1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument VALUE_OBJ_CLASS_SPEC {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch, r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 143 
 144 namespace asm_util {
 145   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 146 };
 147 
 148 using namespace asm_util;
 149 
 150 
 151 class Assembler;
 152 
 153 class Instruction_aarch64 {
 154   unsigned insn;
 155 #ifdef ASSERT
 156   unsigned bits;
 157 #endif
 158   Assembler *assem;
 159 
 160 public:
 161 
 162   Instruction_aarch64(class Assembler *as) {
 163 #ifdef ASSERT
 164     bits = 0;
 165 #endif
 166     insn = 0;
 167     assem = as;
 168   }
 169 
 170   inline ~Instruction_aarch64();
 171 
 172   unsigned &get_insn() { return insn; }
 173 #ifdef ASSERT
 174   unsigned &get_bits() { return bits; }
 175 #endif
 176 
 177   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 178     union {
 179       unsigned u;
 180       int n;
 181     };
 182 
 183     u = val << (31 - hi);
 184     n = n >> (31 - hi + lo);
 185     return n;
 186   }
 187 
 188   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 189     int nbits = msb - lsb + 1;
 190     assert_cond(msb >= lsb);
 191     uint32_t mask = (1U << nbits) - 1;
 192     uint32_t result = val >> lsb;
 193     result &= mask;
 194     return result;
 195   }
 196 
 197   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 198     uint32_t uval = extract(val, msb, lsb);
 199     return extend(uval, msb - lsb);
 200   }
 201 
 202   static void patch(address a, int msb, int lsb, unsigned long val) {
 203     int nbits = msb - lsb + 1;
 204     guarantee(val < (1U << nbits), "Field too big for insn");
 205     assert_cond(msb >= lsb);
 206     unsigned mask = (1U << nbits) - 1;
 207     val <<= lsb;
 208     mask <<= lsb;
 209     unsigned target = *(unsigned *)a;
 210     target &= ~mask;
 211     target |= val;
 212     *(unsigned *)a = target;
 213   }
 214 
 215   static void spatch(address a, int msb, int lsb, long val) {
 216     int nbits = msb - lsb + 1;
 217     long chk = val >> (nbits - 1);
 218     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 219     unsigned uval = val;
 220     unsigned mask = (1U << nbits) - 1;
 221     uval &= mask;
 222     uval <<= lsb;
 223     mask <<= lsb;
 224     unsigned target = *(unsigned *)a;
 225     target &= ~mask;
 226     target |= uval;
 227     *(unsigned *)a = target;
 228   }
 229 
 230   void f(unsigned val, int msb, int lsb) {
 231     int nbits = msb - lsb + 1;
 232     guarantee(val < (1U << nbits), "Field too big for insn");
 233     assert_cond(msb >= lsb);
 234     unsigned mask = (1U << nbits) - 1;
 235     val <<= lsb;
 236     mask <<= lsb;
 237     insn |= val;
 238     assert_cond((bits & mask) == 0);
 239 #ifdef ASSERT
 240     bits |= mask;
 241 #endif
 242   }
 243 
 244   void f(unsigned val, int bit) {
 245     f(val, bit, bit);
 246   }
 247 
 248   void sf(long val, int msb, int lsb) {
 249     int nbits = msb - lsb + 1;
 250     long chk = val >> (nbits - 1);
 251     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 252     unsigned uval = val;
 253     unsigned mask = (1U << nbits) - 1;
 254     uval &= mask;
 255     f(uval, lsb + nbits - 1, lsb);
 256   }
 257 
 258   void rf(Register r, int lsb) {
 259     f(r->encoding_nocheck(), lsb + 4, lsb);
 260   }
 261 
 262   // reg|ZR
 263   void zrf(Register r, int lsb) {
 264     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 265   }
 266 
 267   // reg|SP
 268   void srf(Register r, int lsb) {
 269     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 270   }
 271 
 272   void rf(FloatRegister r, int lsb) {
 273     f(r->encoding_nocheck(), lsb + 4, lsb);
 274   }
 275 
 276   unsigned get(int msb = 31, int lsb = 0) {
 277     int nbits = msb - lsb + 1;
 278     unsigned mask = ((1U << nbits) - 1) << lsb;
 279     assert_cond(bits & mask == mask);
 280     return (insn & mask) >> lsb;
 281   }
 282 
 283   void fixed(unsigned value, unsigned mask) {
 284     assert_cond ((mask & bits) == 0);
 285 #ifdef ASSERT
 286     bits |= mask;
 287 #endif
 288     insn |= value;
 289   }
 290 };
 291 
 292 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 293 
 294 class PrePost {
 295   int _offset;
 296   Register _r;
 297 public:
 298   PrePost(Register reg, int o) : _r(reg), _offset(o) { }
 299   int offset() { return _offset; }
 300   Register reg() { return _r; }
 301 };
 302 
 303 class Pre : public PrePost {
 304 public:
 305   Pre(Register reg, int o) : PrePost(reg, o) { }
 306 };
 307 class Post : public PrePost {
 308 public:
 309   Post(Register reg, int o) : PrePost(reg, o) { }
 310 };
 311 
 312 namespace ext
 313 {
 314   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 315 };
 316 
 317 // abs methods which cannot overflow and so are well-defined across
 318 // the entire domain of integer types.
