/* * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_FrameMap.hpp" #include "c1/c1_LIR.hpp" #include "runtime/sharedRuntime.hpp" #include "vmreg_aarch64.inline.hpp" LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool) { LIR_Opr opr = LIR_OprFact::illegalOpr; VMReg r_1 = reg->first(); VMReg r_2 = reg->second(); if (r_1->is_stack()) { // Convert stack slot to an SP offset // The calling convention does not count the SharedRuntime::out_preserve_stack_slots() value // so we must add it in here. int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; opr = LIR_OprFact::address(new LIR_Address(sp_opr, st_off, type)); } else if (r_1->is_Register()) { Register reg = r_1->as_Register(); if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) { Register reg2 = r_2->as_Register(); assert(reg2 == reg, "must be same register"); opr = as_long_opr(reg); } else if (type == T_OBJECT || type == T_ARRAY) { opr = as_oop_opr(reg); } else if (type == T_METADATA) { opr = as_metadata_opr(reg); } else { opr = as_opr(reg); } } else if (r_1->is_FloatRegister()) { assert(type == T_DOUBLE || type == T_FLOAT, "wrong type"); int num = r_1->as_FloatRegister()->encoding(); if (type == T_FLOAT) { opr = LIR_OprFact::single_fpu(num); } else { opr = LIR_OprFact::double_fpu(num); } } else { ShouldNotReachHere(); } return opr; } LIR_Opr FrameMap::r0_opr; LIR_Opr FrameMap::r1_opr; LIR_Opr FrameMap::r2_opr; LIR_Opr FrameMap::r3_opr; LIR_Opr FrameMap::r4_opr; LIR_Opr FrameMap::r5_opr; LIR_Opr FrameMap::r6_opr; LIR_Opr FrameMap::r7_opr; LIR_Opr FrameMap::r8_opr; LIR_Opr FrameMap::r9_opr; LIR_Opr FrameMap::r10_opr; LIR_Opr FrameMap::r11_opr; LIR_Opr FrameMap::r12_opr; LIR_Opr FrameMap::r13_opr; LIR_Opr FrameMap::r14_opr; LIR_Opr FrameMap::r15_opr; LIR_Opr FrameMap::r16_opr; LIR_Opr FrameMap::r17_opr; LIR_Opr FrameMap::r18_opr; LIR_Opr FrameMap::r19_opr; LIR_Opr FrameMap::r20_opr; LIR_Opr FrameMap::r21_opr; LIR_Opr FrameMap::r22_opr; LIR_Opr FrameMap::r23_opr; LIR_Opr FrameMap::r24_opr; LIR_Opr FrameMap::r25_opr; LIR_Opr FrameMap::r26_opr; LIR_Opr FrameMap::r27_opr; LIR_Opr FrameMap::r28_opr; LIR_Opr FrameMap::r29_opr; LIR_Opr FrameMap::r30_opr; LIR_Opr FrameMap::rfp_opr; LIR_Opr FrameMap::sp_opr; LIR_Opr FrameMap::receiver_opr; LIR_Opr FrameMap::r0_oop_opr; LIR_Opr FrameMap::r1_oop_opr; LIR_Opr FrameMap::r2_oop_opr; LIR_Opr FrameMap::r3_oop_opr; LIR_Opr FrameMap::r4_oop_opr; LIR_Opr FrameMap::r5_oop_opr; LIR_Opr FrameMap::r6_oop_opr; LIR_Opr FrameMap::r7_oop_opr; LIR_Opr FrameMap::r8_oop_opr; LIR_Opr FrameMap::r9_oop_opr; LIR_Opr FrameMap::r10_oop_opr; LIR_Opr FrameMap::r11_oop_opr; LIR_Opr FrameMap::r12_oop_opr; LIR_Opr FrameMap::r13_oop_opr; LIR_Opr FrameMap::r14_oop_opr; LIR_Opr FrameMap::r15_oop_opr; LIR_Opr FrameMap::r16_oop_opr; LIR_Opr FrameMap::r17_oop_opr; LIR_Opr FrameMap::r18_oop_opr; LIR_Opr FrameMap::r19_oop_opr; LIR_Opr FrameMap::r20_oop_opr; LIR_Opr FrameMap::r21_oop_opr; LIR_Opr FrameMap::r22_oop_opr; LIR_Opr FrameMap::r23_oop_opr; LIR_Opr FrameMap::r24_oop_opr; LIR_Opr FrameMap::r25_oop_opr; LIR_Opr FrameMap::r26_oop_opr; LIR_Opr FrameMap::r27_oop_opr; LIR_Opr FrameMap::r28_oop_opr; LIR_Opr FrameMap::r29_oop_opr; LIR_Opr FrameMap::r30_oop_opr; LIR_Opr FrameMap::rscratch1_opr; LIR_Opr FrameMap::rscratch2_opr; LIR_Opr FrameMap::rscratch1_long_opr; LIR_Opr FrameMap::rscratch2_long_opr; LIR_Opr FrameMap::r0_metadata_opr; LIR_Opr FrameMap::r1_metadata_opr; LIR_Opr FrameMap::r2_metadata_opr; LIR_Opr FrameMap::r3_metadata_opr; LIR_Opr FrameMap::r4_metadata_opr; LIR_Opr FrameMap::r5_metadata_opr; LIR_Opr FrameMap::long0_opr; LIR_Opr FrameMap::long1_opr; LIR_Opr FrameMap::fpu0_float_opr; LIR_Opr FrameMap::fpu0_double_opr; LIR_Opr FrameMap::_caller_save_cpu_regs[] = { 0, }; LIR_Opr FrameMap::_caller_save_fpu_regs[] = { 0, }; //-------------------------------------------------------- // FrameMap //-------------------------------------------------------- void FrameMap::initialize() { assert(!_init_done, "once"); int i=0; map_register(i, r0); r0_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r1); r1_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r2); r2_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r3); r3_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r4); r4_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r5); r5_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r6); r6_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r7); r7_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r10); r10_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r11); r11_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r12); r12_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r13); r13_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r14); r14_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r15); r15_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r16); r16_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r17); r17_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r18); r18_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r19); r19_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r20); r20_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r21); r21_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r22); r22_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r23); r23_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r24); r24_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r25); r25_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r26); r26_opr = LIR_OprFact::single_cpu(i); i++; map_register(i, r27); r27_opr = LIR_OprFact::single_cpu(i); i++; // rheapbase map_register(i, r28); r28_opr = LIR_OprFact::single_cpu(i); i++; // rthread map_register(i, r29); r29_opr = LIR_OprFact::single_cpu(i); i++; // rfp map_register(i, r30); r30_opr = LIR_OprFact::single_cpu(i); i++; // lr map_register(i, r31_sp); sp_opr = LIR_OprFact::single_cpu(i); i++; // sp map_register(i, r8); r8_opr = LIR_OprFact::single_cpu(i); i++; // rscratch1 map_register(i, r9); r9_opr = LIR_OprFact::single_cpu(i); i++; // rscratch2 rscratch1_opr = r8_opr; rscratch2_opr = r9_opr; rscratch1_long_opr = LIR_OprFact::double_cpu(r8_opr->cpu_regnr(), r8_opr->cpu_regnr()); rscratch2_long_opr = LIR_OprFact::double_cpu(r9_opr->cpu_regnr(), r9_opr->cpu_regnr()); long0_opr = LIR_OprFact::double_cpu(0, 0); long1_opr = LIR_OprFact::double_cpu(1, 1); fpu0_float_opr = LIR_OprFact::single_fpu(0); fpu0_double_opr = LIR_OprFact::double_fpu(0); _caller_save_cpu_regs[0] = r0_opr; _caller_save_cpu_regs[1] = r1_opr; _caller_save_cpu_regs[2] = r2_opr; _caller_save_cpu_regs[3] = r3_opr; _caller_save_cpu_regs[4] = r4_opr; _caller_save_cpu_regs[5] = r5_opr; _caller_save_cpu_regs[6] = r6_opr; _caller_save_cpu_regs[7] = r7_opr; // rscratch1, rscratch 2 not included _caller_save_cpu_regs[8] = r10_opr; _caller_save_cpu_regs[9] = r11_opr; _caller_save_cpu_regs[10] = r12_opr; _caller_save_cpu_regs[11] = r13_opr; _caller_save_cpu_regs[12] = r14_opr; _caller_save_cpu_regs[13] = r15_opr; _caller_save_cpu_regs[14] = r16_opr; _caller_save_cpu_regs[15] = r17_opr; _caller_save_cpu_regs[16] = r18_opr; for (int i = 0; i < 8; i++) { _caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i); } _init_done = true; r0_oop_opr = as_oop_opr(r0); r1_oop_opr = as_oop_opr(r1); r2_oop_opr = as_oop_opr(r2); r3_oop_opr = as_oop_opr(r3); r4_oop_opr = as_oop_opr(r4); r5_oop_opr = as_oop_opr(r5); r6_oop_opr = as_oop_opr(r6); r7_oop_opr = as_oop_opr(r7); r8_oop_opr = as_oop_opr(r8); r9_oop_opr = as_oop_opr(r9); r10_oop_opr = as_oop_opr(r10); r11_oop_opr = as_oop_opr(r11); r12_oop_opr = as_oop_opr(r12); r13_oop_opr = as_oop_opr(r13); r14_oop_opr = as_oop_opr(r14); r15_oop_opr = as_oop_opr(r15); r16_oop_opr = as_oop_opr(r16); r17_oop_opr = as_oop_opr(r17); r18_oop_opr = as_oop_opr(r18); r19_oop_opr = as_oop_opr(r19); r20_oop_opr = as_oop_opr(r20); r21_oop_opr = as_oop_opr(r21); r22_oop_opr = as_oop_opr(r22); r23_oop_opr = as_oop_opr(r23); r24_oop_opr = as_oop_opr(r24); r25_oop_opr = as_oop_opr(r25); r26_oop_opr = as_oop_opr(r26); r27_oop_opr = as_oop_opr(r27); r28_oop_opr = as_oop_opr(r28); r29_oop_opr = as_oop_opr(r29); r30_oop_opr = as_oop_opr(r30); r0_metadata_opr = as_metadata_opr(r0); r1_metadata_opr = as_metadata_opr(r1); r2_metadata_opr = as_metadata_opr(r2); r3_metadata_opr = as_metadata_opr(r3); r4_metadata_opr = as_metadata_opr(r4); r5_metadata_opr = as_metadata_opr(r5); sp_opr = as_pointer_opr(r31_sp); rfp_opr = as_pointer_opr(rfp); VMRegPair regs; BasicType sig_bt = T_OBJECT; SharedRuntime::java_calling_convention(&sig_bt, ®s, 1, true); receiver_opr = as_oop_opr(regs.first()->as_Register()); for (int i = 0; i < nof_caller_save_fpu_regs; i++) { _caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i); } } Address FrameMap::make_new_address(ByteSize sp_offset) const { // for rbp, based address use this: // return Address(rbp, in_bytes(sp_offset) - (framesize() - 2) * 4); return Address(sp, in_bytes(sp_offset)); } // ----------------mapping----------------------- // all mapping is based on rfp addressing, except for simple leaf methods where we access // the locals sp based (and no frame is built) // Frame for simple leaf methods (quick entries) // // +----------+ // | ret addr | <- TOS // +----------+ // | args | // | ...... | // Frame for standard methods // // | .........| <- TOS // | locals | // +----------+ // | old fp, | <- RFP // +----------+ // | ret addr | // +----------+ // | args | // | .........| // For OopMaps, map a local variable or spill index to an VMRegImpl name. // This is the offset from sp() in the frame of the slot for the index, // skewed by VMRegImpl::stack0 to indicate a stack location (vs.a register.) // // framesize + // stack0 stack0 0 <- VMReg // | | | // ...........|..............|.............| // 0 1 2 3 x x 4 5 6 ... | <- local indices // ^ ^ sp() ( x x indicate link // | | and return addr) // arguments non-argument locals VMReg FrameMap::fpu_regname (int n) { // Return the OptoReg name for the fpu stack slot "n" // A spilled fpu stack slot comprises to two single-word OptoReg's. return as_FloatRegister(n)->as_VMReg(); } LIR_Opr FrameMap::stack_pointer() { return FrameMap::sp_opr; } // JSR 292 LIR_Opr FrameMap::method_handle_invoke_SP_save_opr() { // assert(rfp == rbp_mh_SP_save, "must be same register"); return LIR_OprFact::illegalOpr; // Not needed on aarch64 } bool FrameMap::validate_frame() { return true; }