1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 // MacroAssembler extends Assembler by frequently used macros.
  32 //
  33 // Instructions for which a 'better' code sequence exists depending
  34 // on arguments should also go in here.
  35 
  36 class MacroAssembler: public Assembler {
  37   friend class LIR_Assembler;
  38 
  39  public:
  40   using Assembler::mov;
  41   using Assembler::movi;
  42 
  43  protected:
  44 
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50 #ifdef CC_INTERP
  51   // c++ interpreter never wants to use interp_masm version of call_VM
  52   #define VIRTUAL
  53 #else
  54   #define VIRTUAL virtual
  55 #endif
  56 
  57   VIRTUAL void call_VM_leaf_base(
  58     address entry_point,               // the entry point
  59     int     number_of_arguments,        // the number of arguments to pop after the call
  60     Label *retaddr = NULL
  61   );
  62 
  63   VIRTUAL void call_VM_leaf_base(
  64     address entry_point,               // the entry point
  65     int     number_of_arguments,        // the number of arguments to pop after the call
  66     Label &retaddr) {
  67     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  68   }
  69 
  70   // This is the base routine called by the different versions of call_VM. The interpreter
  71   // may customize this version by overriding it for its purposes (e.g., to save/restore
  72   // additional registers when doing a VM call).
  73   //
  74   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  75   // returns the register which contains the thread upon return. If a thread register has been
  76   // specified, the return value will correspond to that register. If no last_java_sp is specified
  77   // (noreg) than rsp will be used instead.
  78   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  79     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  80     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  81     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  82     address  entry_point,              // the entry point
  83     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  84     bool     check_exceptions          // whether to check for pending exceptions after return
  85   );
  86 
  87   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  88   // The implementation is only non-empty for the InterpreterMacroAssembler,
  89   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  90   virtual void check_and_handle_popframe(Register java_thread);
  91   virtual void check_and_handle_earlyret(Register java_thread);
  92 
  93   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  94 
  95   // Maximum size of class area in Metaspace when compressed
  96   uint64_t use_XOR_for_compressed_class_base;
  97 
  98  public:
  99   MacroAssembler(CodeBuffer* code) : Assembler(code) {
 100     use_XOR_for_compressed_class_base
 101       = (operand_valid_for_logical_immediate(false /*is32*/,
 102                                              (uint64_t)Universe::narrow_klass_base())
 103          && ((uint64_t)Universe::narrow_klass_base()
 104              > (1u << log2_intptr(CompressedClassSpaceSize))));
 105   }
 106 
 107   // Biased locking support
 108   // lock_reg and obj_reg must be loaded up with the appropriate values.
 109   // swap_reg is killed.
 110   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 111   // Optional slow case is for implementations (interpreter and C1) which branch to
 112   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 113   // Returns offset of first potentially-faulting instruction for null
 114   // check info (currently consumed only by C1). If
 115   // swap_reg_contains_mark is true then returns -1 as it is assumed
 116   // the calling code has already passed any potential faults.
 117   int biased_locking_enter(Register lock_reg, Register obj_reg,
 118                            Register swap_reg, Register tmp_reg,
 119                            bool swap_reg_contains_mark,
 120                            Label& done, Label* slow_case = NULL,
 121                            BiasedLockingCounters* counters = NULL);
 122   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 123 
 124 
 125   // Helper functions for statistics gathering.
 126   // Unconditional atomic increment.
 127   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 128   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 129     lea(tmp1, counter_addr);
 130     atomic_incw(tmp1, tmp2, tmp3);
 131   }
 132   // Load Effective Address
 133   void lea(Register r, const Address &a) {
 134     InstructionMark im(this);
 135     code_section()->relocate(inst_mark(), a.rspec());
 136     a.lea(this, r);
 137   }
 138 
 139   void addmw(Address a, Register incr, Register scratch) {
 140     ldrw(scratch, a);
 141     addw(scratch, scratch, incr);
 142     strw(scratch, a);
 143   }
 144 
 145   // Add constant to memory word
 146   void addmw(Address a, int imm, Register scratch) {
 147     ldrw(scratch, a);
 148     if (imm > 0)
 149       addw(scratch, scratch, (unsigned)imm);
 150     else
 151       subw(scratch, scratch, (unsigned)-imm);
 152     strw(scratch, a);
 153   }
 154 
 155   // Frame creation and destruction shared between JITs.