 319 static inline unsigned int uabs(unsigned int n) {
 320   union {
 321     unsigned int result;
 322     int value;
 323   };
 324   result = n;
 325   if (value < 0) result = -result;
 326   return result;
 327 }
 328 static inline unsigned long uabs(unsigned long n) {
 329   union {
 330     unsigned long result;
 331     long value;
 332   };
 333   result = n;
 334   if (value < 0) result = -result;
 335   return result;
 336 }
 337 static inline unsigned long uabs(long n) { return uabs((unsigned long)n); }
 338 static inline unsigned long uabs(int n) { return uabs((unsigned int)n); }
 339 
 340 // Addressing modes
 341 class Address VALUE_OBJ_CLASS_SPEC {
 342  public:
 343 
 344   enum mode { no_mode, base_plus_offset, pre, post, pcrel,
 345               base_plus_offset_reg, literal };
 346 
 347   // Shift and extend for base reg + reg offset addressing
 348   class extend {
 349     int _option, _shift;
 350     ext::operation _op;
 351   public:
 352     extend() { }
 353     extend(int s, int o, ext::operation op) : _shift(s), _option(o), _op(op) { }
 354     int option() const{ return _option; }
 355     int shift() const { return _shift; }
 356     ext::operation op() const { return _op; }
 357   };
 358   class uxtw : public extend {
 359   public:
 360     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 361   };
 362   class lsl : public extend {
 363   public:
 364     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 365   };
 366   class sxtw : public extend {
 367   public:
 368     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 369   };
 370   class sxtx : public extend {
 371   public:
 372     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 373   };
 374 
 375  private:
 376   Register _base;
 377   Register _index;
 378   long _offset;
 379   enum mode _mode;
 380   extend _ext;
 381 
 382   RelocationHolder _rspec;
 383 
 384   // Typically we use AddressLiterals we want to use their rval
 385   // However in some situations we want the lval (effect address) of
 386   // the item.  We provide a special factory for making those lvals.
 387   bool _is_lval;
 388 
 389   // If the target is far we'll need to load the ea of this to a
 390   // register to reach it. Otherwise if near we can do PC-relative
 391   // addressing.
 392   address          _target;
 393 
 394  public:
 395   Address()
 396     : _mode(no_mode) { }
 397   Address(Register r)
 398     : _mode(base_plus_offset), _base(r), _offset(0), _index(noreg), _target(0) { }
 399   Address(Register r, int o)
 400     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 401   Address(Register r, long o)
 402     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 403   Address(Register r, unsigned long o)
 404     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 405 #ifdef ASSERT
 406   Address(Register r, ByteSize disp)
 407     : _mode(base_plus_offset), _base(r), _offset(in_bytes(disp)),
 408       _index(noreg), _target(0) { }
 409 #endif
 410   Address(Register r, Register r1, extend ext = lsl())
 411     : _mode(base_plus_offset_reg), _base(r), _index(r1),
 412     _ext(ext), _offset(0), _target(0) { }
 413   Address(Pre p)
 414     : _mode(pre), _base(p.reg()), _offset(p.offset()) { }
 415   Address(Post p)
 416     : _mode(post), _base(p.reg()), _offset(p.offset()), _target(0) { }
 417   Address(address target, RelocationHolder const& rspec)
 418     : _mode(literal),
 419       _rspec(rspec),
 420       _is_lval(false),
 421       _target(target)  { }
 422   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 423   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 424     : _base (base),
 425       _ext(ext), _offset(0), _target(0) {
 426     if (index.is_register()) {
 427       _mode = base_plus_offset_reg;
 428       _index = index.as_register();
 429     } else {
 430       guarantee(ext.option() == ext::uxtx, "should be");
 431       assert(index.is_constant(), "should be");
 432       _mode = base_plus_offset;
 433       _offset = index.as_constant() << ext.shift();
 434     }
 435   }
 436 
 437   Register base() const {
 438     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 439                | _mode == post),
 440               "wrong mode");
 441     return _base;
 442   }
 443   long offset() const {
 444     return _offset;
 445   }
 446   Register index() const {
 447     return _index;
 448   }
 449   mode getMode() const {
 450     return _mode;
 451   }
 452   bool uses(Register reg) const { return _base == reg || _index == reg; }
 453   address target() const { return _target; }
 454   const RelocationHolder& rspec() const { return _rspec; }
 455 
 456   void encode(Instruction_aarch64 *i) const {
 457     i->f(0b111, 29, 27);
 458     i->srf(_base, 5);
 459 
 460     switch(_mode) {
 461     case base_plus_offset:
 462       {
 463         unsigned size = i->get(31, 30);
 464         if (i->get(26, 26) && i->get(23, 23)) {
 465           // SIMD Q Type - Size = 128 bits
 466           assert(size == 0, "bad size");
 467           size = 0b100;
 468         }
 469         unsigned mask = (1 << size) - 1;
 470         if (_offset < 0 || _offset & mask)
 471           {
 472             i->f(0b00, 25, 24);
 473             i->f(0, 21), i->f(0b00, 11, 10);
 474             i->sf(_offset, 20, 12);
 475           } else {
 476             i->f(0b01, 25, 24);
 477             i->f(_offset >> size, 21, 10);
 478           }
 479       }
 480       break;
 481 
 482     case base_plus_offset_reg:
 483       {
 484         i->f(0b00, 25, 24);
 485         i->f(1, 21);
 486         i->rf(_index, 16);
 487         i->f(_ext.option(), 15, 13);
 488         unsigned size = i->get(31, 30);
 489         if (i->get(26, 26) && i->get(23, 23)) {
 490           // SIMD Q Type - Size = 128 bits
 491           assert(size == 0, "bad size");
 492           size = 0b100;
 493         }
 494         if (size == 0) // It's a byte
 495           i->f(_ext.shift() >= 0, 12);
 496         else {
 497           if (_ext.shift() > 0)
 498             assert(_ext.shift() == (int)size, "bad shift");
 499           i->f(_ext.shift() > 0, 12);
 500         }
 501         i->f(0b10, 11, 10);
 502       }
 503       break;
 504 
 505     case pre:
 506       i->f(0b00, 25, 24);
 507       i->f(0, 21), i->f(0b11, 11, 10);
 508       i->sf(_offset, 20, 12);
 509       break;
 510 
 511     case post:
 512       i->f(0b00, 25, 24);
 513       i->f(0, 21), i->f(0b01, 11, 10);
 514       i->sf(_offset, 20, 12);
 515       break;
 516 
 517     default:
 518       ShouldNotReachHere();
 519     }
 520   }
 521 
 522   void encode_pair(Instruction_aarch64 *i) const {
 523     switch(_mode) {
 524     case base_plus_offset:
 525       i->f(0b010, 25, 23);
 526       break;
 527     case pre:
 528       i->f(0b011, 25, 23);
 529       break;
 530     case post:
 531       i->f(0b001, 25, 23);
 532       break;
 533     default:
 534       ShouldNotReachHere();
 535     }
 536 
 537     unsigned size; // Operand shift in 32-bit words
 538 
 539     if (i->get(26, 26)) { // float
 540       switch(i->get(31, 30)) {
 541       case 0b10:
 542         size = 2; break;
 543       case 0b01:
 544         size = 1; break;
 545       case 0b00:
 546         size = 0; break;
 547       default:
 548         ShouldNotReachHere();
 549         size = 0;  // unreachable
 550       }
 551     } else {
 552       size = i->get(31, 31);
 553     }
 554 
 555     size = 4 << size;
 556     guarantee(_offset % size == 0, "bad offset");
 557     i->sf(_offset / size, 21, 15);
 558     i->srf(_base, 5);
 559   }
 560 
 561   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 562     // Only base + offset is allowed
 563     i->f(0b000, 25, 23);
 564     unsigned size = i->get(31, 31);
 565     size = 4 << size;
 566     guarantee(_offset % size == 0, "bad offset");
 567     i->sf(_offset / size, 21, 15);
 568     i->srf(_base, 5);
 569     guarantee(_mode == Address::base_plus_offset,
 570               "Bad addressing mode for non-temporal op");
 571   }
 572 
 573   void lea(MacroAssembler *, Register) const;
 574 
 575   static bool offset_ok_for_immed(long offset, int shift = 0) {
 576     unsigned mask = (1 << shift) - 1;
 577     if (offset < 0 || offset & mask) {
 578       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 579     } else {
 580       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 581     }
 582   }
 583 };
 584 
 585 // Convience classes
 586 class RuntimeAddress: public Address {
 587 
 588   public:
 589 
 590   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 591 
 592 };
 593 
 594 class OopAddress: public Address {
 595 
 596   public:
 597 
 598   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 599 
 600 };
 601 
 602 class ExternalAddress: public Address {
 603  private:
 604   static relocInfo::relocType reloc_for_target(address target) {
 605     // Sometimes ExternalAddress is used for values which aren't
 606     // exactly addresses, like the card table base.
 607     // external_word_type can't be used for values in the first page
 608     // so just skip the reloc in that case.
 609     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 610   }
 611 
 612  public:
 613 
 614   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 615 
 616 };
 617 
 618 class InternalAddress: public Address {
 619 
 620   public:
 621 
 622   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 623 };
 624 
 625 const int FPUStateSizeInWords = 32 * 2;
 626 typedef enum {
 627   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 628   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 629   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 630 } prfop;
 631 
 632 class Assembler : public AbstractAssembler {
 633 
 634 #ifndef PRODUCT
 635   static const unsigned long asm_bp;
 636 
 637   void emit_long(jint x) {
 638     if ((unsigned long)pc() == asm_bp)
 639       asm volatile ("nop");
 640     AbstractAssembler::emit_int32(x);
 641   }
 642 #else
 643   void emit_long(jint x) {
 644     AbstractAssembler::emit_int32(x);
 645   }
 646 #endif
 647 
 648 public:
 649 
 650   enum { instruction_size = 4 };
 651 
 652   Address adjust(Register base, int offset, bool preIncrement) {
 653     if (preIncrement)
 654       return Address(Pre(base, offset));
 655     else
 656       return Address(Post(base, offset));
 657   }
 658 
 659   Address pre(Register base, int offset) {
 660     return adjust(base, offset, true);
 661   }
 662 
 663   Address post (Register base, int offset) {
 664     return adjust(base, offset, false);
 665   }
 666 
 667   Instruction_aarch64* current;
 668 
 669   void set_current(Instruction_aarch64* i) { current = i; }
 670 
 671   void f(unsigned val, int msb, int lsb) {
 672     current->f(val, msb, lsb);
 673   }
 674   void f(unsigned val, int msb) {
 675     current->f(val, msb, msb);
 676   }
 677   void sf(long val, int msb, int lsb) {
 678     current->sf(val, msb, lsb);
 679   }
 680   void rf(Register reg, int lsb) {
 681     current->rf(reg, lsb);
 682   }
 683   void srf(Register reg, int lsb) {
 684     current->srf(reg, lsb);
 685   }
 686   void zrf(Register reg, int lsb) {
 687     current->zrf(reg, lsb);
 688   }
 689   void rf(FloatRegister reg, int lsb) {
 690     current->rf(reg, lsb);
 691   }
 692   void fixed(unsigned value, unsigned mask) {
 693     current->fixed(value, mask);
 694   }
 695 
 696   void emit() {
 697     emit_long(current->get_insn());
 698     assert_cond(current->get_bits() == 0xffffffff);
 699     current = NULL;
 700   }
 701 
 702   typedef void (Assembler::* uncond_branch_insn)(address dest);
 703   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 704   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 705   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 706 
 707   void wrap_label(Label &L, uncond_branch_insn insn);
 708   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 709   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 710   void wrap_label(Label &L, prfop, prefetch_insn insn);
 711 
 712   // PC-rel. addressing
 713 
 714   void adr(Register Rd, address dest);
 715   void _adrp(Register Rd, address dest);
 716 
 717   void adr(Register Rd, const Address &dest);
 718   void _adrp(Register Rd, const Address &dest);
 719 
 720   void adr(Register Rd, Label &L) {
 721     wrap_label(Rd, L, &Assembler::Assembler::adr);
 722   }
 723   void _adrp(Register Rd, Label &L) {
 724     wrap_label(Rd, L, &Assembler::_adrp);
 725   }
 726 
 727   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 728 
 729 #undef INSN
 730 
 731   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 732                          int negated_op);
 733 
 734   // Add/subtract (immediate)
 735 #define INSN(NAME, decode, negated)                                     \
 736   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 737     starti;                                                             \
 738     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 739     zrf(Rd, 0), srf(Rn, 5);                                             \
 740   }                                                                     \
 741                                                                         \
 742   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 743     starti;                                                             \
 744     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 745   }
 746 
 747   INSN(addsw, 0b001, 0b011);
 748   INSN(subsw, 0b011, 0b001);
 749   INSN(adds,  0b101, 0b111);
 750   INSN(subs,  0b111, 0b101);
 751 
 752 #undef INSN
 753 
 754 #define INSN(NAME, decode, negated)                     \
 755   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 756     starti;                                             \
 757     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 758   }
 759 
 760   INSN(addw, 0b000, 0b010);
 761   INSN(subw, 0b010, 0b000);
 762   INSN(add,  0b100, 0b110);
 763   INSN(sub,  0b110, 0b100);
 764 
 765 #undef INSN
 766 
 767  // Logical (immediate)
 768 #define INSN(NAME, decode, is32)                                \
 769   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 770     starti;                                                     \
 771     uint32_t val = encode_logical_immediate(is32, imm);         \
 772     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 773     srf(Rd, 0), zrf(Rn, 5);                                     \
 774   }
 775 
 776   INSN(andw, 0b000, true);
 777   INSN(orrw, 0b001, true);
 778   INSN(eorw, 0b010, true);
 779   INSN(andr,  0b100, false);
 780   INSN(orr,  0b101, false);
 781   INSN(eor,  0b110, false);
 782 
 783 #undef INSN
 784 
 785 #define INSN(NAME, decode, is32)                                \
 786   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 787     starti;                                                     \
 788     uint32_t val = encode_logical_immediate(is32, imm);         \
 789     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 790     zrf(Rd, 0), zrf(Rn, 5);                                     \
 791   }
 792 
 793   INSN(ands, 0b111, false);
 794   INSN(andsw, 0b011, true);
 795 
 796 #undef INSN
 797 
 798   // Move wide (immediate)
 799 #define INSN(NAME, opcode)                                              \
 800   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 801     assert_cond((shift/16)*16 == shift);                                \
 802     starti;                                                             \
 803     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 804       f(imm, 20, 5);                                                    \
 805     rf(Rd, 0);                                                          \
 806   }
 807 
 808   INSN(movnw, 0b000);
 809   INSN(movzw, 0b010);
 810   INSN(movkw, 0b011);
 811   INSN(movn, 0b100);
 812   INSN(movz, 0b110);
 813   INSN(movk, 0b111);
 814 
 815 #undef INSN
 816 
 817   // Bitfield
 818 #define INSN(NAME, opcode)                                              \
 819   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 820     starti;                                                             \
 821     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 822     rf(Rn, 5), rf(Rd, 0);                                               \
 823   }
 824 
 825   INSN(sbfmw, 0b0001001100);
 826   INSN(bfmw,  0b0011001100);
 827   INSN(ubfmw, 0b0101001100);
 828   INSN(sbfm,  0b1001001101);
 829   INSN(bfm,   0b1011001101);
 830   INSN(ubfm,  0b1101001101);
 831 
 832 #undef INSN
 833 
 834   // Extract
 835 #define INSN(NAME, opcode)                                              \
 836   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 837     starti;                                                             \
 838     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 839     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                   \
 840   }
 841 
 842   INSN(extrw, 0b00010011100);
 843   INSN(extr,  0b10010011110);
 844 
 845 #undef INSN
 846 
 847   // The maximum range of a branch is fixed for the AArch64
 848   // architecture.  In debug mode we shrink it in order to test
 849   // trampolines, but not so small that branches in the interpreter
 850   // are out of range.
