1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument VALUE_OBJ_CLASS_SPEC {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch,      r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 // TODO : x86 uses rbp to save SP in method handle code
 143 // we may need to do the same with fp
 144 // JSR 292 fixed register usages:
 145 //REGISTER_DECLARATION(Register, r_mh_SP_save, r29);
 146 
 147 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 148 
 149 namespace asm_util {
 150   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 151 };
 152 
 153 using namespace asm_util;
 154 
 155 
 156 class Assembler;
 157 
 158 class Instruction_aarch64 {
 159   unsigned insn;
 160 #ifdef ASSERT
 161   unsigned bits;
 162 #endif
 163   Assembler *assem;
 164 
 165 public:
 166 
 167   Instruction_aarch64(class Assembler *as) {
 168 #ifdef ASSERT
 169     bits = 0;
 170 #endif
 171     insn = 0;
 172     assem = as;
 173   }
 174 
 175   inline ~Instruction_aarch64();
 176 
 177   unsigned &get_insn() { return insn; }
 178 #ifdef ASSERT
 179   unsigned &get_bits() { return bits; }
 180 #endif
 181 
 182   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 183     union {
 184       unsigned u;
 185       int n;
 186     };
 187 
 188     u = val << (31 - hi);
 189     n = n >> (31 - hi + lo);
 190     return n;
 191   }
 192 
 193   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 194     int nbits = msb - lsb + 1;
 195     assert_cond(msb >= lsb);
 196     uint32_t mask = (1U << nbits) - 1;
 197     uint32_t result = val >> lsb;
 198     result &= mask;
 199     return result;
 200   }
 201 
 202   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 203     uint32_t uval = extract(val, msb, lsb);
 204     return extend(uval, msb - lsb);
 205   }
 206 
 207   static void patch(address a, int msb, int lsb, unsigned long val) {
 208     int nbits = msb - lsb + 1;
 209     guarantee(val < (1U << nbits), "Field too big for insn");
 210     assert_cond(msb >= lsb);
 211     unsigned mask = (1U << nbits) - 1;
 212     val <<= lsb;
 213     mask <<= lsb;
 214     unsigned target = *(unsigned *)a;
 215     target &= ~mask;
 216     target |= val;
 217     *(unsigned *)a = target;
 218   }
 219 
 220   static void spatch(address a, int msb, int lsb, long val) {
 221     int nbits = msb - lsb + 1;
 222     long chk = val >> (nbits - 1);
 223     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 224     unsigned uval = val;
 225     unsigned mask = (1U << nbits) - 1;
 226     uval &= mask;
 227     uval <<= lsb;
 228     mask <<= lsb;
 229     unsigned target = *(unsigned *)a;
 230     target &= ~mask;
 231     target |= uval;
 232     *(unsigned *)a = target;
 233   }
 234 
 235   void f(unsigned val, int msb, int lsb) {
 236     int nbits = msb - lsb + 1;
 237     guarantee(val < (1U << nbits), "Field too big for insn");
 238     assert_cond(msb >= lsb);
 239     unsigned mask = (1U << nbits) - 1;
 240     val <<= lsb;
 241     mask <<= lsb;
 242     insn |= val;
 243     assert_cond((bits & mask) == 0);
 244 #ifdef ASSERT
 245     bits |= mask;
 246 #endif
 247   }
 248 
 249   void f(unsigned val, int bit) {
 250     f(val, bit, bit);
 251   }
 252 
 253   void sf(long val, int msb, int lsb) {
 254     int nbits = msb - lsb + 1;
 255     long chk = val >> (nbits - 1);
 256     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 257     unsigned uval = val;
 258     unsigned mask = (1U << nbits) - 1;
 259     uval &= mask;
 260     f(uval, lsb + nbits - 1, lsb);
 261   }
 262 
 263   void rf(Register r, int lsb) {
 264     f(r->encoding_nocheck(), lsb + 4, lsb);
 265   }
 266 
 267   // reg|ZR
 268   void zrf(Register r, int lsb) {
 269     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 270   }
 271 
 272   // reg|SP
 273   void srf(Register r, int lsb) {
 274     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 275   }
 276 
 277   void rf(FloatRegister r, int lsb) {
 278     f(r->encoding_nocheck(), lsb + 4, lsb);
 279   }
 280 
 281   unsigned get(int msb = 31, int lsb = 0) {
 282     int nbits = msb - lsb + 1;
 283     unsigned mask = ((1U << nbits) - 1) << lsb;
 284     assert_cond(bits & mask == mask);
 285     return (insn & mask) >> lsb;
 286   }
 287 
 288   void fixed(unsigned value, unsigned mask) {
 289     assert_cond ((mask & bits) == 0);
 290 #ifdef ASSERT
 291     bits |= mask;
 292 #endif
 293     insn |= value;
 294   }
 295 };
 296 
 297 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 298 
 299 class PrePost {
 300   int _offset;
 301   Register _r;
 302 public:
 303   PrePost(Register reg, int o) : _r(reg), _offset(o) { }
 304   int offset() { return _offset; }
 305   Register reg() { return _r; }
 306 };
 307 
 308 class Pre : public PrePost {
 309 public:
 310   Pre(Register reg, int o) : PrePost(reg, o) { }
 311 };
 312 class Post : public PrePost {
 313 public:
 314   Post(Register reg, int o) : PrePost(reg, o) { }
 315 };
 316 
 317 namespace ext
 318 {
 319   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 320 };
 321 
 322 // abs methods which cannot overflow and so are well-defined across
 323 // the entire domain of integer types.
 324 static inline unsigned int uabs(unsigned int n) {
 325   union {
 326     unsigned int result;
 327     int value;
 328   };
 329   result = n;
 330   if (value < 0) result = -result;
 331   return result;
 332 }
 333 static inline unsigned long uabs(unsigned long n) {
 334   union {
 335     unsigned long result;
 336     long value;
 337   };
 338   result = n;
 339   if (value < 0) result = -result;
 340   return result;
 341 }
 342 static inline unsigned long uabs(long n) { return uabs((unsigned long)n); }
 343 static inline unsigned long uabs(int n) { return uabs((unsigned int)n); }
 344 
 345 // Addressing modes
 346 class Address VALUE_OBJ_CLASS_SPEC {
 347  public:
 348 
 349   enum mode { no_mode, base_plus_offset, pre, post, pcrel,
 350               base_plus_offset_reg, literal };
 351 
 352   // Shift and extend for base reg + reg offset addressing
 353   class extend {
 354     int _option, _shift;
 355     ext::operation _op;
 356   public:
 357     extend() { }
 358     extend(int s, int o, ext::operation op) : _shift(s), _option(o), _op(op) { }
 359     int option() const{ return _option; }
 360     int shift() const { return _shift; }
 361     ext::operation op() const { return _op; }
 362   };
 363   class uxtw : public extend {
 364   public:
 365     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 366   };
 367   class lsl : public extend {
 368   public:
 369     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 370   };
 371   class sxtw : public extend {
 372   public:
 373     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 374   };
 375   class sxtx : public extend {
 376   public:
 377     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 378   };
 379 
 380  private:
 381   Register _base;
 382   Register _index;
 383   long _offset;
 384   enum mode _mode;
 385   extend _ext;
 386 
 387   RelocationHolder _rspec;
 388 
 389   // Typically we use AddressLiterals we want to use their rval
 390   // However in some situations we want the lval (effect address) of
 391   // the item.  We provide a special factory for making those lvals.
 392   bool _is_lval;
 393 
 394   // If the target is far we'll need to load the ea of this to a
 395   // register to reach it. Otherwise if near we can do PC-relative
 396   // addressing.
 397   address          _target;
 398 
 399  public:
 400   Address()
 401     : _mode(no_mode) { }
 402   Address(Register r)
 403     : _mode(base_plus_offset), _base(r), _offset(0), _index(noreg), _target(0) { }
 404   Address(Register r, int o)
 405     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 406   Address(Register r, long o)
 407     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 408   Address(Register r, unsigned long o)
 409     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 410 #ifdef ASSERT
 411   Address(Register r, ByteSize disp)
 412     : _mode(base_plus_offset), _base(r), _offset(in_bytes(disp)),
 413       _index(noreg), _target(0) { }
 414 #endif
 415   Address(Register r, Register r1, extend ext = lsl())
 416     : _mode(base_plus_offset_reg), _base(r), _index(r1),
 417     _ext(ext), _offset(0), _target(0) { }
 418   Address(Pre p)
 419     : _mode(pre), _base(p.reg()), _offset(p.offset()) { }
 420   Address(Post p)
 421     : _mode(post), _base(p.reg()), _offset(p.offset()), _target(0) { }
 422   Address(address target, RelocationHolder const& rspec)
 423     : _mode(literal),
 424       _rspec(rspec),
 425       _is_lval(false),
 426       _target(target)  { }
 427   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 428   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 429     : _base (base),
 430       _ext(ext), _offset(0), _target(0) {
 431     if (index.is_register()) {
 432       _mode = base_plus_offset_reg;
 433       _index = index.as_register();
 434     } else {
 435       guarantee(ext.option() == ext::uxtx, "should be");
 436       assert(index.is_constant(), "should be");
 437       _mode = base_plus_offset;
 438       _offset = index.as_constant() << ext.shift();
 439     }
 440   }
 441 
 442   Register base() const {
 443     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 444                | _mode == post),
 445               "wrong mode");
 446     return _base;
 447   }
 448   long offset() const {
 449     return _offset;
 450   }
 451   Register index() const {
 452     return _index;
 453   }
 454   mode getMode() const {
 455     return _mode;
 456   }
 457   bool uses(Register reg) const { return _base == reg || _index == reg; }
 458   address target() const { return _target; }
 459   const RelocationHolder& rspec() const { return _rspec; }
 460 
 461   void encode(Instruction_aarch64 *i) const {
 462     i->f(0b111, 29, 27);
 463     i->srf(_base, 5);
 464 
 465     switch(_mode) {
 466     case base_plus_offset:
 467       {
 468         unsigned size = i->get(31, 30);
 469         if (i->get(26, 26) && i->get(23, 23)) {
 470           // SIMD Q Type - Size = 128 bits
 471           assert(size == 0, "bad size");
 472           size = 0b100;
 473         }
 474         unsigned mask = (1 << size) - 1;
 475         if (_offset < 0 || _offset & mask)
 476           {
 477             i->f(0b00, 25, 24);
 478             i->f(0, 21), i->f(0b00, 11, 10);
 479             i->sf(_offset, 20, 12);
 480           } else {
 481             i->f(0b01, 25, 24);
 482             i->f(_offset >> size, 21, 10);
 483           }
 484       }
 485       break;
 486 
 487     case base_plus_offset_reg:
 488       {
 489         i->f(0b00, 25, 24);
 490         i->f(1, 21);
 491         i->rf(_index, 16);
 492         i->f(_ext.option(), 15, 13);
 493         unsigned size = i->get(31, 30);
 494         if (i->get(26, 26) && i->get(23, 23)) {
 495           // SIMD Q Type - Size = 128 bits
 496           assert(size == 0, "bad size");
 497           size = 0b100;
 498         }
 499         if (size == 0) // It's a byte
 500           i->f(_ext.shift() >= 0, 12);
 501         else {
 502           if (_ext.shift() > 0)
 503             assert(_ext.shift() == (int)size, "bad shift");
 504           i->f(_ext.shift() > 0, 12);
 505         }
 506         i->f(0b10, 11, 10);
 507       }
 508       break;
 509 
 510     case pre:
 511       i->f(0b00, 25, 24);
 512       i->f(0, 21), i->f(0b11, 11, 10);
 513       i->sf(_offset, 20, 12);
 514       break;
 515 
 516     case post:
 517       i->f(0b00, 25, 24);
 518       i->f(0, 21), i->f(0b01, 11, 10);
 519       i->sf(_offset, 20, 12);
 520       break;
 521 
 522     default:
 523       ShouldNotReachHere();
 524     }
 525   }
 526 
 527   void encode_pair(Instruction_aarch64 *i) const {
 528     switch(_mode) {
 529     case base_plus_offset:
 530       i->f(0b010, 25, 23);
 531       break;
 532     case pre:
 533       i->f(0b011, 25, 23);
 534       break;
 535     case post:
 536       i->f(0b001, 25, 23);
 537       break;
 538     default:
 539       ShouldNotReachHere();
 540     }
 541 
 542     unsigned size; // Operand shift in 32-bit words
 543 
 544     if (i->get(26, 26)) { // float
 545       switch(i->get(31, 30)) {
 546       case 0b10:
 547         size = 2; break;
 548       case 0b01:
 549         size = 1; break;
 550       case 0b00:
 551         size = 0; break;
 552       default:
 553         ShouldNotReachHere();
 554       }
 555     } else {
 556       size = i->get(31, 31);
 557     }
 558 
 559     size = 4 << size;
 560     guarantee(_offset % size == 0, "bad offset");
 561     i->sf(_offset / size, 21, 15);
 562     i->srf(_base, 5);
 563   }
 564 
 565   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 566     // Only base + offset is allowed
 567     i->f(0b000, 25, 23);
 568     unsigned size = i->get(31, 31);
 569     size = 4 << size;
 570     guarantee(_offset % size == 0, "bad offset");
 571     i->sf(_offset / size, 21, 15);
 572     i->srf(_base, 5);
 573     guarantee(_mode == Address::base_plus_offset,
 574               "Bad addressing mode for non-temporal op");
 575   }
 576 
 577   void lea(MacroAssembler *, Register) const;
 578 
 579   static bool offset_ok_for_immed(long offset, int shift = 0) {
 580     unsigned mask = (1 << shift) - 1;
 581     if (offset < 0 || offset & mask) {
 582       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 583     } else {
 584       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 585     }
 586   }
 587 };
 588 
 589 // Convience classes
 590 class RuntimeAddress: public Address {
 591 
 592   public:
 593 
 594   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 595 
 596 };
 597 
 598 class OopAddress: public Address {
 599 
 600   public:
 601 
 602   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 603 
 604 };
 605 
 606 class ExternalAddress: public Address {
 607  private:
 608   static relocInfo::relocType reloc_for_target(address target) {
 609     // Sometimes ExternalAddress is used for values which aren't
 610     // exactly addresses, like the card table base.
 611     // external_word_type can't be used for values in the first page
 612     // so just skip the reloc in that case.
 613     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 614   }
 615 
 616  public:
 617 
 618   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 619 
 620 };
 621 
 622 class InternalAddress: public Address {
 623 
 624   public:
 625 
 626   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 627 };
 628 
 629 const int FPUStateSizeInWords = 32 * 2;
 630 typedef enum {
 631   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 632   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 633   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 634 } prfop;
 635 
 636 class Assembler : public AbstractAssembler {
 637 
 638 #ifndef PRODUCT
 639   static const unsigned long asm_bp;
 640 
 641   void emit_long(jint x) {
 642     if ((unsigned long)pc() == asm_bp)
 643       asm volatile ("nop");
 644     AbstractAssembler::emit_int32(x);
 645   }
 646 #else
 647   void emit_long(jint x) {
 648     AbstractAssembler::emit_int32(x);
 649   }
 650 #endif
 651 
 652 public:
 653 
 654   enum { instruction_size = 4 };
 655 
 656   Address adjust(Register base, int offset, bool preIncrement) {
 657     if (preIncrement)
 658       return Address(Pre(base, offset));
 659     else
 660       return Address(Post(base, offset));
 661   }
 662 
 663   Address pre(Register base, int offset) {
 664     return adjust(base, offset, true);
 665   }
 666 
 667   Address post (Register base, int offset) {
 668     return adjust(base, offset, false);
 669   }
 670 
 671   Instruction_aarch64* current;
 672 
 673   void set_current(Instruction_aarch64* i) { current = i; }
 674 
 675   void f(unsigned val, int msb, int lsb) {
 676     current->f(val, msb, lsb);
 677   }
 678   void f(unsigned val, int msb) {
 679     current->f(val, msb, msb);
 680   }
 681   void sf(long val, int msb, int lsb) {
 682     current->sf(val, msb, lsb);
 683   }
 684   void rf(Register reg, int lsb) {
 685     current->rf(reg, lsb);
 686   }
 687   void srf(Register reg, int lsb) {
 688     current->srf(reg, lsb);
 689   }
 690   void zrf(Register reg, int lsb) {
 691     current->zrf(reg, lsb);
 692   }
 693   void rf(FloatRegister reg, int lsb) {
 694     current->rf(reg, lsb);
 695   }
 696   void fixed(unsigned value, unsigned mask) {
 697     current->fixed(value, mask);
 698   }
 699 
 700   void emit() {
 701     emit_long(current->get_insn());
 702     assert_cond(current->get_bits() == 0xffffffff);
 703     current = NULL;
 704   }
 705 
 706   typedef void (Assembler::* uncond_branch_insn)(address dest);
 707   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 708   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 709   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 710 
 711   void wrap_label(Label &L, uncond_branch_insn insn);
 712   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 713   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 714   void wrap_label(Label &L, prfop, prefetch_insn insn);
 715 
 716   // PC-rel. addressing
 717 
 718   void adr(Register Rd, address dest);
 719   void _adrp(Register Rd, address dest);
 720 
 721   void adr(Register Rd, const Address &dest);
 722   void _adrp(Register Rd, const Address &dest);
 723 
 724   void adr(Register Rd, Label &L) {
 725     wrap_label(Rd, L, &Assembler::Assembler::adr);
 726   }
 727   void _adrp(Register Rd, Label &L) {
 728     wrap_label(Rd, L, &Assembler::_adrp);
 729   }
 730 
 731   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 732 
 733 #undef INSN
 734 
 735   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 736                          int negated_op);
 737 
 738   // Add/subtract (immediate)
 739 #define INSN(NAME, decode, negated)                                     \
 740   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 741     starti;                                                             \
 742     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 743     zrf(Rd, 0), srf(Rn, 5);                                             \
 744   }                                                                     \
 745                                                                         \
 746   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 747     starti;                                                             \
 748     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 749   }
 750 
 751   INSN(addsw, 0b001, 0b011);
 752   INSN(subsw, 0b011, 0b001);
 753   INSN(adds,  0b101, 0b111);
 754   INSN(subs,  0b111, 0b101);
 755 
 756 #undef INSN
 757 
 758 #define INSN(NAME, decode, negated)                     \
 759   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 760     starti;                                             \
 761     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 762   }
 763 
 764   INSN(addw, 0b000, 0b010);
 765   INSN(subw, 0b010, 0b000);
 766   INSN(add,  0b100, 0b110);
 767   INSN(sub,  0b110, 0b100);
 768 
 769 #undef INSN
 770 
 771  // Logical (immediate)
 772 #define INSN(NAME, decode, is32)                                \
 773   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 774     starti;                                                     \
 775     uint32_t val = encode_logical_immediate(is32, imm);         \
 776     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 777     srf(Rd, 0), zrf(Rn, 5);                                     \
 778   }
 779 
 780   INSN(andw, 0b000, true);
 781   INSN(orrw, 0b001, true);
 782   INSN(eorw, 0b010, true);
 783   INSN(andr,  0b100, false);
 784   INSN(orr,  0b101, false);
 785   INSN(eor,  0b110, false);
 786 
 787 #undef INSN
 788 
 789 #define INSN(NAME, decode, is32)                                \
 790   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 791     starti;                                                     \
 792     uint32_t val = encode_logical_immediate(is32, imm);         \
 793     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 794     zrf(Rd, 0), zrf(Rn, 5);                                     \
 795   }
 796 
 797   INSN(ands, 0b111, false);
 798   INSN(andsw, 0b011, true);
 799 
 800 #undef INSN
 801 
 802   // Move wide (immediate)
 803 #define INSN(NAME, opcode)                                              \
 804   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 805     assert_cond((shift/16)*16 == shift);                                \
 806     starti;                                                             \
 807     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 808       f(imm, 20, 5);                                                    \
 809     rf(Rd, 0);                                                          \
 810   }
 811 
 812   INSN(movnw, 0b000);
 813   INSN(movzw, 0b010);
 814   INSN(movkw, 0b011);
 815   INSN(movn, 0b100);
 816   INSN(movz, 0b110);
 817   INSN(movk, 0b111);
 818 
 819 #undef INSN
 820 
 821   // Bitfield
 822 #define INSN(NAME, opcode)                                              \
 823   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 824     starti;                                                             \
 825     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 826     rf(Rn, 5), rf(Rd, 0);                                               \
 827   }
 828 
 829   INSN(sbfmw, 0b0001001100);
 830   INSN(bfmw,  0b0011001100);
 831   INSN(ubfmw, 0b0101001100);
 832   INSN(sbfm,  0b1001001101);
 833   INSN(bfm,   0b1011001101);
 834   INSN(ubfm,  0b1101001101);
 835 
 836 #undef INSN
 837 
 838   // Extract
 839 #define INSN(NAME, opcode)                                              \
 840   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 841     starti;                                                             \
 842     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 843     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                   \
 844   }
 845 
 846   INSN(extrw, 0b00010011100);
 847   INSN(extr,  0b10010011110);
 848 
 849 #undef INSN
 850 
 851   // The maximum range of a branch is fixed for the AArch64
 852   // architecture.  In debug mode we shrink it in order to test
 853   // trampolines, but not so small that branches in the interpreter
 854   // are out of range.