 156   void build_frame(int framesize);
 157   void remove_frame(int framesize);
 158 
 159   virtual void _call_Unimplemented(address call_site) {
 160     mov(rscratch2, call_site);
 161     haltsim();
 162   }
 163 
 164 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 165 
 166   virtual void notify(int type);
 167 
 168   // aliases defined in AARCH64 spec
 169 
 170   template<class T>
 171   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 172   inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
 173 
 174   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 175   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 176 
 177   void cset(Register Rd, Assembler::Condition cond) {
 178     csinc(Rd, zr, zr, ~cond);
 179   }
 180   void csetw(Register Rd, Assembler::Condition cond) {
 181     csincw(Rd, zr, zr, ~cond);
 182   }
 183 
 184   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 185     csneg(Rd, Rn, Rn, ~cond);
 186   }
 187   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 188     csnegw(Rd, Rn, Rn, ~cond);
 189   }
 190 
 191   inline void movw(Register Rd, Register Rn) {
 192     if (Rd == sp || Rn == sp) {
 193       addw(Rd, Rn, 0U);
 194     } else {
 195       orrw(Rd, zr, Rn);
 196     }
 197   }
 198   inline void mov(Register Rd, Register Rn) {
 199     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 200     if (Rd == Rn) {
 201     } else if (Rd == sp || Rn == sp) {
 202       add(Rd, Rn, 0U);
 203     } else {
 204       orr(Rd, zr, Rn);
 205     }
 206   }
 207 
 208   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 209   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 210 
 211   inline void tstw(Register Rd, unsigned imm) { andsw(zr, Rd, imm); }
 212   inline void tst(Register Rd, unsigned imm) { ands(zr, Rd, imm); }
 213 
 214   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 215     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 216   }
 217   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 218     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 219   }
 220 
 221   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 222     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 223   }
 224   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 225     bfm(Rd, Rn, lsb , (lsb + width - 1));
 226   }
 227 
 228   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 229     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 230   }
 231   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 232     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 233   }
 234 
 235   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 236     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 237   }
 238   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 239     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 240   }
 241 
 242   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 243     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 244   }
 245   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 246     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 247   }
 248 
 249   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 250     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 251   }
 252   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 254   }
 255 
 256   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 257     sbfmw(Rd, Rn, imm, 31);
 258   }
 259 
 260   inline void asr(Register Rd, Register Rn, unsigned imm) {
 261     sbfm(Rd, Rn, imm, 63);
 262   }
 263 
 264   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 265     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 266   }
 267 
 268   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 269     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 270   }
 271 
 272   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 273     ubfmw(Rd, Rn, imm, 31);
 274   }
 275 
 276   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 277     ubfm(Rd, Rn, imm, 63);
 278   }
 279 
 280   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 281     extrw(Rd, Rn, Rn, imm);
 282   }
 283 
 284   inline void ror(Register Rd, Register Rn, unsigned imm) {
 285     extr(Rd, Rn, Rn, imm);
 286   }
 287 
 288   inline void sxtbw(Register Rd, Register Rn) {
 289     sbfmw(Rd, Rn, 0, 7);
 290   }
 291   inline void sxthw(Register Rd, Register Rn) {
 292     sbfmw(Rd, Rn, 0, 15);
 293   }
 294   inline void sxtb(Register Rd, Register Rn) {
 295     sbfm(Rd, Rn, 0, 7);
 296   }
 297   inline void sxth(Register Rd, Register Rn) {
 298     sbfm(Rd, Rn, 0, 15);
 299   }
 300   inline void sxtw(Register Rd, Register Rn) {
 301     sbfm(Rd, Rn, 0, 31);
 302   }
 303 
 304   inline void uxtbw(Register Rd, Register Rn) {
 305     ubfmw(Rd, Rn, 0, 7);
 306   }
 307   inline void uxthw(Register Rd, Register Rn) {
 308     ubfmw(Rd, Rn, 0, 15);
 309   }
 310   inline void uxtb(Register Rd, Register Rn) {
 311     ubfm(Rd, Rn, 0, 7);
 312   }
 313   inline void uxth(Register Rd, Register Rn) {
 314     ubfm(Rd, Rn, 0, 15);
 315   }
 316   inline void uxtw(Register Rd, Register Rn) {
 317     ubfm(Rd, Rn, 0, 31);
 318   }
 319 
 320   inline void cmnw(Register Rn, Register Rm) {
 321     addsw(zr, Rn, Rm);
 322   }
 323   inline void cmn(Register Rn, Register Rm) {
 324     adds(zr, Rn, Rm);
 325   }
 326 
 327   inline void cmpw(Register Rn, Register Rm) {
 328     subsw(zr, Rn, Rm);
 329   }
 330   inline void cmp(Register Rn, Register Rm) {
 331     subs(zr, Rn, Rm);
 332   }
 333 
 334   inline void negw(Register Rd, Register Rn) {
 335     subw(Rd, zr, Rn);
 336   }
 337 
 338   inline void neg(Register Rd, Register Rn) {
 339     sub(Rd, zr, Rn);
 340   }
 341 
 342   inline void negsw(Register Rd, Register Rn) {
 343     subsw(Rd, zr, Rn);
 344   }
 345 
 346   inline void negs(Register Rd, Register Rn) {
 347     subs(Rd, zr, Rn);
 348   }
 349 
 350   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 351     addsw(zr, Rn, Rm, kind, shift);
 352   }
 353   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 354     adds(zr, Rn, Rm, kind, shift);
 355   }
 356 
 357   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 358     subsw(zr, Rn, Rm, kind, shift);
 359   }
 360   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 361     subs(zr, Rn, Rm, kind, shift);
 362   }
 363 
 364   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 365     subw(Rd, zr, Rn, kind, shift);
 366   }
 367 
 368   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 369     sub(Rd, zr, Rn, kind, shift);
 370   }
 371 
 372   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 373     subsw(Rd, zr, Rn, kind, shift);
 374   }
 375 
 376   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 377     subs(Rd, zr, Rn, kind, shift);
 378   }
 379 
 380   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 381     msubw(Rd, Rn, Rm, zr);
 382   }
 383   inline void mneg(Register Rd, Register Rn, Register Rm) {
 384     msub(Rd, Rn, Rm, zr);
 385   }
 386 
 387   inline void mulw(Register Rd, Register Rn, Register Rm) {
 388     maddw(Rd, Rn, Rm, zr);
 389   }
 390   inline void mul(Register Rd, Register Rn, Register Rm) {
 391     madd(Rd, Rn, Rm, zr);
 392   }
 393 
 394   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 395     smsubl(Rd, Rn, Rm, zr);
 396   }
 397   inline void smull(Register Rd, Register Rn, Register Rm) {
 398     smaddl(Rd, Rn, Rm, zr);
 399   }
 400 
 401   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 402     umsubl(Rd, Rn, Rm, zr);
 403   }
 404   inline void umull(Register Rd, Register Rn, Register Rm) {
 405     umaddl(Rd, Rn, Rm, zr);
 406   }
 407 
 408 #define WRAP(INSN)                                                            \
 409   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 410     if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_A53MAC) && Ra != zr) \
 411       nop();                                                                  \
 412     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 413   }
 414 
 415   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 416   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 417 #undef WRAP
 418 
 419 
 420   // macro assembly operations needed for aarch64
 421 
 422   // first two private routines for loading 32 bit or 64 bit constants
 423 private:
 424 
 425   void mov_immediate64(Register dst, u_int64_t imm64);
 426   void mov_immediate32(Register dst, u_int32_t imm32);
 427 
 428   int push(unsigned int bitset, Register stack);
 429   int pop(unsigned int bitset, Register stack);
 430 
 431   void mov(Register dst, Address a);
 432 
 433 public:
 434   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 435   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 436 
 437   // now mov instructions for loading absolute addresses and 32 or
 438   // 64 bit integers
 439 
 440   inline void mov(Register dst, address addr)
 441   {
 442     mov_immediate64(dst, (u_int64_t)addr);
 443   }
 444 
 445   inline void mov(Register dst, u_int64_t imm64)
 446   {
 447     mov_immediate64(dst, imm64);
 448   }
 449 
 450   inline void movw(Register dst, u_int32_t imm32)
 451   {
 452     mov_immediate32(dst, imm32);
 453   }
 454 
 455   inline void mov(Register dst, long l)
 456   {
 457     mov(dst, (u_int64_t)l);
 458   }
 459 
 460   inline void mov(Register dst, int i)
 461   {
 462     mov(dst, (long)i);
 463   }
 464 
 465   void mov(Register dst, RegisterOrConstant src) {
 466     if (src.is_register())
 467       mov(dst, src.as_register());
 468     else
 469       mov(dst, src.as_constant());
 470   }
 471 
 472   void movptr(Register r, uintptr_t imm64);
 473 
 474   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 475 
 476   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 477     orr(Vd, T, Vn, Vn);
 478   }
 479 
 480   // macro instructions for accessing and updating floating point
 481   // status register
 482   //
 483   // FPSR : op1 == 011
 484   //        CRn == 0100
 485   //        CRm == 0100
 486   //        op2 == 001
 487 
 488   inline void get_fpsr(Register reg)
 489   {
 490     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 491   }
 492 
 493   inline void set_fpsr(Register reg)
 494   {
 495     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 496   }
 497 
 498   inline void clear_fpsr()
 499   {
 500     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 501   }
 502 
 503   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 504   int corrected_idivl(Register result, Register ra, Register rb,
 505                       bool want_remainder, Register tmp = rscratch1);
 506   int corrected_idivq(Register result, Register ra, Register rb,
 507                       bool want_remainder, Register tmp = rscratch1);
 508 
 509   // Support for NULL-checks
 510   //
 511   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 512   // If the accessed location is M[reg + offset] and the offset is known, provide the
 513   // offset. No explicit code generation is needed if the offset is within a certain
 514   // range (0 <= offset <= page_size).
 515 
 516   virtual void null_check(Register reg, int offset = -1);
 517   static bool needs_explicit_null_check(intptr_t offset);
 518 
 519   static address target_addr_for_insn(address insn_addr, unsigned insn);
 520   static address target_addr_for_insn(address insn_addr) {
 521     unsigned insn = *(unsigned*)insn_addr;
 522     return target_addr_for_insn(insn_addr, insn);
 523   }
 524 
 525   // Required platform-specific helpers for Label::patch_instructions.
 526   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 527   static int pd_patch_instruction_size(address branch, address target);
 528   static void pd_patch_instruction(address branch, address target) {
 529     pd_patch_instruction_size(branch, target);
 530   }
 531   static address pd_call_destination(address branch) {
 532     return target_addr_for_insn(branch);
 533   }
 534 #ifndef PRODUCT
 535   static void pd_print_patched_instruction(address branch);
 536 #endif
 537 
 538   static int patch_oop(address insn_addr, address o);
 539 
 540   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 541 
 542   // The following 4 methods return the offset of the appropriate move instruction
 543 
 544   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 545   int load_unsigned_byte(Register dst, Address src);
 546   int load_unsigned_short(Register dst, Address src);
 547 
 548   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 549   int load_signed_byte(Register dst, Address src);
 550   int load_signed_short(Register dst, Address src);
 551 
 552   int load_signed_byte32(Register dst, Address src);
 553   int load_signed_short32(Register dst, Address src);
 554 
 555   // Support for sign-extension (hi:lo = extend_sign(lo))
 556   void extend_sign(Register hi, Register lo);
 557 
 558   // Load and store values by size and signed-ness
 559   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 560   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 561 
 562   // Support for inc/dec with optimal instruction selection depending on value
 563 
 564   // x86_64 aliases an unqualified register/address increment and
 565   // decrement to call incrementq and decrementq but also supports
 566   // explicitly sized calls to incrementq/decrementq or
 567   // incrementl/decrementl
 568 
 569   // for aarch64 the proper convention would be to use
 570   // increment/decrement for 64 bit operatons and
 571   // incrementw/decrementw for 32 bit operations. so when porting
 572   // x86_64 code we can leave calls to increment/decrement as is,
 573   // replace incrementq/decrementq with increment/decrement and
 574   // replace incrementl/decrementl with incrementw/decrementw.
 575 
 576   // n.b. increment/decrement calls with an Address destination will
 577   // need to use a scratch register to load the value to be
 578   // incremented. increment/decrement calls which add or subtract a
 579   // constant value greater than 2^12 will need to use a 2nd scratch
 580   // register to hold the constant. so, a register increment/decrement
 581   // may trash rscratch2 and an address increment/decrement trash
 582   // rscratch and rscratch2
 583 
 584   void decrementw(Address dst, int value = 1);
 585   void decrementw(Register reg, int value = 1);
 586 
 587   void decrement(Register reg, int value = 1);
 588   void decrement(Address dst, int value = 1);
 589 
 590   void incrementw(Address dst, int value = 1);
 591   void incrementw(Register reg, int value = 1);
 592 
 593   void increment(Register reg, int value = 1);
 594   void increment(Address dst, int value = 1);
 595 
 596 
 597   // Alignment
 598   void align(int modulus);
 599 
 600   // Stack frame creation/removal
 601   void enter()
 602   {
 603     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 604     mov(rfp, sp);
 605   }
 606   void leave()
 607   {
 608     mov(sp, rfp);
 609     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 610   }
 611 
 612   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 613   // The pointer will be loaded into the thread register.
 614   void get_thread(Register thread);
 615 
 616 
 617   // Support for VM calls
 618   //
 619   // It is imperative that all calls into the VM are handled via the call_VM macros.
 620   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 621   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 622 
 623 
 624   void call_VM(Register oop_result,
 625                address entry_point,
 626                bool check_exceptions = true);
 627   void call_VM(Register oop_result,
 628                address entry_point,
 629                Register arg_1,
 630                bool check_exceptions = true);
 631   void call_VM(Register oop_result,
 632                address entry_point,
 633                Register arg_1, Register arg_2,
 634                bool check_exceptions = true);
 635   void call_VM(Register oop_result,
 636                address entry_point,
 637                Register arg_1, Register arg_2, Register arg_3,
 638                bool check_exceptions = true);
 639 
 640   // Overloadings with last_Java_sp
 641   void call_VM(Register oop_result,
 642                Register last_java_sp,
 643                address entry_point,
 644                int number_of_arguments = 0,
 645                bool check_exceptions = true);
 646   void call_VM(Register oop_result,
 647                Register last_java_sp,
 648                address entry_point,
 649                Register arg_1, bool
 650                check_exceptions = true);
 651   void call_VM(Register oop_result,
 652                Register last_java_sp,
 653                address entry_point,
 654                Register arg_1, Register arg_2,
 655                bool check_exceptions = true);
 656   void call_VM(Register oop_result,
 657                Register last_java_sp,
 658                address entry_point,
 659                Register arg_1, Register arg_2, Register arg_3,
 660                bool check_exceptions = true);
 661 
 662   void get_vm_result  (Register oop_result, Register thread);
 663   void get_vm_result_2(Register metadata_result, Register thread);
 664 
 665   // These always tightly bind to MacroAssembler::call_VM_base
 666   // bypassing the virtual implementation
 667   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 668   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 669   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 670   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 671   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 672 
 673   void call_VM_leaf(address entry_point,
 674                     int number_of_arguments = 0);
 675   void call_VM_leaf(address entry_point,
 676                     Register arg_1);
 677   void call_VM_leaf(address entry_point,
 678                     Register arg_1, Register arg_2);
 679   void call_VM_leaf(address entry_point,
 680                     Register arg_1, Register arg_2, Register arg_3);
 681 
 682   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 683   // bypassing the virtual implementation
 684   void super_call_VM_leaf(address entry_point);
 685   void super_call_VM_leaf(address entry_point, Register arg_1);
 686   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 687   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 688   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 689 
 690   // last Java Frame (fills frame anchor)
 691   void set_last_Java_frame(Register last_java_sp,
 692                            Register last_java_fp,
 693                            address last_java_pc,
 694                            Register scratch);
 695 
 696   void set_last_Java_frame(Register last_java_sp,
 697                            Register last_java_fp,
 698                            Label &last_java_pc,
 699                            Register scratch);
 700 
 701   void set_last_Java_frame(Register last_java_sp,
 702                            Register last_java_fp,
 703                            Register last_java_pc,
 704                            Register scratch);
 705 
 706   void reset_last_Java_frame(Register thread, bool clearfp, bool clear_pc);
 707 
 708   // thread in the default location (r15_thread on 64bit)
 709   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 710 
 711   // Stores
 712   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 713   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 714 
 715 #if INCLUDE_ALL_GCS
 716 
 717   void g1_write_barrier_pre(Register obj,
 718                             Register pre_val,
 719                             Register thread,
 720                             Register tmp,
 721                             bool tosca_live,
 722                             bool expand_call);
 723 
 724   void g1_write_barrier_post(Register store_addr,
 725                              Register new_val,
 726                              Register thread,
 727                              Register tmp,
 728                              Register tmp2);
 729 
 730 #endif // INCLUDE_ALL_GCS
 731 
 732   // oop manipulations
 733   void load_klass(Register dst, Register src);
 734   void store_klass(Register dst, Register src);
 735   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 736 
 737   void load_heap_oop(Register dst, Address src);
 738 
 739   void load_heap_oop_not_null(Register dst, Address src);
 740   void store_heap_oop(Address dst, Register src);
 741 
 742   // currently unimplemented
 743   // Used for storing NULL. All other oop constants should be
 744   // stored using routines that take a jobject.
 745   void store_heap_oop_null(Address dst);
 746 
 747   void load_prototype_header(Register dst, Register src);
 748 
 749   void store_klass_gap(Register dst, Register src);
 750 
 751   // This dummy is to prevent a call to store_heap_oop from
 752   // converting a zero (like NULL) into a Register by giving
 753   // the compiler two choices it can't resolve
 754 
 755   void store_heap_oop(Address dst, void* dummy);
 756 
 757   void encode_heap_oop(Register d, Register s);
 758   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 759   void decode_heap_oop(Register d, Register s);
 760   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 761   void encode_heap_oop_not_null(Register r);
 762   void decode_heap_oop_not_null(Register r);
 763   void encode_heap_oop_not_null(Register dst, Register src);
 764   void decode_heap_oop_not_null(Register dst, Register src);
 765 
 766   void set_narrow_oop(Register dst, jobject obj);
 767 
 768   void encode_klass_not_null(Register r);
 769   void decode_klass_not_null(Register r);
 770   void encode_klass_not_null(Register dst, Register src);
 771   void decode_klass_not_null(Register dst, Register src);
 772 
 773   void set_narrow_klass(Register dst, Klass* k);
 774 
 775   // if heap base register is used - reinit it with the correct value
 776   void reinit_heapbase();
 777 
 778   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 779 
 780   void push_CPU_state();
 781   void pop_CPU_state() ;
 782 
 783   // Round up to a power of two
 784   void round_to(Register reg, int modulus);
 785 
 786   // allocation
 787   void eden_allocate(
 788     Register obj,                      // result: pointer to object after successful allocation
 789     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 790     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 791     Register t1,                       // temp register
 792     Label&   slow_case                 // continuation point if fast allocation fails
 793   );
 794   void tlab_allocate(
 795     Register obj,                      // result: pointer to object after successful allocation
 796     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 797     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 798     Register t1,                       // temp register
 799     Register t2,                       // temp register
 800     Label&   slow_case                 // continuation point if fast allocation fails
 801   );
 802   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 803   void verify_tlab();
 804 
 805   void incr_allocated_bytes(Register thread,
 806                             Register var_size_in_bytes, int con_size_in_bytes,
 807                             Register t1 = noreg);
 808 
 809   // interface method calling
 810   void lookup_interface_method(Register recv_klass,
 811                                Register intf_klass,
 812                                RegisterOrConstant itable_index,
 813                                Register method_result,
 814                                Register scan_temp,
 815                                Label& no_such_interface);
 816 
 817   // virtual method calling
 818   // n.b. x86 allows RegisterOrConstant for vtable_index
 819   void lookup_virtual_method(Register recv_klass,
 820                              RegisterOrConstant vtable_index,
 821                              Register method_result);
 822 
 823   // Test sub_klass against super_klass, with fast and slow paths.
 824 
 825   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 826   // One of the three labels can be NULL, meaning take the fall-through.
 827   // If super_check_offset is -1, the value is loaded up from super_klass.
 828   // No registers are killed, except temp_reg.
 829   void check_klass_subtype_fast_path(Register sub_klass,
 830                                      Register super_klass,
 831                                      Register temp_reg,
 832                                      Label* L_success,
 833                                      Label* L_failure,
 834                                      Label* L_slow_path,
 835                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 836 
 837   // The rest of the type check; must be wired to a corresponding fast path.
 838   // It does not repeat the fast path logic, so don't use it standalone.
 839   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 840   // Updates the sub's secondary super cache as necessary.
 841   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 842   void check_klass_subtype_slow_path(Register sub_klass,
 843                                      Register super_klass,
 844                                      Register temp_reg,
 845                                      Register temp2_reg,
 846                                      Label* L_success,
 847                                      Label* L_failure,
 848                                      bool set_cond_codes = false);
 849 
 850   // Simplified, combined version, good for typical uses.
 851   // Falls through on failure.
 852   void check_klass_subtype(Register sub_klass,
 853                            Register super_klass,
 854                            Register temp_reg,
 855                            Label& L_success);
 856 
 857   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 858 
 859 
 860   // Debugging
 861 
 862   // only if +VerifyOops
 863   void verify_oop(Register reg, const char* s = "broken oop");
 864   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 865 
 866 // TODO: verify method and klass metadata (compare against vptr?)
 867   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 868   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 869 
 870 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 871 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 872 
 873   // only if +VerifyFPU
 874   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 875 
 876   // prints msg, dumps registers and stops execution
 877   void stop(const char* msg);
 878 
 879   // prints msg and continues
 880   void warn(const char* msg);
 881 
 882   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 883 
 884   void untested()                                { stop("untested"); }
 885 
 886   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 887 
 888   void should_not_reach_here()                   { stop("should not reach here"); }
 889 
 890   // Stack overflow checking
 891   void bang_stack_with_offset(int offset) {
 892     // stack grows down, caller passes positive offset
 893     assert(offset > 0, "must bang with negative offset");
 894     mov(rscratch2, -offset);
 895     str(zr, Address(sp, rscratch2));
 896   }
 897 
 898   // Writes to stack successive pages until offset reached to check for
 899   // stack overflow + shadow pages.  Also, clobbers tmp
 900   void bang_stack_size(Register size, Register tmp);
 901 
 902   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 903                                                 Register tmp,
 904                                                 int offset);
 905 
 906   // Support for serializing memory accesses between threads
 907   void serialize_memory(Register thread, Register tmp);
 908 
 909   // Arithmetics
 910 
 911   void addptr(Address dst, int32_t src) {
 912     lea(rscratch2, dst);
 913     ldr(rscratch1, Address(rscratch2));
 914     add(rscratch1, rscratch1, src);
 915     str(rscratch1, Address(rscratch2));
 916   }
 917 
 918   void cmpptr(Register src1, Address src2);
 919 
 920   // Various forms of CAS
 921 
 922   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 923                   Label &suceed, Label *fail);
 924 
 925   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 926                   Label &suceed, Label *fail);
 927 
 928   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 929   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
 930 
 931   void atomic_xchg(Register prev, Register newv, Register addr);
 932   void atomic_xchgw(Register prev, Register newv, Register addr);
 933 
 934   void orptr(Address adr, RegisterOrConstant src) {
 935     ldr(rscratch2, adr);
 936     if (src.is_register())
 937       orr(rscratch2, rscratch2, src.as_register());
 938     else
 939       orr(rscratch2, rscratch2, src.as_constant());
 940     str(rscratch2, adr);
 941   }
 942 
 943   // A generic CAS; success or failure is in the EQ flag.
 944   template <typename T1, typename T2>
 945   void cmpxchg(Register addr, Register expected, Register new_val,
 946                T1 load_insn,
 947                void (MacroAssembler::*cmp_insn)(Register, Register),
 948                T2 store_insn,
 949                Register tmp = rscratch1) {
 950     Label retry_load, done;
 951     bind(retry_load);
 952     (this->*load_insn)(tmp, addr);
 953     (this->*cmp_insn)(tmp, expected);
 954     br(Assembler::NE, done);
 955     (this->*store_insn)(tmp, new_val, addr);
 956     cbnzw(tmp, retry_load);
 957     bind(done);
 958   }
 959 
 960   // Calls
 961 
 962   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
 963 
 964   static bool far_branches() {
 965     return ReservedCodeCacheSize > branch_range;
 966   }
 967 
 968   // Jumps that can reach anywhere in the code cache.
 969   // Trashes tmp.
 970   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
 971   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
 972 
 973   static int far_branch_size() {
 974     if (far_branches()) {
 975       return 3 * 4;  // adrp, add, br
 976     } else {
 977       return 4;
 978     }
 979   }
 980 
 981   // Emit the CompiledIC call idiom
 982   address ic_call(address entry);
 983 
 984 public:
 985 
 986   // Data
 987 
 988   void mov_metadata(Register dst, Metadata* obj);
 989   Address allocate_metadata_address(Metadata* obj);
 990   Address constant_oop_address(jobject obj);
 991 
 992   void movoop(Register dst, jobject obj, bool immediate = false);
 993 
 994   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
 995   void kernel_crc32(Register crc, Register buf, Register len,
 996         Register table0, Register table1, Register table2, Register table3,
 997         Register tmp, Register tmp2, Register tmp3);
 998   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
 999   void kernel_crc32c(Register crc, Register buf, Register len,
1000         Register table0, Register table1, Register table2, Register table3,
1001         Register tmp, Register tmp2, Register tmp3);
1002 
1003 #undef VIRTUAL
1004 
1005   // Stack push and pop individual 64 bit registers
1006   void push(Register src);
1007   void pop(Register dst);
1008 
1009   // push all registers onto the stack
1010   void pusha();
1011   void popa();
1012 
1013   void repne_scan(Register addr, Register value, Register count,
1014                   Register scratch);
1015   void repne_scanw(Register addr, Register value, Register count,
1016                    Register scratch);
1017 
1018   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1019   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1020 
1021   // If a constant does not fit in an immediate field, generate some
1022   // number of MOV instructions and then perform the operation
1023   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1024                              add_sub_imm_insn insn1,
1025                              add_sub_reg_insn insn2);
1026   // Seperate vsn which sets the flags
1027   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1028                              add_sub_imm_insn insn1,
1029                              add_sub_reg_insn insn2);
1030 
1031 #define WRAP(INSN)                                                      \
1032   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1033     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1034   }                                                                     \
1035                                                                         \
1036   void INSN(Register Rd, Register Rn, Register Rm,                      \
1037              enum shift_kind kind, unsigned shift = 0) {                \
1038     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1039   }                                                                     \
1040                                                                         \
1041   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1042     Assembler::INSN(Rd, Rn, Rm);                                        \
1043   }                                                                     \
1044                                                                         \
1045   void INSN(Register Rd, Register Rn, Register Rm,                      \
1046            ext::operation option, int amount = 0) {                     \
1047     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1048   }
1049 
1050   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1051 
1052 #undef WRAP
1053 #define WRAP(INSN)                                                      \
1054   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1055     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1056   }                                                                     \
1057                                                                         \
1058   void INSN(Register Rd, Register Rn, Register Rm,                      \
1059              enum shift_kind kind, unsigned shift = 0) {                \
1060     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1061   }                                                                     \
1062                                                                         \
1063   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1064     Assembler::INSN(Rd, Rn, Rm);                                        \
1065   }                                                                     \
1066                                                                         \
1067   void INSN(Register Rd, Register Rn, Register Rm,                      \
1068            ext::operation option, int amount = 0) {                     \
1069     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1070   }
1071 
1072   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1073 
1074   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1075   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1076   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1077   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1078 
1079   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1080 
1081   void tableswitch(Register index, jint lowbound, jint highbound,
1082                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1083     adr(rscratch1, jumptable);
1084     subsw(rscratch2, index, lowbound);
1085     subsw(zr, rscratch2, highbound - lowbound);
1086     br(Assembler::HS, jumptable_end);
1087     add(rscratch1, rscratch1, rscratch2,
1088         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1089     br(rscratch1);
1090   }
1091 
1092   // Form an address from base + offset in Rd.  Rd may or may not
1093   // actually be used: you must use the Address that is returned.  It
1094   // is up to you to ensure that the shift provided matches the size
1095   // of your data.
1096   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1097 
1098   // Prolog generator routines to support switch between x86 code and
1099   // generated ARM code
1100 
1101   // routine to generate an x86 prolog for a stub function which
1102   // bootstraps into the generated ARM code which directly follows the
1103   // stub
1104   //
1105 
1106   public:
1107   // enum used for aarch64--x86 linkage to define return type of x86 function
1108   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1109 
1110 #ifdef BUILTIN_SIM
1111   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1112 #else
1113   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1114 #endif
1115 
1116   // special version of call_VM_leaf_base needed for aarch64 simulator
1117   // where we need to specify both the gp and fp arg counts and the
1118   // return type so that the linkage routine from aarch64 to x86 and
1119   // back knows which aarch64 registers to copy to x86 registers and
1120   // which x86 result register to copy back to an aarch64 register
1121 
1122   void call_VM_leaf_base1(
1123     address  entry_point,             // the entry point
1124     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1125     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1126     ret_type type,                    // the return type for the call
1127     Label*   retaddr = NULL
1128   );
1129 
1130   void ldr_constant(Register dest, const Address &const_addr) {
1131     if (NearCpool) {
1132       ldr(dest, const_addr);
1133     } else {
1134       unsigned long offset;
1135       adrp(dest, InternalAddress(const_addr.target()), offset);
1136       ldr(dest, Address(dest, offset));
1137     }
1138   }
1139 
1140   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1141   address read_polling_page(Register r, relocInfo::relocType rtype);
1142 
1143   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1144   void update_byte_crc32(Register crc, Register val, Register table);
1145   void update_word_crc32(Register crc, Register v, Register tmp,
1146         Register table0, Register table1, Register table2, Register table3,
1147         bool upper = false);
1148 
1149   void string_compare(Register str1, Register str2,
1150                       Register cnt1, Register cnt2, Register result,
1151                       Register tmp1);
1152   void string_equals(Register str1, Register str2,
1153                      Register cnt, Register result,
1154                      Register tmp1);
1155   void char_arrays_equals(Register ary1, Register ary2,
1156                           Register result, Register tmp1);
1157   void encode_iso_array(Register src, Register dst,
1158                         Register len, Register result,
1159                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1160                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1161   void string_indexof(Register str1, Register str2,
1162                       Register cnt1, Register cnt2,
1163                       Register tmp1, Register tmp2,
1164                       Register tmp3, Register tmp4,
1165                       int int_cnt1, Register result);
1166 private:
1167   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1168                        Register src1, Register src2);
1169   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1170     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1171   }
1172   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1173                              Register y, Register y_idx, Register z,
1174                              Register carry, Register product,
1175                              Register idx, Register kdx);
1176   void multiply_128_x_128_loop(Register y, Register z,
1177                                Register carry, Register carry2,
1178                                Register idx, Register jdx,
1179                                Register yz_idx1, Register yz_idx2,
1180                                Register tmp, Register tmp3, Register tmp4,
1181                                Register tmp7, Register product_hi);
1182 public:
1183   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1184                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1185                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1186   // ISB may be needed because of a safepoint
1187   void maybe_isb() { isb(); }
1188 
1189 private:
1190   // Return the effective address r + (r1 << ext) + offset.
1191   // Uses rscratch2.
1192   Address offsetted_address(Register r, Register r1, Address::extend ext,
1193                             int offset, int size);
1194 
1195 private:
1196   // Returns an address on the stack which is reachable with a ldr/str of size
1197   // Uses rscratch2 if the address is not directly reachable
1198   Address spill_address(int size, int offset, Register tmp=rscratch2);
1199 
1200 public:
1201   void spill(Register Rx, bool is64, int offset) {
1202     if (is64) {
1203       str(Rx, spill_address(8, offset));
1204     } else {
1205       strw(Rx, spill_address(4, offset));
1206     }
1207   }
1208   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1209     str(Vx, T, spill_address(1 << (int)T, offset));
1210   }
1211   void unspill(Register Rx, bool is64, int offset) {
1212     if (is64) {
1213       ldr(Rx, spill_address(8, offset));
1214     } else {
1215       ldrw(Rx, spill_address(4, offset));
1216     }
1217   }
1218   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1219     ldr(Vx, T, spill_address(1 << (int)T, offset));
1220   }
1221   void spill_copy128(int src_offset, int dst_offset,
1222                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1223     if (src_offset < 512 && (src_offset & 7) == 0 &&
1224         dst_offset < 512 && (dst_offset & 7) == 0) {
1225       ldp(tmp1, tmp2, Address(sp, src_offset));
1226       stp(tmp1, tmp2, Address(sp, dst_offset));
1227     } else {
1228       unspill(tmp1, true, src_offset);
1229       spill(tmp1, true, dst_offset);
1230       unspill(tmp1, true, src_offset+8);
1231       spill(tmp1, true, dst_offset+8);
1232     }
1233   }
1234 };
1235 
1236 #ifdef ASSERT
1237 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1238 #endif
1239 
1240 /**
1241  * class SkipIfEqual:
1242  *
1243  * Instantiating this class will result in assembly code being output that will
1244  * jump around any code emitted between the creation of the instance and it's
1245  * automatic destruction at the end of a scope block, depending on the value of
1246  * the flag passed to the constructor, which will be checked at run-time.
1247  */
1248 class SkipIfEqual {
1249  private:
1250   MacroAssembler* _masm;
1251   Label _label;
1252 
1253  public:
1254    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1255    ~SkipIfEqual();
1256 };
1257 
1258 struct tableswitch {
1259   Register _reg;
1260   int _insn_index; jint _first_key; jint _last_key;
1261   Label _after;
1262   Label _branches;
1263 };
1264 
1265 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP