1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument VALUE_OBJ_CLASS_SPEC {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch,      r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 // TODO : x86 uses rbp to save SP in method handle code
 143 // we may need to do the same with fp
 144 // JSR 292 fixed register usages:
 145 //REGISTER_DECLARATION(Register, r_mh_SP_save, r29);
 146 
 147 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 148 
 149 namespace asm_util {
 150   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 151 };
 152 
 153 using namespace asm_util;
 154 
 155 
 156 class Assembler;
 157 
 158 class Instruction_aarch64 {
 159   unsigned insn;
 160 #ifdef ASSERT
 161   unsigned bits;
 162 #endif
 163   Assembler *assem;
 164 
 165 public:
 166 
 167   Instruction_aarch64(class Assembler *as) {
 168 #ifdef ASSERT
 169     bits = 0;
 170 #endif
 171     insn = 0;
 172     assem = as;
 173   }
 174 
 175   inline ~Instruction_aarch64();
 176 
 177   unsigned &get_insn() { return insn; }
 178 #ifdef ASSERT
 179   unsigned &get_bits() { return bits; }
 180 #endif
 181 
 182   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 183     union {
 184       unsigned u;
 185       int n;
 186     };
 187 
 188     u = val << (31 - hi);
 189     n = n >> (31 - hi + lo);
 190     return n;
 191   }
 192 
 193   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 194     int nbits = msb - lsb + 1;
 195     assert_cond(msb >= lsb);
 196     uint32_t mask = (1U << nbits) - 1;
 197     uint32_t result = val >> lsb;
 198     result &= mask;
 199     return result;
 200   }
 201 
 202   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 203     uint32_t uval = extract(val, msb, lsb);
 204     return extend(uval, msb - lsb);
 205   }
 206 
 207   static void patch(address a, int msb, int lsb, unsigned long val) {
 208     int nbits = msb - lsb + 1;
 209     guarantee(val < (1U << nbits), "Field too big for insn");
 210     assert_cond(msb >= lsb);
 211     unsigned mask = (1U << nbits) - 1;
 212     val <<= lsb;
 213     mask <<= lsb;
 214     unsigned target = *(unsigned *)a;
 215     target &= ~mask;
 216     target |= val;
 217     *(unsigned *)a = target;
 218   }
 219 
 220   static void spatch(address a, int msb, int lsb, long val) {
 221     int nbits = msb - lsb + 1;
 222     long chk = val >> (nbits - 1);
 223     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 224     unsigned uval = val;
 225     unsigned mask = (1U << nbits) - 1;
 226     uval &= mask;
 227     uval <<= lsb;
 228     mask <<= lsb;
 229     unsigned target = *(unsigned *)a;
 230     target &= ~mask;
 231     target |= uval;
 232     *(unsigned *)a = target;
 233   }
 234 
 235 #define aarch64_NOP 0xd503201f
 236   static void patch_movk(address a, int pos, int msb, int lsb,
 237                          unsigned long val, unsigned shift) {
 238     address real_a = a + pos;
 239 
 240     // Revert NOP to MOVK
 241     if (*(uint32_t*)real_a == aarch64_NOP) {
 242       uint32_t patch_val = (0b111100101<<23);
 243 
 244       // Patch shift number.
 245       patch_val |= ((shift/16)<<21);
 246       // Patch dest register.
 247       patch_val |= extract(*(uint32_t *)a, 4, 0);
 248 
 249       *(uint32_t*)real_a = patch_val;
 250     }
 251 
 252     patch(real_a, msb, lsb, (val>>shift) & 0xffff);
 253   }
 254 
 255   void f(unsigned val, int msb, int lsb) {
 256     int nbits = msb - lsb + 1;
 257     guarantee(val < (1U << nbits), "Field too big for insn");
 258     assert_cond(msb >= lsb);
 259     unsigned mask = (1U << nbits) - 1;
 260     val <<= lsb;
 261     mask <<= lsb;
 262     insn |= val;
 263     assert_cond((bits & mask) == 0);
 264 #ifdef ASSERT
 265     bits |= mask;
 266 #endif
 267   }
 268 
 269   void f(unsigned val, int bit) {
 270     f(val, bit, bit);
 271   }
 272 
 273   void sf(long val, int msb, int lsb) {
 274     int nbits = msb - lsb + 1;
 275     long chk = val >> (nbits - 1);
 276     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 277     unsigned uval = val;
 278     unsigned mask = (1U << nbits) - 1;
 279     uval &= mask;
 280     f(uval, lsb + nbits - 1, lsb);
 281   }
 282 
 283   void rf(Register r, int lsb) {
 284     f(r->encoding_nocheck(), lsb + 4, lsb);
 285   }
 286 
 287   // reg|ZR
 288   void zrf(Register r, int lsb) {
 289     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 290   }
 291 
 292   // reg|SP
 293   void srf(Register r, int lsb) {
 294     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 295   }
 296 
 297   void rf(FloatRegister r, int lsb) {
 298     f(r->encoding_nocheck(), lsb + 4, lsb);
 299   }
 300 
 301   unsigned get(int msb = 31, int lsb = 0) {
 302     int nbits = msb - lsb + 1;
 303     unsigned mask = ((1U << nbits) - 1) << lsb;
 304     assert_cond(bits & mask == mask);
 305     return (insn & mask) >> lsb;
 306   }
 307 
 308   void fixed(unsigned value, unsigned mask) {
 309     assert_cond ((mask & bits) == 0);
 310 #ifdef ASSERT
 311     bits |= mask;
 312 #endif
 313     insn |= value;
 314   }
 315 };
 316 
 317 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 318 
 319 class PrePost {
 320   int _offset;
 321   Register _r;
 322 public:
 323   PrePost(Register reg, int o) : _r(reg), _offset(o) { }
 324   int offset() { return _offset; }
 325   Register reg() { return _r; }
 326 };
 327 
 328 class Pre : public PrePost {
 329 public:
 330   Pre(Register reg, int o) : PrePost(reg, o) { }
 331 };
 332 class Post : public PrePost {
 333 public:
 334   Post(Register reg, int o) : PrePost(reg, o) { }
 335 };
 336 
 337 namespace ext
 338 {
 339   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 340 };
 341 
 342 // abs methods which cannot overflow and so are well-defined across
 343 // the entire domain of integer types.
 344 static inline unsigned int uabs(unsigned int n) {
 345   union {
 346     unsigned int result;
 347     int value;
 348   };
 349   result = n;
 350   if (value < 0) result = -result;
 351   return result;
 352 }
 353 static inline unsigned long uabs(unsigned long n) {
 354   union {
 355     unsigned long result;
 356     long value;
 357   };
 358   result = n;
 359   if (value < 0) result = -result;
 360   return result;
 361 }
 362 static inline unsigned long uabs(long n) { return uabs((unsigned long)n); }
 363 static inline unsigned long uabs(int n) { return uabs((unsigned int)n); }
 364 
 365 // Addressing modes
 366 class Address VALUE_OBJ_CLASS_SPEC {
 367  public:
 368 
 369   enum mode { no_mode, base_plus_offset, pre, post, pcrel,
 370               base_plus_offset_reg, literal };
 371 
 372   // Shift and extend for base reg + reg offset addressing
 373   class extend {
 374     int _option, _shift;
 375     ext::operation _op;
 376   public:
 377     extend() { }
 378     extend(int s, int o, ext::operation op) : _shift(s), _option(o), _op(op) { }
 379     int option() const{ return _option; }
 380     int shift() const { return _shift; }
 381     ext::operation op() const { return _op; }
 382   };
 383   class uxtw : public extend {
 384   public:
 385     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 386   };
 387   class lsl : public extend {
 388   public:
 389     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 390   };
 391   class sxtw : public extend {
 392   public:
 393     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 394   };
 395   class sxtx : public extend {
 396   public:
 397     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 398   };
 399 
 400  private:
 401   Register _base;
 402   Register _index;
 403   long _offset;
 404   enum mode _mode;
 405   extend _ext;
 406 
 407   RelocationHolder _rspec;
 408 
 409   // Typically we use AddressLiterals we want to use their rval
 410   // However in some situations we want the lval (effect address) of
 411   // the item.  We provide a special factory for making those lvals.
 412   bool _is_lval;
 413 
 414   // If the target is far we'll need to load the ea of this to a
 415   // register to reach it. Otherwise if near we can do PC-relative
 416   // addressing.
 417   address          _target;
 418 
 419  public:
 420   Address()
 421     : _mode(no_mode) { }
 422   Address(Register r)
 423     : _mode(base_plus_offset), _base(r), _offset(0), _index(noreg), _target(0) { }
 424   Address(Register r, int o)
 425     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 426   Address(Register r, long o)
 427     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 428   Address(Register r, unsigned long o)
 429     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 430 #ifdef ASSERT
 431   Address(Register r, ByteSize disp)
 432     : _mode(base_plus_offset), _base(r), _offset(in_bytes(disp)),
 433       _index(noreg), _target(0) { }
 434 #endif
 435   Address(Register r, Register r1, extend ext = lsl())
 436     : _mode(base_plus_offset_reg), _base(r), _index(r1),
 437     _ext(ext), _offset(0), _target(0) { }
 438   Address(Pre p)
 439     : _mode(pre), _base(p.reg()), _offset(p.offset()) { }
 440   Address(Post p)
 441     : _mode(post), _base(p.reg()), _offset(p.offset()), _target(0) { }
 442   Address(address target, RelocationHolder const& rspec)
 443     : _mode(literal),
 444       _rspec(rspec),
 445       _is_lval(false),
 446       _target(target)  { }
 447   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 448   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 449     : _base (base),
 450       _ext(ext), _offset(0), _target(0) {
 451     if (index.is_register()) {
 452       _mode = base_plus_offset_reg;
 453       _index = index.as_register();
 454     } else {
 455       guarantee(ext.option() == ext::uxtx, "should be");
 456       assert(index.is_constant(), "should be");
 457       _mode = base_plus_offset;
 458       _offset = index.as_constant() << ext.shift();
 459     }
 460   }
 461 
 462   Register base() const {
 463     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 464                | _mode == post),
 465               "wrong mode");
 466     return _base;
 467   }
 468   long offset() const {
 469     return _offset;
 470   }
 471   Register index() const {
 472     return _index;
 473   }
 474   mode getMode() const {
 475     return _mode;
 476   }
 477   bool uses(Register reg) const { return _base == reg || _index == reg; }
 478   address target() const { return _target; }
 479   const RelocationHolder& rspec() const { return _rspec; }
 480 
 481   void encode(Instruction_aarch64 *i) const {
 482     i->f(0b111, 29, 27);
 483     i->srf(_base, 5);
 484 
 485     switch(_mode) {
 486     case base_plus_offset:
 487       {
 488         unsigned size = i->get(31, 30);
 489         if (i->get(26, 26) && i->get(23, 23)) {
 490           // SIMD Q Type - Size = 128 bits
 491           assert(size == 0, "bad size");
 492           size = 0b100;
 493         }
 494         unsigned mask = (1 << size) - 1;
 495         if (_offset < 0 || _offset & mask)
 496           {
 497             i->f(0b00, 25, 24);
 498             i->f(0, 21), i->f(0b00, 11, 10);
 499             i->sf(_offset, 20, 12);
 500           } else {
 501             i->f(0b01, 25, 24);
 502             i->f(_offset >> size, 21, 10);
 503           }
 504       }
 505       break;
 506 
 507     case base_plus_offset_reg:
 508       {
 509         i->f(0b00, 25, 24);
 510         i->f(1, 21);
 511         i->rf(_index, 16);
 512         i->f(_ext.option(), 15, 13);
 513         unsigned size = i->get(31, 30);
 514         if (i->get(26, 26) && i->get(23, 23)) {
 515           // SIMD Q Type - Size = 128 bits
 516           assert(size == 0, "bad size");
 517           size = 0b100;
 518         }
 519         if (size == 0) // It's a byte
 520           i->f(_ext.shift() >= 0, 12);
 521         else {
 522           if (_ext.shift() > 0)
 523             assert(_ext.shift() == (int)size, "bad shift");
 524           i->f(_ext.shift() > 0, 12);
 525         }
 526         i->f(0b10, 11, 10);
 527       }
 528       break;
 529 
 530     case pre:
 531       i->f(0b00, 25, 24);
 532       i->f(0, 21), i->f(0b11, 11, 10);
 533       i->sf(_offset, 20, 12);
 534       break;
 535 
 536     case post:
 537       i->f(0b00, 25, 24);
 538       i->f(0, 21), i->f(0b01, 11, 10);
 539       i->sf(_offset, 20, 12);
 540       break;
 541 
 542     default:
 543       ShouldNotReachHere();
 544     }
 545   }
 546 
 547   void encode_pair(Instruction_aarch64 *i) const {
 548     switch(_mode) {
 549     case base_plus_offset:
 550       i->f(0b010, 25, 23);
 551       break;
 552     case pre:
 553       i->f(0b011, 25, 23);
 554       break;
 555     case post:
 556       i->f(0b001, 25, 23);
 557       break;
 558     default:
 559       ShouldNotReachHere();
 560     }
 561 
 562     unsigned size; // Operand shift in 32-bit words
 563 
 564     if (i->get(26, 26)) { // float
 565       switch(i->get(31, 30)) {
 566       case 0b10:
 567         size = 2; break;
 568       case 0b01:
 569         size = 1; break;
 570       case 0b00:
 571         size = 0; break;
 572       default:
 573         ShouldNotReachHere();
 574       }
 575     } else {
 576       size = i->get(31, 31);
 577     }
 578 
 579     size = 4 << size;
 580     guarantee(_offset % size == 0, "bad offset");
 581     i->sf(_offset / size, 21, 15);
 582     i->srf(_base, 5);
 583   }
 584 
 585   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 586     // Only base + offset is allowed
 587     i->f(0b000, 25, 23);
 588     unsigned size = i->get(31, 31);
 589     size = 4 << size;
 590     guarantee(_offset % size == 0, "bad offset");
 591     i->sf(_offset / size, 21, 15);
 592     i->srf(_base, 5);
 593     guarantee(_mode == Address::base_plus_offset,
 594               "Bad addressing mode for non-temporal op");
 595   }
 596 
 597   void lea(MacroAssembler *, Register) const;
 598 
 599   static bool offset_ok_for_immed(long offset, int shift = 0) {
 600     unsigned mask = (1 << shift) - 1;
 601     if (offset < 0 || offset & mask) {
 602       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 603     } else {
 604       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 605     }
 606   }
 607 };
 608 
 609 // Convience classes
 610 class RuntimeAddress: public Address {
 611 
 612   public:
 613 
 614   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 615 
 616 };
 617 
 618 class OopAddress: public Address {
 619 
 620   public:
 621 
 622   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 623 
 624 };
 625 
 626 class ExternalAddress: public Address {
 627  private:
 628   static relocInfo::relocType reloc_for_target(address target) {
 629     // Sometimes ExternalAddress is used for values which aren't
 630     // exactly addresses, like the card table base.
 631     // external_word_type can't be used for values in the first page
 632     // so just skip the reloc in that case.
 633     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 634   }
 635 
 636  public:
 637 
 638   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 639 
 640 };
 641 
 642 class InternalAddress: public Address {
 643 
 644   public:
 645 
 646   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 647 };
 648 
 649 const int FPUStateSizeInWords = 32 * 2;
 650 typedef enum {
 651   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 652   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 653   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 654 } prfop;
 655 
 656 class Assembler : public AbstractAssembler {
 657 
 658 #ifndef PRODUCT
 659   static const unsigned long asm_bp;
 660 
 661   void emit_long(jint x) {
 662     if ((unsigned long)pc() == asm_bp)
 663       asm volatile ("nop");
 664     AbstractAssembler::emit_int32(x);
 665   }
 666 #else
 667   void emit_long(jint x) {
 668     AbstractAssembler::emit_int32(x);
 669   }
 670 #endif
 671 
 672 public:
 673 
 674   enum { instruction_size = 4 };
 675 
 676   Address adjust(Register base, int offset, bool preIncrement) {
 677     if (preIncrement)
 678       return Address(Pre(base, offset));
 679     else
 680       return Address(Post(base, offset));
 681   }
 682 
 683   Address pre(Register base, int offset) {
 684     return adjust(base, offset, true);
 685   }
 686 
 687   Address post (Register base, int offset) {
 688     return adjust(base, offset, false);
 689   }
 690 
 691   Instruction_aarch64* current;
 692 
 693   void set_current(Instruction_aarch64* i) { current = i; }
 694 
 695   void f(unsigned val, int msb, int lsb) {
 696     current->f(val, msb, lsb);
 697   }
 698   void f(unsigned val, int msb) {
 699     current->f(val, msb, msb);
 700   }
 701   void sf(long val, int msb, int lsb) {
 702     current->sf(val, msb, lsb);
 703   }
 704   void rf(Register reg, int lsb) {
 705     current->rf(reg, lsb);
 706   }
 707   void srf(Register reg, int lsb) {
 708     current->srf(reg, lsb);
 709   }
 710   void zrf(Register reg, int lsb) {
 711     current->zrf(reg, lsb);
 712   }
 713   void rf(FloatRegister reg, int lsb) {
 714     current->rf(reg, lsb);
 715   }
 716   void fixed(unsigned value, unsigned mask) {
 717     current->fixed(value, mask);
 718   }
 719 
 720   void emit() {
 721     emit_long(current->get_insn());
 722     assert_cond(current->get_bits() == 0xffffffff);
 723     current = NULL;
 724   }
 725 
 726   typedef void (Assembler::* uncond_branch_insn)(address dest);
 727   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 728   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 729   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 730 
 731   void wrap_label(Label &L, uncond_branch_insn insn);
 732   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 733   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 734   void wrap_label(Label &L, prfop, prefetch_insn insn);
 735 
 736   // PC-rel. addressing
 737 
 738   void adr(Register Rd, address dest);
 739   void _adrp(Register Rd, address dest);
 740 
 741   void adr(Register Rd, const Address &dest);
 742   void _adrp(Register Rd, const Address &dest);
 743 
 744   void adr(Register Rd, Label &L) {
 745     wrap_label(Rd, L, &Assembler::Assembler::adr);
 746   }
 747   void _adrp(Register Rd, Label &L) {
 748     wrap_label(Rd, L, &Assembler::_adrp);
 749   }
 750 
 751   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 752 
 753 #undef INSN
 754 
 755   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 756                          int negated_op);
 757 
 758   // Add/subtract (immediate)
 759 #define INSN(NAME, decode, negated)                                     \
 760   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 761     starti;                                                             \
 762     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 763     zrf(Rd, 0), srf(Rn, 5);                                             \
 764   }                                                                     \
 765                                                                         \
 766   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 767     starti;                                                             \
 768     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 769   }
 770 
 771   INSN(addsw, 0b001, 0b011);
 772   INSN(subsw, 0b011, 0b001);
 773   INSN(adds,  0b101, 0b111);
 774   INSN(subs,  0b111, 0b101);
 775 
 776 #undef INSN
 777 
 778 #define INSN(NAME, decode, negated)                     \
 779   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 780     starti;                                             \
 781     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 782   }
 783 
 784   INSN(addw, 0b000, 0b010);
 785   INSN(subw, 0b010, 0b000);
 786   INSN(add,  0b100, 0b110);
 787   INSN(sub,  0b110, 0b100);
 788 
 789 #undef INSN
 790 
 791  // Logical (immediate)
 792 #define INSN(NAME, decode, is32)                                \
 793   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 794     starti;                                                     \
 795     uint32_t val = encode_logical_immediate(is32, imm);         \
 796     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 797     srf(Rd, 0), zrf(Rn, 5);                                     \
 798   }
 799 
 800   INSN(andw, 0b000, true);
 801   INSN(orrw, 0b001, true);
 802   INSN(eorw, 0b010, true);
 803   INSN(andr,  0b100, false);
 804   INSN(orr,  0b101, false);
 805   INSN(eor,  0b110, false);
 806 
 807 #undef INSN
 808 
 809 #define INSN(NAME, decode, is32)                                \
 810   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 811     starti;                                                     \
 812     uint32_t val = encode_logical_immediate(is32, imm);         \
 813     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 814     zrf(Rd, 0), zrf(Rn, 5);                                     \
 815   }
 816 
 817   INSN(ands, 0b111, false);
 818   INSN(andsw, 0b011, true);
 819 
 820 #undef INSN
 821 
 822   // Move wide (immediate)
 823 #define INSN(NAME, opcode)                                              \
 824   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 825     assert_cond((shift/16)*16 == shift);                                \
 826     starti;                                                             \
 827     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 828       f(imm, 20, 5);                                                    \
 829     rf(Rd, 0);                                                          \
 830   }
 831 
 832   INSN(movnw, 0b000);
 833   INSN(movzw, 0b010);
 834   INSN(movkw, 0b011);
 835   INSN(movn, 0b100);
 836   INSN(movz, 0b110);
 837   INSN(movk, 0b111);
 838 
 839 #undef INSN
 840 
 841   // Bitfield
 842 #define INSN(NAME, opcode)                                              \
 843   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 844     starti;                                                             \
 845     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 846     rf(Rn, 5), rf(Rd, 0);                                               \
 847   }
 848 
 849   INSN(sbfmw, 0b0001001100);
 850   INSN(bfmw,  0b0011001100);
 851   INSN(ubfmw, 0b0101001100);
 852   INSN(sbfm,  0b1001001101);
 853   INSN(bfm,   0b1011001101);
 854   INSN(ubfm,  0b1101001101);
 855 
 856 #undef INSN
 857 
 858   // Extract
 859 #define INSN(NAME, opcode)                                              \
 860   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 861     starti;                                                             \
 862     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 863     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                   \
 864   }
 865 
 866   INSN(extrw, 0b00010011100);
 867   INSN(extr,  0b10010011110);
 868 
 869 #undef INSN
 870 
 871   // The maximum range of a branch is fixed for the AArch64
 872   // architecture.  In debug mode we shrink it in order to test
 873   // trampolines, but not so small that branches in the interpreter
 874   // are out of range.
 875   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 876 
 877   static bool reachable_from_branch_at(address branch, address target) {
 878     return uabs(target - branch) < branch_range;
 879   }
 880 
 881   // Unconditional branch (immediate)
 882 #define INSN(NAME, opcode)                                              \
 883   void NAME(address dest) {                                             \
 884     starti;                                                             \
 885     long offset = (dest - pc()) >> 2;                                   \
 886     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 887     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 888   }                                                                     \
 889   void NAME(Label &L) {                                                 \
 890     wrap_label(L, &Assembler::NAME);                                    \
 891   }                                                                     \
 892   void NAME(const Address &dest);
 893 
 894   INSN(b, 0);
 895   INSN(bl, 1);
 896 
 897 #undef INSN
 898 
 899   // Compare & branch (immediate)
 900 #define INSN(NAME, opcode)                              \
 901   void NAME(Register Rt, address dest) {                \
 902     long offset = (dest - pc()) >> 2;                   \
 903     starti;                                             \
 904     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 905   }                                                     \
 906   void NAME(Register Rt, Label &L) {                    \
 907     wrap_label(Rt, L, &Assembler::NAME);                \
 908   }
 909 
 910   INSN(cbzw,  0b00110100);
 911   INSN(cbnzw, 0b00110101);
 912   INSN(cbz,   0b10110100);
 913   INSN(cbnz,  0b10110101);
 914 
 915 #undef INSN
 916 
 917   // Test & branch (immediate)
 918 #define INSN(NAME, opcode)                                              \
 919   void NAME(Register Rt, int bitpos, address dest) {                    \
 920     long offset = (dest - pc()) >> 2;                                   \
 921     int b5 = bitpos >> 5;                                               \
 922     bitpos &= 0x1f;                                                     \
 923     starti;                                                             \
 924     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 925     rf(Rt, 0);                                                          \
 926   }                                                                     \
 927   void NAME(Register Rt, int bitpos, Label &L) {                        \
 928     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 929   }
 930 
 931   INSN(tbz,  0b0110110);
 932   INSN(tbnz, 0b0110111);
 933 
 934 #undef INSN
 935 
 936   // Conditional branch (immediate)
 937   enum Condition
 938     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 939 
 940   void br(Condition  cond, address dest) {
 941     long offset = (dest - pc()) >> 2;
 942     starti;
 943     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 944   }
 945 
 946 #define INSN(NAME, cond)                        \
 947   void NAME(address dest) {                     \
 948     br(cond, dest);                             \
 949   }
 950 
 951   INSN(beq, EQ);
 952   INSN(bne, NE);
 953   INSN(bhs, HS);
 954   INSN(bcs, CS);
 955   INSN(blo, LO);
 956   INSN(bcc, CC);
 957   INSN(bmi, MI);
 958   INSN(bpl, PL);
 959   INSN(bvs, VS);
 960   INSN(bvc, VC);
 961   INSN(bhi, HI);
 962   INSN(bls, LS);
 963   INSN(bge, GE);
 964   INSN(blt, LT);
 965   INSN(bgt, GT);
 966   INSN(ble, LE);
 967   INSN(bal, AL);
 968   INSN(bnv, NV);
 969 
 970   void br(Condition cc, Label &L);
 971 
 972 #undef INSN
 973 
 974   // Exception generation
 975   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 976     starti;
 977     f(0b11010100, 31, 24);
 978     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 979   }
 980 
 981 #define INSN(NAME, opc, op2, LL)                \
 982   void NAME(unsigned imm) {                     \
 983     generate_exception(opc, op2, LL, imm);      \
 984   }
 985 
 986   INSN(svc, 0b000, 0, 0b01);
 987   INSN(hvc, 0b000, 0, 0b10);
 988   INSN(smc, 0b000, 0, 0b11);
 989   INSN(brk, 0b001, 0, 0b00);
 990   INSN(hlt, 0b010, 0, 0b00);
 991   INSN(dpcs1, 0b101, 0, 0b01);
 992   INSN(dpcs2, 0b101, 0, 0b10);
 993   INSN(dpcs3, 0b101, 0, 0b11);
 994 
 995 #undef INSN
 996 
 997   // System
 998   void system(int op0, int op1, int CRn, int CRm, int op2,
 999               Register rt = (Register)0b11111)
1000   {
1001     starti;
1002     f(0b11010101000, 31, 21);
1003     f(op0, 20, 19);
1004     f(op1, 18, 16);
1005     f(CRn, 15, 12);
1006     f(CRm, 11, 8);
1007     f(op2, 7, 5);
1008     rf(rt, 0);
1009   }
1010 
1011   void hint(int imm) {
1012     system(0b00, 0b011, 0b0010, imm, 0b000);
1013   }
1014 
1015   void nop() {
1016     hint(0);
1017   }
1018   // we only provide mrs and msr for the special purpose system
1019   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1020   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1021 
1022   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1023     starti;
1024     f(0b1101010100011, 31, 19);
1025     f(op1, 18, 16);
1026     f(CRn, 15, 12);
1027     f(CRm, 11, 8);
1028     f(op2, 7, 5);
1029     // writing zr is ok
1030     zrf(rt, 0);
1031   }
1032 
1033   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1034     starti;
1035     f(0b1101010100111, 31, 19);
1036     f(op1, 18, 16);
1037     f(CRn, 15, 12);
1038     f(CRm, 11, 8);
1039     f(op2, 7, 5);
1040     // reading to zr is a mistake
1041     rf(rt, 0);
1042   }
1043 
1044   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1045                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1046 
1047   void dsb(barrier imm) {
1048     system(0b00, 0b011, 0b00011, imm, 0b100);
1049   }
1050 
1051   void dmb(barrier imm) {
1052     system(0b00, 0b011, 0b00011, imm, 0b101);
1053   }
1054 
1055   void isb() {
1056     system(0b00, 0b011, 0b00011, SY, 0b110);
1057   }
1058 
1059   void dc(Register Rt) {
1060     system(0b01, 0b011, 0b0111, 0b1011, 0b001, Rt);
1061   }
1062 
1063   void ic(Register Rt) {
1064     system(0b01, 0b011, 0b0111, 0b0101, 0b001, Rt);
1065   }
1066 
1067   // A more convenient access to dmb for our purposes
1068   enum Membar_mask_bits {
1069     // We can use ISH for a barrier because the ARM ARM says "This
1070     // architecture assumes that all Processing Elements that use the
1071     // same operating system or hypervisor are in the same Inner
1072     // Shareable shareability domain."
1073     StoreStore = ISHST,
1074     LoadStore  = ISHLD,
1075     LoadLoad   = ISHLD,
1076     StoreLoad  = ISH,
1077     AnyAny     = ISH
1078   };
1079 
1080   void membar(Membar_mask_bits order_constraint) {
1081     dmb(Assembler::barrier(order_constraint));
1082   }
1083 
1084   // Unconditional branch (register)
1085   void branch_reg(Register R, int opc) {
1086     starti;
1087     f(0b1101011, 31, 25);
1088     f(opc, 24, 21);
1089     f(0b11111000000, 20, 10);
1090     rf(R, 5);
1091     f(0b00000, 4, 0);
1092   }
1093 
1094 #define INSN(NAME, opc)                         \
1095   void NAME(Register R) {                       \
1096     branch_reg(R, opc);                         \
1097   }
1098 
1099   INSN(br, 0b0000);
1100   INSN(blr, 0b0001);
1101   INSN(ret, 0b0010);
1102 
1103   void ret(void *p); // This forces a compile-time error for ret(0)
1104 
1105 #undef INSN
1106 
1107 #define INSN(NAME, opc)                         \
1108   void NAME() {                 \
1109     branch_reg((Register)0b11111, opc);         \
1110   }
1111 
1112   INSN(eret, 0b0100);
1113   INSN(drps, 0b0101);
1114 
1115 #undef INSN
1116 
1117   // Load/store exclusive
1118   enum operand_size { byte, halfword, word, xword };
1119 
1120   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1121     Register Rn, enum operand_size sz, int op, int o0) {
1122     starti;
1123     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1124     rf(Rs, 16), f(o0, 15), rf(Rt2, 10), rf(Rn, 5), rf(Rt1, 0);
1125   }
1126 
1127 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1128   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1129     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1130     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1131   }
1132 
1133 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1134   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1135     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1136     load_store_exclusive(Rs, Rt, (Register)0b11111, Rn, sz, op, o0);    \
1137   }
1138 
1139 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1140   void NAME(Register Rt, Register Rn) {                                 \
1141     load_store_exclusive((Register)0b11111, Rt, (Register)0b11111,      \
1142                          Rn, sz, op, o0);                               \
1143   }
1144 
1145 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1146   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1147     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1148     load_store_exclusive((Register)0b11111, Rt1, Rt2, Rn, sz, op, o0);  \
1149   }
1150 
1151   // bytes
1152   INSN3(stxrb, byte, 0b000, 0);
1153   INSN3(stlxrb, byte, 0b000, 1);
1154   INSN2(ldxrb, byte, 0b010, 0);
1155   INSN2(ldaxrb, byte, 0b010, 1);
1156   INSN2(stlrb, byte, 0b100, 1);
1157   INSN2(ldarb, byte, 0b110, 1);
1158 
1159   // halfwords
1160   INSN3(stxrh, halfword, 0b000, 0);
1161   INSN3(stlxrh, halfword, 0b000, 1);
1162   INSN2(ldxrh, halfword, 0b010, 0);
1163   INSN2(ldaxrh, halfword, 0b010, 1);
1164   INSN2(stlrh, halfword, 0b100, 1);
1165   INSN2(ldarh, halfword, 0b110, 1);
1166 
1167   // words
1168   INSN3(stxrw, word, 0b000, 0);
1169   INSN3(stlxrw, word, 0b000, 1);
1170   INSN4(stxpw, word, 0b001, 0);
1171   INSN4(stlxpw, word, 0b001, 1);
1172   INSN2(ldxrw, word, 0b010, 0);
1173   INSN2(ldaxrw, word, 0b010, 1);
1174   INSN_FOO(ldxpw, word, 0b011, 0);
1175   INSN_FOO(ldaxpw, word, 0b011, 1);
1176   INSN2(stlrw, word, 0b100, 1);
1177   INSN2(ldarw, word, 0b110, 1);
1178 
1179   // xwords
1180   INSN3(stxr, xword, 0b000, 0);
1181   INSN3(stlxr, xword, 0b000, 1);
1182   INSN4(stxp, xword, 0b001, 0);
1183   INSN4(stlxp, xword, 0b001, 1);
1184   INSN2(ldxr, xword, 0b010, 0);
1185   INSN2(ldaxr, xword, 0b010, 1);
1186   INSN_FOO(ldxp, xword, 0b011, 0);
1187   INSN_FOO(ldaxp, xword, 0b011, 1);
1188   INSN2(stlr, xword, 0b100, 1);
1189   INSN2(ldar, xword, 0b110, 1);
1190 
1191 #undef INSN2
1192 #undef INSN3
1193 #undef INSN4
1194 #undef INSN_FOO
1195 
1196   // Load register (literal)
1197 #define INSN(NAME, opc, V)                                              \
1198   void NAME(Register Rt, address dest) {                                \
1199     long offset = (dest - pc()) >> 2;                                   \
1200     starti;                                                             \
1201     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1202       sf(offset, 23, 5);                                                \
1203     rf(Rt, 0);                                                          \
1204   }                                                                     \
1205   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1206     InstructionMark im(this);                                           \
1207     guarantee(rtype == relocInfo::internal_word_type,                   \
1208               "only internal_word_type relocs make sense here");        \
1209     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1210     NAME(Rt, dest);                                                     \
1211   }                                                                     \
1212   void NAME(Register Rt, Label &L) {                                    \
1213     wrap_label(Rt, L, &Assembler::NAME);                                \
1214   }
1215 
1216   INSN(ldrw, 0b00, 0);
1217   INSN(ldr, 0b01, 0);
1218   INSN(ldrsw, 0b10, 0);
1219 
1220 #undef INSN
1221 
1222 #define INSN(NAME, opc, V)                                              \
1223   void NAME(FloatRegister Rt, address dest) {                           \
1224     long offset = (dest - pc()) >> 2;                                   \
1225     starti;                                                             \
1226     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1227       sf(offset, 23, 5);                                                \
1228     rf((Register)Rt, 0);                                                \
1229   }
1230 
1231   INSN(ldrs, 0b00, 1);
1232   INSN(ldrd, 0b01, 1);
1233   INSN(ldrq, 0b10, 1);
1234 
1235 #undef INSN
1236 
1237 #define INSN(NAME, opc, V)                                              \
1238   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1239     long offset = (dest - pc()) >> 2;                                   \
1240     starti;                                                             \
1241     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1242       sf(offset, 23, 5);                                                \
1243     f(op, 4, 0);                                                        \
1244   }                                                                     \
1245   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1246     wrap_label(L, op, &Assembler::NAME);                                \
1247   }
1248 
1249   INSN(prfm, 0b11, 0);
1250 
1251 #undef INSN
1252 
1253   // Load/store
1254   void ld_st1(int opc, int p1, int V, int L,
1255               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1256     starti;
1257     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1258     zrf(Rt2, 10), zrf(Rt1, 0);
1259     if (no_allocate) {
1260       adr.encode_nontemporal_pair(current);
1261     } else {
1262       adr.encode_pair(current);
1263     }
1264   }
1265 
1266   // Load/store register pair (offset)
1267 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1268   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1269     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1270    }
1271 
1272   INSN(stpw, 0b00, 0b101, 0, 0, false);
1273   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1274   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1275   INSN(stp, 0b10, 0b101, 0, 0, false);
1276   INSN(ldp, 0b10, 0b101, 0, 1, false);
1277 
1278   // Load/store no-allocate pair (offset)
1279   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1280   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1281   INSN(stnp, 0b10, 0b101, 0, 0, true);
1282   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1283 
1284 #undef INSN
1285 
1286 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1287   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1288     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1289    }
1290 
1291   INSN(stps, 0b00, 0b101, 1, 0, false);
1292   INSN(ldps, 0b00, 0b101, 1, 1, false);
1293   INSN(stpd, 0b01, 0b101, 1, 0, false);
1294   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1295   INSN(stpq, 0b10, 0b101, 1, 0, false);
1296   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1297 
1298 #undef INSN
1299 
1300   // Load/store register (all modes)
1301   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1302     starti;
1303 
1304     f(V, 26); // general reg?
1305     zrf(Rt, 0);
1306 
1307     // Encoding for literal loads is done here (rather than pushed
1308     // down into Address::encode) because the encoding of this
1309     // instruction is too different from all of the other forms to
1310     // make it worth sharing.
1311     if (adr.getMode() == Address::literal) {
1312       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1313       assert(op == 0b01, "literal form can only be used with loads");
1314       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1315       long offset = (adr.target() - pc()) >> 2;
1316       sf(offset, 23, 5);
1317       code_section()->relocate(pc(), adr.rspec());
1318       return;
1319     }
1320 
1321     f(size, 31, 30);
1322     f(op, 23, 22); // str
1323     adr.encode(current);
1324   }
1325 
1326 #define INSN(NAME, size, op)                            \
1327   void NAME(Register Rt, const Address &adr) {          \
1328     ld_st2(Rt, adr, size, op);                          \
1329   }                                                     \
1330 
1331   INSN(str, 0b11, 0b00);
1332   INSN(strw, 0b10, 0b00);
1333   INSN(strb, 0b00, 0b00);
1334   INSN(strh, 0b01, 0b00);
1335 
1336   INSN(ldr, 0b11, 0b01);
1337   INSN(ldrw, 0b10, 0b01);
1338   INSN(ldrb, 0b00, 0b01);
1339   INSN(ldrh, 0b01, 0b01);
1340 
1341   INSN(ldrsb, 0b00, 0b10);
1342   INSN(ldrsbw, 0b00, 0b11);
1343   INSN(ldrsh, 0b01, 0b10);
1344   INSN(ldrshw, 0b01, 0b11);
1345   INSN(ldrsw, 0b10, 0b10);
1346 
1347 #undef INSN
1348 
1349 #define INSN(NAME, size, op)                                    \
1350   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1351     ld_st2((Register)pfop, adr, size, op);                      \
1352   }
1353 
1354   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1355                           // writeback modes, but the assembler
1356                           // doesn't enfore that.
1357 
1358 #undef INSN
1359 
1360 #define INSN(NAME, size, op)                            \
1361   void NAME(FloatRegister Rt, const Address &adr) {     \
1362     ld_st2((Register)Rt, adr, size, op, 1);             \
1363   }
1364 
1365   INSN(strd, 0b11, 0b00);
1366   INSN(strs, 0b10, 0b00);
1367   INSN(ldrd, 0b11, 0b01);
1368   INSN(ldrs, 0b10, 0b01);
1369   INSN(strq, 0b00, 0b10);
1370   INSN(ldrq, 0x00, 0b11);
1371 
1372 #undef INSN
1373 
1374   enum shift_kind { LSL, LSR, ASR, ROR };
1375 
1376   void op_shifted_reg(unsigned decode,
1377                       enum shift_kind kind, unsigned shift,
1378                       unsigned size, unsigned op) {
1379     f(size, 31);
1380     f(op, 30, 29);
1381     f(decode, 28, 24);
1382     f(shift, 15, 10);
1383     f(kind, 23, 22);
1384   }
1385 
1386   // Logical (shifted register)
1387 #define INSN(NAME, size, op, N)                                 \
1388   void NAME(Register Rd, Register Rn, Register Rm,              \
1389             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1390     starti;                                                     \
1391     f(N, 21);                                                   \
1392     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1393     op_shifted_reg(0b01010, kind, shift, size, op);             \
1394   }
1395 
1396   INSN(andr, 1, 0b00, 0);
1397   INSN(orr, 1, 0b01, 0);
1398   INSN(eor, 1, 0b10, 0);
1399   INSN(ands, 1, 0b11, 0);
1400   INSN(andw, 0, 0b00, 0);
1401   INSN(orrw, 0, 0b01, 0);
1402   INSN(eorw, 0, 0b10, 0);
1403   INSN(andsw, 0, 0b11, 0);
1404 
1405   INSN(bic, 1, 0b00, 1);
1406   INSN(orn, 1, 0b01, 1);
1407   INSN(eon, 1, 0b10, 1);
1408   INSN(bics, 1, 0b11, 1);
1409   INSN(bicw, 0, 0b00, 1);
1410   INSN(ornw, 0, 0b01, 1);
1411   INSN(eonw, 0, 0b10, 1);
1412   INSN(bicsw, 0, 0b11, 1);
1413 
1414 #undef INSN
1415 
1416   // Add/subtract (shifted register)
1417 #define INSN(NAME, size, op)                            \
1418   void NAME(Register Rd, Register Rn, Register Rm,      \
1419             enum shift_kind kind, unsigned shift = 0) { \
1420     starti;                                             \
1421     f(0, 21);                                           \
1422     assert_cond(kind != ROR);                           \
1423     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1424     op_shifted_reg(0b01011, kind, shift, size, op);     \
1425   }
1426 
1427   INSN(add, 1, 0b000);
1428   INSN(sub, 1, 0b10);
1429   INSN(addw, 0, 0b000);
1430   INSN(subw, 0, 0b10);
1431 
1432   INSN(adds, 1, 0b001);
1433   INSN(subs, 1, 0b11);
1434   INSN(addsw, 0, 0b001);
1435   INSN(subsw, 0, 0b11);
1436 
1437 #undef INSN
1438 
1439   // Add/subtract (extended register)
1440 #define INSN(NAME, op)                                                  \
1441   void NAME(Register Rd, Register Rn, Register Rm,                      \
1442            ext::operation option, int amount = 0) {                     \
1443     starti;                                                             \
1444     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1445     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1446   }
1447 
1448   void add_sub_extended_reg(unsigned op, unsigned decode,
1449     Register Rd, Register Rn, Register Rm,
1450     unsigned opt, ext::operation option, unsigned imm) {
1451     guarantee(imm <= 4, "shift amount must be < 4");
1452     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1453     f(option, 15, 13), f(imm, 12, 10);
1454   }
1455 
1456   INSN(addw, 0b000);
1457   INSN(subw, 0b010);
1458   INSN(add, 0b100);
1459   INSN(sub, 0b110);
1460 
1461 #undef INSN
1462 
1463 #define INSN(NAME, op)                                                  \
1464   void NAME(Register Rd, Register Rn, Register Rm,                      \
1465            ext::operation option, int amount = 0) {                     \
1466     starti;                                                             \
1467     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1468     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1469   }
1470 
1471   INSN(addsw, 0b001);
1472   INSN(subsw, 0b011);
1473   INSN(adds, 0b101);
1474   INSN(subs, 0b111);
1475 
1476 #undef INSN
1477 
1478   // Aliases for short forms of add and sub
1479 #define INSN(NAME)                                      \
1480   void NAME(Register Rd, Register Rn, Register Rm) {    \
1481     if (Rd == sp || Rn == sp)                           \
1482       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1483     else                                                \
1484       NAME(Rd, Rn, Rm, LSL);                            \
1485   }
1486 
1487   INSN(addw);
1488   INSN(subw);
1489   INSN(add);
1490   INSN(sub);
1491 
1492   INSN(addsw);
1493   INSN(subsw);
1494   INSN(adds);
1495   INSN(subs);
1496 
1497 #undef INSN
1498 
1499   // Add/subtract (with carry)
1500   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1501     starti;
1502     f(op, 31, 29);
1503     f(0b11010000, 28, 21);
1504     f(0b000000, 15, 10);
1505     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1506   }
1507 
1508   #define INSN(NAME, op)                                \
1509     void NAME(Register Rd, Register Rn, Register Rm) {  \
1510       add_sub_carry(op, Rd, Rn, Rm);                    \
1511     }
1512 
1513   INSN(adcw, 0b000);
1514   INSN(adcsw, 0b001);
1515   INSN(sbcw, 0b010);
1516   INSN(sbcsw, 0b011);
1517   INSN(adc, 0b100);
1518   INSN(adcs, 0b101);
1519   INSN(sbc,0b110);
1520   INSN(sbcs, 0b111);
1521 
1522 #undef INSN
1523 
1524   // Conditional compare (both kinds)
1525   void conditional_compare(unsigned op, int o2, int o3,
1526                            Register Rn, unsigned imm5, unsigned nzcv,
1527                            unsigned cond) {
1528     f(op, 31, 29);
1529     f(0b11010010, 28, 21);
1530     f(cond, 15, 12);
1531     f(o2, 10);
1532     f(o3, 4);
1533     f(nzcv, 3, 0);
1534     f(imm5, 20, 16), rf(Rn, 5);
1535   }
1536 
1537 #define INSN(NAME, op)                                                  \
1538   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1539     starti;                                                             \
1540     f(0, 11);                                                           \
1541     conditional_compare(op, 0, 0, Rn, (uintptr_t)Rm, imm, cond);        \
1542   }                                                                     \
1543                                                                         \
1544   void NAME(Register Rn, int imm5, int imm, Condition cond) {   \
1545     starti;                                                             \
1546     f(1, 11);                                                           \
1547     conditional_compare(op, 0, 0, Rn, imm5, imm, cond);                 \
1548   }
1549 
1550   INSN(ccmnw, 0b001);
1551   INSN(ccmpw, 0b011);
1552   INSN(ccmn, 0b101);
1553   INSN(ccmp, 0b111);
1554 
1555 #undef INSN
1556 
1557   // Conditional select
1558   void conditional_select(unsigned op, unsigned op2,
1559                           Register Rd, Register Rn, Register Rm,
1560                           unsigned cond) {
1561     starti;
1562     f(op, 31, 29);
1563     f(0b11010100, 28, 21);
1564     f(cond, 15, 12);
1565     f(op2, 11, 10);
1566     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1567   }
1568 
1569 #define INSN(NAME, op, op2)                                             \
1570   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1571     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1572   }
1573 
1574   INSN(cselw, 0b000, 0b00);
1575   INSN(csincw, 0b000, 0b01);
1576   INSN(csinvw, 0b010, 0b00);
1577   INSN(csnegw, 0b010, 0b01);
1578   INSN(csel, 0b100, 0b00);
1579   INSN(csinc, 0b100, 0b01);
1580   INSN(csinv, 0b110, 0b00);
1581   INSN(csneg, 0b110, 0b01);
1582 
1583 #undef INSN
1584 
1585   // Data processing
1586   void data_processing(unsigned op29, unsigned opcode,
1587                        Register Rd, Register Rn) {
1588     f(op29, 31, 29), f(0b11010110, 28, 21);
1589     f(opcode, 15, 10);
1590     rf(Rn, 5), rf(Rd, 0);
1591   }
1592 
1593   // (1 source)
1594 #define INSN(NAME, op29, opcode2, opcode)       \
1595   void NAME(Register Rd, Register Rn) {         \
1596     starti;                                     \
1597     f(opcode2, 20, 16);                         \
1598     data_processing(op29, opcode, Rd, Rn);      \
1599   }
1600 
1601   INSN(rbitw,  0b010, 0b00000, 0b00000);
1602   INSN(rev16w, 0b010, 0b00000, 0b00001);
1603   INSN(revw,   0b010, 0b00000, 0b00010);
1604   INSN(clzw,   0b010, 0b00000, 0b00100);
1605   INSN(clsw,   0b010, 0b00000, 0b00101);
1606 
1607   INSN(rbit,   0b110, 0b00000, 0b00000);
1608   INSN(rev16,  0b110, 0b00000, 0b00001);
1609   INSN(rev32,  0b110, 0b00000, 0b00010);
1610   INSN(rev,    0b110, 0b00000, 0b00011);
1611   INSN(clz,    0b110, 0b00000, 0b00100);
1612   INSN(cls,    0b110, 0b00000, 0b00101);
1613 
1614 #undef INSN
1615 
1616   // (2 sources)
1617 #define INSN(NAME, op29, opcode)                        \
1618   void NAME(Register Rd, Register Rn, Register Rm) {    \
1619     starti;                                             \
1620     rf(Rm, 16);                                         \
1621     data_processing(op29, opcode, Rd, Rn);              \
1622   }
1623 
1624   INSN(udivw, 0b000, 0b000010);
1625   INSN(sdivw, 0b000, 0b000011);
1626   INSN(lslvw, 0b000, 0b001000);
1627   INSN(lsrvw, 0b000, 0b001001);
1628   INSN(asrvw, 0b000, 0b001010);
1629   INSN(rorvw, 0b000, 0b001011);
1630 
1631   INSN(udiv, 0b100, 0b000010);
1632   INSN(sdiv, 0b100, 0b000011);
1633   INSN(lslv, 0b100, 0b001000);
1634   INSN(lsrv, 0b100, 0b001001);
1635   INSN(asrv, 0b100, 0b001010);
1636   INSN(rorv, 0b100, 0b001011);
1637 
1638 #undef INSN
1639 
1640   // (3 sources)
1641   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1642                        Register Rd, Register Rn, Register Rm,
1643                        Register Ra) {
1644     starti;
1645     f(op54, 31, 29), f(0b11011, 28, 24);
1646     f(op31, 23, 21), f(o0, 15);
1647     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1648   }
1649 
1650 #define INSN(NAME, op54, op31, o0)                                      \
1651   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1652     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1653   }
1654 
1655   INSN(maddw, 0b000, 0b000, 0);
1656   INSN(msubw, 0b000, 0b000, 1);
1657   INSN(madd, 0b100, 0b000, 0);
1658   INSN(msub, 0b100, 0b000, 1);
1659   INSN(smaddl, 0b100, 0b001, 0);
1660   INSN(smsubl, 0b100, 0b001, 1);
1661   INSN(umaddl, 0b100, 0b101, 0);
1662   INSN(umsubl, 0b100, 0b101, 1);
1663 
1664 #undef INSN
1665 
1666 #define INSN(NAME, op54, op31, o0)                      \
1667   void NAME(Register Rd, Register Rn, Register Rm) {    \
1668     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1669   }
1670 
1671   INSN(smulh, 0b100, 0b010, 0);
1672   INSN(umulh, 0b100, 0b110, 0);
1673 
1674 #undef INSN
1675 
1676   // Floating-point data-processing (1 source)
1677   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1678                        FloatRegister Vd, FloatRegister Vn) {
1679     starti;
1680     f(op31, 31, 29);
1681     f(0b11110, 28, 24);
1682     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1683     rf(Vn, 5), rf(Vd, 0);
1684   }
1685 
1686 #define INSN(NAME, op31, type, opcode)                  \
1687   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1688     data_processing(op31, type, opcode, Vd, Vn);        \
1689   }
1690 
1691 private:
1692   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1693 public:
1694   INSN(fabss, 0b000, 0b00, 0b000001);
1695   INSN(fnegs, 0b000, 0b00, 0b000010);
1696   INSN(fsqrts, 0b000, 0b00, 0b000011);
1697   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1698 
1699 private:
1700   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1701 public:
1702   INSN(fabsd, 0b000, 0b01, 0b000001);
1703   INSN(fnegd, 0b000, 0b01, 0b000010);
1704   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1705   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1706 
1707   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1708     assert(Vd != Vn, "should be");
1709     i_fmovd(Vd, Vn);
1710   }
1711 
1712   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1713     assert(Vd != Vn, "should be");
1714     i_fmovs(Vd, Vn);
1715   }
1716 
1717 #undef INSN
1718 
1719   // Floating-point data-processing (2 source)
1720   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1721                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1722     starti;
1723     f(op31, 31, 29);
1724     f(0b11110, 28, 24);
1725     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1726     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1727   }
1728 
1729 #define INSN(NAME, op31, type, opcode)                  \
1730   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1731     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1732   }
1733 
1734   INSN(fmuls, 0b000, 0b00, 0b0000);
1735   INSN(fdivs, 0b000, 0b00, 0b0001);
1736   INSN(fadds, 0b000, 0b00, 0b0010);
1737   INSN(fsubs, 0b000, 0b00, 0b0011);
1738   INSN(fnmuls, 0b000, 0b00, 0b1000);
1739 
1740   INSN(fmuld, 0b000, 0b01, 0b0000);
1741   INSN(fdivd, 0b000, 0b01, 0b0001);
1742   INSN(faddd, 0b000, 0b01, 0b0010);
1743   INSN(fsubd, 0b000, 0b01, 0b0011);
1744   INSN(fnmuld, 0b000, 0b01, 0b1000);
1745 
1746 #undef INSN
1747 
1748    // Floating-point data-processing (3 source)
1749   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1750                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1751                        FloatRegister Va) {
1752     starti;
1753     f(op31, 31, 29);
1754     f(0b11111, 28, 24);
1755     f(type, 23, 22), f(o1, 21), f(o0, 15);
1756     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1757   }
1758 
1759 #define INSN(NAME, op31, type, o1, o0)                                  \
1760   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1761             FloatRegister Va) {                                         \
1762     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1763   }
1764 
1765   INSN(fmadds, 0b000, 0b00, 0, 0);
1766   INSN(fmsubs, 0b000, 0b00, 0, 1);
1767   INSN(fnmadds, 0b000, 0b00, 1, 0);
1768   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1769 
1770   INSN(fmaddd, 0b000, 0b01, 0, 0);
1771   INSN(fmsubd, 0b000, 0b01, 0, 1);
1772   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1773   INSN(fnmsub, 0b000, 0b01, 1, 1);
1774 
1775 #undef INSN
1776 
1777    // Floating-point conditional select
1778   void fp_conditional_select(unsigned op31, unsigned type,
1779                              unsigned op1, unsigned op2,
1780                              Condition cond, FloatRegister Vd,
1781                              FloatRegister Vn, FloatRegister Vm) {
1782     starti;
1783     f(op31, 31, 29);
1784     f(0b11110, 28, 24);
1785     f(type, 23, 22);
1786     f(op1, 21, 21);
1787     f(op2, 11, 10);
1788     f(cond, 15, 12);
1789     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1790   }
1791 
1792 #define INSN(NAME, op31, type, op1, op2)                                \
1793   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1794             FloatRegister Vm, Condition cond) {                         \
1795     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1796   }
1797 
1798   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1799   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1800 
1801 #undef INSN
1802 
1803    // Floating-point<->integer conversions
1804   void float_int_convert(unsigned op31, unsigned type,
1805                          unsigned rmode, unsigned opcode,
1806                          Register Rd, Register Rn) {
1807     starti;
1808     f(op31, 31, 29);
1809     f(0b11110, 28, 24);
1810     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1811     f(opcode, 18, 16), f(0b000000, 15, 10);
1812     zrf(Rn, 5), zrf(Rd, 0);
1813   }
1814 
1815 #define INSN(NAME, op31, type, rmode, opcode)                           \
1816   void NAME(Register Rd, FloatRegister Vn) {                            \
1817     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1818   }
1819 
1820   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1821   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1822   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1823   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1824 
1825   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1826   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1827 
1828   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1829 
1830 #undef INSN
1831 
1832 #define INSN(NAME, op31, type, rmode, opcode)                           \
1833   void NAME(FloatRegister Vd, Register Rn) {                            \
1834     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1835   }
1836 
1837   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1838   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1839 
1840   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1841   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1842   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1843   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1844 
1845   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1846 
1847 #undef INSN
1848 
1849   // Floating-point compare
1850   void float_compare(unsigned op31, unsigned type,
1851                      unsigned op, unsigned op2,
1852                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1853     starti;
1854     f(op31, 31, 29);
1855     f(0b11110, 28, 24);
1856     f(type, 23, 22), f(1, 21);
1857     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1858     rf(Vn, 5), rf(Vm, 16);
1859   }
1860 
1861 
1862 #define INSN(NAME, op31, type, op, op2)                 \
1863   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1864     float_compare(op31, type, op, op2, Vn, Vm);         \
1865   }
1866 
1867 #define INSN1(NAME, op31, type, op, op2)        \
1868   void NAME(FloatRegister Vn, double d) {       \
1869     assert_cond(d == 0.0);                      \
1870     float_compare(op31, type, op, op2, Vn);     \
1871   }
1872 
1873   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1874   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1875   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1876   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1877 
1878   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1879   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1880   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1881   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1882 
1883 #undef INSN
1884 #undef INSN1
1885 
1886   // Floating-point Move (immediate)
1887 private:
1888   unsigned pack(double value);
1889 
1890   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
1891     starti;
1892     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
1893     f(pack(value), 20, 13), f(0b10000000, 12, 5);
1894     rf(Vn, 0);
1895   }
1896 
1897 public:
1898 
1899   void fmovs(FloatRegister Vn, double value) {
1900     if (value)
1901       fmov_imm(Vn, value, 0b00);
1902     else
1903       fmovs(Vn, zr);
1904   }
1905   void fmovd(FloatRegister Vn, double value) {
1906     if (value)
1907       fmov_imm(Vn, value, 0b01);
1908     else
1909       fmovd(Vn, zr);
1910   }
1911 
1912 /* SIMD extensions
1913  *
1914  * We just use FloatRegister in the following. They are exactly the same
1915  * as SIMD registers.
1916  */
1917  public:
1918 
1919   enum SIMD_Arrangement {
1920        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
1921   };
1922 
1923   enum SIMD_RegVariant {
1924        B, H, S, D, Q
1925   };
1926 
1927 #define INSN(NAME, op)                                            \
1928   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
1929     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
1930   }                                                                      \
1931 
1932   INSN(ldr, 1);
1933   INSN(str, 0);
1934 
1935 #undef INSN
1936 
1937  private:
1938 
1939   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
1940     starti;
1941     f(0,31), f((int)T & 1, 30);
1942     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
1943     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1944   }
1945   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
1946              int imm, int op1, int op2) {
1947     starti;
1948     f(0,31), f((int)T & 1, 30);
1949     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
1950     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1951   }
1952   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
1953              Register Xm, int op1, int op2) {
1954     starti;
1955     f(0,31), f((int)T & 1, 30);
1956     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
1957     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1958   }
1959 
1960  void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2) {
1961    switch (a.getMode()) {
1962    case Address::base_plus_offset:
1963      guarantee(a.offset() == 0, "no offset allowed here");
1964      ld_st(Vt, T, a.base(), op1, op2);
1965      break;
1966    case Address::post:
1967      ld_st(Vt, T, a.base(), a.offset(), op1, op2);
1968      break;
1969    case Address::base_plus_offset_reg:
1970      ld_st(Vt, T, a.base(), a.index(), op1, op2);
1971      break;
1972    default:
1973      ShouldNotReachHere();
1974    }
1975  }
1976 
1977  public:
1978 
1979 #define INSN1(NAME, op1, op2)                                   \
1980   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
1981    ld_st(Vt, T, a, op1, op2);                                           \
1982  }
1983 
1984 #define INSN2(NAME, op1, op2)                                           \
1985   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
1986     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
1987     ld_st(Vt, T, a, op1, op2);                                          \
1988   }
1989 
1990 #define INSN3(NAME, op1, op2)                                           \
1991   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
1992             SIMD_Arrangement T, const Address &a) {                     \
1993     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
1994            "Registers must be ordered");                                \
1995     ld_st(Vt, T, a, op1, op2);                                          \
1996   }
1997 
1998 #define INSN4(NAME, op1, op2)                                           \
1999   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2000             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2001     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2002            Vt3->successor() == Vt4, "Registers must be ordered");       \
2003     ld_st(Vt, T, a, op1, op2);                                          \
2004   }
2005 
2006   INSN1(ld1,  0b001100010, 0b0111);
2007   INSN2(ld1,  0b001100010, 0b1010);
2008   INSN3(ld1,  0b001100010, 0b0110);
2009   INSN4(ld1,  0b001100010, 0b0010);
2010 
2011   INSN2(ld2,  0b001100010, 0b1000);
2012   INSN3(ld3,  0b001100010, 0b0100);
2013   INSN4(ld4,  0b001100010, 0b0000);
2014 
2015   INSN1(st1,  0b001100000, 0b0111);
2016   INSN2(st1,  0b001100000, 0b1010);
2017   INSN3(st1,  0b001100000, 0b0110);
2018   INSN4(st1,  0b001100000, 0b0010);
2019 
2020   INSN2(st2,  0b001100000, 0b1000);
2021   INSN3(st3,  0b001100000, 0b0100);
2022   INSN4(st4,  0b001100000, 0b0000);
2023 
2024   INSN1(ld1r, 0b001101010, 0b1100);
2025   INSN2(ld2r, 0b001101011, 0b1100);
2026   INSN3(ld3r, 0b001101010, 0b1110);
2027   INSN4(ld4r, 0b001101011, 0b1110);
2028 
2029 #undef INSN1
2030 #undef INSN2
2031 #undef INSN3
2032 #undef INSN4
2033 
2034 #define INSN(NAME, opc)                                                                 \
2035   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2036     starti;                                                                             \
2037     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2038     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2039     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2040   }
2041 
2042   INSN(eor,  0b101110001);
2043   INSN(orr,  0b001110101);
2044   INSN(andr, 0b001110001);
2045   INSN(bic,  0b001110011);
2046   INSN(bif,  0b101110111);
2047   INSN(bit,  0b101110101);
2048   INSN(bsl,  0b101110011);
2049   INSN(orn,  0b001110111);
2050 
2051 #undef INSN
2052 
2053 #define INSN(NAME, opc, opc2)                                                                 \
2054   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2055     starti;                                                                             \
2056     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2057     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2058     rf(Vn, 5), rf(Vd, 0);                                                               \
2059   }
2060 
2061   INSN(addv, 0, 0b100001);
2062   INSN(subv, 1, 0b100001);
2063   INSN(mulv, 0, 0b100111);
2064   INSN(sshl, 0, 0b010001);
2065   INSN(ushl, 1, 0b010001);
2066 
2067 #undef INSN
2068 
2069 #define INSN(NAME, opc, opc2) \
2070   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2071     starti;                                                                             \
2072     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2073     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2074     rf(Vn, 5), rf(Vd, 0);                                                               \
2075   }
2076 
2077   INSN(absr,  0, 0b100000101110);
2078   INSN(negr,  1, 0b100000101110);
2079   INSN(notr,  1, 0b100000010110);
2080   INSN(addv,  0, 0b110001101110);
2081   INSN(cls,   0, 0b100000010010);
2082   INSN(clz,   1, 0b100000010010);
2083   INSN(cnt,   0, 0b100000010110);
2084 
2085 #undef INSN
2086 
2087 #define INSN(NAME, op0, cmode0) \
2088   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2089     unsigned cmode = cmode0;                                                           \
2090     unsigned op = op0;                                                                 \
2091     starti;                                                                            \
2092     assert(lsl == 0 ||                                                                 \
2093            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2094            ((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift");             \
2095     cmode |= lsl >> 2;                                                                 \
2096     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2097     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2098       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2099       cmode = 0b1110;                                                                  \
2100       if (T == T1D || T == T2D) op = 1;                                                \
2101     }                                                                                  \
2102     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2103     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2104     rf(Vd, 0);                                                                         \
2105   }
2106 
2107   INSN(movi, 0, 0);
2108   INSN(orri, 0, 1);
2109   INSN(mvni, 1, 0);
2110   INSN(bici, 1, 1);
2111 
2112 #undef INSN
2113 
2114 #define INSN(NAME, op1, op2, op3) \
2115   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2116     starti;                                                                             \
2117     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2118     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2119     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2120   }
2121 
2122   INSN(fadd, 0, 0, 0b110101);
2123   INSN(fdiv, 1, 0, 0b111111);
2124   INSN(fmul, 1, 0, 0b110111);
2125   INSN(fsub, 0, 1, 0b110101);
2126 
2127 #undef INSN
2128 
2129 #define INSN(NAME, opc)                                                                 \
2130   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2131     starti;                                                                             \
2132     assert(T == T4S, "arrangement must be T4S");                                        \
2133     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2134   }
2135 
2136   INSN(sha1c,     0b000000);
2137   INSN(sha1m,     0b001000);
2138   INSN(sha1p,     0b000100);
2139   INSN(sha1su0,   0b001100);
2140   INSN(sha256h2,  0b010100);
2141   INSN(sha256h,   0b010000);
2142   INSN(sha256su1, 0b011000);
2143 
2144 #undef INSN
2145 
2146 #define INSN(NAME, opc)                                                                 \
2147   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2148     starti;                                                                             \
2149     assert(T == T4S, "arrangement must be T4S");                                        \
2150     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2151   }
2152 
2153   INSN(sha1h,     0b000010);
2154   INSN(sha1su1,   0b000110);
2155   INSN(sha256su0, 0b001010);
2156 
2157 #undef INSN
2158 
2159 #define INSN(NAME, opc)                           \
2160   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2161     starti;                                       \
2162     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2163   }
2164 
2165   INSN(aese, 0b0100111000101000010010);
2166   INSN(aesd, 0b0100111000101000010110);
2167   INSN(aesmc, 0b0100111000101000011010);
2168   INSN(aesimc, 0b0100111000101000011110);
2169 
2170 #undef INSN
2171 
2172   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2173     starti;
2174     assert(T != Q, "invalid register variant");
2175     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2176     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2177   }
2178 
2179   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2180     starti;
2181     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2182     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2183     rf(Vn, 5), rf(Rd, 0);
2184   }
2185 
2186 #define INSN(NAME, opc, opc2) \
2187   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){         \
2188     starti;                                                                             \
2189     /* The encodings for the immh:immb fields (bits 22:16) are                          \
2190      *   0001 xxx       8B/16B, shift = xxx                                             \
2191      *   001x xxx       4H/8H,  shift = xxxx                                            \
2192      *   01xx xxx       2S/4S,  shift = xxxxx                                           \
2193      *   1xxx xxx       1D/2D,  shift = xxxxxx (1D is RESERVED)                         \
2194      */                                                                                 \
2195     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");                           \
2196     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),                            \
2197     f((1 << ((T>>1)+3))|shift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);          \
2198   }
2199 
2200   INSN(shl,  0, 0b010101);
2201   INSN(sshr, 0, 0b000001);
2202   INSN(ushr, 1, 0b000001);
2203 
2204 #undef INSN
2205 
2206   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2207     starti;
2208     /* The encodings for the immh:immb fields (bits 22:16) are
2209      *   0001 xxx       8H, 8B/16b shift = xxx
2210      *   001x xxx       4S, 4H/8H  shift = xxxx
2211      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2212      *   1xxx xxx       RESERVED
2213      */
2214     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2215     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2216     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2217     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2218   }
2219   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2220     ushll(Vd, Ta, Vn, Tb, shift);
2221   }
2222 
2223   void uzp1(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T, int op = 0){
2224     starti;
2225     f(0, 31), f((T & 0x1), 30), f(0b001110, 29, 24), f((T >> 1), 23, 22), f(0, 21);
2226     rf(Vm, 16), f(0, 15), f(op, 14), f(0b0110, 13, 10), rf(Vn, 5), rf(Vd, 0);
2227   }
2228   void uzp2(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T){
2229     uzp1(Vd, Vn, Vm, T, 1);
2230   }
2231 
2232   // Move from general purpose register
2233   //   mov  Vd.T[index], Rn
2234   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2235     starti;
2236     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2237     f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
2238   }
2239 
2240   // Move to general purpose register
2241   //   mov  Rd, Vn.T[index]
2242   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2243     starti;
2244     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2245     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2246     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2247   }
2248 
2249   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2250     starti;
2251     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2252            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2253     int size = (Ta == T1Q) ? 0b11 : 0b00;
2254     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2255     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2256   }
2257   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2258     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2259     pmull(Vd, Ta, Vn, Vm, Tb);
2260   }
2261 
2262   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2263     starti;
2264     int size_b = (int)Tb >> 1;
2265     int size_a = (int)Ta >> 1;
2266     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2267     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2268     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2269   }
2270 
2271   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2272   {
2273     starti;
2274     assert(T != T1D, "reserved encoding");
2275     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2276     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
2277   }
2278 
2279   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2280   {
2281     starti;
2282     assert(T != T1D, "reserved encoding");
2283     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2284     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2285     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2286   }
2287 
2288   // CRC32 instructions
2289 #define INSN(NAME, c, sf, sz)                                             \
2290   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2291     starti;                                                               \
2292     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2293     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2294   }
2295 
2296   INSN(crc32b,  0, 0, 0b00);
2297   INSN(crc32h,  0, 0, 0b01);
2298   INSN(crc32w,  0, 0, 0b10);
2299   INSN(crc32x,  0, 1, 0b11);
2300   INSN(crc32cb, 1, 0, 0b00);
2301   INSN(crc32ch, 1, 0, 0b01);
2302   INSN(crc32cw, 1, 0, 0b10);
2303   INSN(crc32cx, 1, 1, 0b11);
2304 
2305 #undef INSN
2306 
2307   // Table vector lookup
2308 #define INSN(NAME, op)                                                  \
2309   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2310     starti;                                                             \
2311     assert(T == T8B || T == T16B, "invalid arrangement");               \
2312     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2313     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2314     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2315   }
2316 
2317   INSN(tbl, 0);
2318   INSN(tbx, 1);
2319 
2320 #undef INSN
2321 
2322   // AdvSIMD two-reg misc
2323 #define INSN(NAME, U, opcode)                                                       \
2324   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2325        starti;                                                                      \
2326        assert((ASSERTION), MSG);                                                    \
2327        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2328        f((int)(T >> 1), 23, 22), f(0b10000, 21, 17), f(opcode, 16, 12);             \
2329        f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                                       \
2330  }
2331 
2332 #define MSG "invalid arrangement"
2333 
2334 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2335   INSN(fsqrt, 1, 0b11111);
2336   INSN(fabs,  0, 0b01111);
2337   INSN(fneg,  1, 0b01111);
2338 #undef ASSERTION
2339 
2340 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2341   INSN(rev64, 0, 0b00000);
2342 #undef ASSERTION
2343 
2344 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2345   INSN(rev32, 1, 0b00000);
2346 private:
2347   INSN(_rbit, 1, 0b00101);
2348 public:
2349 
2350 #undef ASSERTION
2351 
2352 #define ASSERTION (T == T8B || T == T16B)
2353   INSN(rev16, 0, 0b00001);
2354   // RBIT only allows T8B and T16B but encodes them oddly.  Argh...
2355   void rbit(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
2356     assert((ASSERTION), MSG);
2357     _rbit(Vd, SIMD_Arrangement(T & 1 | 0b010), Vn);
2358   }
2359 #undef ASSERTION
2360 
2361 #undef MSG
2362 
2363 #undef INSN
2364 
2365 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2366   {
2367     starti;
2368     assert(T == T8B || T == T16B, "invalid arrangement");
2369     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2370     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2371     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2372     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2373   }
2374 
2375 /* Simulator extensions to the ISA
2376 
2377    haltsim
2378 
2379    takes no arguments, causes the sim to enter a debug break and then
2380    return from the simulator run() call with STATUS_HALT? The linking
2381    code will call fatal() when it sees STATUS_HALT.
2382 
2383    blrt Xn, Wm
2384    blrt Xn, #gpargs, #fpargs, #type
2385    Xn holds the 64 bit x86 branch_address
2386    call format is encoded either as immediate data in the call
2387    or in register Wm. In the latter case
2388      Wm[13..6] = #gpargs,
2389      Wm[5..2] = #fpargs,
2390      Wm[1,0] = #type
2391 
2392    calls the x86 code address 'branch_address' supplied in Xn passing
2393    arguments taken from the general and floating point registers according
2394    to the supplied counts 'gpargs' and 'fpargs'. may return a result in r0
2395    or v0 according to the the return type #type' where
2396 
2397    address branch_address;
2398    uimm4 gpargs;
2399    uimm4 fpargs;
2400    enum ReturnType type;
2401 
2402    enum ReturnType
2403      {
2404        void_ret = 0,
2405        int_ret = 1,
2406        long_ret = 1,
2407        obj_ret = 1, // i.e. same as long
2408        float_ret = 2,
2409        double_ret = 3
2410      }
2411 
2412    notify
2413 
2414    notifies the simulator of a transfer of control. instr[14:0]
2415    identifies the type of change of control.
2416 
2417    0 ==> initial entry to a method.
2418 
2419    1 ==> return into a method from a submethod call.
2420 
2421    2 ==> exit out of Java method code.
2422 
2423    3 ==> start execution for a new bytecode.
2424 
2425    in cases 1 and 2 the simulator is expected to use a JVM callback to
2426    identify the name of the specific method being executed. in case 4
2427    the simulator is expected to use a JVM callback to identify the
2428    bytecode index.
2429 
2430    Instruction encodings
2431    ---------------------
2432 
2433    These are encoded in the space with instr[28:25] = 00 which is
2434    unallocated. Encodings are
2435 
2436                      10987654321098765432109876543210
2437    PSEUDO_HALT   = 0x11100000000000000000000000000000
2438    PSEUDO_BLRT  = 0x11000000000000000_______________
2439    PSEUDO_BLRTR = 0x1100000000000000100000__________
2440    PSEUDO_NOTIFY = 0x10100000000000000_______________
2441 
2442    instr[31,29] = op1 : 111 ==> HALT, 110 ==> BLRT/BLRTR, 101 ==> NOTIFY
2443 
2444    for BLRT
2445      instr[14,11] = #gpargs, instr[10,7] = #fpargs
2446      instr[6,5] = #type, instr[4,0] = Rn
2447    for BLRTR
2448      instr[9,5] = Rm, instr[4,0] = Rn
2449    for NOTIFY
2450      instr[14:0] = type : 0 ==> entry, 1 ==> reentry, 2 ==> exit, 3 ==> bcstart
2451 */
2452 
2453   enum NotifyType { method_entry, method_reentry, method_exit, bytecode_start };
2454 
2455   virtual void notify(int type) {
2456     if (UseBuiltinSim) {
2457       starti;
2458       //  109
2459       f(0b101, 31, 29);
2460       //  87654321098765
2461       f(0b00000000000000, 28, 15);
2462       f(type, 14, 0);
2463     }
2464   }
2465 
2466   void blrt(Register Rn, int gpargs, int fpargs, int type) {
2467     if (UseBuiltinSim) {
2468       starti;
2469       f(0b110, 31 ,29);
2470       f(0b00, 28, 25);
2471       //  4321098765
2472       f(0b0000000000, 24, 15);
2473       f(gpargs, 14, 11);
2474       f(fpargs, 10, 7);
2475       f(type, 6, 5);
2476       rf(Rn, 0);
2477     } else {
2478       blr(Rn);
2479     }
2480   }
2481 
2482   void blrt(Register Rn, Register Rm) {
2483     if (UseBuiltinSim) {
2484       starti;
2485       f(0b110, 31 ,29);
2486       f(0b00, 28, 25);
2487       //  4321098765
2488       f(0b0000000001, 24, 15);
2489       //  43210
2490       f(0b00000, 14, 10);
2491       rf(Rm, 5);
2492       rf(Rn, 0);
2493     } else {
2494       blr(Rn);
2495     }
2496   }
2497 
2498   void haltsim() {
2499     starti;
2500     f(0b111, 31 ,29);
2501     f(0b00, 28, 27);
2502     //  654321098765432109876543210
2503     f(0b000000000000000000000000000, 26, 0);
2504   }
2505 
2506   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2507   }
2508 
2509   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2510                                                 Register tmp,
2511                                                 int offset) {
2512     ShouldNotCallThis();
2513     return RegisterOrConstant();
2514   }
2515 
2516   // Stack overflow checking
2517   virtual void bang_stack_with_offset(int offset);
2518 
2519   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2520   static bool operand_valid_for_add_sub_immediate(long imm);
2521   static bool operand_valid_for_float_immediate(double imm);
2522 
2523   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2524   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2525 };
2526 
2527 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2528                                              Assembler::Membar_mask_bits b) {
2529   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2530 }
2531 
2532 Instruction_aarch64::~Instruction_aarch64() {
2533   assem->emit();
2534 }
2535 
2536 #undef starti
2537 
2538 // Invert a condition
2539 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2540   return Assembler::Condition(int(cond) ^ 1);
2541 }
2542 
2543 class BiasedLockingCounters;
2544 
2545 extern "C" void das(uint64_t start, int len);
2546 
2547 #endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP