1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.code;
  27 
  28 import java.lang.ref.SoftReference;
  29 import java.util.HashSet;
  30 import java.util.HashMap;
  31 import java.util.Locale;
  32 import java.util.Map;
  33 import java.util.Set;
  34 import java.util.WeakHashMap;
  35 
  36 import javax.tools.JavaFileObject;
  37 
  38 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
  39 import com.sun.tools.javac.code.Lint.LintCategory;
  40 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
  41 import com.sun.tools.javac.comp.AttrContext;
  42 import com.sun.tools.javac.comp.Check;
  43 import com.sun.tools.javac.comp.Enter;
  44 import com.sun.tools.javac.comp.Env;
  45 import com.sun.tools.javac.jvm.ClassReader;
  46 import com.sun.tools.javac.util.*;
  47 import static com.sun.tools.javac.code.BoundKind.*;
  48 import static com.sun.tools.javac.code.Flags.*;
  49 import static com.sun.tools.javac.code.Scope.*;
  50 import static com.sun.tools.javac.code.Symbol.*;
  51 import static com.sun.tools.javac.code.Type.*;
  52 import static com.sun.tools.javac.code.TypeTag.*;
  53 import static com.sun.tools.javac.jvm.ClassFile.externalize;
  54 import static com.sun.tools.javac.util.ListBuffer.lb;
  55 
  56 /**
  57  * Utility class containing various operations on types.
  58  *
  59  * <p>Unless other names are more illustrative, the following naming
  60  * conventions should be observed in this file:
  61  *
  62  * <dl>
  63  * <dt>t</dt>
  64  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
  65  * <dt>s</dt>
  66  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
  67  * <dt>ts</dt>
  68  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
  69  * <dt>ss</dt>
  70  * <dd>A second list of types should be named ss.</dd>
  71  * </dl>
  72  *
  73  * <p><b>This is NOT part of any supported API.
  74  * If you write code that depends on this, you do so at your own risk.
  75  * This code and its internal interfaces are subject to change or
  76  * deletion without notice.</b>
  77  */
  78 public class Types {
  79     protected static final Context.Key<Types> typesKey =
  80         new Context.Key<Types>();
  81 
  82     final Symtab syms;
  83     final JavacMessages messages;
  84     final Names names;
  85     final boolean allowBoxing;
  86     final boolean allowCovariantReturns;
  87     final boolean allowObjectToPrimitiveCast;
  88     final boolean allowDefaultMethods;
  89     final ClassReader reader;
  90     final Check chk;
  91     final Enter enter;
  92     JCDiagnostic.Factory diags;
  93     List<Warner> warnStack = List.nil();
  94     final Name capturedName;
  95     private final FunctionDescriptorLookupError functionDescriptorLookupError;
  96 
  97     public final Warner noWarnings;
  98 
  99     // <editor-fold defaultstate="collapsed" desc="Instantiating">
 100     public static Types instance(Context context) {
 101         Types instance = context.get(typesKey);
 102         if (instance == null)
 103             instance = new Types(context);
 104         return instance;
 105     }
 106 
 107     protected Types(Context context) {
 108         context.put(typesKey, this);
 109         syms = Symtab.instance(context);
 110         names = Names.instance(context);
 111         Source source = Source.instance(context);
 112         allowBoxing = source.allowBoxing();
 113         allowCovariantReturns = source.allowCovariantReturns();
 114         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
 115         allowDefaultMethods = source.allowDefaultMethods();
 116         reader = ClassReader.instance(context);
 117         chk = Check.instance(context);
 118         enter = Enter.instance(context);
 119         capturedName = names.fromString("<captured wildcard>");
 120         messages = JavacMessages.instance(context);
 121         diags = JCDiagnostic.Factory.instance(context);
 122         functionDescriptorLookupError = new FunctionDescriptorLookupError();
 123         noWarnings = new Warner(null);
 124     }
 125     // </editor-fold>
 126 
 127     // <editor-fold defaultstate="collapsed" desc="upperBound">
 128     /**
 129      * The "rvalue conversion".<br>
 130      * The upper bound of most types is the type
 131      * itself.  Wildcards, on the other hand have upper
 132      * and lower bounds.
 133      * @param t a type
 134      * @return the upper bound of the given type
 135      */
 136     public Type upperBound(Type t) {
 137         return upperBound.visit(t).unannotatedType();
 138     }
 139     // where
 140         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
 141 
 142             @Override
 143             public Type visitWildcardType(WildcardType t, Void ignored) {
 144                 if (t.isSuperBound())
 145                     return t.bound == null ? syms.objectType : t.bound.bound;
 146                 else
 147                     return visit(t.type);
 148             }
 149 
 150             @Override
 151             public Type visitCapturedType(CapturedType t, Void ignored) {
 152                 return visit(t.bound);
 153             }
 154         };
 155     // </editor-fold>
 156 
 157     // <editor-fold defaultstate="collapsed" desc="lowerBound">
 158     /**
 159      * The "lvalue conversion".<br>
 160      * The lower bound of most types is the type
 161      * itself.  Wildcards, on the other hand have upper
 162      * and lower bounds.
 163      * @param t a type
 164      * @return the lower bound of the given type
 165      */
 166     public Type lowerBound(Type t) {
 167         return lowerBound.visit(t);
 168     }
 169     // where
 170         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
 171 
 172             @Override
 173             public Type visitWildcardType(WildcardType t, Void ignored) {
 174                 return t.isExtendsBound() ? syms.botType : visit(t.type);
 175             }
 176 
 177             @Override
 178             public Type visitCapturedType(CapturedType t, Void ignored) {
 179                 return visit(t.getLowerBound());
 180             }
 181         };
 182     // </editor-fold>
 183 
 184     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
 185     /**
 186      * Checks that all the arguments to a class are unbounded
 187      * wildcards or something else that doesn't make any restrictions
 188      * on the arguments. If a class isUnbounded, a raw super- or
 189      * subclass can be cast to it without a warning.
 190      * @param t a type
 191      * @return true iff the given type is unbounded or raw
 192      */
 193     public boolean isUnbounded(Type t) {
 194         return isUnbounded.visit(t);
 195     }
 196     // where
 197         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
 198 
 199             public Boolean visitType(Type t, Void ignored) {
 200                 return true;
 201             }
 202 
 203             @Override
 204             public Boolean visitClassType(ClassType t, Void ignored) {
 205                 List<Type> parms = t.tsym.type.allparams();
 206                 List<Type> args = t.allparams();
 207                 while (parms.nonEmpty()) {
 208                     WildcardType unb = new WildcardType(syms.objectType,
 209                                                         BoundKind.UNBOUND,
 210                                                         syms.boundClass,
 211                                                         (TypeVar)parms.head.unannotatedType());
 212                     if (!containsType(args.head, unb))
 213                         return false;
 214                     parms = parms.tail;
 215                     args = args.tail;
 216                 }
 217                 return true;
 218             }
 219         };
 220     // </editor-fold>
 221 
 222     // <editor-fold defaultstate="collapsed" desc="asSub">
 223     /**
 224      * Return the least specific subtype of t that starts with symbol
 225      * sym.  If none exists, return null.  The least specific subtype
 226      * is determined as follows:
 227      *
 228      * <p>If there is exactly one parameterized instance of sym that is a
 229      * subtype of t, that parameterized instance is returned.<br>
 230      * Otherwise, if the plain type or raw type `sym' is a subtype of
 231      * type t, the type `sym' itself is returned.  Otherwise, null is
 232      * returned.
 233      */
 234     public Type asSub(Type t, Symbol sym) {
 235         return asSub.visit(t, sym);
 236     }
 237     // where
 238         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
 239 
 240             public Type visitType(Type t, Symbol sym) {
 241                 return null;
 242             }
 243 
 244             @Override
 245             public Type visitClassType(ClassType t, Symbol sym) {
 246                 if (t.tsym == sym)
 247                     return t;
 248                 Type base = asSuper(sym.type, t.tsym);
 249                 if (base == null)
 250                     return null;
 251                 ListBuffer<Type> from = new ListBuffer<Type>();
 252                 ListBuffer<Type> to = new ListBuffer<Type>();
 253                 try {
 254                     adapt(base, t, from, to);
 255                 } catch (AdaptFailure ex) {
 256                     return null;
 257                 }
 258                 Type res = subst(sym.type, from.toList(), to.toList());
 259                 if (!isSubtype(res, t))
 260                     return null;
 261                 ListBuffer<Type> openVars = new ListBuffer<Type>();
 262                 for (List<Type> l = sym.type.allparams();
 263                      l.nonEmpty(); l = l.tail)
 264                     if (res.contains(l.head) && !t.contains(l.head))
 265                         openVars.append(l.head);
 266                 if (openVars.nonEmpty()) {
 267                     if (t.isRaw()) {
 268                         // The subtype of a raw type is raw
 269                         res = erasure(res);
 270                     } else {
 271                         // Unbound type arguments default to ?
 272                         List<Type> opens = openVars.toList();
 273                         ListBuffer<Type> qs = new ListBuffer<Type>();
 274                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
 275                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head.unannotatedType()));
 276                         }
 277                         res = subst(res, opens, qs.toList());
 278                     }
 279                 }
 280                 return res;
 281             }
 282 
 283             @Override
 284             public Type visitErrorType(ErrorType t, Symbol sym) {
 285                 return t;
 286             }
 287         };
 288     // </editor-fold>
 289 
 290     // <editor-fold defaultstate="collapsed" desc="isConvertible">
 291     /**
 292      * Is t a subtype of or convertible via boxing/unboxing
 293      * conversion to s?
 294      */
 295     public boolean isConvertible(Type t, Type s, Warner warn) {
 296         if (t.hasTag(ERROR)) {
 297             return true;
 298         }
 299         boolean tPrimitive = t.isPrimitive();
 300         boolean sPrimitive = s.isPrimitive();
 301         if (tPrimitive == sPrimitive) {
 302             return isSubtypeUnchecked(t, s, warn);
 303         }
 304         if (!allowBoxing) return false;
 305         return tPrimitive
 306             ? isSubtype(boxedClass(t).type, s)
 307             : isSubtype(unboxedType(t), s);
 308     }
 309 
 310     /**
 311      * Is t a subtype of or convertiable via boxing/unboxing
 312      * convertions to s?
 313      */
 314     public boolean isConvertible(Type t, Type s) {
 315         return isConvertible(t, s, noWarnings);
 316     }
 317     // </editor-fold>
 318 
 319     // <editor-fold defaultstate="collapsed" desc="findSam">
 320 
 321     /**
 322      * Exception used to report a function descriptor lookup failure. The exception
 323      * wraps a diagnostic that can be used to generate more details error
 324      * messages.
 325      */
 326     public static class FunctionDescriptorLookupError extends RuntimeException {
 327         private static final long serialVersionUID = 0;
 328 
 329         JCDiagnostic diagnostic;
 330 
 331         FunctionDescriptorLookupError() {
 332             this.diagnostic = null;
 333         }
 334 
 335         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
 336             this.diagnostic = diag;
 337             return this;
 338         }
 339 
 340         public JCDiagnostic getDiagnostic() {
 341             return diagnostic;
 342         }
 343     }
 344 
 345     /**
 346      * A cache that keeps track of function descriptors associated with given
 347      * functional interfaces.
 348      */
 349     class DescriptorCache {
 350 
 351         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
 352 
 353         class FunctionDescriptor {
 354             Symbol descSym;
 355 
 356             FunctionDescriptor(Symbol descSym) {
 357                 this.descSym = descSym;
 358             }
 359 
 360             public Symbol getSymbol() {
 361                 return descSym;
 362             }
 363 
 364             public Type getType(Type site) {
 365                 site = removeWildcards(site);
 366                 if (!chk.checkValidGenericType(site)) {
 367                     //if the inferred functional interface type is not well-formed,
 368                     //or if it's not a subtype of the original target, issue an error
 369                     throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
 370                 }
 371                 return memberType(site, descSym);
 372             }
 373         }
 374 
 375         class Entry {
 376             final FunctionDescriptor cachedDescRes;
 377             final int prevMark;
 378 
 379             public Entry(FunctionDescriptor cachedDescRes,
 380                     int prevMark) {
 381                 this.cachedDescRes = cachedDescRes;
 382                 this.prevMark = prevMark;
 383             }
 384 
 385             boolean matches(int mark) {
 386                 return  this.prevMark == mark;
 387             }
 388         }
 389 
 390         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
 391             Entry e = _map.get(origin);
 392             CompoundScope members = membersClosure(origin.type, false);
 393             if (e == null ||
 394                     !e.matches(members.getMark())) {
 395                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
 396                 _map.put(origin, new Entry(descRes, members.getMark()));
 397                 return descRes;
 398             }
 399             else {
 400                 return e.cachedDescRes;
 401             }
 402         }
 403 
 404         /**
 405          * Compute the function descriptor associated with a given functional interface
 406          */
 407         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
 408                 CompoundScope membersCache) throws FunctionDescriptorLookupError {
 409             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
 410                 //t must be an interface
 411                 throw failure("not.a.functional.intf", origin);
 412             }
 413 
 414             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
 415             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
 416                 Type mtype = memberType(origin.type, sym);
 417                 if (abstracts.isEmpty() ||
 418                         (sym.name == abstracts.first().name &&
 419                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
 420                     abstracts.append(sym);
 421                 } else {
 422                     //the target method(s) should be the only abstract members of t
 423                     throw failure("not.a.functional.intf.1",  origin,
 424                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
 425                 }
 426             }
 427             if (abstracts.isEmpty()) {
 428                 //t must define a suitable non-generic method
 429                 throw failure("not.a.functional.intf.1", origin,
 430                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
 431             } else if (abstracts.size() == 1) {
 432                 return new FunctionDescriptor(abstracts.first());
 433             } else { // size > 1
 434                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
 435                 if (descRes == null) {
 436                     //we can get here if the functional interface is ill-formed
 437                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
 438                     for (Symbol desc : abstracts) {
 439                         String key = desc.type.getThrownTypes().nonEmpty() ?
 440                                 "descriptor.throws" : "descriptor";
 441                         descriptors.append(diags.fragment(key, desc.name,
 442                                 desc.type.getParameterTypes(),
 443                                 desc.type.getReturnType(),
 444                                 desc.type.getThrownTypes()));
 445                     }
 446                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
 447                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
 448                             Kinds.kindName(origin), origin), descriptors.toList());
 449                     throw failure(incompatibleDescriptors);
 450                 }
 451                 return descRes;
 452             }
 453         }
 454 
 455         /**
 456          * Compute a synthetic type for the target descriptor given a list
 457          * of override-equivalent methods in the functional interface type.
 458          * The resulting method type is a method type that is override-equivalent
 459          * and return-type substitutable with each method in the original list.
 460          */
 461         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
 462             //pick argument types - simply take the signature that is a
 463             //subsignature of all other signatures in the list (as per JLS 8.4.2)
 464             List<Symbol> mostSpecific = List.nil();
 465             outer: for (Symbol msym1 : methodSyms) {
 466                 Type mt1 = memberType(origin.type, msym1);
 467                 for (Symbol msym2 : methodSyms) {
 468                     Type mt2 = memberType(origin.type, msym2);
 469                     if (!isSubSignature(mt1, mt2)) {
 470                         continue outer;
 471                     }
 472                 }
 473                 mostSpecific = mostSpecific.prepend(msym1);
 474             }
 475             if (mostSpecific.isEmpty()) {
 476                 return null;
 477             }
 478 
 479 
 480             //pick return types - this is done in two phases: (i) first, the most
 481             //specific return type is chosen using strict subtyping; if this fails,
 482             //a second attempt is made using return type substitutability (see JLS 8.4.5)
 483             boolean phase2 = false;
 484             Symbol bestSoFar = null;
 485             while (bestSoFar == null) {
 486                 outer: for (Symbol msym1 : mostSpecific) {
 487                     Type mt1 = memberType(origin.type, msym1);
 488                     for (Symbol msym2 : methodSyms) {
 489                         Type mt2 = memberType(origin.type, msym2);
 490                         if (phase2 ?
 491                                 !returnTypeSubstitutable(mt1, mt2) :
 492                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
 493                             continue outer;
 494                         }
 495                     }
 496                     bestSoFar = msym1;
 497                 }
 498                 if (phase2) {
 499                     break;
 500                 } else {
 501                     phase2 = true;
 502                 }
 503             }
 504             if (bestSoFar == null) return null;
 505 
 506             //merge thrown types - form the intersection of all the thrown types in
 507             //all the signatures in the list
 508             List<Type> thrown = null;
 509             for (Symbol msym1 : methodSyms) {
 510                 Type mt1 = memberType(origin.type, msym1);
 511                 thrown = (thrown == null) ?
 512                     mt1.getThrownTypes() :
 513                     chk.intersect(mt1.getThrownTypes(), thrown);
 514             }
 515 
 516             final List<Type> thrown1 = thrown;
 517             return new FunctionDescriptor(bestSoFar) {
 518                 @Override
 519                 public Type getType(Type origin) {
 520                     Type mt = memberType(origin, getSymbol());
 521                     return createMethodTypeWithThrown(mt, thrown1);
 522                 }
 523             };
 524         }
 525 
 526         boolean isSubtypeInternal(Type s, Type t) {
 527             return (s.isPrimitive() && t.isPrimitive()) ?
 528                     isSameType(t, s) :
 529                     isSubtype(s, t);
 530         }
 531 
 532         FunctionDescriptorLookupError failure(String msg, Object... args) {
 533             return failure(diags.fragment(msg, args));
 534         }
 535 
 536         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
 537             return functionDescriptorLookupError.setMessage(diag);
 538         }
 539     }
 540 
 541     private DescriptorCache descCache = new DescriptorCache();
 542 
 543     /**
 544      * Find the method descriptor associated to this class symbol - if the
 545      * symbol 'origin' is not a functional interface, an exception is thrown.
 546      */
 547     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
 548         return descCache.get(origin).getSymbol();
 549     }
 550 
 551     /**
 552      * Find the type of the method descriptor associated to this class symbol -
 553      * if the symbol 'origin' is not a functional interface, an exception is thrown.
 554      */
 555     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
 556         return descCache.get(origin.tsym).getType(origin);
 557     }
 558 
 559     /**
 560      * Is given type a functional interface?
