1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.jvm;
  27 import java.util.*;
  28 
  29 import com.sun.tools.javac.util.*;
  30 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  31 import com.sun.tools.javac.util.List;
  32 import com.sun.tools.javac.code.*;
  33 import com.sun.tools.javac.code.Attribute.TypeCompound;
  34 import com.sun.tools.javac.code.Symbol.VarSymbol;
  35 import com.sun.tools.javac.comp.*;
  36 import com.sun.tools.javac.tree.*;
  37 
  38 import com.sun.tools.javac.code.Symbol.*;
  39 import com.sun.tools.javac.code.Type.*;
  40 import com.sun.tools.javac.jvm.Code.*;
  41 import com.sun.tools.javac.jvm.Items.*;
  42 import com.sun.tools.javac.tree.EndPosTable;
  43 import com.sun.tools.javac.tree.JCTree.*;
  44 
  45 import static com.sun.tools.javac.code.Flags.*;
  46 import static com.sun.tools.javac.code.Kinds.*;
  47 import static com.sun.tools.javac.code.TypeTag.*;
  48 import static com.sun.tools.javac.jvm.ByteCodes.*;
  49 import static com.sun.tools.javac.jvm.CRTFlags.*;
  50 import static com.sun.tools.javac.main.Option.*;
  51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  52 
  53 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
  54  *
  55  *  <p><b>This is NOT part of any supported API.
  56  *  If you write code that depends on this, you do so at your own risk.
  57  *  This code and its internal interfaces are subject to change or
  58  *  deletion without notice.</b>
  59  */
  60 public class Gen extends JCTree.Visitor {
  61     protected static final Context.Key<Gen> genKey =
  62         new Context.Key<Gen>();
  63 
  64     private final Log log;
  65     private final Symtab syms;
  66     private final Check chk;
  67     private final Resolve rs;
  68     private final TreeMaker make;
  69     private final Names names;
  70     private final Target target;
  71     private final Type stringBufferType;
  72     private final Map<Type,Symbol> stringBufferAppend;
  73     private Name accessDollar;
  74     private final Types types;
  75     private final Lower lower;
  76 
  77     /** Switch: GJ mode?
  78      */
  79     private final boolean allowGenerics;
  80 
  81     /** Set when Miranda method stubs are to be generated. */
  82     private final boolean generateIproxies;
  83 
  84     /** Format of stackmap tables to be generated. */
  85     private final Code.StackMapFormat stackMap;
  86 
  87     /** A type that serves as the expected type for all method expressions.
  88      */
  89     private final Type methodType;
  90 
  91     public static Gen instance(Context context) {
  92         Gen instance = context.get(genKey);
  93         if (instance == null)
  94             instance = new Gen(context);
  95         return instance;
  96     }
  97 
  98     /* Constant pool, reset by genClass.
  99      */
 100     private Pool pool;
 101 
 102     protected Gen(Context context) {
 103         context.put(genKey, this);
 104 
 105         names = Names.instance(context);
 106         log = Log.instance(context);
 107         syms = Symtab.instance(context);
 108         chk = Check.instance(context);
 109         rs = Resolve.instance(context);
 110         make = TreeMaker.instance(context);
 111         target = Target.instance(context);
 112         types = Types.instance(context);
 113         methodType = new MethodType(null, null, null, syms.methodClass);
 114         allowGenerics = Source.instance(context).allowGenerics();
 115         stringBufferType = target.useStringBuilder()
 116             ? syms.stringBuilderType
 117             : syms.stringBufferType;
 118         stringBufferAppend = new HashMap<Type,Symbol>();
 119         accessDollar = names.
 120             fromString("access" + target.syntheticNameChar());
 121         lower = Lower.instance(context);
 122 
 123         Options options = Options.instance(context);
 124         lineDebugInfo =
 125             options.isUnset(G_CUSTOM) ||
 126             options.isSet(G_CUSTOM, "lines");
 127         varDebugInfo =
 128             options.isUnset(G_CUSTOM)
 129             ? options.isSet(G)
 130             : options.isSet(G_CUSTOM, "vars");
 131         genCrt = options.isSet(XJCOV);
 132         debugCode = options.isSet("debugcode");
 133         allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic");
 134         pool = new Pool(types);
 135 
 136         generateIproxies =
 137             target.requiresIproxy() ||
 138             options.isSet("miranda");
 139 
 140         if (target.generateStackMapTable()) {
 141             // ignore cldc because we cannot have both stackmap formats
 142             this.stackMap = StackMapFormat.JSR202;
 143         } else {
 144             if (target.generateCLDCStackmap()) {
 145                 this.stackMap = StackMapFormat.CLDC;
 146             } else {
 147                 this.stackMap = StackMapFormat.NONE;
 148             }
 149         }
 150 
 151         // by default, avoid jsr's for simple finalizers
 152         int setjsrlimit = 50;
 153         String jsrlimitString = options.get("jsrlimit");
 154         if (jsrlimitString != null) {
 155             try {
 156                 setjsrlimit = Integer.parseInt(jsrlimitString);
 157             } catch (NumberFormatException ex) {
 158                 // ignore ill-formed numbers for jsrlimit
 159             }
 160         }
 161         this.jsrlimit = setjsrlimit;
 162         this.useJsrLocally = false; // reset in visitTry
 163     }
 164 
 165     /** Switches
 166      */
 167     private final boolean lineDebugInfo;
 168     private final boolean varDebugInfo;
 169     private final boolean genCrt;
 170     private final boolean debugCode;
 171     private final boolean allowInvokedynamic;
 172 
 173     /** Default limit of (approximate) size of finalizer to inline.
 174      *  Zero means always use jsr.  100 or greater means never use
 175      *  jsr.
 176      */
 177     private final int jsrlimit;
 178 
 179     /** True if jsr is used.
 180      */
 181     private boolean useJsrLocally;
 182 
 183     /** Code buffer, set by genMethod.
 184      */
 185     private Code code;
 186 
 187     /** Items structure, set by genMethod.
 188      */
 189     private Items items;
 190 
 191     /** Environment for symbol lookup, set by genClass
 192      */
 193     private Env<AttrContext> attrEnv;
 194 
 195     /** The top level tree.
 196      */
 197     private JCCompilationUnit toplevel;
 198 
 199     /** The number of code-gen errors in this class.
 200      */
 201     private int nerrs = 0;
 202 
 203     /** An object containing mappings of syntax trees to their
 204      *  ending source positions.
 205      */
 206     EndPosTable endPosTable;
 207 
 208     /** Generate code to load an integer constant.
 209      *  @param n     The integer to be loaded.
 210      */
 211     void loadIntConst(int n) {
 212         items.makeImmediateItem(syms.intType, n).load();
 213     }
 214 
 215     /** The opcode that loads a zero constant of a given type code.
 216      *  @param tc   The given type code (@see ByteCode).
 217      */
 218     public static int zero(int tc) {
 219         switch(tc) {
 220         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
 221             return iconst_0;
 222         case LONGcode:
 223             return lconst_0;
 224         case FLOATcode:
 225             return fconst_0;
 226         case DOUBLEcode:
 227             return dconst_0;
 228         default:
 229             throw new AssertionError("zero");
 230         }
 231     }
 232 
 233     /** The opcode that loads a one constant of a given type code.
 234      *  @param tc   The given type code (@see ByteCode).
 235      */
 236     public static int one(int tc) {
 237         return zero(tc) + 1;
 238     }
 239 
 240     /** Generate code to load -1 of the given type code (either int or long).
 241      *  @param tc   The given type code (@see ByteCode).
 242      */
 243     void emitMinusOne(int tc) {
 244         if (tc == LONGcode) {
 245             items.makeImmediateItem(syms.longType, new Long(-1)).load();
 246         } else {
 247             code.emitop0(iconst_m1);
 248         }
 249     }
 250 
 251     /** Construct a symbol to reflect the qualifying type that should
 252      *  appear in the byte code as per JLS 13.1.
 253      *
 254      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
 255      *  for those cases where we need to work around VM bugs).
 256      *
 257      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
 258      *  non-accessible class, clone it with the qualifier class as owner.
 259      *
 260      *  @param sym    The accessed symbol
 261      *  @param site   The qualifier's type.
 262      */
 263     Symbol binaryQualifier(Symbol sym, Type site) {
 264 
 265         if (site.hasTag(ARRAY)) {
 266             if (sym == syms.lengthVar ||
 267                 sym.owner != syms.arrayClass)
 268                 return sym;
 269             // array clone can be qualified by the array type in later targets
 270             Symbol qualifier = target.arrayBinaryCompatibility()
 271                 ? new ClassSymbol(Flags.PUBLIC, site.tsym.name,
 272                                   site, syms.noSymbol)
 273                 : syms.objectType.tsym;
 274             return sym.clone(qualifier);
 275         }
 276 
 277         if (sym.owner == site.tsym ||
 278             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
 279             return sym;
 280         }
 281         if (!target.obeyBinaryCompatibility())
 282             return rs.isAccessible(attrEnv, (TypeSymbol)sym.owner)
 283                 ? sym
 284                 : sym.clone(site.tsym);
 285 
 286         if (!target.interfaceFieldsBinaryCompatibility()) {
 287             if ((sym.owner.flags() & INTERFACE) != 0 && sym.kind == VAR)
 288                 return sym;
 289         }
 290 
 291         // leave alone methods inherited from Object
 292         // JLS 13.1.
 293         if (sym.owner == syms.objectType.tsym)
 294             return sym;
 295 
 296         if (!target.interfaceObjectOverridesBinaryCompatibility()) {
 297             if ((sym.owner.flags() & INTERFACE) != 0 &&
 298                 syms.objectType.tsym.members().lookup(sym.name).scope != null)
 299                 return sym;
 300         }
 301 
 302         return sym.clone(site.tsym);
 303     }
 304 
 305     /** Insert a reference to given type in the constant pool,
 306      *  checking for an array with too many dimensions;
 307      *  return the reference's index.
 308      *  @param type   The type for which a reference is inserted.
 309      */
 310     int makeRef(DiagnosticPosition pos, Type type) {
 311         checkDimension(pos, type);
 312         if (type.isAnnotated()) {
 313             // Treat annotated types separately - we don't want
 314             // to collapse all of them - at least for annotated
 315             // exceptions.
 316             // TODO: review this.
 317             return pool.put((Object)type);
 318         } else {
 319             return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
 320         }
 321     }
 322 
 323     /** Check if the given type is an array with too many dimensions.
 324      */
 325     private void checkDimension(DiagnosticPosition pos, Type t) {
 326         switch (t.getTag()) {
 327         case METHOD:
 328             checkDimension(pos, t.getReturnType());
 329             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
 330                 checkDimension(pos, args.head);
 331             break;
 332         case ARRAY:
 333             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
 334                 log.error(pos, "limit.dimensions");
 335                 nerrs++;
 336             }
 337             break;
 338         default:
 339             break;
 340         }
 341     }
 342 
 343     /** Create a tempory variable.
 344      *  @param type   The variable's type.
 345      */
 346     LocalItem makeTemp(Type type) {
 347         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
 348                                     names.empty,
 349                                     type,
 350                                     env.enclMethod.sym);
 351         code.newLocal(v);
 352         return items.makeLocalItem(v);
 353     }
 354 
 355     /** Generate code to call a non-private method or constructor.
 356      *  @param pos         Position to be used for error reporting.
 357      *  @param site        The type of which the method is a member.
 358      *  @param name        The method's name.
 359      *  @param argtypes    The method's argument types.
 360      *  @param isStatic    A flag that indicates whether we call a
 361      *                     static or instance method.
 362      */
 363     void callMethod(DiagnosticPosition pos,
 364                     Type site, Name name, List<Type> argtypes,
 365                     boolean isStatic) {
 366         Symbol msym = rs.
 367             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
 368         if (isStatic) items.makeStaticItem(msym).invoke();
 369         else items.makeMemberItem(msym, name == names.init).invoke();
 370     }
 371 
 372     /** Is the given method definition an access method
 373      *  resulting from a qualified super? This is signified by an odd
 374      *  access code.
 375      */
 376     private boolean isAccessSuper(JCMethodDecl enclMethod) {
 377         return
 378             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
 379             isOddAccessName(enclMethod.name);
 380     }
 381 
 382     /** Does given name start with "access$" and end in an odd digit?
 383      */
 384     private boolean isOddAccessName(Name name) {
 385         return
 386             name.startsWith(accessDollar) &&
 387             (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
 388     }
 389 
 390 /* ************************************************************************
 391  * Non-local exits
 392  *************************************************************************/
 393 
 394     /** Generate code to invoke the finalizer associated with given
 395      *  environment.
 396      *  Any calls to finalizers are appended to the environments `cont' chain.
 397      *  Mark beginning of gap in catch all range for finalizer.
 398      */
 399     void genFinalizer(Env<GenContext> env) {
 400         if (code.isAlive() && env.info.finalize != null)
 401             env.info.finalize.gen();
 402     }
 403 
 404     /** Generate code to call all finalizers of structures aborted by
 405      *  a non-local
 406      *  exit.  Return target environment of the non-local exit.
 407      *  @param target      The tree representing the structure that's aborted
 408      *  @param env         The environment current at the non-local exit.
 409      */
 410     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
 411         Env<GenContext> env1 = env;
 412         while (true) {
 413             genFinalizer(env1);
 414             if (env1.tree == target) break;
 415             env1 = env1.next;
 416         }
 417         return env1;
 418     }
 419 
 420     /** Mark end of gap in catch-all range for finalizer.
 421      *  @param env   the environment which might contain the finalizer
 422      *               (if it does, env.info.gaps != null).
 423      */
 424     void endFinalizerGap(Env<GenContext> env) {
 425         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
 426             env.info.gaps.append(code.curPc());
 427     }
 428 
 429     /** Mark end of all gaps in catch-all ranges for finalizers of environments
 430      *  lying between, and including to two environments.
 431      *  @param from    the most deeply nested environment to mark
 432      *  @param to      the least deeply nested environment to mark
 433      */
 434     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
 435         Env<GenContext> last = null;
 436         while (last != to) {
 437             endFinalizerGap(from);
 438             last = from;
 439             from = from.next;
 440         }
 441     }
 442 
 443     /** Do any of the structures aborted by a non-local exit have
 444      *  finalizers that require an empty stack?
 445      *  @param target      The tree representing the structure that's aborted
 446      *  @param env         The environment current at the non-local exit.
 447      */
 448     boolean hasFinally(JCTree target, Env<GenContext> env) {
 449         while (env.tree != target) {
 450             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
 451                 return true;
 452             env = env.next;
 453         }
 454         return false;
 455     }
 456 
 457 /* ************************************************************************
 458  * Normalizing class-members.
 459  *************************************************************************/
 460 
 461     /** Distribute member initializer code into constructors and {@code <clinit>}
 462      *  method.
 463      *  @param defs         The list of class member declarations.
 464      *  @param c            The enclosing class.
 465      */
 466     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
 467         ListBuffer<JCStatement> initCode = new ListBuffer<JCStatement>();
 468         ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<Attribute.TypeCompound>();
 469         ListBuffer<JCStatement> clinitCode = new ListBuffer<JCStatement>();
 470         ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<Attribute.TypeCompound>();
 471         ListBuffer<JCTree> methodDefs = new ListBuffer<JCTree>();
 472         // Sort definitions into three listbuffers:
 473         //  - initCode for instance initializers
 474         //  - clinitCode for class initializers
 475         //  - methodDefs for method definitions
 476         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
 477             JCTree def = l.head;
 478             switch (def.getTag()) {
 479             case BLOCK:
 480                 JCBlock block = (JCBlock)def;
 481                 if ((block.flags & STATIC) != 0)
 482                     clinitCode.append(block);
 483                 else
 484                     initCode.append(block);
 485                 break;
 486             case METHODDEF:
 487                 methodDefs.append(def);
 488                 break;
 489             case VARDEF:
 490                 JCVariableDecl vdef = (JCVariableDecl) def;
 491                 VarSymbol sym = vdef.sym;
 492                 checkDimension(vdef.pos(), sym.type);
 493                 if (vdef.init != null) {
 494                     if ((sym.flags() & STATIC) == 0) {
 495                         // Always initialize instance variables.
 496                         JCStatement init = make.at(vdef.pos()).
 497                             Assignment(sym, vdef.init);
 498                         initCode.append(init);
 499                         endPosTable.replaceTree(vdef, init);
 500                         initTAs.addAll(getAndRemoveNonFieldTAs(sym));
 501                     } else if (sym.getConstValue() == null) {
 502                         // Initialize class (static) variables only if
 503                         // they are not compile-time constants.
 504                         JCStatement init = make.at(vdef.pos).
 505                             Assignment(sym, vdef.init);
 506                         clinitCode.append(init);
 507                         endPosTable.replaceTree(vdef, init);
 508                         clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
 509                     } else {
 510                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
 511                     }
 512                 }
 513                 break;
 514             default:
 515                 Assert.error();
 516             }
 517         }
 518         // Insert any instance initializers into all constructors.
 519         if (initCode.length() != 0) {
 520             List<JCStatement> inits = initCode.toList();
 521             initTAs.addAll(c.getInitTypeAttributes());
 522             List<Attribute.TypeCompound> initTAlist = initTAs.toList();
 523             for (JCTree t : methodDefs) {
 524                 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
 525             }
 526         }
 527         // If there are class initializers, create a <clinit> method
 528         // that contains them as its body.
 529         if (clinitCode.length() != 0) {
 530             MethodSymbol clinit = new MethodSymbol(
 531                 STATIC | (c.flags() & STRICTFP),
 532                 names.clinit,
 533                 new MethodType(
 534                     List.<Type>nil(), syms.voidType,
 535                     List.<Type>nil(), syms.methodClass),
 536                 c);
 537             c.members().enter(clinit);
 538             List<JCStatement> clinitStats = clinitCode.toList();
 539             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
 540             block.endpos = TreeInfo.endPos(clinitStats.last());
 541             methodDefs.append(make.MethodDef(clinit, block));
 542 
 543             if (!clinitTAs.isEmpty())
 544                 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
 545             if (!c.getClassInitTypeAttributes().isEmpty())
 546                 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
 547         }
 548         // Return all method definitions.
 549         return methodDefs.toList();
 550     }
 551 
 552     private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
 553         List<TypeCompound> tas = sym.getRawTypeAttributes();
 554         ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<Attribute.TypeCompound>();
 555         ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<Attribute.TypeCompound>();
 556         for (TypeCompound ta : tas) {
 557             if (ta.position.type == TargetType.FIELD) {
 558                 fieldTAs.add(ta);
 559             } else {
 560                 nonfieldTAs.add(ta);
 561             }
 562         }
 563         sym.setTypeAttributes(fieldTAs.toList());
 564         return nonfieldTAs.toList();
 565     }
 566 
 567     /** Check a constant value and report if it is a string that is
 568      *  too large.
 569      */
 570     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
 571         if (nerrs != 0 || // only complain about a long string once
 572             constValue == null ||
 573             !(constValue instanceof String) ||
 574             ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
 575             return;
 576         log.error(pos, "limit.string");
 577         nerrs++;
 578     }
 579 
 580     /** Insert instance initializer code into initial constructor.
 581      *  @param md        The tree potentially representing a
 582      *                   constructor's definition.
 583      *  @param initCode  The list of instance initializer statements.
 584      *  @param initTAs  Type annotations from the initializer expression.
 585      */
 586     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
 587         if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
 588             // We are seeing a constructor that does not call another
 589             // constructor of the same class.
 590             List<JCStatement> stats = md.body.stats;
 591             ListBuffer<JCStatement> newstats = new ListBuffer<JCStatement>();
 592 
 593             if (stats.nonEmpty()) {
 594                 // Copy initializers of synthetic variables generated in
 595                 // the translation of inner classes.
 596                 while (TreeInfo.isSyntheticInit(stats.head)) {
 597                     newstats.append(stats.head);
 598                     stats = stats.tail;
 599                 }
 600                 // Copy superclass constructor call
 601                 newstats.append(stats.head);
 602                 stats = stats.tail;
 603                 // Copy remaining synthetic initializers.
 604                 while (stats.nonEmpty() &&
 605                        TreeInfo.isSyntheticInit(stats.head)) {
 606                     newstats.append(stats.head);
 607                     stats = stats.tail;
 608                 }
 609                 // Now insert the initializer code.
 610                 newstats.appendList(initCode);
 611                 // And copy all remaining statements.
 612                 while (stats.nonEmpty()) {
 613                     newstats.append(stats.head);
 614                     stats = stats.tail;
 615                 }
 616             }
 617             md.body.stats = newstats.toList();
 618             if (md.body.endpos == Position.NOPOS)
 619                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
 620 
 621             md.sym.appendUniqueTypeAttributes(initTAs);
 622         }
 623     }
 624 
 625 /* ********************************************************************
 626  * Adding miranda methods
 627  *********************************************************************/
 628 
 629     /** Add abstract methods for all methods defined in one of
 630      *  the interfaces of a given class,
 631      *  provided they are not already implemented in the class.
 632      *
 633      *  @param c      The class whose interfaces are searched for methods
 634      *                for which Miranda methods should be added.
 635      */
 636     void implementInterfaceMethods(ClassSymbol c) {
 637         implementInterfaceMethods(c, c);
 638     }
 639 
 640     /** Add abstract methods for all methods defined in one of
 641      *  the interfaces of a given class,
 642      *  provided they are not already implemented in the class.
 643      *
 644      *  @param c      The class whose interfaces are searched for methods
 645      *                for which Miranda methods should be added.
 646      *  @param site   The class in which a definition may be needed.
 647      */
 648     void implementInterfaceMethods(ClassSymbol c, ClassSymbol site) {
 649         for (List<Type> l = types.interfaces(c.type); l.nonEmpty(); l = l.tail) {
 650             ClassSymbol i = (ClassSymbol)l.head.tsym;
 651             for (Scope.Entry e = i.members().elems;
 652                  e != null;
 653                  e = e.sibling)
 654             {
 655                 if (e.sym.kind == MTH && (e.sym.flags() & STATIC) == 0)
 656                 {
 657                     MethodSymbol absMeth = (MethodSymbol)e.sym;
 658                     MethodSymbol implMeth = absMeth.binaryImplementation(site, types);
 659                     if (implMeth == null)
 660                         addAbstractMethod(site, absMeth);
 661                     else if ((implMeth.flags() & IPROXY) != 0)
 662                         adjustAbstractMethod(site, implMeth, absMeth);
 663                 }
 664             }
 665             implementInterfaceMethods(i, site);
 666         }
 667     }
 668 
 669     /** Add an abstract methods to a class
 670      *  which implicitly implements a method defined in some interface
 671      *  implemented by the class. These methods are called "Miranda methods".
 672      *  Enter the newly created method into its enclosing class scope.
 673      *  Note that it is not entered into the class tree, as the emitter
 674      *  doesn't need to see it there to emit an abstract method.
 675      *
 676      *  @param c      The class to which the Miranda method is added.
 677      *  @param m      The interface method symbol for which a Miranda method
 678      *                is added.
 679      */
 680     private void addAbstractMethod(ClassSymbol c,
 681                                    MethodSymbol m) {
 682         MethodSymbol absMeth = new MethodSymbol(
 683             m.flags() | IPROXY | SYNTHETIC, m.name,
 684             m.type, // was c.type.memberType(m), but now only !generics supported
 685             c);
 686         c.members().enter(absMeth); // add to symbol table
 687     }
 688 
 689     private void adjustAbstractMethod(ClassSymbol c,
 690                                       MethodSymbol pm,
 691                                       MethodSymbol im) {
 692         MethodType pmt = (MethodType)pm.type;
 693         Type imt = types.memberType(c.type, im);
 694         pmt.thrown = chk.intersect(pmt.getThrownTypes(), imt.getThrownTypes());
 695     }
 696 
 697 /* ************************************************************************
 698  * Traversal methods
 699  *************************************************************************/
 700 
 701     /** Visitor argument: The current environment.
 702      */
 703     Env<GenContext> env;
 704 
 705     /** Visitor argument: The expected type (prototype).
 706      */
 707     Type pt;
 708 
 709     /** Visitor result: The item representing the computed value.
 710      */
 711     Item result;
 712 
 713     /** Visitor method: generate code for a definition, catching and reporting
 714      *  any completion failures.
 715      *  @param tree    The definition to be visited.
 716      *  @param env     The environment current at the definition.
 717      */
 718     public void genDef(JCTree tree, Env<GenContext> env) {
 719         Env<GenContext> prevEnv = this.env;
 720         try {
 721             this.env = env;
 722             tree.accept(this);
 723         } catch (CompletionFailure ex) {
 724             chk.completionError(tree.pos(), ex);
 725         } finally {
 726             this.env = prevEnv;
 727         }
 728     }
 729 
 730     /** Derived visitor method: check whether CharacterRangeTable
 731      *  should be emitted, if so, put a new entry into CRTable
 732      *  and call method to generate bytecode.
 733      *  If not, just call method to generate bytecode.
 734      *  @see    #genStat(JCTree, Env)
 735      *
 736      *  @param  tree     The tree to be visited.
 737      *  @param  env      The environment to use.
 738      *  @param  crtFlags The CharacterRangeTable flags
 739      *                   indicating type of the entry.
 740      */
 741     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
 742         if (!genCrt) {
 743             genStat(tree, env);
 744             return;
 745         }
 746         int startpc = code.curPc();
 747         genStat(tree, env);
 748         if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
 749         code.crt.put(tree, crtFlags, startpc, code.curPc());
 750     }
 751 
 752     /** Derived visitor method: generate code for a statement.
 753      */
 754     public void genStat(JCTree tree, Env<GenContext> env) {
 755         if (code.isAlive()) {
 756             code.statBegin(tree.pos);
 757             genDef(tree, env);
 758         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
 759             // variables whose declarations are in a switch
 760             // can be used even if the decl is unreachable.
 761             code.newLocal(((JCVariableDecl) tree).sym);
 762         }
 763     }
 764 
 765     /** Derived visitor method: check whether CharacterRangeTable
 766      *  should be emitted, if so, put a new entry into CRTable
 767      *  and call method to generate bytecode.
 768      *  If not, just call method to generate bytecode.
 769      *  @see    #genStats(List, Env)
 770      *
 771      *  @param  trees    The list of trees to be visited.
 772      *  @param  env      The environment to use.
 773      *  @param  crtFlags The CharacterRangeTable flags
 774      *                   indicating type of the entry.
 775      */
 776     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
 777         if (!genCrt) {
 778             genStats(trees, env);
 779             return;
 780         }
 781         if (trees.length() == 1) {        // mark one statement with the flags
 782             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
 783         } else {
 784             int startpc = code.curPc();
 785             genStats(trees, env);
 786             code.crt.put(trees, crtFlags, startpc, code.curPc());
 787         }
 788     }
 789 
 790     /** Derived visitor method: generate code for a list of statements.
 791      */
 792     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
 793         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 794             genStat(l.head, env, CRT_STATEMENT);
 795     }
 796 
 797     /** Derived visitor method: check whether CharacterRangeTable
 798      *  should be emitted, if so, put a new entry into CRTable
 799      *  and call method to generate bytecode.
 800      *  If not, just call method to generate bytecode.
 801      *  @see    #genCond(JCTree,boolean)
 802      *
 803      *  @param  tree     The tree to be visited.
 804      *  @param  crtFlags The CharacterRangeTable flags
 805      *                   indicating type of the entry.
 806      */
 807     public CondItem genCond(JCTree tree, int crtFlags) {
 808         if (!genCrt) return genCond(tree, false);
 809         int startpc = code.curPc();
 810         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
 811         code.crt.put(tree, crtFlags, startpc, code.curPc());
 812         return item;
 813     }
 814 
 815     /** Derived visitor method: generate code for a boolean
 816      *  expression in a control-flow context.
 817      *  @param _tree         The expression to be visited.
 818      *  @param markBranches The flag to indicate that the condition is
 819      *                      a flow controller so produced conditions
 820      *                      should contain a proper tree to generate
 821      *                      CharacterRangeTable branches for them.
 822      */
 823     public CondItem genCond(JCTree _tree, boolean markBranches) {
 824         JCTree inner_tree = TreeInfo.skipParens(_tree);
 825         if (inner_tree.hasTag(CONDEXPR)) {
 826             JCConditional tree = (JCConditional)inner_tree;
 827             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
 828             if (cond.isTrue()) {
 829                 code.resolve(cond.trueJumps);
 830                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
 831                 if (markBranches) result.tree = tree.truepart;
 832                 return result;
 833             }
 834             if (cond.isFalse()) {
 835                 code.resolve(cond.falseJumps);
 836                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
 837                 if (markBranches) result.tree = tree.falsepart;
 838                 return result;
 839             }
 840             Chain secondJumps = cond.jumpFalse();
 841             code.resolve(cond.trueJumps);
 842             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
 843             if (markBranches) first.tree = tree.truepart;
 844             Chain falseJumps = first.jumpFalse();
 845             code.resolve(first.trueJumps);
 846             Chain trueJumps = code.branch(goto_);
 847             code.resolve(secondJumps);
 848             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
 849             CondItem result = items.makeCondItem(second.opcode,
 850                                       Code.mergeChains(trueJumps, second.trueJumps),
 851                                       Code.mergeChains(falseJumps, second.falseJumps));
 852             if (markBranches) result.tree = tree.falsepart;
 853             return result;
 854         } else {
 855             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
 856             if (markBranches) result.tree = _tree;
 857             return result;
 858         }
 859     }
 860 
 861     /** Visitor class for expressions which might be constant expressions.
 862      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
 863      *  Lower as long as constant expressions looking for references to any
 864      *  ClassSymbol. Any such reference will be added to the constant pool so
 865      *  automated tools can detect class dependencies better.
 866      */
 867     class ClassReferenceVisitor extends JCTree.Visitor {
 868 
 869         @Override
 870         public void visitTree(JCTree tree) {}
 871 
 872         @Override
 873         public void visitBinary(JCBinary tree) {
 874             tree.lhs.accept(this);
 875             tree.rhs.accept(this);
 876         }
 877 
 878         @Override
 879         public void visitSelect(JCFieldAccess tree) {
 880             if (tree.selected.type.hasTag(CLASS)) {
 881                 makeRef(tree.selected.pos(), tree.selected.type);
 882             }
 883         }
 884 
 885         @Override
 886         public void visitIdent(JCIdent tree) {
 887             if (tree.sym.owner instanceof ClassSymbol) {
 888                 pool.put(tree.sym.owner);
 889             }
 890         }
 891 
 892         @Override
 893         public void visitConditional(JCConditional tree) {
 894             tree.cond.accept(this);
 895             tree.truepart.accept(this);
 896             tree.falsepart.accept(this);
 897         }
 898 
 899         @Override
 900         public void visitUnary(JCUnary tree) {
 901             tree.arg.accept(this);
 902         }
 903 
 904         @Override
 905         public void visitParens(JCParens tree) {
 906             tree.expr.accept(this);
 907         }
 908 
 909         @Override
 910         public void visitTypeCast(JCTypeCast tree) {
 911             tree.expr.accept(this);
 912         }
 913     }
 914 
 915     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
 916 
 917     /** Visitor method: generate code for an expression, catching and reporting
 918      *  any completion failures.
 919      *  @param tree    The expression to be visited.
 920      *  @param pt      The expression's expected type (proto-type).
 921      */
 922     public Item genExpr(JCTree tree, Type pt) {
 923         Type prevPt = this.pt;
 924         try {
 925             if (tree.type.constValue() != null) {
 926                 // Short circuit any expressions which are constants
 927                 tree.accept(classReferenceVisitor);
 928                 checkStringConstant(tree.pos(), tree.type.constValue());
 929                 result = items.makeImmediateItem(tree.type, tree.type.constValue());
 930             } else {
 931                 this.pt = pt;
 932                 tree.accept(this);
 933             }
 934             return result.coerce(pt);
 935         } catch (CompletionFailure ex) {
 936             chk.completionError(tree.pos(), ex);
 937             code.state.stacksize = 1;
 938             return items.makeStackItem(pt);
 939         } finally {
 940             this.pt = prevPt;
 941         }
 942     }
 943 
 944     /** Derived visitor method: generate code for a list of method arguments.
 945      *  @param trees    The argument expressions to be visited.
 946      *  @param pts      The expression's expected types (i.e. the formal parameter
 947      *                  types of the invoked method).
 948      */
 949     public void genArgs(List<JCExpression> trees, List<Type> pts) {
 950         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
 951             genExpr(l.head, pts.head).load();
 952             pts = pts.tail;
 953         }
 954         // require lists be of same length
 955         Assert.check(pts.isEmpty());
 956     }
 957 
 958 /* ************************************************************************
 959  * Visitor methods for statements and definitions
 960  *************************************************************************/
 961 
 962     /** Thrown when the byte code size exceeds limit.
 963      */
 964     public static class CodeSizeOverflow extends RuntimeException {
 965         private static final long serialVersionUID = 0;
 966         public CodeSizeOverflow() {}
 967     }
 968 
 969     public void visitMethodDef(JCMethodDecl tree) {
 970         // Create a new local environment that points pack at method
 971         // definition.
 972         Env<GenContext> localEnv = env.dup(tree);
 973         localEnv.enclMethod = tree;
 974 
 975         // The expected type of every return statement in this method
 976         // is the method's return type.
 977         this.pt = tree.sym.erasure(types).getReturnType();
 978 
 979         checkDimension(tree.pos(), tree.sym.erasure(types));
 980         genMethod(tree, localEnv, false);
 981     }
 982 //where
 983         /** Generate code for a method.
 984          *  @param tree     The tree representing the method definition.
 985          *  @param env      The environment current for the method body.
 986          *  @param fatcode  A flag that indicates whether all jumps are
 987          *                  within 32K.  We first invoke this method under
 988          *                  the assumption that fatcode == false, i.e. all
 989          *                  jumps are within 32K.  If this fails, fatcode
 990          *                  is set to true and we try again.
 991          */
 992         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 993             MethodSymbol meth = tree.sym;
 994             int extras = 0;
 995             // Count up extra parameters
 996             if (meth.isConstructor()) {
 997                 extras++;
 998                 if (meth.enclClass().isInner() &&
 999                     !meth.enclClass().isStatic()) {
1000                     extras++;
1001                 }
1002             } else if ((tree.mods.flags & STATIC) == 0) {
1003                 extras++;
1004             }
1005             //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
1006             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
1007                 ClassFile.MAX_PARAMETERS) {
1008                 log.error(tree.pos(), "limit.parameters");
1009                 nerrs++;
1010             }
1011 
1012             else if (tree.body != null) {
1013                 // Create a new code structure and initialize it.
1014                 int startpcCrt = initCode(tree, env, fatcode);
1015 
1016                 try {
1017                     genStat(tree.body, env);
1018                 } catch (CodeSizeOverflow e) {
1019                     // Failed due to code limit, try again with jsr/ret
1020                     startpcCrt = initCode(tree, env, fatcode);
1021                     genStat(tree.body, env);
1022                 }
1023 
1024                 if (code.state.stacksize != 0) {
1025                     log.error(tree.body.pos(), "stack.sim.error", tree);
1026                     throw new AssertionError();
1027                 }
1028 
1029                 // If last statement could complete normally, insert a
1030                 // return at the end.
1031                 if (code.isAlive()) {
1032                     code.statBegin(TreeInfo.endPos(tree.body));
1033                     if (env.enclMethod == null ||
1034                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
1035                         code.emitop0(return_);
1036                     } else {
1037                         // sometime dead code seems alive (4415991);
1038                         // generate a small loop instead
1039                         int startpc = code.entryPoint();
1040                         CondItem c = items.makeCondItem(goto_);
1041                         code.resolve(c.jumpTrue(), startpc);
1042                     }
1043                 }
1044                 if (genCrt)
1045                     code.crt.put(tree.body,
1046                                  CRT_BLOCK,
1047                                  startpcCrt,
1048                                  code.curPc());
1049 
1050                 code.endScopes(0);
1051 
1052                 // If we exceeded limits, panic
1053                 if (code.checkLimits(tree.pos(), log)) {
1054                     nerrs++;
1055                     return;
1056                 }
1057 
1058                 // If we generated short code but got a long jump, do it again
1059                 // with fatCode = true.
1060                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
1061 
1062                 // Clean up
1063                 if(stackMap == StackMapFormat.JSR202) {
1064                     code.lastFrame = null;
1065                     code.frameBeforeLast = null;
1066                 }
1067 
1068                 // Compress exception table
1069                 code.compressCatchTable();
1070 
1071                 // Fill in type annotation positions for exception parameters
1072                 code.fillExceptionParameterPositions();
1073             }
1074         }
1075 
1076         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
1077             MethodSymbol meth = tree.sym;
1078 
1079             // Create a new code structure.
1080             meth.code = code = new Code(meth,
1081                                         fatcode,
1082                                         lineDebugInfo ? toplevel.lineMap : null,
1083                                         varDebugInfo,
1084                                         stackMap,
1085                                         debugCode,
1086                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
1087                                                : null,
1088                                         syms,
1089                                         types,
1090                                         pool);
1091             items = new Items(pool, code, syms, types);
1092             if (code.debugCode)
1093                 System.err.println(meth + " for body " + tree);
1094 
1095             // If method is not static, create a new local variable address
1096             // for `this'.
1097             if ((tree.mods.flags & STATIC) == 0) {
1098                 Type selfType = meth.owner.type;
1099                 if (meth.isConstructor() && selfType != syms.objectType)
1100                     selfType = UninitializedType.uninitializedThis(selfType);
1101                 code.setDefined(
1102                         code.newLocal(
1103                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
1104             }
1105 
1106             // Mark all parameters as defined from the beginning of
1107             // the method.
1108             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1109                 checkDimension(l.head.pos(), l.head.sym.type);
1110                 code.setDefined(code.newLocal(l.head.sym));
1111             }
1112 
1113             // Get ready to generate code for method body.
1114             int startpcCrt = genCrt ? code.curPc() : 0;
1115             code.entryPoint();
1116 
1117             // Suppress initial stackmap
1118             code.pendingStackMap = false;
1119 
1120             return startpcCrt;
1121         }
1122 
1123     public void visitVarDef(JCVariableDecl tree) {
1124         VarSymbol v = tree.sym;
1125         code.newLocal(v);
1126         if (tree.init != null) {
1127             checkStringConstant(tree.init.pos(), v.getConstValue());
1128             if (v.getConstValue() == null || varDebugInfo) {
1129                 genExpr(tree.init, v.erasure(types)).load();
1130                 items.makeLocalItem(v).store();
1131             }
1132         }
1133         checkDimension(tree.pos(), v.type);
1134     }
1135 
1136     public void visitSkip(JCSkip tree) {
1137     }
1138 
1139     public void visitBlock(JCBlock tree) {
1140         int limit = code.nextreg;
1141         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1142         genStats(tree.stats, localEnv);
1143         // End the scope of all block-local variables in variable info.
1144         if (!env.tree.hasTag(METHODDEF)) {
1145             code.statBegin(tree.endpos);
1146             code.endScopes(limit);
1147             code.pendingStatPos = Position.NOPOS;
1148         }
1149     }
1150 
1151     public void visitDoLoop(JCDoWhileLoop tree) {
1152         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
1153     }
1154 
1155     public void visitWhileLoop(JCWhileLoop tree) {
1156         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
1157     }
1158 
1159     public void visitForLoop(JCForLoop tree) {
1160         int limit = code.nextreg;
1161         genStats(tree.init, env);
1162         genLoop(tree, tree.body, tree.cond, tree.step, true);
1163         code.endScopes(limit);
1164     }
1165     //where
1166         /** Generate code for a loop.
1167          *  @param loop       The tree representing the loop.
1168          *  @param body       The loop's body.
1169          *  @param cond       The loop's controling condition.
1170          *  @param step       "Step" statements to be inserted at end of
1171          *                    each iteration.
1172          *  @param testFirst  True if the loop test belongs before the body.
1173          */
1174         private void genLoop(JCStatement loop,
1175                              JCStatement body,
1176                              JCExpression cond,
1177                              List<JCExpressionStatement> step,
1178                              boolean testFirst) {
1179             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1180             int startpc = code.entryPoint();
1181             if (testFirst) {
1182                 CondItem c;
1183                 if (cond != null) {
1184                     code.statBegin(cond.pos);
1185                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1186                 } else {
1187                     c = items.makeCondItem(goto_);
1188                 }
1189                 Chain loopDone = c.jumpFalse();
1190                 code.resolve(c.trueJumps);
1191                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1192                 code.resolve(loopEnv.info.cont);
1193                 genStats(step, loopEnv);
1194                 code.resolve(code.branch(goto_), startpc);
1195                 code.resolve(loopDone);
1196             } else {
1197                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1198                 code.resolve(loopEnv.info.cont);
1199                 genStats(step, loopEnv);
1200                 CondItem c;
1201                 if (cond != null) {
1202                     code.statBegin(cond.pos);
1203                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1204                 } else {
1205                     c = items.makeCondItem(goto_);
1206                 }
1207                 code.resolve(c.jumpTrue(), startpc);
1208                 code.resolve(c.falseJumps);
1209             }
1210             code.resolve(loopEnv.info.exit);
1211         }
1212 
1213     public void visitForeachLoop(JCEnhancedForLoop tree) {
1214         throw new AssertionError(); // should have been removed by Lower.
1215     }
1216 
1217     public void visitLabelled(JCLabeledStatement tree) {
1218         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1219         genStat(tree.body, localEnv, CRT_STATEMENT);
1220         code.resolve(localEnv.info.exit);
1221     }
1222 
1223     public void visitSwitch(JCSwitch tree) {
1224         int limit = code.nextreg;
1225         Assert.check(!tree.selector.type.hasTag(CLASS));
1226         int startpcCrt = genCrt ? code.curPc() : 0;
1227         Item sel = genExpr(tree.selector, syms.intType);
1228         List<JCCase> cases = tree.cases;
1229         if (cases.isEmpty()) {
1230             // We are seeing:  switch <sel> {}
1231             sel.load().drop();
1232             if (genCrt)
1233                 code.crt.put(TreeInfo.skipParens(tree.selector),
1234                              CRT_FLOW_CONTROLLER, startpcCrt, code.curPc());
1235         } else {
1236             // We are seeing a nonempty switch.
1237             sel.load();
1238             if (genCrt)
1239                 code.crt.put(TreeInfo.skipParens(tree.selector),
1240                              CRT_FLOW_CONTROLLER, startpcCrt, code.curPc());
1241             Env<GenContext> switchEnv = env.dup(tree, new GenContext());
1242             switchEnv.info.isSwitch = true;
1243 
1244             // Compute number of labels and minimum and maximum label values.
1245             // For each case, store its label in an array.
1246             int lo = Integer.MAX_VALUE;  // minimum label.
1247             int hi = Integer.MIN_VALUE;  // maximum label.
1248             int nlabels = 0;               // number of labels.
1249 
1250             int[] labels = new int[cases.length()];  // the label array.
1251             int defaultIndex = -1;     // the index of the default clause.
1252 
1253             List<JCCase> l = cases;
1254             for (int i = 0; i < labels.length; i++) {
1255                 if (l.head.pat != null) {
1256                     int val = ((Number)l.head.pat.type.constValue()).intValue();
1257                     labels[i] = val;
1258                     if (val < lo) lo = val;
1259                     if (hi < val) hi = val;
1260                     nlabels++;
1261                 } else {
1262                     Assert.check(defaultIndex == -1);
1263                     defaultIndex = i;
1264                 }
1265                 l = l.tail;
1266             }
1267 
1268             // Determine whether to issue a tableswitch or a lookupswitch
1269             // instruction.
1270             long table_space_cost = 4 + ((long) hi - lo + 1); // words
1271             long table_time_cost = 3; // comparisons
1272             long lookup_space_cost = 3 + 2 * (long) nlabels;
1273             long lookup_time_cost = nlabels;
1274             int opcode =
1275                 nlabels > 0 &&
1276                 table_space_cost + 3 * table_time_cost <=
1277                 lookup_space_cost + 3 * lookup_time_cost
1278                 ?
1279                 tableswitch : lookupswitch;
1280 
1281             int startpc = code.curPc();    // the position of the selector operation
1282             code.emitop0(opcode);
1283             code.align(4);
1284             int tableBase = code.curPc();  // the start of the jump table
1285             int[] offsets = null;          // a table of offsets for a lookupswitch
1286             code.emit4(-1);                // leave space for default offset
1287             if (opcode == tableswitch) {
1288                 code.emit4(lo);            // minimum label
1289                 code.emit4(hi);            // maximum label
1290                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
1291                     code.emit4(-1);
1292                 }
1293             } else {
1294                 code.emit4(nlabels);    // number of labels
1295                 for (int i = 0; i < nlabels; i++) {
1296                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
1297                 }
1298                 offsets = new int[labels.length];
1299             }
1300             Code.State stateSwitch = code.state.dup();
1301             code.markDead();
1302 
1303             // For each case do:
1304             l = cases;
1305             for (int i = 0; i < labels.length; i++) {
1306                 JCCase c = l.head;
1307                 l = l.tail;
1308 
1309                 int pc = code.entryPoint(stateSwitch);
1310                 // Insert offset directly into code or else into the
1311                 // offsets table.
1312                 if (i != defaultIndex) {
1313                     if (opcode == tableswitch) {
1314                         code.put4(
1315                             tableBase + 4 * (labels[i] - lo + 3),
1316                             pc - startpc);
1317                     } else {
1318                         offsets[i] = pc - startpc;
1319                     }
1320                 } else {
1321                     code.put4(tableBase, pc - startpc);
1322                 }
1323 
1324                 // Generate code for the statements in this case.
1325                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1326             }
1327 
1328             // Resolve all breaks.
1329             code.resolve(switchEnv.info.exit);
1330 
1331             // If we have not set the default offset, we do so now.
1332             if (code.get4(tableBase) == -1) {
1333                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1334             }
1335 
1336             if (opcode == tableswitch) {
1337                 // Let any unfilled slots point to the default case.
1338                 int defaultOffset = code.get4(tableBase);
1339                 for (long i = lo; i <= hi; i++) {
1340                     int t = (int)(tableBase + 4 * (i - lo + 3));
1341                     if (code.get4(t) == -1)
1342                         code.put4(t, defaultOffset);
1343                 }
1344             } else {
1345                 // Sort non-default offsets and copy into lookup table.
1346                 if (defaultIndex >= 0)
1347                     for (int i = defaultIndex; i < labels.length - 1; i++) {
1348                         labels[i] = labels[i+1];
1349                         offsets[i] = offsets[i+1];
1350                     }
1351                 if (nlabels > 0)
1352                     qsort2(labels, offsets, 0, nlabels - 1);
1353                 for (int i = 0; i < nlabels; i++) {
1354                     int caseidx = tableBase + 8 * (i + 1);
1355                     code.put4(caseidx, labels[i]);
1356                     code.put4(caseidx + 4, offsets[i]);
1357                 }
1358             }
1359         }
1360         code.endScopes(limit);
1361     }
1362 //where
1363         /** Sort (int) arrays of keys and values
1364          */
1365        static void qsort2(int[] keys, int[] values, int lo, int hi) {
1366             int i = lo;
1367             int j = hi;
1368             int pivot = keys[(i+j)/2];
1369             do {
1370                 while (keys[i] < pivot) i++;
1371                 while (pivot < keys[j]) j--;
1372                 if (i <= j) {
1373                     int temp1 = keys[i];
1374                     keys[i] = keys[j];
1375                     keys[j] = temp1;
1376                     int temp2 = values[i];
1377                     values[i] = values[j];
1378                     values[j] = temp2;
1379                     i++;
1380                     j--;
1381                 }
1382             } while (i <= j);
1383             if (lo < j) qsort2(keys, values, lo, j);
1384             if (i < hi) qsort2(keys, values, i, hi);
1385         }
1386 
1387     public void visitSynchronized(JCSynchronized tree) {
1388         int limit = code.nextreg;
1389         // Generate code to evaluate lock and save in temporary variable.
1390         final LocalItem lockVar = makeTemp(syms.objectType);
1391         genExpr(tree.lock, tree.lock.type).load().duplicate();
1392         lockVar.store();
1393 
1394         // Generate code to enter monitor.
1395         code.emitop0(monitorenter);
1396         code.state.lock(lockVar.reg);
1397 
1398         // Generate code for a try statement with given body, no catch clauses
1399         // in a new environment with the "exit-monitor" operation as finalizer.
1400         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1401         syncEnv.info.finalize = new GenFinalizer() {
1402             void gen() {
1403                 genLast();
1404                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1405                 syncEnv.info.gaps.append(code.curPc());
1406             }
1407             void genLast() {
1408                 if (code.isAlive()) {
1409                     lockVar.load();
1410                     code.emitop0(monitorexit);
1411                     code.state.unlock(lockVar.reg);
1412                 }
1413             }
1414         };
1415         syncEnv.info.gaps = new ListBuffer<Integer>();
1416         genTry(tree.body, List.<JCCatch>nil(), syncEnv);
1417         code.endScopes(limit);
1418     }
1419 
1420     public void visitTry(final JCTry tree) {
1421         // Generate code for a try statement with given body and catch clauses,
1422         // in a new environment which calls the finally block if there is one.
1423         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1424         final Env<GenContext> oldEnv = env;
1425         if (!useJsrLocally) {
1426             useJsrLocally =
1427                 (stackMap == StackMapFormat.NONE) &&
1428                 (jsrlimit <= 0 ||
1429                 jsrlimit < 100 &&
1430                 estimateCodeComplexity(tree.finalizer)>jsrlimit);
1431         }
1432         tryEnv.info.finalize = new GenFinalizer() {
1433             void gen() {
1434                 if (useJsrLocally) {
1435                     if (tree.finalizer != null) {
1436                         Code.State jsrState = code.state.dup();
1437                         jsrState.push(Code.jsrReturnValue);
1438                         tryEnv.info.cont =
1439                             new Chain(code.emitJump(jsr),
1440                                       tryEnv.info.cont,
1441                                       jsrState);
1442                     }
1443                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1444                     tryEnv.info.gaps.append(code.curPc());
1445                 } else {
1446                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1447                     tryEnv.info.gaps.append(code.curPc());
1448                     genLast();
1449                 }
1450             }
1451             void genLast() {
1452                 if (tree.finalizer != null)
1453                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1454             }
1455             boolean hasFinalizer() {
1456                 return tree.finalizer != null;
1457             }
1458         };
1459         tryEnv.info.gaps = new ListBuffer<Integer>();
1460         genTry(tree.body, tree.catchers, tryEnv);
1461     }
1462     //where
1463         /** Generate code for a try or synchronized statement
1464          *  @param body      The body of the try or synchronized statement.
1465          *  @param catchers  The lis of catch clauses.
1466          *  @param env       the environment current for the body.
1467          */
1468         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1469             int limit = code.nextreg;
1470             int startpc = code.curPc();
1471             Code.State stateTry = code.state.dup();
1472             genStat(body, env, CRT_BLOCK);
1473             int endpc = code.curPc();
1474             boolean hasFinalizer =
1475                 env.info.finalize != null &&
1476                 env.info.finalize.hasFinalizer();
1477             List<Integer> gaps = env.info.gaps.toList();
1478             code.statBegin(TreeInfo.endPos(body));
1479             genFinalizer(env);
1480             code.statBegin(TreeInfo.endPos(env.tree));
1481             Chain exitChain = code.branch(goto_);
1482             endFinalizerGap(env);
1483             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1484                 // start off with exception on stack
1485                 code.entryPoint(stateTry, l.head.param.sym.type);
1486                 genCatch(l.head, env, startpc, endpc, gaps);
1487                 genFinalizer(env);
1488                 if (hasFinalizer || l.tail.nonEmpty()) {
1489                     code.statBegin(TreeInfo.endPos(env.tree));
1490                     exitChain = Code.mergeChains(exitChain,
1491                                                  code.branch(goto_));
1492                 }
1493                 endFinalizerGap(env);
1494             }
1495             if (hasFinalizer) {
1496                 // Create a new register segement to avoid allocating
1497                 // the same variables in finalizers and other statements.
1498                 code.newRegSegment();
1499 
1500                 // Add a catch-all clause.
1501 
1502                 // start off with exception on stack
1503                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1504 
1505                 // Register all exception ranges for catch all clause.
1506                 // The range of the catch all clause is from the beginning
1507                 // of the try or synchronized block until the present
1508                 // code pointer excluding all gaps in the current
1509                 // environment's GenContext.
1510                 int startseg = startpc;
1511                 while (env.info.gaps.nonEmpty()) {
1512                     int endseg = env.info.gaps.next().intValue();
1513                     registerCatch(body.pos(), startseg, endseg,
1514                                   catchallpc, 0);
1515                     startseg = env.info.gaps.next().intValue();
1516                 }
1517                 code.statBegin(TreeInfo.finalizerPos(env.tree));
1518                 code.markStatBegin();
1519 
1520                 Item excVar = makeTemp(syms.throwableType);
1521                 excVar.store();
1522                 genFinalizer(env);
1523                 excVar.load();
1524                 registerCatch(body.pos(), startseg,
1525                               env.info.gaps.next().intValue(),
1526                               catchallpc, 0);
1527                 code.emitop0(athrow);
1528                 code.markDead();
1529 
1530                 // If there are jsr's to this finalizer, ...
1531                 if (env.info.cont != null) {
1532                     // Resolve all jsr's.
1533                     code.resolve(env.info.cont);
1534 
1535                     // Mark statement line number
1536                     code.statBegin(TreeInfo.finalizerPos(env.tree));
1537                     code.markStatBegin();
1538 
1539                     // Save return address.
1540                     LocalItem retVar = makeTemp(syms.throwableType);
1541                     retVar.store();
1542 
1543                     // Generate finalizer code.
1544                     env.info.finalize.genLast();
1545 
1546                     // Return.
1547                     code.emitop1w(ret, retVar.reg);
1548                     code.markDead();
1549                 }
1550             }
1551             // Resolve all breaks.
1552             code.resolve(exitChain);
1553 
1554             code.endScopes(limit);
1555         }
1556 
1557         /** Generate code for a catch clause.
1558          *  @param tree     The catch clause.
1559          *  @param env      The environment current in the enclosing try.
1560          *  @param startpc  Start pc of try-block.
1561          *  @param endpc    End pc of try-block.
1562          */
1563         void genCatch(JCCatch tree,
1564                       Env<GenContext> env,
1565                       int startpc, int endpc,
1566                       List<Integer> gaps) {
1567             if (startpc != endpc) {
1568                 List<JCExpression> subClauses = TreeInfo.isMultiCatch(tree) ?
1569                         ((JCTypeUnion)tree.param.vartype).alternatives :
1570                         List.of(tree.param.vartype);
1571                 while (gaps.nonEmpty()) {
1572                     for (JCExpression subCatch : subClauses) {
1573                         int catchType = makeRef(tree.pos(), subCatch.type);
1574                         int end = gaps.head.intValue();
1575                         registerCatch(tree.pos(),
1576                                       startpc,  end, code.curPc(),
1577                                       catchType);
1578                         if (subCatch.type.isAnnotated()) {
1579                             // All compounds share the same position, simply update the
1580                             // first one.
1581                             subCatch.type.getAnnotationMirrors().head.position.type_index = catchType;
1582                         }
1583                     }
1584                     gaps = gaps.tail;
1585                     startpc = gaps.head.intValue();
1586                     gaps = gaps.tail;
1587                 }
1588                 if (startpc < endpc) {
1589                     for (JCExpression subCatch : subClauses) {
1590                         int catchType = makeRef(tree.pos(), subCatch.type);
1591                         registerCatch(tree.pos(),
1592                                       startpc, endpc, code.curPc(),
1593                                       catchType);
1594                         if (subCatch.type.isAnnotated()) {
1595                             // All compounds share the same position, simply update the
1596                             // first one.
1597                             subCatch.type.getAnnotationMirrors().head.position.type_index = catchType;
1598                         }
1599                     }
1600                 }
1601                 VarSymbol exparam = tree.param.sym;
1602                 code.statBegin(tree.pos);
1603                 code.markStatBegin();
1604                 int limit = code.nextreg;
1605                 int exlocal = code.newLocal(exparam);
1606                 items.makeLocalItem(exparam).store();
1607                 code.statBegin(TreeInfo.firstStatPos(tree.body));
1608                 genStat(tree.body, env, CRT_BLOCK);
1609                 code.endScopes(limit);
1610                 code.statBegin(TreeInfo.endPos(tree.body));
1611             }
1612         }
1613 
1614         /** Register a catch clause in the "Exceptions" code-attribute.
1615          */
1616         void registerCatch(DiagnosticPosition pos,
1617                            int startpc, int endpc,
1618                            int handler_pc, int catch_type) {
1619             char startpc1 = (char)startpc;
1620             char endpc1 = (char)endpc;
1621             char handler_pc1 = (char)handler_pc;
1622             if (startpc1 == startpc &&
1623                 endpc1 == endpc &&
1624                 handler_pc1 == handler_pc) {
1625                 code.addCatch(startpc1, endpc1, handler_pc1,
1626                               (char)catch_type);
1627             } else {
1628                 if (!useJsrLocally && !target.generateStackMapTable()) {
1629                     useJsrLocally = true;
1630                     throw new CodeSizeOverflow();
1631                 } else {
1632                     log.error(pos, "limit.code.too.large.for.try.stmt");
1633                     nerrs++;
1634                 }
1635             }
1636         }
1637 
1638     /** Very roughly estimate the number of instructions needed for
1639      *  the given tree.
1640      */
1641     int estimateCodeComplexity(JCTree tree) {
1642         if (tree == null) return 0;
1643         class ComplexityScanner extends TreeScanner {
1644             int complexity = 0;
1645             public void scan(JCTree tree) {
1646                 if (complexity > jsrlimit) return;
1647                 super.scan(tree);
1648             }
1649             public void visitClassDef(JCClassDecl tree) {}
1650             public void visitDoLoop(JCDoWhileLoop tree)
1651                 { super.visitDoLoop(tree); complexity++; }
1652             public void visitWhileLoop(JCWhileLoop tree)
1653                 { super.visitWhileLoop(tree); complexity++; }
1654             public void visitForLoop(JCForLoop tree)
1655                 { super.visitForLoop(tree); complexity++; }
1656             public void visitSwitch(JCSwitch tree)
1657                 { super.visitSwitch(tree); complexity+=5; }
1658             public void visitCase(JCCase tree)
1659                 { super.visitCase(tree); complexity++; }
1660             public void visitSynchronized(JCSynchronized tree)
1661                 { super.visitSynchronized(tree); complexity+=6; }
1662             public void visitTry(JCTry tree)
1663                 { super.visitTry(tree);
1664                   if (tree.finalizer != null) complexity+=6; }
1665             public void visitCatch(JCCatch tree)
1666                 { super.visitCatch(tree); complexity+=2; }
1667             public void visitConditional(JCConditional tree)
1668                 { super.visitConditional(tree); complexity+=2; }
1669             public void visitIf(JCIf tree)
1670                 { super.visitIf(tree); complexity+=2; }
1671             // note: for break, continue, and return we don't take unwind() into account.
1672             public void visitBreak(JCBreak tree)
1673                 { super.visitBreak(tree); complexity+=1; }
1674             public void visitContinue(JCContinue tree)
1675                 { super.visitContinue(tree); complexity+=1; }
1676             public void visitReturn(JCReturn tree)
1677                 { super.visitReturn(tree); complexity+=1; }
1678             public void visitThrow(JCThrow tree)
1679                 { super.visitThrow(tree); complexity+=1; }
1680             public void visitAssert(JCAssert tree)
1681                 { super.visitAssert(tree); complexity+=5; }
1682             public void visitApply(JCMethodInvocation tree)
1683                 { super.visitApply(tree); complexity+=2; }
1684             public void visitNewClass(JCNewClass tree)
1685                 { scan(tree.encl); scan(tree.args); complexity+=2; }
1686             public void visitNewArray(JCNewArray tree)
1687                 { super.visitNewArray(tree); complexity+=5; }
1688             public void visitAssign(JCAssign tree)
1689                 { super.visitAssign(tree); complexity+=1; }
1690             public void visitAssignop(JCAssignOp tree)
1691                 { super.visitAssignop(tree); complexity+=2; }
1692             public void visitUnary(JCUnary tree)
1693                 { complexity+=1;
1694                   if (tree.type.constValue() == null) super.visitUnary(tree); }
1695             public void visitBinary(JCBinary tree)
1696                 { complexity+=1;
1697                   if (tree.type.constValue() == null) super.visitBinary(tree); }
1698             public void visitTypeTest(JCInstanceOf tree)
1699                 { super.visitTypeTest(tree); complexity+=1; }
1700             public void visitIndexed(JCArrayAccess tree)
1701                 { super.visitIndexed(tree); complexity+=1; }
1702             public void visitSelect(JCFieldAccess tree)
1703                 { super.visitSelect(tree);
1704                   if (tree.sym.kind == VAR) complexity+=1; }
1705             public void visitIdent(JCIdent tree) {
1706                 if (tree.sym.kind == VAR) {
1707                     complexity+=1;
1708                     if (tree.type.constValue() == null &&
1709                         tree.sym.owner.kind == TYP)
1710                         complexity+=1;
1711                 }
1712             }
1713             public void visitLiteral(JCLiteral tree)
1714                 { complexity+=1; }
1715             public void visitTree(JCTree tree) {}
1716             public void visitWildcard(JCWildcard tree) {
1717                 throw new AssertionError(this.getClass().getName());
1718             }
1719         }
1720         ComplexityScanner scanner = new ComplexityScanner();
1721         tree.accept(scanner);
1722         return scanner.complexity;
1723     }
1724 
1725     public void visitIf(JCIf tree) {
1726         int limit = code.nextreg;
1727         Chain thenExit = null;
1728         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1729                              CRT_FLOW_CONTROLLER);
1730         Chain elseChain = c.jumpFalse();
1731         if (!c.isFalse()) {
1732             code.resolve(c.trueJumps);
1733             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1734             thenExit = code.branch(goto_);
1735         }
1736         if (elseChain != null) {
1737             code.resolve(elseChain);
1738             if (tree.elsepart != null)
1739                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1740         }
1741         code.resolve(thenExit);
1742         code.endScopes(limit);
1743     }
1744 
1745     public void visitExec(JCExpressionStatement tree) {
1746         // Optimize x++ to ++x and x-- to --x.
1747         JCExpression e = tree.expr;
1748         switch (e.getTag()) {
1749             case POSTINC:
1750                 ((JCUnary) e).setTag(PREINC);
1751                 break;
1752             case POSTDEC:
1753                 ((JCUnary) e).setTag(PREDEC);
1754                 break;
1755         }
1756         genExpr(tree.expr, tree.expr.type).drop();
1757     }
1758 
1759     public void visitBreak(JCBreak tree) {
1760         Env<GenContext> targetEnv = unwind(tree.target, env);
1761         Assert.check(code.state.stacksize == 0);
1762         targetEnv.info.addExit(code.branch(goto_));
1763         endFinalizerGaps(env, targetEnv);
1764     }
1765 
1766     public void visitContinue(JCContinue tree) {
1767         Env<GenContext> targetEnv = unwind(tree.target, env);
1768         Assert.check(code.state.stacksize == 0);
1769         targetEnv.info.addCont(code.branch(goto_));
1770         endFinalizerGaps(env, targetEnv);
1771     }
1772 
1773     public void visitReturn(JCReturn tree) {
1774         int limit = code.nextreg;
1775         final Env<GenContext> targetEnv;
1776         if (tree.expr != null) {
1777             Item r = genExpr(tree.expr, pt).load();
1778             if (hasFinally(env.enclMethod, env)) {
1779                 r = makeTemp(pt);
1780                 r.store();
1781             }
1782             targetEnv = unwind(env.enclMethod, env);
1783             r.load();
1784             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1785         } else {
1786             targetEnv = unwind(env.enclMethod, env);
1787             code.emitop0(return_);
1788         }
1789         endFinalizerGaps(env, targetEnv);
1790         code.endScopes(limit);
1791     }
1792 
1793     public void visitThrow(JCThrow tree) {
1794         genExpr(tree.expr, tree.expr.type).load();
1795         code.emitop0(athrow);
1796     }
1797 
1798 /* ************************************************************************
1799  * Visitor methods for expressions
1800  *************************************************************************/
1801 
1802     public void visitApply(JCMethodInvocation tree) {
1803         setTypeAnnotationPositions(tree.pos);
1804         // Generate code for method.
1805         Item m = genExpr(tree.meth, methodType);
1806         // Generate code for all arguments, where the expected types are
1807         // the parameters of the method's external type (that is, any implicit
1808         // outer instance of a super(...) call appears as first parameter).
1809         MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1810         genArgs(tree.args,
1811                 msym.externalType(types).getParameterTypes());
1812         if (!msym.isDynamic()) {
1813             code.statBegin(tree.pos);
1814             code.markStatBegin();
1815         }
1816         result = m.invoke();
1817     }
1818 
1819     public void visitConditional(JCConditional tree) {
1820         Chain thenExit = null;
1821         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1822         Chain elseChain = c.jumpFalse();
1823         if (!c.isFalse()) {
1824             code.resolve(c.trueJumps);
1825             int startpc = genCrt ? code.curPc() : 0;
1826             genExpr(tree.truepart, pt).load();
1827             code.state.forceStackTop(tree.type);
1828             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1829                                      startpc, code.curPc());
1830             thenExit = code.branch(goto_);
1831         }
1832         if (elseChain != null) {
1833             code.resolve(elseChain);
1834             int startpc = genCrt ? code.curPc() : 0;
1835             genExpr(tree.falsepart, pt).load();
1836             code.state.forceStackTop(tree.type);
1837             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1838                                      startpc, code.curPc());
1839         }
1840         code.resolve(thenExit);
1841         result = items.makeStackItem(pt);
1842     }
1843 
1844     private void setTypeAnnotationPositions(int treePos) {
1845         MethodSymbol meth = code.meth;
1846         boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1847                 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1848 
1849         for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1850             if (ta.hasUnknownPosition())
1851                 ta.tryFixPosition();
1852 
1853             if (ta.position.matchesPos(treePos))
1854                 ta.position.updatePosOffset(code.cp);
1855         }
1856 
1857         if (!initOrClinit)
1858             return;
1859 
1860         for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
1861             if (ta.hasUnknownPosition())
1862                 ta.tryFixPosition();
1863 
1864             if (ta.position.matchesPos(treePos))
1865                 ta.position.updatePosOffset(code.cp);
1866         }
1867 
1868         ClassSymbol clazz = meth.enclClass();
1869         for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
1870             if (!s.getKind().isField())
1871                 continue;
1872 
1873             for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
1874                 if (ta.hasUnknownPosition())
1875                     ta.tryFixPosition();
1876 
1877                 if (ta.position.matchesPos(treePos))
1878                     ta.position.updatePosOffset(code.cp);
1879             }
1880         }
1881     }
1882 
1883     public void visitNewClass(JCNewClass tree) {
1884         // Enclosing instances or anonymous classes should have been eliminated
1885         // by now.
1886         Assert.check(tree.encl == null && tree.def == null);
1887         setTypeAnnotationPositions(tree.pos);
1888 
1889         code.emitop2(new_, makeRef(tree.pos(), tree.type));
1890         code.emitop0(dup);
1891 
1892         // Generate code for all arguments, where the expected types are
1893         // the parameters of the constructor's external type (that is,
1894         // any implicit outer instance appears as first parameter).
1895         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
1896 
1897         items.makeMemberItem(tree.constructor, true).invoke();
1898         result = items.makeStackItem(tree.type);
1899     }
1900 
1901     public void visitNewArray(JCNewArray tree) {
1902         setTypeAnnotationPositions(tree.pos);
1903 
1904         if (tree.elems != null) {
1905             Type elemtype = types.elemtype(tree.type);
1906             loadIntConst(tree.elems.length());
1907             Item arr = makeNewArray(tree.pos(), tree.type, 1);
1908             int i = 0;
1909             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
1910                 arr.duplicate();
1911                 loadIntConst(i);
1912                 i++;
1913                 genExpr(l.head, elemtype).load();
1914                 items.makeIndexedItem(elemtype).store();
1915             }
1916             result = arr;
1917         } else {
1918             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1919                 genExpr(l.head, syms.intType).load();
1920             }
1921             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
1922         }
1923     }
1924 //where
1925         /** Generate code to create an array with given element type and number
1926          *  of dimensions.
1927          */
1928         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
1929             Type elemtype = types.elemtype(type);
1930             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
1931                 log.error(pos, "limit.dimensions");
1932                 nerrs++;
1933             }
1934             int elemcode = Code.arraycode(elemtype);
1935             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
1936                 code.emitAnewarray(makeRef(pos, elemtype), type);
1937             } else if (elemcode == 1) {
1938                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
1939             } else {
1940                 code.emitNewarray(elemcode, type);
1941             }
1942             return items.makeStackItem(type);
1943         }
1944 
1945     public void visitParens(JCParens tree) {
1946         result = genExpr(tree.expr, tree.expr.type);
1947     }
1948 
1949     public void visitAssign(JCAssign tree) {
1950         Item l = genExpr(tree.lhs, tree.lhs.type);
1951         genExpr(tree.rhs, tree.lhs.type).load();
1952         result = items.makeAssignItem(l);
1953     }
1954 
1955     public void visitAssignop(JCAssignOp tree) {
1956         OperatorSymbol operator = (OperatorSymbol) tree.operator;
1957         Item l;
1958         if (operator.opcode == string_add) {
1959             // Generate code to make a string buffer
1960             makeStringBuffer(tree.pos());
1961 
1962             // Generate code for first string, possibly save one
1963             // copy under buffer
1964             l = genExpr(tree.lhs, tree.lhs.type);
1965             if (l.width() > 0) {
1966                 code.emitop0(dup_x1 + 3 * (l.width() - 1));
1967             }
1968 
1969             // Load first string and append to buffer.
1970             l.load();
1971             appendString(tree.lhs);
1972 
1973             // Append all other strings to buffer.
1974             appendStrings(tree.rhs);
1975 
1976             // Convert buffer to string.
1977             bufferToString(tree.pos());
1978         } else {
1979             // Generate code for first expression
1980             l = genExpr(tree.lhs, tree.lhs.type);
1981 
1982             // If we have an increment of -32768 to +32767 of a local
1983             // int variable we can use an incr instruction instead of
1984             // proceeding further.
1985             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
1986                 l instanceof LocalItem &&
1987                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
1988                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
1989                 tree.rhs.type.constValue() != null) {
1990                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
1991                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
1992                 ((LocalItem)l).incr(ival);
1993                 result = l;
1994                 return;
1995             }
1996             // Otherwise, duplicate expression, load one copy
1997             // and complete binary operation.
1998             l.duplicate();
1999             l.coerce(operator.type.getParameterTypes().head).load();
2000             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
2001         }
2002         result = items.makeAssignItem(l);
2003     }
2004 
2005     public void visitUnary(JCUnary tree) {
2006         OperatorSymbol operator = (OperatorSymbol)tree.operator;
2007         if (tree.hasTag(NOT)) {
2008             CondItem od = genCond(tree.arg, false);
2009             result = od.negate();
2010         } else {
2011             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
2012             switch (tree.getTag()) {
2013             case POS:
2014                 result = od.load();
2015                 break;
2016             case NEG:
2017                 result = od.load();
2018                 code.emitop0(operator.opcode);
2019                 break;
2020             case COMPL:
2021                 result = od.load();
2022                 emitMinusOne(od.typecode);
2023                 code.emitop0(operator.opcode);
2024                 break;
2025             case PREINC: case PREDEC:
2026                 od.duplicate();
2027                 if (od instanceof LocalItem &&
2028                     (operator.opcode == iadd || operator.opcode == isub)) {
2029                     ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
2030                     result = od;
2031                 } else {
2032                     od.load();
2033                     code.emitop0(one(od.typecode));
2034                     code.emitop0(operator.opcode);
2035                     // Perform narrowing primitive conversion if byte,
2036                     // char, or short.  Fix for 4304655.
2037                     if (od.typecode != INTcode &&
2038                         Code.truncate(od.typecode) == INTcode)
2039                       code.emitop0(int2byte + od.typecode - BYTEcode);
2040                     result = items.makeAssignItem(od);
2041                 }
2042                 break;
2043             case POSTINC: case POSTDEC:
2044                 od.duplicate();
2045                 if (od instanceof LocalItem &&
2046                     (operator.opcode == iadd || operator.opcode == isub)) {
2047                     Item res = od.load();
2048                     ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
2049                     result = res;
2050                 } else {
2051                     Item res = od.load();
2052                     od.stash(od.typecode);
2053                     code.emitop0(one(od.typecode));
2054                     code.emitop0(operator.opcode);
2055                     // Perform narrowing primitive conversion if byte,
2056                     // char, or short.  Fix for 4304655.
2057                     if (od.typecode != INTcode &&
2058                         Code.truncate(od.typecode) == INTcode)
2059                       code.emitop0(int2byte + od.typecode - BYTEcode);
2060                     od.store();
2061                     result = res;
2062                 }
2063                 break;
2064             case NULLCHK:
2065                 result = od.load();
2066                 code.emitop0(dup);
2067                 genNullCheck(tree.pos());
2068                 break;
2069             default:
2070                 Assert.error();
2071             }
2072         }
2073     }
2074 
2075     /** Generate a null check from the object value at stack top. */
2076     private void genNullCheck(DiagnosticPosition pos) {
2077         callMethod(pos, syms.objectType, names.getClass,
2078                    List.<Type>nil(), false);
2079         code.emitop0(pop);
2080     }
2081 
2082     public void visitBinary(JCBinary tree) {
2083         OperatorSymbol operator = (OperatorSymbol)tree.operator;
2084         if (operator.opcode == string_add) {
2085             // Create a string buffer.
2086             makeStringBuffer(tree.pos());
2087             // Append all strings to buffer.
2088             appendStrings(tree);
2089             // Convert buffer to string.
2090             bufferToString(tree.pos());
2091             result = items.makeStackItem(syms.stringType);
2092         } else if (tree.hasTag(AND)) {
2093             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2094             if (!lcond.isFalse()) {
2095                 Chain falseJumps = lcond.jumpFalse();
2096                 code.resolve(lcond.trueJumps);
2097                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2098                 result = items.
2099                     makeCondItem(rcond.opcode,
2100                                  rcond.trueJumps,
2101                                  Code.mergeChains(falseJumps,
2102                                                   rcond.falseJumps));
2103             } else {
2104                 result = lcond;
2105             }
2106         } else if (tree.hasTag(OR)) {
2107             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2108             if (!lcond.isTrue()) {
2109                 Chain trueJumps = lcond.jumpTrue();
2110                 code.resolve(lcond.falseJumps);
2111                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2112                 result = items.
2113                     makeCondItem(rcond.opcode,
2114                                  Code.mergeChains(trueJumps, rcond.trueJumps),
2115                                  rcond.falseJumps);
2116             } else {
2117                 result = lcond;
2118             }
2119         } else {
2120             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2121             od.load();
2122             result = completeBinop(tree.lhs, tree.rhs, operator);
2123         }
2124     }
2125 //where
2126         /** Make a new string buffer.
2127          */
2128         void makeStringBuffer(DiagnosticPosition pos) {
2129             code.emitop2(new_, makeRef(pos, stringBufferType));
2130             code.emitop0(dup);
2131             callMethod(
2132                 pos, stringBufferType, names.init, List.<Type>nil(), false);
2133         }
2134 
2135         /** Append value (on tos) to string buffer (on tos - 1).
2136          */
2137         void appendString(JCTree tree) {
2138             Type t = tree.type.baseType();
2139             if (!t.isPrimitive() && t.tsym != syms.stringType.tsym) {
2140                 t = syms.objectType;
2141             }
2142             items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
2143         }
2144         Symbol getStringBufferAppend(JCTree tree, Type t) {
2145             Assert.checkNull(t.constValue());
2146             Symbol method = stringBufferAppend.get(t);
2147             if (method == null) {
2148                 method = rs.resolveInternalMethod(tree.pos(),
2149                                                   attrEnv,
2150                                                   stringBufferType,
2151                                                   names.append,
2152                                                   List.of(t),
2153                                                   null);
2154                 stringBufferAppend.put(t, method);
2155             }
2156             return method;
2157         }
2158 
2159         /** Add all strings in tree to string buffer.
2160          */
2161         void appendStrings(JCTree tree) {
2162             tree = TreeInfo.skipParens(tree);
2163             if (tree.hasTag(PLUS) && tree.type.constValue() == null) {
2164                 JCBinary op = (JCBinary) tree;
2165                 if (op.operator.kind == MTH &&
2166                     ((OperatorSymbol) op.operator).opcode == string_add) {
2167                     appendStrings(op.lhs);
2168                     appendStrings(op.rhs);
2169                     return;
2170                 }
2171             }
2172             genExpr(tree, tree.type).load();
2173             appendString(tree);
2174         }
2175 
2176         /** Convert string buffer on tos to string.
2177          */
2178         void bufferToString(DiagnosticPosition pos) {
2179             callMethod(
2180                 pos,
2181                 stringBufferType,
2182                 names.toString,
2183                 List.<Type>nil(),
2184                 false);
2185         }
2186 
2187         /** Complete generating code for operation, with left operand
2188          *  already on stack.
2189          *  @param lhs       The tree representing the left operand.
2190          *  @param rhs       The tree representing the right operand.
2191          *  @param operator  The operator symbol.
2192          */
2193         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2194             MethodType optype = (MethodType)operator.type;
2195             int opcode = operator.opcode;
2196             if (opcode >= if_icmpeq && opcode <= if_icmple &&
2197                 rhs.type.constValue() instanceof Number &&
2198                 ((Number) rhs.type.constValue()).intValue() == 0) {
2199                 opcode = opcode + (ifeq - if_icmpeq);
2200             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2201                        TreeInfo.isNull(rhs)) {
2202                 opcode = opcode + (if_acmp_null - if_acmpeq);
2203             } else {
2204                 // The expected type of the right operand is
2205                 // the second parameter type of the operator, except for
2206                 // shifts with long shiftcount, where we convert the opcode
2207                 // to a short shift and the expected type to int.
2208                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2209                 if (opcode >= ishll && opcode <= lushrl) {
2210                     opcode = opcode + (ishl - ishll);
2211                     rtype = syms.intType;
2212                 }
2213                 // Generate code for right operand and load.
2214                 genExpr(rhs, rtype).load();
2215                 // If there are two consecutive opcode instructions,
2216                 // emit the first now.
2217                 if (opcode >= (1 << preShift)) {
2218                     code.emitop0(opcode >> preShift);
2219                     opcode = opcode & 0xFF;
2220                 }
2221             }
2222             if (opcode >= ifeq && opcode <= if_acmpne ||
2223                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2224                 return items.makeCondItem(opcode);
2225             } else {
2226                 code.emitop0(opcode);
2227                 return items.makeStackItem(optype.restype);
2228             }
2229         }
2230 
2231     public void visitTypeCast(JCTypeCast tree) {
2232         setTypeAnnotationPositions(tree.pos);
2233         result = genExpr(tree.expr, tree.clazz.type).load();
2234         // Additional code is only needed if we cast to a reference type
2235         // which is not statically a supertype of the expression's type.
2236         // For basic types, the coerce(...) in genExpr(...) will do
2237         // the conversion.
2238         if (!tree.clazz.type.isPrimitive() &&
2239             types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2240             code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
2241         }
2242     }
2243 
2244     public void visitWildcard(JCWildcard tree) {
2245         throw new AssertionError(this.getClass().getName());
2246     }
2247 
2248     public void visitTypeTest(JCInstanceOf tree) {
2249         setTypeAnnotationPositions(tree.pos);
2250         genExpr(tree.expr, tree.expr.type).load();
2251         code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
2252         result = items.makeStackItem(syms.booleanType);
2253     }
2254 
2255     public void visitIndexed(JCArrayAccess tree) {
2256         genExpr(tree.indexed, tree.indexed.type).load();
2257         genExpr(tree.index, syms.intType).load();
2258         result = items.makeIndexedItem(tree.type);
2259     }
2260 
2261     public void visitIdent(JCIdent tree) {
2262         Symbol sym = tree.sym;
2263         if (tree.name == names._this || tree.name == names._super) {
2264             Item res = tree.name == names._this
2265                 ? items.makeThisItem()
2266                 : items.makeSuperItem();
2267             if (sym.kind == MTH) {
2268                 // Generate code to address the constructor.
2269                 res.load();
2270                 res = items.makeMemberItem(sym, true);
2271             }
2272             result = res;
2273         } else if (sym.kind == VAR && sym.owner.kind == MTH) {
2274             result = items.makeLocalItem((VarSymbol)sym);
2275         } else if (isInvokeDynamic(sym)) {
2276             result = items.makeDynamicItem(sym);
2277         } else if ((sym.flags() & STATIC) != 0) {
2278             if (!isAccessSuper(env.enclMethod))
2279                 sym = binaryQualifier(sym, env.enclClass.type);
2280             result = items.makeStaticItem(sym);
2281         } else {
2282             items.makeThisItem().load();
2283             sym = binaryQualifier(sym, env.enclClass.type);
2284             result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
2285         }
2286     }
2287 
2288     public void visitSelect(JCFieldAccess tree) {
2289         Symbol sym = tree.sym;
2290 
2291         if (tree.name == names._class) {
2292             Assert.check(target.hasClassLiterals());
2293             code.emitLdc(makeRef(tree.pos(), tree.selected.type));
2294             result = items.makeStackItem(pt);
2295             return;
2296        }
2297 
2298         Symbol ssym = TreeInfo.symbol(tree.selected);
2299 
2300         // Are we selecting via super?
2301         boolean selectSuper =
2302             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2303 
2304         // Are we accessing a member of the superclass in an access method
2305         // resulting from a qualified super?
2306         boolean accessSuper = isAccessSuper(env.enclMethod);
2307 
2308         Item base = (selectSuper)
2309             ? items.makeSuperItem()
2310             : genExpr(tree.selected, tree.selected.type);
2311 
2312         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2313             // We are seeing a variable that is constant but its selecting
2314             // expression is not.
2315             if ((sym.flags() & STATIC) != 0) {
2316                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2317                     base = base.load();
2318                 base.drop();
2319             } else {
2320                 base.load();
2321                 genNullCheck(tree.selected.pos());
2322             }
2323             result = items.
2324                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2325         } else {
2326             if (isInvokeDynamic(sym)) {
2327                 result = items.makeDynamicItem(sym);
2328                 return;
2329             } else if (!accessSuper) {
2330                 sym = binaryQualifier(sym, tree.selected.type);
2331             }
2332             if ((sym.flags() & STATIC) != 0) {
2333                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2334                     base = base.load();
2335                 base.drop();
2336                 result = items.makeStaticItem(sym);
2337             } else {
2338                 base.load();
2339                 if (sym == syms.lengthVar) {
2340                     code.emitop0(arraylength);
2341                     result = items.makeStackItem(syms.intType);
2342                 } else {
2343                     result = items.
2344                         makeMemberItem(sym,
2345                                        (sym.flags() & PRIVATE) != 0 ||
2346                                        selectSuper || accessSuper);
2347                 }
2348             }
2349         }
2350     }
2351 
2352     public boolean isInvokeDynamic(Symbol sym) {
2353         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2354     }
2355 
2356     public void visitLiteral(JCLiteral tree) {
2357         if (tree.type.hasTag(BOT)) {
2358             code.emitop0(aconst_null);
2359             if (types.dimensions(pt) > 1) {
2360                 code.emitop2(checkcast, makeRef(tree.pos(), pt));
2361                 result = items.makeStackItem(pt);
2362             } else {
2363                 result = items.makeStackItem(tree.type);
2364             }
2365         }
2366         else
2367             result = items.makeImmediateItem(tree.type, tree.value);
2368     }
2369 
2370     public void visitLetExpr(LetExpr tree) {
2371         int limit = code.nextreg;
2372         genStats(tree.defs, env);
2373         result = genExpr(tree.expr, tree.expr.type).load();
2374         code.endScopes(limit);
2375     }
2376 
2377     private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
2378         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2379         if (prunedInfo != null) {
2380             for (JCTree prunedTree: prunedInfo) {
2381                 prunedTree.accept(classReferenceVisitor);
2382             }
2383         }
2384     }
2385 
2386 /* ************************************************************************
2387  * main method
2388  *************************************************************************/
2389 
2390     /** Generate code for a class definition.
2391      *  @param env   The attribution environment that belongs to the
2392      *               outermost class containing this class definition.
2393      *               We need this for resolving some additional symbols.
2394      *  @param cdef  The tree representing the class definition.
2395      *  @return      True if code is generated with no errors.
2396      */
2397     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2398         try {
2399             attrEnv = env;
2400             ClassSymbol c = cdef.sym;
2401             this.toplevel = env.toplevel;
2402             this.endPosTable = toplevel.endPositions;
2403             // If this is a class definition requiring Miranda methods,
2404             // add them.
2405             if (generateIproxies &&
2406                 (c.flags() & (INTERFACE|ABSTRACT)) == ABSTRACT
2407                 && !allowGenerics // no Miranda methods available with generics
2408                 )
2409                 implementInterfaceMethods(c);
2410             cdef.defs = normalizeDefs(cdef.defs, c);
2411             c.pool = pool;
2412             pool.reset();
2413             generateReferencesToPrunedTree(c, pool);
2414             Env<GenContext> localEnv =
2415                 new Env<GenContext>(cdef, new GenContext());
2416             localEnv.toplevel = env.toplevel;
2417             localEnv.enclClass = cdef;
2418             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2419                 genDef(l.head, localEnv);
2420             }
2421             if (pool.numEntries() > Pool.MAX_ENTRIES) {
2422                 log.error(cdef.pos(), "limit.pool");
2423                 nerrs++;
2424             }
2425             if (nerrs != 0) {
2426                 // if errors, discard code
2427                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2428                     if (l.head.hasTag(METHODDEF))
2429                         ((JCMethodDecl) l.head).sym.code = null;
2430                 }
2431             }
2432             cdef.defs = List.nil(); // discard trees
2433             return nerrs == 0;
2434         } finally {
2435             // note: this method does NOT support recursion.
2436             attrEnv = null;
2437             this.env = null;
2438             toplevel = null;
2439             endPosTable = null;
2440             nerrs = 0;
2441         }
2442     }
2443 
2444 /* ************************************************************************
2445  * Auxiliary classes
2446  *************************************************************************/
2447 
2448     /** An abstract class for finalizer generation.
2449      */
2450     abstract class GenFinalizer {
2451         /** Generate code to clean up when unwinding. */
2452         abstract void gen();
2453 
2454         /** Generate code to clean up at last. */
2455         abstract void genLast();
2456 
2457         /** Does this finalizer have some nontrivial cleanup to perform? */
2458         boolean hasFinalizer() { return true; }
2459     }
2460 
2461     /** code generation contexts,
2462      *  to be used as type parameter for environments.
2463      */
2464     static class GenContext {
2465 
2466         /** A chain for all unresolved jumps that exit the current environment.
2467          */
2468         Chain exit = null;
2469 
2470         /** A chain for all unresolved jumps that continue in the
2471          *  current environment.
2472          */
2473         Chain cont = null;
2474 
2475         /** A closure that generates the finalizer of the current environment.
2476          *  Only set for Synchronized and Try contexts.
2477          */
2478         GenFinalizer finalize = null;
2479 
2480         /** Is this a switch statement?  If so, allocate registers
2481          * even when the variable declaration is unreachable.
2482          */
2483         boolean isSwitch = false;
2484 
2485         /** A list buffer containing all gaps in the finalizer range,
2486          *  where a catch all exception should not apply.
2487          */
2488         ListBuffer<Integer> gaps = null;
2489 
2490         /** Add given chain to exit chain.
2491          */
2492         void addExit(Chain c)  {
2493             exit = Code.mergeChains(c, exit);
2494         }
2495 
2496         /** Add given chain to cont chain.
2497          */
2498         void addCont(Chain c) {
2499             cont = Code.mergeChains(c, cont);
2500         }
2501     }
2502 }