1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include <sys/types.h> 27 28 #include "precompiled.hpp" 29 #include "asm/assembler.hpp" 30 #include "asm/assembler.inline.hpp" 31 #include "interpreter/interpreter.hpp" 32 33 #include "compiler/disassembler.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "nativeInst_aarch64.hpp" 36 #include "oops/klass.inline.hpp" 37 #include "opto/compile.hpp" 38 #include "opto/node.hpp" 39 #include "runtime/biasedLocking.hpp" 40 #include "runtime/icache.hpp" 41 #include "runtime/interfaceSupport.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 44 #if INCLUDE_ALL_GCS 45 #include "gc/g1/g1CollectedHeap.inline.hpp" 46 #include "gc/g1/g1SATBCardTableModRefBS.hpp" 47 #include "gc/g1/heapRegion.hpp" 48 #endif 49 50 #ifdef PRODUCT 51 #define BLOCK_COMMENT(str) /* nothing */ 52 #define STOP(error) stop(error) 53 #else 54 #define BLOCK_COMMENT(str) block_comment(str) 55 #define STOP(error) block_comment(error); stop(error) 56 #endif 57 58 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 59 60 // Patch any kind of instruction; there may be several instructions. 61 // Return the total length (in bytes) of the instructions. 62 int MacroAssembler::pd_patch_instruction_size(address branch, address target) { 63 int instructions = 1; 64 assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant"); 65 long offset = (target - branch) >> 2; 66 unsigned insn = *(unsigned*)branch; 67 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 68 // Load register (literal) 69 Instruction_aarch64::spatch(branch, 23, 5, offset); 70 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 71 // Unconditional branch (immediate) 72 Instruction_aarch64::spatch(branch, 25, 0, offset); 73 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 74 // Conditional branch (immediate) 75 Instruction_aarch64::spatch(branch, 23, 5, offset); 76 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 77 // Compare & branch (immediate) 78 Instruction_aarch64::spatch(branch, 23, 5, offset); 79 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 80 // Test & branch (immediate) 81 Instruction_aarch64::spatch(branch, 18, 5, offset); 82 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 83 // PC-rel. addressing 84 offset = target-branch; 85 int shift = Instruction_aarch64::extract(insn, 31, 31); 86 if (shift) { 87 u_int64_t dest = (u_int64_t)target; 88 uint64_t pc_page = (uint64_t)branch >> 12; 89 uint64_t adr_page = (uint64_t)target >> 12; 90 unsigned offset_lo = dest & 0xfff; 91 offset = adr_page - pc_page; 92 93 // We handle 3 types of PC relative addressing 94 // 1 - adrp Rx, target_page 95 // ldr/str Ry, [Rx, #offset_in_page] 96 // 2 - adrp Rx, target_page 97 // add Ry, Rx, #offset_in_page 98 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 99 // In the first 2 cases we must check that Rx is the same in the adrp and the 100 // subsequent ldr/str or add instruction. Otherwise we could accidentally end 101 // up treating a type 3 relocation as a type 1 or 2 just because it happened 102 // to be followed by a random unrelated ldr/str or add instruction. 103 // 104 // In the case of a type 3 relocation, we know that these are only generated 105 // for the safepoint polling page, or for the card type byte map base so we 106 // assert as much and of course that the offset is 0. 107 // 108 unsigned insn2 = ((unsigned*)branch)[1]; 109 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 110 Instruction_aarch64::extract(insn, 4, 0) == 111 Instruction_aarch64::extract(insn2, 9, 5)) { 112 // Load/store register (unsigned immediate) 113 unsigned size = Instruction_aarch64::extract(insn2, 31, 30); 114 Instruction_aarch64::patch(branch + sizeof (unsigned), 115 21, 10, offset_lo >> size); 116 guarantee(((dest >> size) << size) == dest, "misaligned target"); 117 instructions = 2; 118 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 119 Instruction_aarch64::extract(insn, 4, 0) == 120 Instruction_aarch64::extract(insn2, 4, 0)) { 121 // add (immediate) 122 Instruction_aarch64::patch(branch + sizeof (unsigned), 123 21, 10, offset_lo); 124 instructions = 2; 125 } else { 126 assert((jbyte *)target == 127 ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base || 128 target == StubRoutines::crc_table_addr() || 129 (address)target == os::get_polling_page(), 130 "adrp must be polling page or byte map base"); 131 assert(offset_lo == 0, "offset must be 0 for polling page or byte map base"); 132 } 133 } 134 int offset_lo = offset & 3; 135 offset >>= 2; 136 Instruction_aarch64::spatch(branch, 23, 5, offset); 137 Instruction_aarch64::patch(branch, 30, 29, offset_lo); 138 } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) { 139 u_int64_t dest = (u_int64_t)target; 140 // Move wide constant 141 assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch"); 142 assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch"); 143 Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff); 144 Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff); 145 Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff); 146 assert(target_addr_for_insn(branch) == target, "should be"); 147 instructions = 3; 148 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 149 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 150 // nothing to do 151 assert(target == 0, "did not expect to relocate target for polling page load"); 152 } else { 153 ShouldNotReachHere(); 154 } 155 return instructions * NativeInstruction::instruction_size; 156 } 157 158 int MacroAssembler::patch_oop(address insn_addr, address o) { 159 int instructions; 160 unsigned insn = *(unsigned*)insn_addr; 161 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 162 163 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 164 // narrow OOPs by setting the upper 16 bits in the first 165 // instruction. 166 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 167 // Move narrow OOP 168 narrowOop n = oopDesc::encode_heap_oop((oop)o); 169 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 170 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 171 instructions = 2; 172 } else { 173 // Move wide OOP 174 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 175 uintptr_t dest = (uintptr_t)o; 176 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 177 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 178 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 179 instructions = 3; 180 } 181 return instructions * NativeInstruction::instruction_size; 182 } 183 184 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) { 185 long offset = 0; 186 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) { 187 // Load register (literal) 188 offset = Instruction_aarch64::sextract(insn, 23, 5); 189 return address(((uint64_t)insn_addr + (offset << 2))); 190 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 191 // Unconditional branch (immediate) 192 offset = Instruction_aarch64::sextract(insn, 25, 0); 193 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 194 // Conditional branch (immediate) 195 offset = Instruction_aarch64::sextract(insn, 23, 5); 196 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 197 // Compare & branch (immediate) 198 offset = Instruction_aarch64::sextract(insn, 23, 5); 199 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 200 // Test & branch (immediate) 201 offset = Instruction_aarch64::sextract(insn, 18, 5); 202 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 203 // PC-rel. addressing 204 offset = Instruction_aarch64::extract(insn, 30, 29); 205 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 206 int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0; 207 if (shift) { 208 offset <<= shift; 209 uint64_t target_page = ((uint64_t)insn_addr) + offset; 210 target_page &= ((uint64_t)-1) << shift; 211 // Return the target address for the following sequences 212 // 1 - adrp Rx, target_page 213 // ldr/str Ry, [Rx, #offset_in_page] 214 // 2 - adrp Rx, target_page ] 215 // add Ry, Rx, #offset_in_page 216 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 217 // 218 // In the first two cases we check that the register is the same and 219 // return the target_page + the offset within the page. 220 // Otherwise we assume it is a page aligned relocation and return 221 // the target page only. The only cases this is generated is for 222 // the safepoint polling page or for the card table byte map base so 223 // we assert as much. 224 // 225 unsigned insn2 = ((unsigned*)insn_addr)[1]; 226 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 227 Instruction_aarch64::extract(insn, 4, 0) == 228 Instruction_aarch64::extract(insn2, 9, 5)) { 229 // Load/store register (unsigned immediate) 230 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 231 unsigned int size = Instruction_aarch64::extract(insn2, 31, 30); 232 return address(target_page + (byte_offset << size)); 233 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 234 Instruction_aarch64::extract(insn, 4, 0) == 235 Instruction_aarch64::extract(insn2, 4, 0)) { 236 // add (immediate) 237 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 238 return address(target_page + byte_offset); 239 } else { 240 assert((jbyte *)target_page == 241 ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base || 242 (address)target_page == os::get_polling_page(), 243 "adrp must be polling page or byte map base"); 244 return (address)target_page; 245 } 246 } else { 247 ShouldNotReachHere(); 248 } 249 } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) { 250 u_int32_t *insns = (u_int32_t *)insn_addr; 251 // Move wide constant: movz, movk, movk. See movptr(). 252 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 253 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 254 return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 255 + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 256 + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 257 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 258 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 259 return 0; 260 } else { 261 ShouldNotReachHere(); 262 } 263 return address(((uint64_t)insn_addr + (offset << 2))); 264 } 265 266 void MacroAssembler::serialize_memory(Register thread, Register tmp) { 267 dsb(Assembler::SY); 268 } 269 270 271 void MacroAssembler::reset_last_Java_frame(bool clear_fp, 272 bool clear_pc) { 273 // we must set sp to zero to clear frame 274 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 275 // must clear fp, so that compiled frames are not confused; it is 276 // possible that we need it only for debugging 277 if (clear_fp) { 278 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 279 } 280 281 if (clear_pc) { 282 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 283 } 284 } 285 286 // Calls to C land 287 // 288 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 289 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 290 // has to be reset to 0. This is required to allow proper stack traversal. 291 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 292 Register last_java_fp, 293 Register last_java_pc, 294 Register scratch) { 295 296 if (last_java_pc->is_valid()) { 297 str(last_java_pc, Address(rthread, 298 JavaThread::frame_anchor_offset() 299 + JavaFrameAnchor::last_Java_pc_offset())); 300 } 301 302 // determine last_java_sp register 303 if (last_java_sp == sp) { 304 mov(scratch, sp); 305 last_java_sp = scratch; 306 } else if (!last_java_sp->is_valid()) { 307 last_java_sp = esp; 308 } 309 310 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 311 312 // last_java_fp is optional 313 if (last_java_fp->is_valid()) { 314 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 315 } 316 } 317 318 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 319 Register last_java_fp, 320 address last_java_pc, 321 Register scratch) { 322 if (last_java_pc != NULL) { 323 adr(scratch, last_java_pc); 324 } else { 325 // FIXME: This is almost never correct. We should delete all 326 // cases of set_last_Java_frame with last_java_pc=NULL and use the 327 // correct return address instead. 328 adr(scratch, pc()); 329 } 330 331 str(scratch, Address(rthread, 332 JavaThread::frame_anchor_offset() 333 + JavaFrameAnchor::last_Java_pc_offset())); 334 335 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 336 } 337 338 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 339 Register last_java_fp, 340 Label &L, 341 Register scratch) { 342 if (L.is_bound()) { 343 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 344 } else { 345 InstructionMark im(this); 346 L.add_patch_at(code(), locator()); 347 set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch); 348 } 349 } 350 351 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { 352 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 353 assert(CodeCache::find_blob(entry.target()) != NULL, 354 "destination of far call not found in code cache"); 355 if (far_branches()) { 356 unsigned long offset; 357 // We can use ADRP here because we know that the total size of 358 // the code cache cannot exceed 2Gb. 359 adrp(tmp, entry, offset); 360 add(tmp, tmp, offset); 361 if (cbuf) cbuf->set_insts_mark(); 362 blr(tmp); 363 } else { 364 if (cbuf) cbuf->set_insts_mark(); 365 bl(entry); 366 } 367 } 368 369 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { 370 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 371 assert(CodeCache::find_blob(entry.target()) != NULL, 372 "destination of far call not found in code cache"); 373 if (far_branches()) { 374 unsigned long offset; 375 // We can use ADRP here because we know that the total size of 376 // the code cache cannot exceed 2Gb. 377 adrp(tmp, entry, offset); 378 add(tmp, tmp, offset); 379 if (cbuf) cbuf->set_insts_mark(); 380 br(tmp); 381 } else { 382 if (cbuf) cbuf->set_insts_mark(); 383 b(entry); 384 } 385 } 386 387 int MacroAssembler::biased_locking_enter(Register lock_reg, 388 Register obj_reg, 389 Register swap_reg, 390 Register tmp_reg, 391 bool swap_reg_contains_mark, 392 Label& done, 393 Label* slow_case, 394 BiasedLockingCounters* counters) { 395 assert(UseBiasedLocking, "why call this otherwise?"); 396 assert_different_registers(lock_reg, obj_reg, swap_reg); 397 398 if (PrintBiasedLockingStatistics && counters == NULL) 399 counters = BiasedLocking::counters(); 400 401 bool need_tmp_reg = false; 402 if (tmp_reg == noreg) { 403 tmp_reg = rscratch2; 404 } 405 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1); 406 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); 407 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); 408 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); 409 Address saved_mark_addr(lock_reg, 0); 410 411 // Biased locking 412 // See whether the lock is currently biased toward our thread and 413 // whether the epoch is still valid 414 // Note that the runtime guarantees sufficient alignment of JavaThread 415 // pointers to allow age to be placed into low bits 416 // First check to see whether biasing is even enabled for this object 417 Label cas_label; 418 int null_check_offset = -1; 419 if (!swap_reg_contains_mark) { 420 null_check_offset = offset(); 421 ldr(swap_reg, mark_addr); 422 } 423 andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place); 424 cmp(tmp_reg, markOopDesc::biased_lock_pattern); 425 br(Assembler::NE, cas_label); 426 // The bias pattern is present in the object's header. Need to check 427 // whether the bias owner and the epoch are both still current. 428 load_prototype_header(tmp_reg, obj_reg); 429 orr(tmp_reg, tmp_reg, rthread); 430 eor(tmp_reg, swap_reg, tmp_reg); 431 andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place)); 432 if (counters != NULL) { 433 Label around; 434 cbnz(tmp_reg, around); 435 atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1); 436 b(done); 437 bind(around); 438 } else { 439 cbz(tmp_reg, done); 440 } 441 442 Label try_revoke_bias; 443 Label try_rebias; 444 445 // At this point we know that the header has the bias pattern and 446 // that we are not the bias owner in the current epoch. We need to 447 // figure out more details about the state of the header in order to 448 // know what operations can be legally performed on the object's 449 // header. 450 451 // If the low three bits in the xor result aren't clear, that means 452 // the prototype header is no longer biased and we have to revoke 453 // the bias on this object. 454 andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place); 455 cbnz(rscratch1, try_revoke_bias); 456 457 // Biasing is still enabled for this data type. See whether the 458 // epoch of the current bias is still valid, meaning that the epoch 459 // bits of the mark word are equal to the epoch bits of the 460 // prototype header. (Note that the prototype header's epoch bits 461 // only change at a safepoint.) If not, attempt to rebias the object 462 // toward the current thread. Note that we must be absolutely sure 463 // that the current epoch is invalid in order to do this because 464 // otherwise the manipulations it performs on the mark word are 465 // illegal. 466 andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place); 467 cbnz(rscratch1, try_rebias); 468 469 // The epoch of the current bias is still valid but we know nothing 470 // about the owner; it might be set or it might be clear. Try to 471 // acquire the bias of the object using an atomic operation. If this 472 // fails we will go in to the runtime to revoke the object's bias. 473 // Note that we first construct the presumed unbiased header so we 474 // don't accidentally blow away another thread's valid bias. 475 { 476 Label here; 477 mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place); 478 andr(swap_reg, swap_reg, rscratch1); 479 orr(tmp_reg, swap_reg, rthread); 480 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 481 // If the biasing toward our thread failed, this means that 482 // another thread succeeded in biasing it toward itself and we 483 // need to revoke that bias. The revocation will occur in the 484 // interpreter runtime in the slow case. 485 bind(here); 486 if (counters != NULL) { 487 atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()), 488 tmp_reg, rscratch1); 489 } 490 } 491 b(done); 492 493 bind(try_rebias); 494 // At this point we know the epoch has expired, meaning that the 495 // current "bias owner", if any, is actually invalid. Under these 496 // circumstances _only_, we are allowed to use the current header's 497 // value as the comparison value when doing the cas to acquire the 498 // bias in the current epoch. In other words, we allow transfer of 499 // the bias from one thread to another directly in this situation. 500 // 501 // FIXME: due to a lack of registers we currently blow away the age 502 // bits in this situation. Should attempt to preserve them. 503 { 504 Label here; 505 load_prototype_header(tmp_reg, obj_reg); 506 orr(tmp_reg, rthread, tmp_reg); 507 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 508 // If the biasing toward our thread failed, then another thread 509 // succeeded in biasing it toward itself and we need to revoke that 510 // bias. The revocation will occur in the runtime in the slow case. 511 bind(here); 512 if (counters != NULL) { 513 atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()), 514 tmp_reg, rscratch1); 515 } 516 } 517 b(done); 518 519 bind(try_revoke_bias); 520 // The prototype mark in the klass doesn't have the bias bit set any 521 // more, indicating that objects of this data type are not supposed 522 // to be biased any more. We are going to try to reset the mark of 523 // this object to the prototype value and fall through to the 524 // CAS-based locking scheme. Note that if our CAS fails, it means 525 // that another thread raced us for the privilege of revoking the 526 // bias of this particular object, so it's okay to continue in the 527 // normal locking code. 528 // 529 // FIXME: due to a lack of registers we currently blow away the age 530 // bits in this situation. Should attempt to preserve them. 531 { 532 Label here, nope; 533 load_prototype_header(tmp_reg, obj_reg); 534 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope); 535 bind(here); 536 537 // Fall through to the normal CAS-based lock, because no matter what 538 // the result of the above CAS, some thread must have succeeded in 539 // removing the bias bit from the object's header. 540 if (counters != NULL) { 541 atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg, 542 rscratch1); 543 } 544 bind(nope); 545 } 546 547 bind(cas_label); 548 549 return null_check_offset; 550 } 551 552 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { 553 assert(UseBiasedLocking, "why call this otherwise?"); 554 555 // Check for biased locking unlock case, which is a no-op 556 // Note: we do not have to check the thread ID for two reasons. 557 // First, the interpreter checks for IllegalMonitorStateException at 558 // a higher level. Second, if the bias was revoked while we held the 559 // lock, the object could not be rebiased toward another thread, so 560 // the bias bit would be clear. 561 ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 562 andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place); 563 cmp(temp_reg, markOopDesc::biased_lock_pattern); 564 br(Assembler::EQ, done); 565 } 566 567 568 // added to make this compile 569 570 REGISTER_DEFINITION(Register, noreg); 571 572 static void pass_arg0(MacroAssembler* masm, Register arg) { 573 if (c_rarg0 != arg ) { 574 masm->mov(c_rarg0, arg); 575 } 576 } 577 578 static void pass_arg1(MacroAssembler* masm, Register arg) { 579 if (c_rarg1 != arg ) { 580 masm->mov(c_rarg1, arg); 581 } 582 } 583 584 static void pass_arg2(MacroAssembler* masm, Register arg) { 585 if (c_rarg2 != arg ) { 586 masm->mov(c_rarg2, arg); 587 } 588 } 589 590 static void pass_arg3(MacroAssembler* masm, Register arg) { 591 if (c_rarg3 != arg ) { 592 masm->mov(c_rarg3, arg); 593 } 594 } 595 596 void MacroAssembler::call_VM_base(Register oop_result, 597 Register java_thread, 598 Register last_java_sp, 599 address entry_point, 600 int number_of_arguments, 601 bool check_exceptions) { 602 // determine java_thread register 603 if (!java_thread->is_valid()) { 604 java_thread = rthread; 605 } 606 607 // determine last_java_sp register 608 if (!last_java_sp->is_valid()) { 609 last_java_sp = esp; 610 } 611 612 // debugging support 613 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 614 assert(java_thread == rthread, "unexpected register"); 615 #ifdef ASSERT 616 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 617 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 618 #endif // ASSERT 619 620 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 621 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 622 623 // push java thread (becomes first argument of C function) 624 625 mov(c_rarg0, java_thread); 626 627 // set last Java frame before call 628 assert(last_java_sp != rfp, "can't use rfp"); 629 630 Label l; 631 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 632 633 // do the call, remove parameters 634 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 635 636 // reset last Java frame 637 // Only interpreter should have to clear fp 638 reset_last_Java_frame(true, true); 639 640 // C++ interp handles this in the interpreter 641 check_and_handle_popframe(java_thread); 642 check_and_handle_earlyret(java_thread); 643 644 if (check_exceptions) { 645 // check for pending exceptions (java_thread is set upon return) 646 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 647 Label ok; 648 cbz(rscratch1, ok); 649 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 650 br(rscratch1); 651 bind(ok); 652 } 653 654 // get oop result if there is one and reset the value in the thread 655 if (oop_result->is_valid()) { 656 get_vm_result(oop_result, java_thread); 657 } 658 } 659 660 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 661 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 662 } 663 664 // Maybe emit a call via a trampoline. If the code cache is small 665 // trampolines won't be emitted. 666 667 address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) { 668 assert(entry.rspec().type() == relocInfo::runtime_call_type 669 || entry.rspec().type() == relocInfo::opt_virtual_call_type 670 || entry.rspec().type() == relocInfo::static_call_type 671 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 672 673 unsigned int start_offset = offset(); 674 if (far_branches() && !Compile::current()->in_scratch_emit_size()) { 675 address stub = emit_trampoline_stub(start_offset, entry.target()); 676 if (stub == NULL) { 677 return NULL; // CodeCache is full 678 } 679 } 680 681 if (cbuf) cbuf->set_insts_mark(); 682 relocate(entry.rspec()); 683 if (Assembler::reachable_from_branch_at(pc(), entry.target())) { 684 bl(entry.target()); 685 } else { 686 bl(pc()); 687 } 688 // just need to return a non-null address 689 return pc(); 690 } 691 692 693 // Emit a trampoline stub for a call to a target which is too far away. 694 // 695 // code sequences: 696 // 697 // call-site: 698 // branch-and-link to <destination> or <trampoline stub> 699 // 700 // Related trampoline stub for this call site in the stub section: 701 // load the call target from the constant pool 702 // branch (LR still points to the call site above) 703 704 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 705 address dest) { 706 address stub = start_a_stub(Compile::MAX_stubs_size/2); 707 if (stub == NULL) { 708 return NULL; // CodeBuffer::expand failed 709 } 710 711 // Create a trampoline stub relocation which relates this trampoline stub 712 // with the call instruction at insts_call_instruction_offset in the 713 // instructions code-section. 714 align(wordSize); 715 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 716 + insts_call_instruction_offset)); 717 const int stub_start_offset = offset(); 718 719 // Now, create the trampoline stub's code: 720 // - load the call 721 // - call 722 Label target; 723 ldr(rscratch1, target); 724 br(rscratch1); 725 bind(target); 726 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 727 "should be"); 728 emit_int64((int64_t)dest); 729 730 const address stub_start_addr = addr_at(stub_start_offset); 731 732 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 733 734 end_a_stub(); 735 return stub; 736 } 737 738 address MacroAssembler::ic_call(address entry) { 739 RelocationHolder rh = virtual_call_Relocation::spec(pc()); 740 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 741 // unsigned long offset; 742 // ldr_constant(rscratch2, const_ptr); 743 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 744 return trampoline_call(Address(entry, rh)); 745 } 746 747 // Implementation of call_VM versions 748 749 void MacroAssembler::call_VM(Register oop_result, 750 address entry_point, 751 bool check_exceptions) { 752 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 753 } 754 755 void MacroAssembler::call_VM(Register oop_result, 756 address entry_point, 757 Register arg_1, 758 bool check_exceptions) { 759 pass_arg1(this, arg_1); 760 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 761 } 762 763 void MacroAssembler::call_VM(Register oop_result, 764 address entry_point, 765 Register arg_1, 766 Register arg_2, 767 bool check_exceptions) { 768 assert(arg_1 != c_rarg2, "smashed arg"); 769 pass_arg2(this, arg_2); 770 pass_arg1(this, arg_1); 771 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 772 } 773 774 void MacroAssembler::call_VM(Register oop_result, 775 address entry_point, 776 Register arg_1, 777 Register arg_2, 778 Register arg_3, 779 bool check_exceptions) { 780 assert(arg_1 != c_rarg3, "smashed arg"); 781 assert(arg_2 != c_rarg3, "smashed arg"); 782 pass_arg3(this, arg_3); 783 784 assert(arg_1 != c_rarg2, "smashed arg"); 785 pass_arg2(this, arg_2); 786 787 pass_arg1(this, arg_1); 788 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 789 } 790 791 void MacroAssembler::call_VM(Register oop_result, 792 Register last_java_sp, 793 address entry_point, 794 int number_of_arguments, 795 bool check_exceptions) { 796 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 797 } 798 799 void MacroAssembler::call_VM(Register oop_result, 800 Register last_java_sp, 801 address entry_point, 802 Register arg_1, 803 bool check_exceptions) { 804 pass_arg1(this, arg_1); 805 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 806 } 807 808 void MacroAssembler::call_VM(Register oop_result, 809 Register last_java_sp, 810 address entry_point, 811 Register arg_1, 812 Register arg_2, 813 bool check_exceptions) { 814 815 assert(arg_1 != c_rarg2, "smashed arg"); 816 pass_arg2(this, arg_2); 817 pass_arg1(this, arg_1); 818 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 819 } 820 821 void MacroAssembler::call_VM(Register oop_result, 822 Register last_java_sp, 823 address entry_point, 824 Register arg_1, 825 Register arg_2, 826 Register arg_3, 827 bool check_exceptions) { 828 assert(arg_1 != c_rarg3, "smashed arg"); 829 assert(arg_2 != c_rarg3, "smashed arg"); 830 pass_arg3(this, arg_3); 831 assert(arg_1 != c_rarg2, "smashed arg"); 832 pass_arg2(this, arg_2); 833 pass_arg1(this, arg_1); 834 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 835 } 836 837 838 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 839 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 840 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 841 verify_oop(oop_result, "broken oop in call_VM_base"); 842 } 843 844 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 845 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 846 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 847 } 848 849 void MacroAssembler::align(int modulus) { 850 while (offset() % modulus != 0) nop(); 851 } 852 853 // these are no-ops overridden by InterpreterMacroAssembler 854 855 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 856 857 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 858 859 860 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, 861 Register tmp, 862 int offset) { 863 intptr_t value = *delayed_value_addr; 864 if (value != 0) 865 return RegisterOrConstant(value + offset); 866 867 // load indirectly to solve generation ordering problem 868 ldr(tmp, ExternalAddress((address) delayed_value_addr)); 869 870 if (offset != 0) 871 add(tmp, tmp, offset); 872 873 return RegisterOrConstant(tmp); 874 } 875 876 877 void MacroAssembler:: notify(int type) { 878 if (type == bytecode_start) { 879 // set_last_Java_frame(esp, rfp, (address)NULL); 880 Assembler:: notify(type); 881 // reset_last_Java_frame(true, false); 882 } 883 else 884 Assembler:: notify(type); 885 } 886 887 // Look up the method for a megamorphic invokeinterface call. 888 // The target method is determined by <intf_klass, itable_index>. 889 // The receiver klass is in recv_klass. 890 // On success, the result will be in method_result, and execution falls through. 891 // On failure, execution transfers to the given label. 892 void MacroAssembler::lookup_interface_method(Register recv_klass, 893 Register intf_klass, 894 RegisterOrConstant itable_index, 895 Register method_result, 896 Register scan_temp, 897 Label& L_no_such_interface) { 898 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp); 899 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 900 "caller must use same register for non-constant itable index as for method"); 901 902 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 903 int vtable_base = InstanceKlass::vtable_start_offset() * wordSize; 904 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 905 int scan_step = itableOffsetEntry::size() * wordSize; 906 int vte_size = vtableEntry::size() * wordSize; 907 assert(vte_size == wordSize, "else adjust times_vte_scale"); 908 909 ldrw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize)); 910 911 // %%% Could store the aligned, prescaled offset in the klassoop. 912 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 913 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 914 add(scan_temp, scan_temp, vtable_base); 915 if (HeapWordsPerLong > 1) { 916 // Round up to align_object_offset boundary 917 // see code for instanceKlass::start_of_itable! 918 round_to(scan_temp, BytesPerLong); 919 } 920 921 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 922 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 923 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 924 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 925 if (itentry_off) 926 add(recv_klass, recv_klass, itentry_off); 927 928 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { 929 // if (scan->interface() == intf) { 930 // result = (klass + scan->offset() + itable_index); 931 // } 932 // } 933 Label search, found_method; 934 935 for (int peel = 1; peel >= 0; peel--) { 936 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 937 cmp(intf_klass, method_result); 938 939 if (peel) { 940 br(Assembler::EQ, found_method); 941 } else { 942 br(Assembler::NE, search); 943 // (invert the test to fall through to found_method...) 944 } 945 946 if (!peel) break; 947 948 bind(search); 949 950 // Check that the previous entry is non-null. A null entry means that 951 // the receiver class doesn't implement the interface, and wasn't the 952 // same as when the caller was compiled. 953 cbz(method_result, L_no_such_interface); 954 add(scan_temp, scan_temp, scan_step); 955 } 956 957 bind(found_method); 958 959 // Got a hit. 960 ldr(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); 961 ldr(method_result, Address(recv_klass, scan_temp)); 962 } 963 964 // virtual method calling 965 void MacroAssembler::lookup_virtual_method(Register recv_klass, 966 RegisterOrConstant vtable_index, 967 Register method_result) { 968 const int base = InstanceKlass::vtable_start_offset() * wordSize; 969 assert(vtableEntry::size() * wordSize == 8, 970 "adjust the scaling in the code below"); 971 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 972 973 if (vtable_index.is_register()) { 974 lea(method_result, Address(recv_klass, 975 vtable_index.as_register(), 976 Address::lsl(LogBytesPerWord))); 977 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 978 } else { 979 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 980 ldr(method_result, Address(recv_klass, vtable_offset_in_bytes)); 981 } 982 } 983 984 void MacroAssembler::check_klass_subtype(Register sub_klass, 985 Register super_klass, 986 Register temp_reg, 987 Label& L_success) { 988 Label L_failure; 989 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); 990 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); 991 bind(L_failure); 992 } 993 994 995 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 996 Register super_klass, 997 Register temp_reg, 998 Label* L_success, 999 Label* L_failure, 1000 Label* L_slow_path, 1001 RegisterOrConstant super_check_offset) { 1002 assert_different_registers(sub_klass, super_klass, temp_reg); 1003 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1004 if (super_check_offset.is_register()) { 1005 assert_different_registers(sub_klass, super_klass, 1006 super_check_offset.as_register()); 1007 } else if (must_load_sco) { 1008 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1009 } 1010 1011 Label L_fallthrough; 1012 int label_nulls = 0; 1013 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1014 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1015 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 1016 assert(label_nulls <= 1, "at most one NULL in the batch"); 1017 1018 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1019 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1020 Address super_check_offset_addr(super_klass, sco_offset); 1021 1022 // Hacked jmp, which may only be used just before L_fallthrough. 1023 #define final_jmp(label) \ 1024 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1025 else b(label) /*omit semi*/ 1026 1027 // If the pointers are equal, we are done (e.g., String[] elements). 1028 // This self-check enables sharing of secondary supertype arrays among 1029 // non-primary types such as array-of-interface. Otherwise, each such 1030 // type would need its own customized SSA. 1031 // We move this check to the front of the fast path because many 1032 // type checks are in fact trivially successful in this manner, 1033 // so we get a nicely predicted branch right at the start of the check. 1034 cmp(sub_klass, super_klass); 1035 br(Assembler::EQ, *L_success); 1036 1037 // Check the supertype display: 1038 if (must_load_sco) { 1039 ldrw(temp_reg, super_check_offset_addr); 1040 super_check_offset = RegisterOrConstant(temp_reg); 1041 } 1042 Address super_check_addr(sub_klass, super_check_offset); 1043 ldr(rscratch1, super_check_addr); 1044 cmp(super_klass, rscratch1); // load displayed supertype 1045 1046 // This check has worked decisively for primary supers. 1047 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1048 // (Secondary supers are interfaces and very deeply nested subtypes.) 1049 // This works in the same check above because of a tricky aliasing 1050 // between the super_cache and the primary super display elements. 1051 // (The 'super_check_addr' can address either, as the case requires.) 1052 // Note that the cache is updated below if it does not help us find 1053 // what we need immediately. 1054 // So if it was a primary super, we can just fail immediately. 1055 // Otherwise, it's the slow path for us (no success at this point). 1056 1057 if (super_check_offset.is_register()) { 1058 br(Assembler::EQ, *L_success); 1059 cmp(super_check_offset.as_register(), sc_offset); 1060 if (L_failure == &L_fallthrough) { 1061 br(Assembler::EQ, *L_slow_path); 1062 } else { 1063 br(Assembler::NE, *L_failure); 1064 final_jmp(*L_slow_path); 1065 } 1066 } else if (super_check_offset.as_constant() == sc_offset) { 1067 // Need a slow path; fast failure is impossible. 1068 if (L_slow_path == &L_fallthrough) { 1069 br(Assembler::EQ, *L_success); 1070 } else { 1071 br(Assembler::NE, *L_slow_path); 1072 final_jmp(*L_success); 1073 } 1074 } else { 1075 // No slow path; it's a fast decision. 1076 if (L_failure == &L_fallthrough) { 1077 br(Assembler::EQ, *L_success); 1078 } else { 1079 br(Assembler::NE, *L_failure); 1080 final_jmp(*L_success); 1081 } 1082 } 1083 1084 bind(L_fallthrough); 1085 1086 #undef final_jmp 1087 } 1088 1089 // These two are taken from x86, but they look generally useful 1090 1091 // scans count pointer sized words at [addr] for occurence of value, 1092 // generic 1093 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1094 Register scratch) { 1095 Label Lloop, Lexit; 1096 cbz(count, Lexit); 1097 bind(Lloop); 1098 ldr(scratch, post(addr, wordSize)); 1099 cmp(value, scratch); 1100 br(EQ, Lexit); 1101 sub(count, count, 1); 1102 cbnz(count, Lloop); 1103 bind(Lexit); 1104 } 1105 1106 // scans count 4 byte words at [addr] for occurence of value, 1107 // generic 1108 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1109 Register scratch) { 1110 Label Lloop, Lexit; 1111 cbz(count, Lexit); 1112 bind(Lloop); 1113 ldrw(scratch, post(addr, wordSize)); 1114 cmpw(value, scratch); 1115 br(EQ, Lexit); 1116 sub(count, count, 1); 1117 cbnz(count, Lloop); 1118 bind(Lexit); 1119 } 1120 1121 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1122 Register super_klass, 1123 Register temp_reg, 1124 Register temp2_reg, 1125 Label* L_success, 1126 Label* L_failure, 1127 bool set_cond_codes) { 1128 assert_different_registers(sub_klass, super_klass, temp_reg); 1129 if (temp2_reg != noreg) 1130 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1131 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1132 1133 Label L_fallthrough; 1134 int label_nulls = 0; 1135 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1136 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1137 assert(label_nulls <= 1, "at most one NULL in the batch"); 1138 1139 // a couple of useful fields in sub_klass: 1140 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1141 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1142 Address secondary_supers_addr(sub_klass, ss_offset); 1143 Address super_cache_addr( sub_klass, sc_offset); 1144 1145 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1146 1147 // Do a linear scan of the secondary super-klass chain. 1148 // This code is rarely used, so simplicity is a virtue here. 1149 // The repne_scan instruction uses fixed registers, which we must spill. 1150 // Don't worry too much about pre-existing connections with the input regs. 1151 1152 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1153 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1154 1155 // Get super_klass value into r0 (even if it was in r5 or r2). 1156 RegSet pushed_registers; 1157 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1158 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1159 1160 if (super_klass != r0 || UseCompressedOops) { 1161 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1162 } 1163 1164 push(pushed_registers, sp); 1165 1166 #ifndef PRODUCT 1167 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1168 Address pst_counter_addr(rscratch2); 1169 ldr(rscratch1, pst_counter_addr); 1170 add(rscratch1, rscratch1, 1); 1171 str(rscratch1, pst_counter_addr); 1172 #endif //PRODUCT 1173 1174 // We will consult the secondary-super array. 1175 ldr(r5, secondary_supers_addr); 1176 // Load the array length. 1177 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1178 // Skip to start of data. 1179 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1180 1181 cmp(sp, zr); // Clear Z flag; SP is never zero 1182 // Scan R2 words at [R5] for an occurrence of R0. 1183 // Set NZ/Z based on last compare. 1184 repne_scan(r5, r0, r2, rscratch1); 1185 1186 // Unspill the temp. registers: 1187 pop(pushed_registers, sp); 1188 1189 br(Assembler::NE, *L_failure); 1190 1191 // Success. Cache the super we found and proceed in triumph. 1192 str(super_klass, super_cache_addr); 1193 1194 if (L_success != &L_fallthrough) { 1195 b(*L_success); 1196 } 1197 1198 #undef IS_A_TEMP 1199 1200 bind(L_fallthrough); 1201 } 1202 1203 1204 void MacroAssembler::verify_oop(Register reg, const char* s) { 1205 if (!VerifyOops) return; 1206 1207 // Pass register number to verify_oop_subroutine 1208 const char* b = NULL; 1209 { 1210 ResourceMark rm; 1211 stringStream ss; 1212 ss.print("verify_oop: %s: %s", reg->name(), s); 1213 b = code_string(ss.as_string()); 1214 } 1215 BLOCK_COMMENT("verify_oop {"); 1216 1217 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1218 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1219 1220 mov(r0, reg); 1221 mov(rscratch1, (address)b); 1222 1223 // call indirectly to solve generation ordering problem 1224 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1225 ldr(rscratch2, Address(rscratch2)); 1226 blr(rscratch2); 1227 1228 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1229 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1230 1231 BLOCK_COMMENT("} verify_oop"); 1232 } 1233 1234 void MacroAssembler::verify_oop_addr(Address addr, const char* s) { 1235 if (!VerifyOops) return; 1236 1237 const char* b = NULL; 1238 { 1239 ResourceMark rm; 1240 stringStream ss; 1241 ss.print("verify_oop_addr: %s", s); 1242 b = code_string(ss.as_string()); 1243 } 1244 BLOCK_COMMENT("verify_oop_addr {"); 1245 1246 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1247 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1248 1249 // addr may contain sp so we will have to adjust it based on the 1250 // pushes that we just did. 1251 if (addr.uses(sp)) { 1252 lea(r0, addr); 1253 ldr(r0, Address(r0, 4 * wordSize)); 1254 } else { 1255 ldr(r0, addr); 1256 } 1257 mov(rscratch1, (address)b); 1258 1259 // call indirectly to solve generation ordering problem 1260 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1261 ldr(rscratch2, Address(rscratch2)); 1262 blr(rscratch2); 1263 1264 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1265 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1266 1267 BLOCK_COMMENT("} verify_oop_addr"); 1268 } 1269 1270 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1271 int extra_slot_offset) { 1272 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1273 int stackElementSize = Interpreter::stackElementSize; 1274 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1275 #ifdef ASSERT 1276 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1277 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1278 #endif 1279 if (arg_slot.is_constant()) { 1280 return Address(esp, arg_slot.as_constant() * stackElementSize 1281 + offset); 1282 } else { 1283 add(rscratch1, esp, arg_slot.as_register(), 1284 ext::uxtx, exact_log2(stackElementSize)); 1285 return Address(rscratch1, offset); 1286 } 1287 } 1288 1289 void MacroAssembler::call_VM_leaf_base(address entry_point, 1290 int number_of_arguments, 1291 Label *retaddr) { 1292 call_VM_leaf_base1(entry_point, number_of_arguments, 0, ret_type_integral, retaddr); 1293 } 1294 1295 void MacroAssembler::call_VM_leaf_base1(address entry_point, 1296 int number_of_gp_arguments, 1297 int number_of_fp_arguments, 1298 ret_type type, 1299 Label *retaddr) { 1300 Label E, L; 1301 1302 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1303 1304 // We add 1 to number_of_arguments because the thread in arg0 is 1305 // not counted 1306 mov(rscratch1, entry_point); 1307 blrt(rscratch1, number_of_gp_arguments + 1, number_of_fp_arguments, type); 1308 if (retaddr) 1309 bind(*retaddr); 1310 1311 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1312 maybe_isb(); 1313 } 1314 1315 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1316 call_VM_leaf_base(entry_point, number_of_arguments); 1317 } 1318 1319 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1320 pass_arg0(this, arg_0); 1321 call_VM_leaf_base(entry_point, 1); 1322 } 1323 1324 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1325 pass_arg0(this, arg_0); 1326 pass_arg1(this, arg_1); 1327 call_VM_leaf_base(entry_point, 2); 1328 } 1329 1330 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1331 Register arg_1, Register arg_2) { 1332 pass_arg0(this, arg_0); 1333 pass_arg1(this, arg_1); 1334 pass_arg2(this, arg_2); 1335 call_VM_leaf_base(entry_point, 3); 1336 } 1337 1338 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1339 pass_arg0(this, arg_0); 1340 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1341 } 1342 1343 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1344 1345 assert(arg_0 != c_rarg1, "smashed arg"); 1346 pass_arg1(this, arg_1); 1347 pass_arg0(this, arg_0); 1348 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1349 } 1350 1351 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1352 assert(arg_0 != c_rarg2, "smashed arg"); 1353 assert(arg_1 != c_rarg2, "smashed arg"); 1354 pass_arg2(this, arg_2); 1355 assert(arg_0 != c_rarg1, "smashed arg"); 1356 pass_arg1(this, arg_1); 1357 pass_arg0(this, arg_0); 1358 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1359 } 1360 1361 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1362 assert(arg_0 != c_rarg3, "smashed arg"); 1363 assert(arg_1 != c_rarg3, "smashed arg"); 1364 assert(arg_2 != c_rarg3, "smashed arg"); 1365 pass_arg3(this, arg_3); 1366 assert(arg_0 != c_rarg2, "smashed arg"); 1367 assert(arg_1 != c_rarg2, "smashed arg"); 1368 pass_arg2(this, arg_2); 1369 assert(arg_0 != c_rarg1, "smashed arg"); 1370 pass_arg1(this, arg_1); 1371 pass_arg0(this, arg_0); 1372 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1373 } 1374 1375 void MacroAssembler::null_check(Register reg, int offset) { 1376 if (needs_explicit_null_check(offset)) { 1377 // provoke OS NULL exception if reg = NULL by 1378 // accessing M[reg] w/o changing any registers 1379 // NOTE: this is plenty to provoke a segv 1380 ldr(zr, Address(reg)); 1381 } else { 1382 // nothing to do, (later) access of M[reg + offset] 1383 // will provoke OS NULL exception if reg = NULL 1384 } 1385 } 1386 1387 // MacroAssembler protected routines needed to implement 1388 // public methods 1389 1390 void MacroAssembler::mov(Register r, Address dest) { 1391 code_section()->relocate(pc(), dest.rspec()); 1392 u_int64_t imm64 = (u_int64_t)dest.target(); 1393 movptr(r, imm64); 1394 } 1395 1396 // Move a constant pointer into r. In AArch64 mode the virtual 1397 // address space is 48 bits in size, so we only need three 1398 // instructions to create a patchable instruction sequence that can 1399 // reach anywhere. 1400 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1401 #ifndef PRODUCT 1402 { 1403 char buffer[64]; 1404 snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64); 1405 block_comment(buffer); 1406 } 1407 #endif 1408 assert(imm64 < (1ul << 48), "48-bit overflow in address constant"); 1409 movz(r, imm64 & 0xffff); 1410 imm64 >>= 16; 1411 movk(r, imm64 & 0xffff, 16); 1412 imm64 >>= 16; 1413 movk(r, imm64 & 0xffff, 32); 1414 } 1415 1416 // Macro to mov replicated immediate to vector register. 1417 // Vd will get the following values for different arrangements in T 1418 // imm32 == hex 000000gh T8B: Vd = ghghghghghghghgh 1419 // imm32 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1420 // imm32 == hex 0000efgh T4H: Vd = efghefghefghefgh 1421 // imm32 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1422 // imm32 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1423 // imm32 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1424 // T1D/T2D: invalid 1425 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) { 1426 assert(T != T1D && T != T2D, "invalid arrangement"); 1427 if (T == T8B || T == T16B) { 1428 assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)"); 1429 movi(Vd, T, imm32 & 0xff, 0); 1430 return; 1431 } 1432 u_int32_t nimm32 = ~imm32; 1433 if (T == T4H || T == T8H) { 1434 assert((imm32 & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)"); 1435 imm32 &= 0xffff; 1436 nimm32 &= 0xffff; 1437 } 1438 u_int32_t x = imm32; 1439 int movi_cnt = 0; 1440 int movn_cnt = 0; 1441 while (x) { if (x & 0xff) movi_cnt++; x >>= 8; } 1442 x = nimm32; 1443 while (x) { if (x & 0xff) movn_cnt++; x >>= 8; } 1444 if (movn_cnt < movi_cnt) imm32 = nimm32; 1445 unsigned lsl = 0; 1446 while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; } 1447 if (movn_cnt < movi_cnt) 1448 mvni(Vd, T, imm32 & 0xff, lsl); 1449 else 1450 movi(Vd, T, imm32 & 0xff, lsl); 1451 imm32 >>= 8; lsl += 8; 1452 while (imm32) { 1453 while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; } 1454 if (movn_cnt < movi_cnt) 1455 bici(Vd, T, imm32 & 0xff, lsl); 1456 else 1457 orri(Vd, T, imm32 & 0xff, lsl); 1458 lsl += 8; imm32 >>= 8; 1459 } 1460 } 1461 1462 void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64) 1463 { 1464 #ifndef PRODUCT 1465 { 1466 char buffer[64]; 1467 snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64); 1468 block_comment(buffer); 1469 } 1470 #endif 1471 if (operand_valid_for_logical_immediate(false, imm64)) { 1472 orr(dst, zr, imm64); 1473 } else { 1474 // we can use a combination of MOVZ or MOVN with 1475 // MOVK to build up the constant 1476 u_int64_t imm_h[4]; 1477 int zero_count = 0; 1478 int neg_count = 0; 1479 int i; 1480 for (i = 0; i < 4; i++) { 1481 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1482 if (imm_h[i] == 0) { 1483 zero_count++; 1484 } else if (imm_h[i] == 0xffffL) { 1485 neg_count++; 1486 } 1487 } 1488 if (zero_count == 4) { 1489 // one MOVZ will do 1490 movz(dst, 0); 1491 } else if (neg_count == 4) { 1492 // one MOVN will do 1493 movn(dst, 0); 1494 } else if (zero_count == 3) { 1495 for (i = 0; i < 4; i++) { 1496 if (imm_h[i] != 0L) { 1497 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1498 break; 1499 } 1500 } 1501 } else if (neg_count == 3) { 1502 // one MOVN will do 1503 for (int i = 0; i < 4; i++) { 1504 if (imm_h[i] != 0xffffL) { 1505 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1506 break; 1507 } 1508 } 1509 } else if (zero_count == 2) { 1510 // one MOVZ and one MOVK will do 1511 for (i = 0; i < 3; i++) { 1512 if (imm_h[i] != 0L) { 1513 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1514 i++; 1515 break; 1516 } 1517 } 1518 for (;i < 4; i++) { 1519 if (imm_h[i] != 0L) { 1520 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1521 } 1522 } 1523 } else if (neg_count == 2) { 1524 // one MOVN and one MOVK will do 1525 for (i = 0; i < 4; i++) { 1526 if (imm_h[i] != 0xffffL) { 1527 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1528 i++; 1529 break; 1530 } 1531 } 1532 for (;i < 4; i++) { 1533 if (imm_h[i] != 0xffffL) { 1534 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1535 } 1536 } 1537 } else if (zero_count == 1) { 1538 // one MOVZ and two MOVKs will do 1539 for (i = 0; i < 4; i++) { 1540 if (imm_h[i] != 0L) { 1541 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1542 i++; 1543 break; 1544 } 1545 } 1546 for (;i < 4; i++) { 1547 if (imm_h[i] != 0x0L) { 1548 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1549 } 1550 } 1551 } else if (neg_count == 1) { 1552 // one MOVN and two MOVKs will do 1553 for (i = 0; i < 4; i++) { 1554 if (imm_h[i] != 0xffffL) { 1555 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1556 i++; 1557 break; 1558 } 1559 } 1560 for (;i < 4; i++) { 1561 if (imm_h[i] != 0xffffL) { 1562 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1563 } 1564 } 1565 } else { 1566 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1567 movz(dst, (u_int32_t)imm_h[0], 0); 1568 for (i = 1; i < 4; i++) { 1569 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1570 } 1571 } 1572 } 1573 } 1574 1575 void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32) 1576 { 1577 #ifndef PRODUCT 1578 { 1579 char buffer[64]; 1580 snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32); 1581 block_comment(buffer); 1582 } 1583 #endif 1584 if (operand_valid_for_logical_immediate(true, imm32)) { 1585 orrw(dst, zr, imm32); 1586 } else { 1587 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1588 // constant 1589 u_int32_t imm_h[2]; 1590 imm_h[0] = imm32 & 0xffff; 1591 imm_h[1] = ((imm32 >> 16) & 0xffff); 1592 if (imm_h[0] == 0) { 1593 movzw(dst, imm_h[1], 16); 1594 } else if (imm_h[0] == 0xffff) { 1595 movnw(dst, imm_h[1] ^ 0xffff, 16); 1596 } else if (imm_h[1] == 0) { 1597 movzw(dst, imm_h[0], 0); 1598 } else if (imm_h[1] == 0xffff) { 1599 movnw(dst, imm_h[0] ^ 0xffff, 0); 1600 } else { 1601 // use a MOVZ and MOVK (makes it easier to debug) 1602 movzw(dst, imm_h[0], 0); 1603 movkw(dst, imm_h[1], 16); 1604 } 1605 } 1606 } 1607 1608 // Form an address from base + offset in Rd. Rd may or may 1609 // not actually be used: you must use the Address that is returned. 1610 // It is up to you to ensure that the shift provided matches the size 1611 // of your data. 1612 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) { 1613 if (Address::offset_ok_for_immed(byte_offset, shift)) 1614 // It fits; no need for any heroics 1615 return Address(base, byte_offset); 1616 1617 // Don't do anything clever with negative or misaligned offsets 1618 unsigned mask = (1 << shift) - 1; 1619 if (byte_offset < 0 || byte_offset & mask) { 1620 mov(Rd, byte_offset); 1621 add(Rd, base, Rd); 1622 return Address(Rd); 1623 } 1624 1625 // See if we can do this with two 12-bit offsets 1626 { 1627 unsigned long word_offset = byte_offset >> shift; 1628 unsigned long masked_offset = word_offset & 0xfff000; 1629 if (Address::offset_ok_for_immed(word_offset - masked_offset) 1630 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1631 add(Rd, base, masked_offset << shift); 1632 word_offset -= masked_offset; 1633 return Address(Rd, word_offset << shift); 1634 } 1635 } 1636 1637 // Do it the hard way 1638 mov(Rd, byte_offset); 1639 add(Rd, base, Rd); 1640 return Address(Rd); 1641 } 1642 1643 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp) { 1644 Label retry_load; 1645 bind(retry_load); 1646 // flush and load exclusive from the memory location 1647 ldxrw(tmp, counter_addr); 1648 addw(tmp, tmp, 1); 1649 // if we store+flush with no intervening write tmp wil be zero 1650 stxrw(tmp, tmp, counter_addr); 1651 cbnzw(tmp, retry_load); 1652 } 1653 1654 1655 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 1656 bool want_remainder, Register scratch) 1657 { 1658 // Full implementation of Java idiv and irem. The function 1659 // returns the (pc) offset of the div instruction - may be needed 1660 // for implicit exceptions. 1661 // 1662 // constraint : ra/rb =/= scratch 1663 // normal case 1664 // 1665 // input : ra: dividend 1666 // rb: divisor 1667 // 1668 // result: either 1669 // quotient (= ra idiv rb) 1670 // remainder (= ra irem rb) 1671 1672 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1673 1674 int idivl_offset = offset(); 1675 if (! want_remainder) { 1676 sdivw(result, ra, rb); 1677 } else { 1678 sdivw(scratch, ra, rb); 1679 Assembler::msubw(result, scratch, rb, ra); 1680 } 1681 1682 return idivl_offset; 1683 } 1684 1685 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 1686 bool want_remainder, Register scratch) 1687 { 1688 // Full implementation of Java ldiv and lrem. The function 1689 // returns the (pc) offset of the div instruction - may be needed 1690 // for implicit exceptions. 1691 // 1692 // constraint : ra/rb =/= scratch 1693 // normal case 1694 // 1695 // input : ra: dividend 1696 // rb: divisor 1697 // 1698 // result: either 1699 // quotient (= ra idiv rb) 1700 // remainder (= ra irem rb) 1701 1702 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1703 1704 int idivq_offset = offset(); 1705 if (! want_remainder) { 1706 sdiv(result, ra, rb); 1707 } else { 1708 sdiv(scratch, ra, rb); 1709 Assembler::msub(result, scratch, rb, ra); 1710 } 1711 1712 return idivq_offset; 1713 } 1714 1715 // MacroAssembler routines found actually to be needed 1716 1717 void MacroAssembler::push(Register src) 1718 { 1719 str(src, Address(pre(esp, -1 * wordSize))); 1720 } 1721 1722 void MacroAssembler::pop(Register dst) 1723 { 1724 ldr(dst, Address(post(esp, 1 * wordSize))); 1725 } 1726 1727 // Note: load_unsigned_short used to be called load_unsigned_word. 1728 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1729 int off = offset(); 1730 ldrh(dst, src); 1731 return off; 1732 } 1733 1734 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1735 int off = offset(); 1736 ldrb(dst, src); 1737 return off; 1738 } 1739 1740 int MacroAssembler::load_signed_short(Register dst, Address src) { 1741 int off = offset(); 1742 ldrsh(dst, src); 1743 return off; 1744 } 1745 1746 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1747 int off = offset(); 1748 ldrsb(dst, src); 1749 return off; 1750 } 1751 1752 int MacroAssembler::load_signed_short32(Register dst, Address src) { 1753 int off = offset(); 1754 ldrshw(dst, src); 1755 return off; 1756 } 1757 1758 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 1759 int off = offset(); 1760 ldrsbw(dst, src); 1761 return off; 1762 } 1763 1764 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1765 switch (size_in_bytes) { 1766 case 8: ldr(dst, src); break; 1767 case 4: ldrw(dst, src); break; 1768 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1769 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1770 default: ShouldNotReachHere(); 1771 } 1772 } 1773 1774 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1775 switch (size_in_bytes) { 1776 case 8: str(src, dst); break; 1777 case 4: strw(src, dst); break; 1778 case 2: strh(src, dst); break; 1779 case 1: strb(src, dst); break; 1780 default: ShouldNotReachHere(); 1781 } 1782 } 1783 1784 void MacroAssembler::decrementw(Register reg, int value) 1785 { 1786 if (value < 0) { incrementw(reg, -value); return; } 1787 if (value == 0) { return; } 1788 if (value < (1 << 12)) { subw(reg, reg, value); return; } 1789 /* else */ { 1790 guarantee(reg != rscratch2, "invalid dst for register decrement"); 1791 movw(rscratch2, (unsigned)value); 1792 subw(reg, reg, rscratch2); 1793 } 1794 } 1795 1796 void MacroAssembler::decrement(Register reg, int value) 1797 { 1798 if (value < 0) { increment(reg, -value); return; } 1799 if (value == 0) { return; } 1800 if (value < (1 << 12)) { sub(reg, reg, value); return; } 1801 /* else */ { 1802 assert(reg != rscratch2, "invalid dst for register decrement"); 1803 mov(rscratch2, (unsigned long)value); 1804 sub(reg, reg, rscratch2); 1805 } 1806 } 1807 1808 void MacroAssembler::decrementw(Address dst, int value) 1809 { 1810 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 1811 ldrw(rscratch1, dst); 1812 decrementw(rscratch1, value); 1813 strw(rscratch1, dst); 1814 } 1815 1816 void MacroAssembler::decrement(Address dst, int value) 1817 { 1818 assert(!dst.uses(rscratch1), "invalid address for decrement"); 1819 ldr(rscratch1, dst); 1820 decrement(rscratch1, value); 1821 str(rscratch1, dst); 1822 } 1823 1824 void MacroAssembler::incrementw(Register reg, int value) 1825 { 1826 if (value < 0) { decrementw(reg, -value); return; } 1827 if (value == 0) { return; } 1828 if (value < (1 << 12)) { addw(reg, reg, value); return; } 1829 /* else */ { 1830 assert(reg != rscratch2, "invalid dst for register increment"); 1831 movw(rscratch2, (unsigned)value); 1832 addw(reg, reg, rscratch2); 1833 } 1834 } 1835 1836 void MacroAssembler::increment(Register reg, int value) 1837 { 1838 if (value < 0) { decrement(reg, -value); return; } 1839 if (value == 0) { return; } 1840 if (value < (1 << 12)) { add(reg, reg, value); return; } 1841 /* else */ { 1842 assert(reg != rscratch2, "invalid dst for register increment"); 1843 movw(rscratch2, (unsigned)value); 1844 add(reg, reg, rscratch2); 1845 } 1846 } 1847 1848 void MacroAssembler::incrementw(Address dst, int value) 1849 { 1850 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 1851 ldrw(rscratch1, dst); 1852 incrementw(rscratch1, value); 1853 strw(rscratch1, dst); 1854 } 1855 1856 void MacroAssembler::increment(Address dst, int value) 1857 { 1858 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 1859 ldr(rscratch1, dst); 1860 increment(rscratch1, value); 1861 str(rscratch1, dst); 1862 } 1863 1864 1865 void MacroAssembler::pusha() { 1866 push(0x7fffffff, sp); 1867 } 1868 1869 void MacroAssembler::popa() { 1870 pop(0x7fffffff, sp); 1871 } 1872 1873 // Push lots of registers in the bit set supplied. Don't push sp. 1874 // Return the number of words pushed 1875 int MacroAssembler::push(unsigned int bitset, Register stack) { 1876 int words_pushed = 0; 1877 1878 // Scan bitset to accumulate register pairs 1879 unsigned char regs[32]; 1880 int count = 0; 1881 for (int reg = 0; reg <= 30; reg++) { 1882 if (1 & bitset) 1883 regs[count++] = reg; 1884 bitset >>= 1; 1885 } 1886 regs[count++] = zr->encoding_nocheck(); 1887 count &= ~1; // Only push an even nuber of regs 1888 1889 if (count) { 1890 stp(as_Register(regs[0]), as_Register(regs[1]), 1891 Address(pre(stack, -count * wordSize))); 1892 words_pushed += 2; 1893 } 1894 for (int i = 2; i < count; i += 2) { 1895 stp(as_Register(regs[i]), as_Register(regs[i+1]), 1896 Address(stack, i * wordSize)); 1897 words_pushed += 2; 1898 } 1899 1900 assert(words_pushed == count, "oops, pushed != count"); 1901 1902 return count; 1903 } 1904 1905 int MacroAssembler::pop(unsigned int bitset, Register stack) { 1906 int words_pushed = 0; 1907 1908 // Scan bitset to accumulate register pairs 1909 unsigned char regs[32]; 1910 int count = 0; 1911 for (int reg = 0; reg <= 30; reg++) { 1912 if (1 & bitset) 1913 regs[count++] = reg; 1914 bitset >>= 1; 1915 } 1916 regs[count++] = zr->encoding_nocheck(); 1917 count &= ~1; 1918 1919 for (int i = 2; i < count; i += 2) { 1920 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 1921 Address(stack, i * wordSize)); 1922 words_pushed += 2; 1923 } 1924 if (count) { 1925 ldp(as_Register(regs[0]), as_Register(regs[1]), 1926 Address(post(stack, count * wordSize))); 1927 words_pushed += 2; 1928 } 1929 1930 assert(words_pushed == count, "oops, pushed != count"); 1931 1932 return count; 1933 } 1934 #ifdef ASSERT 1935 void MacroAssembler::verify_heapbase(const char* msg) { 1936 #if 0 1937 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 1938 assert (Universe::heap() != NULL, "java heap should be initialized"); 1939 if (CheckCompressedOops) { 1940 Label ok; 1941 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 1942 cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr())); 1943 br(Assembler::EQ, ok); 1944 stop(msg); 1945 bind(ok); 1946 pop(1 << rscratch1->encoding(), sp); 1947 } 1948 #endif 1949 } 1950 #endif 1951 1952 void MacroAssembler::stop(const char* msg) { 1953 address ip = pc(); 1954 pusha(); 1955 mov(c_rarg0, (address)msg); 1956 mov(c_rarg1, (address)ip); 1957 mov(c_rarg2, sp); 1958 mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64)); 1959 // call(c_rarg3); 1960 blrt(c_rarg3, 3, 0, 1); 1961 hlt(0); 1962 } 1963 1964 // If a constant does not fit in an immediate field, generate some 1965 // number of MOV instructions and then perform the operation. 1966 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm, 1967 add_sub_imm_insn insn1, 1968 add_sub_reg_insn insn2) { 1969 assert(Rd != zr, "Rd = zr and not setting flags?"); 1970 if (operand_valid_for_add_sub_immediate((int)imm)) { 1971 (this->*insn1)(Rd, Rn, imm); 1972 } else { 1973 if (uabs(imm) < (1 << 24)) { 1974 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 1975 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 1976 } else { 1977 assert_different_registers(Rd, Rn); 1978 mov(Rd, (uint64_t)imm); 1979 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 1980 } 1981 } 1982 } 1983 1984 // Seperate vsn which sets the flags. Optimisations are more restricted 1985 // because we must set the flags correctly. 1986 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm, 1987 add_sub_imm_insn insn1, 1988 add_sub_reg_insn insn2) { 1989 if (operand_valid_for_add_sub_immediate((int)imm)) { 1990 (this->*insn1)(Rd, Rn, imm); 1991 } else { 1992 assert_different_registers(Rd, Rn); 1993 assert(Rd != zr, "overflow in immediate operand"); 1994 mov(Rd, (uint64_t)imm); 1995 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 1996 } 1997 } 1998 1999 2000 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2001 if (increment.is_register()) { 2002 add(Rd, Rn, increment.as_register()); 2003 } else { 2004 add(Rd, Rn, increment.as_constant()); 2005 } 2006 } 2007 2008 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2009 if (increment.is_register()) { 2010 addw(Rd, Rn, increment.as_register()); 2011 } else { 2012 addw(Rd, Rn, increment.as_constant()); 2013 } 2014 } 2015 2016 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2017 if (decrement.is_register()) { 2018 sub(Rd, Rn, decrement.as_register()); 2019 } else { 2020 sub(Rd, Rn, decrement.as_constant()); 2021 } 2022 } 2023 2024 void MacroAssembler::reinit_heapbase() 2025 { 2026 if (UseCompressedOops) { 2027 if (Universe::is_fully_initialized()) { 2028 mov(rheapbase, Universe::narrow_ptrs_base()); 2029 } else { 2030 lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr())); 2031 ldr(rheapbase, Address(rheapbase)); 2032 } 2033 } 2034 } 2035 2036 // this simulates the behaviour of the x86 cmpxchg instruction using a 2037 // load linked/store conditional pair. we use the acquire/release 2038 // versions of these instructions so that we flush pending writes as 2039 // per Java semantics. 2040 2041 // n.b the x86 version assumes the old value to be compared against is 2042 // in rax and updates rax with the value located in memory if the 2043 // cmpxchg fails. we supply a register for the old value explicitly 2044 2045 // the aarch64 load linked/store conditional instructions do not 2046 // accept an offset. so, unlike x86, we must provide a plain register 2047 // to identify the memory word to be compared/exchanged rather than a 2048 // register+offset Address. 2049 2050 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2051 Label &succeed, Label *fail) { 2052 // oldv holds comparison value 2053 // newv holds value to write in exchange 2054 // addr identifies memory word to compare against/update 2055 // tmp returns 0/1 for success/failure 2056 Label retry_load, nope; 2057 2058 bind(retry_load); 2059 // flush and load exclusive from the memory location 2060 // and fail if it is not what we expect 2061 ldaxr(tmp, addr); 2062 cmp(tmp, oldv); 2063 br(Assembler::NE, nope); 2064 // if we store+flush with no intervening write tmp wil be zero 2065 stlxr(tmp, newv, addr); 2066 cbzw(tmp, succeed); 2067 // retry so we only ever return after a load fails to compare 2068 // ensures we don't return a stale value after a failed write. 2069 b(retry_load); 2070 // if the memory word differs we return it in oldv and signal a fail 2071 bind(nope); 2072 membar(AnyAny); 2073 mov(oldv, tmp); 2074 if (fail) 2075 b(*fail); 2076 } 2077 2078 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2079 Label &succeed, Label *fail) { 2080 // oldv holds comparison value 2081 // newv holds value to write in exchange 2082 // addr identifies memory word to compare against/update 2083 // tmp returns 0/1 for success/failure 2084 Label retry_load, nope; 2085 2086 bind(retry_load); 2087 // flush and load exclusive from the memory location 2088 // and fail if it is not what we expect 2089 ldaxrw(tmp, addr); 2090 cmp(tmp, oldv); 2091 br(Assembler::NE, nope); 2092 // if we store+flush with no intervening write tmp wil be zero 2093 stlxrw(tmp, newv, addr); 2094 cbzw(tmp, succeed); 2095 // retry so we only ever return after a load fails to compare 2096 // ensures we don't return a stale value after a failed write. 2097 b(retry_load); 2098 // if the memory word differs we return it in oldv and signal a fail 2099 bind(nope); 2100 membar(AnyAny); 2101 mov(oldv, tmp); 2102 if (fail) 2103 b(*fail); 2104 } 2105 2106 static bool different(Register a, RegisterOrConstant b, Register c) { 2107 if (b.is_constant()) 2108 return a != c; 2109 else 2110 return a != b.as_register() && a != c && b.as_register() != c; 2111 } 2112 2113 #define ATOMIC_OP(LDXR, OP, STXR) \ 2114 void MacroAssembler::atomic_##OP(Register prev, RegisterOrConstant incr, Register addr) { \ 2115 Register result = rscratch2; \ 2116 if (prev->is_valid()) \ 2117 result = different(prev, incr, addr) ? prev : rscratch2; \ 2118 \ 2119 Label retry_load; \ 2120 bind(retry_load); \ 2121 LDXR(result, addr); \ 2122 OP(rscratch1, result, incr); \ 2123 STXR(rscratch1, rscratch1, addr); \ 2124 cbnzw(rscratch1, retry_load); \ 2125 if (prev->is_valid() && prev != result) \ 2126 mov(prev, result); \ 2127 } 2128 2129 ATOMIC_OP(ldxr, add, stxr) 2130 ATOMIC_OP(ldxrw, addw, stxrw) 2131 2132 #undef ATOMIC_OP 2133 2134 #define ATOMIC_XCHG(OP, LDXR, STXR) \ 2135 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2136 Register result = rscratch2; \ 2137 if (prev->is_valid()) \ 2138 result = different(prev, newv, addr) ? prev : rscratch2; \ 2139 \ 2140 Label retry_load; \ 2141 bind(retry_load); \ 2142 LDXR(result, addr); \ 2143 STXR(rscratch1, newv, addr); \ 2144 cbnzw(rscratch1, retry_load); \ 2145 if (prev->is_valid() && prev != result) \ 2146 mov(prev, result); \ 2147 } 2148 2149 ATOMIC_XCHG(xchg, ldxr, stxr) 2150 ATOMIC_XCHG(xchgw, ldxrw, stxrw) 2151 2152 #undef ATOMIC_XCHG 2153 2154 void MacroAssembler::incr_allocated_bytes(Register thread, 2155 Register var_size_in_bytes, 2156 int con_size_in_bytes, 2157 Register t1) { 2158 if (!thread->is_valid()) { 2159 thread = rthread; 2160 } 2161 assert(t1->is_valid(), "need temp reg"); 2162 2163 ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset()))); 2164 if (var_size_in_bytes->is_valid()) { 2165 add(t1, t1, var_size_in_bytes); 2166 } else { 2167 add(t1, t1, con_size_in_bytes); 2168 } 2169 str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset()))); 2170 } 2171 2172 #ifndef PRODUCT 2173 extern "C" void findpc(intptr_t x); 2174 #endif 2175 2176 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2177 { 2178 // In order to get locks to work, we need to fake a in_VM state 2179 if (ShowMessageBoxOnError ) { 2180 JavaThread* thread = JavaThread::current(); 2181 JavaThreadState saved_state = thread->thread_state(); 2182 thread->set_thread_state(_thread_in_vm); 2183 #ifndef PRODUCT 2184 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2185 ttyLocker ttyl; 2186 BytecodeCounter::print(); 2187 } 2188 #endif 2189 if (os::message_box(msg, "Execution stopped, print registers?")) { 2190 ttyLocker ttyl; 2191 tty->print_cr(" pc = 0x%016lx", pc); 2192 #ifndef PRODUCT 2193 tty->cr(); 2194 findpc(pc); 2195 tty->cr(); 2196 #endif 2197 tty->print_cr(" r0 = 0x%016lx", regs[0]); 2198 tty->print_cr(" r1 = 0x%016lx", regs[1]); 2199 tty->print_cr(" r2 = 0x%016lx", regs[2]); 2200 tty->print_cr(" r3 = 0x%016lx", regs[3]); 2201 tty->print_cr(" r4 = 0x%016lx", regs[4]); 2202 tty->print_cr(" r5 = 0x%016lx", regs[5]); 2203 tty->print_cr(" r6 = 0x%016lx", regs[6]); 2204 tty->print_cr(" r7 = 0x%016lx", regs[7]); 2205 tty->print_cr(" r8 = 0x%016lx", regs[8]); 2206 tty->print_cr(" r9 = 0x%016lx", regs[9]); 2207 tty->print_cr("r10 = 0x%016lx", regs[10]); 2208 tty->print_cr("r11 = 0x%016lx", regs[11]); 2209 tty->print_cr("r12 = 0x%016lx", regs[12]); 2210 tty->print_cr("r13 = 0x%016lx", regs[13]); 2211 tty->print_cr("r14 = 0x%016lx", regs[14]); 2212 tty->print_cr("r15 = 0x%016lx", regs[15]); 2213 tty->print_cr("r16 = 0x%016lx", regs[16]); 2214 tty->print_cr("r17 = 0x%016lx", regs[17]); 2215 tty->print_cr("r18 = 0x%016lx", regs[18]); 2216 tty->print_cr("r19 = 0x%016lx", regs[19]); 2217 tty->print_cr("r20 = 0x%016lx", regs[20]); 2218 tty->print_cr("r21 = 0x%016lx", regs[21]); 2219 tty->print_cr("r22 = 0x%016lx", regs[22]); 2220 tty->print_cr("r23 = 0x%016lx", regs[23]); 2221 tty->print_cr("r24 = 0x%016lx", regs[24]); 2222 tty->print_cr("r25 = 0x%016lx", regs[25]); 2223 tty->print_cr("r26 = 0x%016lx", regs[26]); 2224 tty->print_cr("r27 = 0x%016lx", regs[27]); 2225 tty->print_cr("r28 = 0x%016lx", regs[28]); 2226 tty->print_cr("r30 = 0x%016lx", regs[30]); 2227 tty->print_cr("r31 = 0x%016lx", regs[31]); 2228 BREAKPOINT; 2229 } 2230 ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); 2231 } else { 2232 ttyLocker ttyl; 2233 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", 2234 msg); 2235 assert(false, err_msg("DEBUG MESSAGE: %s", msg)); 2236 } 2237 } 2238 2239 #ifdef BUILTIN_SIM 2240 // routine to generate an x86 prolog for a stub function which 2241 // bootstraps into the generated ARM code which directly follows the 2242 // stub 2243 // 2244 // the argument encodes the number of general and fp registers 2245 // passed by the caller and the callng convention (currently just 2246 // the number of general registers and assumes C argument passing) 2247 2248 extern "C" { 2249 int aarch64_stub_prolog_size(); 2250 void aarch64_stub_prolog(); 2251 void aarch64_prolog(); 2252 } 2253 2254 void MacroAssembler::c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, 2255 address *prolog_ptr) 2256 { 2257 int calltype = (((ret_type & 0x3) << 8) | 2258 ((fp_arg_count & 0xf) << 4) | 2259 (gp_arg_count & 0xf)); 2260 2261 // the addresses for the x86 to ARM entry code we need to use 2262 address start = pc(); 2263 // printf("start = %lx\n", start); 2264 int byteCount = aarch64_stub_prolog_size(); 2265 // printf("byteCount = %x\n", byteCount); 2266 int instructionCount = (byteCount + 3)/ 4; 2267 // printf("instructionCount = %x\n", instructionCount); 2268 for (int i = 0; i < instructionCount; i++) { 2269 nop(); 2270 } 2271 2272 memcpy(start, (void*)aarch64_stub_prolog, byteCount); 2273 2274 // write the address of the setup routine and the call format at the 2275 // end of into the copied code 2276 u_int64_t *patch_end = (u_int64_t *)(start + byteCount); 2277 if (prolog_ptr) 2278 patch_end[-2] = (u_int64_t)prolog_ptr; 2279 patch_end[-1] = calltype; 2280 } 2281 #endif 2282 2283 void MacroAssembler::push_CPU_state() { 2284 push(0x3fffffff, sp); // integer registers except lr & sp 2285 2286 for (int i = 30; i >= 0; i -= 2) 2287 stpd(as_FloatRegister(i), as_FloatRegister(i+1), 2288 Address(pre(sp, -2 * wordSize))); 2289 } 2290 2291 void MacroAssembler::pop_CPU_state() { 2292 for (int i = 0; i < 32; i += 2) 2293 ldpd(as_FloatRegister(i), as_FloatRegister(i+1), 2294 Address(post(sp, 2 * wordSize))); 2295 2296 pop(0x3fffffff, sp); // integer registers except lr & sp 2297 } 2298 2299 /** 2300 * Helpers for multiply_to_len(). 2301 */ 2302 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 2303 Register src1, Register src2) { 2304 adds(dest_lo, dest_lo, src1); 2305 adc(dest_hi, dest_hi, zr); 2306 adds(dest_lo, dest_lo, src2); 2307 adc(final_dest_hi, dest_hi, zr); 2308 } 2309 2310 // Generate an address from (r + r1 extend offset). "size" is the 2311 // size of the operand. The result may be in rscratch2. 2312 Address MacroAssembler::offsetted_address(Register r, Register r1, 2313 Address::extend ext, int offset, int size) { 2314 if (offset || (ext.shift() % size != 0)) { 2315 lea(rscratch2, Address(r, r1, ext)); 2316 return Address(rscratch2, offset); 2317 } else { 2318 return Address(r, r1, ext); 2319 } 2320 } 2321 2322 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 2323 { 2324 assert(offset >= 0, "spill to negative address?"); 2325 // Offset reachable ? 2326 // Not aligned - 9 bits signed offset 2327 // Aligned - 12 bits unsigned offset shifted 2328 Register base = sp; 2329 if ((offset & (size-1)) && offset >= (1<<8)) { 2330 add(tmp, base, offset & ((1<<12)-1)); 2331 base = tmp; 2332 offset &= -1<<12; 2333 } 2334 2335 if (offset >= (1<<12) * size) { 2336 add(tmp, base, offset & (((1<<12)-1)<<12)); 2337 base = tmp; 2338 offset &= ~(((1<<12)-1)<<12); 2339 } 2340 2341 return Address(base, offset); 2342 } 2343 2344 /** 2345 * Multiply 64 bit by 64 bit first loop. 2346 */ 2347 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 2348 Register y, Register y_idx, Register z, 2349 Register carry, Register product, 2350 Register idx, Register kdx) { 2351 // 2352 // jlong carry, x[], y[], z[]; 2353 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2354 // huge_128 product = y[idx] * x[xstart] + carry; 2355 // z[kdx] = (jlong)product; 2356 // carry = (jlong)(product >>> 64); 2357 // } 2358 // z[xstart] = carry; 2359 // 2360 2361 Label L_first_loop, L_first_loop_exit; 2362 Label L_one_x, L_one_y, L_multiply; 2363 2364 subsw(xstart, xstart, 1); 2365 br(Assembler::MI, L_one_x); 2366 2367 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 2368 ldr(x_xstart, Address(rscratch1)); 2369 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 2370 2371 bind(L_first_loop); 2372 subsw(idx, idx, 1); 2373 br(Assembler::MI, L_first_loop_exit); 2374 subsw(idx, idx, 1); 2375 br(Assembler::MI, L_one_y); 2376 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2377 ldr(y_idx, Address(rscratch1)); 2378 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 2379 bind(L_multiply); 2380 2381 // AArch64 has a multiply-accumulate instruction that we can't use 2382 // here because it has no way to process carries, so we have to use 2383 // separate add and adc instructions. Bah. 2384 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 2385 mul(product, x_xstart, y_idx); 2386 adds(product, product, carry); 2387 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 2388 2389 subw(kdx, kdx, 2); 2390 ror(product, product, 32); // back to big-endian 2391 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 2392 2393 b(L_first_loop); 2394 2395 bind(L_one_y); 2396 ldrw(y_idx, Address(y, 0)); 2397 b(L_multiply); 2398 2399 bind(L_one_x); 2400 ldrw(x_xstart, Address(x, 0)); 2401 b(L_first_loop); 2402 2403 bind(L_first_loop_exit); 2404 } 2405 2406 /** 2407 * Multiply 128 bit by 128. Unrolled inner loop. 2408 * 2409 */ 2410 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 2411 Register carry, Register carry2, 2412 Register idx, Register jdx, 2413 Register yz_idx1, Register yz_idx2, 2414 Register tmp, Register tmp3, Register tmp4, 2415 Register tmp6, Register product_hi) { 2416 2417 // jlong carry, x[], y[], z[]; 2418 // int kdx = ystart+1; 2419 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 2420 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 2421 // jlong carry2 = (jlong)(tmp3 >>> 64); 2422 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 2423 // carry = (jlong)(tmp4 >>> 64); 2424 // z[kdx+idx+1] = (jlong)tmp3; 2425 // z[kdx+idx] = (jlong)tmp4; 2426 // } 2427 // idx += 2; 2428 // if (idx > 0) { 2429 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 2430 // z[kdx+idx] = (jlong)yz_idx1; 2431 // carry = (jlong)(yz_idx1 >>> 64); 2432 // } 2433 // 2434 2435 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 2436 2437 lsrw(jdx, idx, 2); 2438 2439 bind(L_third_loop); 2440 2441 subsw(jdx, jdx, 1); 2442 br(Assembler::MI, L_third_loop_exit); 2443 subw(idx, idx, 4); 2444 2445 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2446 2447 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 2448 2449 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2450 2451 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 2452 ror(yz_idx2, yz_idx2, 32); 2453 2454 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 2455 2456 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2457 umulh(tmp4, product_hi, yz_idx1); 2458 2459 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 2460 ror(rscratch2, rscratch2, 32); 2461 2462 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 2463 umulh(carry2, product_hi, yz_idx2); 2464 2465 // propagate sum of both multiplications into carry:tmp4:tmp3 2466 adds(tmp3, tmp3, carry); 2467 adc(tmp4, tmp4, zr); 2468 adds(tmp3, tmp3, rscratch1); 2469 adcs(tmp4, tmp4, tmp); 2470 adc(carry, carry2, zr); 2471 adds(tmp4, tmp4, rscratch2); 2472 adc(carry, carry, zr); 2473 2474 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 2475 ror(tmp4, tmp4, 32); 2476 stp(tmp4, tmp3, Address(tmp6, 0)); 2477 2478 b(L_third_loop); 2479 bind (L_third_loop_exit); 2480 2481 andw (idx, idx, 0x3); 2482 cbz(idx, L_post_third_loop_done); 2483 2484 Label L_check_1; 2485 subsw(idx, idx, 2); 2486 br(Assembler::MI, L_check_1); 2487 2488 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2489 ldr(yz_idx1, Address(rscratch1, 0)); 2490 ror(yz_idx1, yz_idx1, 32); 2491 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2492 umulh(tmp4, product_hi, yz_idx1); 2493 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2494 ldr(yz_idx2, Address(rscratch1, 0)); 2495 ror(yz_idx2, yz_idx2, 32); 2496 2497 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 2498 2499 ror(tmp3, tmp3, 32); 2500 str(tmp3, Address(rscratch1, 0)); 2501 2502 bind (L_check_1); 2503 2504 andw (idx, idx, 0x1); 2505 subsw(idx, idx, 1); 2506 br(Assembler::MI, L_post_third_loop_done); 2507 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2508 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 2509 umulh(carry2, tmp4, product_hi); 2510 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2511 2512 add2_with_carry(carry2, tmp3, tmp4, carry); 2513 2514 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2515 extr(carry, carry2, tmp3, 32); 2516 2517 bind(L_post_third_loop_done); 2518 } 2519 2520 /** 2521 * Code for BigInteger::multiplyToLen() instrinsic. 2522 * 2523 * r0: x 2524 * r1: xlen 2525 * r2: y 2526 * r3: ylen 2527 * r4: z 2528 * r5: zlen 2529 * r10: tmp1 2530 * r11: tmp2 2531 * r12: tmp3 2532 * r13: tmp4 2533 * r14: tmp5 2534 * r15: tmp6 2535 * r16: tmp7 2536 * 2537 */ 2538 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 2539 Register z, Register zlen, 2540 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 2541 Register tmp5, Register tmp6, Register product_hi) { 2542 2543 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 2544 2545 const Register idx = tmp1; 2546 const Register kdx = tmp2; 2547 const Register xstart = tmp3; 2548 2549 const Register y_idx = tmp4; 2550 const Register carry = tmp5; 2551 const Register product = xlen; 2552 const Register x_xstart = zlen; // reuse register 2553 2554 // First Loop. 2555 // 2556 // final static long LONG_MASK = 0xffffffffL; 2557 // int xstart = xlen - 1; 2558 // int ystart = ylen - 1; 2559 // long carry = 0; 2560 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2561 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 2562 // z[kdx] = (int)product; 2563 // carry = product >>> 32; 2564 // } 2565 // z[xstart] = (int)carry; 2566 // 2567 2568 movw(idx, ylen); // idx = ylen; 2569 movw(kdx, zlen); // kdx = xlen+ylen; 2570 mov(carry, zr); // carry = 0; 2571 2572 Label L_done; 2573 2574 movw(xstart, xlen); 2575 subsw(xstart, xstart, 1); 2576 br(Assembler::MI, L_done); 2577 2578 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 2579 2580 Label L_second_loop; 2581 cbzw(kdx, L_second_loop); 2582 2583 Label L_carry; 2584 subw(kdx, kdx, 1); 2585 cbzw(kdx, L_carry); 2586 2587 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 2588 lsr(carry, carry, 32); 2589 subw(kdx, kdx, 1); 2590 2591 bind(L_carry); 2592 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 2593 2594 // Second and third (nested) loops. 2595 // 2596 // for (int i = xstart-1; i >= 0; i--) { // Second loop 2597 // carry = 0; 2598 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 2599 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 2600 // (z[k] & LONG_MASK) + carry; 2601 // z[k] = (int)product; 2602 // carry = product >>> 32; 2603 // } 2604 // z[i] = (int)carry; 2605 // } 2606 // 2607 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 2608 2609 const Register jdx = tmp1; 2610 2611 bind(L_second_loop); 2612 mov(carry, zr); // carry = 0; 2613 movw(jdx, ylen); // j = ystart+1 2614 2615 subsw(xstart, xstart, 1); // i = xstart-1; 2616 br(Assembler::MI, L_done); 2617 2618 str(z, Address(pre(sp, -4 * wordSize))); 2619 2620 Label L_last_x; 2621 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 2622 subsw(xstart, xstart, 1); // i = xstart-1; 2623 br(Assembler::MI, L_last_x); 2624 2625 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 2626 ldr(product_hi, Address(rscratch1)); 2627 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 2628 2629 Label L_third_loop_prologue; 2630 bind(L_third_loop_prologue); 2631 2632 str(ylen, Address(sp, wordSize)); 2633 stp(x, xstart, Address(sp, 2 * wordSize)); 2634 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 2635 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 2636 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 2637 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 2638 2639 addw(tmp3, xlen, 1); 2640 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 2641 subsw(tmp3, tmp3, 1); 2642 br(Assembler::MI, L_done); 2643 2644 lsr(carry, carry, 32); 2645 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 2646 b(L_second_loop); 2647 2648 // Next infrequent code is moved outside loops. 2649 bind(L_last_x); 2650 ldrw(product_hi, Address(x, 0)); 2651 b(L_third_loop_prologue); 2652 2653 bind(L_done); 2654 } 2655 2656 /** 2657 * Emits code to update CRC-32 with a byte value according to constants in table 2658 * 2659 * @param [in,out]crc Register containing the crc. 2660 * @param [in]val Register containing the byte to fold into the CRC. 2661 * @param [in]table Register containing the table of crc constants. 2662 * 2663 * uint32_t crc; 2664 * val = crc_table[(val ^ crc) & 0xFF]; 2665 * crc = val ^ (crc >> 8); 2666 * 2667 */ 2668 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 2669 eor(val, val, crc); 2670 andr(val, val, 0xff); 2671 ldrw(val, Address(table, val, Address::lsl(2))); 2672 eor(crc, val, crc, Assembler::LSR, 8); 2673 } 2674 2675 /** 2676 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 2677 * 2678 * @param [in,out]crc Register containing the crc. 2679 * @param [in]v Register containing the 32-bit to fold into the CRC. 2680 * @param [in]table0 Register containing table 0 of crc constants. 2681 * @param [in]table1 Register containing table 1 of crc constants. 2682 * @param [in]table2 Register containing table 2 of crc constants. 2683 * @param [in]table3 Register containing table 3 of crc constants. 2684 * 2685 * uint32_t crc; 2686 * v = crc ^ v 2687 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 2688 * 2689 */ 2690 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 2691 Register table0, Register table1, Register table2, Register table3, 2692 bool upper) { 2693 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 2694 uxtb(tmp, v); 2695 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 2696 ubfx(tmp, v, 8, 8); 2697 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 2698 eor(crc, crc, tmp); 2699 ubfx(tmp, v, 16, 8); 2700 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 2701 eor(crc, crc, tmp); 2702 ubfx(tmp, v, 24, 8); 2703 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 2704 eor(crc, crc, tmp); 2705 } 2706 2707 /** 2708 * @param crc register containing existing CRC (32-bit) 2709 * @param buf register pointing to input byte buffer (byte*) 2710 * @param len register containing number of bytes 2711 * @param table register that will contain address of CRC table 2712 * @param tmp scratch register 2713 */ 2714 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 2715 Register table0, Register table1, Register table2, Register table3, 2716 Register tmp, Register tmp2, Register tmp3) { 2717 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 2718 unsigned long offset; 2719 2720 ornw(crc, zr, crc); 2721 2722 if (UseCRC32) { 2723 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop; 2724 2725 subs(len, len, 64); 2726 br(Assembler::GE, CRC_by64_loop); 2727 adds(len, len, 64-4); 2728 br(Assembler::GE, CRC_by4_loop); 2729 adds(len, len, 4); 2730 br(Assembler::GT, CRC_by1_loop); 2731 b(L_exit); 2732 2733 BIND(CRC_by4_loop); 2734 ldrw(tmp, Address(post(buf, 4))); 2735 subs(len, len, 4); 2736 crc32w(crc, crc, tmp); 2737 br(Assembler::GE, CRC_by4_loop); 2738 adds(len, len, 4); 2739 br(Assembler::LE, L_exit); 2740 BIND(CRC_by1_loop); 2741 ldrb(tmp, Address(post(buf, 1))); 2742 subs(len, len, 1); 2743 crc32b(crc, crc, tmp); 2744 br(Assembler::GT, CRC_by1_loop); 2745 b(L_exit); 2746 2747 align(CodeEntryAlignment); 2748 BIND(CRC_by64_loop); 2749 subs(len, len, 64); 2750 ldp(tmp, tmp3, Address(post(buf, 16))); 2751 crc32x(crc, crc, tmp); 2752 crc32x(crc, crc, tmp3); 2753 ldp(tmp, tmp3, Address(post(buf, 16))); 2754 crc32x(crc, crc, tmp); 2755 crc32x(crc, crc, tmp3); 2756 ldp(tmp, tmp3, Address(post(buf, 16))); 2757 crc32x(crc, crc, tmp); 2758 crc32x(crc, crc, tmp3); 2759 ldp(tmp, tmp3, Address(post(buf, 16))); 2760 crc32x(crc, crc, tmp); 2761 crc32x(crc, crc, tmp3); 2762 br(Assembler::GE, CRC_by64_loop); 2763 adds(len, len, 64-4); 2764 br(Assembler::GE, CRC_by4_loop); 2765 adds(len, len, 4); 2766 br(Assembler::GT, CRC_by1_loop); 2767 BIND(L_exit); 2768 ornw(crc, zr, crc); 2769 return; 2770 } 2771 2772 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2773 if (offset) add(table0, table0, offset); 2774 add(table1, table0, 1*256*sizeof(juint)); 2775 add(table2, table0, 2*256*sizeof(juint)); 2776 add(table3, table0, 3*256*sizeof(juint)); 2777 2778 if (UseNeon) { 2779 cmp(len, 64); 2780 br(Assembler::LT, L_by16); 2781 eor(v16, T16B, v16, v16); 2782 2783 Label L_fold; 2784 2785 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 2786 2787 ld1(v0, v1, T2D, post(buf, 32)); 2788 ld1r(v4, T2D, post(tmp, 8)); 2789 ld1r(v5, T2D, post(tmp, 8)); 2790 ld1r(v6, T2D, post(tmp, 8)); 2791 ld1r(v7, T2D, post(tmp, 8)); 2792 mov(v16, T4S, 0, crc); 2793 2794 eor(v0, T16B, v0, v16); 2795 sub(len, len, 64); 2796 2797 BIND(L_fold); 2798 pmull(v22, T8H, v0, v5, T8B); 2799 pmull(v20, T8H, v0, v7, T8B); 2800 pmull(v23, T8H, v0, v4, T8B); 2801 pmull(v21, T8H, v0, v6, T8B); 2802 2803 pmull2(v18, T8H, v0, v5, T16B); 2804 pmull2(v16, T8H, v0, v7, T16B); 2805 pmull2(v19, T8H, v0, v4, T16B); 2806 pmull2(v17, T8H, v0, v6, T16B); 2807 2808 uzp1(v24, v20, v22, T8H); 2809 uzp2(v25, v20, v22, T8H); 2810 eor(v20, T16B, v24, v25); 2811 2812 uzp1(v26, v16, v18, T8H); 2813 uzp2(v27, v16, v18, T8H); 2814 eor(v16, T16B, v26, v27); 2815 2816 ushll2(v22, T4S, v20, T8H, 8); 2817 ushll(v20, T4S, v20, T4H, 8); 2818 2819 ushll2(v18, T4S, v16, T8H, 8); 2820 ushll(v16, T4S, v16, T4H, 8); 2821 2822 eor(v22, T16B, v23, v22); 2823 eor(v18, T16B, v19, v18); 2824 eor(v20, T16B, v21, v20); 2825 eor(v16, T16B, v17, v16); 2826 2827 uzp1(v17, v16, v20, T2D); 2828 uzp2(v21, v16, v20, T2D); 2829 eor(v17, T16B, v17, v21); 2830 2831 ushll2(v20, T2D, v17, T4S, 16); 2832 ushll(v16, T2D, v17, T2S, 16); 2833 2834 eor(v20, T16B, v20, v22); 2835 eor(v16, T16B, v16, v18); 2836 2837 uzp1(v17, v20, v16, T2D); 2838 uzp2(v21, v20, v16, T2D); 2839 eor(v28, T16B, v17, v21); 2840 2841 pmull(v22, T8H, v1, v5, T8B); 2842 pmull(v20, T8H, v1, v7, T8B); 2843 pmull(v23, T8H, v1, v4, T8B); 2844 pmull(v21, T8H, v1, v6, T8B); 2845 2846 pmull2(v18, T8H, v1, v5, T16B); 2847 pmull2(v16, T8H, v1, v7, T16B); 2848 pmull2(v19, T8H, v1, v4, T16B); 2849 pmull2(v17, T8H, v1, v6, T16B); 2850 2851 ld1(v0, v1, T2D, post(buf, 32)); 2852 2853 uzp1(v24, v20, v22, T8H); 2854 uzp2(v25, v20, v22, T8H); 2855 eor(v20, T16B, v24, v25); 2856 2857 uzp1(v26, v16, v18, T8H); 2858 uzp2(v27, v16, v18, T8H); 2859 eor(v16, T16B, v26, v27); 2860 2861 ushll2(v22, T4S, v20, T8H, 8); 2862 ushll(v20, T4S, v20, T4H, 8); 2863 2864 ushll2(v18, T4S, v16, T8H, 8); 2865 ushll(v16, T4S, v16, T4H, 8); 2866 2867 eor(v22, T16B, v23, v22); 2868 eor(v18, T16B, v19, v18); 2869 eor(v20, T16B, v21, v20); 2870 eor(v16, T16B, v17, v16); 2871 2872 uzp1(v17, v16, v20, T2D); 2873 uzp2(v21, v16, v20, T2D); 2874 eor(v16, T16B, v17, v21); 2875 2876 ushll2(v20, T2D, v16, T4S, 16); 2877 ushll(v16, T2D, v16, T2S, 16); 2878 2879 eor(v20, T16B, v22, v20); 2880 eor(v16, T16B, v16, v18); 2881 2882 uzp1(v17, v20, v16, T2D); 2883 uzp2(v21, v20, v16, T2D); 2884 eor(v20, T16B, v17, v21); 2885 2886 shl(v16, T2D, v28, 1); 2887 shl(v17, T2D, v20, 1); 2888 2889 eor(v0, T16B, v0, v16); 2890 eor(v1, T16B, v1, v17); 2891 2892 subs(len, len, 32); 2893 br(Assembler::GE, L_fold); 2894 2895 mov(crc, 0); 2896 mov(tmp, v0, T1D, 0); 2897 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 2898 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 2899 mov(tmp, v0, T1D, 1); 2900 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 2901 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 2902 mov(tmp, v1, T1D, 0); 2903 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 2904 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 2905 mov(tmp, v1, T1D, 1); 2906 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 2907 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 2908 2909 add(len, len, 32); 2910 } 2911 2912 BIND(L_by16); 2913 subs(len, len, 16); 2914 br(Assembler::GE, L_by16_loop); 2915 adds(len, len, 16-4); 2916 br(Assembler::GE, L_by4_loop); 2917 adds(len, len, 4); 2918 br(Assembler::GT, L_by1_loop); 2919 b(L_exit); 2920 2921 BIND(L_by4_loop); 2922 ldrw(tmp, Address(post(buf, 4))); 2923 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 2924 subs(len, len, 4); 2925 br(Assembler::GE, L_by4_loop); 2926 adds(len, len, 4); 2927 br(Assembler::LE, L_exit); 2928 BIND(L_by1_loop); 2929 subs(len, len, 1); 2930 ldrb(tmp, Address(post(buf, 1))); 2931 update_byte_crc32(crc, tmp, table0); 2932 br(Assembler::GT, L_by1_loop); 2933 b(L_exit); 2934 2935 align(CodeEntryAlignment); 2936 BIND(L_by16_loop); 2937 subs(len, len, 16); 2938 ldp(tmp, tmp3, Address(post(buf, 16))); 2939 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 2940 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 2941 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 2942 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 2943 br(Assembler::GE, L_by16_loop); 2944 adds(len, len, 16-4); 2945 br(Assembler::GE, L_by4_loop); 2946 adds(len, len, 4); 2947 br(Assembler::GT, L_by1_loop); 2948 BIND(L_exit); 2949 ornw(crc, zr, crc); 2950 } 2951 2952 /** 2953 * @param crc register containing existing CRC (32-bit) 2954 * @param buf register pointing to input byte buffer (byte*) 2955 * @param len register containing number of bytes 2956 * @param table register that will contain address of CRC table 2957 * @param tmp scratch register 2958 */ 2959 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 2960 Register table0, Register table1, Register table2, Register table3, 2961 Register tmp, Register tmp2, Register tmp3) { 2962 Label L_exit; 2963 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop; 2964 2965 subs(len, len, 64); 2966 br(Assembler::GE, CRC_by64_loop); 2967 adds(len, len, 64-4); 2968 br(Assembler::GE, CRC_by4_loop); 2969 adds(len, len, 4); 2970 br(Assembler::GT, CRC_by1_loop); 2971 b(L_exit); 2972 2973 BIND(CRC_by4_loop); 2974 ldrw(tmp, Address(post(buf, 4))); 2975 subs(len, len, 4); 2976 crc32cw(crc, crc, tmp); 2977 br(Assembler::GE, CRC_by4_loop); 2978 adds(len, len, 4); 2979 br(Assembler::LE, L_exit); 2980 BIND(CRC_by1_loop); 2981 ldrb(tmp, Address(post(buf, 1))); 2982 subs(len, len, 1); 2983 crc32cb(crc, crc, tmp); 2984 br(Assembler::GT, CRC_by1_loop); 2985 b(L_exit); 2986 2987 align(CodeEntryAlignment); 2988 BIND(CRC_by64_loop); 2989 subs(len, len, 64); 2990 ldp(tmp, tmp3, Address(post(buf, 16))); 2991 crc32cx(crc, crc, tmp); 2992 crc32cx(crc, crc, tmp3); 2993 ldp(tmp, tmp3, Address(post(buf, 16))); 2994 crc32cx(crc, crc, tmp); 2995 crc32cx(crc, crc, tmp3); 2996 ldp(tmp, tmp3, Address(post(buf, 16))); 2997 crc32cx(crc, crc, tmp); 2998 crc32cx(crc, crc, tmp3); 2999 ldp(tmp, tmp3, Address(post(buf, 16))); 3000 crc32cx(crc, crc, tmp); 3001 crc32cx(crc, crc, tmp3); 3002 br(Assembler::GE, CRC_by64_loop); 3003 adds(len, len, 64-4); 3004 br(Assembler::GE, CRC_by4_loop); 3005 adds(len, len, 4); 3006 br(Assembler::GT, CRC_by1_loop); 3007 BIND(L_exit); 3008 return; 3009 } 3010 3011 SkipIfEqual::SkipIfEqual( 3012 MacroAssembler* masm, const bool* flag_addr, bool value) { 3013 _masm = masm; 3014 unsigned long offset; 3015 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 3016 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 3017 _masm->cbzw(rscratch1, _label); 3018 } 3019 3020 SkipIfEqual::~SkipIfEqual() { 3021 _masm->bind(_label); 3022 } 3023 3024 void MacroAssembler::cmpptr(Register src1, Address src2) { 3025 unsigned long offset; 3026 adrp(rscratch1, src2, offset); 3027 ldr(rscratch1, Address(rscratch1, offset)); 3028 cmp(src1, rscratch1); 3029 } 3030 3031 void MacroAssembler::store_check(Register obj, Address dst) { 3032 store_check(obj); 3033 } 3034 3035 void MacroAssembler::store_check(Register obj) { 3036 // Does a store check for the oop in register obj. The content of 3037 // register obj is destroyed afterwards. 3038 3039 BarrierSet* bs = Universe::heap()->barrier_set(); 3040 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); 3041 3042 CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs); 3043 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3044 3045 lsr(obj, obj, CardTableModRefBS::card_shift); 3046 3047 assert(CardTableModRefBS::dirty_card_val() == 0, "must be"); 3048 3049 { 3050 ExternalAddress cardtable((address) ct->byte_map_base); 3051 unsigned long offset; 3052 adrp(rscratch1, cardtable, offset); 3053 assert(offset == 0, "byte_map_base is misaligned"); 3054 } 3055 3056 if (UseCondCardMark) { 3057 Label L_already_dirty; 3058 ldrb(rscratch2, Address(obj, rscratch1)); 3059 cbz(rscratch2, L_already_dirty); 3060 strb(zr, Address(obj, rscratch1)); 3061 bind(L_already_dirty); 3062 } else { 3063 strb(zr, Address(obj, rscratch1)); 3064 } 3065 } 3066 3067 void MacroAssembler::load_klass(Register dst, Register src) { 3068 if (UseCompressedClassPointers) { 3069 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3070 decode_klass_not_null(dst); 3071 } else { 3072 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3073 } 3074 } 3075 3076 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 3077 if (UseCompressedClassPointers) { 3078 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3079 if (Universe::narrow_klass_base() == NULL) { 3080 cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift()); 3081 return; 3082 } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3083 && Universe::narrow_klass_shift() == 0) { 3084 // Only the bottom 32 bits matter 3085 cmpw(trial_klass, tmp); 3086 return; 3087 } 3088 decode_klass_not_null(tmp); 3089 } else { 3090 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3091 } 3092 cmp(trial_klass, tmp); 3093 } 3094 3095 void MacroAssembler::load_prototype_header(Register dst, Register src) { 3096 load_klass(dst, src); 3097 ldr(dst, Address(dst, Klass::prototype_header_offset())); 3098 } 3099 3100 void MacroAssembler::store_klass(Register dst, Register src) { 3101 // FIXME: Should this be a store release? concurrent gcs assumes 3102 // klass length is valid if klass field is not null. 3103 if (UseCompressedClassPointers) { 3104 encode_klass_not_null(src); 3105 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3106 } else { 3107 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3108 } 3109 } 3110 3111 void MacroAssembler::store_klass_gap(Register dst, Register src) { 3112 if (UseCompressedClassPointers) { 3113 // Store to klass gap in destination 3114 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 3115 } 3116 } 3117 3118 // Algorithm must match oop.inline.hpp encode_heap_oop. 3119 void MacroAssembler::encode_heap_oop(Register d, Register s) { 3120 #ifdef ASSERT 3121 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 3122 #endif 3123 verify_oop(s, "broken oop in encode_heap_oop"); 3124 if (Universe::narrow_oop_base() == NULL) { 3125 if (Universe::narrow_oop_shift() != 0) { 3126 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3127 lsr(d, s, LogMinObjAlignmentInBytes); 3128 } else { 3129 mov(d, s); 3130 } 3131 } else { 3132 subs(d, s, rheapbase); 3133 csel(d, d, zr, Assembler::HS); 3134 lsr(d, d, LogMinObjAlignmentInBytes); 3135 3136 /* Old algorithm: is this any worse? 3137 Label nonnull; 3138 cbnz(r, nonnull); 3139 sub(r, r, rheapbase); 3140 bind(nonnull); 3141 lsr(r, r, LogMinObjAlignmentInBytes); 3142 */ 3143 } 3144 } 3145 3146 void MacroAssembler::encode_heap_oop_not_null(Register r) { 3147 #ifdef ASSERT 3148 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 3149 if (CheckCompressedOops) { 3150 Label ok; 3151 cbnz(r, ok); 3152 stop("null oop passed to encode_heap_oop_not_null"); 3153 bind(ok); 3154 } 3155 #endif 3156 verify_oop(r, "broken oop in encode_heap_oop_not_null"); 3157 if (Universe::narrow_oop_base() != NULL) { 3158 sub(r, r, rheapbase); 3159 } 3160 if (Universe::narrow_oop_shift() != 0) { 3161 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3162 lsr(r, r, LogMinObjAlignmentInBytes); 3163 } 3164 } 3165 3166 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 3167 #ifdef ASSERT 3168 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 3169 if (CheckCompressedOops) { 3170 Label ok; 3171 cbnz(src, ok); 3172 stop("null oop passed to encode_heap_oop_not_null2"); 3173 bind(ok); 3174 } 3175 #endif 3176 verify_oop(src, "broken oop in encode_heap_oop_not_null2"); 3177 3178 Register data = src; 3179 if (Universe::narrow_oop_base() != NULL) { 3180 sub(dst, src, rheapbase); 3181 data = dst; 3182 } 3183 if (Universe::narrow_oop_shift() != 0) { 3184 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3185 lsr(dst, data, LogMinObjAlignmentInBytes); 3186 data = dst; 3187 } 3188 if (data == src) 3189 mov(dst, src); 3190 } 3191 3192 void MacroAssembler::decode_heap_oop(Register d, Register s) { 3193 #ifdef ASSERT 3194 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 3195 #endif 3196 if (Universe::narrow_oop_base() == NULL) { 3197 if (Universe::narrow_oop_shift() != 0 || d != s) { 3198 lsl(d, s, Universe::narrow_oop_shift()); 3199 } 3200 } else { 3201 Label done; 3202 if (d != s) 3203 mov(d, s); 3204 cbz(s, done); 3205 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 3206 bind(done); 3207 } 3208 verify_oop(d, "broken oop in decode_heap_oop"); 3209 } 3210 3211 void MacroAssembler::decode_heap_oop_not_null(Register r) { 3212 assert (UseCompressedOops, "should only be used for compressed headers"); 3213 assert (Universe::heap() != NULL, "java heap should be initialized"); 3214 // Cannot assert, unverified entry point counts instructions (see .ad file) 3215 // vtableStubs also counts instructions in pd_code_size_limit. 3216 // Also do not verify_oop as this is called by verify_oop. 3217 if (Universe::narrow_oop_shift() != 0) { 3218 assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3219 if (Universe::narrow_oop_base() != NULL) { 3220 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3221 } else { 3222 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3223 } 3224 } else { 3225 assert (Universe::narrow_oop_base() == NULL, "sanity"); 3226 } 3227 } 3228 3229 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 3230 assert (UseCompressedOops, "should only be used for compressed headers"); 3231 assert (Universe::heap() != NULL, "java heap should be initialized"); 3232 // Cannot assert, unverified entry point counts instructions (see .ad file) 3233 // vtableStubs also counts instructions in pd_code_size_limit. 3234 // Also do not verify_oop as this is called by verify_oop. 3235 if (Universe::narrow_oop_shift() != 0) { 3236 assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3237 if (Universe::narrow_oop_base() != NULL) { 3238 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3239 } else { 3240 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3241 } 3242 } else { 3243 assert (Universe::narrow_oop_base() == NULL, "sanity"); 3244 if (dst != src) { 3245 mov(dst, src); 3246 } 3247 } 3248 } 3249 3250 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 3251 if (Universe::narrow_klass_base() == NULL) { 3252 if (Universe::narrow_klass_shift() != 0) { 3253 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3254 lsr(dst, src, LogKlassAlignmentInBytes); 3255 } else { 3256 if (dst != src) mov(dst, src); 3257 } 3258 return; 3259 } 3260 3261 if (use_XOR_for_compressed_class_base) { 3262 if (Universe::narrow_klass_shift() != 0) { 3263 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3264 lsr(dst, dst, LogKlassAlignmentInBytes); 3265 } else { 3266 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3267 } 3268 return; 3269 } 3270 3271 if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3272 && Universe::narrow_klass_shift() == 0) { 3273 movw(dst, src); 3274 return; 3275 } 3276 3277 #ifdef ASSERT 3278 verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?"); 3279 #endif 3280 3281 Register rbase = dst; 3282 if (dst == src) rbase = rheapbase; 3283 mov(rbase, (uint64_t)Universe::narrow_klass_base()); 3284 sub(dst, src, rbase); 3285 if (Universe::narrow_klass_shift() != 0) { 3286 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3287 lsr(dst, dst, LogKlassAlignmentInBytes); 3288 } 3289 if (dst == src) reinit_heapbase(); 3290 } 3291 3292 void MacroAssembler::encode_klass_not_null(Register r) { 3293 encode_klass_not_null(r, r); 3294 } 3295 3296 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 3297 Register rbase = dst; 3298 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 3299 3300 if (Universe::narrow_klass_base() == NULL) { 3301 if (Universe::narrow_klass_shift() != 0) { 3302 assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3303 lsl(dst, src, LogKlassAlignmentInBytes); 3304 } else { 3305 if (dst != src) mov(dst, src); 3306 } 3307 return; 3308 } 3309 3310 if (use_XOR_for_compressed_class_base) { 3311 if (Universe::narrow_klass_shift() != 0) { 3312 lsl(dst, src, LogKlassAlignmentInBytes); 3313 eor(dst, dst, (uint64_t)Universe::narrow_klass_base()); 3314 } else { 3315 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3316 } 3317 return; 3318 } 3319 3320 if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3321 && Universe::narrow_klass_shift() == 0) { 3322 if (dst != src) 3323 movw(dst, src); 3324 movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32); 3325 return; 3326 } 3327 3328 // Cannot assert, unverified entry point counts instructions (see .ad file) 3329 // vtableStubs also counts instructions in pd_code_size_limit. 3330 // Also do not verify_oop as this is called by verify_oop. 3331 if (dst == src) rbase = rheapbase; 3332 mov(rbase, (uint64_t)Universe::narrow_klass_base()); 3333 if (Universe::narrow_klass_shift() != 0) { 3334 assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3335 add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes); 3336 } else { 3337 add(dst, rbase, src); 3338 } 3339 if (dst == src) reinit_heapbase(); 3340 } 3341 3342 void MacroAssembler::decode_klass_not_null(Register r) { 3343 decode_klass_not_null(r, r); 3344 } 3345 3346 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 3347 assert (UseCompressedOops, "should only be used for compressed oops"); 3348 assert (Universe::heap() != NULL, "java heap should be initialized"); 3349 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3350 3351 int oop_index = oop_recorder()->find_index(obj); 3352 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop"); 3353 3354 InstructionMark im(this); 3355 RelocationHolder rspec = oop_Relocation::spec(oop_index); 3356 code_section()->relocate(inst_mark(), rspec); 3357 movz(dst, 0xDEAD, 16); 3358 movk(dst, 0xBEEF); 3359 } 3360 3361 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 3362 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 3363 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3364 int index = oop_recorder()->find_index(k); 3365 assert(! Universe::heap()->is_in_reserved(k), "should not be an oop"); 3366 3367 InstructionMark im(this); 3368 RelocationHolder rspec = metadata_Relocation::spec(index); 3369 code_section()->relocate(inst_mark(), rspec); 3370 narrowKlass nk = Klass::encode_klass(k); 3371 movz(dst, (nk >> 16), 16); 3372 movk(dst, nk & 0xffff); 3373 } 3374 3375 void MacroAssembler::load_heap_oop(Register dst, Address src) 3376 { 3377 if (UseCompressedOops) { 3378 ldrw(dst, src); 3379 decode_heap_oop(dst); 3380 } else { 3381 ldr(dst, src); 3382 } 3383 } 3384 3385 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) 3386 { 3387 if (UseCompressedOops) { 3388 ldrw(dst, src); 3389 decode_heap_oop_not_null(dst); 3390 } else { 3391 ldr(dst, src); 3392 } 3393 } 3394 3395 void MacroAssembler::store_heap_oop(Address dst, Register src) { 3396 if (UseCompressedOops) { 3397 assert(!dst.uses(src), "not enough registers"); 3398 encode_heap_oop(src); 3399 strw(src, dst); 3400 } else 3401 str(src, dst); 3402 } 3403 3404 // Used for storing NULLs. 3405 void MacroAssembler::store_heap_oop_null(Address dst) { 3406 if (UseCompressedOops) { 3407 strw(zr, dst); 3408 } else 3409 str(zr, dst); 3410 } 3411 3412 #if INCLUDE_ALL_GCS 3413 void MacroAssembler::g1_write_barrier_pre(Register obj, 3414 Register pre_val, 3415 Register thread, 3416 Register tmp, 3417 bool tosca_live, 3418 bool expand_call) { 3419 // If expand_call is true then we expand the call_VM_leaf macro 3420 // directly to skip generating the check by 3421 // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp. 3422 3423 assert(thread == rthread, "must be"); 3424 3425 Label done; 3426 Label runtime; 3427 3428 assert(pre_val != noreg, "check this code"); 3429 3430 if (obj != noreg) 3431 assert_different_registers(obj, pre_val, tmp); 3432 3433 Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3434 PtrQueue::byte_offset_of_active())); 3435 Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3436 PtrQueue::byte_offset_of_index())); 3437 Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3438 PtrQueue::byte_offset_of_buf())); 3439 3440 3441 // Is marking active? 3442 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { 3443 ldrw(tmp, in_progress); 3444 } else { 3445 assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption"); 3446 ldrb(tmp, in_progress); 3447 } 3448 cbzw(tmp, done); 3449 3450 // Do we need to load the previous value? 3451 if (obj != noreg) { 3452 load_heap_oop(pre_val, Address(obj, 0)); 3453 } 3454 3455 // Is the previous value null? 3456 cbz(pre_val, done); 3457 3458 // Can we store original value in the thread's buffer? 3459 // Is index == 0? 3460 // (The index field is typed as size_t.) 3461 3462 ldr(tmp, index); // tmp := *index_adr 3463 cbz(tmp, runtime); // tmp == 0? 3464 // If yes, goto runtime 3465 3466 sub(tmp, tmp, wordSize); // tmp := tmp - wordSize 3467 str(tmp, index); // *index_adr := tmp 3468 ldr(rscratch1, buffer); 3469 add(tmp, tmp, rscratch1); // tmp := tmp + *buffer_adr 3470 3471 // Record the previous value 3472 str(pre_val, Address(tmp, 0)); 3473 b(done); 3474 3475 bind(runtime); 3476 // save the live input values 3477 push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp); 3478 3479 // Calling the runtime using the regular call_VM_leaf mechanism generates 3480 // code (generated by InterpreterMacroAssember::call_VM_leaf_base) 3481 // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL. 3482 // 3483 // If we care generating the pre-barrier without a frame (e.g. in the 3484 // intrinsified Reference.get() routine) then ebp might be pointing to 3485 // the caller frame and so this check will most likely fail at runtime. 3486 // 3487 // Expanding the call directly bypasses the generation of the check. 3488 // So when we do not have have a full interpreter frame on the stack 3489 // expand_call should be passed true. 3490 3491 if (expand_call) { 3492 assert(pre_val != c_rarg1, "smashed arg"); 3493 pass_arg1(this, thread); 3494 pass_arg0(this, pre_val); 3495 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2); 3496 } else { 3497 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread); 3498 } 3499 3500 pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp); 3501 3502 bind(done); 3503 } 3504 3505 void MacroAssembler::g1_write_barrier_post(Register store_addr, 3506 Register new_val, 3507 Register thread, 3508 Register tmp, 3509 Register tmp2) { 3510 assert(thread == rthread, "must be"); 3511 3512 Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() + 3513 PtrQueue::byte_offset_of_index())); 3514 Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() + 3515 PtrQueue::byte_offset_of_buf())); 3516 3517 BarrierSet* bs = Universe::heap()->barrier_set(); 3518 CardTableModRefBS* ct = (CardTableModRefBS*)bs; 3519 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3520 3521 Label done; 3522 Label runtime; 3523 3524 // Does store cross heap regions? 3525 3526 eor(tmp, store_addr, new_val); 3527 lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes); 3528 cbz(tmp, done); 3529 3530 // crosses regions, storing NULL? 3531 3532 cbz(new_val, done); 3533 3534 // storing region crossing non-NULL, is card already dirty? 3535 3536 ExternalAddress cardtable((address) ct->byte_map_base); 3537 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3538 const Register card_addr = tmp; 3539 3540 lsr(card_addr, store_addr, CardTableModRefBS::card_shift); 3541 3542 unsigned long offset; 3543 adrp(tmp2, cardtable, offset); 3544 3545 // get the address of the card 3546 add(card_addr, card_addr, tmp2); 3547 ldrb(tmp2, Address(card_addr, offset)); 3548 cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val()); 3549 br(Assembler::EQ, done); 3550 3551 assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0"); 3552 3553 membar(Assembler::StoreLoad); 3554 3555 ldrb(tmp2, Address(card_addr, offset)); 3556 cbzw(tmp2, done); 3557 3558 // storing a region crossing, non-NULL oop, card is clean. 3559 // dirty card and log. 3560 3561 strb(zr, Address(card_addr, offset)); 3562 3563 ldr(rscratch1, queue_index); 3564 cbz(rscratch1, runtime); 3565 sub(rscratch1, rscratch1, wordSize); 3566 str(rscratch1, queue_index); 3567 3568 ldr(tmp2, buffer); 3569 str(card_addr, Address(tmp2, rscratch1)); 3570 b(done); 3571 3572 bind(runtime); 3573 // save the live input values 3574 push(store_addr->bit(true) | new_val->bit(true), sp); 3575 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread); 3576 pop(store_addr->bit(true) | new_val->bit(true), sp); 3577 3578 bind(done); 3579 } 3580 3581 #endif // INCLUDE_ALL_GCS 3582 3583 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 3584 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); 3585 int index = oop_recorder()->allocate_metadata_index(obj); 3586 RelocationHolder rspec = metadata_Relocation::spec(index); 3587 return Address((address)obj, rspec); 3588 } 3589 3590 // Move an oop into a register. immediate is true if we want 3591 // immediate instrcutions, i.e. we are not going to patch this 3592 // instruction while the code is being executed by another thread. In 3593 // that case we can use move immediates rather than the constant pool. 3594 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { 3595 int oop_index; 3596 if (obj == NULL) { 3597 oop_index = oop_recorder()->allocate_oop_index(obj); 3598 } else { 3599 oop_index = oop_recorder()->find_index(obj); 3600 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop"); 3601 } 3602 RelocationHolder rspec = oop_Relocation::spec(oop_index); 3603 if (! immediate) { 3604 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 3605 ldr_constant(dst, Address(dummy, rspec)); 3606 } else 3607 mov(dst, Address((address)obj, rspec)); 3608 } 3609 3610 // Move a metadata address into a register. 3611 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 3612 int oop_index; 3613 if (obj == NULL) { 3614 oop_index = oop_recorder()->allocate_metadata_index(obj); 3615 } else { 3616 oop_index = oop_recorder()->find_index(obj); 3617 } 3618 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 3619 mov(dst, Address((address)obj, rspec)); 3620 } 3621 3622 Address MacroAssembler::constant_oop_address(jobject obj) { 3623 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3624 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop"); 3625 int oop_index = oop_recorder()->find_index(obj); 3626 return Address((address)obj, oop_Relocation::spec(oop_index)); 3627 } 3628 3629 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 3630 void MacroAssembler::tlab_allocate(Register obj, 3631 Register var_size_in_bytes, 3632 int con_size_in_bytes, 3633 Register t1, 3634 Register t2, 3635 Label& slow_case) { 3636 assert_different_registers(obj, t2); 3637 assert_different_registers(obj, var_size_in_bytes); 3638 Register end = t2; 3639 3640 // verify_tlab(); 3641 3642 ldr(obj, Address(rthread, JavaThread::tlab_top_offset())); 3643 if (var_size_in_bytes == noreg) { 3644 lea(end, Address(obj, con_size_in_bytes)); 3645 } else { 3646 lea(end, Address(obj, var_size_in_bytes)); 3647 } 3648 ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset())); 3649 cmp(end, rscratch1); 3650 br(Assembler::HI, slow_case); 3651 3652 // update the tlab top pointer 3653 str(end, Address(rthread, JavaThread::tlab_top_offset())); 3654 3655 // recover var_size_in_bytes if necessary 3656 if (var_size_in_bytes == end) { 3657 sub(var_size_in_bytes, var_size_in_bytes, obj); 3658 } 3659 // verify_tlab(); 3660 } 3661 3662 // Preserves r19, and r3. 3663 Register MacroAssembler::tlab_refill(Label& retry, 3664 Label& try_eden, 3665 Label& slow_case) { 3666 Register top = r0; 3667 Register t1 = r2; 3668 Register t2 = r4; 3669 assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3); 3670 Label do_refill, discard_tlab; 3671 3672 if (!Universe::heap()->supports_inline_contig_alloc()) { 3673 // No allocation in the shared eden. 3674 b(slow_case); 3675 } 3676 3677 ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3678 ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3679 3680 // calculate amount of free space 3681 sub(t1, t1, top); 3682 lsr(t1, t1, LogHeapWordSize); 3683 3684 // Retain tlab and allocate object in shared space if 3685 // the amount free in the tlab is too large to discard. 3686 3687 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3688 cmp(t1, rscratch1); 3689 br(Assembler::LE, discard_tlab); 3690 3691 // Retain 3692 // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3693 mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment()); 3694 add(rscratch1, rscratch1, t2); 3695 str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3696 3697 if (TLABStats) { 3698 // increment number of slow_allocations 3699 addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())), 3700 1, rscratch1); 3701 } 3702 b(try_eden); 3703 3704 bind(discard_tlab); 3705 if (TLABStats) { 3706 // increment number of refills 3707 addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1, 3708 rscratch1); 3709 // accumulate wastage -- t1 is amount free in tlab 3710 addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1, 3711 rscratch1); 3712 } 3713 3714 // if tlab is currently allocated (top or end != null) then 3715 // fill [top, end + alignment_reserve) with array object 3716 cbz(top, do_refill); 3717 3718 // set up the mark word 3719 mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2)); 3720 str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes())); 3721 // set the length to the remaining space 3722 sub(t1, t1, typeArrayOopDesc::header_size(T_INT)); 3723 add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve()); 3724 lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint))); 3725 strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes())); 3726 // set klass to intArrayKlass 3727 { 3728 unsigned long offset; 3729 // dubious reloc why not an oop reloc? 3730 adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()), 3731 offset); 3732 ldr(t1, Address(rscratch1, offset)); 3733 } 3734 // store klass last. concurrent gcs assumes klass length is valid if 3735 // klass field is not null. 3736 store_klass(top, t1); 3737 3738 mov(t1, top); 3739 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3740 sub(t1, t1, rscratch1); 3741 incr_allocated_bytes(rthread, t1, 0, rscratch1); 3742 3743 // refill the tlab with an eden allocation 3744 bind(do_refill); 3745 ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset()))); 3746 lsl(t1, t1, LogHeapWordSize); 3747 // allocate new tlab, address returned in top 3748 eden_allocate(top, t1, 0, t2, slow_case); 3749 3750 // Check that t1 was preserved in eden_allocate. 3751 #ifdef ASSERT 3752 if (UseTLAB) { 3753 Label ok; 3754 Register tsize = r4; 3755 assert_different_registers(tsize, rthread, t1); 3756 str(tsize, Address(pre(sp, -16))); 3757 ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset()))); 3758 lsl(tsize, tsize, LogHeapWordSize); 3759 cmp(t1, tsize); 3760 br(Assembler::EQ, ok); 3761 STOP("assert(t1 != tlab size)"); 3762 should_not_reach_here(); 3763 3764 bind(ok); 3765 ldr(tsize, Address(post(sp, 16))); 3766 } 3767 #endif 3768 str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3769 str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3770 add(top, top, t1); 3771 sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes()); 3772 str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3773 verify_tlab(); 3774 b(retry); 3775 3776 return rthread; // for use by caller 3777 } 3778 3779 // Defines obj, preserves var_size_in_bytes 3780 void MacroAssembler::eden_allocate(Register obj, 3781 Register var_size_in_bytes, 3782 int con_size_in_bytes, 3783 Register t1, 3784 Label& slow_case) { 3785 assert_different_registers(obj, var_size_in_bytes, t1); 3786 if (!Universe::heap()->supports_inline_contig_alloc()) { 3787 b(slow_case); 3788 } else { 3789 Register end = t1; 3790 Register heap_end = rscratch2; 3791 Label retry; 3792 bind(retry); 3793 { 3794 unsigned long offset; 3795 adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset); 3796 ldr(heap_end, Address(rscratch1, offset)); 3797 } 3798 3799 ExternalAddress heap_top((address) Universe::heap()->top_addr()); 3800 3801 // Get the current top of the heap 3802 { 3803 unsigned long offset; 3804 adrp(rscratch1, heap_top, offset); 3805 // Use add() here after ARDP, rather than lea(). 3806 // lea() does not generate anything if its offset is zero. 3807 // However, relocs expect to find either an ADD or a load/store 3808 // insn after an ADRP. add() always generates an ADD insn, even 3809 // for add(Rn, Rn, 0). 3810 add(rscratch1, rscratch1, offset); 3811 ldaxr(obj, rscratch1); 3812 } 3813 3814 // Adjust it my the size of our new object 3815 if (var_size_in_bytes == noreg) { 3816 lea(end, Address(obj, con_size_in_bytes)); 3817 } else { 3818 lea(end, Address(obj, var_size_in_bytes)); 3819 } 3820 3821 // if end < obj then we wrapped around high memory 3822 cmp(end, obj); 3823 br(Assembler::LO, slow_case); 3824 3825 cmp(end, heap_end); 3826 br(Assembler::HI, slow_case); 3827 3828 // If heap_top hasn't been changed by some other thread, update it. 3829 stlxr(rscratch2, end, rscratch1); 3830 cbnzw(rscratch2, retry); 3831 } 3832 } 3833 3834 void MacroAssembler::verify_tlab() { 3835 #ifdef ASSERT 3836 if (UseTLAB && VerifyOops) { 3837 Label next, ok; 3838 3839 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 3840 3841 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3842 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3843 cmp(rscratch2, rscratch1); 3844 br(Assembler::HS, next); 3845 STOP("assert(top >= start)"); 3846 should_not_reach_here(); 3847 3848 bind(next); 3849 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3850 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3851 cmp(rscratch2, rscratch1); 3852 br(Assembler::HS, ok); 3853 STOP("assert(top <= end)"); 3854 should_not_reach_here(); 3855 3856 bind(ok); 3857 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 3858 } 3859 #endif 3860 } 3861 3862 // Writes to stack successive pages until offset reached to check for 3863 // stack overflow + shadow pages. This clobbers tmp. 3864 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 3865 assert_different_registers(tmp, size, rscratch1); 3866 mov(tmp, sp); 3867 // Bang stack for total size given plus shadow page size. 3868 // Bang one page at a time because large size can bang beyond yellow and 3869 // red zones. 3870 Label loop; 3871 mov(rscratch1, os::vm_page_size()); 3872 bind(loop); 3873 lea(tmp, Address(tmp, -os::vm_page_size())); 3874 subsw(size, size, rscratch1); 3875 str(size, Address(tmp)); 3876 br(Assembler::GT, loop); 3877 3878 // Bang down shadow pages too. 3879 // At this point, (tmp-0) is the last address touched, so don't 3880 // touch it again. (It was touched as (tmp-pagesize) but then tmp 3881 // was post-decremented.) Skip this address by starting at i=1, and 3882 // touch a few more pages below. N.B. It is important to touch all 3883 // the way down to and including i=StackShadowPages. 3884 for (int i = 0; i< StackShadowPages-1; i++) { 3885 // this could be any sized move but this is can be a debugging crumb 3886 // so the bigger the better. 3887 lea(tmp, Address(tmp, -os::vm_page_size())); 3888 str(size, Address(tmp)); 3889 } 3890 } 3891 3892 3893 address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) { 3894 unsigned long off; 3895 adrp(r, Address(page, rtype), off); 3896 InstructionMark im(this); 3897 code_section()->relocate(inst_mark(), rtype); 3898 ldrw(zr, Address(r, off)); 3899 return inst_mark(); 3900 } 3901 3902 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 3903 InstructionMark im(this); 3904 code_section()->relocate(inst_mark(), rtype); 3905 ldrw(zr, Address(r, 0)); 3906 return inst_mark(); 3907 } 3908 3909 void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) { 3910 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 3911 if (uabs(pc() - dest.target()) >= (1LL << 32)) { 3912 guarantee(rtype == relocInfo::none 3913 || rtype == relocInfo::external_word_type 3914 || rtype == relocInfo::poll_type 3915 || rtype == relocInfo::poll_return_type, 3916 "can only use a fixed address with an ADRP"); 3917 // Out of range. This doesn't happen very often, but we have to 3918 // handle it 3919 mov(reg1, dest); 3920 byte_offset = 0; 3921 } else { 3922 InstructionMark im(this); 3923 code_section()->relocate(inst_mark(), dest.rspec()); 3924 byte_offset = (uint64_t)dest.target() & 0xfff; 3925 _adrp(reg1, dest.target()); 3926 } 3927 } 3928 3929 void MacroAssembler::build_frame(int framesize) { 3930 assert(framesize > 0, "framesize must be > 0"); 3931 if (framesize < ((1 << 9) + 2 * wordSize)) { 3932 sub(sp, sp, framesize); 3933 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 3934 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 3935 } else { 3936 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 3937 if (PreserveFramePointer) mov(rfp, sp); 3938 if (framesize < ((1 << 12) + 2 * wordSize)) 3939 sub(sp, sp, framesize - 2 * wordSize); 3940 else { 3941 mov(rscratch1, framesize - 2 * wordSize); 3942 sub(sp, sp, rscratch1); 3943 } 3944 } 3945 } 3946 3947 void MacroAssembler::remove_frame(int framesize) { 3948 assert(framesize > 0, "framesize must be > 0"); 3949 if (framesize < ((1 << 9) + 2 * wordSize)) { 3950 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 3951 add(sp, sp, framesize); 3952 } else { 3953 if (framesize < ((1 << 12) + 2 * wordSize)) 3954 add(sp, sp, framesize - 2 * wordSize); 3955 else { 3956 mov(rscratch1, framesize - 2 * wordSize); 3957 add(sp, sp, rscratch1); 3958 } 3959 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 3960 } 3961 } 3962 3963 3964 // Search for str1 in str2 and return index or -1 3965 void MacroAssembler::string_indexof(Register str2, Register str1, 3966 Register cnt2, Register cnt1, 3967 Register tmp1, Register tmp2, 3968 Register tmp3, Register tmp4, 3969 int icnt1, Register result) { 3970 Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH; 3971 3972 Register ch1 = rscratch1; 3973 Register ch2 = rscratch2; 3974 Register cnt1tmp = tmp1; 3975 Register cnt2tmp = tmp2; 3976 Register cnt1_neg = cnt1; 3977 Register cnt2_neg = cnt2; 3978 Register result_tmp = tmp4; 3979 3980 // Note, inline_string_indexOf() generates checks: 3981 // if (substr.count > string.count) return -1; 3982 // if (substr.count == 0) return 0; 3983 3984 // We have two strings, a source string in str2, cnt2 and a pattern string 3985 // in str1, cnt1. Find the 1st occurence of pattern in source or return -1. 3986 3987 // For larger pattern and source we use a simplified Boyer Moore algorithm. 3988 // With a small pattern and source we use linear scan. 3989 3990 if (icnt1 == -1) { 3991 cmp(cnt1, 256); // Use Linear Scan if cnt1 < 8 || cnt1 >= 256 3992 ccmp(cnt1, 8, 0b0000, LO); // Can't handle skip >= 256 because we use 3993 br(LO, LINEARSEARCH); // a byte array. 3994 cmp(cnt1, cnt2, LSR, 2); // Source must be 4 * pattern for BM 3995 br(HS, LINEARSEARCH); 3996 } 3997 3998 // The Boyer Moore alogorithm is based on the description here:- 3999 // 4000 // http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm 4001 // 4002 // This describes and algorithm with 2 shift rules. The 'Bad Character' rule 4003 // and the 'Good Suffix' rule. 4004 // 4005 // These rules are essentially heuristics for how far we can shift the 4006 // pattern along the search string. 4007 // 4008 // The implementation here uses the 'Bad Character' rule only because of the 4009 // complexity of initialisation for the 'Good Suffix' rule. 4010 // 4011 // This is also known as the Boyer-Moore-Horspool algorithm:- 4012 // 4013 // http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm 4014 // 4015 // #define ASIZE 128 4016 // 4017 // int bm(unsigned char *x, int m, unsigned char *y, int n) { 4018 // int i, j; 4019 // unsigned c; 4020 // unsigned char bc[ASIZE]; 4021 // 4022 // /* Preprocessing */ 4023 // for (i = 0; i < ASIZE; ++i) 4024 // bc[i] = 0; 4025 // for (i = 0; i < m - 1; ) { 4026 // c = x[i]; 4027 // ++i; 4028 // if (c < ASIZE) bc[c] = i; 4029 // } 4030 // 4031 // /* Searching */ 4032 // j = 0; 4033 // while (j <= n - m) { 4034 // c = y[i+j]; 4035 // if (x[m-1] == c) 4036 // for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i); 4037 // if (i < 0) return j; 4038 // if (c < ASIZE) 4039 // j = j - bc[y[j+m-1]] + m; 4040 // else 4041 // j += 1; // Advance by 1 only if char >= ASIZE 4042 // } 4043 // } 4044 4045 if (icnt1 == -1) { 4046 BIND(BM); 4047 4048 Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP; 4049 Label BMADV, BMMATCH, BMCHECKEND; 4050 4051 Register cnt1end = tmp2; 4052 Register str2end = cnt2; 4053 Register skipch = tmp2; 4054 4055 // Restrict ASIZE to 128 to reduce stack space/initialisation. 4056 // The presence of chars >= ASIZE in the target string does not affect 4057 // performance, but we must be careful not to initialise them in the stack 4058 // array. 4059 // The presence of chars >= ASIZE in the source string may adversely affect 4060 // performance since we can only advance by one when we encounter one. 4061 4062 stp(zr, zr, pre(sp, -128)); 4063 for (int i = 1; i < 8; i++) 4064 stp(zr, zr, Address(sp, i*16)); 4065 4066 mov(cnt1tmp, 0); 4067 sub(cnt1end, cnt1, 1); 4068 BIND(BCLOOP); 4069 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 4070 cmp(ch1, 128); 4071 add(cnt1tmp, cnt1tmp, 1); 4072 br(HS, BCSKIP); 4073 strb(cnt1tmp, Address(sp, ch1)); 4074 BIND(BCSKIP); 4075 cmp(cnt1tmp, cnt1end); 4076 br(LT, BCLOOP); 4077 4078 mov(result_tmp, str2); 4079 4080 sub(cnt2, cnt2, cnt1); 4081 add(str2end, str2, cnt2, LSL, 1); 4082 BIND(BMLOOPSTR2); 4083 sub(cnt1tmp, cnt1, 1); 4084 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 4085 ldrh(skipch, Address(str2, cnt1tmp, Address::lsl(1))); 4086 cmp(ch1, skipch); 4087 br(NE, BMSKIP); 4088 subs(cnt1tmp, cnt1tmp, 1); 4089 br(LT, BMMATCH); 4090 BIND(BMLOOPSTR1); 4091 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 4092 ldrh(ch2, Address(str2, cnt1tmp, Address::lsl(1))); 4093 cmp(ch1, ch2); 4094 br(NE, BMSKIP); 4095 subs(cnt1tmp, cnt1tmp, 1); 4096 br(GE, BMLOOPSTR1); 4097 BIND(BMMATCH); 4098 sub(result_tmp, str2, result_tmp); 4099 lsr(result, result_tmp, 1); 4100 add(sp, sp, 128); 4101 b(DONE); 4102 BIND(BMADV); 4103 add(str2, str2, 2); 4104 b(BMCHECKEND); 4105 BIND(BMSKIP); 4106 cmp(skipch, 128); 4107 br(HS, BMADV); 4108 ldrb(ch2, Address(sp, skipch)); 4109 add(str2, str2, cnt1, LSL, 1); 4110 sub(str2, str2, ch2, LSL, 1); 4111 BIND(BMCHECKEND); 4112 cmp(str2, str2end); 4113 br(LE, BMLOOPSTR2); 4114 add(sp, sp, 128); 4115 b(NOMATCH); 4116 } 4117 4118 BIND(LINEARSEARCH); 4119 { 4120 Label DO1, DO2, DO3; 4121 4122 Register str2tmp = tmp2; 4123 Register first = tmp3; 4124 4125 if (icnt1 == -1) 4126 { 4127 Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT, LAST_WORD; 4128 4129 cmp(cnt1, 4); 4130 br(LT, DOSHORT); 4131 4132 sub(cnt2, cnt2, cnt1); 4133 sub(cnt1, cnt1, 4); 4134 mov(result_tmp, cnt2); 4135 4136 lea(str1, Address(str1, cnt1, Address::uxtw(1))); 4137 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4138 sub(cnt1_neg, zr, cnt1, LSL, 1); 4139 sub(cnt2_neg, zr, cnt2, LSL, 1); 4140 ldr(first, Address(str1, cnt1_neg)); 4141 4142 BIND(FIRST_LOOP); 4143 ldr(ch2, Address(str2, cnt2_neg)); 4144 cmp(first, ch2); 4145 br(EQ, STR1_LOOP); 4146 BIND(STR2_NEXT); 4147 adds(cnt2_neg, cnt2_neg, 2); 4148 br(LE, FIRST_LOOP); 4149 b(NOMATCH); 4150 4151 BIND(STR1_LOOP); 4152 adds(cnt1tmp, cnt1_neg, 8); 4153 add(cnt2tmp, cnt2_neg, 8); 4154 br(GE, LAST_WORD); 4155 4156 BIND(STR1_NEXT); 4157 ldr(ch1, Address(str1, cnt1tmp)); 4158 ldr(ch2, Address(str2, cnt2tmp)); 4159 cmp(ch1, ch2); 4160 br(NE, STR2_NEXT); 4161 adds(cnt1tmp, cnt1tmp, 8); 4162 add(cnt2tmp, cnt2tmp, 8); 4163 br(LT, STR1_NEXT); 4164 4165 BIND(LAST_WORD); 4166 ldr(ch1, Address(str1)); 4167 sub(str2tmp, str2, cnt1_neg); // adjust to corresponding 4168 ldr(ch2, Address(str2tmp, cnt2_neg)); // word in str2 4169 cmp(ch1, ch2); 4170 br(NE, STR2_NEXT); 4171 b(MATCH); 4172 4173 BIND(DOSHORT); 4174 cmp(cnt1, 2); 4175 br(LT, DO1); 4176 br(GT, DO3); 4177 } 4178 4179 if (icnt1 == 4) { 4180 Label CH1_LOOP; 4181 4182 ldr(ch1, str1); 4183 sub(cnt2, cnt2, 4); 4184 mov(result_tmp, cnt2); 4185 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4186 sub(cnt2_neg, zr, cnt2, LSL, 1); 4187 4188 BIND(CH1_LOOP); 4189 ldr(ch2, Address(str2, cnt2_neg)); 4190 cmp(ch1, ch2); 4191 br(EQ, MATCH); 4192 adds(cnt2_neg, cnt2_neg, 2); 4193 br(LE, CH1_LOOP); 4194 b(NOMATCH); 4195 } 4196 4197 if (icnt1 == -1 || icnt1 == 2) { 4198 Label CH1_LOOP; 4199 4200 BIND(DO2); 4201 ldrw(ch1, str1); 4202 sub(cnt2, cnt2, 2); 4203 mov(result_tmp, cnt2); 4204 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4205 sub(cnt2_neg, zr, cnt2, LSL, 1); 4206 4207 BIND(CH1_LOOP); 4208 ldrw(ch2, Address(str2, cnt2_neg)); 4209 cmp(ch1, ch2); 4210 br(EQ, MATCH); 4211 adds(cnt2_neg, cnt2_neg, 2); 4212 br(LE, CH1_LOOP); 4213 b(NOMATCH); 4214 } 4215 4216 if (icnt1 == -1 || icnt1 == 3) { 4217 Label FIRST_LOOP, STR2_NEXT, STR1_LOOP; 4218 4219 BIND(DO3); 4220 ldrw(first, str1); 4221 ldrh(ch1, Address(str1, 4)); 4222 4223 sub(cnt2, cnt2, 3); 4224 mov(result_tmp, cnt2); 4225 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4226 sub(cnt2_neg, zr, cnt2, LSL, 1); 4227 4228 BIND(FIRST_LOOP); 4229 ldrw(ch2, Address(str2, cnt2_neg)); 4230 cmpw(first, ch2); 4231 br(EQ, STR1_LOOP); 4232 BIND(STR2_NEXT); 4233 adds(cnt2_neg, cnt2_neg, 2); 4234 br(LE, FIRST_LOOP); 4235 b(NOMATCH); 4236 4237 BIND(STR1_LOOP); 4238 add(cnt2tmp, cnt2_neg, 4); 4239 ldrh(ch2, Address(str2, cnt2tmp)); 4240 cmp(ch1, ch2); 4241 br(NE, STR2_NEXT); 4242 b(MATCH); 4243 } 4244 4245 if (icnt1 == -1 || icnt1 == 1) { 4246 Label CH1_LOOP, HAS_ZERO; 4247 Label DO1_SHORT, DO1_LOOP; 4248 4249 BIND(DO1); 4250 ldrh(ch1, str1); 4251 cmp(cnt2, 4); 4252 br(LT, DO1_SHORT); 4253 4254 orr(ch1, ch1, ch1, LSL, 16); 4255 orr(ch1, ch1, ch1, LSL, 32); 4256 4257 sub(cnt2, cnt2, 4); 4258 mov(result_tmp, cnt2); 4259 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4260 sub(cnt2_neg, zr, cnt2, LSL, 1); 4261 4262 mov(tmp3, 0x0001000100010001); 4263 BIND(CH1_LOOP); 4264 ldr(ch2, Address(str2, cnt2_neg)); 4265 eor(ch2, ch1, ch2); 4266 sub(tmp1, ch2, tmp3); 4267 orr(tmp2, ch2, 0x7fff7fff7fff7fff); 4268 bics(tmp1, tmp1, tmp2); 4269 br(NE, HAS_ZERO); 4270 adds(cnt2_neg, cnt2_neg, 8); 4271 br(LT, CH1_LOOP); 4272 4273 cmp(cnt2_neg, 8); 4274 mov(cnt2_neg, 0); 4275 br(LT, CH1_LOOP); 4276 b(NOMATCH); 4277 4278 BIND(HAS_ZERO); 4279 rev(tmp1, tmp1); 4280 clz(tmp1, tmp1); 4281 add(cnt2_neg, cnt2_neg, tmp1, LSR, 3); 4282 b(MATCH); 4283 4284 BIND(DO1_SHORT); 4285 mov(result_tmp, cnt2); 4286 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4287 sub(cnt2_neg, zr, cnt2, LSL, 1); 4288 BIND(DO1_LOOP); 4289 ldrh(ch2, Address(str2, cnt2_neg)); 4290 cmpw(ch1, ch2); 4291 br(EQ, MATCH); 4292 adds(cnt2_neg, cnt2_neg, 2); 4293 br(LT, DO1_LOOP); 4294 } 4295 } 4296 BIND(NOMATCH); 4297 mov(result, -1); 4298 b(DONE); 4299 BIND(MATCH); 4300 add(result, result_tmp, cnt2_neg, ASR, 1); 4301 BIND(DONE); 4302 } 4303 4304 // Compare strings. 4305 void MacroAssembler::string_compare(Register str1, Register str2, 4306 Register cnt1, Register cnt2, Register result, 4307 Register tmp1) { 4308 Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING, 4309 NEXT_WORD, DIFFERENCE; 4310 4311 BLOCK_COMMENT("string_compare {"); 4312 4313 // Compute the minimum of the string lengths and save the difference. 4314 subsw(tmp1, cnt1, cnt2); 4315 cselw(cnt2, cnt1, cnt2, Assembler::LE); // min 4316 4317 // A very short string 4318 cmpw(cnt2, 4); 4319 br(Assembler::LT, SHORT_STRING); 4320 4321 // Check if the strings start at the same location. 4322 cmp(str1, str2); 4323 br(Assembler::EQ, LENGTH_DIFF); 4324 4325 // Compare longwords 4326 { 4327 subw(cnt2, cnt2, 4); // The last longword is a special case 4328 4329 // Move both string pointers to the last longword of their 4330 // strings, negate the remaining count, and convert it to bytes. 4331 lea(str1, Address(str1, cnt2, Address::uxtw(1))); 4332 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4333 sub(cnt2, zr, cnt2, LSL, 1); 4334 4335 // Loop, loading longwords and comparing them into rscratch2. 4336 bind(NEXT_WORD); 4337 ldr(result, Address(str1, cnt2)); 4338 ldr(cnt1, Address(str2, cnt2)); 4339 adds(cnt2, cnt2, wordSize); 4340 eor(rscratch2, result, cnt1); 4341 cbnz(rscratch2, DIFFERENCE); 4342 br(Assembler::LT, NEXT_WORD); 4343 4344 // Last longword. In the case where length == 4 we compare the 4345 // same longword twice, but that's still faster than another 4346 // conditional branch. 4347 4348 ldr(result, Address(str1)); 4349 ldr(cnt1, Address(str2)); 4350 eor(rscratch2, result, cnt1); 4351 cbz(rscratch2, LENGTH_DIFF); 4352 4353 // Find the first different characters in the longwords and 4354 // compute their difference. 4355 bind(DIFFERENCE); 4356 rev(rscratch2, rscratch2); 4357 clz(rscratch2, rscratch2); 4358 andr(rscratch2, rscratch2, -16); 4359 lsrv(result, result, rscratch2); 4360 uxthw(result, result); 4361 lsrv(cnt1, cnt1, rscratch2); 4362 uxthw(cnt1, cnt1); 4363 subw(result, result, cnt1); 4364 b(DONE); 4365 } 4366 4367 bind(SHORT_STRING); 4368 // Is the minimum length zero? 4369 cbz(cnt2, LENGTH_DIFF); 4370 4371 bind(SHORT_LOOP); 4372 load_unsigned_short(result, Address(post(str1, 2))); 4373 load_unsigned_short(cnt1, Address(post(str2, 2))); 4374 subw(result, result, cnt1); 4375 cbnz(result, DONE); 4376 sub(cnt2, cnt2, 1); 4377 cbnz(cnt2, SHORT_LOOP); 4378 4379 // Strings are equal up to min length. Return the length difference. 4380 bind(LENGTH_DIFF); 4381 mov(result, tmp1); 4382 4383 // That's it 4384 bind(DONE); 4385 4386 BLOCK_COMMENT("} string_compare"); 4387 } 4388 4389 4390 void MacroAssembler::string_equals(Register str1, Register str2, 4391 Register cnt, Register result, 4392 Register tmp1) { 4393 Label SAME_CHARS, DONE, SHORT_LOOP, SHORT_STRING, 4394 NEXT_WORD; 4395 4396 const Register tmp2 = rscratch1; 4397 assert_different_registers(str1, str2, cnt, result, tmp1, tmp2, rscratch2); 4398 4399 BLOCK_COMMENT("string_equals {"); 4400 4401 // Start by assuming that the strings are not equal. 4402 mov(result, zr); 4403 4404 // A very short string 4405 cmpw(cnt, 4); 4406 br(Assembler::LT, SHORT_STRING); 4407 4408 // Check if the strings start at the same location. 4409 cmp(str1, str2); 4410 br(Assembler::EQ, SAME_CHARS); 4411 4412 // Compare longwords 4413 { 4414 subw(cnt, cnt, 4); // The last longword is a special case 4415 4416 // Move both string pointers to the last longword of their 4417 // strings, negate the remaining count, and convert it to bytes. 4418 lea(str1, Address(str1, cnt, Address::uxtw(1))); 4419 lea(str2, Address(str2, cnt, Address::uxtw(1))); 4420 sub(cnt, zr, cnt, LSL, 1); 4421 4422 // Loop, loading longwords and comparing them into rscratch2. 4423 bind(NEXT_WORD); 4424 ldr(tmp1, Address(str1, cnt)); 4425 ldr(tmp2, Address(str2, cnt)); 4426 adds(cnt, cnt, wordSize); 4427 eor(rscratch2, tmp1, tmp2); 4428 cbnz(rscratch2, DONE); 4429 br(Assembler::LT, NEXT_WORD); 4430 4431 // Last longword. In the case where length == 4 we compare the 4432 // same longword twice, but that's still faster than another 4433 // conditional branch. 4434 4435 ldr(tmp1, Address(str1)); 4436 ldr(tmp2, Address(str2)); 4437 eor(rscratch2, tmp1, tmp2); 4438 cbz(rscratch2, SAME_CHARS); 4439 b(DONE); 4440 } 4441 4442 bind(SHORT_STRING); 4443 // Is the length zero? 4444 cbz(cnt, SAME_CHARS); 4445 4446 bind(SHORT_LOOP); 4447 load_unsigned_short(tmp1, Address(post(str1, 2))); 4448 load_unsigned_short(tmp2, Address(post(str2, 2))); 4449 subw(tmp1, tmp1, tmp2); 4450 cbnz(tmp1, DONE); 4451 sub(cnt, cnt, 1); 4452 cbnz(cnt, SHORT_LOOP); 4453 4454 // Strings are equal. 4455 bind(SAME_CHARS); 4456 mov(result, true); 4457 4458 // That's it 4459 bind(DONE); 4460 4461 BLOCK_COMMENT("} string_equals"); 4462 } 4463 4464 // Compare char[] arrays aligned to 4 bytes 4465 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2, 4466 Register result, Register tmp1) 4467 { 4468 Register cnt1 = rscratch1; 4469 Register cnt2 = rscratch2; 4470 Register tmp2 = rscratch2; 4471 4472 Label SAME, DIFFER, NEXT, TAIL03, TAIL01; 4473 4474 int length_offset = arrayOopDesc::length_offset_in_bytes(); 4475 int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR); 4476 4477 BLOCK_COMMENT("char_arrays_equals {"); 4478 4479 // different until proven equal 4480 mov(result, false); 4481 4482 // same array? 4483 cmp(ary1, ary2); 4484 br(Assembler::EQ, SAME); 4485 4486 // ne if either null 4487 cbz(ary1, DIFFER); 4488 cbz(ary2, DIFFER); 4489 4490 // lengths ne? 4491 ldrw(cnt1, Address(ary1, length_offset)); 4492 ldrw(cnt2, Address(ary2, length_offset)); 4493 cmp(cnt1, cnt2); 4494 br(Assembler::NE, DIFFER); 4495 4496 lea(ary1, Address(ary1, base_offset)); 4497 lea(ary2, Address(ary2, base_offset)); 4498 4499 subs(cnt1, cnt1, 4); 4500 br(LT, TAIL03); 4501 4502 BIND(NEXT); 4503 ldr(tmp1, Address(post(ary1, 8))); 4504 ldr(tmp2, Address(post(ary2, 8))); 4505 subs(cnt1, cnt1, 4); 4506 eor(tmp1, tmp1, tmp2); 4507 cbnz(tmp1, DIFFER); 4508 br(GE, NEXT); 4509 4510 BIND(TAIL03); // 0-3 chars left, cnt1 = #chars left - 4 4511 tst(cnt1, 0b10); 4512 br(EQ, TAIL01); 4513 ldrw(tmp1, Address(post(ary1, 4))); 4514 ldrw(tmp2, Address(post(ary2, 4))); 4515 cmp(tmp1, tmp2); 4516 br(NE, DIFFER); 4517 BIND(TAIL01); // 0-1 chars left 4518 tst(cnt1, 0b01); 4519 br(EQ, SAME); 4520 ldrh(tmp1, ary1); 4521 ldrh(tmp2, ary2); 4522 cmp(tmp1, tmp2); 4523 br(NE, DIFFER); 4524 4525 BIND(SAME); 4526 mov(result, true); 4527 BIND(DIFFER); // result already set 4528 4529 BLOCK_COMMENT("} char_arrays_equals"); 4530 } 4531 4532 // encode char[] to byte[] in ISO_8859_1 4533 void MacroAssembler::encode_iso_array(Register src, Register dst, 4534 Register len, Register result, 4535 FloatRegister Vtmp1, FloatRegister Vtmp2, 4536 FloatRegister Vtmp3, FloatRegister Vtmp4) 4537 { 4538 Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1; 4539 Register tmp1 = rscratch1; 4540 4541 mov(result, len); // Save initial len 4542 4543 #ifndef BUILTIN_SIM 4544 subs(len, len, 32); 4545 br(LT, LOOP_8); 4546 4547 // The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions 4548 // to convert chars to bytes. These set the 'QC' bit in the FPSR if 4549 // any char could not fit in a byte, so clear the FPSR so we can test it. 4550 clear_fpsr(); 4551 4552 BIND(NEXT_32); 4553 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 4554 uqxtn(Vtmp1, T8B, Vtmp1, T8H); // uqxtn - write bottom half 4555 uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half 4556 uqxtn(Vtmp2, T8B, Vtmp3, T8H); 4557 uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2 4558 get_fpsr(tmp1); 4559 cbnzw(tmp1, LOOP_8); 4560 st1(Vtmp1, Vtmp2, T16B, post(dst, 32)); 4561 subs(len, len, 32); 4562 add(src, src, 64); 4563 br(GE, NEXT_32); 4564 4565 BIND(LOOP_8); 4566 adds(len, len, 32-8); 4567 br(LT, LOOP_1); 4568 clear_fpsr(); // QC may be set from loop above, clear again 4569 BIND(NEXT_8); 4570 ld1(Vtmp1, T8H, src); 4571 uqxtn(Vtmp1, T8B, Vtmp1, T8H); 4572 get_fpsr(tmp1); 4573 cbnzw(tmp1, LOOP_1); 4574 st1(Vtmp1, T8B, post(dst, 8)); 4575 subs(len, len, 8); 4576 add(src, src, 16); 4577 br(GE, NEXT_8); 4578 4579 BIND(LOOP_1); 4580 adds(len, len, 8); 4581 br(LE, DONE); 4582 #else 4583 cbz(len, DONE); 4584 #endif 4585 BIND(NEXT_1); 4586 ldrh(tmp1, Address(post(src, 2))); 4587 tst(tmp1, 0xff00); 4588 br(NE, DONE); 4589 strb(tmp1, Address(post(dst, 1))); 4590 subs(len, len, 1); 4591 br(GT, NEXT_1); 4592 4593 BIND(DONE); 4594 sub(result, result, len); // Return index where we stopped 4595 }