 561      */
 562     public boolean isFunctionalInterface(TypeSymbol tsym) {
 563         try {
 564             findDescriptorSymbol(tsym);
 565             return true;
 566         } catch (FunctionDescriptorLookupError ex) {
 567             return false;
 568         }
 569     }
 570 
 571     public boolean isFunctionalInterface(Type site) {
 572         try {
 573             findDescriptorType(site);
 574             return true;
 575         } catch (FunctionDescriptorLookupError ex) {
 576             return false;
 577         }
 578     }
 579 
 580     public Type removeWildcards(Type site) {
 581         Type capturedSite = capture(site);
 582         if (capturedSite != site) {
 583             Type formalInterface = site.tsym.type;
 584             ListBuffer<Type> typeargs = ListBuffer.lb();
 585             List<Type> actualTypeargs = site.getTypeArguments();
 586             List<Type> capturedTypeargs = capturedSite.getTypeArguments();
 587             //simply replace the wildcards with its bound
 588             for (Type t : formalInterface.getTypeArguments()) {
 589                 if (actualTypeargs.head.hasTag(WILDCARD)) {
 590                     WildcardType wt = (WildcardType)actualTypeargs.head.unannotatedType();
 591                     Type bound;
 592                     switch (wt.kind) {
 593                         case EXTENDS:
 594                         case UNBOUND:
 595                             CapturedType capVar = (CapturedType)capturedTypeargs.head.unannotatedType();
 596                             //use declared bound if it doesn't depend on formal type-args
 597                             bound = capVar.bound.containsAny(capturedSite.getTypeArguments()) ?
 598                                     wt.type : capVar.bound;
 599                             break;
 600                         default:
 601                             bound = wt.type;
 602                     }
 603                     typeargs.append(bound);
 604                 } else {
 605                     typeargs.append(actualTypeargs.head);
 606                 }
 607                 actualTypeargs = actualTypeargs.tail;
 608                 capturedTypeargs = capturedTypeargs.tail;
 609             }
 610             return subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
 611         } else {
 612             return site;
 613         }
 614     }
 615 
 616     /**
 617      * Create a symbol for a class that implements a given functional interface
 618      * and overrides its functional descriptor. This routine is used for two
 619      * main purposes: (i) checking well-formedness of a functional interface;
 620      * (ii) perform functional interface bridge calculation.
 621      */
 622     public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, List<Type> targets, long cflags) {
 623         Assert.check(targets.nonEmpty() && isFunctionalInterface(targets.head));
 624         Symbol descSym = findDescriptorSymbol(targets.head.tsym);
 625         Type descType = findDescriptorType(targets.head);
 626         ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
 627         csym.completer = null;
 628         csym.members_field = new Scope(csym);
 629         MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
 630         csym.members_field.enter(instDescSym);
 631         Type.ClassType ctype = new Type.ClassType(Type.noType, List.<Type>nil(), csym);
 632         ctype.supertype_field = syms.objectType;
 633         ctype.interfaces_field = targets;
 634         csym.type = ctype;
 635         csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
 636         return csym;
 637     }
 638 
 639     /**
 640      * Find the minimal set of methods that are overridden by the functional
 641      * descriptor in 'origin'. All returned methods are assumed to have different
 642      * erased signatures.
 643      */
 644     public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
 645         Assert.check(isFunctionalInterface(origin));
 646         Symbol descSym = findDescriptorSymbol(origin);
 647         CompoundScope members = membersClosure(origin.type, false);
 648         ListBuffer<Symbol> overridden = ListBuffer.lb();
 649         outer: for (Symbol m2 : members.getElementsByName(descSym.name, bridgeFilter)) {
 650             if (m2 == descSym) continue;
 651             else if (descSym.overrides(m2, origin, Types.this, false)) {
 652                 for (Symbol m3 : overridden) {
 653                     if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
 654                             (m3.overrides(m2, origin, Types.this, false) &&
 655                             (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
 656                             (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
 657                         continue outer;
 658                     }
 659                 }
 660                 overridden.add(m2);
 661             }
 662         }
 663         return overridden.toList();
 664     }
 665     //where
 666         private Filter<Symbol> bridgeFilter = new Filter<Symbol>() {
 667             public boolean accepts(Symbol t) {
 668                 return t.kind == Kinds.MTH &&
 669                         t.name != names.init &&
 670                         t.name != names.clinit &&
 671                         (t.flags() & SYNTHETIC) == 0;
 672             }
 673         };
 674         private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
 675             //a symbol will be completed from a classfile if (a) symbol has
 676             //an associated file object with CLASS kind and (b) the symbol has
 677             //not been entered
 678             if (origin.classfile != null &&
 679                     origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
 680                     enter.getEnv(origin) == null) {
 681                 return false;
 682             }
 683             if (origin == s) {
 684                 return true;
 685             }
 686             for (Type t : interfaces(origin.type)) {
 687                 if (pendingBridges((ClassSymbol)t.tsym, s)) {
 688                     return true;
 689                 }
 690             }
 691             return false;
 692         }
 693     // </editor-fold>
 694 
 695    /**
 696     * Scope filter used to skip methods that should be ignored (such as methods
 697     * overridden by j.l.Object) during function interface conversion interface check
 698     */
 699     class DescriptorFilter implements Filter<Symbol> {
 700 
 701        TypeSymbol origin;
 702 
 703        DescriptorFilter(TypeSymbol origin) {
 704            this.origin = origin;
 705        }
 706 
 707        @Override
 708        public boolean accepts(Symbol sym) {
 709            return sym.kind == Kinds.MTH &&
 710                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
 711                    !overridesObjectMethod(origin, sym) &&
 712                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
 713        }
 714     };
 715 
 716     // <editor-fold defaultstate="collapsed" desc="isSubtype">
 717     /**
 718      * Is t an unchecked subtype of s?
 719      */
 720     public boolean isSubtypeUnchecked(Type t, Type s) {
 721         return isSubtypeUnchecked(t, s, noWarnings);
 722     }
 723     /**
 724      * Is t an unchecked subtype of s?
 725      */
 726     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
 727         boolean result = isSubtypeUncheckedInternal(t, s, warn);
 728         if (result) {
 729             checkUnsafeVarargsConversion(t, s, warn);
 730         }
 731         return result;
 732     }
 733     //where
 734         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
 735             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
 736                 t = t.unannotatedType();
 737                 s = s.unannotatedType();
 738                 if (((ArrayType)t).elemtype.isPrimitive()) {
 739                     return isSameType(elemtype(t), elemtype(s));
 740                 } else {
 741                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
 742                 }
 743             } else if (isSubtype(t, s)) {
 744                 return true;
 745             } else if (t.hasTag(TYPEVAR)) {
 746                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
 747             } else if (!s.isRaw()) {
 748                 Type t2 = asSuper(t, s.tsym);
 749                 if (t2 != null && t2.isRaw()) {
 750                     if (isReifiable(s)) {
 751                         warn.silentWarn(LintCategory.UNCHECKED);
 752                     } else {
 753                         warn.warn(LintCategory.UNCHECKED);
 754                     }
 755                     return true;
 756                 }
 757             }
 758             return false;
 759         }
 760 
 761         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
 762             if (!t.hasTag(ARRAY) || isReifiable(t)) {
 763                 return;
 764             }
 765             t = t.unannotatedType();
 766             s = s.unannotatedType();
 767             ArrayType from = (ArrayType)t;
 768             boolean shouldWarn = false;
 769             switch (s.getTag()) {
 770                 case ARRAY:
 771                     ArrayType to = (ArrayType)s;
 772                     shouldWarn = from.isVarargs() &&
 773                             !to.isVarargs() &&
 774                             !isReifiable(from);
 775                     break;
 776                 case CLASS:
 777                     shouldWarn = from.isVarargs();
 778                     break;
 779             }
 780             if (shouldWarn) {
 781                 warn.warn(LintCategory.VARARGS);
 782             }
 783         }
 784 
 785     /**
 786      * Is t a subtype of s?<br>
 787      * (not defined for Method and ForAll types)
 788      */
 789     final public boolean isSubtype(Type t, Type s) {
 790         return isSubtype(t, s, true);
 791     }
 792     final public boolean isSubtypeNoCapture(Type t, Type s) {
 793         return isSubtype(t, s, false);
 794     }
 795     public boolean isSubtype(Type t, Type s, boolean capture) {
 796         if (t == s)
 797             return true;
 798 
 799         t = t.unannotatedType();
 800         s = s.unannotatedType();
 801 
 802         if (t == s)
 803             return true;
 804 
 805         if (s.isPartial())
 806             return isSuperType(s, t);
 807 
 808         if (s.isCompound()) {
 809             for (Type s2 : interfaces(s).prepend(supertype(s))) {
 810                 if (!isSubtype(t, s2, capture))
 811                     return false;
 812             }
 813             return true;
 814         }
 815 
 816         Type lower = lowerBound(s);
 817         if (s != lower)
 818             return isSubtype(capture ? capture(t) : t, lower, false);
 819 
 820         return isSubtype.visit(capture ? capture(t) : t, s);
 821     }
 822     // where
 823         private TypeRelation isSubtype = new TypeRelation()
 824         {
 825             @Override
 826             public Boolean visitType(Type t, Type s) {
 827                 switch (t.getTag()) {
 828                  case BYTE:
 829                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
 830                  case CHAR:
 831                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
 832                  case SHORT: case INT: case LONG:
 833                  case FLOAT: case DOUBLE:
 834                      return t.getTag().isSubRangeOf(s.getTag());
 835                  case BOOLEAN: case VOID:
 836                      return t.hasTag(s.getTag());
 837                  case TYPEVAR:
 838                      return isSubtypeNoCapture(t.getUpperBound(), s);
 839                  case BOT:
 840                      return
 841                          s.hasTag(BOT) || s.hasTag(CLASS) ||
 842                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
 843                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
 844                  case NONE:
 845                      return false;
 846                  default:
 847                      throw new AssertionError("isSubtype " + t.getTag());
 848                  }
 849             }
 850 
 851             private Set<TypePair> cache = new HashSet<TypePair>();
 852 
 853             private boolean containsTypeRecursive(Type t, Type s) {
 854                 TypePair pair = new TypePair(t, s);
 855                 if (cache.add(pair)) {
 856                     try {
 857                         return containsType(t.getTypeArguments(),
 858                                             s.getTypeArguments());
 859                     } finally {
 860                         cache.remove(pair);
 861                     }
 862                 } else {
 863                     return containsType(t.getTypeArguments(),
 864                                         rewriteSupers(s).getTypeArguments());
 865                 }
 866             }
 867 
 868             private Type rewriteSupers(Type t) {
 869                 if (!t.isParameterized())
 870                     return t;
 871                 ListBuffer<Type> from = lb();
 872                 ListBuffer<Type> to = lb();
 873                 adaptSelf(t, from, to);
 874                 if (from.isEmpty())
 875                     return t;
 876                 ListBuffer<Type> rewrite = lb();
 877                 boolean changed = false;
 878                 for (Type orig : to.toList()) {
 879                     Type s = rewriteSupers(orig);
 880                     if (s.isSuperBound() && !s.isExtendsBound()) {
 881                         s = new WildcardType(syms.objectType,
 882                                              BoundKind.UNBOUND,
 883                                              syms.boundClass);
 884                         changed = true;
 885                     } else if (s != orig) {
 886                         s = new WildcardType(upperBound(s),
 887                                              BoundKind.EXTENDS,
 888                                              syms.boundClass);
 889                         changed = true;
 890                     }
 891                     rewrite.append(s);
 892                 }
 893                 if (changed)
 894                     return subst(t.tsym.type, from.toList(), rewrite.toList());
 895                 else
 896                     return t;
 897             }
 898 
 899             @Override
 900             public Boolean visitClassType(ClassType t, Type s) {
 901                 Type sup = asSuper(t, s.tsym);
 902                 return sup != null
 903                     && sup.tsym == s.tsym
 904                     // You're not allowed to write
 905                     //     Vector<Object> vec = new Vector<String>();
 906                     // But with wildcards you can write
 907                     //     Vector<? extends Object> vec = new Vector<String>();
 908                     // which means that subtype checking must be done
 909                     // here instead of same-type checking (via containsType).
 910                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
 911                     && isSubtypeNoCapture(sup.getEnclosingType(),
 912                                           s.getEnclosingType());
 913             }
 914 
 915             @Override
 916             public Boolean visitArrayType(ArrayType t, Type s) {
 917                 if (s.hasTag(ARRAY)) {
 918                     if (t.elemtype.isPrimitive())
 919                         return isSameType(t.elemtype, elemtype(s));
 920                     else
 921                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
 922                 }
 923 
 924                 if (s.hasTag(CLASS)) {
 925                     Name sname = s.tsym.getQualifiedName();
 926                     return sname == names.java_lang_Object
 927                         || sname == names.java_lang_Cloneable
 928                         || sname == names.java_io_Serializable;
 929                 }
 930 
 931                 return false;
 932             }
 933 
 934             @Override
 935             public Boolean visitUndetVar(UndetVar t, Type s) {
 936                 //todo: test against origin needed? or replace with substitution?
 937                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
 938                     return true;
 939                 } else if (s.hasTag(BOT)) {
 940                     //if 's' is 'null' there's no instantiated type U for which
 941                     //U <: s (but 'null' itself, which is not a valid type)
 942                     return false;
 943                 }
 944 
 945                 t.addBound(InferenceBound.UPPER, s, Types.this);
 946                 return true;
 947             }
 948 
 949             @Override
 950             public Boolean visitErrorType(ErrorType t, Type s) {
 951                 return true;
 952             }
 953         };
 954 
 955     /**
 956      * Is t a subtype of every type in given list `ts'?<br>
 957      * (not defined for Method and ForAll types)<br>
 958      * Allows unchecked conversions.
 959      */
 960     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
 961         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
 962             if (!isSubtypeUnchecked(t, l.head, warn))
 963                 return false;
 964         return true;
 965     }
 966 
 967     /**
 968      * Are corresponding elements of ts subtypes of ss?  If lists are
 969      * of different length, return false.
 970      */
 971     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
 972         while (ts.tail != null && ss.tail != null
 973                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
 974                isSubtype(ts.head, ss.head)) {
 975             ts = ts.tail;
 976             ss = ss.tail;
 977         }
 978         return ts.tail == null && ss.tail == null;
 979         /*inlined: ts.isEmpty() && ss.isEmpty();*/
 980     }
 981 
 982     /**
 983      * Are corresponding elements of ts subtypes of ss, allowing
 984      * unchecked conversions?  If lists are of different length,
 985      * return false.
 986      **/
 987     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
 988         while (ts.tail != null && ss.tail != null
 989                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
 990                isSubtypeUnchecked(ts.head, ss.head, warn)) {
 991             ts = ts.tail;
 992             ss = ss.tail;
 993         }
 994         return ts.tail == null && ss.tail == null;
 995         /*inlined: ts.isEmpty() && ss.isEmpty();*/
 996     }
 997     // </editor-fold>
 998 
 999     // <editor-fold defaultstate="collapsed" desc="isSuperType">
1000     /**
1001      * Is t a supertype of s?
1002      */
1003     public boolean isSuperType(Type t, Type s) {
1004         switch (t.getTag()) {
1005         case ERROR:
1006             return true;
1007         case UNDETVAR: {
1008             UndetVar undet = (UndetVar)t;
1009             if (t == s ||
1010                 undet.qtype == s ||
1011                 s.hasTag(ERROR) ||
1012                 s.hasTag(BOT)) {
1013                 return true;
1014             }
1015             undet.addBound(InferenceBound.LOWER, s, this);
1016             return true;
1017         }
1018         default:
1019             return isSubtype(s, t);
1020         }
1021     }
1022     // </editor-fold>
1023 
1024     // <editor-fold defaultstate="collapsed" desc="isSameType">
1025     /**
1026      * Are corresponding elements of the lists the same type?  If
1027      * lists are of different length, return false.
1028      */
1029     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
1030         return isSameTypes(ts, ss, false);
1031     }
1032     public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
1033         while (ts.tail != null && ss.tail != null
1034                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1035                isSameType(ts.head, ss.head, strict)) {
1036             ts = ts.tail;
1037             ss = ss.tail;
1038         }
1039         return ts.tail == null && ss.tail == null;
1040         /*inlined: ts.isEmpty() && ss.isEmpty();*/
1041     }
1042 
1043     /**
1044     * A polymorphic signature method (JLS SE 7, 8.4.1) is a method that
1045     * (i) is declared in the java.lang.invoke.MethodHandle class, (ii) takes
1046     * a single variable arity parameter (iii) whose declared type is Object[],
1047     * (iv) has a return type of Object and (v) is native.
1048     */
1049    public boolean isSignaturePolymorphic(MethodSymbol msym) {
1050        List<Type> argtypes = msym.type.getParameterTypes();
1051        return (msym.flags_field & NATIVE) != 0 &&
1052                msym.owner == syms.methodHandleType.tsym &&
1053                argtypes.tail.tail == null &&
1054                argtypes.head.hasTag(TypeTag.ARRAY) &&
1055                msym.type.getReturnType().tsym == syms.objectType.tsym &&
1056                ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
1057    }
1058 
1059     /**
1060      * Is t the same type as s?
1061      */
1062     public boolean isSameType(Type t, Type s) {
1063         return isSameType(t, s, false);
1064     }
1065     public boolean isSameType(Type t, Type s, boolean strict) {
1066         return strict ?
1067                 isSameTypeStrict.visit(t, s) :
1068                 isSameTypeLoose.visit(t, s);
1069     }
1070     public boolean isSameAnnotatedType(Type t, Type s) {
1071         return isSameAnnotatedType.visit(t, s);
1072     }
1073     // where
1074         abstract class SameTypeVisitor extends TypeRelation {
1075 
1076             public Boolean visitType(Type t, Type s) {
1077                 if (t == s)
1078                     return true;
1079 
1080                 if (s.isPartial())
1081                     return visit(s, t);
1082 
1083                 switch (t.getTag()) {
1084                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1085                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
1086                     return t.hasTag(s.getTag());
1087                 case TYPEVAR: {
1088                     if (s.hasTag(TYPEVAR)) {
1089                         //type-substitution does not preserve type-var types
1090                         //check that type var symbols and bounds are indeed the same
1091                         return sameTypeVars((TypeVar)t.unannotatedType(), (TypeVar)s.unannotatedType());
1092                     }
1093                     else {
1094                         //special case for s == ? super X, where upper(s) = u
1095                         //check that u == t, where u has been set by Type.withTypeVar
1096                         return s.isSuperBound() &&
1097                                 !s.isExtendsBound() &&
1098                                 visit(t, upperBound(s));
1099                     }
1100                 }
1101                 default:
1102                     throw new AssertionError("isSameType " + t.getTag());
1103                 }
1104             }
1105 
1106             abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
1107 
1108             @Override
1109             public Boolean visitWildcardType(WildcardType t, Type s) {
1110                 if (s.isPartial())
1111                     return visit(s, t);
1112                 else
1113                     return false;
1114             }
1115 
1116             @Override
1117             public Boolean visitClassType(ClassType t, Type s) {
1118                 if (t == s)
1119                     return true;
1120 
1121                 if (s.isPartial())
1122                     return visit(s, t);
1123 
1124                 if (s.isSuperBound() && !s.isExtendsBound())
1125                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
1126 
1127                 if (t.isCompound() && s.isCompound()) {
1128                     if (!visit(supertype(t), supertype(s)))
1129                         return false;
1130 
1131                     HashSet<UniqueType> set = new HashSet<UniqueType>();
1132                     for (Type x : interfaces(t))
1133                         set.add(new UniqueType(x.unannotatedType(), Types.this));
1134                     for (Type x : interfaces(s)) {
1135                         if (!set.remove(new UniqueType(x.unannotatedType(), Types.this)))
1136                             return false;
1137                     }
1138                     return (set.isEmpty());
1139                 }
1140                 return t.tsym == s.tsym
1141                     && visit(t.getEnclosingType(), s.getEnclosingType())
1142                     && containsTypes(t.getTypeArguments(), s.getTypeArguments());
1143             }
1144 
1145             abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
1146 
1147             @Override
1148             public Boolean visitArrayType(ArrayType t, Type s) {
1149                 if (t == s)
1150                     return true;
1151 
1152                 if (s.isPartial())
1153                     return visit(s, t);
1154 
1155                 return s.hasTag(ARRAY)
1156                     && containsTypeEquivalent(t.elemtype, elemtype(s));
1157             }
1158 
1159             @Override
1160             public Boolean visitMethodType(MethodType t, Type s) {
1161                 // isSameType for methods does not take thrown
1162                 // exceptions into account!
1163                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
1164             }
1165 
1166             @Override
1167             public Boolean visitPackageType(PackageType t, Type s) {
1168                 return t == s;
1169             }
1170 
1171             @Override
1172             public Boolean visitForAll(ForAll t, Type s) {
1173                 if (!s.hasTag(FORALL)) {
1174                     return false;
1175                 }
1176 
1177                 ForAll forAll = (ForAll)s;
1178                 return hasSameBounds(t, forAll)
1179                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
1180             }
1181 
1182             @Override
1183             public Boolean visitUndetVar(UndetVar t, Type s) {
1184                 if (s.hasTag(WILDCARD)) {
1185                     // FIXME, this might be leftovers from before capture conversion
1186                     return false;
1187                 }
1188 
1189                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
1190                     return true;
1191                 }
1192 
1193                 t.addBound(InferenceBound.EQ, s, Types.this);
1194 
1195                 return true;
1196             }
1197 
1198             @Override
1199             public Boolean visitErrorType(ErrorType t, Type s) {
1200                 return true;
1201             }
1202         }
1203 
1204         /**
1205          * Standard type-equality relation - type variables are considered
1206          * equals if they share the same type symbol.
1207          */
1208         TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
1209 
1210         private class LooseSameTypeVisitor extends SameTypeVisitor {
1211             @Override
1212             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1213                 return tv1.tsym == tv2.tsym && visit(tv1.getUpperBound(), tv2.getUpperBound());
1214             }
1215             @Override
1216             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1217                 return containsTypeEquivalent(ts1, ts2);
1218             }
1219         };
1220 
1221         /**
1222          * Strict type-equality relation - type variables are considered
1223          * equals if they share the same object identity.
1224          */
1225         TypeRelation isSameTypeStrict = new SameTypeVisitor() {
1226             @Override
1227             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1228                 return tv1 == tv2;
1229             }
1230             @Override
1231             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1232                 return isSameTypes(ts1, ts2, true);
1233             }
1234 
1235             @Override
1236             public Boolean visitWildcardType(WildcardType t, Type s) {
1237                 if (!s.hasTag(WILDCARD)) {
1238                     return false;
1239                 } else {
1240                     WildcardType t2 = (WildcardType)s.unannotatedType();
1241                     return t.kind == t2.kind &&
1242                             isSameType(t.type, t2.type, true);
1243                 }
1244             }
1245         };
1246 
1247         /**
1248          * A version of LooseSameTypeVisitor that takes AnnotatedTypes
1249          * into account.
1250          */
1251         TypeRelation isSameAnnotatedType = new LooseSameTypeVisitor() {
1252             @Override
1253             public Boolean visitAnnotatedType(AnnotatedType t, Type s) {
1254                 if (!s.isAnnotated())
1255                     return false;
1256                 if (!t.getAnnotationMirrors().containsAll(s.getAnnotationMirrors()))
1257                     return false;
1258                 if (!s.getAnnotationMirrors().containsAll(t.getAnnotationMirrors()))
1259                     return false;
1260                 return visit(t.underlyingType, s);
1261             }
1262         };
1263     // </editor-fold>
1264 
1265     // <editor-fold defaultstate="collapsed" desc="Contains Type">
1266     public boolean containedBy(Type t, Type s) {
1267         switch (t.getTag()) {
1268         case UNDETVAR:
1269             if (s.hasTag(WILDCARD)) {
1270                 UndetVar undetvar = (UndetVar)t;
1271                 WildcardType wt = (WildcardType)s.unannotatedType();
1272                 switch(wt.kind) {
1273                     case UNBOUND: //similar to ? extends Object
1274                     case EXTENDS: {
1275                         Type bound = upperBound(s);
1276                         undetvar.addBound(InferenceBound.UPPER, bound, this);
1277                         break;
1278                     }
1279                     case SUPER: {
1280                         Type bound = lowerBound(s);
1281                         undetvar.addBound(InferenceBound.LOWER, bound, this);
1282                         break;
1283                     }
1284                 }
1285                 return true;
1286             } else {
1287                 return isSameType(t, s);
1288             }
1289         case ERROR:
1290             return true;
1291         default:
1292             return containsType(s, t);
1293         }
1294     }
1295 
1296     boolean containsType(List<Type> ts, List<Type> ss) {
1297         while (ts.nonEmpty() && ss.nonEmpty()
1298                && containsType(ts.head, ss.head)) {
1299             ts = ts.tail;
1300             ss = ss.tail;
1301         }
1302         return ts.isEmpty() && ss.isEmpty();
1303     }
1304 
1305     /**
1306      * Check if t contains s.
1307      *
1308      * <p>T contains S if:
1309      *
1310      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
1311      *
1312      * <p>This relation is only used by ClassType.isSubtype(), that
1313      * is,
1314      *
1315      * <p>{@code C<S> <: C<T> if T contains S.}
1316      *
1317      * <p>Because of F-bounds, this relation can lead to infinite
1318      * recursion.  Thus we must somehow break that recursion.  Notice
1319      * that containsType() is only called from ClassType.isSubtype().
1320      * Since the arguments have already been checked against their
1321      * bounds, we know:
1322      *
1323      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
1324      *
1325      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
1326      *
1327      * @param t a type
1328      * @param s a type
1329      */
1330     public boolean containsType(Type t, Type s) {
1331         return containsType.visit(t, s);
1332     }
1333     // where
1334         private TypeRelation containsType = new TypeRelation() {
1335 
1336             private Type U(Type t) {
1337                 while (t.hasTag(WILDCARD)) {
1338                     WildcardType w = (WildcardType)t.unannotatedType();
1339                     if (w.isSuperBound())
1340                         return w.bound == null ? syms.objectType : w.bound.bound;
1341                     else
1342                         t = w.type;
1343                 }
1344                 return t;
1345             }
1346 
1347             private Type L(Type t) {
1348                 while (t.hasTag(WILDCARD)) {
1349                     WildcardType w = (WildcardType)t.unannotatedType();
1350                     if (w.isExtendsBound())
1351                         return syms.botType;
1352                     else
1353                         t = w.type;
1354                 }
1355                 return t;
1356             }
1357 
1358             public Boolean visitType(Type t, Type s) {
1359                 if (s.isPartial())
1360                     return containedBy(s, t);
1361                 else
1362                     return isSameType(t, s);
1363             }
1364 
1365 //            void debugContainsType(WildcardType t, Type s) {
1366 //                System.err.println();
1367 //                System.err.format(" does %s contain %s?%n", t, s);
1368 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
1369 //                                  upperBound(s), s, t, U(t),
1370 //                                  t.isSuperBound()
1371 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
1372 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
1373 //                                  L(t), t, s, lowerBound(s),
1374 //                                  t.isExtendsBound()
1375 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
1376 //                System.err.println();
1377 //            }
1378 
1379             @Override
1380             public Boolean visitWildcardType(WildcardType t, Type s) {
1381                 if (s.isPartial())
1382                     return containedBy(s, t);
1383                 else {
1384 //                    debugContainsType(t, s);
1385                     return isSameWildcard(t, s)
1386                         || isCaptureOf(s, t)
1387                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
1388                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
1389                 }
1390             }
1391 
1392             @Override
1393             public Boolean visitUndetVar(UndetVar t, Type s) {
1394                 if (!s.hasTag(WILDCARD)) {
1395                     return isSameType(t, s);
1396                 } else {
1397                     return false;
1398                 }
1399             }
1400 
1401             @Override
1402             public Boolean visitErrorType(ErrorType t, Type s) {
1403                 return true;
1404             }
1405         };
1406 
1407     public boolean isCaptureOf(Type s, WildcardType t) {
1408         if (!s.hasTag(TYPEVAR) || !((TypeVar)s.unannotatedType()).isCaptured())
1409             return false;
1410         return isSameWildcard(t, ((CapturedType)s.unannotatedType()).wildcard);
1411     }
1412 
1413     public boolean isSameWildcard(WildcardType t, Type s) {
1414         if (!s.hasTag(WILDCARD))
1415             return false;
1416         WildcardType w = (WildcardType)s.unannotatedType();
1417         return w.kind == t.kind && w.type == t.type;
1418     }
1419 
1420     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
1421         while (ts.nonEmpty() && ss.nonEmpty()
1422                && containsTypeEquivalent(ts.head, ss.head)) {
1423             ts = ts.tail;
1424             ss = ss.tail;
1425         }
1426         return ts.isEmpty() && ss.isEmpty();
1427     }
1428     // </editor-fold>
1429 
1430     /**
1431      * Can t and s be compared for equality?  Any primitive ==
1432      * primitive or primitive == object comparisons here are an error.
1433      * Unboxing and correct primitive == primitive comparisons are
1434      * already dealt with in Attr.visitBinary.
1435      *
1436      */
1437     public boolean isEqualityComparable(Type s, Type t, Warner warn) {
1438         if (t.isNumeric() && s.isNumeric())
1439             return true;
1440 
1441         boolean tPrimitive = t.isPrimitive();
1442         boolean sPrimitive = s.isPrimitive();
1443         if (!tPrimitive && !sPrimitive) {
1444             return isCastable(s, t, warn) || isCastable(t, s, warn);
1445         } else {
1446             return false;
1447         }
1448     }
1449 
1450     // <editor-fold defaultstate="collapsed" desc="isCastable">
1451     public boolean isCastable(Type t, Type s) {
1452         return isCastable(t, s, noWarnings);
1453     }
1454 
1455     /**
1456      * Is t is castable to s?<br>
1457      * s is assumed to be an erased type.<br>
1458      * (not defined for Method and ForAll types).
1459      */
1460     public boolean isCastable(Type t, Type s, Warner warn) {
1461         if (t == s)
1462             return true;
1463 
1464         if (t.isPrimitive() != s.isPrimitive())
1465             return allowBoxing && (
1466                     isConvertible(t, s, warn)
1467                     || (allowObjectToPrimitiveCast &&
1468                         s.isPrimitive() &&
1469                         isSubtype(boxedClass(s).type, t)));
1470         if (warn != warnStack.head) {
1471             try {
1472                 warnStack = warnStack.prepend(warn);
1473                 checkUnsafeVarargsConversion(t, s, warn);
1474                 return isCastable.visit(t,s);
1475             } finally {
1476                 warnStack = warnStack.tail;
1477             }
1478         } else {
1479             return isCastable.visit(t,s);
1480         }
1481     }
1482     // where
1483         private TypeRelation isCastable = new TypeRelation() {
1484 
1485             public Boolean visitType(Type t, Type s) {
1486                 if (s.hasTag(ERROR))
1487                     return true;
1488 
1489                 switch (t.getTag()) {
1490                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1491                 case DOUBLE:
1492                     return s.isNumeric();
1493                 case BOOLEAN:
1494                     return s.hasTag(BOOLEAN);
1495                 case VOID:
1496                     return false;
1497                 case BOT:
1498                     return isSubtype(t, s);
1499                 default:
1500                     throw new AssertionError();
1501                 }
1502             }
1503 
1504             @Override
1505             public Boolean visitWildcardType(WildcardType t, Type s) {
1506                 return isCastable(upperBound(t), s, warnStack.head);
1507             }
1508 
1509             @Override
1510             public Boolean visitClassType(ClassType t, Type s) {
1511                 if (s.hasTag(ERROR) || s.hasTag(BOT))
1512                     return true;
1513 
1514                 if (s.hasTag(TYPEVAR)) {
1515                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
1516                         warnStack.head.warn(LintCategory.UNCHECKED);
1517                         return true;
1518                     } else {
1519                         return false;
1520                     }
1521                 }
1522 
1523                 if (t.isCompound() || s.isCompound()) {
1524                     return !t.isCompound() ?
1525                             visitIntersectionType((IntersectionClassType)s.unannotatedType(), t, true) :
1526                             visitIntersectionType((IntersectionClassType)t.unannotatedType(), s, false);
1527                 }
1528 
1529                 if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
1530                     boolean upcast;
1531                     if ((upcast = isSubtype(erasure(t), erasure(s)))
1532                         || isSubtype(erasure(s), erasure(t))) {
1533                         if (!upcast && s.hasTag(ARRAY)) {
1534                             if (!isReifiable(s))
1535                                 warnStack.head.warn(LintCategory.UNCHECKED);
1536                             return true;
1537                         } else if (s.isRaw()) {
1538                             return true;
1539                         } else if (t.isRaw()) {
1540                             if (!isUnbounded(s))
1541                                 warnStack.head.warn(LintCategory.UNCHECKED);
1542                             return true;
1543                         }
1544                         // Assume |a| <: |b|
1545                         final Type a = upcast ? t : s;
1546                         final Type b = upcast ? s : t;
1547                         final boolean HIGH = true;
1548                         final boolean LOW = false;
1549                         final boolean DONT_REWRITE_TYPEVARS = false;
1550                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
1551                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
1552                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
1553                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
1554                         Type lowSub = asSub(bLow, aLow.tsym);
1555                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1556                         if (highSub == null) {
1557                             final boolean REWRITE_TYPEVARS = true;
1558                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
1559                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
1560                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
1561                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
1562                             lowSub = asSub(bLow, aLow.tsym);
1563                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1564                         }
1565                         if (highSub != null) {
1566                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
1567                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
1568                             }
1569                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
1570                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
1571                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
1572                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
1573                                 if (upcast ? giveWarning(a, b) :
1574                                     giveWarning(b, a))
1575                                     warnStack.head.warn(LintCategory.UNCHECKED);
1576                                 return true;
1577                             }
1578                         }
1579                         if (isReifiable(s))
1580                             return isSubtypeUnchecked(a, b);
1581                         else
1582                             return isSubtypeUnchecked(a, b, warnStack.head);
1583                     }
1584 
1585                     // Sidecast
1586                     if (s.hasTag(CLASS)) {
1587                         if ((s.tsym.flags() & INTERFACE) != 0) {
1588                             return ((t.tsym.flags() & FINAL) == 0)
1589                                 ? sideCast(t, s, warnStack.head)
1590                                 : sideCastFinal(t, s, warnStack.head);
1591                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
1592                             return ((s.tsym.flags() & FINAL) == 0)
1593                                 ? sideCast(t, s, warnStack.head)
1594                                 : sideCastFinal(t, s, warnStack.head);
1595                         } else {
1596                             // unrelated class types
1597                             return false;
1598                         }
1599                     }
1600                 }
1601                 return false;
1602             }
1603 
1604             boolean visitIntersectionType(IntersectionClassType ict, Type s, boolean reverse) {
1605                 Warner warn = noWarnings;
1606                 for (Type c : ict.getComponents()) {
1607                     warn.clear();
1608                     if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
1609                         return false;
1610                 }
1611                 if (warn.hasLint(LintCategory.UNCHECKED))
1612                     warnStack.head.warn(LintCategory.UNCHECKED);
1613                 return true;
1614             }
1615 
1616             @Override
1617             public Boolean visitArrayType(ArrayType t, Type s) {
1618                 switch (s.getTag()) {
1619                 case ERROR:
1620                 case BOT:
1621                     return true;
1622                 case TYPEVAR:
1623                     if (isCastable(s, t, noWarnings)) {
1624                         warnStack.head.warn(LintCategory.UNCHECKED);
1625                         return true;
1626                     } else {
1627                         return false;
1628                     }
1629                 case CLASS:
1630                     return isSubtype(t, s);
1631                 case ARRAY:
1632                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
1633                         return elemtype(t).hasTag(elemtype(s).getTag());
1634                     } else {
1635                         return visit(elemtype(t), elemtype(s));
1636                     }
1637                 default:
1638                     return false;
1639                 }
1640             }
1641 
1642             @Override
1643             public Boolean visitTypeVar(TypeVar t, Type s) {
1644                 switch (s.getTag()) {
1645                 case ERROR:
1646                 case BOT:
1647                     return true;
1648                 case TYPEVAR:
1649                     if (isSubtype(t, s)) {
1650                         return true;
1651                     } else if (isCastable(t.bound, s, noWarnings)) {
1652                         warnStack.head.warn(LintCategory.UNCHECKED);
1653                         return true;
1654                     } else {
1655                         return false;
1656                     }
1657                 default:
1658                     return isCastable(t.bound, s, warnStack.head);
1659                 }
1660             }
1661 
1662             @Override
1663             public Boolean visitErrorType(ErrorType t, Type s) {
1664                 return true;
1665             }
1666         };
1667     // </editor-fold>
1668 
1669     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
1670     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
1671         while (ts.tail != null && ss.tail != null) {
1672             if (disjointType(ts.head, ss.head)) return true;
1673             ts = ts.tail;
1674             ss = ss.tail;
1675         }
1676         return false;
1677     }
1678 
1679     /**
1680      * Two types or wildcards are considered disjoint if it can be
1681      * proven that no type can be contained in both. It is
1682      * conservative in that it is allowed to say that two types are
1683      * not disjoint, even though they actually are.
1684      *
1685      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
1686      * {@code X} and {@code Y} are not disjoint.
1687      */
1688     public boolean disjointType(Type t, Type s) {
1689         return disjointType.visit(t, s);
1690     }
1691     // where
1692         private TypeRelation disjointType = new TypeRelation() {
1693 
1694             private Set<TypePair> cache = new HashSet<TypePair>();
1695 
1696             @Override
1697             public Boolean visitType(Type t, Type s) {
1698                 if (s.hasTag(WILDCARD))
1699                     return visit(s, t);
1700                 else
1701                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
1702             }
1703 
1704             private boolean isCastableRecursive(Type t, Type s) {
1705                 TypePair pair = new TypePair(t, s);
1706                 if (cache.add(pair)) {
1707                     try {
1708                         return Types.this.isCastable(t, s);
1709                     } finally {
1710                         cache.remove(pair);
1711                     }
1712                 } else {
1713                     return true;
1714                 }
1715             }
1716 
1717             private boolean notSoftSubtypeRecursive(Type t, Type s) {
1718                 TypePair pair = new TypePair(t, s);
1719                 if (cache.add(pair)) {
1720                     try {
1721                         return Types.this.notSoftSubtype(t, s);
1722                     } finally {
1723                         cache.remove(pair);
1724                     }
1725                 } else {
1726                     return false;
1727                 }
1728             }
1729 
1730             @Override
1731             public Boolean visitWildcardType(WildcardType t, Type s) {
1732                 if (t.isUnbound())
1733                     return false;
1734 
1735                 if (!s.hasTag(WILDCARD)) {
1736                     if (t.isExtendsBound())
1737                         return notSoftSubtypeRecursive(s, t.type);
1738                     else
1739                         return notSoftSubtypeRecursive(t.type, s);
1740                 }
1741 
1742                 if (s.isUnbound())
1743                     return false;
1744 
1745                 if (t.isExtendsBound()) {
1746                     if (s.isExtendsBound())
1747                         return !isCastableRecursive(t.type, upperBound(s));
1748                     else if (s.isSuperBound())
1749                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
1750                 } else if (t.isSuperBound()) {
1751                     if (s.isExtendsBound())
1752                         return notSoftSubtypeRecursive(t.type, upperBound(s));
1753                 }
1754                 return false;
1755             }
1756         };
1757     // </editor-fold>
1758 
1759     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
1760     /**
1761      * Returns the lower bounds of the formals of a method.
1762      */
1763     public List<Type> lowerBoundArgtypes(Type t) {
1764         return lowerBounds(t.getParameterTypes());
1765     }
1766     public List<Type> lowerBounds(List<Type> ts) {
1767         return map(ts, lowerBoundMapping);
1768     }
1769     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
1770             public Type apply(Type t) {
1771                 return lowerBound(t);
1772             }
1773         };
1774     // </editor-fold>
1775 
1776     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
1777     /**
1778      * This relation answers the question: is impossible that
1779      * something of type `t' can be a subtype of `s'? This is
1780      * different from the question "is `t' not a subtype of `s'?"
1781      * when type variables are involved: Integer is not a subtype of T
1782      * where {@code <T extends Number>} but it is not true that Integer cannot
1783      * possibly be a subtype of T.
1784      */
1785     public boolean notSoftSubtype(Type t, Type s) {
1786         if (t == s) return false;
1787         if (t.hasTag(TYPEVAR)) {
1788             TypeVar tv = (TypeVar) t;
1789             return !isCastable(tv.bound,
1790                                relaxBound(s),
1791                                noWarnings);
1792         }
1793         if (!s.hasTag(WILDCARD))
1794             s = upperBound(s);
1795 
1796         return !isSubtype(t, relaxBound(s));
1797     }
1798 
1799     private Type relaxBound(Type t) {
1800         if (t.hasTag(TYPEVAR)) {
1801             while (t.hasTag(TYPEVAR))
1802                 t = t.getUpperBound();
1803             t = rewriteQuantifiers(t, true, true);
1804         }
1805         return t;
1806     }
1807     // </editor-fold>
1808 
1809     // <editor-fold defaultstate="collapsed" desc="isReifiable">
1810     public boolean isReifiable(Type t) {
1811         return isReifiable.visit(t);
1812     }
1813     // where
1814         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
1815 
1816             public Boolean visitType(Type t, Void ignored) {
1817                 return true;
1818             }
1819 
1820             @Override
1821             public Boolean visitClassType(ClassType t, Void ignored) {
1822                 if (t.isCompound())
1823                     return false;
1824                 else {
1825                     if (!t.isParameterized())
1826                         return true;
1827 
1828                     for (Type param : t.allparams()) {
1829                         if (!param.isUnbound())
1830                             return false;
1831                     }
1832                     return true;
1833                 }
1834             }
1835 
1836             @Override
1837             public Boolean visitArrayType(ArrayType t, Void ignored) {
1838                 return visit(t.elemtype);
1839             }
1840 
1841             @Override
1842             public Boolean visitTypeVar(TypeVar t, Void ignored) {
1843                 return false;
1844             }
1845         };
1846     // </editor-fold>
1847 
1848     // <editor-fold defaultstate="collapsed" desc="Array Utils">
1849     public boolean isArray(Type t) {
1850         while (t.hasTag(WILDCARD))
1851             t = upperBound(t);
1852         return t.hasTag(ARRAY);
1853     }
1854 
1855     /**
1856      * The element type of an array.
1857      */
1858     public Type elemtype(Type t) {
1859         switch (t.getTag()) {
1860         case WILDCARD:
1861             return elemtype(upperBound(t));
1862         case ARRAY:
1863             t = t.unannotatedType();
1864             return ((ArrayType)t).elemtype;
1865         case FORALL:
1866             return elemtype(((ForAll)t).qtype);
1867         case ERROR:
1868             return t;
1869         default:
1870             return null;
1871         }
1872     }
1873 
1874     public Type elemtypeOrType(Type t) {
1875         Type elemtype = elemtype(t);
1876         return elemtype != null ?
1877             elemtype :
1878             t;
1879     }
1880 
1881     /**
1882      * Mapping to take element type of an arraytype
1883      */
1884     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
1885         public Type apply(Type t) { return elemtype(t); }
1886     };
1887 
1888     /**
1889      * The number of dimensions of an array type.
1890      */
1891     public int dimensions(Type t) {
1892         int result = 0;
1893         while (t.hasTag(ARRAY)) {
1894             result++;
1895             t = elemtype(t);
1896         }
1897         return result;
1898     }
1899 
1900     /**
1901      * Returns an ArrayType with the component type t
1902      *
1903      * @param t The component type of the ArrayType
1904      * @return the ArrayType for the given component
1905      */
1906     public ArrayType makeArrayType(Type t) {
1907         if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
1908             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
1909         }
1910         return new ArrayType(t, syms.arrayClass);
1911     }
1912     // </editor-fold>
1913 
1914     // <editor-fold defaultstate="collapsed" desc="asSuper">
1915     /**
1916      * Return the (most specific) base type of t that starts with the
1917      * given symbol.  If none exists, return null.
1918      *
1919      * @param t a type
1920      * @param sym a symbol
1921      */
1922     public Type asSuper(Type t, Symbol sym) {
1923         return asSuper.visit(t, sym);
1924     }
1925     // where
1926         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
1927 
1928             public Type visitType(Type t, Symbol sym) {
1929                 return null;
1930             }
1931 
1932             @Override
1933             public Type visitClassType(ClassType t, Symbol sym) {
1934                 if (t.tsym == sym)
1935                     return t;
1936 
1937                 Type st = supertype(t);
1938                 if (st.hasTag(CLASS) || st.hasTag(TYPEVAR) || st.hasTag(ERROR)) {
1939                     Type x = asSuper(st, sym);
1940                     if (x != null)
1941                         return x;
1942                 }
1943                 if ((sym.flags() & INTERFACE) != 0) {
1944                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
1945                         Type x = asSuper(l.head, sym);
1946                         if (x != null)
1947                             return x;
1948                     }
1949                 }
1950                 return null;
1951             }
1952 
1953             @Override
1954             public Type visitArrayType(ArrayType t, Symbol sym) {
1955                 return isSubtype(t, sym.type) ? sym.type : null;
1956             }
1957 
1958             @Override
1959             public Type visitTypeVar(TypeVar t, Symbol sym) {
1960                 if (t.tsym == sym)
1961                     return t;
1962                 else
1963                     return asSuper(t.bound, sym);
1964             }
1965 
1966             @Override
1967             public Type visitErrorType(ErrorType t, Symbol sym) {
1968                 return t;
1969             }
1970         };
1971 
1972     /**
1973      * Return the base type of t or any of its outer types that starts
1974      * with the given symbol.  If none exists, return null.
1975      *
1976      * @param t a type
1977      * @param sym a symbol
1978      */
1979     public Type asOuterSuper(Type t, Symbol sym) {
1980         switch (t.getTag()) {
1981         case CLASS:
1982             do {
1983                 Type s = asSuper(t, sym);
1984                 if (s != null) return s;
1985                 t = t.getEnclosingType();
1986             } while (t.hasTag(CLASS));
1987             return null;
1988         case ARRAY:
1989             return isSubtype(t, sym.type) ? sym.type : null;
1990         case TYPEVAR:
1991             return asSuper(t, sym);
1992         case ERROR:
1993             return t;
1994         default:
1995             return null;
1996         }
1997     }
1998 
1999     /**
2000      * Return the base type of t or any of its enclosing types that
2001      * starts with the given symbol.  If none exists, return null.
2002      *
2003      * @param t a type
2004      * @param sym a symbol
2005      */
2006     public Type asEnclosingSuper(Type t, Symbol sym) {
2007         switch (t.getTag()) {
2008         case CLASS:
2009             do {
2010                 Type s = asSuper(t, sym);
2011                 if (s != null) return s;
2012                 Type outer = t.getEnclosingType();
2013                 t = (outer.hasTag(CLASS)) ? outer :
2014                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
2015                     Type.noType;
2016             } while (t.hasTag(CLASS));
2017             return null;
2018         case ARRAY:
2019             return isSubtype(t, sym.type) ? sym.type : null;
2020         case TYPEVAR:
2021             return asSuper(t, sym);
2022         case ERROR:
2023             return t;
2024         default:
2025             return null;
2026         }
2027     }
2028     // </editor-fold>
2029 
2030     // <editor-fold defaultstate="collapsed" desc="memberType">
2031     /**
2032      * The type of given symbol, seen as a member of t.
2033      *
2034      * @param t a type
2035      * @param sym a symbol
2036      */
2037     public Type memberType(Type t, Symbol sym) {
2038         return (sym.flags() & STATIC) != 0
2039             ? sym.type
2040             : memberType.visit(t, sym);
2041         }
2042     // where
2043         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
2044 
2045             public Type visitType(Type t, Symbol sym) {
2046                 return sym.type;
2047             }
2048 
2049             @Override
2050             public Type visitWildcardType(WildcardType t, Symbol sym) {
2051                 return memberType(upperBound(t), sym);
2052             }
2053 
2054             @Override
2055             public Type visitClassType(ClassType t, Symbol sym) {
2056                 Symbol owner = sym.owner;
2057                 long flags = sym.flags();
2058                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
2059                     Type base = asOuterSuper(t, owner);
2060                     //if t is an intersection type T = CT & I1 & I2 ... & In
2061                     //its supertypes CT, I1, ... In might contain wildcards
2062                     //so we need to go through capture conversion
2063                     base = t.isCompound() ? capture(base) : base;
2064                     if (base != null) {
2065                         List<Type> ownerParams = owner.type.allparams();
2066                         List<Type> baseParams = base.allparams();
2067                         if (ownerParams.nonEmpty()) {
2068                             if (baseParams.isEmpty()) {
2069                                 // then base is a raw type
2070                                 return erasure(sym.type);
2071                             } else {
2072                                 return subst(sym.type, ownerParams, baseParams);
2073                             }
2074                         }
2075                     }
2076                 }
2077                 return sym.type;
2078             }
2079 
2080             @Override
2081             public Type visitTypeVar(TypeVar t, Symbol sym) {
2082                 return memberType(t.bound, sym);
2083             }
2084 
2085             @Override
2086             public Type visitErrorType(ErrorType t, Symbol sym) {
2087                 return t;
2088             }
2089         };
2090     // </editor-fold>
2091 
2092     // <editor-fold defaultstate="collapsed" desc="isAssignable">
2093     public boolean isAssignable(Type t, Type s) {
2094         return isAssignable(t, s, noWarnings);
2095     }
2096 
2097     /**
2098      * Is t assignable to s?<br>
2099      * Equivalent to subtype except for constant values and raw
2100      * types.<br>
2101      * (not defined for Method and ForAll types)
2102      */
2103     public boolean isAssignable(Type t, Type s, Warner warn) {
2104         if (t.hasTag(ERROR))
2105             return true;
2106         if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
2107             int value = ((Number)t.constValue()).intValue();
2108             switch (s.getTag()) {
2109             case BYTE:
2110                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
2111                     return true;
2112                 break;
2113             case CHAR:
2114                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
2115                     return true;
2116                 break;
2117             case SHORT:
2118                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
2119                     return true;
2120                 break;
2121             case INT:
2122                 return true;
2123             case CLASS:
2124                 switch (unboxedType(s).getTag()) {
2125                 case BYTE:
2126                 case CHAR:
2127                 case SHORT:
2128                     return isAssignable(t, unboxedType(s), warn);
2129                 }
2130                 break;
2131             }
2132         }
2133         return isConvertible(t, s, warn);
2134     }
2135     // </editor-fold>
2136 
2137     // <editor-fold defaultstate="collapsed" desc="erasure">
2138     /**
2139      * The erasure of t {@code |t|} -- the type that results when all
2140      * type parameters in t are deleted.
2141      */
2142     public Type erasure(Type t) {
2143         return eraseNotNeeded(t)? t : erasure(t, false);
2144     }
2145     //where
2146     private boolean eraseNotNeeded(Type t) {
2147         // We don't want to erase primitive types and String type as that
2148         // operation is idempotent. Also, erasing these could result in loss
2149         // of information such as constant values attached to such types.
2150         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
2151     }
2152 
2153     private Type erasure(Type t, boolean recurse) {
2154         if (t.isPrimitive())
2155             return t; /* fast special case */
2156         else
2157             return erasure.visit(t, recurse);
2158         }
2159     // where
2160         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
2161             public Type visitType(Type t, Boolean recurse) {
2162                 if (t.isPrimitive())
2163                     return t; /*fast special case*/
2164                 else
2165                     return t.map(recurse ? erasureRecFun : erasureFun);
2166             }
2167 
2168             @Override
2169             public Type visitWildcardType(WildcardType t, Boolean recurse) {
2170                 return erasure(upperBound(t), recurse);
2171             }
2172 
2173             @Override
2174             public Type visitClassType(ClassType t, Boolean recurse) {
2175                 Type erased = t.tsym.erasure(Types.this);
2176                 if (recurse) {
2177                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
2178                 }
2179                 return erased;
2180             }
2181 
2182             @Override
2183             public Type visitTypeVar(TypeVar t, Boolean recurse) {
2184                 return erasure(t.bound, recurse);
2185             }
2186 
2187             @Override
2188             public Type visitErrorType(ErrorType t, Boolean recurse) {
2189                 return t;
2190             }
2191 
2192             @Override
2193             public Type visitAnnotatedType(AnnotatedType t, Boolean recurse) {
2194                 Type erased = erasure(t.underlyingType, recurse);
2195                 if (erased.isAnnotated()) {
2196                     // This can only happen when the underlying type is a
2197                     // type variable and the upper bound of it is annotated.
2198                     // The annotation on the type variable overrides the one
2199                     // on the bound.
2200                     erased = ((AnnotatedType)erased).underlyingType;
2201                 }
2202                 return new AnnotatedType(t.typeAnnotations, erased);
2203             }
2204         };
2205 
2206     private Mapping erasureFun = new Mapping ("erasure") {
2207             public Type apply(Type t) { return erasure(t); }
2208         };
2209 
2210     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
2211         public Type apply(Type t) { return erasureRecursive(t); }
2212     };
2213 
2214     public List<Type> erasure(List<Type> ts) {
2215         return Type.map(ts, erasureFun);
2216     }
2217 
2218     public Type erasureRecursive(Type t) {
2219         return erasure(t, true);
2220     }
2221 
2222     public List<Type> erasureRecursive(List<Type> ts) {
2223         return Type.map(ts, erasureRecFun);
2224     }
2225     // </editor-fold>
2226 
2227     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
2228     /**
2229      * Make a compound type from non-empty list of types
2230      *
2231      * @param bounds            the types from which the compound type is formed
2232      * @param supertype         is objectType if all bounds are interfaces,
2233      *                          null otherwise.
2234      */
2235     public Type makeCompoundType(List<Type> bounds) {
2236         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
2237     }
2238     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
2239         Assert.check(bounds.nonEmpty());
2240         Type firstExplicitBound = bounds.head;
2241         if (allInterfaces) {
2242             bounds = bounds.prepend(syms.objectType);
2243         }
2244         ClassSymbol bc =
2245             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
2246                             Type.moreInfo
2247                                 ? names.fromString(bounds.toString())
2248                                 : names.empty,
2249                             null,
2250                             syms.noSymbol);
2251         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
2252         bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
2253                 syms.objectType : // error condition, recover
2254                 erasure(firstExplicitBound);
2255         bc.members_field = new Scope(bc);
2256         return bc.type;
2257     }
2258 
2259     /**
2260      * A convenience wrapper for {@link #makeCompoundType(List)}; the
2261      * arguments are converted to a list and passed to the other
2262      * method.  Note that this might cause a symbol completion.
2263      * Hence, this version of makeCompoundType may not be called
2264      * during a classfile read.
2265      */
2266     public Type makeCompoundType(Type bound1, Type bound2) {
2267         return makeCompoundType(List.of(bound1, bound2));
2268     }
2269     // </editor-fold>
2270 
2271     // <editor-fold defaultstate="collapsed" desc="supertype">
2272     public Type supertype(Type t) {
2273         return supertype.visit(t);
2274     }
2275     // where
2276         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
2277 
2278             public Type visitType(Type t, Void ignored) {
2279                 // A note on wildcards: there is no good way to
2280                 // determine a supertype for a super bounded wildcard.
2281                 return null;
2282             }
2283 
2284             @Override
2285             public Type visitClassType(ClassType t, Void ignored) {
2286                 if (t.supertype_field == null) {
2287                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
2288                     // An interface has no superclass; its supertype is Object.
2289                     if (t.isInterface())
2290                         supertype = ((ClassType)t.tsym.type).supertype_field;
2291                     if (t.supertype_field == null) {
2292                         List<Type> actuals = classBound(t).allparams();
2293                         List<Type> formals = t.tsym.type.allparams();
2294                         if (t.hasErasedSupertypes()) {
2295                             t.supertype_field = erasureRecursive(supertype);
2296                         } else if (formals.nonEmpty()) {
2297                             t.supertype_field = subst(supertype, formals, actuals);
2298                         }
2299                         else {
2300                             t.supertype_field = supertype;
2301                         }
2302                     }
2303                 }
2304                 return t.supertype_field;
2305             }
2306 
2307             /**
2308              * The supertype is always a class type. If the type
2309              * variable's bounds start with a class type, this is also
2310              * the supertype.  Otherwise, the supertype is
2311              * java.lang.Object.
2312              */
2313             @Override
2314             public Type visitTypeVar(TypeVar t, Void ignored) {
2315                 if (t.bound.hasTag(TYPEVAR) ||
2316                     (!t.bound.isCompound() && !t.bound.isInterface())) {
2317                     return t.bound;
2318                 } else {
2319                     return supertype(t.bound);
2320                 }
2321             }
2322 
2323             @Override
2324             public Type visitArrayType(ArrayType t, Void ignored) {
2325                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
2326                     return arraySuperType();
2327                 else
2328                     return new ArrayType(supertype(t.elemtype), t.tsym);
2329             }
2330 
2331             @Override
2332             public Type visitErrorType(ErrorType t, Void ignored) {
2333                 return Type.noType;
2334             }
2335         };
2336     // </editor-fold>
2337 
2338     // <editor-fold defaultstate="collapsed" desc="interfaces">
2339     /**
2340      * Return the interfaces implemented by this class.
2341      */
2342     public List<Type> interfaces(Type t) {
2343         return interfaces.visit(t);
2344     }
2345     // where
2346         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
2347 
2348             public List<Type> visitType(Type t, Void ignored) {
2349                 return List.nil();
2350             }
2351 
2352             @Override
2353             public List<Type> visitClassType(ClassType t, Void ignored) {
2354                 if (t.interfaces_field == null) {
2355                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
2356                     if (t.interfaces_field == null) {
2357                         // If t.interfaces_field is null, then t must
2358                         // be a parameterized type (not to be confused
2359                         // with a generic type declaration).
2360                         // Terminology:
2361                         //    Parameterized type: List<String>
2362                         //    Generic type declaration: class List<E> { ... }
2363                         // So t corresponds to List<String> and
2364                         // t.tsym.type corresponds to List<E>.
2365                         // The reason t must be parameterized type is
2366                         // that completion will happen as a side
2367                         // effect of calling
2368                         // ClassSymbol.getInterfaces.  Since
2369                         // t.interfaces_field is null after
2370                         // completion, we can assume that t is not the
2371                         // type of a class/interface declaration.
2372                         Assert.check(t != t.tsym.type, t);
2373                         List<Type> actuals = t.allparams();
2374                         List<Type> formals = t.tsym.type.allparams();
2375                         if (t.hasErasedSupertypes()) {
2376                             t.interfaces_field = erasureRecursive(interfaces);
2377                         } else if (formals.nonEmpty()) {
2378                             t.interfaces_field =
2379                                 upperBounds(subst(interfaces, formals, actuals));
2380                         }
2381                         else {
2382                             t.interfaces_field = interfaces;
2383                         }
2384                     }
2385                 }
2386                 return t.interfaces_field;
2387             }
2388 
2389             @Override
2390             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
2391                 if (t.bound.isCompound())
2392                     return interfaces(t.bound);
2393 
2394                 if (t.bound.isInterface())
2395                     return List.of(t.bound);
2396 
2397                 return List.nil();
2398             }
2399         };
2400 
2401     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
2402         for (Type i2 : interfaces(origin.type)) {
2403             if (isym == i2.tsym) return true;
2404         }
2405         return false;
2406     }
2407     // </editor-fold>
2408 
2409     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
2410     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
2411 
2412     public boolean isDerivedRaw(Type t) {
2413         Boolean result = isDerivedRawCache.get(t);
2414         if (result == null) {
2415             result = isDerivedRawInternal(t);
2416             isDerivedRawCache.put(t, result);
2417         }
2418         return result;
2419     }
2420 
2421     public boolean isDerivedRawInternal(Type t) {
2422         if (t.isErroneous())
2423             return false;
2424         return
2425             t.isRaw() ||
2426             supertype(t) != null && isDerivedRaw(supertype(t)) ||
2427             isDerivedRaw(interfaces(t));
2428     }
2429 
2430     public boolean isDerivedRaw(List<Type> ts) {
2431         List<Type> l = ts;
2432         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
2433         return l.nonEmpty();
2434     }
2435     // </editor-fold>
2436 
2437     // <editor-fold defaultstate="collapsed" desc="setBounds">
2438     /**
2439      * Set the bounds field of the given type variable to reflect a
2440      * (possibly multiple) list of bounds.
2441      * @param t                 a type variable
2442      * @param bounds            the bounds, must be nonempty
2443      * @param supertype         is objectType if all bounds are interfaces,
2444      *                          null otherwise.
2445      */
2446     public void setBounds(TypeVar t, List<Type> bounds) {
2447         setBounds(t, bounds, bounds.head.tsym.isInterface());
2448     }
2449 
2450     /**
2451      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
2452      * third parameter is computed directly, as follows: if all
2453      * all bounds are interface types, the computed supertype is Object,
2454      * otherwise the supertype is simply left null (in this case, the supertype
2455      * is assumed to be the head of the bound list passed as second argument).
2456      * Note that this check might cause a symbol completion. Hence, this version of
2457      * setBounds may not be called during a classfile read.
2458      */
2459     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
2460         t.bound = bounds.tail.isEmpty() ?
2461                 bounds.head :
2462                 makeCompoundType(bounds, allInterfaces);
2463         t.rank_field = -1;
2464     }
2465     // </editor-fold>
2466 
2467     // <editor-fold defaultstate="collapsed" desc="getBounds">
2468     /**
2469      * Return list of bounds of the given type variable.
2470      */
2471     public List<Type> getBounds(TypeVar t) {
2472         if (t.bound.hasTag(NONE))
2473             return List.nil();
2474         else if (t.bound.isErroneous() || !t.bound.isCompound())
2475             return List.of(t.bound);
2476         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
2477             return interfaces(t).prepend(supertype(t));
2478         else
2479             // No superclass was given in bounds.
2480             // In this case, supertype is Object, erasure is first interface.
2481             return interfaces(t);
2482     }
2483     // </editor-fold>
2484 
2485     // <editor-fold defaultstate="collapsed" desc="classBound">
2486     /**
2487      * If the given type is a (possibly selected) type variable,
2488      * return the bounding class of this type, otherwise return the
2489      * type itself.
2490      */
2491     public Type classBound(Type t) {
2492         return classBound.visit(t);
2493     }
2494     // where
2495         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
2496 
2497             public Type visitType(Type t, Void ignored) {
2498                 return t;
2499             }
2500 
2501             @Override
2502             public Type visitClassType(ClassType t, Void ignored) {
2503                 Type outer1 = classBound(t.getEnclosingType());
2504                 if (outer1 != t.getEnclosingType())
2505                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
2506                 else
2507                     return t;
2508             }
2509 
2510             @Override
2511             public Type visitTypeVar(TypeVar t, Void ignored) {
2512                 return classBound(supertype(t));
2513             }
2514 
2515             @Override
2516             public Type visitErrorType(ErrorType t, Void ignored) {
2517                 return t;
2518             }
2519         };
2520     // </editor-fold>
2521 
2522     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
2523     /**
2524      * Returns true iff the first signature is a <em>sub
2525      * signature</em> of the other.  This is <b>not</b> an equivalence
2526      * relation.
2527      *
2528      * @jls section 8.4.2.
2529      * @see #overrideEquivalent(Type t, Type s)
2530      * @param t first signature (possibly raw).
2531      * @param s second signature (could be subjected to erasure).
2532      * @return true if t is a sub signature of s.
2533      */
2534     public boolean isSubSignature(Type t, Type s) {
2535         return isSubSignature(t, s, true);
2536     }
2537 
2538     public boolean isSubSignature(Type t, Type s, boolean strict) {
2539         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
2540     }
2541 
2542     /**
2543      * Returns true iff these signatures are related by <em>override
2544      * equivalence</em>.  This is the natural extension of
2545      * isSubSignature to an equivalence relation.
2546      *
2547      * @jls section 8.4.2.
2548      * @see #isSubSignature(Type t, Type s)
2549      * @param t a signature (possible raw, could be subjected to
2550      * erasure).
2551      * @param s a signature (possible raw, could be subjected to
2552      * erasure).
2553      * @return true if either argument is a sub signature of the other.
2554      */
2555     public boolean overrideEquivalent(Type t, Type s) {
2556         return hasSameArgs(t, s) ||
2557             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
2558     }
2559 
2560     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
2561         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
2562             if (msym.overrides(e.sym, origin, Types.this, true)) {
2563                 return true;
2564             }
2565         }
2566         return false;
2567     }
2568 
2569     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
2570     class ImplementationCache {
2571 
2572         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
2573                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
2574 
2575         class Entry {
2576             final MethodSymbol cachedImpl;
2577             final Filter<Symbol> implFilter;
2578             final boolean checkResult;
2579             final int prevMark;
2580 
2581             public Entry(MethodSymbol cachedImpl,
2582                     Filter<Symbol> scopeFilter,
2583                     boolean checkResult,
2584                     int prevMark) {
2585                 this.cachedImpl = cachedImpl;
2586                 this.implFilter = scopeFilter;
2587                 this.checkResult = checkResult;
2588                 this.prevMark = prevMark;
2589             }
2590 
2591             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
2592                 return this.implFilter == scopeFilter &&
2593                         this.checkResult == checkResult &&
2594                         this.prevMark == mark;
2595             }
2596         }
2597 
2598         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2599             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
2600             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
2601             if (cache == null) {
2602                 cache = new HashMap<TypeSymbol, Entry>();
2603                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
2604             }
2605             Entry e = cache.get(origin);
2606             CompoundScope members = membersClosure(origin.type, true);
2607             if (e == null ||
2608                     !e.matches(implFilter, checkResult, members.getMark())) {
2609                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
2610                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
2611                 return impl;
2612             }
2613             else {
2614                 return e.cachedImpl;
2615             }
2616         }
2617 
2618         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2619             for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
2620                 while (t.hasTag(TYPEVAR))
2621                     t = t.getUpperBound();
2622                 TypeSymbol c = t.tsym;
2623                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
2624                      e.scope != null;
2625                      e = e.next(implFilter)) {
2626                     if (e.sym != null &&
2627                              e.sym.overrides(ms, origin, Types.this, checkResult))
2628                         return (MethodSymbol)e.sym;
2629                 }
2630             }
2631             return null;
2632         }
2633     }
2634 
2635     private ImplementationCache implCache = new ImplementationCache();
2636 
2637     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2638         return implCache.get(ms, origin, checkResult, implFilter);
2639     }
2640     // </editor-fold>
2641 
2642     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
2643     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
2644 
2645         private WeakHashMap<TypeSymbol, Entry> _map =
2646                 new WeakHashMap<TypeSymbol, Entry>();
2647 
2648         class Entry {
2649             final boolean skipInterfaces;
2650             final CompoundScope compoundScope;
2651 
2652             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
2653                 this.skipInterfaces = skipInterfaces;
2654                 this.compoundScope = compoundScope;
2655             }
2656 
2657             boolean matches(boolean skipInterfaces) {
2658                 return this.skipInterfaces == skipInterfaces;
2659             }
2660         }
2661 
2662         List<TypeSymbol> seenTypes = List.nil();
2663 
2664         /** members closure visitor methods **/
2665 
2666         public CompoundScope visitType(Type t, Boolean skipInterface) {
2667             return null;
2668         }
2669 
2670         @Override
2671         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
2672             if (seenTypes.contains(t.tsym)) {
2673                 //this is possible when an interface is implemented in multiple
2674                 //superclasses, or when a classs hierarchy is circular - in such
2675                 //cases we don't need to recurse (empty scope is returned)
2676                 return new CompoundScope(t.tsym);
2677             }
2678             try {
2679                 seenTypes = seenTypes.prepend(t.tsym);
2680                 ClassSymbol csym = (ClassSymbol)t.tsym;
2681                 Entry e = _map.get(csym);
2682                 if (e == null || !e.matches(skipInterface)) {
2683                     CompoundScope membersClosure = new CompoundScope(csym);
2684                     if (!skipInterface) {
2685                         for (Type i : interfaces(t)) {
2686                             membersClosure.addSubScope(visit(i, skipInterface));
2687                         }
2688                     }
2689                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
2690                     membersClosure.addSubScope(csym.members());
2691                     e = new Entry(skipInterface, membersClosure);
2692                     _map.put(csym, e);
2693                 }
2694                 return e.compoundScope;
2695             }
2696             finally {
2697                 seenTypes = seenTypes.tail;
2698             }
2699         }
2700 
2701         @Override
2702         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
2703             return visit(t.getUpperBound(), skipInterface);
2704         }
2705     }
2706 
2707     private MembersClosureCache membersCache = new MembersClosureCache();
2708 
2709     public CompoundScope membersClosure(Type site, boolean skipInterface) {
2710         return membersCache.visit(site, skipInterface);
2711     }
2712     // </editor-fold>
2713 
2714 
2715     //where
2716     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
2717         Filter<Symbol> filter = new MethodFilter(ms, site);
2718         List<MethodSymbol> candidates = List.nil();
2719             for (Symbol s : membersClosure(site, false).getElements(filter)) {
2720                 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
2721                     return List.of((MethodSymbol)s);
2722                 } else if (!candidates.contains(s)) {
2723                     candidates = candidates.prepend((MethodSymbol)s);
2724                 }
2725             }
2726             return prune(candidates);
2727         }
2728 
2729     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
2730         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
2731         for (MethodSymbol m1 : methods) {
2732             boolean isMin_m1 = true;
2733             for (MethodSymbol m2 : methods) {
2734                 if (m1 == m2) continue;
2735                 if (m2.owner != m1.owner &&
2736                         asSuper(m2.owner.type, m1.owner) != null) {
2737                     isMin_m1 = false;
2738                     break;
2739                 }
2740             }
2741             if (isMin_m1)
2742                 methodsMin.append(m1);
2743         }
2744         return methodsMin.toList();
2745     }
2746     // where
2747             private class MethodFilter implements Filter<Symbol> {
2748 
2749                 Symbol msym;
2750                 Type site;
2751 
2752                 MethodFilter(Symbol msym, Type site) {
2753                     this.msym = msym;
2754                     this.site = site;
2755                 }
2756 
2757                 public boolean accepts(Symbol s) {
2758                     return s.kind == Kinds.MTH &&
2759                             s.name == msym.name &&
2760                             (s.flags() & SYNTHETIC) == 0 &&
2761                             s.isInheritedIn(site.tsym, Types.this) &&
2762                             overrideEquivalent(memberType(site, s), memberType(site, msym));
2763                 }
2764             };
2765     // </editor-fold>
2766 
2767     /**
2768      * Does t have the same arguments as s?  It is assumed that both
2769      * types are (possibly polymorphic) method types.  Monomorphic
2770      * method types "have the same arguments", if their argument lists
2771      * are equal.  Polymorphic method types "have the same arguments",
2772      * if they have the same arguments after renaming all type
2773      * variables of one to corresponding type variables in the other,
2774      * where correspondence is by position in the type parameter list.
2775      */
2776     public boolean hasSameArgs(Type t, Type s) {
2777         return hasSameArgs(t, s, true);
2778     }
2779 
2780     public boolean hasSameArgs(Type t, Type s, boolean strict) {
2781         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
2782     }
2783 
2784     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
2785         return hasSameArgs.visit(t, s);
2786     }
2787     // where
2788         private class HasSameArgs extends TypeRelation {
2789 
2790             boolean strict;
2791 
2792             public HasSameArgs(boolean strict) {
2793                 this.strict = strict;
2794             }
2795 
2796             public Boolean visitType(Type t, Type s) {
2797                 throw new AssertionError();
2798             }
2799 
2800             @Override
2801             public Boolean visitMethodType(MethodType t, Type s) {
2802                 return s.hasTag(METHOD)
2803                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
2804             }
2805 
2806             @Override
2807             public Boolean visitForAll(ForAll t, Type s) {
2808                 if (!s.hasTag(FORALL))
2809                     return strict ? false : visitMethodType(t.asMethodType(), s);
2810 
2811                 ForAll forAll = (ForAll)s;
2812                 return hasSameBounds(t, forAll)
2813                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
2814             }
2815 
2816             @Override
2817             public Boolean visitErrorType(ErrorType t, Type s) {
2818                 return false;
2819             }
2820         };
2821 
2822         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
2823         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
2824 
2825     // </editor-fold>
2826 
2827     // <editor-fold defaultstate="collapsed" desc="subst">
2828     public List<Type> subst(List<Type> ts,
2829                             List<Type> from,
2830                             List<Type> to) {
2831         return new Subst(from, to).subst(ts);
2832     }
2833 
2834     /**
2835      * Substitute all occurrences of a type in `from' with the
2836      * corresponding type in `to' in 't'. Match lists `from' and `to'
2837      * from the right: If lists have different length, discard leading
2838      * elements of the longer list.
2839      */
2840     public Type subst(Type t, List<Type> from, List<Type> to) {
2841         return new Subst(from, to).subst(t);
2842     }
2843 
2844     private class Subst extends UnaryVisitor<Type> {
2845         List<Type> from;
2846         List<Type> to;
2847 
2848         public Subst(List<Type> from, List<Type> to) {
2849             int fromLength = from.length();
2850             int toLength = to.length();
2851             while (fromLength > toLength) {
2852                 fromLength--;
2853                 from = from.tail;
2854             }
2855             while (fromLength < toLength) {
2856                 toLength--;
2857                 to = to.tail;
2858             }
2859             this.from = from;
2860             this.to = to;
2861         }
2862 
2863         Type subst(Type t) {
2864             if (from.tail == null)
2865                 return t;
2866             else
2867                 return visit(t);
2868             }
2869 
2870         List<Type> subst(List<Type> ts) {
2871             if (from.tail == null)
2872                 return ts;
2873             boolean wild = false;
2874             if (ts.nonEmpty() && from.nonEmpty()) {
2875                 Type head1 = subst(ts.head);
2876                 List<Type> tail1 = subst(ts.tail);
2877                 if (head1 != ts.head || tail1 != ts.tail)
2878                     return tail1.prepend(head1);
2879             }
2880             return ts;
2881         }
2882 
2883         public Type visitType(Type t, Void ignored) {
2884             return t;
2885         }
2886 
2887         @Override
2888         public Type visitMethodType(MethodType t, Void ignored) {
2889             List<Type> argtypes = subst(t.argtypes);
2890             Type restype = subst(t.restype);
2891             List<Type> thrown = subst(t.thrown);
2892             if (argtypes == t.argtypes &&
2893                 restype == t.restype &&
2894                 thrown == t.thrown)
2895                 return t;
2896             else
2897                 return new MethodType(argtypes, restype, thrown, t.tsym);
2898         }
2899 
2900         @Override
2901         public Type visitTypeVar(TypeVar t, Void ignored) {
2902             for (List<Type> from = this.from, to = this.to;
2903                  from.nonEmpty();
2904                  from = from.tail, to = to.tail) {
2905                 if (t == from.head) {
2906                     return to.head.withTypeVar(t);
2907                 }
2908             }
2909             return t;
2910         }
2911 
2912         @Override
2913         public Type visitClassType(ClassType t, Void ignored) {
2914             if (!t.isCompound()) {
2915                 List<Type> typarams = t.getTypeArguments();
2916                 List<Type> typarams1 = subst(typarams);
2917                 Type outer = t.getEnclosingType();
2918                 Type outer1 = subst(outer);
2919                 if (typarams1 == typarams && outer1 == outer)
2920                     return t;
2921                 else
2922                     return new ClassType(outer1, typarams1, t.tsym);
2923             } else {
2924                 Type st = subst(supertype(t));
2925                 List<Type> is = upperBounds(subst(interfaces(t)));
2926                 if (st == supertype(t) && is == interfaces(t))
2927                     return t;
2928                 else
2929                     return makeCompoundType(is.prepend(st));
2930             }
2931         }
2932 
2933         @Override
2934         public Type visitWildcardType(WildcardType t, Void ignored) {
2935             Type bound = t.type;
2936             if (t.kind != BoundKind.UNBOUND)
2937                 bound = subst(bound);
2938             if (bound == t.type) {
2939                 return t;
2940             } else {
2941                 if (t.isExtendsBound() && bound.isExtendsBound())
2942                     bound = upperBound(bound);
2943                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
2944             }
2945         }
2946 
2947         @Override
2948         public Type visitArrayType(ArrayType t, Void ignored) {
2949             Type elemtype = subst(t.elemtype);
2950             if (elemtype == t.elemtype)
2951                 return t;
2952             else
2953                 return new ArrayType(elemtype, t.tsym);
2954         }
2955 
2956         @Override
2957         public Type visitForAll(ForAll t, Void ignored) {
2958             if (Type.containsAny(to, t.tvars)) {
2959                 //perform alpha-renaming of free-variables in 't'
2960                 //if 'to' types contain variables that are free in 't'
2961                 List<Type> freevars = newInstances(t.tvars);
2962                 t = new ForAll(freevars,
2963                         Types.this.subst(t.qtype, t.tvars, freevars));
2964             }
2965             List<Type> tvars1 = substBounds(t.tvars, from, to);
2966             Type qtype1 = subst(t.qtype);
2967             if (tvars1 == t.tvars && qtype1 == t.qtype) {
2968                 return t;
2969             } else if (tvars1 == t.tvars) {
2970                 return new ForAll(tvars1, qtype1);
2971             } else {
2972                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
2973             }
2974         }
2975 
2976         @Override
2977         public Type visitErrorType(ErrorType t, Void ignored) {
2978             return t;
2979         }
2980     }
2981 
2982     public List<Type> substBounds(List<Type> tvars,
2983                                   List<Type> from,
2984                                   List<Type> to) {
2985         if (tvars.isEmpty())
2986             return tvars;
2987         ListBuffer<Type> newBoundsBuf = lb();
2988         boolean changed = false;
2989         // calculate new bounds
2990         for (Type t : tvars) {
2991             TypeVar tv = (TypeVar) t;
2992             Type bound = subst(tv.bound, from, to);
2993             if (bound != tv.bound)
2994                 changed = true;
2995             newBoundsBuf.append(bound);
2996         }
2997         if (!changed)
2998             return tvars;
2999         ListBuffer<Type> newTvars = lb();
3000         // create new type variables without bounds
3001         for (Type t : tvars) {
3002             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
3003         }
3004         // the new bounds should use the new type variables in place
3005         // of the old
3006         List<Type> newBounds = newBoundsBuf.toList();
3007         from = tvars;
3008         to = newTvars.toList();
3009         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
3010             newBounds.head = subst(newBounds.head, from, to);
3011         }
3012         newBounds = newBoundsBuf.toList();
3013         // set the bounds of new type variables to the new bounds
3014         for (Type t : newTvars.toList()) {
3015             TypeVar tv = (TypeVar) t;
3016             tv.bound = newBounds.head;
3017             newBounds = newBounds.tail;
3018         }
3019         return newTvars.toList();
3020     }
3021 
3022     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
3023         Type bound1 = subst(t.bound, from, to);
3024         if (bound1 == t.bound)
3025             return t;
3026         else {
3027             // create new type variable without bounds
3028             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
3029             // the new bound should use the new type variable in place
3030             // of the old
3031             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
3032             return tv;
3033         }
3034     }
3035     // </editor-fold>
3036 
3037     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
3038     /**
3039      * Does t have the same bounds for quantified variables as s?
3040      */
3041     boolean hasSameBounds(ForAll t, ForAll s) {
3042         List<Type> l1 = t.tvars;
3043         List<Type> l2 = s.tvars;
3044         while (l1.nonEmpty() && l2.nonEmpty() &&
3045                isSameType(l1.head.getUpperBound(),
3046                           subst(l2.head.getUpperBound(),
3047                                 s.tvars,
3048                                 t.tvars))) {
3049             l1 = l1.tail;
3050             l2 = l2.tail;
3051         }
3052         return l1.isEmpty() && l2.isEmpty();
3053     }
3054     // </editor-fold>
3055 
3056     // <editor-fold defaultstate="collapsed" desc="newInstances">
3057     /** Create new vector of type variables from list of variables
3058      *  changing all recursive bounds from old to new list.
3059      */
3060     public List<Type> newInstances(List<Type> tvars) {
3061         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
3062         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
3063             TypeVar tv = (TypeVar) l.head;
3064             tv.bound = subst(tv.bound, tvars, tvars1);
3065         }
3066         return tvars1;
3067     }
3068     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
3069             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
3070         };
3071     // </editor-fold>
3072 
3073     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
3074         return original.accept(methodWithParameters, newParams);
3075     }
3076     // where
3077         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
3078             public Type visitType(Type t, List<Type> newParams) {
3079                 throw new IllegalArgumentException("Not a method type: " + t);
3080             }
3081             public Type visitMethodType(MethodType t, List<Type> newParams) {
3082                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
3083             }
3084             public Type visitForAll(ForAll t, List<Type> newParams) {
3085                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
3086             }
3087         };
3088 
3089     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
3090         return original.accept(methodWithThrown, newThrown);
3091     }
3092     // where
3093         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
3094             public Type visitType(Type t, List<Type> newThrown) {
3095                 throw new IllegalArgumentException("Not a method type: " + t);
3096             }
3097             public Type visitMethodType(MethodType t, List<Type> newThrown) {
3098                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
3099             }
3100             public Type visitForAll(ForAll t, List<Type> newThrown) {
3101                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
3102             }
3103         };
3104 
3105     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
3106         return original.accept(methodWithReturn, newReturn);
3107     }
3108     // where
3109         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
3110             public Type visitType(Type t, Type newReturn) {
3111                 throw new IllegalArgumentException("Not a method type: " + t);
3112             }
3113             public Type visitMethodType(MethodType t, Type newReturn) {
3114                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
3115             }
3116             public Type visitForAll(ForAll t, Type newReturn) {
3117                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
3118             }
3119         };
3120 
3121     // <editor-fold defaultstate="collapsed" desc="createErrorType">
3122     public Type createErrorType(Type originalType) {
3123         return new ErrorType(originalType, syms.errSymbol);
3124     }
3125 
3126     public Type createErrorType(ClassSymbol c, Type originalType) {
3127         return new ErrorType(c, originalType);
3128     }
3129 
3130     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
3131         return new ErrorType(name, container, originalType);
3132     }
3133     // </editor-fold>
3134 
3135     // <editor-fold defaultstate="collapsed" desc="rank">
3136     /**
3137      * The rank of a class is the length of the longest path between
3138      * the class and java.lang.Object in the class inheritance
3139      * graph. Undefined for all but reference types.
3140      */
3141     public int rank(Type t) {
3142         t = t.unannotatedType();
3143         switch(t.getTag()) {
3144         case CLASS: {
3145             ClassType cls = (ClassType)t;
3146             if (cls.rank_field < 0) {
3147                 Name fullname = cls.tsym.getQualifiedName();
3148                 if (fullname == names.java_lang_Object)
3149                     cls.rank_field = 0;
3150                 else {
3151                     int r = rank(supertype(cls));
3152                     for (List<Type> l = interfaces(cls);
3153                          l.nonEmpty();
3154                          l = l.tail) {
3155                         if (rank(l.head) > r)
3156                             r = rank(l.head);
3157                     }
3158                     cls.rank_field = r + 1;
3159                 }
3160             }
3161             return cls.rank_field;
3162         }
3163         case TYPEVAR: {
3164             TypeVar tvar = (TypeVar)t;
3165             if (tvar.rank_field < 0) {
3166                 int r = rank(supertype(tvar));
3167                 for (List<Type> l = interfaces(tvar);
3168                      l.nonEmpty();
3169                      l = l.tail) {
3170                     if (rank(l.head) > r) r = rank(l.head);
3171                 }
3172                 tvar.rank_field = r + 1;
3173             }
3174             return tvar.rank_field;
3175         }
3176         case ERROR:
3177             return 0;
3178         default:
3179             throw new AssertionError();
3180         }
3181     }
3182     // </editor-fold>
3183 
3184     /**
3185      * Helper method for generating a string representation of a given type
3186      * accordingly to a given locale
3187      */
3188     public String toString(Type t, Locale locale) {
3189         return Printer.createStandardPrinter(messages).visit(t, locale);
3190     }
3191 
3192     /**
3193      * Helper method for generating a string representation of a given type
3194      * accordingly to a given locale
3195      */
3196     public String toString(Symbol t, Locale locale) {
3197         return Printer.createStandardPrinter(messages).visit(t, locale);
3198     }
3199 
3200     // <editor-fold defaultstate="collapsed" desc="toString">
3201     /**
3202      * This toString is slightly more descriptive than the one on Type.
3203      *
3204      * @deprecated Types.toString(Type t, Locale l) provides better support
3205      * for localization
3206      */
3207     @Deprecated
3208     public String toString(Type t) {
3209         if (t.hasTag(FORALL)) {
3210             ForAll forAll = (ForAll)t;
3211             return typaramsString(forAll.tvars) + forAll.qtype;
3212         }
3213         return "" + t;
3214     }
3215     // where
3216         private String typaramsString(List<Type> tvars) {
3217             StringBuilder s = new StringBuilder();
3218             s.append('<');
3219             boolean first = true;
3220             for (Type t : tvars) {
3221                 if (!first) s.append(", ");
3222                 first = false;
3223                 appendTyparamString(((TypeVar)t.unannotatedType()), s);
3224             }
3225             s.append('>');
3226             return s.toString();
3227         }
3228         private void appendTyparamString(TypeVar t, StringBuilder buf) {
3229             buf.append(t);
3230             if (t.bound == null ||
3231                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
3232                 return;
3233             buf.append(" extends "); // Java syntax; no need for i18n
3234             Type bound = t.bound;
3235             if (!bound.isCompound()) {
3236                 buf.append(bound);
3237             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
3238                 buf.append(supertype(t));
3239                 for (Type intf : interfaces(t)) {
3240                     buf.append('&');
3241                     buf.append(intf);
3242                 }
3243             } else {
3244                 // No superclass was given in bounds.
3245                 // In this case, supertype is Object, erasure is first interface.
3246                 boolean first = true;
3247                 for (Type intf : interfaces(t)) {
3248                     if (!first) buf.append('&');
3249                     first = false;
3250                     buf.append(intf);
3251                 }
3252             }
3253         }
3254     // </editor-fold>
3255 
3256     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
3257     /**
3258      * A cache for closures.
3259      *
3260      * <p>A closure is a list of all the supertypes and interfaces of
3261      * a class or interface type, ordered by ClassSymbol.precedes
3262      * (that is, subclasses come first, arbitrary but fixed
3263      * otherwise).
3264      */
3265     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
3266 
3267     /**
3268      * Returns the closure of a class or interface type.
3269      */
3270     public List<Type> closure(Type t) {
3271         List<Type> cl = closureCache.get(t);
3272         if (cl == null) {
3273             Type st = supertype(t);
3274             if (!t.isCompound()) {
3275                 if (st.hasTag(CLASS)) {
3276                     cl = insert(closure(st), t);
3277                 } else if (st.hasTag(TYPEVAR)) {
3278                     cl = closure(st).prepend(t);
3279                 } else {
3280                     cl = List.of(t);
3281                 }
3282             } else {
3283                 cl = closure(supertype(t));
3284             }
3285             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
3286                 cl = union(cl, closure(l.head));
3287             closureCache.put(t, cl);
3288         }
3289         return cl;
3290     }
3291 
3292     /**
3293      * Insert a type in a closure
3294      */
3295     public List<Type> insert(List<Type> cl, Type t) {
3296         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
3297             return cl.prepend(t);
3298         } else if (cl.head.tsym.precedes(t.tsym, this)) {
3299             return insert(cl.tail, t).prepend(cl.head);
3300         } else {
3301             return cl;
3302         }
3303     }
3304 
3305     /**
3306      * Form the union of two closures
3307      */
3308     public List<Type> union(List<Type> cl1, List<Type> cl2) {
3309         if (cl1.isEmpty()) {
3310             return cl2;
3311         } else if (cl2.isEmpty()) {
3312             return cl1;
3313         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
3314             return union(cl1.tail, cl2).prepend(cl1.head);
3315         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
3316             return union(cl1, cl2.tail).prepend(cl2.head);
3317         } else {
3318             return union(cl1.tail, cl2.tail).prepend(cl1.head);
3319         }
3320     }
3321 
3322     /**
3323      * Intersect two closures
3324      */
3325     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
3326         if (cl1 == cl2)
3327             return cl1;
3328         if (cl1.isEmpty() || cl2.isEmpty())
3329             return List.nil();
3330         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
3331             return intersect(cl1.tail, cl2);
3332         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
3333             return intersect(cl1, cl2.tail);
3334         if (isSameType(cl1.head, cl2.head))
3335             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
3336         if (cl1.head.tsym == cl2.head.tsym &&
3337             cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
3338             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
3339                 Type merge = merge(cl1.head,cl2.head);
3340                 return intersect(cl1.tail, cl2.tail).prepend(merge);
3341             }
3342             if (cl1.head.isRaw() || cl2.head.isRaw())
3343                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
3344         }
3345         return intersect(cl1.tail, cl2.tail);
3346     }
3347     // where
3348         class TypePair {
3349             final Type t1;
3350             final Type t2;
3351             TypePair(Type t1, Type t2) {
3352                 this.t1 = t1;
3353                 this.t2 = t2;
3354             }
3355             @Override
3356             public int hashCode() {
3357                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
3358             }
3359             @Override
3360             public boolean equals(Object obj) {
3361                 if (!(obj instanceof TypePair))
3362                     return false;
3363                 TypePair typePair = (TypePair)obj;
3364                 return isSameType(t1, typePair.t1)
3365                     && isSameType(t2, typePair.t2);
3366             }
3367         }
3368         Set<TypePair> mergeCache = new HashSet<TypePair>();
3369         private Type merge(Type c1, Type c2) {
3370             ClassType class1 = (ClassType) c1;
3371             List<Type> act1 = class1.getTypeArguments();
3372             ClassType class2 = (ClassType) c2;
3373             List<Type> act2 = class2.getTypeArguments();
3374             ListBuffer<Type> merged = new ListBuffer<Type>();
3375             List<Type> typarams = class1.tsym.type.getTypeArguments();
3376 
3377             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
3378                 if (containsType(act1.head, act2.head)) {
3379                     merged.append(act1.head);
3380                 } else if (containsType(act2.head, act1.head)) {
3381                     merged.append(act2.head);
3382                 } else {
3383                     TypePair pair = new TypePair(c1, c2);
3384                     Type m;
3385                     if (mergeCache.add(pair)) {
3386                         m = new WildcardType(lub(upperBound(act1.head),
3387                                                  upperBound(act2.head)),
3388                                              BoundKind.EXTENDS,
3389                                              syms.boundClass);
3390                         mergeCache.remove(pair);
3391                     } else {
3392                         m = new WildcardType(syms.objectType,
3393                                              BoundKind.UNBOUND,
3394                                              syms.boundClass);
3395                     }
3396                     merged.append(m.withTypeVar(typarams.head));
3397                 }
3398                 act1 = act1.tail;
3399                 act2 = act2.tail;
3400                 typarams = typarams.tail;
3401             }
3402             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
3403             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
3404         }
3405 
3406     /**
3407      * Return the minimum type of a closure, a compound type if no
3408      * unique minimum exists.
3409      */
3410     private Type compoundMin(List<Type> cl) {
3411         if (cl.isEmpty()) return syms.objectType;
3412         List<Type> compound = closureMin(cl);
3413         if (compound.isEmpty())
3414             return null;
3415         else if (compound.tail.isEmpty())
3416             return compound.head;
3417         else
3418             return makeCompoundType(compound);
3419     }
3420 
3421     /**
3422      * Return the minimum types of a closure, suitable for computing
3423      * compoundMin or glb.
3424      */
3425     private List<Type> closureMin(List<Type> cl) {
3426         ListBuffer<Type> classes = lb();
3427         ListBuffer<Type> interfaces = lb();
3428         while (!cl.isEmpty()) {
3429             Type current = cl.head;
3430             if (current.isInterface())
3431                 interfaces.append(current);
3432             else
3433                 classes.append(current);
3434             ListBuffer<Type> candidates = lb();
3435             for (Type t : cl.tail) {
3436                 if (!isSubtypeNoCapture(current, t))
3437                     candidates.append(t);
3438             }
3439             cl = candidates.toList();
3440         }
3441         return classes.appendList(interfaces).toList();
3442     }
3443 
3444     /**
3445      * Return the least upper bound of pair of types.  if the lub does
3446      * not exist return null.
3447      */
3448     public Type lub(Type t1, Type t2) {
3449         return lub(List.of(t1, t2));
3450     }
3451 
3452     /**
3453      * Return the least upper bound (lub) of set of types.  If the lub
3454      * does not exist return the type of null (bottom).
3455      */
3456     public Type lub(List<Type> ts) {
3457         final int ARRAY_BOUND = 1;
3458         final int CLASS_BOUND = 2;
3459         int boundkind = 0;
3460         for (Type t : ts) {
3461             switch (t.getTag()) {
3462             case CLASS:
3463                 boundkind |= CLASS_BOUND;
3464                 break;
3465             case ARRAY:
3466                 boundkind |= ARRAY_BOUND;
3467                 break;
3468             case  TYPEVAR:
3469                 do {
3470                     t = t.getUpperBound();
3471                 } while (t.hasTag(TYPEVAR));
3472                 if (t.hasTag(ARRAY)) {
3473                     boundkind |= ARRAY_BOUND;
3474                 } else {
3475                     boundkind |= CLASS_BOUND;
3476                 }
3477                 break;
3478             default:
3479                 if (t.isPrimitive())
3480                     return syms.errType;
3481             }
3482         }
3483         switch (boundkind) {
3484         case 0:
3485             return syms.botType;
3486 
3487         case ARRAY_BOUND:
3488             // calculate lub(A[], B[])
3489             List<Type> elements = Type.map(ts, elemTypeFun);
3490             for (Type t : elements) {
3491                 if (t.isPrimitive()) {
3492                     // if a primitive type is found, then return
3493                     // arraySuperType unless all the types are the
3494                     // same
3495                     Type first = ts.head;
3496                     for (Type s : ts.tail) {
3497                         if (!isSameType(first, s)) {
3498                              // lub(int[], B[]) is Cloneable & Serializable
3499                             return arraySuperType();
3500                         }
3501                     }
3502                     // all the array types are the same, return one
3503                     // lub(int[], int[]) is int[]
3504                     return first;
3505                 }
3506             }
3507             // lub(A[], B[]) is lub(A, B)[]
3508             return new ArrayType(lub(elements), syms.arrayClass);
3509 
3510         case CLASS_BOUND:
3511             // calculate lub(A, B)
3512             while (!ts.head.hasTag(CLASS) && !ts.head.hasTag(TYPEVAR)) {
3513                 ts = ts.tail;
3514             }
3515             Assert.check(!ts.isEmpty());
3516             //step 1 - compute erased candidate set (EC)
3517             List<Type> cl = erasedSupertypes(ts.head);
3518             for (Type t : ts.tail) {
3519                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
3520                     cl = intersect(cl, erasedSupertypes(t));
3521             }
3522             //step 2 - compute minimal erased candidate set (MEC)
3523             List<Type> mec = closureMin(cl);
3524             //step 3 - for each element G in MEC, compute lci(Inv(G))
3525             List<Type> candidates = List.nil();
3526             for (Type erasedSupertype : mec) {
3527                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
3528                 for (Type t : ts) {
3529                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
3530                 }
3531                 candidates = candidates.appendList(lci);
3532             }
3533             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
3534             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
3535             return compoundMin(candidates);
3536 
3537         default:
3538             // calculate lub(A, B[])
3539             List<Type> classes = List.of(arraySuperType());
3540             for (Type t : ts) {
3541                 if (!t.hasTag(ARRAY)) // Filter out any arrays
3542                     classes = classes.prepend(t);
3543             }
3544             // lub(A, B[]) is lub(A, arraySuperType)
3545             return lub(classes);
3546         }
3547     }
3548     // where
3549         List<Type> erasedSupertypes(Type t) {
3550             ListBuffer<Type> buf = lb();
3551             for (Type sup : closure(t)) {
3552                 if (sup.hasTag(TYPEVAR)) {
3553                     buf.append(sup);
3554                 } else {
3555                     buf.append(erasure(sup));
3556                 }
3557             }
3558             return buf.toList();
3559         }
3560 
3561         private Type arraySuperType = null;
3562         private Type arraySuperType() {
3563             // initialized lazily to avoid problems during compiler startup
3564             if (arraySuperType == null) {
3565                 synchronized (this) {
3566                     if (arraySuperType == null) {
3567                         // JLS 10.8: all arrays implement Cloneable and Serializable.
3568                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
3569                                                                   syms.cloneableType), true);
3570                     }
3571                 }
3572             }
3573             return arraySuperType;
3574         }
3575     // </editor-fold>
3576 
3577     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
3578     public Type glb(List<Type> ts) {
3579         Type t1 = ts.head;
3580         for (Type t2 : ts.tail) {
3581             if (t1.isErroneous())
3582                 return t1;
3583             t1 = glb(t1, t2);
3584         }
3585         return t1;
3586     }
3587     //where
3588     public Type glb(Type t, Type s) {
3589         if (s == null)
3590             return t;
3591         else if (t.isPrimitive() || s.isPrimitive())
3592             return syms.errType;
3593         else if (isSubtypeNoCapture(t, s))
3594             return t;
3595         else if (isSubtypeNoCapture(s, t))
3596             return s;
3597 
3598         List<Type> closure = union(closure(t), closure(s));
3599         List<Type> bounds = closureMin(closure);
3600 
3601         if (bounds.isEmpty()) {             // length == 0
3602             return syms.objectType;
3603         } else if (bounds.tail.isEmpty()) { // length == 1
3604             return bounds.head;
3605         } else {                            // length > 1
3606             int classCount = 0;
3607             for (Type bound : bounds)
3608                 if (!bound.isInterface())
3609                     classCount++;
3610             if (classCount > 1)
3611                 return createErrorType(t);
3612         }
3613         return makeCompoundType(bounds);
3614     }
3615     // </editor-fold>
3616 
3617     // <editor-fold defaultstate="collapsed" desc="hashCode">
3618     /**
3619      * Compute a hash code on a type.
3620      */
3621     public int hashCode(Type t) {
3622         return hashCode.visit(t);
3623     }
3624     // where
3625         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
3626 
3627             public Integer visitType(Type t, Void ignored) {
3628                 return t.getTag().ordinal();
3629             }
3630 
3631             @Override
3632             public Integer visitClassType(ClassType t, Void ignored) {
3633                 int result = visit(t.getEnclosingType());
3634                 result *= 127;
3635                 result += t.tsym.flatName().hashCode();
3636                 for (Type s : t.getTypeArguments()) {
3637                     result *= 127;
3638                     result += visit(s);
3639                 }
3640                 return result;
3641             }
3642 
3643             @Override
3644             public Integer visitMethodType(MethodType t, Void ignored) {
3645                 int h = METHOD.ordinal();
3646                 for (List<Type> thisargs = t.argtypes;
3647                      thisargs.tail != null;
3648                      thisargs = thisargs.tail)
3649                     h = (h << 5) + visit(thisargs.head);
3650                 return (h << 5) + visit(t.restype);
3651             }
3652 
3653             @Override
3654             public Integer visitWildcardType(WildcardType t, Void ignored) {
3655                 int result = t.kind.hashCode();
3656                 if (t.type != null) {
3657                     result *= 127;
3658                     result += visit(t.type);
3659                 }
3660                 return result;
3661             }
3662 
3663             @Override
3664             public Integer visitArrayType(ArrayType t, Void ignored) {
3665                 return visit(t.elemtype) + 12;
3666             }
3667 
3668             @Override
3669             public Integer visitTypeVar(TypeVar t, Void ignored) {
3670                 return System.identityHashCode(t.tsym);
3671             }
3672 
3673             @Override
3674             public Integer visitUndetVar(UndetVar t, Void ignored) {
3675                 return System.identityHashCode(t);
3676             }
3677 
3678             @Override
3679             public Integer visitErrorType(ErrorType t, Void ignored) {
3680                 return 0;
3681             }
3682         };
3683     // </editor-fold>
3684 
3685     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
3686     /**
3687      * Does t have a result that is a subtype of the result type of s,
3688      * suitable for covariant returns?  It is assumed that both types
3689      * are (possibly polymorphic) method types.  Monomorphic method
3690      * types are handled in the obvious way.  Polymorphic method types
3691      * require renaming all type variables of one to corresponding
3692      * type variables in the other, where correspondence is by
3693      * position in the type parameter list. */
3694     public boolean resultSubtype(Type t, Type s, Warner warner) {
3695         List<Type> tvars = t.getTypeArguments();
3696         List<Type> svars = s.getTypeArguments();
3697         Type tres = t.getReturnType();
3698         Type sres = subst(s.getReturnType(), svars, tvars);
3699         return covariantReturnType(tres, sres, warner);
3700     }
3701 
3702     /**
3703      * Return-Type-Substitutable.
3704      * @jls section 8.4.5
3705      */
3706     public boolean returnTypeSubstitutable(Type r1, Type r2) {
3707         if (hasSameArgs(r1, r2))
3708             return resultSubtype(r1, r2, noWarnings);
3709         else
3710             return covariantReturnType(r1.getReturnType(),
3711                                        erasure(r2.getReturnType()),
3712                                        noWarnings);
3713     }
3714 
3715     public boolean returnTypeSubstitutable(Type r1,
3716                                            Type r2, Type r2res,
3717                                            Warner warner) {
3718         if (isSameType(r1.getReturnType(), r2res))
3719             return true;
3720         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
3721             return false;
3722 
3723         if (hasSameArgs(r1, r2))
3724             return covariantReturnType(r1.getReturnType(), r2res, warner);
3725         if (!allowCovariantReturns)
3726             return false;
3727         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
3728             return true;
3729         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
3730             return false;
3731         warner.warn(LintCategory.UNCHECKED);
3732         return true;
3733     }
3734 
3735     /**
3736      * Is t an appropriate return type in an overrider for a
3737      * method that returns s?
3738      */
3739     public boolean covariantReturnType(Type t, Type s, Warner warner) {
3740         return
3741             isSameType(t, s) ||
3742             allowCovariantReturns &&
3743             !t.isPrimitive() &&
3744             !s.isPrimitive() &&
3745             isAssignable(t, s, warner);
3746     }
3747     // </editor-fold>
3748 
3749     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
3750     /**
3751      * Return the class that boxes the given primitive.
3752      */
3753     public ClassSymbol boxedClass(Type t) {
3754         return reader.enterClass(syms.boxedName[t.getTag().ordinal()]);
3755     }
3756 
3757     /**
3758      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
3759      */
3760     public Type boxedTypeOrType(Type t) {
3761         return t.isPrimitive() ?
3762             boxedClass(t).type :
3763             t;
3764     }
3765 
3766     /**
3767      * Return the primitive type corresponding to a boxed type.
3768      */
3769     public Type unboxedType(Type t) {
3770         if (allowBoxing) {
3771             for (int i=0; i<syms.boxedName.length; i++) {
3772                 Name box = syms.boxedName[i];
3773                 if (box != null &&
3774                     asSuper(t, reader.enterClass(box)) != null)
3775                     return syms.typeOfTag[i];
3776             }
3777         }
3778         return Type.noType;
3779     }
3780 
3781     /**
3782      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
3783      */
3784     public Type unboxedTypeOrType(Type t) {
3785         Type unboxedType = unboxedType(t);
3786         return unboxedType.hasTag(NONE) ? t : unboxedType;
3787     }
3788     // </editor-fold>
3789 
3790     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
3791     /*
3792      * JLS 5.1.10 Capture Conversion:
3793      *
3794      * Let G name a generic type declaration with n formal type
3795      * parameters A1 ... An with corresponding bounds U1 ... Un. There
3796      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
3797      * where, for 1 <= i <= n:
3798      *
3799      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
3800      *   Si is a fresh type variable whose upper bound is
3801      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
3802      *   type.
3803      *
3804      * + If Ti is a wildcard type argument of the form ? extends Bi,
3805      *   then Si is a fresh type variable whose upper bound is
3806      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
3807      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
3808      *   a compile-time error if for any two classes (not interfaces)
3809      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
3810      *
3811      * + If Ti is a wildcard type argument of the form ? super Bi,
3812      *   then Si is a fresh type variable whose upper bound is
3813      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
3814      *
3815      * + Otherwise, Si = Ti.
3816      *
3817      * Capture conversion on any type other than a parameterized type
3818      * (4.5) acts as an identity conversion (5.1.1). Capture
3819      * conversions never require a special action at run time and
3820      * therefore never throw an exception at run time.
3821      *
3822      * Capture conversion is not applied recursively.
3823      */
3824     /**
3825      * Capture conversion as specified by the JLS.
3826      */
3827 
3828     public List<Type> capture(List<Type> ts) {
3829         List<Type> buf = List.nil();
3830         for (Type t : ts) {
3831             buf = buf.prepend(capture(t));
3832         }
3833         return buf.reverse();
3834     }
3835     public Type capture(Type t) {
3836         if (!t.hasTag(CLASS))
3837             return t;
3838         if (t.getEnclosingType() != Type.noType) {
3839             Type capturedEncl = capture(t.getEnclosingType());
3840             if (capturedEncl != t.getEnclosingType()) {
3841                 Type type1 = memberType(capturedEncl, t.tsym);
3842                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
3843             }
3844         }
3845         t = t.unannotatedType();
3846         ClassType cls = (ClassType)t;
3847         if (cls.isRaw() || !cls.isParameterized())
3848             return cls;
3849 
3850         ClassType G = (ClassType)cls.asElement().asType();
3851         List<Type> A = G.getTypeArguments();
3852         List<Type> T = cls.getTypeArguments();
3853         List<Type> S = freshTypeVariables(T);
3854 
3855         List<Type> currentA = A;
3856         List<Type> currentT = T;
3857         List<Type> currentS = S;
3858         boolean captured = false;
3859         while (!currentA.isEmpty() &&
3860                !currentT.isEmpty() &&
3861                !currentS.isEmpty()) {
3862             if (currentS.head != currentT.head) {
3863                 captured = true;
3864                 WildcardType Ti = (WildcardType)currentT.head.unannotatedType();
3865                 Type Ui = currentA.head.getUpperBound();
3866                 CapturedType Si = (CapturedType)currentS.head.unannotatedType();
3867                 if (Ui == null)
3868                     Ui = syms.objectType;
3869                 switch (Ti.kind) {
3870                 case UNBOUND:
3871                     Si.bound = subst(Ui, A, S);
3872                     Si.lower = syms.botType;
3873                     break;
3874                 case EXTENDS:
3875                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
3876                     Si.lower = syms.botType;
3877                     break;
3878                 case SUPER:
3879                     Si.bound = subst(Ui, A, S);
3880                     Si.lower = Ti.getSuperBound();
3881                     break;
3882                 }
3883                 if (Si.bound == Si.lower)
3884                     currentS.head = Si.bound;
3885             }
3886             currentA = currentA.tail;
3887             currentT = currentT.tail;
3888             currentS = currentS.tail;
3889         }
3890         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
3891             return erasure(t); // some "rare" type involved
3892 
3893         if (captured)
3894             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
3895         else
3896             return t;
3897     }
3898     // where
3899         public List<Type> freshTypeVariables(List<Type> types) {
3900             ListBuffer<Type> result = lb();
3901             for (Type t : types) {
3902                 if (t.hasTag(WILDCARD)) {
3903                     t = t.unannotatedType();
3904                     Type bound = ((WildcardType)t).getExtendsBound();
3905                     if (bound == null)
3906                         bound = syms.objectType;
3907                     result.append(new CapturedType(capturedName,
3908                                                    syms.noSymbol,
3909                                                    bound,
3910                                                    syms.botType,
3911                                                    (WildcardType)t));
3912                 } else {
3913                     result.append(t);
3914                 }
3915             }
3916             return result.toList();
3917         }
3918     // </editor-fold>
3919 
3920     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
3921     private List<Type> upperBounds(List<Type> ss) {
3922         if (ss.isEmpty()) return ss;
3923         Type head = upperBound(ss.head);
3924         List<Type> tail = upperBounds(ss.tail);
3925         if (head != ss.head || tail != ss.tail)
3926             return tail.prepend(head);
3927         else
3928             return ss;
3929     }
3930 
3931     private boolean sideCast(Type from, Type to, Warner warn) {
3932         // We are casting from type $from$ to type $to$, which are
3933         // non-final unrelated types.  This method
3934         // tries to reject a cast by transferring type parameters
3935         // from $to$ to $from$ by common superinterfaces.
3936         boolean reverse = false;
3937         Type target = to;
3938         if ((to.tsym.flags() & INTERFACE) == 0) {
3939             Assert.check((from.tsym.flags() & INTERFACE) != 0);
3940             reverse = true;
3941             to = from;
3942             from = target;
3943         }
3944         List<Type> commonSupers = superClosure(to, erasure(from));
3945         boolean giveWarning = commonSupers.isEmpty();
3946         // The arguments to the supers could be unified here to
3947         // get a more accurate analysis
3948         while (commonSupers.nonEmpty()) {
3949             Type t1 = asSuper(from, commonSupers.head.tsym);
3950             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
3951             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
3952                 return false;
3953             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
3954             commonSupers = commonSupers.tail;
3955         }
3956         if (giveWarning && !isReifiable(reverse ? from : to))
3957             warn.warn(LintCategory.UNCHECKED);
3958         if (!allowCovariantReturns)
3959             // reject if there is a common method signature with
3960             // incompatible return types.
3961             chk.checkCompatibleAbstracts(warn.pos(), from, to);
3962         return true;
3963     }
3964 
3965     private boolean sideCastFinal(Type from, Type to, Warner warn) {
3966         // We are casting from type $from$ to type $to$, which are
3967         // unrelated types one of which is final and the other of
3968         // which is an interface.  This method
3969         // tries to reject a cast by transferring type parameters
3970         // from the final class to the interface.
3971         boolean reverse = false;
3972         Type target = to;
3973         if ((to.tsym.flags() & INTERFACE) == 0) {
3974             Assert.check((from.tsym.flags() & INTERFACE) != 0);
3975             reverse = true;
3976             to = from;
3977             from = target;
3978         }
3979         Assert.check((from.tsym.flags() & FINAL) != 0);
3980         Type t1 = asSuper(from, to.tsym);
3981         if (t1 == null) return false;
3982         Type t2 = to;
3983         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
3984             return false;
3985         if (!allowCovariantReturns)
3986             // reject if there is a common method signature with
3987             // incompatible return types.
3988             chk.checkCompatibleAbstracts(warn.pos(), from, to);
3989         if (!isReifiable(target) &&
3990             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
3991             warn.warn(LintCategory.UNCHECKED);
3992         return true;
3993     }
3994 
3995     private boolean giveWarning(Type from, Type to) {
3996         List<Type> bounds = to.isCompound() ?
3997                 ((IntersectionClassType)to.unannotatedType()).getComponents() : List.of(to);
3998         for (Type b : bounds) {
3999             Type subFrom = asSub(from, b.tsym);
4000             if (b.isParameterized() &&
4001                     (!(isUnbounded(b) ||
4002                     isSubtype(from, b) ||
4003                     ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
4004                 return true;
4005             }
4006         }
4007         return false;
4008     }
4009 
4010     private List<Type> superClosure(Type t, Type s) {
4011         List<Type> cl = List.nil();
4012         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
4013             if (isSubtype(s, erasure(l.head))) {
4014                 cl = insert(cl, l.head);
4015             } else {
4016                 cl = union(cl, superClosure(l.head, s));
4017             }
4018         }
4019         return cl;
4020     }
4021 
4022     private boolean containsTypeEquivalent(Type t, Type s) {
4023         return
4024             isSameType(t, s) || // shortcut
4025             containsType(t, s) && containsType(s, t);
4026     }
4027 
4028     // <editor-fold defaultstate="collapsed" desc="adapt">
4029     /**
4030      * Adapt a type by computing a substitution which maps a source
4031      * type to a target type.
4032      *
4033      * @param source    the source type
4034      * @param target    the target type
4035      * @param from      the type variables of the computed substitution
4036      * @param to        the types of the computed substitution.
4037      */
4038     public void adapt(Type source,
4039                        Type target,
4040                        ListBuffer<Type> from,
4041                        ListBuffer<Type> to) throws AdaptFailure {
4042         new Adapter(from, to).adapt(source, target);
4043     }
4044 
4045     class Adapter extends SimpleVisitor<Void, Type> {
4046 
4047         ListBuffer<Type> from;
4048         ListBuffer<Type> to;
4049         Map<Symbol,Type> mapping;
4050 
4051         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
4052             this.from = from;
4053             this.to = to;
4054             mapping = new HashMap<Symbol,Type>();
4055         }
4056 
4057         public void adapt(Type source, Type target) throws AdaptFailure {
4058             visit(source, target);
4059             List<Type> fromList = from.toList();
4060             List<Type> toList = to.toList();
4061             while (!fromList.isEmpty()) {
4062                 Type val = mapping.get(fromList.head.tsym);
4063                 if (toList.head != val)
4064                     toList.head = val;
4065                 fromList = fromList.tail;
4066                 toList = toList.tail;
4067             }
4068         }
4069 
4070         @Override
4071         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
4072             if (target.hasTag(CLASS))
4073                 adaptRecursive(source.allparams(), target.allparams());
4074             return null;
4075         }
4076 
4077         @Override
4078         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
4079             if (target.hasTag(ARRAY))
4080                 adaptRecursive(elemtype(source), elemtype(target));
4081             return null;
4082         }
4083 
4084         @Override
4085         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
4086             if (source.isExtendsBound())
4087                 adaptRecursive(upperBound(source), upperBound(target));
4088             else if (source.isSuperBound())
4089                 adaptRecursive(lowerBound(source), lowerBound(target));
4090             return null;
4091         }
4092 
4093         @Override
4094         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
4095             // Check to see if there is
4096             // already a mapping for $source$, in which case
4097             // the old mapping will be merged with the new
4098             Type val = mapping.get(source.tsym);
4099             if (val != null) {
4100                 if (val.isSuperBound() && target.isSuperBound()) {
4101                     val = isSubtype(lowerBound(val), lowerBound(target))
4102                         ? target : val;
4103                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
4104                     val = isSubtype(upperBound(val), upperBound(target))
4105                         ? val : target;
4106                 } else if (!isSameType(val, target)) {
4107                     throw new AdaptFailure();
4108                 }
4109             } else {
4110                 val = target;
4111                 from.append(source);
4112                 to.append(target);
4113             }
4114             mapping.put(source.tsym, val);
4115             return null;
4116         }
4117 
4118         @Override
4119         public Void visitType(Type source, Type target) {
4120             return null;
4121         }
4122 
4123         private Set<TypePair> cache = new HashSet<TypePair>();
4124 
4125         private void adaptRecursive(Type source, Type target) {
4126             TypePair pair = new TypePair(source, target);
4127             if (cache.add(pair)) {
4128                 try {
4129                     visit(source, target);
4130                 } finally {
4131                     cache.remove(pair);
4132                 }
4133             }
4134         }
4135 
4136         private void adaptRecursive(List<Type> source, List<Type> target) {
4137             if (source.length() == target.length()) {
4138                 while (source.nonEmpty()) {
4139                     adaptRecursive(source.head, target.head);
4140                     source = source.tail;
4141                     target = target.tail;
4142                 }
4143             }
4144         }
4145     }
4146 
4147     public static class AdaptFailure extends RuntimeException {
4148         static final long serialVersionUID = -7490231548272701566L;
4149     }
4150 
4151     private void adaptSelf(Type t,
4152                            ListBuffer<Type> from,
4153                            ListBuffer<Type> to) {
4154         try {
4155             //if (t.tsym.type != t)
4156                 adapt(t.tsym.type, t, from, to);
4157         } catch (AdaptFailure ex) {
4158             // Adapt should never fail calculating a mapping from
4159             // t.tsym.type to t as there can be no merge problem.
4160             throw new AssertionError(ex);
4161         }
4162     }
4163     // </editor-fold>
4164 
4165     /**
4166      * Rewrite all type variables (universal quantifiers) in the given
4167      * type to wildcards (existential quantifiers).  This is used to
4168      * determine if a cast is allowed.  For example, if high is true
4169      * and {@code T <: Number}, then {@code List<T>} is rewritten to
4170      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
4171      * List<? extends Number>} a {@code List<T>} can be cast to {@code
4172      * List<Integer>} with a warning.
4173      * @param t a type
4174      * @param high if true return an upper bound; otherwise a lower
4175      * bound
4176      * @param rewriteTypeVars only rewrite captured wildcards if false;
4177      * otherwise rewrite all type variables
4178      * @return the type rewritten with wildcards (existential
4179      * quantifiers) only
4180      */
4181     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
4182         return new Rewriter(high, rewriteTypeVars).visit(t);
4183     }
4184 
4185     class Rewriter extends UnaryVisitor<Type> {
4186 
4187         boolean high;
4188         boolean rewriteTypeVars;
4189 
4190         Rewriter(boolean high, boolean rewriteTypeVars) {
4191             this.high = high;
4192             this.rewriteTypeVars = rewriteTypeVars;
4193         }
4194 
4195         @Override
4196         public Type visitClassType(ClassType t, Void s) {
4197             ListBuffer<Type> rewritten = new ListBuffer<Type>();
4198             boolean changed = false;
4199             for (Type arg : t.allparams()) {
4200                 Type bound = visit(arg);
4201                 if (arg != bound) {
4202                     changed = true;
4203                 }
4204                 rewritten.append(bound);
4205             }
4206             if (changed)
4207                 return subst(t.tsym.type,
4208                         t.tsym.type.allparams(),
4209                         rewritten.toList());
4210             else
4211                 return t;
4212         }
4213 
4214         public Type visitType(Type t, Void s) {
4215             return high ? upperBound(t) : lowerBound(t);
4216         }
4217 
4218         @Override
4219         public Type visitCapturedType(CapturedType t, Void s) {
4220             Type w_bound = t.wildcard.type;
4221             Type bound = w_bound.contains(t) ?
4222                         erasure(w_bound) :
4223                         visit(w_bound);
4224             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
4225         }
4226 
4227         @Override
4228         public Type visitTypeVar(TypeVar t, Void s) {
4229             if (rewriteTypeVars) {
4230                 Type bound = t.bound.contains(t) ?
4231                         erasure(t.bound) :
4232                         visit(t.bound);
4233                 return rewriteAsWildcardType(bound, t, EXTENDS);
4234             } else {
4235                 return t;
4236             }
4237         }
4238 
4239         @Override
4240         public Type visitWildcardType(WildcardType t, Void s) {
4241             Type bound2 = visit(t.type);
4242             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
4243         }
4244 
4245         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
4246             switch (bk) {
4247                case EXTENDS: return high ?
4248                        makeExtendsWildcard(B(bound), formal) :
4249                        makeExtendsWildcard(syms.objectType, formal);
4250                case SUPER: return high ?
4251                        makeSuperWildcard(syms.botType, formal) :
4252                        makeSuperWildcard(B(bound), formal);
4253                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
4254                default:
4255                    Assert.error("Invalid bound kind " + bk);
4256                    return null;
4257             }
4258         }
4259 
4260         Type B(Type t) {
4261             while (t.hasTag(WILDCARD)) {
4262                 WildcardType w = (WildcardType)t.unannotatedType();
4263                 t = high ?
4264                     w.getExtendsBound() :
4265                     w.getSuperBound();
4266                 if (t == null) {
4267                     t = high ? syms.objectType : syms.botType;
4268                 }
4269             }
4270             return t;
4271         }
4272     }
4273 
4274 
4275     /**
4276      * Create a wildcard with the given upper (extends) bound; create
4277      * an unbounded wildcard if bound is Object.
4278      *
4279      * @param bound the upper bound
4280      * @param formal the formal type parameter that will be
4281      * substituted by the wildcard
4282      */
4283     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
4284         if (bound == syms.objectType) {
4285             return new WildcardType(syms.objectType,
4286                                     BoundKind.UNBOUND,
4287                                     syms.boundClass,
4288                                     formal);
4289         } else {
4290             return new WildcardType(bound,
4291                                     BoundKind.EXTENDS,
4292                                     syms.boundClass,
4293                                     formal);
4294         }
4295     }
4296 
4297     /**
4298      * Create a wildcard with the given lower (super) bound; create an
4299      * unbounded wildcard if bound is bottom (type of {@code null}).
4300      *
4301      * @param bound the lower bound
4302      * @param formal the formal type parameter that will be
4303      * substituted by the wildcard
4304      */
4305     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
4306         if (bound.hasTag(BOT)) {
4307             return new WildcardType(syms.objectType,
4308                                     BoundKind.UNBOUND,
4309                                     syms.boundClass,
4310                                     formal);
4311         } else {
4312             return new WildcardType(bound,
4313                                     BoundKind.SUPER,
4314                                     syms.boundClass,
4315                                     formal);
4316         }
4317     }
4318 
4319     /**
4320      * A wrapper for a type that allows use in sets.
4321      */
4322     public static class UniqueType {
4323         public final Type type;
4324         final Types types;
4325 
4326         public UniqueType(Type type, Types types) {
4327             this.type = type;
4328             this.types = types;
4329         }
4330 
4331         public int hashCode() {
4332             return types.hashCode(type);
4333         }
4334 
4335         public boolean equals(Object obj) {
4336             return (obj instanceof UniqueType) &&
4337                 types.isSameAnnotatedType(type, ((UniqueType)obj).type);
4338         }
4339 
4340         public String toString() {
4341             return type.toString();
4342         }
4343 
4344     }
4345     // </editor-fold>
4346 
4347     // <editor-fold defaultstate="collapsed" desc="Visitors">
4348     /**
4349      * A default visitor for types.  All visitor methods except
4350      * visitType are implemented by delegating to visitType.  Concrete
4351      * subclasses must provide an implementation of visitType and can
4352      * override other methods as needed.
4353      *
4354      * @param <R> the return type of the operation implemented by this
4355      * visitor; use Void if no return type is needed.
4356      * @param <S> the type of the second argument (the first being the
4357      * type itself) of the operation implemented by this visitor; use
4358      * Void if a second argument is not needed.
4359      */
4360     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
4361         final public R visit(Type t, S s)               { return t.accept(this, s); }
4362         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
4363         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
4364         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
4365         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
4366         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
4367         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
4368         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
4369         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
4370         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
4371         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
4372         // Pretend annotations don't exist
4373         public R visitAnnotatedType(AnnotatedType t, S s) { return visit(t.underlyingType, s); }
4374     }
4375 
4376     /**
4377      * A default visitor for symbols.  All visitor methods except
4378      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
4379      * subclasses must provide an implementation of visitSymbol and can
4380      * override other methods as needed.
4381      *
4382      * @param <R> the return type of the operation implemented by this
4383      * visitor; use Void if no return type is needed.
4384      * @param <S> the type of the second argument (the first being the
4385      * symbol itself) of the operation implemented by this visitor; use
4386      * Void if a second argument is not needed.
4387      */
4388     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
4389         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
4390         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
4391         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
4392         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
4393         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
4394         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
4395         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
4396     }
4397 
4398     /**
4399      * A <em>simple</em> visitor for types.  This visitor is simple as
4400      * captured wildcards, for-all types (generic methods), and
4401      * undetermined type variables (part of inference) are hidden.
4402      * Captured wildcards are hidden by treating them as type
4403      * variables and the rest are hidden by visiting their qtypes.
4404      *
4405      * @param <R> the return type of the operation implemented by this
4406      * visitor; use Void if no return type is needed.
4407      * @param <S> the type of the second argument (the first being the
4408      * type itself) of the operation implemented by this visitor; use
4409      * Void if a second argument is not needed.
4410      */
4411     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
4412         @Override
4413         public R visitCapturedType(CapturedType t, S s) {
4414             return visitTypeVar(t, s);
4415         }
4416         @Override
4417         public R visitForAll(ForAll t, S s) {
4418             return visit(t.qtype, s);
4419         }
4420         @Override
4421         public R visitUndetVar(UndetVar t, S s) {
4422             return visit(t.qtype, s);
4423         }
4424     }
4425 
4426     /**
4427      * A plain relation on types.  That is a 2-ary function on the
4428      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
4429      * <!-- In plain text: Type x Type -> Boolean -->
4430      */
4431     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
4432 
4433     /**
4434      * A convenience visitor for implementing operations that only
4435      * require one argument (the type itself), that is, unary
4436      * operations.
4437      *
4438      * @param <R> the return type of the operation implemented by this
4439      * visitor; use Void if no return type is needed.
4440      */
4441     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
4442         final public R visit(Type t) { return t.accept(this, null); }
4443     }
4444 
4445     /**
4446      * A visitor for implementing a mapping from types to types.  The
4447      * default behavior of this class is to implement the identity
4448      * mapping (mapping a type to itself).  This can be overridden in
4449      * subclasses.
4450      *
4451      * @param <S> the type of the second argument (the first being the
4452      * type itself) of this mapping; use Void if a second argument is
4453      * not needed.
4454      */
4455     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
4456         final public Type visit(Type t) { return t.accept(this, null); }
4457         public Type visitType(Type t, S s) { return t; }
4458     }
4459     // </editor-fold>
4460 
4461 
4462     // <editor-fold defaultstate="collapsed" desc="Annotation support">
4463 
4464     public RetentionPolicy getRetention(Attribute.Compound a) {
4465         return getRetention(a.type.tsym);
4466     }
4467 
4468     public RetentionPolicy getRetention(Symbol sym) {
4469         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
4470         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
4471         if (c != null) {
4472             Attribute value = c.member(names.value);
4473             if (value != null && value instanceof Attribute.Enum) {
4474                 Name levelName = ((Attribute.Enum)value).value.name;
4475                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
4476                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
4477                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
4478                 else ;// /* fail soft */ throw new AssertionError(levelName);
4479             }
4480         }
4481         return vis;
4482     }
4483     // </editor-fold>
4484 
4485     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
4486 
4487     public static abstract class SignatureGenerator {
4488 
4489         private final Types types;
4490 
4491         protected abstract void append(char ch);
4492         protected abstract void append(byte[] ba);
4493         protected abstract void append(Name name);
4494         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
4495 
4496         protected SignatureGenerator(Types types) {
4497             this.types = types;
4498         }
4499 
4500         /**
4501          * Assemble signature of given type in string buffer.
4502          */
4503         public void assembleSig(Type type) {
4504             type = type.unannotatedType();
4505             switch (type.getTag()) {
4506                 case BYTE:
4507                     append('B');
4508                     break;
4509                 case SHORT:
4510                     append('S');
4511                     break;
4512                 case CHAR:
4513                     append('C');
4514                     break;
4515                 case INT:
4516                     append('I');
4517                     break;
4518                 case LONG:
4519                     append('J');
4520                     break;
4521                 case FLOAT:
4522                     append('F');
4523                     break;
4524                 case DOUBLE:
4525                     append('D');
4526                     break;
4527                 case BOOLEAN:
4528                     append('Z');
4529                     break;
4530                 case VOID:
4531                     append('V');
4532                     break;
4533                 case CLASS:
4534                     append('L');
4535                     assembleClassSig(type);
4536                     append(';');
4537                     break;
4538                 case ARRAY:
4539                     ArrayType at = (ArrayType) type;
4540                     append('[');
4541                     assembleSig(at.elemtype);
4542                     break;
4543                 case METHOD:
4544                     MethodType mt = (MethodType) type;
4545                     append('(');
4546                     assembleSig(mt.argtypes);
4547                     append(')');
4548                     assembleSig(mt.restype);
4549                     if (hasTypeVar(mt.thrown)) {
4550                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
4551                             append('^');
4552                             assembleSig(l.head);
4553                         }
4554                     }
4555                     break;
4556                 case WILDCARD: {
4557                     Type.WildcardType ta = (Type.WildcardType) type;
4558                     switch (ta.kind) {
4559                         case SUPER:
4560                             append('-');
4561                             assembleSig(ta.type);
4562                             break;
4563                         case EXTENDS:
4564                             append('+');
4565                             assembleSig(ta.type);
4566                             break;
4567                         case UNBOUND:
4568                             append('*');
4569                             break;
4570                         default:
4571                             throw new AssertionError(ta.kind);
4572                     }
4573                     break;
4574                 }
4575                 case TYPEVAR:
4576                     append('T');
4577                     append(type.tsym.name);
4578                     append(';');
4579                     break;
4580                 case FORALL:
4581                     Type.ForAll ft = (Type.ForAll) type;
4582                     assembleParamsSig(ft.tvars);
4583                     assembleSig(ft.qtype);
4584                     break;
4585                 default:
4586                     throw new AssertionError("typeSig " + type.getTag());
4587             }
4588         }
4589 
4590         public boolean hasTypeVar(List<Type> l) {
4591             while (l.nonEmpty()) {
4592                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
4593                     return true;
4594                 }
4595                 l = l.tail;
4596             }
4597             return false;
4598         }
4599 
4600         public void assembleClassSig(Type type) {
4601             type = type.unannotatedType();
4602             ClassType ct = (ClassType) type;
4603             ClassSymbol c = (ClassSymbol) ct.tsym;
4604             classReference(c);
4605             Type outer = ct.getEnclosingType();
4606             if (outer.allparams().nonEmpty()) {
4607                 boolean rawOuter =
4608                         c.owner.kind == Kinds.MTH || // either a local class
4609                         c.name == types.names.empty; // or anonymous
4610                 assembleClassSig(rawOuter
4611                         ? types.erasure(outer)
4612                         : outer);
4613                 append('.');
4614                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
4615                 append(rawOuter
4616                         ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
4617                         : c.name);
4618             } else {
4619                 append(externalize(c.flatname));
4620             }
4621             if (ct.getTypeArguments().nonEmpty()) {
4622                 append('<');
4623                 assembleSig(ct.getTypeArguments());
4624                 append('>');
4625             }
4626         }
4627 
4628         public void assembleParamsSig(List<Type> typarams) {
4629             append('<');
4630             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
4631                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
4632                 append(tvar.tsym.name);
4633                 List<Type> bounds = types.getBounds(tvar);
4634                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
4635                     append(':');
4636                 }
4637                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
4638                     append(':');
4639                     assembleSig(l.head);
4640                 }
4641             }
4642             append('>');
4643         }
4644 
4645         private void assembleSig(List<Type> types) {
4646             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
4647                 assembleSig(ts.head);
4648             }
4649         }
4650     }
4651     // </editor-fold>
4652 }