssertionError(); } // If last statement could complete normally, insert a // return at the end. if (code.isAlive()) { code.statBegin(TreeInfo.endPos(tree.body)); if (env.enclMethod == null || env.enclMethod.sym.type.getReturnType().hasTag(VOID)) { code.emitop0(return_); } else { // sometime dead code seems alive (4415991); // generate a small loop instead int startpc = code.entryPoint(); CondItem c = items.makeCondItem(goto_); code.resolve(c.jumpTrue(), startpc); } } if (genCrt) code.crt.put(tree.body, CRT_BLOCK, startpcCrt, code.curPc()); code.endScopes(0); // If we exceeded limits, panic if (code.checkLimits(tree.pos(), log)) { nerrs++; return; } // If we generated short code but got a long jump, do it again // with fatCode = true. if (!fatcode && code.fatcode) genMethod(tree, env, true); // Clean up if(stackMap == StackMapFormat.JSR202) { code.lastFrame = null; code.frameBeforeLast = null; } // Compress exception table code.compressCatchTable(); // Fill in type annotation positions for exception parameters code.fillExceptionParameterPositions(); } } private int initCode(JCMethodDecl tree, Env env, boolean fatcode) { MethodSymbol meth = tree.sym; // Create a new code structure. meth.code = code = new Code(meth, fatcode, lineDebugInfo ? toplevel.lineMap : null, varDebugInfo, stackMap, debugCode, genCrt ? new CRTable(tree, env.toplevel.endPositions) : null, syms, types, pool); items = new Items(pool, code, syms, types); if (code.debugCode) System.err.println(meth + " for body " + tree); // If method is not static, create a new local variable address // for `this'. if ((tree.mods.flags & STATIC) == 0) { Type selfType = meth.owner.type; if (meth.isConstructor() && selfType != syms.objectType) selfType = UninitializedType.uninitializedThis(selfType); code.setDefined( code.newLocal( new VarSymbol(FINAL, names._this, selfType, meth.owner))); } // Mark all parameters as defined from the beginning of // the method. for (List l = tree.params; l.nonEmpty(); l = l.tail) { checkDimension(l.head.pos(), l.head.sym.type); code.setDefined(code.newLocal(l.head.sym)); } // Get ready to generate code for method body. int startpcCrt = genCrt ? code.curPc() : 0; code.entryPoint(); // Suppress initial stackmap code.pendingStackMap = false; return startpcCrt; } public void visitVarDef(JCVariableDecl tree) { VarSymbol v = tree.sym; code.newLocal(v); if (tree.init != null) { checkStringConstant(tree.init.pos(), v.getConstValue()); if (v.getConstValue() == null || varDebugInfo) { genExpr(tree.init, v.erasure(types)).load(); items.makeLocalItem(v).store(); } } checkDimension(tree.pos(), v.type); } public void visitSkip(JCSkip tree) { } public void visitBlock(JCBlock tree) { int limit = code.nextreg; Env localEnv = env.dup(tree, new GenContext()); genStats(tree.stats, localEnv); // End the scope of all block-local variables in variable info. if (!env.tree.hasTag(METHODDEF)) { code.statBegin(tree.endpos); code.endScopes(limit); code.pendingStatPos = Position.NOPOS; } } public void visitDoLoop(JCDoWhileLoop tree) { genLoop(tree, tree.body, tree.cond, List.nil(), false); } public void visitWhileLoop(JCWhileLoop tree) { genLoop(tree, tree.body, tree.cond, List.nil(), true); } public void visitForLoop(JCForLoop tree) { int limit = code.nextreg; genStats(tree.init, env); genLoop(tree, tree.body, tree.cond, tree.step, true); code.endScopes(limit); } //where /** Generate code for a loop. * @param loop The tree representing the loop. * @param body The loop's body. * @param cond The loop's controling condition. * @param step "Step" statements to be inserted at end of * each iteration. * @param testFirst True if the loop test belongs before the body. */ private void genLoop(JCStatement loop, JCStatement body, JCExpression cond, List step, boolean testFirst) { Env loopEnv = env.dup(loop, new GenContext()); int startpc = code.entryPoint(); if (testFirst) { CondItem c; if (cond != null) { code.statBegin(cond.pos); c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER); } else { c = items.makeCondItem(goto_); } Chain loopDone = c.jumpFalse(); code.resolve(c.trueJumps); genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET); code.resolve(loopEnv.info.cont); genStats(step, loopEnv); code.resolve(code.branch(goto_), startpc); code.resolve(loopDone); } else { genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET); code.resolve(loopEnv.info.cont); genStats(step, loopEnv); CondItem c; if (cond != null) { code.statBegin(cond.pos); c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER); } else { c = items.makeCondItem(goto_); } code.resolve(c.jumpTrue(), startpc); code.resolve(c.falseJumps); } code.resolve(loopEnv.info.exit); } public void visitForeachLoop(JCEnhancedForLoop tree) { throw new AssertionError(); // should have been removed by Lower. } public void visitLabelled(JCLabeledStatement tree) { Env localEnv = env.dup(tree, new GenContext()); genStat(tree.body, localEnv, CRT_STATEMENT); code.resolve(localEnv.info.exit); } public void visitSwitch(JCSwitch tree) { int limit = code.nextreg; Assert.check(!tree.selector.type.hasTag(CLASS)); int startpcCrt = genCrt ? code.curPc() : 0; Item sel = genExpr(tree.selector, syms.intType); List cases = tree.cases; if (cases.isEmpty()) { // We are seeing: switch {} sel.load().drop(); if (genCrt) code.crt.put(TreeInfo.skipParens(tree.selector), CRT_FLOW_CONTROLLER, startpcCrt, code.curPc()); } else { // We are seeing a nonempty switch. sel.load(); if (genCrt) code.crt.put(TreeInfo.skipParens(tree.selector), CRT_FLOW_CONTROLLER, startpcCrt, code.curPc()); Env switchEnv = env.dup(tree, new GenContext()); switchEnv.info.isSwitch = true; // Compute number of labels and minimum and maximum label values. // For each case, store its label in an array. int lo = Integer.MAX_VALUE; // minimum label. int hi = Integer.MIN_VALUE; // maximum label. int nlabels = 0; // number of labels. int[] labels = new int[cases.length()]; // the label array. int defaultIndex = -1; // the index of the default clause. List l = cases; for (int i = 0; i < labels.length; i++) { if (l.head.pat != null) { int val = ((Number)l.head.pat.type.constValue()).intValue(); labels[i] = val; if (val < lo) lo = val; if (hi < val) hi = val; nlabels++; } else { Assert.check(defaultIndex == -1); defaultIndex = i; } l = l.tail; } // Determine whether to issue a tableswitch or a lookupswitch // instruction. long table_space_cost = 4 + ((long) hi - lo + 1); // words long table_time_cost = 3; // comparisons long lookup_space_cost = 3 + 2 * (long) nlabels; long lookup_time_cost = nlabels; int opcode = nlabels > 0 && table_space_cost + 3 * table_time_cost <= lookup_space_cost + 3 * lookup_time_cost ? tableswitch : lookupswitch; int startpc = code.curPc(); // the position of the selector operation code.emitop0(opcode); code.align(4); int tableBase = code.curPc(); // the start of the jump table int[] offsets = null; // a table of offsets for a lookupswitch code.emit4(-1); // leave space for default offset if (opcode == tableswitch) { code.emit4(lo); // minimum label code.emit4(hi); // maximum label for (long i = lo; i <= hi; i++) { // leave space for jump table code.emit4(-1); } } else { code.emit4(nlabels); // number of labels for (int i = 0; i < nlabels; i++) { code.emit4(-1); code.emit4(-1); // leave space for lookup table } offsets = new int[labels.length]; } Code.State stateSwitch = code.state.dup(); code.markDead(); // For each case do: l = cases; for (int i = 0; i < labels.length; i++) { JCCase c = l.head; l = l.tail; int pc = code.entryPoint(stateSwitch); // Insert offset directly into code or else into the // offsets table. if (i != defaultIndex) { if (opcode == tableswitch) { code.put4( tableBase + 4 * (labels[i] - lo + 3), pc - startpc); } else { offsets[i] = pc - startpc; } } else { code.put4(tableBase, pc - startpc); } // Generate code for the statements in this case. genStats(c.stats, switchEnv, CRT_FLOW_TARGET); } // Resolve all breaks. code.resolve(switchEnv.info.exit); // If we have not set the default offset, we do so now. if (code.get4(tableBase) == -1) { code.put4(tableBase, code.entryPoint(stateSwitch) - startpc); } if (opcode == tableswitch) { // Let any unfilled slots point to the default case. int defaultOffset = code.get4(tableBase); for (long i = lo; i <= hi; i++) { int t = (int)(tableBase + 4 * (i - lo + 3)); if (code.get4(t) == -1) code.put4(t, defaultOffset); } } else { // Sort non-default offsets and copy into lookup table. if (defaultIndex >= 0) for (int i = defaultIndex; i < labels.length - 1; i++) { labels[i] = labels[i+1]; offsets[i] = offsets[i+1]; } if (nlabels > 0) qsort2(labels, offsets, 0, nlabels - 1); for (int i = 0; i < nlabels; i++) { int caseidx = tableBase + 8 * (i + 1); code.put4(caseidx, labels[i]); code.put4(caseidx + 4, offsets[i]); } } } code.endScopes(limit); } //where /** Sort (int) arrays of keys and values */ static void qsort2(int[] keys, int[] values, int lo, int hi) { int i = lo; int j = hi; int pivot = keys[(i+j)/2]; do { while (keys[i] < pivot) i++; while (pivot < keys[j]) j--; if (i <= j) { int temp1 = keys[i]; keys[i] = keys[j]; keys[j] = temp1; int temp2 = values[i]; values[i] = values[j]; values[j] = temp2; i++; j--; } } while (i <= j); if (lo < j) qsort2(keys, values, lo, j); if (i < hi) qsort2(keys, values, i, hi); } public void visitSynchronized(JCSynchronized tree) { int limit = code.nextreg; // Generate code to evaluate lock and save in temporary variable. final LocalItem lockVar = makeTemp(syms.objectType); genExpr(tree.lock, tree.lock.type).load().duplicate(); lockVar.store(); // Generate code to enter monitor. code.emitop0(monitorenter); code.state.lock(lockVar.reg); // Generate code for a try statement with given body, no catch clauses // in a new environment with the "exit-monitor" operation as finalizer. final Env syncEnv = env.dup(tree, new GenContext()); syncEnv.info.finalize = new GenFinalizer() { void gen() { genLast(); Assert.check(syncEnv.info.gaps.length() % 2 == 0); syncEnv.info.gaps.append(code.curPc()); } void genLast() { if (code.isAlive()) { lockVar.load(); code.emitop0(monitorexit); code.state.unlock(lockVar.reg); } } }; syncEnv.info.gaps = new ListBuffer(); genTry(tree.body, List.nil(), syncEnv); code.endScopes(limit); } public void visitTry(final JCTry tree) { // Generate code for a try statement with given body and catch clauses, // in a new environment which calls the finally block if there is one. final Env tryEnv = env.dup(tree, new GenContext()); final Env oldEnv = env; if (!useJsrLocally) { useJsrLocally = (stackMap == StackMapFormat.NONE) && (jsrlimit <= 0 || jsrlimit < 100 && estimateCodeComplexity(tree.finalizer)>jsrlimit); } tryEnv.info.finalize = new GenFinalizer() { void gen() { if (useJsrLocally) { if (tree.finalizer != null) { Code.State jsrState = code.state.dup(); jsrState.push(Code.jsrReturnValue); tryEnv.info.cont = new Chain(code.emitJump(jsr), tryEnv.info.cont, jsrState); } Assert.check(tryEnv.info.gaps.length() % 2 == 0); tryEnv.info.gaps.append(code.curPc()); } else { Assert.check(tryEnv.info.gaps.length() % 2 == 0); tryEnv.info.gaps.append(code.curPc()); genLast(); } } void genLast() { if (tree.finalizer != null) genStat(tree.finalizer, oldEnv, CRT_BLOCK); } boolean hasFinalizer() { return tree.finalizer != null; } }; tryEnv.info.gaps = new ListBuffer(); genTry(tree.body, tree.catchers, tryEnv); } //where /** Generate code for a try or synchronized statement * @param body The body of the try or synchronized statement. * @param catchers The lis of catch clauses. * @param env the environment current for the body. */ void genTry(JCTree body, List catchers, Env env) { int limit = code.nextreg; int startpc = code.curPc(); Code.State stateTry = code.state.dup(); genStat(body, env, CRT_BLOCK); int endpc = code.curPc(); boolean hasFinalizer = env.info.finalize != null && env.info.finalize.hasFinalizer(); List gaps = env.info.gaps.toList(); code.statBegin(TreeInfo.endPos(body)); genFinalizer(env); code.statBegin(TreeInfo.endPos(env.tree)); Chain exitChain = code.branch(goto_); endFinalizerGap(env); if (startpc != endpc) for (List l = catchers; l.nonEmpty(); l = l.tail) { // start off with exception on stack code.entryPoint(stateTry, l.head.param.sym.type); genCatch(l.head, env, startpc, endpc, gaps); genFinalizer(env); if (hasFinalizer || l.tail.nonEmpty()) { code.statBegin(TreeInfo.endPos(env.tree)); exitChain = Code.mergeChains(exitChain, code.branch(goto_)); } endFinalizerGap(env); } if (hasFinalizer) { // Create a new register segement to avoid allocating // the same variables in finalizers and other statements. code.newRegSegment(); // Add a catch-all clause. // start off with exception on stack int catchallpc = code.entryPoint(stateTry, syms.throwableType); // Register all exception ranges for catch all clause. // The range of the catch all clause is from the beginning // of the try or synchronized block until the present // code pointer excluding all gaps in the current // environment's GenContext. int startseg = startpc; while (env.info.gaps.nonEmpty()) { int endseg = env.info.gaps.next().intValue(); registerCatch(body.pos(), startseg, endseg, catchallpc, 0); startseg = env.info.gaps.next().intValue(); } code.statBegin(TreeInfo.finalizerPos(env.tree)); code.markStatBegin(); Item excVar = makeTemp(syms.throwableType); excVar.store(); genFinalizer(env); excVar.load(); registerCatch(body.pos(), startseg, env.info.gaps.next().intValue(), catchallpc, 0); code.emitop0(athrow); code.markDead(); // If there are jsr's to this finalizer, ... if (env.info.cont != null) { // Resolve all jsr's. code.resolve(env.info.cont); // Mark statement line number code.statBegin(TreeInfo.finalizerPos(env.tree)); code.markStatBegin(); // Save return address. LocalItem retVar = makeTemp(syms.throwableType); retVar.store(); // Generate finalizer code. env.info.finalize.genLast(); // Return. code.emitop1w(ret, retVar.reg); code.markDead(); } } // Resolve all breaks. code.resolve(exitChain); code.endScopes(limit); } /** Generate code for a catch clause. * @param tree The catch clause. * @param env The environment current in the enclosing try. * @param startpc Start pc of try-block. * @param endpc End pc of try-block. */ void genCatch(JCCatch tree, Env env, int startpc, int endpc, List gaps) { if (startpc != endpc) { List subClauses = TreeInfo.isMultiCatch(tree) ? ((JCTypeUnion)tree.param.vartype).alternatives : List.of(tree.param.vartype); while (gaps.nonEmpty()) { for (JCExpression subCatch : subClauses) { int catchType = makeRef(tree.pos(), subCatch.type); int end = gaps.head.intValue(); registerCatch(tree.pos(), startpc, end, code.curPc(), catchType); if (subCatch.type.isAnnotated()) { // All compounds share the same position, simply update the // first one. subCatch.type.getAnnotationMirrors().head.position.type_index = catchType; } } gaps = gaps.tail; startpc = gaps.head.intValue(); gaps = gaps.tail; } if (startpc < endpc) { for (JCExpression subCatch : subClauses) { int catchType = makeRef(tree.pos(), subCatch.type); registerCatch(tree.pos(), startpc, endpc, code.curPc(), catchType); if (subCatch.type.isAnnotated()) { // All compounds share the same position, simply update the // first one. subCatch.type.getAnnotationMirrors().head.position.type_index = catchType; } } } VarSymbol exparam = tree.param.sym; code.statBegin(tree.pos); code.markStatBegin(); int limit = code.nextreg; int exlocal = code.newLocal(exparam); items.makeLocalItem(exparam).store(); code.statBegin(TreeInfo.firstStatPos(tree.body)); genStat(tree.body, env, CRT_BLOCK); code.endScopes(limit); code.statBegin(TreeInfo.endPos(tree.body)); } } /** Register a catch clause in the "Exceptions" code-attribute. */ void registerCatch(DiagnosticPosition pos, int startpc, int endpc, int handler_pc, int catch_type) { char startpc1 = (char)startpc; char endpc1 = (char)endpc; char handler_pc1 = (char)handler_pc; if (startpc1 == startpc && endpc1 == endpc && handler_pc1 == handler_pc) { code.addCatch(startpc1, endpc1, handler_pc1, (char)catch_type); } else { if (!useJsrLocally && !target.generateStackMapTable()) { useJsrLocally = true; throw new CodeSizeOverflow(); } else { log.error(pos, "limit.code.too.large.for.try.stmt"); nerrs++; } } } /** Very roughly estimate the number of instructions needed for * the given tree. */ int estimateCodeComplexity(JCTree tree) { if (tree == null) return 0; class ComplexityScanner extends TreeScanner { int complexity = 0; public void scan(JCTree tree) { if (complexity > jsrlimit) return; super.scan(tree); } public void visitClassDef(JCClassDecl tree) {} public void visitDoLoop(JCDoWhileLoop tree) { super.visitDoLoop(tree); complexity++; } public void visitWhileLoop(JCWhileLoop tree) { super.visitWhileLoop(tree); complexity++; } public void visitForLoop(JCForLoop tree) { super.visitForLoop(tree); complexity++; } public void visitSwitch(JCSwitch tree) { super.visitSwitch(tree); complexity+=5; } public void visitCase(JCCase tree) { super.visitCase(tree); complexity++; } public void visitSynchronized(JCSynchronized tree) { super.visitSynchronized(tree); complexity+=6; } public void visitTry(JCTry tree) { super.visitTry(tree); if (tree.finalizer != null) complexity+=6; } public void visitCatch(JCCatch tree) { super.visitCatch(tree); complexity+=2; } public void visitConditional(JCConditional tree) { super.visitConditional(tree); complexity+=2; } public void visitIf(JCIf tree) { super.visitIf(tree); complexity+=2; } // note: for break, continue, and return we don't take unwind() into account. public void visitBreak(JCBreak tree) { super.visitBreak(tree); complexity+=1; } public void visitContinue(JCContinue tree) { super.visitContinue(tree); complexity+=1; } public void visitReturn(JCReturn tree) { super.visitReturn(tree); complexity+=1; } public void visitThrow(JCThrow tree) { super.visitThrow(tree); complexity+=1; } public void visitAssert(JCAssert tree) { super.visitAssert(tree); complexity+=5; } public void visitApply(JCMethodInvocation tree) { super.visitApply(tree); complexity+=2; } public void visitNewClass(JCNewClass tree) { scan(tree.encl); scan(tree.args); complexity+=2; } public void visitNewArray(JCNewArray tree) { super.visitNewArray(tree); complexity+=5; } public void visitAssign(JCAssign tree) { super.visitAssign(tree); complexity+=1; } public void visitAssignop(JCAssignOp tree) { super.visitAssignop(tree); complexity+=2; } public void visitUnary(JCUnary tree) { complexity+=1; if (tree.type.constValue() == null) super.visitUnary(tree); } public void visitBinary(JCBinary tree) { complexity+=1; if (tree.type.constValue() == null) super.visitBinary(tree); } public void visitTypeTest(JCInstanceOf tree) { super.visitTypeTest(tree); complexity+=1; } public void visitIndexed(JCArrayAccess tree) { super.visitIndexed(tree); complexity+=1; } public void visitSelect(JCFieldAccess tree) { super.visitSelect(tree); if (tree.sym.kind == VAR) complexity+=1; } public void visitIdent(JCIdent tree) { if (tree.sym.kind == VAR) { complexity+=1; if (tree.type.constValue() == null && tree.sym.owner.kind == TYP) complexity+=1; } } public void visitLiteral(JCLiteral tree) { complexity+=1; } public void visitTree(JCTree tree) {} public void visitWildcard(JCWildcard tree) { throw new AssertionError(this.getClass().getName()); } } ComplexityScanner scanner = new ComplexityScanner(); tree.accept(scanner); return scanner.complexity; } public void visitIf(JCIf tree) { int limit = code.nextreg; Chain thenExit = null; CondItem c = genCond(TreeInfo.skipParens(tree.cond), CRT_FLOW_CONTROLLER); Chain elseChain = c.jumpFalse(); if (!c.isFalse()) { code.resolve(c.trueJumps); genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET); thenExit = code.branch(goto_); } if (elseChain != null) { code.resolve(elseChain); if (tree.elsepart != null) genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET); } code.resolve(thenExit); code.endScopes(limit); } public void visitExec(JCExpressionStatement tree) { // Optimize x++ to ++x and x-- to --x. JCExpression e = tree.expr; switch (e.getTag()) { case POSTINC: ((JCUnary) e).setTag(PREINC); break; case POSTDEC: ((JCUnary) e).setTag(PREDEC); break; } genExpr(tree.expr, tree.expr.type).drop(); } public void visitBreak(JCBreak tree) { Env targetEnv = unwind(tree.target, env); Assert.check(code.state.stacksize == 0); targetEnv.info.addExit(code.branch(goto_)); endFinalizerGaps(env, targetEnv); } public void visitContinue(JCContinue tree) { Env targetEnv = unwind(tree.target, env); Assert.check(code.state.stacksize == 0); targetEnv.info.addCont(code.branch(goto_)); endFinalizerGaps(env, targetEnv); } public void visitReturn(JCReturn tree) { int limit = code.nextreg; final Env targetEnv; if (tree.expr != null) { Item r = genExpr(tree.expr, pt).load(); if (hasFinally(env.enclMethod, env)) { r = makeTemp(pt); r.store(); } targetEnv = unwind(env.enclMethod, env); r.load(); code.emitop0(ireturn + Code.truncate(Code.typecode(pt))); } else { targetEnv = unwind(env.enclMethod, env); code.emitop0(return_); } endFinalizerGaps(env, targetEnv); code.endScopes(limit); } public void visitThrow(JCThrow tree) { genExpr(tree.expr, tree.expr.type).load(); code.emitop0(athrow); } /* ************************************************************************ * Visitor methods for expressions *************************************************************************/ public void visitApply(JCMethodInvocation tree) { setTypeAnnotationPositions(tree.pos); // Generate code for method. Item m = genExpr(tree.meth, methodType); // Generate code for all arguments, where the expected types are // the parameters of the method's external type (that is, any implicit // outer instance of a super(...) call appears as first parameter). MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth); genArgs(tree.args, msym.externalType(types).getParameterTypes()); if (!msym.isDynamic()) { code.statBegin(tree.pos); code.markStatBegin(); } result = m.invoke(); } public void visitConditional(JCConditional tree) { Chain thenExit = null; CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER); Chain elseChain = c.jumpFalse(); if (!c.isFalse()) { code.resolve(c.trueJumps); int startpc = genCrt ? code.curPc() : 0; genExpr(tree.truepart, pt).load(); code.state.forceStackTop(tree.type); if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET, startpc, code.curPc()); thenExit = code.branch(goto_); } if (elseChain != null) { code.resolve(elseChain); int startpc = genCrt ? code.curPc() : 0; genExpr(tree.falsepart, pt).load(); code.state.forceStackTop(tree.type); if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET, startpc, code.curPc()); } code.resolve(thenExit); result = items.makeStackItem(pt); } private void setTypeAnnotationPositions(int treePos) { MethodSymbol meth = code.meth; boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT; for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) { if (ta.hasUnknownPosition()) ta.tryFixPosition(); if (ta.position.matchesPos(treePos)) ta.position.updatePosOffset(code.cp); } if (!initOrClinit) return; for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) { if (ta.hasUnknownPosition()) ta.tryFixPosition(); if (ta.position.matchesPos(treePos)) ta.position.updatePosOffset(code.cp); } ClassSymbol clazz = meth.enclClass(); for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) { if (!s.getKind().isField()) continue; for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) { if (ta.hasUnknownPosition()) ta.tryFixPosition(); if (ta.position.matchesPos(treePos)) ta.position.updatePosOffset(code.cp); } } } public void visitNewClass(JCNewClass tree) { // Enclosing instances or anonymous classes should have been eliminated // by now. Assert.check(tree.encl == null && tree.def == null); setTypeAnnotationPositions(tree.pos); code.emitop2(new_, makeRef(tree.pos(), tree.type)); code.emitop0(dup); // Generate code for all arguments, where the expected types are // the parameters of the constructor's external type (that is, // any implicit outer instance appears as first parameter). genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes()); items.makeMemberItem(tree.constructor, true).invoke(); result = items.makeStackItem(tree.type); } public void visitNewArray(JCNewArray tree) { setTypeAnnotationPositions(tree.pos); if (tree.elems != null) { Type elemtype = types.elemtype(tree.type); loadIntConst(tree.elems.length()); Item arr = makeNewArray(tree.pos(), tree.type, 1); int i = 0; for (List l = tree.elems; l.nonEmpty(); l = l.tail) { arr.duplicate(); loadIntConst(i); i++; genExpr(l.head, elemtype).load(); items.makeIndexedItem(elemtype).store(); } result = arr; } else { for (List l = tree.dims; l.nonEmpty(); l = l.tail) { genExpr(l.head, syms.intType).load(); } result = makeNewArray(tree.pos(), tree.type, tree.dims.length()); } } //where /** Generate code to create an array with given element type and number * of dimensions. */ Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) { Type elemtype = types.elemtype(type); if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) { log.error(pos, "limit.dimensions"); nerrs++; } int elemcode = Code.arraycode(elemtype); if (elemcode == 0 || (elemcode == 1 && ndims == 1)) { code.emitAnewarray(makeRef(pos, elemtype), type); } else if (elemcode == 1) { code.emitMultianewarray(ndims, makeRef(pos, type), type); } else { code.emitNewarray(elemcode, type); } return items.makeStackItem(type); } public void visitParens(JCParens tree) { result = genExpr(tree.expr, tree.expr.type); } public void visitAssign(JCAssign tree) { Item l = genExpr(tree.lhs, tree.lhs.type); genExpr(tree.rhs, tree.lhs.type).load(); result = items.makeAssignItem(l); } public void visitAssignop(JCAssignOp tree) { OperatorSymbol operator = (OperatorSymbol) tree.operator; Item l; if (operator.opcode == string_add) { // Generate code to make a string buffer makeStringBuffer(tree.pos()); // Generate code for first string, possibly save one // copy under buffer l = genExpr(tree.lhs, tree.lhs.type); if (l.width() > 0) { code.emitop0(dup_x1 + 3 * (l.width() - 1)); } // Load first string and append to buffer. l.load(); appendString(tree.lhs); // Append all other strings to buffer. appendStrings(tree.rhs); // Convert buffer to string. bufferToString(tree.pos()); } else { // Generate code for first expression l = genExpr(tree.lhs, tree.lhs.type); // If we have an increment of -32768 to +32767 of a local // int variable we can use an incr instruction instead of // proceeding further. if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) && l instanceof LocalItem && tree.lhs.type.getTag().isSubRangeOf(INT) && tree.rhs.type.getTag().isSubRangeOf(INT) && tree.rhs.type.constValue() != null) { int ival = ((Number) tree.rhs.type.constValue()).intValue(); if (tree.hasTag(MINUS_ASG)) ival = -ival; ((LocalItem)l).incr(ival); result = l; return; } // Otherwise, duplicate expression, load one copy // and complete binary operation. l.duplicate(); l.coerce(operator.type.getParameterTypes().head).load(); completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type); } result = items.makeAssignItem(l); } public void visitUnary(JCUnary tree) { OperatorSymbol operator = (OperatorSymbol)tree.operator; if (tree.hasTag(NOT)) { CondItem od = genCond(tree.arg, false); result = od.negate(); } else { Item od = genExpr(tree.arg, operator.type.getParameterTypes().head); switch (tree.getTag()) { case POS: result = od.load(); break; case NEG: result = od.load(); code.emitop0(operator.opcode); break; case COMPL: result = od.load(); emitMinusOne(od.typecode); code.emitop0(operator.opcode); break; case PREINC: case PREDEC: od.duplicate(); if (od instanceof LocalItem && (operator.opcode == iadd || operator.opcode == isub)) { ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1); result = od; } else { od.load(); code.emitop0(one(od.typecode)); code.emitop0(operator.opcode); // Perform narrowing primitive conversion if byte, // char, or short. Fix for 4304655. if (od.typecode != INTcode && Code.truncate(od.typecode) == INTcode) code.emitop0(int2byte + od.typecode - BYTEcode); result = items.makeAssignItem(od); } break; case POSTINC: case POSTDEC: od.duplicate(); if (od instanceof LocalItem && (operator.opcode == iadd || operator.opcode == isub)) { Item res = od.load(); ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1); result = res; } else { Item res = od.load(); od.stash(od.typecode); code.emitop0(one(od.typecode)); code.emitop0(operator.opcode); // Perform narrowing primitive conversion if byte, // char, or short. Fix for 4304655. if (od.typecode != INTcode && Code.truncate(od.typecode) == INTcode) code.emitop0(int2byte + od.typecode - BYTEcode); od.store(); result = res; } break; case NULLCHK: result = od.load(); code.emitop0(dup); genNullCheck(tree.pos()); break; default: Assert.error(); } } } /** Generate a null check from the object value at stack top. */ private void genNullCheck(DiagnosticPosition pos) { callMethod(pos, syms.objectType, names.getClass, List.nil(), false); code.emitop0(pop); } public void visitBinary(JCBinary tree) { OperatorSymbol operator = (OperatorSymbol)tree.operator; if (operator.opcode == string_add) { // Create a string buffer. makeStringBuffer(tree.pos()); // Append all strings to buffer. appendStrings(tree); // Convert buffer to string. bufferToString(tree.pos()); result = items.makeStackItem(syms.stringType); } else if (tree.hasTag(AND)) { CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER); if (!lcond.isFalse()) { Chain falseJumps = lcond.jumpFalse(); code.resolve(lcond.trueJumps); CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET); result = items. makeCondItem(rcond.opcode, rcond.trueJumps, Code.mergeChains(falseJumps, rcond.falseJumps)); } else { result = lcond; } } else if (tree.hasTag(OR)) { CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER); if (!lcond.isTrue()) { Chain trueJumps = lcond.jumpTrue(); code.resolve(lcond.falseJumps); CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET); result = items. makeCondItem(rcond.opcode, Code.mergeChains(trueJumps, rcond.trueJumps), rcond.falseJumps); } else { result = lcond; } } else { Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head); od.load(); result = completeBinop(tree.lhs, tree.rhs, operator); } } //where /** Make a new string buffer. */ void makeStringBuffer(DiagnosticPosition pos) { code.emitop2(new_, makeRef(pos, stringBufferType)); code.emitop0(dup); callMethod( pos, stringBufferType, names.init, List.nil(), false); } /** Append value (on tos) to string buffer (on tos - 1). */ void appendString(JCTree tree) { Type t = tree.type.baseType(); if (!t.isPrimitive() && t.tsym != syms.stringType.tsym) { t = syms.objectType; } items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke(); } Symbol getStringBufferAppend(JCTree tree, Type t) { Assert.checkNull(t.constValue()); Symbol method = stringBufferAppend.get(t); if (method == null) { method = rs.resolveInternalMethod(tree.pos(), attrEnv, stringBufferType, names.append, List.of(t), null); stringBufferAppend.put(t, method); } return method; } /** Add all strings in tree to string buffer. */ void appendStrings(JCTree tree) { tree = TreeInfo.skipParens(tree); if (tree.hasTag(PLUS) && tree.type.constValue() == null) { JCBinary op = (JCBinary) tree; if (op.operator.kind == MTH && ((OperatorSymbol) op.operator).opcode == string_add) { appendStrings(op.lhs); appendStrings(op.rhs); return; } } genExpr(tree, tree.type).load(); appendString(tree); } /** Convert string buffer on tos to string. */ void bufferToString(DiagnosticPosition pos) { callMethod( pos, stringBufferType, names.toString, List.nil(), false); } /** Complete generating code for operation, with left operand * already on stack. * @param lhs The tree representing the left operand. * @param rhs The tree representing the right operand. * @param operator The operator symbol. */ Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) { MethodType optype = (MethodType)operator.type; int opcode = operator.opcode; if (opcode >= if_icmpeq && opcode <= if_icmple && rhs.type.constValue() instanceof Number && ((Number) rhs.type.constValue()).intValue() == 0) { opcode = opcode + (ifeq - if_icmpeq); } else if (opcode >= if_acmpeq && opcode <= if_acmpne && TreeInfo.isNull(rhs)) { opcode = opcode + (if_acmp_null - if_acmpeq); } else { // The expected type of the right operand is // the second parameter type of the operator, except for // shifts with long shiftcount, where we convert the opcode // to a short shift and the expected type to int. Type rtype = operator.erasure(types).getParameterTypes().tail.head; if (opcode >= ishll && opcode <= lushrl) { opcode = opcode + (ishl - ishll); rtype = syms.intType; } // Generate code for right operand and load. genExpr(rhs, rtype).load(); // If there are two consecutive opcode instructions, // emit the first now. if (opcode >= (1 << preShift)) { code.emitop0(opcode >> preShift); opcode = opcode & 0xFF; } } if (opcode >= ifeq && opcode <= if_acmpne || opcode == if_acmp_null || opcode == if_acmp_nonnull) { return items.makeCondItem(opcode); } else { code.emitop0(opcode); return items.makeStackItem(optype.restype); } } public void visitTypeCast(JCTypeCast tree) { setTypeAnnotationPositions(tree.pos); result = genExpr(tree.expr, tree.clazz.type).load(); // Additional code is only needed if we cast to a reference type // which is not statically a supertype of the expression's type. // For basic types, the coerce(...) in genExpr(...) will do // the conversion. if (!tree.clazz.type.isPrimitive() && types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) { code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type)); } } public void visitWildcard(JCWildcard tree) { throw new AssertionError(this.getClass().getName()); } public void visitTypeTest(JCInstanceOf tree) { setTypeAnnotationPositions(tree.pos); genExpr(tree.expr, tree.expr.type).load(); code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type)); result = items.makeStackItem(syms.booleanType); } public void visitIndexed(JCArrayAccess tree) { genExpr(tree.indexed, tree.indexed.type).load(); genExpr(tree.index, syms.intType).load(); result = items.makeIndexedItem(tree.type); } public void visitIdent(JCIdent tree) { Symbol sym = tree.sym; if (tree.name == names._this || tree.name == names._super) { Item res = tree.name == names._this ? items.makeThisItem() : items.makeSuperItem(); if (sym.kind == MTH) { // Generate code to address the constructor. res.load(); res = items.makeMemberItem(sym, true); } result = res; } else if (sym.kind == VAR && sym.owner.kind == MTH) { result = items.makeLocalItem((VarSymbol)sym); } else if (isInvokeDynamic(sym)) { result = items.makeDynamicItem(sym); } else if ((sym.flags() & STATIC) != 0) { if (!isAccessSuper(env.enclMethod)) sym = binaryQualifier(sym, env.enclClass.type); result = items.makeStaticItem(sym); } else { items.makeThisItem().load(); sym = binaryQualifier(sym, env.enclClass.type); result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0); } } public void visitSelect(JCFieldAccess tree) { Symbol sym = tree.sym; if (tree.name == names._class) { Assert.check(target.hasClassLiterals()); code.emitLdc(makeRef(tree.pos(), tree.selected.type)); result = items.makeStackItem(pt); return; } Symbol ssym = TreeInfo.symbol(tree.selected); // Are we selecting via super? boolean selectSuper = ssym != null && (ssym.kind == TYP || ssym.name == names._super); // Are we accessing a member of the superclass in an access method // resulting from a qualified super? boolean accessSuper = isAccessSuper(env.enclMethod); Item base = (selectSuper) ? items.makeSuperItem() : genExpr(tree.selected, tree.selected.type); if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) { // We are seeing a variable that is constant but its selecting // expression is not. if ((sym.flags() & STATIC) != 0) { if (!selectSuper && (ssym == null || ssym.kind != TYP)) base = base.load(); base.drop(); } else { base.load(); genNullCheck(tree.selected.pos()); } result = items. makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue()); } else { if (isInvokeDynamic(sym)) { result = items.makeDynamicItem(sym); return; } else if (!accessSuper) { sym = binaryQualifier(sym, tree.selected.type); } if ((sym.flags() & STATIC) != 0) { if (!selectSuper && (ssym == null || ssym.kind != TYP)) base = base.load(); base.drop(); result = items.makeStaticItem(sym); } else { base.load(); if (sym == syms.lengthVar) { code.emitop0(arraylength); result = items.makeStackItem(syms.intType); } else { result = items. makeMemberItem(sym, (sym.flags() & PRIVATE) != 0 || selectSuper || accessSuper); } } } } public boolean isInvokeDynamic(Symbol sym) { return sym.kind == MTH && ((MethodSymbol)sym).isDynamic(); } public void visitLiteral(JCLiteral tree) { if (tree.type.hasTag(BOT)) { code.emitop0(aconst_null); if (types.dimensions(pt) > 1) { code.emitop2(checkcast, makeRef(tree.pos(), pt)); result = items.makeStackItem(pt); } else { result = items.makeStackItem(tree.type); } } else result = items.makeImmediateItem(tree.type, tree.value); } public void visitLetExpr(LetExpr tree) { int limit = code.nextreg; genStats(tree.defs, env); result = genExpr(tree.expr, tree.expr.type).load(); code.endScopes(limit); } private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) { List prunedInfo = lower.prunedTree.get(classSymbol); if (prunedInfo != null) { for (JCTree prunedTree: prunedInfo) { prunedTree.accept(classReferenceVisitor); } } } /* ************************************************************************ * main method *************************************************************************/ /** Generate code for a class definition. * @param env The attribution environment that belongs to the * outermost class containing this class definition. * We need this for resolving some additional symbols. * @param cdef The tree representing the class definition. * @return True if code is generated with no errors. */ public boolean genClass(Env env, JCClassDecl cdef) { try { attrEnv = env; ClassSymbol c = cdef.sym; this.toplevel = env.toplevel; this.endPosTable = toplevel.endPositions; // If this is a class definition requiring Miranda methods, // add them. if (generateIproxies && (c.flags() & (INTERFACE|ABSTRACT)) == ABSTRACT && !allowGenerics // no Miranda methods available with generics ) implementInterfaceMethods(c); cdef.defs = normalizeDefs(cdef.defs, c); c.pool = pool; pool.reset(); generateReferencesToPrunedTree(c, pool); Env localEnv = new Env(cdef, new GenContext()); localEnv.toplevel = env.toplevel; localEnv.enclClass = cdef; for (List l = cdef.defs; l.nonEmpty(); l = l.tail) { genDef(l.head, localEnv); } if (pool.numEntries() > Pool.MAX_ENTRIES) { log.error(cdef.pos(), "limit.pool"); nerrs++; } if (nerrs != 0) { // if errors, discard code for (List l = cdef.defs; l.nonEmpty(); l = l.tail) { if (l.head.hasTag(METHODDEF)) ((JCMethodDecl) l.head).sym.code = null; } } cdef.defs = List.nil(); // discard trees return nerrs == 0; } finally { // note: this method does NOT support recursion. attrEnv = null; this.env = null; toplevel = null; endPosTable = null; nerrs = 0; } } /* ************************************************************************ * Auxiliary classes *************************************************************************/ /** An abstract class for finalizer generation. */ abstract class GenFinalizer { /** Generate code to clean up when unwinding. */ abstract void gen(); /** Generate code to clean up at last. */ abstract void genLast(); /** Does this finalizer have some nontrivial cleanup to perform? */ boolean hasFinalizer() { return true; } } /** code generation contexts, * to be used as type parameter for environments. */ static class GenContext { /** A chain for all unresolved jumps that exit the current environment. */ Chain exit = null; /** A chain for all unresolved jumps that continue in the * current environment. */ Chain cont = null; /** A closure that generates the finalizer of the current environment. * Only set for Synchronized and Try contexts. */ GenFinalizer finalize = null; /** Is this a switch statement? If so, allocate registers * even when the variable declaration is unreachable. */ boolean isSwitch = false; /** A list buffer containing all gaps in the finalizer range, * where a catch all exception should not apply. */ ListBuffer gaps = null; /** Add given chain to exit chain. */ void addExit(Chain c) { exit = Code.mergeChains(c, exit); } /** Add given chain to cont chain. */ void addCont(Chain c) { cont = Code.mergeChains(c, cont); } } }