 855   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 856 
 857   static bool reachable_from_branch_at(address branch, address target) {
 858     return uabs(target - branch) < branch_range;
 859   }
 860 
 861   // Unconditional branch (immediate)
 862 #define INSN(NAME, opcode)                                              \
 863   void NAME(address dest) {                                             \
 864     starti;                                                             \
 865     long offset = (dest - pc()) >> 2;                                   \
 866     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 867     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 868   }                                                                     \
 869   void NAME(Label &L) {                                                 \
 870     wrap_label(L, &Assembler::NAME);                                    \
 871   }                                                                     \
 872   void NAME(const Address &dest);
 873 
 874   INSN(b, 0);
 875   INSN(bl, 1);
 876 
 877 #undef INSN
 878 
 879   // Compare & branch (immediate)
 880 #define INSN(NAME, opcode)                              \
 881   void NAME(Register Rt, address dest) {                \
 882     long offset = (dest - pc()) >> 2;                   \
 883     starti;                                             \
 884     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 885   }                                                     \
 886   void NAME(Register Rt, Label &L) {                    \
 887     wrap_label(Rt, L, &Assembler::NAME);                \
 888   }
 889 
 890   INSN(cbzw,  0b00110100);
 891   INSN(cbnzw, 0b00110101);
 892   INSN(cbz,   0b10110100);
 893   INSN(cbnz,  0b10110101);
 894 
 895 #undef INSN
 896 
 897   // Test & branch (immediate)
 898 #define INSN(NAME, opcode)                                              \
 899   void NAME(Register Rt, int bitpos, address dest) {                    \
 900     long offset = (dest - pc()) >> 2;                                   \
 901     int b5 = bitpos >> 5;                                               \
 902     bitpos &= 0x1f;                                                     \
 903     starti;                                                             \
 904     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 905     rf(Rt, 0);                                                          \
 906   }                                                                     \
 907   void NAME(Register Rt, int bitpos, Label &L) {                        \
 908     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 909   }
 910 
 911   INSN(tbz,  0b0110110);
 912   INSN(tbnz, 0b0110111);
 913 
 914 #undef INSN
 915 
 916   // Conditional branch (immediate)
 917   enum Condition
 918     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 919 
 920   void br(Condition  cond, address dest) {
 921     long offset = (dest - pc()) >> 2;
 922     starti;
 923     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 924   }
 925 
 926 #define INSN(NAME, cond)                        \
 927   void NAME(address dest) {                     \
 928     br(cond, dest);                             \
 929   }
 930 
 931   INSN(beq, EQ);
 932   INSN(bne, NE);
 933   INSN(bhs, HS);
 934   INSN(bcs, CS);
 935   INSN(blo, LO);
 936   INSN(bcc, CC);
 937   INSN(bmi, MI);
 938   INSN(bpl, PL);
 939   INSN(bvs, VS);
 940   INSN(bvc, VC);
 941   INSN(bhi, HI);
 942   INSN(bls, LS);
 943   INSN(bge, GE);
 944   INSN(blt, LT);
 945   INSN(bgt, GT);
 946   INSN(ble, LE);
 947   INSN(bal, AL);
 948   INSN(bnv, NV);
 949 
 950   void br(Condition cc, Label &L);
 951 
 952 #undef INSN
 953 
 954   // Exception generation
 955   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 956     starti;
 957     f(0b11010100, 31, 24);
 958     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 959   }
 960 
 961 #define INSN(NAME, opc, op2, LL)                \
 962   void NAME(unsigned imm) {                     \
 963     generate_exception(opc, op2, LL, imm);      \
 964   }
 965 
 966   INSN(svc, 0b000, 0, 0b01);
 967   INSN(hvc, 0b000, 0, 0b10);
 968   INSN(smc, 0b000, 0, 0b11);
 969   INSN(brk, 0b001, 0, 0b00);
 970   INSN(hlt, 0b010, 0, 0b00);
 971   INSN(dpcs1, 0b101, 0, 0b01);
 972   INSN(dpcs2, 0b101, 0, 0b10);
 973   INSN(dpcs3, 0b101, 0, 0b11);
 974 
 975 #undef INSN
 976 
 977   // System
 978   void system(int op0, int op1, int CRn, int CRm, int op2,
 979               Register rt = (Register)0b11111)
 980   {
 981     starti;
 982     f(0b11010101000, 31, 21);
 983     f(op0, 20, 19);
 984     f(op1, 18, 16);
 985     f(CRn, 15, 12);
 986     f(CRm, 11, 8);
 987     f(op2, 7, 5);
 988     rf(rt, 0);
 989   }
 990 
 991   void hint(int imm) {
 992     system(0b00, 0b011, 0b0010, imm, 0b000);
 993   }
 994 
 995   void nop() {
 996     hint(0);
 997   }
 998   // we only provide mrs and msr for the special purpose system
 999   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1000   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1001 
1002   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1003     starti;
1004     f(0b1101010100011, 31, 19);
1005     f(op1, 18, 16);
1006     f(CRn, 15, 12);
1007     f(CRm, 11, 8);
1008     f(op2, 7, 5);
1009     // writing zr is ok
1010     zrf(rt, 0);
1011   }
1012 
1013   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1014     starti;
1015     f(0b1101010100111, 31, 19);
1016     f(op1, 18, 16);
1017     f(CRn, 15, 12);
1018     f(CRm, 11, 8);
1019     f(op2, 7, 5);
1020     // reading to zr is a mistake
1021     rf(rt, 0);
1022   }
1023 
1024   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1025                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1026 
1027   void dsb(barrier imm) {
1028     system(0b00, 0b011, 0b00011, imm, 0b100);
1029   }
1030 
1031   void dmb(barrier imm) {
1032     system(0b00, 0b011, 0b00011, imm, 0b101);
1033   }
1034 
1035   void isb() {
1036     system(0b00, 0b011, 0b00011, SY, 0b110);
1037   }
1038 
1039   void dc(Register Rt) {
1040     system(0b01, 0b011, 0b0111, 0b1011, 0b001, Rt);
1041   }
1042 
1043   void ic(Register Rt) {
1044     system(0b01, 0b011, 0b0111, 0b0101, 0b001, Rt);
1045   }
1046 
1047   // A more convenient access to dmb for our purposes
1048   enum Membar_mask_bits {
1049     // We can use ISH for a barrier because the ARM ARM says "This
1050     // architecture assumes that all Processing Elements that use the
1051     // same operating system or hypervisor are in the same Inner
1052     // Shareable shareability domain."
1053     StoreStore = ISHST,
1054     LoadStore  = ISHLD,
1055     LoadLoad   = ISHLD,
1056     StoreLoad  = ISH,
1057     AnyAny     = ISH
1058   };
1059 
1060   void membar(Membar_mask_bits order_constraint) {
1061     dmb(Assembler::barrier(order_constraint));
1062   }
1063 
1064   // Unconditional branch (register)
1065   void branch_reg(Register R, int opc) {
1066     starti;
1067     f(0b1101011, 31, 25);
1068     f(opc, 24, 21);
1069     f(0b11111000000, 20, 10);
1070     rf(R, 5);
1071     f(0b00000, 4, 0);
1072   }
1073 
1074 #define INSN(NAME, opc)                         \
1075   void NAME(Register R) {                       \
1076     branch_reg(R, opc);                         \
1077   }
1078 
1079   INSN(br, 0b0000);
1080   INSN(blr, 0b0001);
1081   INSN(ret, 0b0010);
1082 
1083   void ret(void *p); // This forces a compile-time error for ret(0)
1084 
1085 #undef INSN
1086 
1087 #define INSN(NAME, opc)                         \
1088   void NAME() {                 \
1089     branch_reg((Register)0b11111, opc);         \
1090   }
1091 
1092   INSN(eret, 0b0100);
1093   INSN(drps, 0b0101);
1094 
1095 #undef INSN
1096 
1097   // Load/store exclusive
1098   enum operand_size { byte, halfword, word, xword };
1099 
1100   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1101     Register Rn, enum operand_size sz, int op, int o0) {
1102     starti;
1103     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1104     rf(Rs, 16), f(o0, 15), rf(Rt2, 10), rf(Rn, 5), rf(Rt1, 0);
1105   }
1106 
1107 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1108   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1109     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1110     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1111   }
1112 
1113 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1114   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1115     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1116     load_store_exclusive(Rs, Rt, (Register)0b11111, Rn, sz, op, o0);    \
1117   }
1118 
1119 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1120   void NAME(Register Rt, Register Rn) {                                 \
1121     load_store_exclusive((Register)0b11111, Rt, (Register)0b11111,      \
1122                          Rn, sz, op, o0);                               \
1123   }
1124 
1125 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1126   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1127     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1128     load_store_exclusive((Register)0b11111, Rt1, Rt2, Rn, sz, op, o0);  \
1129   }
1130 
1131   // bytes
1132   INSN3(stxrb, byte, 0b000, 0);
1133   INSN3(stlxrb, byte, 0b000, 1);
1134   INSN2(ldxrb, byte, 0b010, 0);
1135   INSN2(ldaxrb, byte, 0b010, 1);
1136   INSN2(stlrb, byte, 0b100, 1);
1137   INSN2(ldarb, byte, 0b110, 1);
1138 
1139   // halfwords
1140   INSN3(stxrh, halfword, 0b000, 0);
1141   INSN3(stlxrh, halfword, 0b000, 1);
1142   INSN2(ldxrh, halfword, 0b010, 0);
1143   INSN2(ldaxrh, halfword, 0b010, 1);
1144   INSN2(stlrh, halfword, 0b100, 1);
1145   INSN2(ldarh, halfword, 0b110, 1);
1146 
1147   // words
1148   INSN3(stxrw, word, 0b000, 0);
1149   INSN3(stlxrw, word, 0b000, 1);
1150   INSN4(stxpw, word, 0b001, 0);
1151   INSN4(stlxpw, word, 0b001, 1);
1152   INSN2(ldxrw, word, 0b010, 0);
1153   INSN2(ldaxrw, word, 0b010, 1);
1154   INSN_FOO(ldxpw, word, 0b011, 0);
1155   INSN_FOO(ldaxpw, word, 0b011, 1);
1156   INSN2(stlrw, word, 0b100, 1);
1157   INSN2(ldarw, word, 0b110, 1);
1158 
1159   // xwords
1160   INSN3(stxr, xword, 0b000, 0);
1161   INSN3(stlxr, xword, 0b000, 1);
1162   INSN4(stxp, xword, 0b001, 0);
1163   INSN4(stlxp, xword, 0b001, 1);
1164   INSN2(ldxr, xword, 0b010, 0);
1165   INSN2(ldaxr, xword, 0b010, 1);
1166   INSN_FOO(ldxp, xword, 0b011, 0);
1167   INSN_FOO(ldaxp, xword, 0b011, 1);
1168   INSN2(stlr, xword, 0b100, 1);
1169   INSN2(ldar, xword, 0b110, 1);
1170 
1171 #undef INSN2
1172 #undef INSN3
1173 #undef INSN4
1174 #undef INSN_FOO
1175 
1176   // Load register (literal)
1177 #define INSN(NAME, opc, V)                                              \
1178   void NAME(Register Rt, address dest) {                                \
1179     long offset = (dest - pc()) >> 2;                                   \
1180     starti;                                                             \
1181     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1182       sf(offset, 23, 5);                                                \
1183     rf(Rt, 0);                                                          \
1184   }                                                                     \
1185   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1186     InstructionMark im(this);                                           \
1187     guarantee(rtype == relocInfo::internal_word_type,                   \
1188               "only internal_word_type relocs make sense here");        \
1189     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1190     NAME(Rt, dest);                                                     \
1191   }                                                                     \
1192   void NAME(Register Rt, Label &L) {                                    \
1193     wrap_label(Rt, L, &Assembler::NAME);                                \
1194   }
1195 
1196   INSN(ldrw, 0b00, 0);
1197   INSN(ldr, 0b01, 0);
1198   INSN(ldrsw, 0b10, 0);
1199 
1200 #undef INSN
1201 
1202 #define INSN(NAME, opc, V)                                              \
1203   void NAME(FloatRegister Rt, address dest) {                           \
1204     long offset = (dest - pc()) >> 2;                                   \
1205     starti;                                                             \
1206     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1207       sf(offset, 23, 5);                                                \
1208     rf((Register)Rt, 0);                                                \
1209   }
1210 
1211   INSN(ldrs, 0b00, 1);
1212   INSN(ldrd, 0b01, 1);
1213   INSN(ldrq, 0b10, 1);
1214 
1215 #undef INSN
1216 
1217 #define INSN(NAME, opc, V)                                              \
1218   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1219     long offset = (dest - pc()) >> 2;                                   \
1220     starti;                                                             \
1221     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1222       sf(offset, 23, 5);                                                \
1223     f(op, 4, 0);                                                        \
1224   }                                                                     \
1225   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1226     wrap_label(L, op, &Assembler::NAME);                                \
1227   }
1228 
1229   INSN(prfm, 0b11, 0);
1230 
1231 #undef INSN
1232 
1233   // Load/store
1234   void ld_st1(int opc, int p1, int V, int L,
1235               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1236     starti;
1237     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1238     zrf(Rt2, 10), zrf(Rt1, 0);
1239     if (no_allocate) {
1240       adr.encode_nontemporal_pair(current);
1241     } else {
1242       adr.encode_pair(current);
1243     }
1244   }
1245 
1246   // Load/store register pair (offset)
1247 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1248   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1249     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1250    }
1251 
1252   INSN(stpw, 0b00, 0b101, 0, 0, false);
1253   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1254   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1255   INSN(stp, 0b10, 0b101, 0, 0, false);
1256   INSN(ldp, 0b10, 0b101, 0, 1, false);
1257 
1258   // Load/store no-allocate pair (offset)
1259   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1260   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1261   INSN(stnp, 0b10, 0b101, 0, 0, true);
1262   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1263 
1264 #undef INSN
1265 
1266 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1267   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1268     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1269    }
1270 
1271   INSN(stps, 0b00, 0b101, 1, 0, false);
1272   INSN(ldps, 0b00, 0b101, 1, 1, false);
1273   INSN(stpd, 0b01, 0b101, 1, 0, false);
1274   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1275   INSN(stpq, 0b10, 0b101, 1, 0, false);
1276   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1277 
1278 #undef INSN
1279 
1280   // Load/store register (all modes)
1281   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1282     starti;
1283 
1284     f(V, 26); // general reg?
1285     zrf(Rt, 0);
1286 
1287     // Encoding for literal loads is done here (rather than pushed
1288     // down into Address::encode) because the encoding of this
1289     // instruction is too different from all of the other forms to
1290     // make it worth sharing.
1291     if (adr.getMode() == Address::literal) {
1292       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1293       assert(op == 0b01, "literal form can only be used with loads");
1294       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1295       long offset = (adr.target() - pc()) >> 2;
1296       sf(offset, 23, 5);
1297       code_section()->relocate(pc(), adr.rspec());
1298       return;
1299     }
1300 
1301     f(size, 31, 30);
1302     f(op, 23, 22); // str
1303     adr.encode(current);
1304   }
1305 
1306 #define INSN(NAME, size, op)                            \
1307   void NAME(Register Rt, const Address &adr) {          \
1308     ld_st2(Rt, adr, size, op);                          \
1309   }                                                     \
1310 
1311   INSN(str, 0b11, 0b00);
1312   INSN(strw, 0b10, 0b00);
1313   INSN(strb, 0b00, 0b00);
1314   INSN(strh, 0b01, 0b00);
1315 
1316   INSN(ldr, 0b11, 0b01);
1317   INSN(ldrw, 0b10, 0b01);
1318   INSN(ldrb, 0b00, 0b01);
1319   INSN(ldrh, 0b01, 0b01);
1320 
1321   INSN(ldrsb, 0b00, 0b10);
1322   INSN(ldrsbw, 0b00, 0b11);
1323   INSN(ldrsh, 0b01, 0b10);
1324   INSN(ldrshw, 0b01, 0b11);
1325   INSN(ldrsw, 0b10, 0b10);
1326 
1327 #undef INSN
1328 
1329 #define INSN(NAME, size, op)                                    \
1330   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1331     ld_st2((Register)pfop, adr, size, op);                      \
1332   }
1333 
1334   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1335                           // writeback modes, but the assembler
1336                           // doesn't enfore that.
1337 
1338 #undef INSN
1339 
1340 #define INSN(NAME, size, op)                            \
1341   void NAME(FloatRegister Rt, const Address &adr) {     \
1342     ld_st2((Register)Rt, adr, size, op, 1);             \
1343   }
1344 
1345   INSN(strd, 0b11, 0b00);
1346   INSN(strs, 0b10, 0b00);
1347   INSN(ldrd, 0b11, 0b01);
1348   INSN(ldrs, 0b10, 0b01);
1349   INSN(strq, 0b00, 0b10);
1350   INSN(ldrq, 0x00, 0b11);
1351 
1352 #undef INSN
1353 
1354   enum shift_kind { LSL, LSR, ASR, ROR };
1355 
1356   void op_shifted_reg(unsigned decode,
1357                       enum shift_kind kind, unsigned shift,
1358                       unsigned size, unsigned op) {
1359     f(size, 31);
1360     f(op, 30, 29);
1361     f(decode, 28, 24);
1362     f(shift, 15, 10);
1363     f(kind, 23, 22);
1364   }
1365 
1366   // Logical (shifted register)
1367 #define INSN(NAME, size, op, N)                                 \
1368   void NAME(Register Rd, Register Rn, Register Rm,              \
1369             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1370     starti;                                                     \
1371     f(N, 21);                                                   \
1372     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1373     op_shifted_reg(0b01010, kind, shift, size, op);             \
1374   }
1375 
1376   INSN(andr, 1, 0b00, 0);
1377   INSN(orr, 1, 0b01, 0);
1378   INSN(eor, 1, 0b10, 0);
1379   INSN(ands, 1, 0b11, 0);
1380   INSN(andw, 0, 0b00, 0);
1381   INSN(orrw, 0, 0b01, 0);
1382   INSN(eorw, 0, 0b10, 0);
1383   INSN(andsw, 0, 0b11, 0);
1384 
1385   INSN(bic, 1, 0b00, 1);
1386   INSN(orn, 1, 0b01, 1);
1387   INSN(eon, 1, 0b10, 1);
1388   INSN(bics, 1, 0b11, 1);
1389   INSN(bicw, 0, 0b00, 1);
1390   INSN(ornw, 0, 0b01, 1);
1391   INSN(eonw, 0, 0b10, 1);
1392   INSN(bicsw, 0, 0b11, 1);
1393 
1394 #undef INSN
1395 
1396   // Add/subtract (shifted register)
1397 #define INSN(NAME, size, op)                            \
1398   void NAME(Register Rd, Register Rn, Register Rm,      \
1399             enum shift_kind kind, unsigned shift = 0) { \
1400     starti;                                             \
1401     f(0, 21);                                           \
1402     assert_cond(kind != ROR);                           \
1403     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1404     op_shifted_reg(0b01011, kind, shift, size, op);     \
1405   }
1406 
1407   INSN(add, 1, 0b000);
1408   INSN(sub, 1, 0b10);
1409   INSN(addw, 0, 0b000);
1410   INSN(subw, 0, 0b10);
1411 
1412   INSN(adds, 1, 0b001);
1413   INSN(subs, 1, 0b11);
1414   INSN(addsw, 0, 0b001);
1415   INSN(subsw, 0, 0b11);
1416 
1417 #undef INSN
1418 
1419   // Add/subtract (extended register)
1420 #define INSN(NAME, op)                                                  \
1421   void NAME(Register Rd, Register Rn, Register Rm,                      \
1422            ext::operation option, int amount = 0) {                     \
1423     starti;                                                             \
1424     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1425     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1426   }
1427 
1428   void add_sub_extended_reg(unsigned op, unsigned decode,
1429     Register Rd, Register Rn, Register Rm,
1430     unsigned opt, ext::operation option, unsigned imm) {
1431     guarantee(imm <= 4, "shift amount must be < 4");
1432     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1433     f(option, 15, 13), f(imm, 12, 10);
1434   }
1435 
1436   INSN(addw, 0b000);
1437   INSN(subw, 0b010);
1438   INSN(add, 0b100);
1439   INSN(sub, 0b110);
1440 
1441 #undef INSN
1442 
1443 #define INSN(NAME, op)                                                  \
1444   void NAME(Register Rd, Register Rn, Register Rm,                      \
1445            ext::operation option, int amount = 0) {                     \
1446     starti;                                                             \
1447     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1448     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1449   }
1450 
1451   INSN(addsw, 0b001);
1452   INSN(subsw, 0b011);
1453   INSN(adds, 0b101);
1454   INSN(subs, 0b111);
1455 
1456 #undef INSN
1457 
1458   // Aliases for short forms of add and sub
1459 #define INSN(NAME)                                      \
1460   void NAME(Register Rd, Register Rn, Register Rm) {    \
1461     if (Rd == sp || Rn == sp)                           \
1462       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1463     else                                                \
1464       NAME(Rd, Rn, Rm, LSL);                            \
1465   }
1466 
1467   INSN(addw);
1468   INSN(subw);
1469   INSN(add);
1470   INSN(sub);
1471 
1472   INSN(addsw);
1473   INSN(subsw);
1474   INSN(adds);
1475   INSN(subs);
1476 
1477 #undef INSN
1478 
1479   // Add/subtract (with carry)
1480   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1481     starti;
1482     f(op, 31, 29);
1483     f(0b11010000, 28, 21);
1484     f(0b000000, 15, 10);
1485     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1486   }
1487 
1488   #define INSN(NAME, op)                                \
1489     void NAME(Register Rd, Register Rn, Register Rm) {  \
1490       add_sub_carry(op, Rd, Rn, Rm);                    \
1491     }
1492 
1493   INSN(adcw, 0b000);
1494   INSN(adcsw, 0b001);
1495   INSN(sbcw, 0b010);
1496   INSN(sbcsw, 0b011);
1497   INSN(adc, 0b100);
1498   INSN(adcs, 0b101);
1499   INSN(sbc,0b110);
1500   INSN(sbcs, 0b111);
1501 
1502 #undef INSN
1503 
1504   // Conditional compare (both kinds)
1505   void conditional_compare(unsigned op, int o2, int o3,
1506                            Register Rn, unsigned imm5, unsigned nzcv,
1507                            unsigned cond) {
1508     f(op, 31, 29);
1509     f(0b11010010, 28, 21);
1510     f(cond, 15, 12);
1511     f(o2, 10);
1512     f(o3, 4);
1513     f(nzcv, 3, 0);
1514     f(imm5, 20, 16), rf(Rn, 5);
1515   }
1516 
1517 #define INSN(NAME, op)                                                  \
1518   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1519     starti;                                                             \
1520     f(0, 11);                                                           \
1521     conditional_compare(op, 0, 0, Rn, (uintptr_t)Rm, imm, cond);        \
1522   }                                                                     \
1523                                                                         \
1524   void NAME(Register Rn, int imm5, int imm, Condition cond) {   \
1525     starti;                                                             \
1526     f(1, 11);                                                           \
1527     conditional_compare(op, 0, 0, Rn, imm5, imm, cond);                 \
1528   }
1529 
1530   INSN(ccmnw, 0b001);
1531   INSN(ccmpw, 0b011);
1532   INSN(ccmn, 0b101);
1533   INSN(ccmp, 0b111);
1534 
1535 #undef INSN
1536 
1537   // Conditional select
1538   void conditional_select(unsigned op, unsigned op2,
1539                           Register Rd, Register Rn, Register Rm,
1540                           unsigned cond) {
1541     starti;
1542     f(op, 31, 29);
1543     f(0b11010100, 28, 21);
1544     f(cond, 15, 12);
1545     f(op2, 11, 10);
1546     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1547   }
1548 
1549 #define INSN(NAME, op, op2)                                             \
1550   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1551     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1552   }
1553 
1554   INSN(cselw, 0b000, 0b00);
1555   INSN(csincw, 0b000, 0b01);
1556   INSN(csinvw, 0b010, 0b00);
1557   INSN(csnegw, 0b010, 0b01);
1558   INSN(csel, 0b100, 0b00);
1559   INSN(csinc, 0b100, 0b01);
1560   INSN(csinv, 0b110, 0b00);
1561   INSN(csneg, 0b110, 0b01);
1562 
1563 #undef INSN
1564 
1565   // Data processing
1566   void data_processing(unsigned op29, unsigned opcode,
1567                        Register Rd, Register Rn) {
1568     f(op29, 31, 29), f(0b11010110, 28, 21);
1569     f(opcode, 15, 10);
1570     rf(Rn, 5), rf(Rd, 0);
1571   }
1572 
1573   // (1 source)
1574 #define INSN(NAME, op29, opcode2, opcode)       \
1575   void NAME(Register Rd, Register Rn) {         \
1576     starti;                                     \
1577     f(opcode2, 20, 16);                         \
1578     data_processing(op29, opcode, Rd, Rn);      \
1579   }
1580 
1581   INSN(rbitw,  0b010, 0b00000, 0b00000);
1582   INSN(rev16w, 0b010, 0b00000, 0b00001);
1583   INSN(revw,   0b010, 0b00000, 0b00010);
1584   INSN(clzw,   0b010, 0b00000, 0b00100);
1585   INSN(clsw,   0b010, 0b00000, 0b00101);
1586 
1587   INSN(rbit,   0b110, 0b00000, 0b00000);
1588   INSN(rev16,  0b110, 0b00000, 0b00001);
1589   INSN(rev32,  0b110, 0b00000, 0b00010);
1590   INSN(rev,    0b110, 0b00000, 0b00011);
1591   INSN(clz,    0b110, 0b00000, 0b00100);
1592   INSN(cls,    0b110, 0b00000, 0b00101);
1593 
1594 #undef INSN
1595 
1596   // (2 sources)
1597 #define INSN(NAME, op29, opcode)                        \
1598   void NAME(Register Rd, Register Rn, Register Rm) {    \
1599     starti;                                             \
1600     rf(Rm, 16);                                         \
1601     data_processing(op29, opcode, Rd, Rn);              \
1602   }
1603 
1604   INSN(udivw, 0b000, 0b000010);
1605   INSN(sdivw, 0b000, 0b000011);
1606   INSN(lslvw, 0b000, 0b001000);
1607   INSN(lsrvw, 0b000, 0b001001);
1608   INSN(asrvw, 0b000, 0b001010);
1609   INSN(rorvw, 0b000, 0b001011);
1610 
1611   INSN(udiv, 0b100, 0b000010);
1612   INSN(sdiv, 0b100, 0b000011);
1613   INSN(lslv, 0b100, 0b001000);
1614   INSN(lsrv, 0b100, 0b001001);
1615   INSN(asrv, 0b100, 0b001010);
1616   INSN(rorv, 0b100, 0b001011);
1617 
1618 #undef INSN
1619 
1620   // (3 sources)
1621   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1622                        Register Rd, Register Rn, Register Rm,
1623                        Register Ra) {
1624     starti;
1625     f(op54, 31, 29), f(0b11011, 28, 24);
1626     f(op31, 23, 21), f(o0, 15);
1627     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1628   }
1629 
1630 #define INSN(NAME, op54, op31, o0)                                      \
1631   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1632     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1633   }
1634 
1635   INSN(maddw, 0b000, 0b000, 0);
1636   INSN(msubw, 0b000, 0b000, 1);
1637   INSN(madd, 0b100, 0b000, 0);
1638   INSN(msub, 0b100, 0b000, 1);
1639   INSN(smaddl, 0b100, 0b001, 0);
1640   INSN(smsubl, 0b100, 0b001, 1);
1641   INSN(umaddl, 0b100, 0b101, 0);
1642   INSN(umsubl, 0b100, 0b101, 1);
1643 
1644 #undef INSN
1645 
1646 #define INSN(NAME, op54, op31, o0)                      \
1647   void NAME(Register Rd, Register Rn, Register Rm) {    \
1648     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1649   }
1650 
1651   INSN(smulh, 0b100, 0b010, 0);
1652   INSN(umulh, 0b100, 0b110, 0);
1653 
1654 #undef INSN
1655 
1656   // Floating-point data-processing (1 source)
1657   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1658                        FloatRegister Vd, FloatRegister Vn) {
1659     starti;
1660     f(op31, 31, 29);
1661     f(0b11110, 28, 24);
1662     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1663     rf(Vn, 5), rf(Vd, 0);
1664   }
1665 
1666 #define INSN(NAME, op31, type, opcode)                  \
1667   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1668     data_processing(op31, type, opcode, Vd, Vn);        \
1669   }
1670 
1671 private:
1672   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1673 public:
1674   INSN(fabss, 0b000, 0b00, 0b000001);
1675   INSN(fnegs, 0b000, 0b00, 0b000010);
1676   INSN(fsqrts, 0b000, 0b00, 0b000011);
1677   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1678 
1679 private:
1680   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1681 public:
1682   INSN(fabsd, 0b000, 0b01, 0b000001);
1683   INSN(fnegd, 0b000, 0b01, 0b000010);
1684   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1685   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1686 
1687   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1688     assert(Vd != Vn, "should be");
1689     i_fmovd(Vd, Vn);
1690   }
1691 
1692   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1693     assert(Vd != Vn, "should be");
1694     i_fmovs(Vd, Vn);
1695   }
1696 
1697 #undef INSN
1698 
1699   // Floating-point data-processing (2 source)
1700   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1701                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1702     starti;
1703     f(op31, 31, 29);
1704     f(0b11110, 28, 24);
1705     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1706     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1707   }
1708 
1709 #define INSN(NAME, op31, type, opcode)                  \
1710   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1711     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1712   }
1713 
1714   INSN(fmuls, 0b000, 0b00, 0b0000);
1715   INSN(fdivs, 0b000, 0b00, 0b0001);
1716   INSN(fadds, 0b000, 0b00, 0b0010);
1717   INSN(fsubs, 0b000, 0b00, 0b0011);
1718   INSN(fnmuls, 0b000, 0b00, 0b1000);
1719 
1720   INSN(fmuld, 0b000, 0b01, 0b0000);
1721   INSN(fdivd, 0b000, 0b01, 0b0001);
1722   INSN(faddd, 0b000, 0b01, 0b0010);
1723   INSN(fsubd, 0b000, 0b01, 0b0011);
1724   INSN(fnmuld, 0b000, 0b01, 0b1000);
1725 
1726 #undef INSN
1727 
1728    // Floating-point data-processing (3 source)
1729   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1730                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1731                        FloatRegister Va) {
1732     starti;
1733     f(op31, 31, 29);
1734     f(0b11111, 28, 24);
1735     f(type, 23, 22), f(o1, 21), f(o0, 15);
1736     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1737   }
1738 
1739 #define INSN(NAME, op31, type, o1, o0)                                  \
1740   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1741             FloatRegister Va) {                                         \
1742     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1743   }
1744 
1745   INSN(fmadds, 0b000, 0b00, 0, 0);
1746   INSN(fmsubs, 0b000, 0b00, 0, 1);
1747   INSN(fnmadds, 0b000, 0b00, 1, 0);
1748   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1749 
1750   INSN(fmaddd, 0b000, 0b01, 0, 0);
1751   INSN(fmsubd, 0b000, 0b01, 0, 1);
1752   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1753   INSN(fnmsub, 0b000, 0b01, 1, 1);
1754 
1755 #undef INSN
1756 
1757    // Floating-point conditional select
1758   void fp_conditional_select(unsigned op31, unsigned type,
1759                              unsigned op1, unsigned op2,
1760                              Condition cond, FloatRegister Vd,
1761                              FloatRegister Vn, FloatRegister Vm) {
1762     starti;
1763     f(op31, 31, 29);
1764     f(0b11110, 28, 24);
1765     f(type, 23, 22);
1766     f(op1, 21, 21);
1767     f(op2, 11, 10);
1768     f(cond, 15, 12);
1769     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1770   }
1771 
1772 #define INSN(NAME, op31, type, op1, op2)                                \
1773   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1774             FloatRegister Vm, Condition cond) {                         \
1775     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1776   }
1777 
1778   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1779   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1780 
1781 #undef INSN
1782 
1783    // Floating-point<->integer conversions
1784   void float_int_convert(unsigned op31, unsigned type,
1785                          unsigned rmode, unsigned opcode,
1786                          Register Rd, Register Rn) {
1787     starti;
1788     f(op31, 31, 29);
1789     f(0b11110, 28, 24);
1790     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1791     f(opcode, 18, 16), f(0b000000, 15, 10);
1792     zrf(Rn, 5), zrf(Rd, 0);
1793   }
1794 
1795 #define INSN(NAME, op31, type, rmode, opcode)                           \
1796   void NAME(Register Rd, FloatRegister Vn) {                            \
1797     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1798   }
1799 
1800   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1801   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1802   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1803   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1804 
1805   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1806   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1807 
1808   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1809 
1810 #undef INSN
1811 
1812 #define INSN(NAME, op31, type, rmode, opcode)                           \
1813   void NAME(FloatRegister Vd, Register Rn) {                            \
1814     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1815   }
1816 
1817   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1818   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1819 
1820   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1821   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1822   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1823   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1824 
1825   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1826 
1827 #undef INSN
1828 
1829   // Floating-point compare
1830   void float_compare(unsigned op31, unsigned type,
1831                      unsigned op, unsigned op2,
1832                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1833     starti;
1834     f(op31, 31, 29);
1835     f(0b11110, 28, 24);
1836     f(type, 23, 22), f(1, 21);
1837     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1838     rf(Vn, 5), rf(Vm, 16);
1839   }
1840 
1841 
1842 #define INSN(NAME, op31, type, op, op2)                 \
1843   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1844     float_compare(op31, type, op, op2, Vn, Vm);         \
1845   }
1846 
1847 #define INSN1(NAME, op31, type, op, op2)        \
1848   void NAME(FloatRegister Vn, double d) {       \
1849     assert_cond(d == 0.0);                      \
1850     float_compare(op31, type, op, op2, Vn);     \
1851   }
1852 
1853   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1854   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1855   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1856   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1857 
1858   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1859   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1860   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1861   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1862 
1863 #undef INSN
1864 #undef INSN1
1865 
1866   // Floating-point Move (immediate)
1867 private:
1868   unsigned pack(double value);
1869 
1870   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
1871     starti;
1872     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
1873     f(pack(value), 20, 13), f(0b10000000, 12, 5);
1874     rf(Vn, 0);
1875   }
1876 
1877 public:
1878 
1879   void fmovs(FloatRegister Vn, double value) {
1880     if (value)
1881       fmov_imm(Vn, value, 0b00);
1882     else
1883       fmovs(Vn, zr);
1884   }
1885   void fmovd(FloatRegister Vn, double value) {
1886     if (value)
1887       fmov_imm(Vn, value, 0b01);
1888     else
1889       fmovd(Vn, zr);
1890   }
1891 
1892 /* SIMD extensions
1893  *
1894  * We just use FloatRegister in the following. They are exactly the same
1895  * as SIMD registers.
1896  */
1897  public:
1898 
1899   enum SIMD_Arrangement {
1900        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
1901   };
1902 
1903   enum SIMD_RegVariant {
1904        B, H, S, D, Q
1905   };
1906 
1907 #define INSN(NAME, op)                                            \
1908   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
1909     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
1910   }                                                                      \
1911 
1912   INSN(ldr, 1);
1913   INSN(str, 0);
1914 
1915 #undef INSN
1916 
1917  private:
1918 
1919   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
1920     starti;
1921     f(0,31), f((int)T & 1, 30);
1922     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
1923     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1924   }
1925   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
1926              int imm, int op1, int op2) {
1927     starti;
1928     f(0,31), f((int)T & 1, 30);
1929     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
1930     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1931   }
1932   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
1933              Register Xm, int op1, int op2) {
1934     starti;
1935     f(0,31), f((int)T & 1, 30);
1936     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
1937     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1938   }
1939 
1940  void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2) {
1941    switch (a.getMode()) {
1942    case Address::base_plus_offset:
1943      guarantee(a.offset() == 0, "no offset allowed here");
1944      ld_st(Vt, T, a.base(), op1, op2);
1945      break;
1946    case Address::post:
1947      ld_st(Vt, T, a.base(), a.offset(), op1, op2);
1948      break;
1949    case Address::base_plus_offset_reg:
1950      ld_st(Vt, T, a.base(), a.index(), op1, op2);
1951      break;
1952    default:
1953      ShouldNotReachHere();
1954    }
1955  }
1956 
1957  public:
1958 
1959 #define INSN1(NAME, op1, op2)                                   \
1960   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
1961    ld_st(Vt, T, a, op1, op2);                                           \
1962  }
1963 
1964 #define INSN2(NAME, op1, op2)                                           \
1965   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
1966     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
1967     ld_st(Vt, T, a, op1, op2);                                          \
1968   }
1969 
1970 #define INSN3(NAME, op1, op2)                                           \
1971   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
1972             SIMD_Arrangement T, const Address &a) {                     \
1973     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
1974            "Registers must be ordered");                                \
1975     ld_st(Vt, T, a, op1, op2);                                          \
1976   }
1977 
1978 #define INSN4(NAME, op1, op2)                                           \
1979   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
1980             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
1981     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
1982            Vt3->successor() == Vt4, "Registers must be ordered");       \
1983     ld_st(Vt, T, a, op1, op2);                                          \
1984   }
1985 
1986   INSN1(ld1,  0b001100010, 0b0111);
1987   INSN2(ld1,  0b001100010, 0b1010);
1988   INSN3(ld1,  0b001100010, 0b0110);
1989   INSN4(ld1,  0b001100010, 0b0010);
1990 
1991   INSN2(ld2,  0b001100010, 0b1000);
1992   INSN3(ld3,  0b001100010, 0b0100);
1993   INSN4(ld4,  0b001100010, 0b0000);
1994 
1995   INSN1(st1,  0b001100000, 0b0111);
1996   INSN2(st1,  0b001100000, 0b1010);
1997   INSN3(st1,  0b001100000, 0b0110);
1998   INSN4(st1,  0b001100000, 0b0010);
1999 
2000   INSN2(st2,  0b001100000, 0b1000);
2001   INSN3(st3,  0b001100000, 0b0100);
2002   INSN4(st4,  0b001100000, 0b0000);
2003 
2004   INSN1(ld1r, 0b001101010, 0b1100);
2005   INSN2(ld2r, 0b001101011, 0b1100);
2006   INSN3(ld3r, 0b001101010, 0b1110);
2007   INSN4(ld4r, 0b001101011, 0b1110);
2008 
2009 #undef INSN1
2010 #undef INSN2
2011 #undef INSN3
2012 #undef INSN4
2013 
2014 #define INSN(NAME, opc)                                                                 \
2015   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2016     starti;                                                                             \
2017     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2018     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2019     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2020   }
2021 
2022   INSN(eor,  0b101110001);
2023   INSN(orr,  0b001110101);
2024   INSN(andr, 0b001110001);
2025   INSN(bic,  0b001110011);
2026   INSN(bif,  0b101110111);
2027   INSN(bit,  0b101110101);
2028   INSN(bsl,  0b101110011);
2029   INSN(orn,  0b001110111);
2030 
2031 #undef INSN
2032 
2033 #define INSN(NAME, opc, opc2)                                                                 \
2034   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2035     starti;                                                                             \
2036     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2037     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2038     rf(Vn, 5), rf(Vd, 0);                                                               \
2039   }
2040 
2041   INSN(addv, 0, 0b100001);
2042   INSN(subv, 1, 0b100001);
2043   INSN(mulv, 0, 0b100111);
2044   INSN(sshl, 0, 0b010001);
2045   INSN(ushl, 1, 0b010001);
2046 
2047 #undef INSN
2048 
2049 #define INSN(NAME, opc, opc2) \
2050   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2051     starti;                                                                             \
2052     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2053     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2054     rf(Vn, 5), rf(Vd, 0);                                                               \
2055   }
2056 
2057   INSN(absr,  0, 0b100000101110);
2058   INSN(negr,  1, 0b100000101110);
2059   INSN(notr,  1, 0b100000010110);
2060   INSN(addv,  0, 0b110001101110);
2061   INSN(cls,   0, 0b100000010010);
2062   INSN(clz,   1, 0b100000010010);
2063   INSN(cnt,   0, 0b100000010110);
2064 
2065 #undef INSN
2066 
2067 #define INSN(NAME, op0, cmode0) \
2068   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2069     unsigned cmode = cmode0;                                                           \
2070     unsigned op = op0;                                                                 \
2071     starti;                                                                            \
2072     assert(lsl == 0 ||                                                                 \
2073            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2074            ((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift");             \
2075     cmode |= lsl >> 2;                                                                 \
2076     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2077     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2078       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2079       cmode = 0b1110;                                                                  \
2080       if (T == T1D || T == T2D) op = 1;                                                \
2081     }                                                                                  \
2082     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2083     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2084     rf(Vd, 0);                                                                         \
2085   }
2086 
2087   INSN(movi, 0, 0);
2088   INSN(orri, 0, 1);
2089   INSN(mvni, 1, 0);
2090   INSN(bici, 1, 1);
2091 
2092 #undef INSN
2093 
2094 #define INSN(NAME, op1, op2, op3) \
2095   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2096     starti;                                                                             \
2097     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2098     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2099     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2100   }
2101 
2102   INSN(fadd, 0, 0, 0b110101);
2103   INSN(fdiv, 1, 0, 0b111111);
2104   INSN(fmul, 1, 0, 0b110111);
2105   INSN(fsub, 0, 1, 0b110101);
2106 
2107 #undef INSN
2108 
2109 #define INSN(NAME, opc)                                                                 \
2110   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2111     starti;                                                                             \
2112     assert(T == T4S, "arrangement must be T4S");                                        \
2113     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2114   }
2115 
2116   INSN(sha1c,     0b000000);
2117   INSN(sha1m,     0b001000);
2118   INSN(sha1p,     0b000100);
2119   INSN(sha1su0,   0b001100);
2120   INSN(sha256h2,  0b010100);
2121   INSN(sha256h,   0b010000);
2122   INSN(sha256su1, 0b011000);
2123 
2124 #undef INSN
2125 
2126 #define INSN(NAME, opc)                                                                 \
2127   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2128     starti;                                                                             \
2129     assert(T == T4S, "arrangement must be T4S");                                        \
2130     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2131   }
2132 
2133   INSN(sha1h,     0b000010);
2134   INSN(sha1su1,   0b000110);
2135   INSN(sha256su0, 0b001010);
2136 
2137 #undef INSN
2138 
2139 #define INSN(NAME, opc)                           \
2140   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2141     starti;                                       \
2142     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2143   }
2144 
2145   INSN(aese, 0b0100111000101000010010);
2146   INSN(aesd, 0b0100111000101000010110);
2147   INSN(aesmc, 0b0100111000101000011010);
2148   INSN(aesimc, 0b0100111000101000011110);
2149 
2150 #undef INSN
2151 
2152   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2153     starti;
2154     assert(T != Q, "invalid register variant");
2155     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2156     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2157   }
2158 
2159   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2160     starti;
2161     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2162     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2163     rf(Vn, 5), rf(Rd, 0);
2164   }
2165 
2166 #define INSN(NAME, opc, opc2) \
2167   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){         \
2168     starti;                                                                             \
2169     /* The encodings for the immh:immb fields (bits 22:16) are                          \
2170      *   0001 xxx       8B/16B, shift = xxx                                             \
2171      *   001x xxx       4H/8H,  shift = xxxx                                            \
2172      *   01xx xxx       2S/4S,  shift = xxxxx                                           \
2173      *   1xxx xxx       1D/2D,  shift = xxxxxx (1D is RESERVED)                         \
2174      */                                                                                 \
2175     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");                           \
2176     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),                            \
2177     f((1 << ((T>>1)+3))|shift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);          \
2178   }
2179 
2180   INSN(shl,  0, 0b010101);
2181   INSN(sshr, 0, 0b000001);
2182   INSN(ushr, 1, 0b000001);
2183 
2184 #undef INSN
2185 
2186   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2187     starti;
2188     /* The encodings for the immh:immb fields (bits 22:16) are
2189      *   0001 xxx       8H, 8B/16b shift = xxx
2190      *   001x xxx       4S, 4H/8H  shift = xxxx
2191      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2192      *   1xxx xxx       RESERVED
2193      */
2194     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2195     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2196     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2197     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2198   }
2199   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2200     ushll(Vd, Ta, Vn, Tb, shift);
2201   }
2202 
2203   void uzp1(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T, int op = 0){
2204     starti;
2205     f(0, 31), f((T & 0x1), 30), f(0b001110, 29, 24), f((T >> 1), 23, 22), f(0, 21);
2206     rf(Vm, 16), f(0, 15), f(op, 14), f(0b0110, 13, 10), rf(Vn, 5), rf(Vd, 0);
2207   }
2208   void uzp2(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T){
2209     uzp1(Vd, Vn, Vm, T, 1);
2210   }
2211 
2212   // Move from general purpose register
2213   //   mov  Vd.T[index], Rn
2214   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2215     starti;
2216     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2217     f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
2218   }
2219 
2220   // Move to general purpose register
2221   //   mov  Rd, Vn.T[index]
2222   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2223     starti;
2224     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2225     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2226     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2227   }
2228 
2229   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2230     starti;
2231     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2232            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2233     int size = (Ta == T1Q) ? 0b11 : 0b00;
2234     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2235     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2236   }
2237   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2238     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2239     pmull(Vd, Ta, Vn, Vm, Tb);
2240   }
2241 
2242   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2243     starti;
2244     int size_b = (int)Tb >> 1;
2245     int size_a = (int)Ta >> 1;
2246     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2247     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2248     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2249   }
2250 
2251   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2252   {
2253     starti;
2254     assert(T != T1D, "reserved encoding");
2255     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2256     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
2257   }
2258 
2259   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2260   {
2261     starti;
2262     assert(T != T1D, "reserved encoding");
2263     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2264     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2265     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2266   }
2267 
2268   // CRC32 instructions
2269 #define INSN(NAME, c, sf, sz)                                             \
2270   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2271     starti;                                                               \
2272     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2273     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2274   }
2275 
2276   INSN(crc32b,  0, 0, 0b00);
2277   INSN(crc32h,  0, 0, 0b01);
2278   INSN(crc32w,  0, 0, 0b10);
2279   INSN(crc32x,  0, 1, 0b11);
2280   INSN(crc32cb, 1, 0, 0b00);
2281   INSN(crc32ch, 1, 0, 0b01);
2282   INSN(crc32cw, 1, 0, 0b10);
2283   INSN(crc32cx, 1, 1, 0b11);
2284 
2285 #undef INSN
2286 
2287   // Table vector lookup
2288 #define INSN(NAME, op)                                                  \
2289   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2290     starti;                                                             \
2291     assert(T == T8B || T == T16B, "invalid arrangement");               \
2292     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2293     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2294     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2295   }
2296 
2297   INSN(tbl, 0);
2298   INSN(tbx, 1);
2299 
2300 #undef INSN
2301 
2302   // AdvSIMD two-reg misc
2303 #define INSN(NAME, U, opcode)                                                       \
2304   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2305        starti;                                                                      \
2306        assert((ASSERTION), MSG);                                                    \
2307        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2308        f((int)(T >> 1), 23, 22), f(0b10000, 21, 17), f(opcode, 16, 12);             \
2309        f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                                       \
2310  }
2311 
2312 #define MSG "invalid arrangement"
2313 
2314 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2315   INSN(fsqrt, 1, 0b11111);
2316   INSN(fabs,  0, 0b01111);
2317   INSN(fneg,  1, 0b01111);
2318 #undef ASSERTION
2319 
2320 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2321   INSN(rev64, 0, 0b00000);
2322 #undef ASSERTION
2323 
2324 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2325   INSN(rev32, 1, 0b00000);
2326 private:
2327   INSN(_rbit, 1, 0b00101);
2328 public:
2329 
2330 #undef ASSERTION
2331 
2332 #define ASSERTION (T == T8B || T == T16B)
2333   INSN(rev16, 0, 0b00001);
2334   // RBIT only allows T8B and T16B but encodes them oddly.  Argh...
2335   void rbit(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
2336     assert((ASSERTION), MSG);
2337     _rbit(Vd, SIMD_Arrangement(T & 1 | 0b010), Vn);
2338   }
2339 #undef ASSERTION
2340 
2341 #undef MSG
2342 
2343 #undef INSN
2344 
2345 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2346   {
2347     starti;
2348     assert(T == T8B || T == T16B, "invalid arrangement");
2349     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2350     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2351     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2352     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2353   }
2354 
2355 /* Simulator extensions to the ISA
2356 
2357    haltsim
2358 
2359    takes no arguments, causes the sim to enter a debug break and then
2360    return from the simulator run() call with STATUS_HALT? The linking
2361    code will call fatal() when it sees STATUS_HALT.
2362 
2363    blrt Xn, Wm
2364    blrt Xn, #gpargs, #fpargs, #type
2365    Xn holds the 64 bit x86 branch_address
2366    call format is encoded either as immediate data in the call
2367    or in register Wm. In the latter case
2368      Wm[13..6] = #gpargs,
2369      Wm[5..2] = #fpargs,
2370      Wm[1,0] = #type
2371 
2372    calls the x86 code address 'branch_address' supplied in Xn passing
2373    arguments taken from the general and floating point registers according
2374    to the supplied counts 'gpargs' and 'fpargs'. may return a result in r0
2375    or v0 according to the the return type #type' where
2376 
2377    address branch_address;
2378    uimm4 gpargs;
2379    uimm4 fpargs;
2380    enum ReturnType type;
2381 
2382    enum ReturnType
2383      {
2384        void_ret = 0,
2385        int_ret = 1,
2386        long_ret = 1,
2387        obj_ret = 1, // i.e. same as long
2388        float_ret = 2,
2389        double_ret = 3
2390      }
2391 
2392    notify
2393 
2394    notifies the simulator of a transfer of control. instr[14:0]
2395    identifies the type of change of control.
2396 
2397    0 ==> initial entry to a method.
2398 
2399    1 ==> return into a method from a submethod call.
2400 
2401    2 ==> exit out of Java method code.
2402 
2403    3 ==> start execution for a new bytecode.
2404 
2405    in cases 1 and 2 the simulator is expected to use a JVM callback to
2406    identify the name of the specific method being executed. in case 4
2407    the simulator is expected to use a JVM callback to identify the
2408    bytecode index.
2409 
2410    Instruction encodings
2411    ---------------------
2412 
2413    These are encoded in the space with instr[28:25] = 00 which is
2414    unallocated. Encodings are
2415 
2416                      10987654321098765432109876543210
2417    PSEUDO_HALT   = 0x11100000000000000000000000000000
2418    PSEUDO_BLRT  = 0x11000000000000000_______________
2419    PSEUDO_BLRTR = 0x1100000000000000100000__________
2420    PSEUDO_NOTIFY = 0x10100000000000000_______________
2421 
2422    instr[31,29] = op1 : 111 ==> HALT, 110 ==> BLRT/BLRTR, 101 ==> NOTIFY
2423 
2424    for BLRT
2425      instr[14,11] = #gpargs, instr[10,7] = #fpargs
2426      instr[6,5] = #type, instr[4,0] = Rn
2427    for BLRTR
2428      instr[9,5] = Rm, instr[4,0] = Rn
2429    for NOTIFY
2430      instr[14:0] = type : 0 ==> entry, 1 ==> reentry, 2 ==> exit, 3 ==> bcstart
2431 */
2432 
2433   enum NotifyType { method_entry, method_reentry, method_exit, bytecode_start };
2434 
2435   virtual void notify(int type) {
2436     if (UseBuiltinSim) {
2437       starti;
2438       //  109
2439       f(0b101, 31, 29);
2440       //  87654321098765
2441       f(0b00000000000000, 28, 15);
2442       f(type, 14, 0);
2443     }
2444   }
2445 
2446   void blrt(Register Rn, int gpargs, int fpargs, int type) {
2447     if (UseBuiltinSim) {
2448       starti;
2449       f(0b110, 31 ,29);
2450       f(0b00, 28, 25);
2451       //  4321098765
2452       f(0b0000000000, 24, 15);
2453       f(gpargs, 14, 11);
2454       f(fpargs, 10, 7);
2455       f(type, 6, 5);
2456       rf(Rn, 0);
2457     } else {
2458       blr(Rn);
2459     }
2460   }
2461 
2462   void blrt(Register Rn, Register Rm) {
2463     if (UseBuiltinSim) {
2464       starti;
2465       f(0b110, 31 ,29);
2466       f(0b00, 28, 25);
2467       //  4321098765
2468       f(0b0000000001, 24, 15);
2469       //  43210
2470       f(0b00000, 14, 10);
2471       rf(Rm, 5);
2472       rf(Rn, 0);
2473     } else {
2474       blr(Rn);
2475     }
2476   }
2477 
2478   void haltsim() {
2479     starti;
2480     f(0b111, 31 ,29);
2481     f(0b00, 28, 27);
2482     //  654321098765432109876543210
2483     f(0b000000000000000000000000000, 26, 0);
2484   }
2485 
2486   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2487   }
2488 
2489   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2490                                                 Register tmp,
2491                                                 int offset) {
2492     ShouldNotCallThis();
2493     return RegisterOrConstant();
2494   }
2495 
2496   // Stack overflow checking
2497   virtual void bang_stack_with_offset(int offset);
2498 
2499   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2500   static bool operand_valid_for_add_sub_immediate(long imm);
2501   static bool operand_valid_for_float_immediate(double imm);
2502 
2503   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2504   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2505 };
2506 
2507 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2508                                              Assembler::Membar_mask_bits b) {
2509   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2510 }
2511 
2512 Instruction_aarch64::~Instruction_aarch64() {
2513   assem->emit();
2514 }
2515 
2516 #undef starti
2517 
2518 // Invert a condition
2519 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2520   return Assembler::Condition(int(cond) ^ 1);
2521 }
2522 
2523 class BiasedLockingCounters;
2524 
2525 extern "C" void das(uint64_t start, int len);
2526 
2527 #endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP