1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.lang.model.element.ElementKind;
  31 import javax.lang.model.type.TypeKind;
  32 import javax.tools.JavaFileObject;
  33 
  34 import com.sun.source.tree.IdentifierTree;
  35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  36 import com.sun.source.tree.MemberSelectTree;
  37 import com.sun.source.tree.TreeVisitor;
  38 import com.sun.source.util.SimpleTreeVisitor;
  39 import com.sun.tools.javac.code.*;
  40 import com.sun.tools.javac.code.Lint.LintCategory;
  41 import com.sun.tools.javac.code.Symbol.*;
  42 import com.sun.tools.javac.code.Type.*;
  43 import com.sun.tools.javac.comp.Check.CheckContext;
  44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  45 import com.sun.tools.javac.comp.Infer.InferenceContext;
  46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  47 import com.sun.tools.javac.jvm.*;
  48 import com.sun.tools.javac.tree.*;
  49 import com.sun.tools.javac.tree.JCTree.*;
  50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  51 import com.sun.tools.javac.util.*;
  52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  53 import com.sun.tools.javac.util.List;
  54 import static com.sun.tools.javac.code.Flags.*;
  55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  56 import static com.sun.tools.javac.code.Flags.BLOCK;
  57 import static com.sun.tools.javac.code.Kinds.*;
  58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
  59 import static com.sun.tools.javac.code.TypeTag.*;
  60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  61 import static com.sun.tools.javac.code.TypeTag.ARRAY;
  62 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  63 
  64 /** This is the main context-dependent analysis phase in GJC. It
  65  *  encompasses name resolution, type checking and constant folding as
  66  *  subtasks. Some subtasks involve auxiliary classes.
  67  *  @see Check
  68  *  @see Resolve
  69  *  @see ConstFold
  70  *  @see Infer
  71  *
  72  *  <p><b>This is NOT part of any supported API.
  73  *  If you write code that depends on this, you do so at your own risk.
  74  *  This code and its internal interfaces are subject to change or
  75  *  deletion without notice.</b>
  76  */
  77 public class Attr extends JCTree.Visitor {
  78     protected static final Context.Key<Attr> attrKey =
  79         new Context.Key<Attr>();
  80 
  81     final Names names;
  82     final Log log;
  83     final Symtab syms;
  84     final Resolve rs;
  85     final Infer infer;
  86     final DeferredAttr deferredAttr;
  87     final Check chk;
  88     final Flow flow;
  89     final MemberEnter memberEnter;
  90     final TreeMaker make;
  91     final ConstFold cfolder;
  92     final Enter enter;
  93     final Target target;
  94     final Types types;
  95     final JCDiagnostic.Factory diags;
  96     final Annotate annotate;
  97     final TypeAnnotations typeAnnotations;
  98     final DeferredLintHandler deferredLintHandler;
  99 
 100     public static Attr instance(Context context) {
 101         Attr instance = context.get(attrKey);
 102         if (instance == null)
 103             instance = new Attr(context);
 104         return instance;
 105     }
 106 
 107     protected Attr(Context context) {
 108         context.put(attrKey, this);
 109 
 110         names = Names.instance(context);
 111         log = Log.instance(context);
 112         syms = Symtab.instance(context);
 113         rs = Resolve.instance(context);
 114         chk = Check.instance(context);
 115         flow = Flow.instance(context);
 116         memberEnter = MemberEnter.instance(context);
 117         make = TreeMaker.instance(context);
 118         enter = Enter.instance(context);
 119         infer = Infer.instance(context);
 120         deferredAttr = DeferredAttr.instance(context);
 121         cfolder = ConstFold.instance(context);
 122         target = Target.instance(context);
 123         types = Types.instance(context);
 124         diags = JCDiagnostic.Factory.instance(context);
 125         annotate = Annotate.instance(context);
 126         typeAnnotations = TypeAnnotations.instance(context);
 127         deferredLintHandler = DeferredLintHandler.instance(context);
 128 
 129         Options options = Options.instance(context);
 130 
 131         Source source = Source.instance(context);
 132         allowGenerics = source.allowGenerics();
 133         allowVarargs = source.allowVarargs();
 134         allowEnums = source.allowEnums();
 135         allowBoxing = source.allowBoxing();
 136         allowCovariantReturns = source.allowCovariantReturns();
 137         allowAnonOuterThis = source.allowAnonOuterThis();
 138         allowStringsInSwitch = source.allowStringsInSwitch();
 139         allowPoly = source.allowPoly();
 140         allowTypeAnnos = source.allowTypeAnnotations();
 141         allowLambda = source.allowLambda();
 142         allowDefaultMethods = source.allowDefaultMethods();
 143         sourceName = source.name;
 144         relax = (options.isSet("-retrofit") ||
 145                  options.isSet("-relax"));
 146         findDiamonds = options.get("findDiamond") != null &&
 147                  source.allowDiamond();
 148         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 149         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
 150 
 151         statInfo = new ResultInfo(NIL, Type.noType);
 152         varInfo = new ResultInfo(VAR, Type.noType);
 153         unknownExprInfo = new ResultInfo(VAL, Type.noType);
 154         unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
 155         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
 156         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
 157         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 158     }
 159 
 160     /** Switch: relax some constraints for retrofit mode.
 161      */
 162     boolean relax;
 163 
 164     /** Switch: support target-typing inference
 165      */
 166     boolean allowPoly;
 167 
 168     /** Switch: support type annotations.
 169      */
 170     boolean allowTypeAnnos;
 171 
 172     /** Switch: support generics?
 173      */
 174     boolean allowGenerics;
 175 
 176     /** Switch: allow variable-arity methods.
 177      */
 178     boolean allowVarargs;
 179 
 180     /** Switch: support enums?
 181      */
 182     boolean allowEnums;
 183 
 184     /** Switch: support boxing and unboxing?
 185      */
 186     boolean allowBoxing;
 187 
 188     /** Switch: support covariant result types?
 189      */
 190     boolean allowCovariantReturns;
 191 
 192     /** Switch: support lambda expressions ?
 193      */
 194     boolean allowLambda;
 195 
 196     /** Switch: support default methods ?
 197      */
 198     boolean allowDefaultMethods;
 199 
 200     /** Switch: allow references to surrounding object from anonymous
 201      * objects during constructor call?
 202      */
 203     boolean allowAnonOuterThis;
 204 
 205     /** Switch: generates a warning if diamond can be safely applied
 206      *  to a given new expression
 207      */
 208     boolean findDiamonds;
 209 
 210     /**
 211      * Internally enables/disables diamond finder feature
 212      */
 213     static final boolean allowDiamondFinder = true;
 214 
 215     /**
 216      * Switch: warn about use of variable before declaration?
 217      * RFE: 6425594
 218      */
 219     boolean useBeforeDeclarationWarning;
 220 
 221     /**
 222      * Switch: generate warnings whenever an anonymous inner class that is convertible
 223      * to a lambda expression is found
 224      */
 225     boolean identifyLambdaCandidate;
 226 
 227     /**
 228      * Switch: allow strings in switch?
 229      */
 230     boolean allowStringsInSwitch;
 231 
 232     /**
 233      * Switch: name of source level; used for error reporting.
 234      */
 235     String sourceName;
 236 
 237     /** Check kind and type of given tree against protokind and prototype.
 238      *  If check succeeds, store type in tree and return it.
 239      *  If check fails, store errType in tree and return it.
 240      *  No checks are performed if the prototype is a method type.
 241      *  It is not necessary in this case since we know that kind and type
 242      *  are correct.
 243      *
 244      *  @param tree     The tree whose kind and type is checked
 245      *  @param ownkind  The computed kind of the tree
 246      *  @param resultInfo  The expected result of the tree
 247      */
 248     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
 249         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 250         Type owntype = found;
 251         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
 252             if (allowPoly && inferenceContext.free(found)) {
 253                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
 254                     @Override
 255                     public void typesInferred(InferenceContext inferenceContext) {
 256                         ResultInfo pendingResult =
 257                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 258                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 259                     }
 260                 });
 261                 return tree.type = resultInfo.pt;
 262             } else {
 263                 if ((ownkind & ~resultInfo.pkind) == 0) {
 264                     owntype = resultInfo.check(tree, owntype);
 265                 } else {
 266                     log.error(tree.pos(), "unexpected.type",
 267                             kindNames(resultInfo.pkind),
 268                             kindName(ownkind));
 269                     owntype = types.createErrorType(owntype);
 270                 }
 271             }
 272         }
 273         tree.type = owntype;
 274         return owntype;
 275     }
 276 
 277     /** Is given blank final variable assignable, i.e. in a scope where it
 278      *  may be assigned to even though it is final?
 279      *  @param v      The blank final variable.
 280      *  @param env    The current environment.
 281      */
 282     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 283         Symbol owner = owner(env);
 284            // owner refers to the innermost variable, method or
 285            // initializer block declaration at this point.
 286         return
 287             v.owner == owner
 288             ||
 289             ((owner.name == names.init ||    // i.e. we are in a constructor
 290               owner.kind == VAR ||           // i.e. we are in a variable initializer
 291               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 292              &&
 293              v.owner == owner.owner
 294              &&
 295              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 296     }
 297 
 298     /**
 299      * Return the innermost enclosing owner symbol in a given attribution context
 300      */
 301     Symbol owner(Env<AttrContext> env) {
 302         while (true) {
 303             switch (env.tree.getTag()) {
 304                 case VARDEF:
 305                     //a field can be owner
 306                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
 307                     if (vsym.owner.kind == TYP) {
 308                         return vsym;
 309                     }
 310                     break;
 311                 case METHODDEF:
 312                     //method def is always an owner
 313                     return ((JCMethodDecl)env.tree).sym;
 314                 case CLASSDEF:
 315                     //class def is always an owner
 316                     return ((JCClassDecl)env.tree).sym;
 317                 case LAMBDA:
 318                     //a lambda is an owner - return a fresh synthetic method symbol
 319                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
 320                 case BLOCK:
 321                     //static/instance init blocks are owner
 322                     Symbol blockSym = env.info.scope.owner;
 323                     if ((blockSym.flags() & BLOCK) != 0) {
 324                         return blockSym;
 325                     }
 326                     break;
 327                 case TOPLEVEL:
 328                     //toplevel is always an owner (for pkge decls)
 329                     return env.info.scope.owner;
 330             }
 331             Assert.checkNonNull(env.next);
 332             env = env.next;
 333         }
 334     }
 335 
 336     /** Check that variable can be assigned to.
 337      *  @param pos    The current source code position.
 338      *  @param v      The assigned varaible
 339      *  @param base   If the variable is referred to in a Select, the part
 340      *                to the left of the `.', null otherwise.
 341      *  @param env    The current environment.
 342      */
 343     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 344         if ((v.flags() & FINAL) != 0 &&
 345             ((v.flags() & HASINIT) != 0
 346              ||
 347              !((base == null ||
 348                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
 349                isAssignableAsBlankFinal(v, env)))) {
 350             if (v.isResourceVariable()) { //TWR resource
 351                 log.error(pos, "try.resource.may.not.be.assigned", v);
 352             } else {
 353                 log.error(pos, "cant.assign.val.to.final.var", v);
 354             }
 355         }
 356     }
 357 
 358     /** Does tree represent a static reference to an identifier?
 359      *  It is assumed that tree is either a SELECT or an IDENT.
 360      *  We have to weed out selects from non-type names here.
 361      *  @param tree    The candidate tree.
 362      */
 363     boolean isStaticReference(JCTree tree) {
 364         if (tree.hasTag(SELECT)) {
 365             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 366             if (lsym == null || lsym.kind != TYP) {
 367                 return false;
 368             }
 369         }
 370         return true;
 371     }
 372 
 373     /** Is this symbol a type?
 374      */
 375     static boolean isType(Symbol sym) {
 376         return sym != null && sym.kind == TYP;
 377     }
 378 
 379     /** The current `this' symbol.
 380      *  @param env    The current environment.
 381      */
 382     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 383         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 384     }
 385 
 386     /** Attribute a parsed identifier.
 387      * @param tree Parsed identifier name
 388      * @param topLevel The toplevel to use
 389      */
 390     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 391         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 392         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 393                                            syms.errSymbol.name,
 394                                            null, null, null, null);
 395         localEnv.enclClass.sym = syms.errSymbol;
 396         return tree.accept(identAttributer, localEnv);
 397     }
 398     // where
 399         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 400         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 401             @Override
 402             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 403                 Symbol site = visit(node.getExpression(), env);
 404                 if (site.kind == ERR || site.kind == ABSENT_TYP)
 405                     return site;
 406                 Name name = (Name)node.getIdentifier();
 407                 if (site.kind == PCK) {
 408                     env.toplevel.packge = (PackageSymbol)site;
 409                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
 410                 } else {
 411                     env.enclClass.sym = (ClassSymbol)site;
 412                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 413                 }
 414             }
 415 
 416             @Override
 417             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 418                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
 419             }
 420         }
 421 
 422     public Type coerce(Type etype, Type ttype) {
 423         return cfolder.coerce(etype, ttype);
 424     }
 425 
 426     public Type attribType(JCTree node, TypeSymbol sym) {
 427         Env<AttrContext> env = enter.typeEnvs.get(sym);
 428         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 429         return attribTree(node, localEnv, unknownTypeInfo);
 430     }
 431 
 432     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 433         // Attribute qualifying package or class.
 434         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 435         return attribTree(s.selected,
 436                        env,
 437                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
 438                        Type.noType));
 439     }
 440 
 441     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 442         breakTree = tree;
 443         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 444         try {
 445             attribExpr(expr, env);
 446         } catch (BreakAttr b) {
 447             return b.env;
 448         } catch (AssertionError ae) {
 449             if (ae.getCause() instanceof BreakAttr) {
 450                 return ((BreakAttr)(ae.getCause())).env;
 451             } else {
 452                 throw ae;
 453             }
 454         } finally {
 455             breakTree = null;
 456             log.useSource(prev);
 457         }
 458         return env;
 459     }
 460 
 461     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 462         breakTree = tree;
 463         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 464         try {
 465             attribStat(stmt, env);
 466         } catch (BreakAttr b) {
 467             return b.env;
 468         } catch (AssertionError ae) {
 469             if (ae.getCause() instanceof BreakAttr) {
 470                 return ((BreakAttr)(ae.getCause())).env;
 471             } else {
 472                 throw ae;
 473             }
 474         } finally {
 475             breakTree = null;
 476             log.useSource(prev);
 477         }
 478         return env;
 479     }
 480 
 481     private JCTree breakTree = null;
 482 
 483     private static class BreakAttr extends RuntimeException {
 484         static final long serialVersionUID = -6924771130405446405L;
 485         private Env<AttrContext> env;
 486         private BreakAttr(Env<AttrContext> env) {
 487             this.env = env;
 488         }
 489     }
 490 
 491     class ResultInfo {
 492         final int pkind;
 493         final Type pt;
 494         final CheckContext checkContext;
 495 
 496         ResultInfo(int pkind, Type pt) {
 497             this(pkind, pt, chk.basicHandler);
 498         }
 499 
 500         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
 501             this.pkind = pkind;
 502             this.pt = pt;
 503             this.checkContext = checkContext;
 504         }
 505 
 506         protected Type check(final DiagnosticPosition pos, final Type found) {
 507             return chk.checkType(pos, found, pt, checkContext);
 508         }
 509 
 510         protected ResultInfo dup(Type newPt) {
 511             return new ResultInfo(pkind, newPt, checkContext);
 512         }
 513 
 514         protected ResultInfo dup(CheckContext newContext) {
 515             return new ResultInfo(pkind, pt, newContext);
 516         }
 517     }
 518 
 519     class RecoveryInfo extends ResultInfo {
 520 
 521         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 522             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
 523                 @Override
 524                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 525                     return deferredAttrContext;
 526                 }
 527                 @Override
 528                 public boolean compatible(Type found, Type req, Warner warn) {
 529                     return true;
 530                 }
 531                 @Override
 532                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 533                     chk.basicHandler.report(pos, details);
 534                 }
 535             });
 536         }
 537     }
 538 
 539     final ResultInfo statInfo;
 540     final ResultInfo varInfo;
 541     final ResultInfo unknownAnyPolyInfo;
 542     final ResultInfo unknownExprInfo;
 543     final ResultInfo unknownTypeInfo;
 544     final ResultInfo unknownTypeExprInfo;
 545     final ResultInfo recoveryInfo;
 546 
 547     Type pt() {
 548         return resultInfo.pt;
 549     }
 550 
 551     int pkind() {
 552         return resultInfo.pkind;
 553     }
 554 
 555 /* ************************************************************************
 556  * Visitor methods
 557  *************************************************************************/
 558 
 559     /** Visitor argument: the current environment.
 560      */
 561     Env<AttrContext> env;
 562 
 563     /** Visitor argument: the currently expected attribution result.
 564      */
 565     ResultInfo resultInfo;
 566 
 567     /** Visitor result: the computed type.
 568      */
 569     Type result;
 570 
 571     /** Visitor method: attribute a tree, catching any completion failure
 572      *  exceptions. Return the tree's type.
 573      *
 574      *  @param tree    The tree to be visited.
 575      *  @param env     The environment visitor argument.
 576      *  @param resultInfo   The result info visitor argument.
 577      */
 578     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 579         Env<AttrContext> prevEnv = this.env;
 580         ResultInfo prevResult = this.resultInfo;
 581         try {
 582             this.env = env;
 583             this.resultInfo = resultInfo;
 584             tree.accept(this);
 585             if (tree == breakTree &&
 586                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 587                 throw new BreakAttr(copyEnv(env));
 588             }
 589             return result;
 590         } catch (CompletionFailure ex) {
 591             tree.type = syms.errType;
 592             return chk.completionError(tree.pos(), ex);
 593         } finally {
 594             this.env = prevEnv;
 595             this.resultInfo = prevResult;
 596         }
 597     }
 598 
 599     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 600         Env<AttrContext> newEnv =
 601                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 602         if (newEnv.outer != null) {
 603             newEnv.outer = copyEnv(newEnv.outer);
 604         }
 605         return newEnv;
 606     }
 607 
 608     Scope copyScope(Scope sc) {
 609         Scope newScope = new Scope(sc.owner);
 610         List<Symbol> elemsList = List.nil();
 611         while (sc != null) {
 612             for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
 613                 elemsList = elemsList.prepend(e.sym);
 614             }
 615             sc = sc.next;
 616         }
 617         for (Symbol s : elemsList) {
 618             newScope.enter(s);
 619         }
 620         return newScope;
 621     }
 622 
 623     /** Derived visitor method: attribute an expression tree.
 624      */
 625     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 626         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 627     }
 628 
 629     /** Derived visitor method: attribute an expression tree with
 630      *  no constraints on the computed type.
 631      */
 632     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 633         return attribTree(tree, env, unknownExprInfo);
 634     }
 635 
 636     /** Derived visitor method: attribute a type tree.
 637      */
 638     public Type attribType(JCTree tree, Env<AttrContext> env) {
 639         Type result = attribType(tree, env, Type.noType);
 640         return result;
 641     }
 642 
 643     /** Derived visitor method: attribute a type tree.
 644      */
 645     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 646         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
 647         return result;
 648     }
 649 
 650     /** Derived visitor method: attribute a statement or definition tree.
 651      */
 652     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 653         return attribTree(tree, env, statInfo);
 654     }
 655 
 656     /** Attribute a list of expressions, returning a list of types.
 657      */
 658     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 659         ListBuffer<Type> ts = new ListBuffer<Type>();
 660         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 661             ts.append(attribExpr(l.head, env, pt));
 662         return ts.toList();
 663     }
 664 
 665     /** Attribute a list of statements, returning nothing.
 666      */
 667     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 668         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 669             attribStat(l.head, env);
 670     }
 671 
 672     /** Attribute the arguments in a method call, returning the method kind.
 673      */
 674     int attribArgs(List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 675         int kind = VAL;
 676         for (JCExpression arg : trees) {
 677             Type argtype;
 678             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
 679                 argtype = deferredAttr.new DeferredType(arg, env);
 680                 kind |= POLY;
 681             } else {
 682                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
 683             }
 684             argtypes.append(argtype);
 685         }
 686         return kind;
 687     }
 688 
 689     /** Attribute a type argument list, returning a list of types.
 690      *  Caller is responsible for calling checkRefTypes.
 691      */
 692     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 693         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 694         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 695             argtypes.append(attribType(l.head, env));
 696         return argtypes.toList();
 697     }
 698 
 699     /** Attribute a type argument list, returning a list of types.
 700      *  Check that all the types are references.
 701      */
 702     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 703         List<Type> types = attribAnyTypes(trees, env);
 704         return chk.checkRefTypes(trees, types);
 705     }
 706 
 707     /**
 708      * Attribute type variables (of generic classes or methods).
 709      * Compound types are attributed later in attribBounds.
 710      * @param typarams the type variables to enter
 711      * @param env      the current environment
 712      */
 713     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 714         for (JCTypeParameter tvar : typarams) {
 715             TypeVar a = (TypeVar)tvar.type;
 716             a.tsym.flags_field |= UNATTRIBUTED;
 717             a.bound = Type.noType;
 718             if (!tvar.bounds.isEmpty()) {
 719                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 720                 for (JCExpression bound : tvar.bounds.tail)
 721                     bounds = bounds.prepend(attribType(bound, env));
 722                 types.setBounds(a, bounds.reverse());
 723             } else {
 724                 // if no bounds are given, assume a single bound of
 725                 // java.lang.Object.
 726                 types.setBounds(a, List.of(syms.objectType));
 727             }
 728             a.tsym.flags_field &= ~UNATTRIBUTED;
 729         }
 730         for (JCTypeParameter tvar : typarams) {
 731             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 732         }
 733     }
 734 
 735     /**
 736      * Attribute the type references in a list of annotations.
 737      */
 738     void attribAnnotationTypes(List<JCAnnotation> annotations,
 739                                Env<AttrContext> env) {
 740         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 741             JCAnnotation a = al.head;
 742             attribType(a.annotationType, env);
 743         }
 744     }
 745 
 746     /**
 747      * Attribute a "lazy constant value".
 748      *  @param env         The env for the const value
 749      *  @param initializer The initializer for the const value
 750      *  @param type        The expected type, or null
 751      *  @see VarSymbol#setLazyConstValue
 752      */
 753     public Object attribLazyConstantValue(Env<AttrContext> env,
 754                                       JCVariableDecl variable,
 755                                       Type type) {
 756 
 757         DiagnosticPosition prevLintPos
 758                 = deferredLintHandler.setPos(variable.pos());
 759 
 760         try {
 761             // Use null as symbol to not attach the type annotation to any symbol.
 762             // The initializer will later also be visited and then we'll attach
 763             // to the symbol.
 764             // This prevents having multiple type annotations, just because of
 765             // lazy constant value evaluation.
 766             memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
 767             annotate.flush();
 768             Type itype = attribExpr(variable.init, env, type);
 769             if (itype.constValue() != null) {
 770                 return coerce(itype, type).constValue();
 771             } else {
 772                 return null;
 773             }
 774         } finally {
 775             deferredLintHandler.setPos(prevLintPos);
 776         }
 777     }
 778 
 779     /** Attribute type reference in an `extends' or `implements' clause.
 780      *  Supertypes of anonymous inner classes are usually already attributed.
 781      *
 782      *  @param tree              The tree making up the type reference.
 783      *  @param env               The environment current at the reference.
 784      *  @param classExpected     true if only a class is expected here.
 785      *  @param interfaceExpected true if only an interface is expected here.
 786      */
 787     Type attribBase(JCTree tree,
 788                     Env<AttrContext> env,
 789                     boolean classExpected,
 790                     boolean interfaceExpected,
 791                     boolean checkExtensible) {
 792         Type t = tree.type != null ?
 793             tree.type :
 794             attribType(tree, env);
 795         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 796     }
 797     Type checkBase(Type t,
 798                    JCTree tree,
 799                    Env<AttrContext> env,
 800                    boolean classExpected,
 801                    boolean interfaceOrArrayExpected,
 802                    boolean checkExtensible) {
 803         if (t.isErroneous())
 804             return t;
 805         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceOrArrayExpected) {
 806             // check that type variable is already visible
 807             if (t.getUpperBound() == null) {
 808                 log.error(tree.pos(), "illegal.forward.ref");
 809                 return types.createErrorType(t);
 810             }
 811         } else if (classExpected) {
 812             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
 813         } else {
 814             t = chk.checkClassOrArrayType(tree.pos(), t,
 815                                           checkExtensible|!allowGenerics);
 816         }
 817         if (interfaceOrArrayExpected &&
 818             !(t.tsym.isInterface() || t.getTag() == ARRAY)) {
 819             log.error(tree.pos(), "intf.or.array.expected.here");
 820             // return errType is necessary since otherwise there might
 821             // be undetected cycles which cause attribution to loop
 822             return types.createErrorType(t);
 823         } else if (checkExtensible &&
 824                    classExpected &&
 825                    t.tsym.isInterface()) {
 826             log.error(tree.pos(), "no.intf.expected.here");
 827             return types.createErrorType(t);
 828         }
 829         if (checkExtensible &&
 830             ((t.tsym.flags() & FINAL) != 0)) {
 831             log.error(tree.pos(),
 832                       "cant.inherit.from.final", t.tsym);
 833         }
 834         chk.checkNonCyclic(tree.pos(), t);
 835         return t;
 836     }
 837     //where
 838         private Object asTypeParam(Type t) {
 839             return (t.hasTag(TYPEVAR))
 840                                     ? diags.fragment("type.parameter", t)
 841                                     : t;
 842         }
 843 
 844     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 845         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 846         id.type = env.info.scope.owner.type;
 847         id.sym = env.info.scope.owner;
 848         return id.type;
 849     }
 850 
 851     public void visitClassDef(JCClassDecl tree) {
 852         // Local classes have not been entered yet, so we need to do it now:
 853         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
 854             enter.classEnter(tree, env);
 855 
 856         ClassSymbol c = tree.sym;
 857         if (c == null) {
 858             // exit in case something drastic went wrong during enter.
 859             result = null;
 860         } else {
 861             // make sure class has been completed:
 862             c.complete();
 863 
 864             // If this class appears as an anonymous class
 865             // in a superclass constructor call where
 866             // no explicit outer instance is given,
 867             // disable implicit outer instance from being passed.
 868             // (This would be an illegal access to "this before super").
 869             if (env.info.isSelfCall &&
 870                 env.tree.hasTag(NEWCLASS) &&
 871                 ((JCNewClass) env.tree).encl == null)
 872             {
 873                 c.flags_field |= NOOUTERTHIS;
 874             }
 875             attribClass(tree.pos(), c);
 876             result = tree.type = c.type;
 877         }
 878     }
 879 
 880     public void visitMethodDef(JCMethodDecl tree) {
 881         MethodSymbol m = tree.sym;
 882         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 883 
 884         Lint lint = env.info.lint.augment(m);
 885         Lint prevLint = chk.setLint(lint);
 886         MethodSymbol prevMethod = chk.setMethod(m);
 887         try {
 888             deferredLintHandler.flush(tree.pos());
 889             chk.checkDeprecatedAnnotation(tree.pos(), m);
 890 
 891 
 892             // Create a new environment with local scope
 893             // for attributing the method.
 894             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 895             localEnv.info.lint = lint;
 896 
 897             attribStats(tree.typarams, localEnv);
 898 
 899             // If we override any other methods, check that we do so properly.
 900             // JLS ???
 901             if (m.isStatic()) {
 902                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 903             } else {
 904                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 905             }
 906             chk.checkOverride(tree, m);
 907 
 908             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 909                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
 910             }
 911 
 912             // Enter all type parameters into the local method scope.
 913             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 914                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 915 
 916             ClassSymbol owner = env.enclClass.sym;
 917             if ((owner.flags() & ANNOTATION) != 0 &&
 918                 tree.params.nonEmpty())
 919                 log.error(tree.params.head.pos(),
 920                           "intf.annotation.members.cant.have.params");
 921 
 922             // Attribute all value parameters.
 923             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 924                 attribStat(l.head, localEnv);
 925             }
 926 
 927             chk.checkVarargsMethodDecl(localEnv, tree);
 928 
 929             // Check that type parameters are well-formed.
 930             chk.validate(tree.typarams, localEnv);
 931 
 932             // Check that result type is well-formed.
 933             chk.validate(tree.restype, localEnv);
 934 
 935             // Check that receiver type is well-formed.
 936             if (tree.recvparam != null) {
 937                 // Use a new environment to check the receiver parameter.
 938                 // Otherwise I get "might not have been initialized" errors.
 939                 // Is there a better way?
 940                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
 941                 attribType(tree.recvparam, newEnv);
 942                 chk.validate(tree.recvparam, newEnv);
 943             }
 944 
 945             // annotation method checks
 946             if ((owner.flags() & ANNOTATION) != 0) {
 947                 // annotation method cannot have throws clause
 948                 if (tree.thrown.nonEmpty()) {
 949                     log.error(tree.thrown.head.pos(),
 950                             "throws.not.allowed.in.intf.annotation");
 951                 }
 952                 // annotation method cannot declare type-parameters
 953                 if (tree.typarams.nonEmpty()) {
 954                     log.error(tree.typarams.head.pos(),
 955                             "intf.annotation.members.cant.have.type.params");
 956                 }
 957                 // validate annotation method's return type (could be an annotation type)
 958                 chk.validateAnnotationType(tree.restype);
 959                 // ensure that annotation method does not clash with members of Object/Annotation
 960                 chk.validateAnnotationMethod(tree.pos(), m);
 961 
 962                 if (tree.defaultValue != null) {
 963                     // if default value is an annotation, check it is a well-formed
 964                     // annotation value (e.g. no duplicate values, no missing values, etc.)
 965                     chk.validateAnnotationTree(tree.defaultValue);
 966                 }
 967             }
 968 
 969             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
 970                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
 971 
 972             if (tree.body == null) {
 973                 // Empty bodies are only allowed for
 974                 // abstract, native, or interface methods, or for methods
 975                 // in a retrofit signature class.
 976                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
 977                     !relax)
 978                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
 979                 if (tree.defaultValue != null) {
 980                     if ((owner.flags() & ANNOTATION) == 0)
 981                         log.error(tree.pos(),
 982                                   "default.allowed.in.intf.annotation.member");
 983                 }
 984             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
 985                 if ((owner.flags() & INTERFACE) != 0) {
 986                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
 987                 } else {
 988                     log.error(tree.pos(), "abstract.meth.cant.have.body");
 989                 }
 990             } else if ((tree.mods.flags & NATIVE) != 0) {
 991                 log.error(tree.pos(), "native.meth.cant.have.body");
 992             } else {
 993                 // Add an implicit super() call unless an explicit call to
 994                 // super(...) or this(...) is given
 995                 // or we are compiling class java.lang.Object.
 996                 if (tree.name == names.init && owner.type != syms.objectType) {
 997                     JCBlock body = tree.body;
 998                     if (body.stats.isEmpty() ||
 999                         !TreeInfo.isSelfCall(body.stats.head)) {
1000                         body.stats = body.stats.
1001                             prepend(memberEnter.SuperCall(make.at(body.pos),
1002                                                           List.<Type>nil(),
1003                                                           List.<JCVariableDecl>nil(),
1004                                                           false));
1005                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1006                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1007                                TreeInfo.isSuperCall(body.stats.head)) {
1008                         // enum constructors are not allowed to call super
1009                         // directly, so make sure there aren't any super calls
1010                         // in enum constructors, except in the compiler
1011                         // generated one.
1012                         log.error(tree.body.stats.head.pos(),
1013                                   "call.to.super.not.allowed.in.enum.ctor",
1014                                   env.enclClass.sym);
1015                     }
1016                 }
1017 
1018                 // Attribute all type annotations in the body
1019                 memberEnter.typeAnnotate(tree.body, localEnv, m, null);
1020                 annotate.flush();
1021 
1022                 // Attribute method body.
1023                 attribStat(tree.body, localEnv);
1024             }
1025 
1026             localEnv.info.scope.leave();
1027             result = tree.type = m.type;
1028             chk.validateAnnotations(tree.mods.annotations, m);
1029         }
1030         finally {
1031             chk.setLint(prevLint);
1032             chk.setMethod(prevMethod);
1033         }
1034     }
1035 
1036     public void visitVarDef(JCVariableDecl tree) {
1037         // Local variables have not been entered yet, so we need to do it now:
1038         if (env.info.scope.owner.kind == MTH) {
1039             if (tree.sym != null) {
1040                 // parameters have already been entered
1041                 env.info.scope.enter(tree.sym);
1042             } else {
1043                 memberEnter.memberEnter(tree, env);
1044                 annotate.flush();
1045             }
1046         } else {
1047             if (tree.init != null) {
1048                 // Field initializer expression need to be entered.
1049                 memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
1050                 annotate.flush();
1051             }
1052         }
1053 
1054         VarSymbol v = tree.sym;
1055         Lint lint = env.info.lint.augment(v);
1056         Lint prevLint = chk.setLint(lint);
1057 
1058         // Check that the variable's declared type is well-formed.
1059         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1060                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1061                 (tree.sym.flags() & PARAMETER) != 0;
1062         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1063 
1064         try {
1065             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1066             deferredLintHandler.flush(tree.pos());
1067             chk.checkDeprecatedAnnotation(tree.pos(), v);
1068 
1069             if (tree.init != null) {
1070                 if ((v.flags_field & FINAL) == 0 ||
1071                     !memberEnter.needsLazyConstValue(tree.init)) {
1072                     // Not a compile-time constant
1073                     // Attribute initializer in a new environment
1074                     // with the declared variable as owner.
1075                     // Check that initializer conforms to variable's declared type.
1076                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1077                     initEnv.info.lint = lint;
1078                     // In order to catch self-references, we set the variable's
1079                     // declaration position to maximal possible value, effectively
1080                     // marking the variable as undefined.
1081                     initEnv.info.enclVar = v;
1082                     attribExpr(tree.init, initEnv, v.type);
1083                 }
1084             }
1085             result = tree.type = v.type;
1086             chk.validateAnnotations(tree.mods.annotations, v);
1087         }
1088         finally {
1089             chk.setLint(prevLint);
1090         }
1091     }
1092 
1093     public void visitSkip(JCSkip tree) {
1094         result = null;
1095     }
1096 
1097     public void visitBlock(JCBlock tree) {
1098         if (env.info.scope.owner.kind == TYP) {
1099             // Block is a static or instance initializer;
1100             // let the owner of the environment be a freshly
1101             // created BLOCK-method.
1102             Env<AttrContext> localEnv =
1103                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
1104             localEnv.info.scope.owner =
1105                 new MethodSymbol(tree.flags | BLOCK |
1106                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1107                     env.info.scope.owner);
1108             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1109 
1110             // Attribute all type annotations in the block
1111             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1112             annotate.flush();
1113 
1114             {
1115                 // Store init and clinit type annotations with the ClassSymbol
1116                 // to allow output in Gen.normalizeDefs.
1117                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1118                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1119                 if ((tree.flags & STATIC) != 0) {
1120                     cs.appendClassInitTypeAttributes(tas);
1121                 } else {
1122                     cs.appendInitTypeAttributes(tas);
1123                 }
1124             }
1125 
1126             attribStats(tree.stats, localEnv);
1127         } else {
1128             // Create a new local environment with a local scope.
1129             Env<AttrContext> localEnv =
1130                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1131             try {
1132                 attribStats(tree.stats, localEnv);
1133             } finally {
1134                 localEnv.info.scope.leave();
1135             }
1136         }
1137         result = null;
1138     }
1139 
1140     public void visitDoLoop(JCDoWhileLoop tree) {
1141         attribStat(tree.body, env.dup(tree));
1142         attribExpr(tree.cond, env, syms.booleanType);
1143         result = null;
1144     }
1145 
1146     public void visitWhileLoop(JCWhileLoop tree) {
1147         attribExpr(tree.cond, env, syms.booleanType);
1148         attribStat(tree.body, env.dup(tree));
1149         result = null;
1150     }
1151 
1152     public void visitForLoop(JCForLoop tree) {
1153         Env<AttrContext> loopEnv =
1154             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1155         try {
1156             attribStats(tree.init, loopEnv);
1157             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1158             loopEnv.tree = tree; // before, we were not in loop!
1159             attribStats(tree.step, loopEnv);
1160             attribStat(tree.body, loopEnv);
1161             result = null;
1162         }
1163         finally {
1164             loopEnv.info.scope.leave();
1165         }
1166     }
1167 
1168     public void visitForeachLoop(JCEnhancedForLoop tree) {
1169         Env<AttrContext> loopEnv =
1170             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1171         try {
1172             //the Formal Parameter of a for-each loop is not in the scope when
1173             //attributing the for-each expression; we mimick this by attributing
1174             //the for-each expression first (against original scope).
1175             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
1176             attribStat(tree.var, loopEnv);
1177             chk.checkNonVoid(tree.pos(), exprType);
1178             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1179             if (elemtype == null) {
1180                 // or perhaps expr implements Iterable<T>?
1181                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1182                 if (base == null) {
1183                     log.error(tree.expr.pos(),
1184                             "foreach.not.applicable.to.type",
1185                             exprType,
1186                             diags.fragment("type.req.array.or.iterable"));
1187                     elemtype = types.createErrorType(exprType);
1188                 } else {
1189                     List<Type> iterableParams = base.allparams();
1190                     elemtype = iterableParams.isEmpty()
1191                         ? syms.objectType
1192                         : types.upperBound(iterableParams.head);
1193                 }
1194             }
1195             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1196             loopEnv.tree = tree; // before, we were not in loop!
1197             attribStat(tree.body, loopEnv);
1198             result = null;
1199         }
1200         finally {
1201             loopEnv.info.scope.leave();
1202         }
1203     }
1204 
1205     public void visitLabelled(JCLabeledStatement tree) {
1206         // Check that label is not used in an enclosing statement
1207         Env<AttrContext> env1 = env;
1208         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1209             if (env1.tree.hasTag(LABELLED) &&
1210                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1211                 log.error(tree.pos(), "label.already.in.use",
1212                           tree.label);
1213                 break;
1214             }
1215             env1 = env1.next;
1216         }
1217 
1218         attribStat(tree.body, env.dup(tree));
1219         result = null;
1220     }
1221 
1222     public void visitSwitch(JCSwitch tree) {
1223         Type seltype = attribExpr(tree.selector, env);
1224 
1225         Env<AttrContext> switchEnv =
1226             env.dup(tree, env.info.dup(env.info.scope.dup()));
1227 
1228         try {
1229 
1230             boolean enumSwitch =
1231                 allowEnums &&
1232                 (seltype.tsym.flags() & Flags.ENUM) != 0;
1233             boolean stringSwitch = false;
1234             if (types.isSameType(seltype, syms.stringType)) {
1235                 if (allowStringsInSwitch) {
1236                     stringSwitch = true;
1237                 } else {
1238                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1239                 }
1240             }
1241             if (!enumSwitch && !stringSwitch)
1242                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1243 
1244             // Attribute all cases and
1245             // check that there are no duplicate case labels or default clauses.
1246             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
1247             boolean hasDefault = false;      // Is there a default label?
1248             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1249                 JCCase c = l.head;
1250                 Env<AttrContext> caseEnv =
1251                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1252                 try {
1253                     if (c.pat != null) {
1254                         if (enumSwitch) {
1255                             Symbol sym = enumConstant(c.pat, seltype);
1256                             if (sym == null) {
1257                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1258                             } else if (!labels.add(sym)) {
1259                                 log.error(c.pos(), "duplicate.case.label");
1260                             }
1261                         } else {
1262                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
1263                             if (!pattype.hasTag(ERROR)) {
1264                                 if (pattype.constValue() == null) {
1265                                     log.error(c.pat.pos(),
1266                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
1267                                 } else if (labels.contains(pattype.constValue())) {
1268                                     log.error(c.pos(), "duplicate.case.label");
1269                                 } else {
1270                                     labels.add(pattype.constValue());
1271                                 }
1272                             }
1273                         }
1274                     } else if (hasDefault) {
1275                         log.error(c.pos(), "duplicate.default.label");
1276                     } else {
1277                         hasDefault = true;
1278                     }
1279                     attribStats(c.stats, caseEnv);
1280                 } finally {
1281                     caseEnv.info.scope.leave();
1282                     addVars(c.stats, switchEnv.info.scope);
1283                 }
1284             }
1285 
1286             result = null;
1287         }
1288         finally {
1289             switchEnv.info.scope.leave();
1290         }
1291     }
1292     // where
1293         /** Add any variables defined in stats to the switch scope. */
1294         private static void addVars(List<JCStatement> stats, Scope switchScope) {
1295             for (;stats.nonEmpty(); stats = stats.tail) {
1296                 JCTree stat = stats.head;
1297                 if (stat.hasTag(VARDEF))
1298                     switchScope.enter(((JCVariableDecl) stat).sym);
1299             }
1300         }
1301     // where
1302     /** Return the selected enumeration constant symbol, or null. */
1303     private Symbol enumConstant(JCTree tree, Type enumType) {
1304         if (!tree.hasTag(IDENT)) {
1305             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
1306             return syms.errSymbol;
1307         }
1308         JCIdent ident = (JCIdent)tree;
1309         Name name = ident.name;
1310         for (Scope.Entry e = enumType.tsym.members().lookup(name);
1311              e.scope != null; e = e.next()) {
1312             if (e.sym.kind == VAR) {
1313                 Symbol s = ident.sym = e.sym;
1314                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1315                 ident.type = s.type;
1316                 return ((s.flags_field & Flags.ENUM) == 0)
1317                     ? null : s;
1318             }
1319         }
1320         return null;
1321     }
1322 
1323     public void visitSynchronized(JCSynchronized tree) {
1324         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1325         attribStat(tree.body, env);
1326         result = null;
1327     }
1328 
1329     public void visitTry(JCTry tree) {
1330         // Create a new local environment with a local
1331         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1332         try {
1333             boolean isTryWithResource = tree.resources.nonEmpty();
1334             // Create a nested environment for attributing the try block if needed
1335             Env<AttrContext> tryEnv = isTryWithResource ?
1336                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1337                 localEnv;
1338             try {
1339                 // Attribute resource declarations
1340                 for (JCTree resource : tree.resources) {
1341                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1342                         @Override
1343                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1344                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1345                         }
1346                     };
1347                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
1348                     if (resource.hasTag(VARDEF)) {
1349                         attribStat(resource, tryEnv);
1350                         twrResult.check(resource, resource.type);
1351 
1352                         //check that resource type cannot throw InterruptedException
1353                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1354 
1355                         VarSymbol var = ((JCVariableDecl) resource).sym;
1356                         var.setData(ElementKind.RESOURCE_VARIABLE);
1357                     } else {
1358                         attribTree(resource, tryEnv, twrResult);
1359                     }
1360                 }
1361                 // Attribute body
1362                 attribStat(tree.body, tryEnv);
1363             } finally {
1364                 if (isTryWithResource)
1365                     tryEnv.info.scope.leave();
1366             }
1367 
1368             // Attribute catch clauses
1369             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1370                 JCCatch c = l.head;
1371                 Env<AttrContext> catchEnv =
1372                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1373                 try {
1374                     Type ctype = attribStat(c.param, catchEnv);
1375                     if (TreeInfo.isMultiCatch(c)) {
1376                         //multi-catch parameter is implicitly marked as final
1377                         c.param.sym.flags_field |= FINAL | UNION;
1378                     }
1379                     if (c.param.sym.kind == Kinds.VAR) {
1380                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1381                     }
1382                     chk.checkType(c.param.vartype.pos(),
1383                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1384                                   syms.throwableType);
1385                     attribStat(c.body, catchEnv);
1386                 } finally {
1387                     catchEnv.info.scope.leave();
1388                 }
1389             }
1390 
1391             // Attribute finalizer
1392             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1393             result = null;
1394         }
1395         finally {
1396             localEnv.info.scope.leave();
1397         }
1398     }
1399 
1400     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1401         if (!resource.isErroneous() &&
1402             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1403             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1404             Symbol close = syms.noSymbol;
1405             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1406             try {
1407                 close = rs.resolveQualifiedMethod(pos,
1408                         env,
1409                         resource,
1410                         names.close,
1411                         List.<Type>nil(),
1412                         List.<Type>nil());
1413             }
1414             finally {
1415                 log.popDiagnosticHandler(discardHandler);
1416             }
1417             if (close.kind == MTH &&
1418                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1419                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1420                     env.info.lint.isEnabled(LintCategory.TRY)) {
1421                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1422             }
1423         }
1424     }
1425 
1426     public void visitConditional(JCConditional tree) {
1427         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1428 
1429         tree.polyKind = (!allowPoly ||
1430                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
1431                 isBooleanOrNumeric(env, tree)) ?
1432                 PolyKind.STANDALONE : PolyKind.POLY;
1433 
1434         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1435             //cannot get here (i.e. it means we are returning from void method - which is already an error)
1436             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1437             result = tree.type = types.createErrorType(resultInfo.pt);
1438             return;
1439         }
1440 
1441         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1442                 unknownExprInfo :
1443                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1444                     //this will use enclosing check context to check compatibility of
1445                     //subexpression against target type; if we are in a method check context,
1446                     //depending on whether boxing is allowed, we could have incompatibilities
1447                     @Override
1448                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
1449                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1450                     }
1451                 });
1452 
1453         Type truetype = attribTree(tree.truepart, env, condInfo);
1454         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1455 
1456         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1457         if (condtype.constValue() != null &&
1458                 truetype.constValue() != null &&
1459                 falsetype.constValue() != null &&
1460                 !owntype.hasTag(NONE)) {
1461             //constant folding
1462             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1463         }
1464         result = check(tree, owntype, VAL, resultInfo);
1465     }
1466     //where
1467         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1468             switch (tree.getTag()) {
1469                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1470                               ((JCLiteral)tree).typetag == BOOLEAN ||
1471                               ((JCLiteral)tree).typetag == BOT;
1472                 case LAMBDA: case REFERENCE: return false;
1473                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1474                 case CONDEXPR:
1475                     JCConditional condTree = (JCConditional)tree;
1476                     return isBooleanOrNumeric(env, condTree.truepart) &&
1477                             isBooleanOrNumeric(env, condTree.falsepart);
1478                 case APPLY:
1479                     JCMethodInvocation speculativeMethodTree =
1480                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1481                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
1482                     return types.unboxedTypeOrType(owntype).isPrimitive();
1483                 case NEWCLASS:
1484                     JCExpression className =
1485                             removeClassParams.translate(((JCNewClass)tree).clazz);
1486                     JCExpression speculativeNewClassTree =
1487                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1488                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
1489                 default:
1490                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1491                     speculativeType = types.unboxedTypeOrType(speculativeType);
1492                     return speculativeType.isPrimitive();
1493             }
1494         }
1495         //where
1496             TreeTranslator removeClassParams = new TreeTranslator() {
1497                 @Override
1498                 public void visitTypeApply(JCTypeApply tree) {
1499                     result = translate(tree.clazz);
1500                 }
1501             };
1502 
1503         /** Compute the type of a conditional expression, after
1504          *  checking that it exists.  See JLS 15.25. Does not take into
1505          *  account the special case where condition and both arms
1506          *  are constants.
1507          *
1508          *  @param pos      The source position to be used for error
1509          *                  diagnostics.
1510          *  @param thentype The type of the expression's then-part.
1511          *  @param elsetype The type of the expression's else-part.
1512          */
1513         private Type condType(DiagnosticPosition pos,
1514                                Type thentype, Type elsetype) {
1515             // If same type, that is the result
1516             if (types.isSameType(thentype, elsetype))
1517                 return thentype.baseType();
1518 
1519             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
1520                 ? thentype : types.unboxedType(thentype);
1521             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
1522                 ? elsetype : types.unboxedType(elsetype);
1523 
1524             // Otherwise, if both arms can be converted to a numeric
1525             // type, return the least numeric type that fits both arms
1526             // (i.e. return larger of the two, or return int if one
1527             // arm is short, the other is char).
1528             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1529                 // If one arm has an integer subrange type (i.e., byte,
1530                 // short, or char), and the other is an integer constant
1531                 // that fits into the subrange, return the subrange type.
1532                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1533                     elseUnboxed.hasTag(INT) &&
1534                     types.isAssignable(elseUnboxed, thenUnboxed)) {
1535                     return thenUnboxed.baseType();
1536                 }
1537                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1538                     thenUnboxed.hasTag(INT) &&
1539                     types.isAssignable(thenUnboxed, elseUnboxed)) {
1540                     return elseUnboxed.baseType();
1541                 }
1542 
1543                 for (TypeTag tag : primitiveTags) {
1544                     Type candidate = syms.typeOfTag[tag.ordinal()];
1545                     if (types.isSubtype(thenUnboxed, candidate) &&
1546                         types.isSubtype(elseUnboxed, candidate)) {
1547                         return candidate;
1548                     }
1549                 }
1550             }
1551 
1552             // Those were all the cases that could result in a primitive
1553             if (allowBoxing) {
1554                 if (thentype.isPrimitive())
1555                     thentype = types.boxedClass(thentype).type;
1556                 if (elsetype.isPrimitive())
1557                     elsetype = types.boxedClass(elsetype).type;
1558             }
1559 
1560             if (types.isSubtype(thentype, elsetype))
1561                 return elsetype.baseType();
1562             if (types.isSubtype(elsetype, thentype))
1563                 return thentype.baseType();
1564 
1565             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1566                 log.error(pos, "neither.conditional.subtype",
1567                           thentype, elsetype);
1568                 return thentype.baseType();
1569             }
1570 
1571             // both are known to be reference types.  The result is
1572             // lub(thentype,elsetype). This cannot fail, as it will
1573             // always be possible to infer "Object" if nothing better.
1574             return types.lub(thentype.baseType(), elsetype.baseType());
1575         }
1576 
1577     final static TypeTag[] primitiveTags = new TypeTag[]{
1578         BYTE,
1579         CHAR,
1580         SHORT,
1581         INT,
1582         LONG,
1583         FLOAT,
1584         DOUBLE,
1585         BOOLEAN,
1586     };
1587 
1588     public void visitIf(JCIf tree) {
1589         attribExpr(tree.cond, env, syms.booleanType);
1590         attribStat(tree.thenpart, env);
1591         if (tree.elsepart != null)
1592             attribStat(tree.elsepart, env);
1593         chk.checkEmptyIf(tree);
1594         result = null;
1595     }
1596 
1597     public void visitExec(JCExpressionStatement tree) {
1598         //a fresh environment is required for 292 inference to work properly ---
1599         //see Infer.instantiatePolymorphicSignatureInstance()
1600         Env<AttrContext> localEnv = env.dup(tree);
1601         attribExpr(tree.expr, localEnv);
1602         result = null;
1603     }
1604 
1605     public void visitBreak(JCBreak tree) {
1606         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1607         result = null;
1608     }
1609 
1610     public void visitContinue(JCContinue tree) {
1611         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1612         result = null;
1613     }
1614     //where
1615         /** Return the target of a break or continue statement, if it exists,
1616          *  report an error if not.
1617          *  Note: The target of a labelled break or continue is the
1618          *  (non-labelled) statement tree referred to by the label,
1619          *  not the tree representing the labelled statement itself.
1620          *
1621          *  @param pos     The position to be used for error diagnostics
1622          *  @param tag     The tag of the jump statement. This is either
1623          *                 Tree.BREAK or Tree.CONTINUE.
1624          *  @param label   The label of the jump statement, or null if no
1625          *                 label is given.
1626          *  @param env     The environment current at the jump statement.
1627          */
1628         private JCTree findJumpTarget(DiagnosticPosition pos,
1629                                     JCTree.Tag tag,
1630                                     Name label,
1631                                     Env<AttrContext> env) {
1632             // Search environments outwards from the point of jump.
1633             Env<AttrContext> env1 = env;
1634             LOOP:
1635             while (env1 != null) {
1636                 switch (env1.tree.getTag()) {
1637                     case LABELLED:
1638                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1639                         if (label == labelled.label) {
1640                             // If jump is a continue, check that target is a loop.
1641                             if (tag == CONTINUE) {
1642                                 if (!labelled.body.hasTag(DOLOOP) &&
1643                                         !labelled.body.hasTag(WHILELOOP) &&
1644                                         !labelled.body.hasTag(FORLOOP) &&
1645                                         !labelled.body.hasTag(FOREACHLOOP))
1646                                     log.error(pos, "not.loop.label", label);
1647                                 // Found labelled statement target, now go inwards
1648                                 // to next non-labelled tree.
1649                                 return TreeInfo.referencedStatement(labelled);
1650                             } else {
1651                                 return labelled;
1652                             }
1653                         }
1654                         break;
1655                     case DOLOOP:
1656                     case WHILELOOP:
1657                     case FORLOOP:
1658                     case FOREACHLOOP:
1659                         if (label == null) return env1.tree;
1660                         break;
1661                     case SWITCH:
1662                         if (label == null && tag == BREAK) return env1.tree;
1663                         break;
1664                     case LAMBDA:
1665                     case METHODDEF:
1666                     case CLASSDEF:
1667                         break LOOP;
1668                     default:
1669                 }
1670                 env1 = env1.next;
1671             }
1672             if (label != null)
1673                 log.error(pos, "undef.label", label);
1674             else if (tag == CONTINUE)
1675                 log.error(pos, "cont.outside.loop");
1676             else
1677                 log.error(pos, "break.outside.switch.loop");
1678             return null;
1679         }
1680 
1681     public void visitReturn(JCReturn tree) {
1682         // Check that there is an enclosing method which is
1683         // nested within than the enclosing class.
1684         if (env.info.returnResult == null) {
1685             log.error(tree.pos(), "ret.outside.meth");
1686         } else {
1687             // Attribute return expression, if it exists, and check that
1688             // it conforms to result type of enclosing method.
1689             if (tree.expr != null) {
1690                 if (env.info.returnResult.pt.hasTag(VOID)) {
1691                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1692                               diags.fragment("unexpected.ret.val"));
1693                 }
1694                 attribTree(tree.expr, env, env.info.returnResult);
1695             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1696                     !env.info.returnResult.pt.hasTag(NONE)) {
1697                 env.info.returnResult.checkContext.report(tree.pos(),
1698                               diags.fragment("missing.ret.val"));
1699             }
1700         }
1701         result = null;
1702     }
1703 
1704     public void visitThrow(JCThrow tree) {
1705         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1706         if (allowPoly) {
1707             chk.checkType(tree, owntype, syms.throwableType);
1708         }
1709         result = null;
1710     }
1711 
1712     public void visitAssert(JCAssert tree) {
1713         attribExpr(tree.cond, env, syms.booleanType);
1714         if (tree.detail != null) {
1715             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1716         }
1717         result = null;
1718     }
1719 
1720      /** Visitor method for method invocations.
1721      *  NOTE: The method part of an application will have in its type field
1722      *        the return type of the method, not the method's type itself!
1723      */
1724     public void visitApply(JCMethodInvocation tree) {
1725         // The local environment of a method application is
1726         // a new environment nested in the current one.
1727         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1728 
1729         // The types of the actual method arguments.
1730         List<Type> argtypes;
1731 
1732         // The types of the actual method type arguments.
1733         List<Type> typeargtypes = null;
1734 
1735         Name methName = TreeInfo.name(tree.meth);
1736 
1737         boolean isConstructorCall =
1738             methName == names._this || methName == names._super;
1739 
1740         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1741         if (isConstructorCall) {
1742             // We are seeing a ...this(...) or ...super(...) call.
1743             // Check that this is the first statement in a constructor.
1744             if (checkFirstConstructorStat(tree, env)) {
1745 
1746                 // Record the fact
1747                 // that this is a constructor call (using isSelfCall).
1748                 localEnv.info.isSelfCall = true;
1749 
1750                 // Attribute arguments, yielding list of argument types.
1751                 attribArgs(tree.args, localEnv, argtypesBuf);
1752                 argtypes = argtypesBuf.toList();
1753                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1754 
1755                 // Variable `site' points to the class in which the called
1756                 // constructor is defined.
1757                 Type site = env.enclClass.sym.type;
1758                 if (methName == names._super) {
1759                     if (site == syms.objectType) {
1760                         log.error(tree.meth.pos(), "no.superclass", site);
1761                         site = types.createErrorType(syms.objectType);
1762                     } else {
1763                         site = types.supertype(site);
1764                     }
1765                 }
1766 
1767                 if (site.hasTag(CLASS)) {
1768                     Type encl = site.getEnclosingType();
1769                     while (encl != null && encl.hasTag(TYPEVAR))
1770                         encl = encl.getUpperBound();
1771                     if (encl.hasTag(CLASS)) {
1772                         // we are calling a nested class
1773 
1774                         if (tree.meth.hasTag(SELECT)) {
1775                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1776 
1777                             // We are seeing a prefixed call, of the form
1778                             //     <expr>.super(...).
1779                             // Check that the prefix expression conforms
1780                             // to the outer instance type of the class.
1781                             chk.checkRefType(qualifier.pos(),
1782                                              attribExpr(qualifier, localEnv,
1783                                                         encl));
1784                         } else if (methName == names._super) {
1785                             // qualifier omitted; check for existence
1786                             // of an appropriate implicit qualifier.
1787                             rs.resolveImplicitThis(tree.meth.pos(),
1788                                                    localEnv, site, true);
1789                         }
1790                     } else if (tree.meth.hasTag(SELECT)) {
1791                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1792                                   site.tsym);
1793                     }
1794 
1795                     // if we're calling a java.lang.Enum constructor,
1796                     // prefix the implicit String and int parameters
1797                     if (site.tsym == syms.enumSym && allowEnums)
1798                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1799 
1800                     // Resolve the called constructor under the assumption
1801                     // that we are referring to a superclass instance of the
1802                     // current instance (JLS ???).
1803                     boolean selectSuperPrev = localEnv.info.selectSuper;
1804                     localEnv.info.selectSuper = true;
1805                     localEnv.info.pendingResolutionPhase = null;
1806                     Symbol sym = rs.resolveConstructor(
1807                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1808                     localEnv.info.selectSuper = selectSuperPrev;
1809 
1810                     // Set method symbol to resolved constructor...
1811                     TreeInfo.setSymbol(tree.meth, sym);
1812 
1813                     // ...and check that it is legal in the current context.
1814                     // (this will also set the tree's type)
1815                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1816                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
1817                 }
1818                 // Otherwise, `site' is an error type and we do nothing
1819             }
1820             result = tree.type = syms.voidType;
1821         } else {
1822             // Otherwise, we are seeing a regular method call.
1823             // Attribute the arguments, yielding list of argument types, ...
1824             int kind = attribArgs(tree.args, localEnv, argtypesBuf);
1825             argtypes = argtypesBuf.toList();
1826             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1827 
1828             // ... and attribute the method using as a prototype a methodtype
1829             // whose formal argument types is exactly the list of actual
1830             // arguments (this will also set the method symbol).
1831             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1832             localEnv.info.pendingResolutionPhase = null;
1833             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1834 
1835             // Compute the result type.
1836             Type restype = mtype.getReturnType();
1837             if (restype.hasTag(WILDCARD))
1838                 throw new AssertionError(mtype);
1839 
1840             Type qualifier = (tree.meth.hasTag(SELECT))
1841                     ? ((JCFieldAccess) tree.meth).selected.type
1842                     : env.enclClass.sym.type;
1843             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1844 
1845             chk.checkRefTypes(tree.typeargs, typeargtypes);
1846 
1847             // Check that value of resulting type is admissible in the
1848             // current context.  Also, capture the return type
1849             result = check(tree, capture(restype), VAL, resultInfo);
1850         }
1851         chk.validate(tree.typeargs, localEnv);
1852     }
1853     //where
1854         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1855             if (allowCovariantReturns &&
1856                     methodName == names.clone &&
1857                 types.isArray(qualifierType)) {
1858                 // as a special case, array.clone() has a result that is
1859                 // the same as static type of the array being cloned
1860                 return qualifierType;
1861             } else if (allowGenerics &&
1862                     methodName == names.getClass &&
1863                     argtypes.isEmpty()) {
1864                 // as a special case, x.getClass() has type Class<? extends |X|>
1865                 return new ClassType(restype.getEnclosingType(),
1866                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
1867                                                                BoundKind.EXTENDS,
1868                                                                syms.boundClass)),
1869                               restype.tsym);
1870             } else {
1871                 return restype;
1872             }
1873         }
1874 
1875         /** Check that given application node appears as first statement
1876          *  in a constructor call.
1877          *  @param tree   The application node
1878          *  @param env    The environment current at the application.
1879          */
1880         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1881             JCMethodDecl enclMethod = env.enclMethod;
1882             if (enclMethod != null && enclMethod.name == names.init) {
1883                 JCBlock body = enclMethod.body;
1884                 if (body.stats.head.hasTag(EXEC) &&
1885                     ((JCExpressionStatement) body.stats.head).expr == tree)
1886                     return true;
1887             }
1888             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1889                       TreeInfo.name(tree.meth));
1890             return false;
1891         }
1892 
1893         /** Obtain a method type with given argument types.
1894          */
1895         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1896             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1897             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1898         }
1899 
1900     public void visitNewClass(final JCNewClass tree) {
1901         Type owntype = types.createErrorType(tree.type);
1902 
1903         // The local environment of a class creation is
1904         // a new environment nested in the current one.
1905         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1906 
1907         // The anonymous inner class definition of the new expression,
1908         // if one is defined by it.
1909         JCClassDecl cdef = tree.def;
1910 
1911         // If enclosing class is given, attribute it, and
1912         // complete class name to be fully qualified
1913         JCExpression clazz = tree.clazz; // Class field following new
1914         JCExpression clazzid;            // Identifier in class field
1915         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1916         annoclazzid = null;
1917 
1918         if (clazz.hasTag(TYPEAPPLY)) {
1919             clazzid = ((JCTypeApply) clazz).clazz;
1920             if (clazzid.hasTag(ANNOTATED_TYPE)) {
1921                 annoclazzid = (JCAnnotatedType) clazzid;
1922                 clazzid = annoclazzid.underlyingType;
1923             }
1924         } else {
1925             if (clazz.hasTag(ANNOTATED_TYPE)) {
1926                 annoclazzid = (JCAnnotatedType) clazz;
1927                 clazzid = annoclazzid.underlyingType;
1928             } else {
1929                 clazzid = clazz;
1930             }
1931         }
1932 
1933         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1934 
1935         if (tree.encl != null) {
1936             // We are seeing a qualified new, of the form
1937             //    <expr>.new C <...> (...) ...
1938             // In this case, we let clazz stand for the name of the
1939             // allocated class C prefixed with the type of the qualifier
1940             // expression, so that we can
1941             // resolve it with standard techniques later. I.e., if
1942             // <expr> has type T, then <expr>.new C <...> (...)
1943             // yields a clazz T.C.
1944             Type encltype = chk.checkRefType(tree.encl.pos(),
1945                                              attribExpr(tree.encl, env));
1946             // TODO 308: in <expr>.new C, do we also want to add the type annotations
1947             // from expr to the combined type, or not? Yes, do this.
1948             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1949                                                  ((JCIdent) clazzid).name);
1950 
1951             EndPosTable endPosTable = this.env.toplevel.endPositions;
1952             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
1953             if (clazz.hasTag(ANNOTATED_TYPE)) {
1954                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1955                 List<JCAnnotation> annos = annoType.annotations;
1956 
1957                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1958                     clazzid1 = make.at(tree.pos).
1959                         TypeApply(clazzid1,
1960                                   ((JCTypeApply) clazz).arguments);
1961                 }
1962 
1963                 clazzid1 = make.at(tree.pos).
1964                     AnnotatedType(annos, clazzid1);
1965             } else if (clazz.hasTag(TYPEAPPLY)) {
1966                 clazzid1 = make.at(tree.pos).
1967                     TypeApply(clazzid1,
1968                               ((JCTypeApply) clazz).arguments);
1969             }
1970 
1971             clazz = clazzid1;
1972         }
1973 
1974         // Attribute clazz expression and store
1975         // symbol + type back into the attributed tree.
1976         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
1977             attribIdentAsEnumType(env, (JCIdent)clazz) :
1978             attribType(clazz, env);
1979 
1980         clazztype = chk.checkDiamond(tree, clazztype);
1981         chk.validate(clazz, localEnv);
1982         if (tree.encl != null) {
1983             // We have to work in this case to store
1984             // symbol + type back into the attributed tree.
1985             tree.clazz.type = clazztype;
1986             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1987             clazzid.type = ((JCIdent) clazzid).sym.type;
1988             if (annoclazzid != null) {
1989                 annoclazzid.type = clazzid.type;
1990             }
1991             if (!clazztype.isErroneous()) {
1992                 if (cdef != null && clazztype.tsym.isInterface()) {
1993                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1994                 } else if (clazztype.tsym.isStatic()) {
1995                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1996                 }
1997             }
1998         } else if (!clazztype.tsym.isInterface() &&
1999                    clazztype.getEnclosingType().hasTag(CLASS)) {
2000             // Check for the existence of an apropos outer instance
2001             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2002         }
2003 
2004         // Attribute constructor arguments.
2005         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2006         int pkind = attribArgs(tree.args, localEnv, argtypesBuf);
2007         List<Type> argtypes = argtypesBuf.toList();
2008         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2009 
2010         // If we have made no mistakes in the class type...
2011         if (clazztype.hasTag(CLASS)) {
2012             // Enums may not be instantiated except implicitly
2013             if (allowEnums &&
2014                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
2015                 (!env.tree.hasTag(VARDEF) ||
2016                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
2017                  ((JCVariableDecl) env.tree).init != tree))
2018                 log.error(tree.pos(), "enum.cant.be.instantiated");
2019             // Check that class is not abstract
2020             if (cdef == null &&
2021                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2022                 log.error(tree.pos(), "abstract.cant.be.instantiated",
2023                           clazztype.tsym);
2024             } else if (cdef != null && clazztype.tsym.isInterface()) {
2025                 // Check that no constructor arguments are given to
2026                 // anonymous classes implementing an interface
2027                 if (!argtypes.isEmpty())
2028                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
2029 
2030                 if (!typeargtypes.isEmpty())
2031                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2032 
2033                 // Error recovery: pretend no arguments were supplied.
2034                 argtypes = List.nil();
2035                 typeargtypes = List.nil();
2036             } else if (TreeInfo.isDiamond(tree)) {
2037                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2038                             clazztype.tsym.type.getTypeArguments(),
2039                             clazztype.tsym);
2040 
2041                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2042                 diamondEnv.info.selectSuper = cdef != null;
2043                 diamondEnv.info.pendingResolutionPhase = null;
2044 
2045                 //if the type of the instance creation expression is a class type
2046                 //apply method resolution inference (JLS 15.12.2.7). The return type
2047                 //of the resolved constructor will be a partially instantiated type
2048                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2049                             diamondEnv,
2050                             site,
2051                             argtypes,
2052                             typeargtypes);
2053                 tree.constructor = constructor.baseSymbol();
2054 
2055                 final TypeSymbol csym = clazztype.tsym;
2056                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2057                     @Override
2058                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2059                         enclosingContext.report(tree.clazz,
2060                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2061                     }
2062                 });
2063                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2064                 constructorType = checkId(tree, site,
2065                         constructor,
2066                         diamondEnv,
2067                         diamondResult);
2068 
2069                 tree.clazz.type = types.createErrorType(clazztype);
2070                 if (!constructorType.isErroneous()) {
2071                     tree.clazz.type = clazztype = constructorType.getReturnType();
2072                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2073                 }
2074                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2075             }
2076 
2077             // Resolve the called constructor under the assumption
2078             // that we are referring to a superclass instance of the
2079             // current instance (JLS ???).
2080             else {
2081                 //the following code alters some of the fields in the current
2082                 //AttrContext - hence, the current context must be dup'ed in
2083                 //order to avoid downstream failures
2084                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2085                 rsEnv.info.selectSuper = cdef != null;
2086                 rsEnv.info.pendingResolutionPhase = null;
2087                 tree.constructor = rs.resolveConstructor(
2088                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2089                 if (cdef == null) { //do not check twice!
2090                     tree.constructorType = checkId(tree,
2091                             clazztype,
2092                             tree.constructor,
2093                             rsEnv,
2094                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2095                     if (rsEnv.info.lastResolveVarargs())
2096                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2097                 }
2098                 if (cdef == null &&
2099                         !clazztype.isErroneous() &&
2100                         clazztype.getTypeArguments().nonEmpty() &&
2101                         findDiamonds) {
2102                     findDiamond(localEnv, tree, clazztype);
2103                 }
2104             }
2105 
2106             if (cdef != null) {
2107                 // We are seeing an anonymous class instance creation.
2108                 // In this case, the class instance creation
2109                 // expression
2110                 //
2111                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2112                 //
2113                 // is represented internally as
2114                 //
2115                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2116                 //
2117                 // This expression is then *transformed* as follows:
2118                 //
2119                 // (1) add a STATIC flag to the class definition
2120                 //     if the current environment is static
2121                 // (2) add an extends or implements clause
2122                 // (3) add a constructor.
2123                 //
2124                 // For instance, if C is a class, and ET is the type of E,
2125                 // the expression
2126                 //
2127                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2128                 //
2129                 // is translated to (where X is a fresh name and typarams is the
2130                 // parameter list of the super constructor):
2131                 //
2132                 //   new <typeargs1>X(<*nullchk*>E, args) where
2133                 //     X extends C<typargs2> {
2134                 //       <typarams> X(ET e, args) {
2135                 //         e.<typeargs1>super(args)
2136                 //       }
2137                 //       ...
2138                 //     }
2139                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
2140 
2141                 if (clazztype.tsym.isInterface()) {
2142                     cdef.implementing = List.of(clazz);
2143                 } else {
2144                     cdef.extending = clazz;
2145                 }
2146 
2147                 attribStat(cdef, localEnv);
2148 
2149                 checkLambdaCandidate(tree, cdef.sym, clazztype);
2150 
2151                 // If an outer instance is given,
2152                 // prefix it to the constructor arguments
2153                 // and delete it from the new expression
2154                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2155                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2156                     argtypes = argtypes.prepend(tree.encl.type);
2157                     tree.encl = null;
2158                 }
2159 
2160                 // Reassign clazztype and recompute constructor.
2161                 clazztype = cdef.sym.type;
2162                 Symbol sym = tree.constructor = rs.resolveConstructor(
2163                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
2164                 Assert.check(sym.kind < AMBIGUOUS);
2165                 tree.constructor = sym;
2166                 tree.constructorType = checkId(tree,
2167                     clazztype,
2168                     tree.constructor,
2169                     localEnv,
2170                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2171             } else {
2172                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
2173                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
2174                             tree.clazz.type.tsym);
2175                 }
2176             }
2177 
2178             if (tree.constructor != null && tree.constructor.kind == MTH)
2179                 owntype = clazztype;
2180         }
2181         result = check(tree, owntype, VAL, resultInfo);
2182         chk.validate(tree.typeargs, localEnv);
2183     }
2184     //where
2185         void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
2186             JCTypeApply ta = (JCTypeApply)tree.clazz;
2187             List<JCExpression> prevTypeargs = ta.arguments;
2188             try {
2189                 //create a 'fake' diamond AST node by removing type-argument trees
2190                 ta.arguments = List.nil();
2191                 ResultInfo findDiamondResult = new ResultInfo(VAL,
2192                         resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
2193                 Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
2194                 Type polyPt = allowPoly ?
2195                         syms.objectType :
2196                         clazztype;
2197                 if (!inferred.isErroneous() &&
2198                     (allowPoly && pt() == Infer.anyPoly ?
2199                         types.isSameType(inferred, clazztype) :
2200                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
2201                     String key = types.isSameType(clazztype, inferred) ?
2202                         "diamond.redundant.args" :
2203                         "diamond.redundant.args.1";
2204                     log.warning(tree.clazz.pos(), key, clazztype, inferred);
2205                 }
2206             } finally {
2207                 ta.arguments = prevTypeargs;
2208             }
2209         }
2210 
2211             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
2212                 if (allowLambda &&
2213                         identifyLambdaCandidate &&
2214                         clazztype.hasTag(CLASS) &&
2215                         !pt().hasTag(NONE) &&
2216                         types.isFunctionalInterface(clazztype.tsym)) {
2217                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
2218                     int count = 0;
2219                     boolean found = false;
2220                     for (Symbol sym : csym.members().getElements()) {
2221                         if ((sym.flags() & SYNTHETIC) != 0 ||
2222                                 sym.isConstructor()) continue;
2223                         count++;
2224                         if (sym.kind != MTH ||
2225                                 !sym.name.equals(descriptor.name)) continue;
2226                         Type mtype = types.memberType(clazztype, sym);
2227                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
2228                             found = true;
2229                         }
2230                     }
2231                     if (found && count == 1) {
2232                         log.note(tree.def, "potential.lambda.found");
2233                     }
2234                 }
2235             }
2236 
2237     private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
2238             Symbol sym) {
2239         // Ensure that no declaration annotations are present.
2240         // Note that a tree type might be an AnnotatedType with
2241         // empty annotations, if only declaration annotations were given.
2242         // This method will raise an error for such a type.
2243         for (JCAnnotation ai : annotations) {
2244             if (typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
2245                 log.error(ai.pos(), "annotation.type.not.applicable");
2246             }
2247         }
2248     }
2249 
2250 
2251     /** Make an attributed null check tree.
2252      */
2253     public JCExpression makeNullCheck(JCExpression arg) {
2254         // optimization: X.this is never null; skip null check
2255         Name name = TreeInfo.name(arg);
2256         if (name == names._this || name == names._super) return arg;
2257 
2258         JCTree.Tag optag = NULLCHK;
2259         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2260         tree.operator = syms.nullcheck;
2261         tree.type = arg.type;
2262         return tree;
2263     }
2264 
2265     public void visitNewArray(JCNewArray tree) {
2266         Type owntype = types.createErrorType(tree.type);
2267         Env<AttrContext> localEnv = env.dup(tree);
2268         Type elemtype;
2269         if (tree.elemtype != null) {
2270             elemtype = attribType(tree.elemtype, localEnv);
2271             chk.validate(tree.elemtype, localEnv);
2272             owntype = elemtype;
2273             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2274                 attribExpr(l.head, localEnv, syms.intType);
2275                 owntype = new ArrayType(owntype, syms.arrayClass);
2276             }
2277             if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
2278                 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
2279                         tree.elemtype.type.tsym);
2280             }
2281         } else {
2282             // we are seeing an untyped aggregate { ... }
2283             // this is allowed only if the prototype is an array
2284             if (pt().hasTag(ARRAY)) {
2285                 elemtype = types.elemtype(pt());
2286             } else {
2287                 if (!pt().hasTag(ERROR)) {
2288                     log.error(tree.pos(), "illegal.initializer.for.type",
2289                               pt());
2290                 }
2291                 elemtype = types.createErrorType(pt());
2292             }
2293         }
2294         if (tree.elems != null) {
2295             attribExprs(tree.elems, localEnv, elemtype);
2296             owntype = new ArrayType(elemtype, syms.arrayClass);
2297         }
2298         if (!types.isReifiable(elemtype))
2299             log.error(tree.pos(), "generic.array.creation");
2300         result = check(tree, owntype, VAL, resultInfo);
2301     }
2302 
2303     /*
2304      * A lambda expression can only be attributed when a target-type is available.
2305      * In addition, if the target-type is that of a functional interface whose
2306      * descriptor contains inference variables in argument position the lambda expression
2307      * is 'stuck' (see DeferredAttr).
2308      */
2309     @Override
2310     public void visitLambda(final JCLambda that) {
2311         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2312             if (pt().hasTag(NONE)) {
2313                 //lambda only allowed in assignment or method invocation/cast context
2314                 log.error(that.pos(), "unexpected.lambda");
2315             }
2316             result = that.type = types.createErrorType(pt());
2317             return;
2318         }
2319         //create an environment for attribution of the lambda expression
2320         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2321         boolean needsRecovery =
2322                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2323         try {
2324             Type currentTarget = pt();
2325             List<Type> explicitParamTypes = null;
2326             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2327                 //attribute lambda parameters
2328                 attribStats(that.params, localEnv);
2329                 explicitParamTypes = TreeInfo.types(that.params);
2330             }
2331 
2332             Type lambdaType;
2333             if (pt() != Type.recoveryType) {
2334                 /* We need to adjust the target. If the target is an
2335                  * intersection type, for example: SAM & I1 & I2 ...
2336                  * the target will be updated to SAM
2337                  */
2338                 currentTarget = targetChecker.visit(currentTarget, that);
2339                 if (explicitParamTypes != null) {
2340                     currentTarget = infer.instantiateFunctionalInterface(that,
2341                             currentTarget, explicitParamTypes, resultInfo.checkContext);
2342                 }
2343                 lambdaType = types.findDescriptorType(currentTarget);
2344             } else {
2345                 currentTarget = Type.recoveryType;
2346                 lambdaType = fallbackDescriptorType(that);
2347             }
2348 
2349             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2350 
2351             if (lambdaType.hasTag(FORALL)) {
2352                 //lambda expression target desc cannot be a generic method
2353                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2354                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2355                 result = that.type = types.createErrorType(pt());
2356                 return;
2357             }
2358 
2359             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2360                 //add param type info in the AST
2361                 List<Type> actuals = lambdaType.getParameterTypes();
2362                 List<JCVariableDecl> params = that.params;
2363 
2364                 boolean arityMismatch = false;
2365 
2366                 while (params.nonEmpty()) {
2367                     if (actuals.isEmpty()) {
2368                         //not enough actuals to perform lambda parameter inference
2369                         arityMismatch = true;
2370                     }
2371                     //reset previously set info
2372                     Type argType = arityMismatch ?
2373                             syms.errType :
2374                             actuals.head;
2375                     params.head.vartype = make.at(params.head).Type(argType);
2376                     params.head.sym = null;
2377                     actuals = actuals.isEmpty() ?
2378                             actuals :
2379                             actuals.tail;
2380                     params = params.tail;
2381                 }
2382 
2383                 //attribute lambda parameters
2384                 attribStats(that.params, localEnv);
2385 
2386                 if (arityMismatch) {
2387                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2388                         result = that.type = types.createErrorType(currentTarget);
2389                         return;
2390                 }
2391             }
2392 
2393             //from this point on, no recovery is needed; if we are in assignment context
2394             //we will be able to attribute the whole lambda body, regardless of errors;
2395             //if we are in a 'check' method context, and the lambda is not compatible
2396             //with the target-type, it will be recovered anyway in Attr.checkId
2397             needsRecovery = false;
2398 
2399             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2400                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2401                     new FunctionalReturnContext(resultInfo.checkContext);
2402 
2403             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2404                 recoveryInfo :
2405                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
2406             localEnv.info.returnResult = bodyResultInfo;
2407 
2408             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2409                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2410             } else {
2411                 JCBlock body = (JCBlock)that.body;
2412                 attribStats(body.stats, localEnv);
2413             }
2414 
2415             result = check(that, currentTarget, VAL, resultInfo);
2416 
2417             boolean isSpeculativeRound =
2418                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2419 
2420             preFlow(that);
2421             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2422 
2423             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2424 
2425             if (!isSpeculativeRound) {
2426                 //add thrown types as bounds to the thrown types free variables if needed:
2427                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2428                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2429                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asFree(lambdaType.getThrownTypes());
2430 
2431                     chk.unhandled(inferredThrownTypes, thrownTypes);
2432                 }
2433 
2434                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2435             }
2436             result = check(that, currentTarget, VAL, resultInfo);
2437         } catch (Types.FunctionDescriptorLookupError ex) {
2438             JCDiagnostic cause = ex.getDiagnostic();
2439             resultInfo.checkContext.report(that, cause);
2440             result = that.type = types.createErrorType(pt());
2441             return;
2442         } finally {
2443             localEnv.info.scope.leave();
2444             if (needsRecovery) {
2445                 attribTree(that, env, recoveryInfo);
2446             }
2447         }
2448     }
2449     //where
2450         void preFlow(JCLambda tree) {
2451             new PostAttrAnalyzer() {
2452                 @Override
2453                 public void scan(JCTree tree) {
2454                     if (tree == null ||
2455                             (tree.type != null &&
2456                             tree.type == Type.stuckType)) {
2457                         //don't touch stuck expressions!
2458                         return;
2459                     }
2460                     super.scan(tree);
2461                 }
2462             }.scan(tree);
2463         }
2464 
2465         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2466 
2467             @Override
2468             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2469                 return t.isCompound() ?
2470                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2471             }
2472 
2473             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2474                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2475                 Type target = null;
2476                 for (Type bound : ict.getExplicitComponents()) {
2477                     TypeSymbol boundSym = bound.tsym;
2478                     if (types.isFunctionalInterface(boundSym) &&
2479                             types.findDescriptorSymbol(boundSym) == desc) {
2480                         target = bound;
2481                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2482                         //bound must be an interface
2483                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
2484                     }
2485                 }
2486                 return target != null ?
2487                         target :
2488                         ict.getExplicitComponents().head; //error recovery
2489             }
2490 
2491             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2492                 ListBuffer<Type> targs = new ListBuffer<>();
2493                 ListBuffer<Type> supertypes = new ListBuffer<>();
2494                 for (Type i : ict.interfaces_field) {
2495                     if (i.isParameterized()) {
2496                         targs.appendList(i.tsym.type.allparams());
2497                     }
2498                     supertypes.append(i.tsym.type);
2499                 }
2500                 IntersectionClassType notionalIntf =
2501                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
2502                 notionalIntf.allparams_field = targs.toList();
2503                 notionalIntf.tsym.flags_field |= INTERFACE;
2504                 return notionalIntf.tsym;
2505             }
2506 
2507             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2508                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2509                         diags.fragment(key, args)));
2510             }
2511         };
2512 
2513         private Type fallbackDescriptorType(JCExpression tree) {
2514             switch (tree.getTag()) {
2515                 case LAMBDA:
2516                     JCLambda lambda = (JCLambda)tree;
2517                     List<Type> argtypes = List.nil();
2518                     for (JCVariableDecl param : lambda.params) {
2519                         argtypes = param.vartype != null ?
2520                                 argtypes.append(param.vartype.type) :
2521                                 argtypes.append(syms.errType);
2522                     }
2523                     return new MethodType(argtypes, Type.recoveryType,
2524                             List.of(syms.throwableType), syms.methodClass);
2525                 case REFERENCE:
2526                     return new MethodType(List.<Type>nil(), Type.recoveryType,
2527                             List.of(syms.throwableType), syms.methodClass);
2528                 default:
2529                     Assert.error("Cannot get here!");
2530             }
2531             return null;
2532         }
2533 
2534         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2535                 final InferenceContext inferenceContext, final Type... ts) {
2536             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2537         }
2538 
2539         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2540                 final InferenceContext inferenceContext, final List<Type> ts) {
2541             if (inferenceContext.free(ts)) {
2542                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2543                     @Override
2544                     public void typesInferred(InferenceContext inferenceContext) {
2545                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2546                     }
2547                 });
2548             } else {
2549                 for (Type t : ts) {
2550                     rs.checkAccessibleType(env, t);
2551                 }
2552             }
2553         }
2554 
2555         /**
2556          * Lambda/method reference have a special check context that ensures
2557          * that i.e. a lambda return type is compatible with the expected
2558          * type according to both the inherited context and the assignment
2559          * context.
2560          */
2561         class FunctionalReturnContext extends Check.NestedCheckContext {
2562 
2563             FunctionalReturnContext(CheckContext enclosingContext) {
2564                 super(enclosingContext);
2565             }
2566 
2567             @Override
2568             public boolean compatible(Type found, Type req, Warner warn) {
2569                 //return type must be compatible in both current context and assignment context
2570                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req), warn);
2571             }
2572 
2573             @Override
2574             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2575                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2576             }
2577         }
2578 
2579         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2580 
2581             JCExpression expr;
2582 
2583             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2584                 super(enclosingContext);
2585                 this.expr = expr;
2586             }
2587 
2588             @Override
2589             public boolean compatible(Type found, Type req, Warner warn) {
2590                 //a void return is compatible with an expression statement lambda
2591                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2592                         super.compatible(found, req, warn);
2593             }
2594         }
2595 
2596         /**
2597         * Lambda compatibility. Check that given return types, thrown types, parameter types
2598         * are compatible with the expected functional interface descriptor. This means that:
2599         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2600         * types must be compatible with the return type of the expected descriptor.
2601         */
2602         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2603             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
2604 
2605             //return values have already been checked - but if lambda has no return
2606             //values, we must ensure that void/value compatibility is correct;
2607             //this amounts at checking that, if a lambda body can complete normally,
2608             //the descriptor's return type must be void
2609             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2610                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2611                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2612                         diags.fragment("missing.ret.val", returnType)));
2613             }
2614 
2615             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes());
2616             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2617                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2618             }
2619         }
2620 
2621         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2622             Env<AttrContext> lambdaEnv;
2623             Symbol owner = env.info.scope.owner;
2624             if (owner.kind == VAR && owner.owner.kind == TYP) {
2625                 //field initializer
2626                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
2627                 lambdaEnv.info.scope.owner =
2628                     new MethodSymbol((owner.flags() & STATIC) | BLOCK, names.empty, null,
2629                                      env.info.scope.owner);
2630             } else {
2631                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2632             }
2633             return lambdaEnv;
2634         }
2635 
2636     @Override
2637     public void visitReference(final JCMemberReference that) {
2638         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2639             if (pt().hasTag(NONE)) {
2640                 //method reference only allowed in assignment or method invocation/cast context
2641                 log.error(that.pos(), "unexpected.mref");
2642             }
2643             result = that.type = types.createErrorType(pt());
2644             return;
2645         }
2646         final Env<AttrContext> localEnv = env.dup(that);
2647         try {
2648             //attribute member reference qualifier - if this is a constructor
2649             //reference, the expected kind must be a type
2650             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2651 
2652             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2653                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2654                 if (!exprType.isErroneous() &&
2655                     exprType.isRaw() &&
2656                     that.typeargs != null) {
2657                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2658                         diags.fragment("mref.infer.and.explicit.params"));
2659                     exprType = types.createErrorType(exprType);
2660                 }
2661             }
2662 
2663             if (exprType.isErroneous()) {
2664                 //if the qualifier expression contains problems,
2665                 //give up attribution of method reference
2666                 result = that.type = exprType;
2667                 return;
2668             }
2669 
2670             if (TreeInfo.isStaticSelector(that.expr, names)) {
2671                 //if the qualifier is a type, validate it; raw warning check is
2672                 //omitted as we don't know at this stage as to whether this is a
2673                 //raw selector (because of inference)
2674                 chk.validate(that.expr, env, false);
2675             }
2676 
2677             //attrib type-arguments
2678             List<Type> typeargtypes = List.nil();
2679             if (that.typeargs != null) {
2680                 typeargtypes = attribTypes(that.typeargs, localEnv);
2681             }
2682 
2683             Type target;
2684             Type desc;
2685             if (pt() != Type.recoveryType) {
2686                 target = targetChecker.visit(pt(), that);
2687                 desc = types.findDescriptorType(target);
2688             } else {
2689                 target = Type.recoveryType;
2690                 desc = fallbackDescriptorType(that);
2691             }
2692 
2693             setFunctionalInfo(localEnv, that, pt(), desc, target, resultInfo.checkContext);
2694             List<Type> argtypes = desc.getParameterTypes();
2695             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2696 
2697             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2698                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2699             }
2700 
2701             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2702             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2703             try {
2704                 refResult = rs.resolveMemberReference(that.pos(), localEnv, that, that.expr.type,
2705                         that.name, argtypes, typeargtypes, true, referenceCheck,
2706                         resultInfo.checkContext.inferenceContext());
2707             } finally {
2708                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2709             }
2710 
2711             Symbol refSym = refResult.fst;
2712             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2713 
2714             if (refSym.kind != MTH) {
2715                 boolean targetError;
2716                 switch (refSym.kind) {
2717                     case ABSENT_MTH:
2718                         targetError = false;
2719                         break;
2720                     case WRONG_MTH:
2721                     case WRONG_MTHS:
2722                     case AMBIGUOUS:
2723                     case HIDDEN:
2724                     case STATICERR:
2725                     case MISSING_ENCL:
2726                         targetError = true;
2727                         break;
2728                     default:
2729                         Assert.error("unexpected result kind " + refSym.kind);
2730                         targetError = false;
2731                 }
2732 
2733                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2734                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2735 
2736                 JCDiagnostic.DiagnosticType diagKind = targetError ?
2737                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2738 
2739                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2740                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2741 
2742                 if (targetError && target == Type.recoveryType) {
2743                     //a target error doesn't make sense during recovery stage
2744                     //as we don't know what actual parameter types are
2745                     result = that.type = target;
2746                     return;
2747                 } else {
2748                     if (targetError) {
2749                         resultInfo.checkContext.report(that, diag);
2750                     } else {
2751                         log.report(diag);
2752                     }
2753                     result = that.type = types.createErrorType(target);
2754                     return;
2755                 }
2756             }
2757 
2758             that.sym = refSym.baseSymbol();
2759             that.kind = lookupHelper.referenceKind(that.sym);
2760             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2761 
2762             if (desc.getReturnType() == Type.recoveryType) {
2763                 // stop here
2764                 result = that.type = target;
2765                 return;
2766             }
2767 
2768             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2769 
2770                 if (that.getMode() == ReferenceMode.INVOKE &&
2771                         TreeInfo.isStaticSelector(that.expr, names) &&
2772                         that.kind.isUnbound() &&
2773                         !desc.getParameterTypes().head.isParameterized()) {
2774                     chk.checkRaw(that.expr, localEnv);
2775                 }
2776 
2777                 if (!that.kind.isUnbound() &&
2778                         that.getMode() == ReferenceMode.INVOKE &&
2779                         TreeInfo.isStaticSelector(that.expr, names) &&
2780                         !that.sym.isStatic()) {
2781                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2782                             diags.fragment("non-static.cant.be.ref", Kinds.kindName(refSym), refSym));
2783                     result = that.type = types.createErrorType(target);
2784                     return;
2785                 }
2786 
2787                 if (that.kind.isUnbound() &&
2788                         that.getMode() == ReferenceMode.INVOKE &&
2789                         TreeInfo.isStaticSelector(that.expr, names) &&
2790                         that.sym.isStatic()) {
2791                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2792                             diags.fragment("static.method.in.unbound.lookup", Kinds.kindName(refSym), refSym));
2793                     result = that.type = types.createErrorType(target);
2794                     return;
2795                 }
2796 
2797                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2798                         exprType.getTypeArguments().nonEmpty()) {
2799                     //static ref with class type-args
2800                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2801                             diags.fragment("static.mref.with.targs"));
2802                     result = that.type = types.createErrorType(target);
2803                     return;
2804                 }
2805 
2806                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
2807                         !that.kind.isUnbound()) {
2808                     //no static bound mrefs
2809                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2810                             diags.fragment("static.bound.mref"));
2811                     result = that.type = types.createErrorType(target);
2812                     return;
2813                 }
2814 
2815                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2816                     // Check that super-qualified symbols are not abstract (JLS)
2817                     rs.checkNonAbstract(that.pos(), that.sym);
2818                 }
2819             }
2820 
2821             ResultInfo checkInfo =
2822                     resultInfo.dup(newMethodTemplate(
2823                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2824                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes));
2825 
2826             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2827 
2828             if (that.kind.isUnbound() &&
2829                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2830                 //re-generate inference constraints for unbound receiver
2831                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asFree(argtypes.head), exprType)) {
2832                     //cannot happen as this has already been checked - we just need
2833                     //to regenerate the inference constraints, as that has been lost
2834                     //as a result of the call to inferenceContext.save()
2835                     Assert.error("Can't get here");
2836                 }
2837             }
2838 
2839             if (!refType.isErroneous()) {
2840                 refType = types.createMethodTypeWithReturn(refType,
2841                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2842             }
2843 
2844             //go ahead with standard method reference compatibility check - note that param check
2845             //is a no-op (as this has been taken care during method applicability)
2846             boolean isSpeculativeRound =
2847                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2848             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2849             if (!isSpeculativeRound) {
2850                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
2851             }
2852             result = check(that, target, VAL, resultInfo);
2853         } catch (Types.FunctionDescriptorLookupError ex) {
2854             JCDiagnostic cause = ex.getDiagnostic();
2855             resultInfo.checkContext.report(that, cause);
2856             result = that.type = types.createErrorType(pt());
2857             return;
2858         }
2859     }
2860     //where
2861         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2862             //if this is a constructor reference, the expected kind must be a type
2863             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
2864         }
2865 
2866 
2867     @SuppressWarnings("fallthrough")
2868     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2869         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
2870 
2871         Type resType;
2872         switch (tree.getMode()) {
2873             case NEW:
2874                 if (!tree.expr.type.isRaw()) {
2875                     resType = tree.expr.type;
2876                     break;
2877                 }
2878             default:
2879                 resType = refType.getReturnType();
2880         }
2881 
2882         Type incompatibleReturnType = resType;
2883 
2884         if (returnType.hasTag(VOID)) {
2885             incompatibleReturnType = null;
2886         }
2887 
2888         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2889             if (resType.isErroneous() ||
2890                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2891                 incompatibleReturnType = null;
2892             }
2893         }
2894 
2895         if (incompatibleReturnType != null) {
2896             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2897                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2898         }
2899 
2900         if (!speculativeAttr) {
2901             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
2902             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2903                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2904             }
2905         }
2906     }
2907 
2908     /**
2909      * Set functional type info on the underlying AST. Note: as the target descriptor
2910      * might contain inference variables, we might need to register an hook in the
2911      * current inference context.
2912      */
2913     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
2914             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
2915         if (checkContext.inferenceContext().free(descriptorType)) {
2916             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2917                 public void typesInferred(InferenceContext inferenceContext) {
2918                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
2919                             inferenceContext.asInstType(primaryTarget), checkContext);
2920                 }
2921             });
2922         } else {
2923             ListBuffer<Type> targets = new ListBuffer<>();
2924             if (pt.hasTag(CLASS)) {
2925                 if (pt.isCompound()) {
2926                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
2927                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2928                         if (t != primaryTarget) {
2929                             targets.append(types.removeWildcards(t));
2930                         }
2931                     }
2932                 } else {
2933                     targets.append(types.removeWildcards(primaryTarget));
2934                 }
2935             }
2936             fExpr.targets = targets.toList();
2937             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2938                     pt != Type.recoveryType) {
2939                 //check that functional interface class is well-formed
2940                 ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
2941                         names.empty, List.of(fExpr.targets.head), ABSTRACT);
2942                 if (csym != null) {
2943                     chk.checkImplementations(env.tree, csym, csym);
2944                 }
2945             }
2946         }
2947     }
2948 
2949     public void visitParens(JCParens tree) {
2950         Type owntype = attribTree(tree.expr, env, resultInfo);
2951         result = check(tree, owntype, pkind(), resultInfo);
2952         Symbol sym = TreeInfo.symbol(tree);
2953         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
2954             log.error(tree.pos(), "illegal.start.of.type");
2955     }
2956 
2957     public void visitAssign(JCAssign tree) {
2958         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
2959         Type capturedType = capture(owntype);
2960         attribExpr(tree.rhs, env, owntype);
2961         result = check(tree, capturedType, VAL, resultInfo);
2962     }
2963 
2964     public void visitAssignop(JCAssignOp tree) {
2965         // Attribute arguments.
2966         Type owntype = attribTree(tree.lhs, env, varInfo);
2967         Type operand = attribExpr(tree.rhs, env);
2968         // Find operator.
2969         Symbol operator = tree.operator = rs.resolveBinaryOperator(
2970             tree.pos(), tree.getTag().noAssignOp(), env,
2971             owntype, operand);
2972 
2973         if (operator.kind == MTH &&
2974                 !owntype.isErroneous() &&
2975                 !operand.isErroneous()) {
2976             chk.checkOperator(tree.pos(),
2977                               (OperatorSymbol)operator,
2978                               tree.getTag().noAssignOp(),
2979                               owntype,
2980                               operand);
2981             chk.checkDivZero(tree.rhs.pos(), operator, operand);
2982             chk.checkCastable(tree.rhs.pos(),
2983                               operator.type.getReturnType(),
2984                               owntype);
2985         }
2986         result = check(tree, owntype, VAL, resultInfo);
2987     }
2988 
2989     public void visitUnary(JCUnary tree) {
2990         // Attribute arguments.
2991         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
2992             ? attribTree(tree.arg, env, varInfo)
2993             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
2994 
2995         // Find operator.
2996         Symbol operator = tree.operator =
2997             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
2998 
2999         Type owntype = types.createErrorType(tree.type);
3000         if (operator.kind == MTH &&
3001                 !argtype.isErroneous()) {
3002             owntype = (tree.getTag().isIncOrDecUnaryOp())
3003                 ? tree.arg.type
3004                 : operator.type.getReturnType();
3005             int opc = ((OperatorSymbol)operator).opcode;
3006 
3007             // If the argument is constant, fold it.
3008             if (argtype.constValue() != null) {
3009                 Type ctype = cfolder.fold1(opc, argtype);
3010                 if (ctype != null) {
3011                     owntype = cfolder.coerce(ctype, owntype);
3012 
3013                     // Remove constant types from arguments to
3014                     // conserve space. The parser will fold concatenations
3015                     // of string literals; the code here also
3016                     // gets rid of intermediate results when some of the
3017                     // operands are constant identifiers.
3018                     if (tree.arg.type.tsym == syms.stringType.tsym) {
3019                         tree.arg.type = syms.stringType;
3020                     }
3021                 }
3022             }
3023         }
3024         result = check(tree, owntype, VAL, resultInfo);
3025     }
3026 
3027     public void visitBinary(JCBinary tree) {
3028         // Attribute arguments.
3029         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3030         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
3031 
3032         // Find operator.
3033         Symbol operator = tree.operator =
3034             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
3035 
3036         Type owntype = types.createErrorType(tree.type);
3037         if (operator.kind == MTH &&
3038                 !left.isErroneous() &&
3039                 !right.isErroneous()) {
3040             owntype = operator.type.getReturnType();
3041             // This will figure out when unboxing can happen and
3042             // choose the right comparison operator.
3043             int opc = chk.checkOperator(tree.lhs.pos(),
3044                                         (OperatorSymbol)operator,
3045                                         tree.getTag(),
3046                                         left,
3047                                         right);
3048 
3049             // If both arguments are constants, fold them.
3050             if (left.constValue() != null && right.constValue() != null) {
3051                 Type ctype = cfolder.fold2(opc, left, right);
3052                 if (ctype != null) {
3053                     owntype = cfolder.coerce(ctype, owntype);
3054 
3055                     // Remove constant types from arguments to
3056                     // conserve space. The parser will fold concatenations
3057                     // of string literals; the code here also
3058                     // gets rid of intermediate results when some of the
3059                     // operands are constant identifiers.
3060                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
3061                         tree.lhs.type = syms.stringType;
3062                     }
3063                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
3064                         tree.rhs.type = syms.stringType;
3065                     }
3066                 }
3067             }
3068 
3069             // Check that argument types of a reference ==, != are
3070             // castable to each other, (JLS 15.21).  Note: unboxing
3071             // comparisons will not have an acmp* opc at this point.
3072             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3073                 if (!types.isEqualityComparable(left, right,
3074                                                 new Warner(tree.pos()))) {
3075                     log.error(tree.pos(), "incomparable.types", left, right);
3076                 }
3077             }
3078 
3079             chk.checkDivZero(tree.rhs.pos(), operator, right);
3080         }
3081         result = check(tree, owntype, VAL, resultInfo);
3082     }
3083 
3084     public void visitTypeCast(final JCTypeCast tree) {
3085         Type clazztype = attribType(tree.clazz, env);
3086         chk.validate(tree.clazz, env, false);
3087         //a fresh environment is required for 292 inference to work properly ---
3088         //see Infer.instantiatePolymorphicSignatureInstance()
3089         Env<AttrContext> localEnv = env.dup(tree);
3090         //should we propagate the target type?
3091         final ResultInfo castInfo;
3092         JCExpression expr = TreeInfo.skipParens(tree.expr);
3093         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3094         if (isPoly) {
3095             //expression is a poly - we need to propagate target type info
3096             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
3097                 @Override
3098                 public boolean compatible(Type found, Type req, Warner warn) {
3099                     return types.isCastable(found, req, warn);
3100                 }
3101             });
3102         } else {
3103             //standalone cast - target-type info is not propagated
3104             castInfo = unknownExprInfo;
3105         }
3106         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3107         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3108         if (exprtype.constValue() != null)
3109             owntype = cfolder.coerce(exprtype, owntype);
3110         result = check(tree, capture(owntype), VAL, resultInfo);
3111         if (!isPoly)
3112             chk.checkRedundantCast(localEnv, tree);
3113     }
3114 
3115     public void visitTypeTest(JCInstanceOf tree) {
3116         Type exprtype = chk.checkNullOrRefType(
3117             tree.expr.pos(), attribExpr(tree.expr, env));
3118         Type clazztype = attribType(tree.clazz, env);
3119         if (!clazztype.hasTag(TYPEVAR)) {
3120             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3121         }
3122         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3123             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3124             clazztype = types.createErrorType(clazztype);
3125         }
3126         chk.validate(tree.clazz, env, false);
3127         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3128         result = check(tree, syms.booleanType, VAL, resultInfo);
3129     }
3130 
3131     public void visitIndexed(JCArrayAccess tree) {
3132         Type owntype = types.createErrorType(tree.type);
3133         Type atype = attribExpr(tree.indexed, env);
3134         attribExpr(tree.index, env, syms.intType);
3135         if (types.isArray(atype))
3136             owntype = types.elemtype(atype);
3137         else if (!atype.hasTag(ERROR))
3138             log.error(tree.pos(), "array.req.but.found", atype);
3139         if ((pkind() & VAR) == 0) owntype = capture(owntype);
3140         result = check(tree, owntype, VAR, resultInfo);
3141     }
3142 
3143     public void visitIdent(JCIdent tree) {
3144         Symbol sym;
3145 
3146         // Find symbol
3147         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3148             // If we are looking for a method, the prototype `pt' will be a
3149             // method type with the type of the call's arguments as parameters.
3150             env.info.pendingResolutionPhase = null;
3151             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3152         } else if (tree.sym != null && tree.sym.kind != VAR) {
3153             sym = tree.sym;
3154         } else {
3155             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3156         }
3157         tree.sym = sym;
3158 
3159         // (1) Also find the environment current for the class where
3160         //     sym is defined (`symEnv').
3161         // Only for pre-tiger versions (1.4 and earlier):
3162         // (2) Also determine whether we access symbol out of an anonymous
3163         //     class in a this or super call.  This is illegal for instance
3164         //     members since such classes don't carry a this$n link.
3165         //     (`noOuterThisPath').
3166         Env<AttrContext> symEnv = env;
3167         boolean noOuterThisPath = false;
3168         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3169             (sym.kind & (VAR | MTH | TYP)) != 0 &&
3170             sym.owner.kind == TYP &&
3171             tree.name != names._this && tree.name != names._super) {
3172 
3173             // Find environment in which identifier is defined.
3174             while (symEnv.outer != null &&
3175                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3176                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3177                     noOuterThisPath = !allowAnonOuterThis;
3178                 symEnv = symEnv.outer;
3179             }
3180         }
3181 
3182         // If symbol is a variable, ...
3183         if (sym.kind == VAR) {
3184             VarSymbol v = (VarSymbol)sym;
3185 
3186             // ..., evaluate its initializer, if it has one, and check for
3187             // illegal forward reference.
3188             checkInit(tree, env, v, false);
3189 
3190             // If we are expecting a variable (as opposed to a value), check
3191             // that the variable is assignable in the current environment.
3192             if (pkind() == VAR)
3193                 checkAssignable(tree.pos(), v, null, env);
3194         }
3195 
3196         // In a constructor body,
3197         // if symbol is a field or instance method, check that it is
3198         // not accessed before the supertype constructor is called.
3199         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3200             (sym.kind & (VAR | MTH)) != 0 &&
3201             sym.owner.kind == TYP &&
3202             (sym.flags() & STATIC) == 0) {
3203             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
3204         }
3205         Env<AttrContext> env1 = env;
3206         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
3207             // If the found symbol is inaccessible, then it is
3208             // accessed through an enclosing instance.  Locate this
3209             // enclosing instance:
3210             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3211                 env1 = env1.outer;
3212         }
3213         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3214     }
3215 
3216     public void visitSelect(JCFieldAccess tree) {
3217         // Determine the expected kind of the qualifier expression.
3218         int skind = 0;
3219         if (tree.name == names._this || tree.name == names._super ||
3220             tree.name == names._class)
3221         {
3222             skind = TYP;
3223         } else {
3224             if ((pkind() & PCK) != 0) skind = skind | PCK;
3225             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
3226             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
3227         }
3228 
3229         // Attribute the qualifier expression, and determine its symbol (if any).
3230         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3231         if ((pkind() & (PCK | TYP)) == 0)
3232             site = capture(site); // Capture field access
3233 
3234         // don't allow T.class T[].class, etc
3235         if (skind == TYP) {
3236             Type elt = site;
3237             while (elt.hasTag(ARRAY))
3238                 elt = ((ArrayType)elt.unannotatedType()).elemtype;
3239             if (elt.hasTag(TYPEVAR)) {
3240                 log.error(tree.pos(), "type.var.cant.be.deref");
3241                 result = types.createErrorType(tree.type);
3242                 return;
3243             }
3244         }
3245 
3246         // If qualifier symbol is a type or `super', assert `selectSuper'
3247         // for the selection. This is relevant for determining whether
3248         // protected symbols are accessible.
3249         Symbol sitesym = TreeInfo.symbol(tree.selected);
3250         boolean selectSuperPrev = env.info.selectSuper;
3251         env.info.selectSuper =
3252             sitesym != null &&
3253             sitesym.name == names._super;
3254 
3255         // Determine the symbol represented by the selection.
3256         env.info.pendingResolutionPhase = null;
3257         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3258         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
3259             site = capture(site);
3260             sym = selectSym(tree, sitesym, site, env, resultInfo);
3261         }
3262         boolean varArgs = env.info.lastResolveVarargs();
3263         tree.sym = sym;
3264 
3265         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3266             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
3267             site = capture(site);
3268         }
3269 
3270         // If that symbol is a variable, ...
3271         if (sym.kind == VAR) {
3272             VarSymbol v = (VarSymbol)sym;
3273 
3274             // ..., evaluate its initializer, if it has one, and check for
3275             // illegal forward reference.
3276             checkInit(tree, env, v, true);
3277 
3278             // If we are expecting a variable (as opposed to a value), check
3279             // that the variable is assignable in the current environment.
3280             if (pkind() == VAR)
3281                 checkAssignable(tree.pos(), v, tree.selected, env);
3282         }
3283 
3284         if (sitesym != null &&
3285                 sitesym.kind == VAR &&
3286                 ((VarSymbol)sitesym).isResourceVariable() &&
3287                 sym.kind == MTH &&
3288                 sym.name.equals(names.close) &&
3289                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3290                 env.info.lint.isEnabled(LintCategory.TRY)) {
3291             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3292         }
3293 
3294         // Disallow selecting a type from an expression
3295         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
3296             tree.type = check(tree.selected, pt(),
3297                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
3298         }
3299 
3300         if (isType(sitesym)) {
3301             if (sym.name == names._this) {
3302                 // If `C' is the currently compiled class, check that
3303                 // C.this' does not appear in a call to a super(...)
3304                 if (env.info.isSelfCall &&
3305                     site.tsym == env.enclClass.sym) {
3306                     chk.earlyRefError(tree.pos(), sym);
3307                 }
3308             } else {
3309                 // Check if type-qualified fields or methods are static (JLS)
3310                 if ((sym.flags() & STATIC) == 0 &&
3311                     !env.next.tree.hasTag(REFERENCE) &&
3312                     sym.name != names._super &&
3313                     (sym.kind == VAR || sym.kind == MTH)) {
3314                     rs.accessBase(rs.new StaticError(sym),
3315                               tree.pos(), site, sym.name, true);
3316                 }
3317             }
3318         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
3319             // If the qualified item is not a type and the selected item is static, report
3320             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3321             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
3322         }
3323 
3324         // If we are selecting an instance member via a `super', ...
3325         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3326 
3327             // Check that super-qualified symbols are not abstract (JLS)
3328             rs.checkNonAbstract(tree.pos(), sym);
3329 
3330             if (site.isRaw()) {
3331                 // Determine argument types for site.
3332                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3333                 if (site1 != null) site = site1;
3334             }
3335         }
3336 
3337         env.info.selectSuper = selectSuperPrev;
3338         result = checkId(tree, site, sym, env, resultInfo);
3339     }
3340     //where
3341         /** Determine symbol referenced by a Select expression,
3342          *
3343          *  @param tree   The select tree.
3344          *  @param site   The type of the selected expression,
3345          *  @param env    The current environment.
3346          *  @param resultInfo The current result.
3347          */
3348         private Symbol selectSym(JCFieldAccess tree,
3349                                  Symbol location,
3350                                  Type site,
3351                                  Env<AttrContext> env,
3352                                  ResultInfo resultInfo) {
3353             DiagnosticPosition pos = tree.pos();
3354             Name name = tree.name;
3355             switch (site.getTag()) {
3356             case PACKAGE:
3357                 return rs.accessBase(
3358                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3359                     pos, location, site, name, true);
3360             case ARRAY:
3361             case CLASS:
3362                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3363                     return rs.resolveQualifiedMethod(
3364                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3365                 } else if (name == names._this || name == names._super) {
3366                     return rs.resolveSelf(pos, env, site.tsym, name);
3367                 } else if (name == names._class) {
3368                     // In this case, we have already made sure in
3369                     // visitSelect that qualifier expression is a type.
3370                     Type t = syms.classType;
3371                     List<Type> typeargs = allowGenerics
3372                         ? List.of(types.erasure(site))
3373                         : List.<Type>nil();
3374                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3375                     return new VarSymbol(
3376                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3377                 } else {
3378                     // We are seeing a plain identifier as selector.
3379                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3380                     if ((resultInfo.pkind & ERRONEOUS) == 0)
3381                         sym = rs.accessBase(sym, pos, location, site, name, true);
3382                     return sym;
3383                 }
3384             case WILDCARD:
3385                 throw new AssertionError(tree);
3386             case TYPEVAR:
3387                 // Normally, site.getUpperBound() shouldn't be null.
3388                 // It should only happen during memberEnter/attribBase
3389                 // when determining the super type which *must* beac
3390                 // done before attributing the type variables.  In
3391                 // other words, we are seeing this illegal program:
3392                 // class B<T> extends A<T.foo> {}
3393                 Symbol sym = (site.getUpperBound() != null)
3394                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3395                     : null;
3396                 if (sym == null) {
3397                     log.error(pos, "type.var.cant.be.deref");
3398                     return syms.errSymbol;
3399                 } else {
3400                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3401                         rs.new AccessError(env, site, sym) :
3402                                 sym;
3403                     rs.accessBase(sym2, pos, location, site, name, true);
3404                     return sym;
3405                 }
3406             case ERROR:
3407                 // preserve identifier names through errors
3408                 return types.createErrorType(name, site.tsym, site).tsym;
3409             default:
3410                 // The qualifier expression is of a primitive type -- only
3411                 // .class is allowed for these.
3412                 if (name == names._class) {
3413                     // In this case, we have already made sure in Select that
3414                     // qualifier expression is a type.
3415                     Type t = syms.classType;
3416                     Type arg = types.boxedClass(site).type;
3417                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3418                     return new VarSymbol(
3419                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3420                 } else {
3421                     log.error(pos, "cant.deref", site);
3422                     return syms.errSymbol;
3423                 }
3424             }
3425         }
3426 
3427         /** Determine type of identifier or select expression and check that
3428          *  (1) the referenced symbol is not deprecated
3429          *  (2) the symbol's type is safe (@see checkSafe)
3430          *  (3) if symbol is a variable, check that its type and kind are
3431          *      compatible with the prototype and protokind.
3432          *  (4) if symbol is an instance field of a raw type,
3433          *      which is being assigned to, issue an unchecked warning if its
3434          *      type changes under erasure.
3435          *  (5) if symbol is an instance method of a raw type, issue an
3436          *      unchecked warning if its argument types change under erasure.
3437          *  If checks succeed:
3438          *    If symbol is a constant, return its constant type
3439          *    else if symbol is a method, return its result type
3440          *    otherwise return its type.
3441          *  Otherwise return errType.
3442          *
3443          *  @param tree       The syntax tree representing the identifier
3444          *  @param site       If this is a select, the type of the selected
3445          *                    expression, otherwise the type of the current class.
3446          *  @param sym        The symbol representing the identifier.
3447          *  @param env        The current environment.
3448          *  @param resultInfo    The expected result
3449          */
3450         Type checkId(JCTree tree,
3451                      Type site,
3452                      Symbol sym,
3453                      Env<AttrContext> env,
3454                      ResultInfo resultInfo) {
3455             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3456                     checkMethodId(tree, site, sym, env, resultInfo) :
3457                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3458         }
3459 
3460         Type checkMethodId(JCTree tree,
3461                      Type site,
3462                      Symbol sym,
3463                      Env<AttrContext> env,
3464                      ResultInfo resultInfo) {
3465             boolean isPolymorhicSignature =
3466                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3467             return isPolymorhicSignature ?
3468                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3469                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
3470         }
3471 
3472         Type checkSigPolyMethodId(JCTree tree,
3473                      Type site,
3474                      Symbol sym,
3475                      Env<AttrContext> env,
3476                      ResultInfo resultInfo) {
3477             //recover original symbol for signature polymorphic methods
3478             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3479             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3480             return sym.type;
3481         }
3482 
3483         Type checkMethodIdInternal(JCTree tree,
3484                      Type site,
3485                      Symbol sym,
3486                      Env<AttrContext> env,
3487                      ResultInfo resultInfo) {
3488             if ((resultInfo.pkind & POLY) != 0) {
3489                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3490                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3491                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3492                 return owntype;
3493             } else {
3494                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3495             }
3496         }
3497 
3498         Type checkIdInternal(JCTree tree,
3499                      Type site,
3500                      Symbol sym,
3501                      Type pt,
3502                      Env<AttrContext> env,
3503                      ResultInfo resultInfo) {
3504             if (pt.isErroneous()) {
3505                 return types.createErrorType(site);
3506             }
3507             Type owntype; // The computed type of this identifier occurrence.
3508             switch (sym.kind) {
3509             case TYP:
3510                 // For types, the computed type equals the symbol's type,
3511                 // except for two situations:
3512                 owntype = sym.type;
3513                 if (owntype.hasTag(CLASS)) {
3514                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3515                     Type ownOuter = owntype.getEnclosingType();
3516 
3517                     // (a) If the symbol's type is parameterized, erase it
3518                     // because no type parameters were given.
3519                     // We recover generic outer type later in visitTypeApply.
3520                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3521                         owntype = types.erasure(owntype);
3522                     }
3523 
3524                     // (b) If the symbol's type is an inner class, then
3525                     // we have to interpret its outer type as a superclass
3526                     // of the site type. Example:
3527                     //
3528                     // class Tree<A> { class Visitor { ... } }
3529                     // class PointTree extends Tree<Point> { ... }
3530                     // ...PointTree.Visitor...
3531                     //
3532                     // Then the type of the last expression above is
3533                     // Tree<Point>.Visitor.
3534                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3535                         Type normOuter = site;
3536                         if (normOuter.hasTag(CLASS)) {
3537                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3538                             if (site.isAnnotated()) {
3539                                 // Propagate any type annotations.
3540                                 // TODO: should asEnclosingSuper do this?
3541                                 // Note that the type annotations in site will be updated
3542                                 // by annotateType. Therefore, modify site instead
3543                                 // of creating a new AnnotatedType.
3544                                 ((AnnotatedType)site).underlyingType = normOuter;
3545                                 normOuter = site;
3546                             }
3547                         }
3548                         if (normOuter == null) // perhaps from an import
3549                             normOuter = types.erasure(ownOuter);
3550                         if (normOuter != ownOuter)
3551                             owntype = new ClassType(
3552                                 normOuter, List.<Type>nil(), owntype.tsym);
3553                     }
3554                 }
3555                 break;
3556             case VAR:
3557                 VarSymbol v = (VarSymbol)sym;
3558                 // Test (4): if symbol is an instance field of a raw type,
3559                 // which is being assigned to, issue an unchecked warning if
3560                 // its type changes under erasure.
3561                 if (allowGenerics &&
3562                     resultInfo.pkind == VAR &&
3563                     v.owner.kind == TYP &&
3564                     (v.flags() & STATIC) == 0 &&
3565                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3566                     Type s = types.asOuterSuper(site, v.owner);
3567                     if (s != null &&
3568                         s.isRaw() &&
3569                         !types.isSameType(v.type, v.erasure(types))) {
3570                         chk.warnUnchecked(tree.pos(),
3571                                           "unchecked.assign.to.var",
3572                                           v, s);
3573                     }
3574                 }
3575                 // The computed type of a variable is the type of the
3576                 // variable symbol, taken as a member of the site type.
3577                 owntype = (sym.owner.kind == TYP &&
3578                            sym.name != names._this && sym.name != names._super)
3579                     ? types.memberType(site, sym)
3580                     : sym.type;
3581 
3582                 // If the variable is a constant, record constant value in
3583                 // computed type.
3584                 if (v.getConstValue() != null && isStaticReference(tree))
3585                     owntype = owntype.constType(v.getConstValue());
3586 
3587                 if (resultInfo.pkind == VAL) {
3588                     owntype = capture(owntype); // capture "names as expressions"
3589                 }
3590                 break;
3591             case MTH: {
3592                 owntype = checkMethod(site, sym,
3593                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3594                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3595                         resultInfo.pt.getTypeArguments());
3596                 break;
3597             }
3598             case PCK: case ERR:
3599                 owntype = sym.type;
3600                 break;
3601             default:
3602                 throw new AssertionError("unexpected kind: " + sym.kind +
3603                                          " in tree " + tree);
3604             }
3605 
3606             // Test (1): emit a `deprecation' warning if symbol is deprecated.
3607             // (for constructors, the error was given when the constructor was
3608             // resolved)
3609 
3610             if (sym.name != names.init) {
3611                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3612                 chk.checkSunAPI(tree.pos(), sym);
3613                 chk.checkProfile(tree.pos(), sym);
3614             }
3615 
3616             // Test (3): if symbol is a variable, check that its type and
3617             // kind are compatible with the prototype and protokind.
3618             return check(tree, owntype, sym.kind, resultInfo);
3619         }
3620 
3621         /** Check that variable is initialized and evaluate the variable's
3622          *  initializer, if not yet done. Also check that variable is not
3623          *  referenced before it is defined.
3624          *  @param tree    The tree making up the variable reference.
3625          *  @param env     The current environment.
3626          *  @param v       The variable's symbol.
3627          */
3628         private void checkInit(JCTree tree,
3629                                Env<AttrContext> env,
3630                                VarSymbol v,
3631                                boolean onlyWarning) {
3632 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3633 //                             tree.pos + " " + v.pos + " " +
3634 //                             Resolve.isStatic(env));//DEBUG
3635 
3636             // A forward reference is diagnosed if the declaration position
3637             // of the variable is greater than the current tree position
3638             // and the tree and variable definition occur in the same class
3639             // definition.  Note that writes don't count as references.
3640             // This check applies only to class and instance
3641             // variables.  Local variables follow different scope rules,
3642             // and are subject to definite assignment checking.
3643             if ((env.info.enclVar == v || v.pos > tree.pos) &&
3644                 v.owner.kind == TYP &&
3645                 canOwnInitializer(owner(env)) &&
3646                 v.owner == env.info.scope.owner.enclClass() &&
3647                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3648                 (!env.tree.hasTag(ASSIGN) ||
3649                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3650                 String suffix = (env.info.enclVar == v) ?
3651                                 "self.ref" : "forward.ref";
3652                 if (!onlyWarning || isStaticEnumField(v)) {
3653                     log.error(tree.pos(), "illegal." + suffix);
3654                 } else if (useBeforeDeclarationWarning) {
3655                     log.warning(tree.pos(), suffix, v);
3656                 }
3657             }
3658 
3659             v.getConstValue(); // ensure initializer is evaluated
3660 
3661             checkEnumInitializer(tree, env, v);
3662         }
3663 
3664         /**
3665          * Check for illegal references to static members of enum.  In
3666          * an enum type, constructors and initializers may not
3667          * reference its static members unless they are constant.
3668          *
3669          * @param tree    The tree making up the variable reference.
3670          * @param env     The current environment.
3671          * @param v       The variable's symbol.
3672          * @jls  section 8.9 Enums
3673          */
3674         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3675             // JLS:
3676             //
3677             // "It is a compile-time error to reference a static field
3678             // of an enum type that is not a compile-time constant
3679             // (15.28) from constructors, instance initializer blocks,
3680             // or instance variable initializer expressions of that
3681             // type. It is a compile-time error for the constructors,
3682             // instance initializer blocks, or instance variable
3683             // initializer expressions of an enum constant e to refer
3684             // to itself or to an enum constant of the same type that
3685             // is declared to the right of e."
3686             if (isStaticEnumField(v)) {
3687                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
3688 
3689                 if (enclClass == null || enclClass.owner == null)
3690                     return;
3691 
3692                 // See if the enclosing class is the enum (or a
3693                 // subclass thereof) declaring v.  If not, this
3694                 // reference is OK.
3695                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3696                     return;
3697 
3698                 // If the reference isn't from an initializer, then
3699                 // the reference is OK.
3700                 if (!Resolve.isInitializer(env))
3701                     return;
3702 
3703                 log.error(tree.pos(), "illegal.enum.static.ref");
3704             }
3705         }
3706 
3707         /** Is the given symbol a static, non-constant field of an Enum?
3708          *  Note: enum literals should not be regarded as such
3709          */
3710         private boolean isStaticEnumField(VarSymbol v) {
3711             return Flags.isEnum(v.owner) &&
3712                    Flags.isStatic(v) &&
3713                    !Flags.isConstant(v) &&
3714                    v.name != names._class;
3715         }
3716 
3717         /** Can the given symbol be the owner of code which forms part
3718          *  if class initialization? This is the case if the symbol is
3719          *  a type or field, or if the symbol is the synthetic method.
3720          *  owning a block.
3721          */
3722         private boolean canOwnInitializer(Symbol sym) {
3723             return
3724                 (sym.kind & (VAR | TYP)) != 0 ||
3725                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
3726         }
3727 
3728     Warner noteWarner = new Warner();
3729 
3730     /**
3731      * Check that method arguments conform to its instantiation.
3732      **/
3733     public Type checkMethod(Type site,
3734                             final Symbol sym,
3735                             ResultInfo resultInfo,
3736                             Env<AttrContext> env,
3737                             final List<JCExpression> argtrees,
3738                             List<Type> argtypes,
3739                             List<Type> typeargtypes) {
3740         // Test (5): if symbol is an instance method of a raw type, issue
3741         // an unchecked warning if its argument types change under erasure.
3742         if (allowGenerics &&
3743             (sym.flags() & STATIC) == 0 &&
3744             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3745             Type s = types.asOuterSuper(site, sym.owner);
3746             if (s != null && s.isRaw() &&
3747                 !types.isSameTypes(sym.type.getParameterTypes(),
3748                                    sym.erasure(types).getParameterTypes())) {
3749                 chk.warnUnchecked(env.tree.pos(),
3750                                   "unchecked.call.mbr.of.raw.type",
3751                                   sym, s);
3752             }
3753         }
3754 
3755         if (env.info.defaultSuperCallSite != null) {
3756             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3757                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3758                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3759                 List<MethodSymbol> icand_sup =
3760                         types.interfaceCandidates(sup, (MethodSymbol)sym);
3761                 if (icand_sup.nonEmpty() &&
3762                         icand_sup.head != sym &&
3763                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3764                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3765                         diags.fragment("overridden.default", sym, sup));
3766                     break;
3767                 }
3768             }
3769             env.info.defaultSuperCallSite = null;
3770         }
3771 
3772         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3773             JCMethodInvocation app = (JCMethodInvocation)env.tree;
3774             if (app.meth.hasTag(SELECT) &&
3775                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3776                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3777             }
3778         }
3779 
3780         // Compute the identifier's instantiated type.
3781         // For methods, we need to compute the instance type by
3782         // Resolve.instantiate from the symbol's type as well as
3783         // any type arguments and value arguments.
3784         noteWarner.clear();
3785         try {
3786             Type owntype = rs.checkMethod(
3787                     env,
3788                     site,
3789                     sym,
3790                     resultInfo,
3791                     argtypes,
3792                     typeargtypes,
3793                     noteWarner);
3794 
3795             DeferredAttr.DeferredTypeMap checkDeferredMap =
3796                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3797 
3798             argtypes = Type.map(argtypes, checkDeferredMap);
3799 
3800             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3801                 chk.warnUnchecked(env.tree.pos(),
3802                         "unchecked.meth.invocation.applied",
3803                         kindName(sym),
3804                         sym.name,
3805                         rs.methodArguments(sym.type.getParameterTypes()),
3806                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
3807                         kindName(sym.location()),
3808                         sym.location());
3809                owntype = new MethodType(owntype.getParameterTypes(),
3810                        types.erasure(owntype.getReturnType()),
3811                        types.erasure(owntype.getThrownTypes()),
3812                        syms.methodClass);
3813             }
3814 
3815             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3816                     resultInfo.checkContext.inferenceContext());
3817         } catch (Infer.InferenceException ex) {
3818             //invalid target type - propagate exception outwards or report error
3819             //depending on the current check context
3820             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3821             return types.createErrorType(site);
3822         } catch (Resolve.InapplicableMethodException ex) {
3823             final JCDiagnostic diag = ex.getDiagnostic();
3824             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
3825                 @Override
3826                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
3827                     return new Pair<Symbol, JCDiagnostic>(sym, diag);
3828                 }
3829             };
3830             List<Type> argtypes2 = Type.map(argtypes,
3831                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3832             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3833                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
3834             log.report(errDiag);
3835             return types.createErrorType(site);
3836         }
3837     }
3838 
3839     public void visitLiteral(JCLiteral tree) {
3840         result = check(
3841             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
3842     }
3843     //where
3844     /** Return the type of a literal with given type tag.
3845      */
3846     Type litType(TypeTag tag) {
3847         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3848     }
3849 
3850     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3851         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
3852     }
3853 
3854     public void visitTypeArray(JCArrayTypeTree tree) {
3855         Type etype = attribType(tree.elemtype, env);
3856         Type type = new ArrayType(etype, syms.arrayClass);
3857         result = check(tree, type, TYP, resultInfo);
3858     }
3859 
3860     /** Visitor method for parameterized types.
3861      *  Bound checking is left until later, since types are attributed
3862      *  before supertype structure is completely known
3863      */
3864     public void visitTypeApply(JCTypeApply tree) {
3865         Type owntype = types.createErrorType(tree.type);
3866 
3867         // Attribute functor part of application and make sure it's a class.
3868         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3869 
3870         // Attribute type parameters
3871         List<Type> actuals = attribTypes(tree.arguments, env);
3872 
3873         if (clazztype.hasTag(CLASS)) {
3874             List<Type> formals = clazztype.tsym.type.getTypeArguments();
3875             if (actuals.isEmpty()) //diamond
3876                 actuals = formals;
3877 
3878             if (actuals.length() == formals.length()) {
3879                 List<Type> a = actuals;
3880                 List<Type> f = formals;
3881                 while (a.nonEmpty()) {
3882                     a.head = a.head.withTypeVar(f.head);
3883                     a = a.tail;
3884                     f = f.tail;
3885                 }
3886                 // Compute the proper generic outer
3887                 Type clazzOuter = clazztype.getEnclosingType();
3888                 if (clazzOuter.hasTag(CLASS)) {
3889                     Type site;
3890                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3891                     if (clazz.hasTag(IDENT)) {
3892                         site = env.enclClass.sym.type;
3893                     } else if (clazz.hasTag(SELECT)) {
3894                         site = ((JCFieldAccess) clazz).selected.type;
3895                     } else throw new AssertionError(""+tree);
3896                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3897                         if (site.hasTag(CLASS))
3898                             site = types.asOuterSuper(site, clazzOuter.tsym);
3899                         if (site == null)
3900                             site = types.erasure(clazzOuter);
3901                         clazzOuter = site;
3902                     }
3903                 }
3904                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
3905                 if (clazztype.isAnnotated()) {
3906                     // Use the same AnnotatedType, because it will have
3907                     // its annotations set later.
3908                     ((AnnotatedType)clazztype).underlyingType = owntype;
3909                     owntype = clazztype;
3910                 }
3911             } else {
3912                 if (formals.length() != 0) {
3913                     log.error(tree.pos(), "wrong.number.type.args",
3914                               Integer.toString(formals.length()));
3915                 } else {
3916                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3917                 }
3918                 owntype = types.createErrorType(tree.type);
3919             }
3920         }
3921         result = check(tree, owntype, TYP, resultInfo);
3922     }
3923 
3924     public void visitTypeUnion(JCTypeUnion tree) {
3925         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
3926         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3927         for (JCExpression typeTree : tree.alternatives) {
3928             Type ctype = attribType(typeTree, env);
3929             ctype = chk.checkType(typeTree.pos(),
3930                           chk.checkClassType(typeTree.pos(), ctype),
3931                           syms.throwableType);
3932             if (!ctype.isErroneous()) {
3933                 //check that alternatives of a union type are pairwise
3934                 //unrelated w.r.t. subtyping
3935                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
3936                     for (Type t : multicatchTypes) {
3937                         boolean sub = types.isSubtype(ctype, t);
3938                         boolean sup = types.isSubtype(t, ctype);
3939                         if (sub || sup) {
3940                             //assume 'a' <: 'b'
3941                             Type a = sub ? ctype : t;
3942                             Type b = sub ? t : ctype;
3943                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
3944                         }
3945                     }
3946                 }
3947                 multicatchTypes.append(ctype);
3948                 if (all_multicatchTypes != null)
3949                     all_multicatchTypes.append(ctype);
3950             } else {
3951                 if (all_multicatchTypes == null) {
3952                     all_multicatchTypes = new ListBuffer<>();
3953                     all_multicatchTypes.appendList(multicatchTypes);
3954                 }
3955                 all_multicatchTypes.append(ctype);
3956             }
3957         }
3958         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
3959         if (t.hasTag(CLASS)) {
3960             List<Type> alternatives =
3961                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
3962             t = new UnionClassType((ClassType) t, alternatives);
3963         }
3964         tree.type = result = t;
3965     }
3966 
3967     public void visitTypeIntersection(JCTypeIntersection tree) {
3968         attribTypes(tree.bounds, env);
3969         tree.type = result = checkIntersection(tree, tree.bounds);
3970     }
3971 
3972     public void visitTypeParameter(JCTypeParameter tree) {
3973         TypeVar typeVar = (TypeVar) tree.type;
3974 
3975         if (tree.annotations != null && tree.annotations.nonEmpty()) {
3976             AnnotatedType antype = new AnnotatedType(typeVar);
3977             annotateType(antype, tree.annotations);
3978             tree.type = antype;
3979         }
3980 
3981         if (!typeVar.bound.isErroneous()) {
3982             //fixup type-parameter bound computed in 'attribTypeVariables'
3983             typeVar.bound = checkIntersection(tree, tree.bounds);
3984         }
3985     }
3986 
3987     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
3988         Set<Type> boundSet = new HashSet<Type>();
3989         if (bounds.nonEmpty()) {
3990             // accept class or interface or typevar as first bound.
3991             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
3992             boundSet.add(types.erasure(bounds.head.type));
3993             if (bounds.head.type.isErroneous()) {
3994                 return bounds.head.type;
3995             }
3996             else if (bounds.head.type.hasTag(TYPEVAR)) {
3997                 // if first bound was a typevar, do not accept further bounds.
3998                 if (bounds.tail.nonEmpty()) {
3999                     log.error(bounds.tail.head.pos(),
4000                               "type.var.may.not.be.followed.by.other.bounds");
4001                     return bounds.head.type;
4002                 }
4003             } else {
4004                 // if first bound was a class or interface, accept only interfaces
4005                 // as further bounds.
4006                 for (JCExpression bound : bounds.tail) {
4007                     bound.type = checkBase(bound.type, bound, env, false, true, false);
4008                     if (bound.type.isErroneous()) {
4009                         bounds = List.of(bound);
4010                     }
4011                     else if (bound.type.hasTag(CLASS)) {
4012                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4013                     }
4014                 }
4015             }
4016         }
4017 
4018         if (bounds.length() == 0) {
4019             return syms.objectType;
4020         } else if (bounds.length() == 1) {
4021             return bounds.head.type;
4022         } else {
4023             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
4024             if (tree.hasTag(TYPEINTERSECTION)) {
4025                 ((IntersectionClassType)owntype).intersectionKind =
4026                         IntersectionClassType.IntersectionKind.EXPLICIT;
4027             }
4028             // ... the variable's bound is a class type flagged COMPOUND
4029             // (see comment for TypeVar.bound).
4030             // In this case, generate a class tree that represents the
4031             // bound class, ...
4032             JCExpression extending;
4033             List<JCExpression> implementing;
4034             if (!bounds.head.type.isInterface()) {
4035                 extending = bounds.head;
4036                 implementing = bounds.tail;
4037             } else {
4038                 extending = null;
4039                 implementing = bounds;
4040             }
4041             JCClassDecl cd = make.at(tree).ClassDef(
4042                 make.Modifiers(PUBLIC | ABSTRACT),
4043                 names.empty, List.<JCTypeParameter>nil(),
4044                 extending, implementing, List.<JCTree>nil());
4045 
4046             ClassSymbol c = (ClassSymbol)owntype.tsym;
4047             Assert.check((c.flags() & COMPOUND) != 0);
4048             cd.sym = c;
4049             c.sourcefile = env.toplevel.sourcefile;
4050 
4051             // ... and attribute the bound class
4052             c.flags_field |= UNATTRIBUTED;
4053             Env<AttrContext> cenv = enter.classEnv(cd, env);
4054             enter.typeEnvs.put(c, cenv);
4055             attribClass(c);
4056             return owntype;
4057         }
4058     }
4059 
4060     public void visitWildcard(JCWildcard tree) {
4061         //- System.err.println("visitWildcard("+tree+");");//DEBUG
4062         Type type = (tree.kind.kind == BoundKind.UNBOUND)
4063             ? syms.objectType
4064             : attribType(tree.inner, env);
4065         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4066                                               tree.kind.kind,
4067                                               syms.boundClass),
4068                        TYP, resultInfo);
4069     }
4070 
4071     public void visitAnnotation(JCAnnotation tree) {
4072         Assert.error("should be handled in Annotate");
4073     }
4074 
4075     public void visitAnnotatedType(JCAnnotatedType tree) {
4076         Type underlyingType = attribType(tree.getUnderlyingType(), env);
4077         this.attribAnnotationTypes(tree.annotations, env);
4078         AnnotatedType antype = new AnnotatedType(underlyingType);
4079         annotateType(antype, tree.annotations);
4080         result = tree.type = antype;
4081     }
4082 
4083     /**
4084      * Apply the annotations to the particular type.
4085      */
4086     public void annotateType(final AnnotatedType type, final List<JCAnnotation> annotations) {
4087         if (annotations.isEmpty())
4088             return;
4089         annotate.typeAnnotation(new Annotate.Annotator() {
4090             @Override
4091             public String toString() {
4092                 return "annotate " + annotations + " onto " + type;
4093             }
4094             @Override
4095             public void enterAnnotation() {
4096                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
4097                 type.typeAnnotations = compounds;
4098             }
4099         });
4100     }
4101 
4102     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
4103         if (annotations.isEmpty())
4104             return List.nil();
4105 
4106         ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
4107         for (JCAnnotation anno : annotations) {
4108             if (anno.attribute != null) {
4109                 // TODO: this null-check is only needed for an obscure
4110                 // ordering issue, where annotate.flush is called when
4111                 // the attribute is not set yet. For an example failure
4112                 // try the referenceinfos/NestedTypes.java test.
4113                 // Any better solutions?
4114                 buf.append((Attribute.TypeCompound) anno.attribute);
4115             }
4116         }
4117         return buf.toList();
4118     }
4119 
4120     public void visitErroneous(JCErroneous tree) {
4121         if (tree.errs != null)
4122             for (JCTree err : tree.errs)
4123                 attribTree(err, env, new ResultInfo(ERR, pt()));
4124         result = tree.type = syms.errType;
4125     }
4126 
4127     /** Default visitor method for all other trees.
4128      */
4129     public void visitTree(JCTree tree) {
4130         throw new AssertionError();
4131     }
4132 
4133     /**
4134      * Attribute an env for either a top level tree or class declaration.
4135      */
4136     public void attrib(Env<AttrContext> env) {
4137         if (env.tree.hasTag(TOPLEVEL))
4138             attribTopLevel(env);
4139         else
4140             attribClass(env.tree.pos(), env.enclClass.sym);
4141     }
4142 
4143     /**
4144      * Attribute a top level tree. These trees are encountered when the
4145      * package declaration has annotations.
4146      */
4147     public void attribTopLevel(Env<AttrContext> env) {
4148         JCCompilationUnit toplevel = env.toplevel;
4149         try {
4150             annotate.flush();
4151             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
4152         } catch (CompletionFailure ex) {
4153             chk.completionError(toplevel.pos(), ex);
4154         }
4155     }
4156 
4157     /** Main method: attribute class definition associated with given class symbol.
4158      *  reporting completion failures at the given position.
4159      *  @param pos The source position at which completion errors are to be
4160      *             reported.
4161      *  @param c   The class symbol whose definition will be attributed.
4162      */
4163     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4164         try {
4165             annotate.flush();
4166             attribClass(c);
4167         } catch (CompletionFailure ex) {
4168             chk.completionError(pos, ex);
4169         }
4170     }
4171 
4172     /** Attribute class definition associated with given class symbol.
4173      *  @param c   The class symbol whose definition will be attributed.
4174      */
4175     void attribClass(ClassSymbol c) throws CompletionFailure {
4176         if (c.type.hasTag(ERROR)) return;
4177 
4178         // Check for cycles in the inheritance graph, which can arise from
4179         // ill-formed class files.
4180         chk.checkNonCyclic(null, c.type);
4181 
4182         Type st = types.supertype(c.type);
4183         if ((c.flags_field & Flags.COMPOUND) == 0) {
4184             // First, attribute superclass.
4185             if (st.hasTag(CLASS))
4186                 attribClass((ClassSymbol)st.tsym);
4187 
4188             // Next attribute owner, if it is a class.
4189             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4190                 attribClass((ClassSymbol)c.owner);
4191         }
4192 
4193         // The previous operations might have attributed the current class
4194         // if there was a cycle. So we test first whether the class is still
4195         // UNATTRIBUTED.
4196         if ((c.flags_field & UNATTRIBUTED) != 0) {
4197             c.flags_field &= ~UNATTRIBUTED;
4198 
4199             // Get environment current at the point of class definition.
4200             Env<AttrContext> env = enter.typeEnvs.get(c);
4201 
4202             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
4203             // because the annotations were not available at the time the env was created. Therefore,
4204             // we look up the environment chain for the first enclosing environment for which the
4205             // lint value is set. Typically, this is the parent env, but might be further if there
4206             // are any envs created as a result of TypeParameter nodes.
4207             Env<AttrContext> lintEnv = env;
4208             while (lintEnv.info.lint == null)
4209                 lintEnv = lintEnv.next;
4210 
4211             // Having found the enclosing lint value, we can initialize the lint value for this class
4212             env.info.lint = lintEnv.info.lint.augment(c);
4213 
4214             Lint prevLint = chk.setLint(env.info.lint);
4215             JavaFileObject prev = log.useSource(c.sourcefile);
4216             ResultInfo prevReturnRes = env.info.returnResult;
4217 
4218             try {
4219                 deferredLintHandler.flush(env.tree);
4220                 env.info.returnResult = null;
4221                 // java.lang.Enum may not be subclassed by a non-enum
4222                 if (st.tsym == syms.enumSym &&
4223                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4224                     log.error(env.tree.pos(), "enum.no.subclassing");
4225 
4226                 // Enums may not be extended by source-level classes
4227                 if (st.tsym != null &&
4228                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4229                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4230                     log.error(env.tree.pos(), "enum.types.not.extensible");
4231                 }
4232                 attribClassBody(env, c);
4233 
4234                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4235                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4236             } finally {
4237                 env.info.returnResult = prevReturnRes;
4238                 log.useSource(prev);
4239                 chk.setLint(prevLint);
4240             }
4241 
4242         }
4243     }
4244 
4245     public void visitImport(JCImport tree) {
4246         // nothing to do
4247     }
4248 
4249     /** Finish the attribution of a class. */
4250     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4251         JCClassDecl tree = (JCClassDecl)env.tree;
4252         Assert.check(c == tree.sym);
4253 
4254         // Validate annotations
4255         chk.validateAnnotations(tree.mods.annotations, c);
4256 
4257         // Validate type parameters, supertype and interfaces.
4258         attribStats(tree.typarams, env);
4259         if (!c.isAnonymous()) {
4260             //already checked if anonymous
4261             chk.validate(tree.typarams, env);
4262             chk.validate(tree.extending, env);
4263             chk.validate(tree.implementing, env);
4264         }
4265 
4266         // If this is a non-abstract class, check that it has no abstract
4267         // methods or unimplemented methods of an implemented interface.
4268         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4269             if (!relax)
4270                 chk.checkAllDefined(tree.pos(), c);
4271         }
4272 
4273         if ((c.flags() & ANNOTATION) != 0) {
4274             if (tree.implementing.nonEmpty())
4275                 log.error(tree.implementing.head.pos(),
4276                           "cant.extend.intf.annotation");
4277             if (tree.typarams.nonEmpty())
4278                 log.error(tree.typarams.head.pos(),
4279                           "intf.annotation.cant.have.type.params");
4280 
4281             // If this annotation has a @Repeatable, validate
4282             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
4283             if (repeatable != null) {
4284                 // get diagnostic position for error reporting
4285                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4286                 Assert.checkNonNull(cbPos);
4287 
4288                 chk.validateRepeatable(c, repeatable, cbPos);
4289             }
4290         } else {
4291             // Check that all extended classes and interfaces
4292             // are compatible (i.e. no two define methods with same arguments
4293             // yet different return types).  (JLS 8.4.6.3)
4294             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4295             if (allowDefaultMethods) {
4296                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4297             }
4298         }
4299 
4300         // Check that class does not import the same parameterized interface
4301         // with two different argument lists.
4302         chk.checkClassBounds(tree.pos(), c.type);
4303 
4304         tree.type = c.type;
4305 
4306         for (List<JCTypeParameter> l = tree.typarams;
4307              l.nonEmpty(); l = l.tail) {
4308              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
4309         }
4310 
4311         // Check that a generic class doesn't extend Throwable
4312         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4313             log.error(tree.extending.pos(), "generic.throwable");
4314 
4315         // Check that all methods which implement some
4316         // method conform to the method they implement.
4317         chk.checkImplementations(tree);
4318 
4319         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4320         checkAutoCloseable(tree.pos(), env, c.type);
4321 
4322         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4323             // Attribute declaration
4324             attribStat(l.head, env);
4325             // Check that declarations in inner classes are not static (JLS 8.1.2)
4326             // Make an exception for static constants.
4327             if (c.owner.kind != PCK &&
4328                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4329                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4330                 Symbol sym = null;
4331                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4332                 if (sym == null ||
4333                     sym.kind != VAR ||
4334                     ((VarSymbol) sym).getConstValue() == null)
4335                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4336             }
4337         }
4338 
4339         // Check for cycles among non-initial constructors.
4340         chk.checkCyclicConstructors(tree);
4341 
4342         // Check for cycles among annotation elements.
4343         chk.checkNonCyclicElements(tree);
4344 
4345         // Check for proper use of serialVersionUID
4346         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4347             isSerializable(c) &&
4348             (c.flags() & Flags.ENUM) == 0 &&
4349             checkForSerial(c)) {
4350             checkSerialVersionUID(tree, c);
4351         }
4352         if (allowTypeAnnos) {
4353             // Correctly organize the postions of the type annotations
4354             typeAnnotations.organizeTypeAnnotationsBodies(tree);
4355 
4356             // Check type annotations applicability rules
4357             validateTypeAnnotations(tree);
4358         }
4359     }
4360         // where
4361         boolean checkForSerial(ClassSymbol c) {
4362             if ((c.flags() & ABSTRACT) == 0) {
4363                 return true;
4364             } else {
4365                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4366             }
4367         }
4368 
4369         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4370             @Override
4371             public boolean accepts(Symbol s) {
4372                 return s.kind == Kinds.MTH &&
4373                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4374             }
4375         };
4376 
4377         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4378         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4379             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4380                 if (types.isSameType(al.head.annotationType.type, t))
4381                     return al.head.pos();
4382             }
4383 
4384             return null;
4385         }
4386 
4387         /** check if a class is a subtype of Serializable, if that is available. */
4388         private boolean isSerializable(ClassSymbol c) {
4389             try {
4390                 syms.serializableType.complete();
4391             }
4392             catch (CompletionFailure e) {
4393                 return false;
4394             }
4395             return types.isSubtype(c.type, syms.serializableType);
4396         }
4397 
4398         /** Check that an appropriate serialVersionUID member is defined. */
4399         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4400 
4401             // check for presence of serialVersionUID
4402             Scope.Entry e = c.members().lookup(names.serialVersionUID);
4403             while (e.scope != null && e.sym.kind != VAR) e = e.next();
4404             if (e.scope == null) {
4405                 log.warning(LintCategory.SERIAL,
4406                         tree.pos(), "missing.SVUID", c);
4407                 return;
4408             }
4409 
4410             // check that it is static final
4411             VarSymbol svuid = (VarSymbol)e.sym;
4412             if ((svuid.flags() & (STATIC | FINAL)) !=
4413                 (STATIC | FINAL))
4414                 log.warning(LintCategory.SERIAL,
4415                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4416 
4417             // check that it is long
4418             else if (!svuid.type.hasTag(LONG))
4419                 log.warning(LintCategory.SERIAL,
4420                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4421 
4422             // check constant
4423             else if (svuid.getConstValue() == null)
4424                 log.warning(LintCategory.SERIAL,
4425                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4426         }
4427 
4428     private Type capture(Type type) {
4429         return types.capture(type);
4430     }
4431 
4432     private void validateTypeAnnotations(JCTree tree) {
4433         tree.accept(typeAnnotationsValidator);
4434     }
4435     //where
4436     private final JCTree.Visitor typeAnnotationsValidator = new TreeScanner() {
4437 
4438         private boolean checkAllAnnotations = false;
4439 
4440         public void visitAnnotation(JCAnnotation tree) {
4441             if (tree.hasTag(TYPE_ANNOTATION) || checkAllAnnotations) {
4442                 chk.validateTypeAnnotation(tree, false);
4443             }
4444             super.visitAnnotation(tree);
4445         }
4446         public void visitTypeParameter(JCTypeParameter tree) {
4447             chk.validateTypeAnnotations(tree.annotations, true);
4448             scan(tree.bounds);
4449             // Don't call super.
4450             // This is needed because above we call validateTypeAnnotation with
4451             // false, which would forbid annotations on type parameters.
4452             // super.visitTypeParameter(tree);
4453         }
4454         public void visitMethodDef(JCMethodDecl tree) {
4455             if (tree.recvparam != null &&
4456                     tree.recvparam.vartype.type.getKind() != TypeKind.ERROR) {
4457                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4458                         tree.recvparam.vartype.type.tsym);
4459             }
4460             if (tree.restype != null && tree.restype.type != null) {
4461                 validateAnnotatedType(tree.restype, tree.restype.type);
4462             }
4463             super.visitMethodDef(tree);
4464         }
4465         public void visitVarDef(final JCVariableDecl tree) {
4466             if (tree.sym != null && tree.sym.type != null)
4467                 validateAnnotatedType(tree, tree.sym.type);
4468             super.visitVarDef(tree);
4469         }
4470         public void visitTypeCast(JCTypeCast tree) {
4471             if (tree.clazz != null && tree.clazz.type != null)
4472                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4473             super.visitTypeCast(tree);
4474         }
4475         public void visitTypeTest(JCInstanceOf tree) {
4476             if (tree.clazz != null && tree.clazz.type != null)
4477                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4478             super.visitTypeTest(tree);
4479         }
4480         public void visitNewClass(JCNewClass tree) {
4481             if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4482                 boolean prevCheck = this.checkAllAnnotations;
4483                 try {
4484                     this.checkAllAnnotations = true;
4485                     scan(((JCAnnotatedType)tree.clazz).annotations);
4486                 } finally {
4487                     this.checkAllAnnotations = prevCheck;
4488                 }
4489             }
4490             super.visitNewClass(tree);
4491         }
4492         public void visitNewArray(JCNewArray tree) {
4493             if (tree.elemtype != null && tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4494                 boolean prevCheck = this.checkAllAnnotations;
4495                 try {
4496                     this.checkAllAnnotations = true;
4497                     scan(((JCAnnotatedType)tree.elemtype).annotations);
4498                 } finally {
4499                     this.checkAllAnnotations = prevCheck;
4500                 }
4501             }
4502             super.visitNewArray(tree);
4503         }
4504 
4505         /* I would want to model this after
4506          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4507          * and override visitSelect and visitTypeApply.
4508          * However, we only set the annotated type in the top-level type
4509          * of the symbol.
4510          * Therefore, we need to override each individual location where a type
4511          * can occur.
4512          */
4513         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4514             if (type.getEnclosingType() != null &&
4515                     type != type.getEnclosingType()) {
4516                 validateEnclosingAnnotatedType(errtree, type.getEnclosingType());
4517             }
4518             for (Type targ : type.getTypeArguments()) {
4519                 validateAnnotatedType(errtree, targ);
4520             }
4521         }
4522         private void validateEnclosingAnnotatedType(final JCTree errtree, final Type type) {
4523             validateAnnotatedType(errtree, type);
4524             if (type.tsym != null &&
4525                     type.tsym.isStatic() &&
4526                     type.getAnnotationMirrors().nonEmpty()) {
4527                     // Enclosing static classes cannot have type annotations.
4528                 log.error(errtree.pos(), "cant.annotate.static.class");
4529             }
4530         }
4531     };
4532 
4533     // <editor-fold desc="post-attribution visitor">
4534 
4535     /**
4536      * Handle missing types/symbols in an AST. This routine is useful when
4537      * the compiler has encountered some errors (which might have ended up
4538      * terminating attribution abruptly); if the compiler is used in fail-over
4539      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4540      * prevents NPE to be progagated during subsequent compilation steps.
4541      */
4542     public void postAttr(JCTree tree) {
4543         new PostAttrAnalyzer().scan(tree);
4544     }
4545 
4546     class PostAttrAnalyzer extends TreeScanner {
4547 
4548         private void initTypeIfNeeded(JCTree that) {
4549             if (that.type == null) {
4550                 that.type = syms.unknownType;
4551             }
4552         }
4553 
4554         @Override
4555         public void scan(JCTree tree) {
4556             if (tree == null) return;
4557             if (tree instanceof JCExpression) {
4558                 initTypeIfNeeded(tree);
4559             }
4560             super.scan(tree);
4561         }
4562 
4563         @Override
4564         public void visitIdent(JCIdent that) {
4565             if (that.sym == null) {
4566                 that.sym = syms.unknownSymbol;
4567             }
4568         }
4569 
4570         @Override
4571         public void visitSelect(JCFieldAccess that) {
4572             if (that.sym == null) {
4573                 that.sym = syms.unknownSymbol;
4574             }
4575             super.visitSelect(that);
4576         }
4577 
4578         @Override
4579         public void visitClassDef(JCClassDecl that) {
4580             initTypeIfNeeded(that);
4581             if (that.sym == null) {
4582                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4583             }
4584             super.visitClassDef(that);
4585         }
4586 
4587         @Override
4588         public void visitMethodDef(JCMethodDecl that) {
4589             initTypeIfNeeded(that);
4590             if (that.sym == null) {
4591                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4592             }
4593             super.visitMethodDef(that);
4594         }
4595 
4596         @Override
4597         public void visitVarDef(JCVariableDecl that) {
4598             initTypeIfNeeded(that);
4599             if (that.sym == null) {
4600                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4601                 that.sym.adr = 0;
4602             }
4603             super.visitVarDef(that);
4604         }
4605 
4606         @Override
4607         public void visitNewClass(JCNewClass that) {
4608             if (that.constructor == null) {
4609                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
4610             }
4611             if (that.constructorType == null) {
4612                 that.constructorType = syms.unknownType;
4613             }
4614             super.visitNewClass(that);
4615         }
4616 
4617         @Override
4618         public void visitAssignop(JCAssignOp that) {
4619             if (that.operator == null)
4620                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4621             super.visitAssignop(that);
4622         }
4623 
4624         @Override
4625         public void visitBinary(JCBinary that) {
4626             if (that.operator == null)
4627                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4628             super.visitBinary(that);
4629         }
4630 
4631         @Override
4632         public void visitUnary(JCUnary that) {
4633             if (that.operator == null)
4634                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
4635             super.visitUnary(that);
4636         }
4637 
4638         @Override
4639         public void visitLambda(JCLambda that) {
4640             super.visitLambda(that);
4641             if (that.targets == null) {
4642                 that.targets = List.nil();
4643             }
4644         }
4645 
4646         @Override
4647         public void visitReference(JCMemberReference that) {
4648             super.visitReference(that);
4649             if (that.sym == null) {
4650                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
4651             }
4652             if (that.targets == null) {
4653                 that.targets = List.nil();
4654             }
4655         }
4656     }
4657     // </editor-fold>
4658 }