 851   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 852 
 853   static bool reachable_from_branch_at(address branch, address target) {
 854     return uabs(target - branch) < branch_range;
 855   }
 856 
 857   // Unconditional branch (immediate)
 858 #define INSN(NAME, opcode)                                              \
 859   void NAME(address dest) {                                             \
 860     starti;                                                             \
 861     long offset = (dest - pc()) >> 2;                                   \
 862     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 863     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 864   }                                                                     \
 865   void NAME(Label &L) {                                                 \
 866     wrap_label(L, &Assembler::NAME);                                    \
 867   }                                                                     \
 868   void NAME(const Address &dest);
 869 
 870   INSN(b, 0);
 871   INSN(bl, 1);
 872 
 873 #undef INSN
 874 
 875   // Compare & branch (immediate)
 876 #define INSN(NAME, opcode)                              \
 877   void NAME(Register Rt, address dest) {                \
 878     long offset = (dest - pc()) >> 2;                   \
 879     starti;                                             \
 880     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 881   }                                                     \
 882   void NAME(Register Rt, Label &L) {                    \
 883     wrap_label(Rt, L, &Assembler::NAME);                \
 884   }
 885 
 886   INSN(cbzw,  0b00110100);
 887   INSN(cbnzw, 0b00110101);
 888   INSN(cbz,   0b10110100);
 889   INSN(cbnz,  0b10110101);
 890 
 891 #undef INSN
 892 
 893   // Test & branch (immediate)
 894 #define INSN(NAME, opcode)                                              \
 895   void NAME(Register Rt, int bitpos, address dest) {                    \
 896     long offset = (dest - pc()) >> 2;                                   \
 897     int b5 = bitpos >> 5;                                               \
 898     bitpos &= 0x1f;                                                     \
 899     starti;                                                             \
 900     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 901     rf(Rt, 0);                                                          \
 902   }                                                                     \
 903   void NAME(Register Rt, int bitpos, Label &L) {                        \
 904     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 905   }
 906 
 907   INSN(tbz,  0b0110110);
 908   INSN(tbnz, 0b0110111);
 909 
 910 #undef INSN
 911 
 912   // Conditional branch (immediate)
 913   enum Condition
 914     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 915 
 916   void br(Condition  cond, address dest) {
 917     long offset = (dest - pc()) >> 2;
 918     starti;
 919     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 920   }
 921 
 922 #define INSN(NAME, cond)                        \
 923   void NAME(address dest) {                     \
 924     br(cond, dest);                             \
 925   }
 926 
 927   INSN(beq, EQ);
 928   INSN(bne, NE);
 929   INSN(bhs, HS);
 930   INSN(bcs, CS);
 931   INSN(blo, LO);
 932   INSN(bcc, CC);
 933   INSN(bmi, MI);
 934   INSN(bpl, PL);
 935   INSN(bvs, VS);
 936   INSN(bvc, VC);
 937   INSN(bhi, HI);
 938   INSN(bls, LS);
 939   INSN(bge, GE);
 940   INSN(blt, LT);
 941   INSN(bgt, GT);
 942   INSN(ble, LE);
 943   INSN(bal, AL);
 944   INSN(bnv, NV);
 945 
 946   void br(Condition cc, Label &L);
 947 
 948 #undef INSN
 949 
 950   // Exception generation
 951   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 952     starti;
 953     f(0b11010100, 31, 24);
 954     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 955   }
 956 
 957 #define INSN(NAME, opc, op2, LL)                \
 958   void NAME(unsigned imm) {                     \
 959     generate_exception(opc, op2, LL, imm);      \
 960   }
 961 
 962   INSN(svc, 0b000, 0, 0b01);
 963   INSN(hvc, 0b000, 0, 0b10);
 964   INSN(smc, 0b000, 0, 0b11);
 965   INSN(brk, 0b001, 0, 0b00);
 966   INSN(hlt, 0b010, 0, 0b00);
 967   INSN(dpcs1, 0b101, 0, 0b01);
 968   INSN(dpcs2, 0b101, 0, 0b10);
 969   INSN(dpcs3, 0b101, 0, 0b11);
 970 
 971 #undef INSN
 972 
 973   // System
 974   void system(int op0, int op1, int CRn, int CRm, int op2,
 975               Register rt = dummy_reg)
 976   {
 977     starti;
 978     f(0b11010101000, 31, 21);
 979     f(op0, 20, 19);
 980     f(op1, 18, 16);
 981     f(CRn, 15, 12);
 982     f(CRm, 11, 8);
 983     f(op2, 7, 5);
 984     rf(rt, 0);
 985   }
 986 
 987   void hint(int imm) {
 988     system(0b00, 0b011, 0b0010, imm, 0b000);
 989   }
 990 
 991   void nop() {
 992     hint(0);
 993   }
 994   // we only provide mrs and msr for the special purpose system
 995   // registers where op1 (instr[20:19]) == 11 and, (currently) only
 996   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
 997 
 998   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
 999     starti;
1000     f(0b1101010100011, 31, 19);
1001     f(op1, 18, 16);
1002     f(CRn, 15, 12);
1003     f(CRm, 11, 8);
1004     f(op2, 7, 5);
1005     // writing zr is ok
1006     zrf(rt, 0);
1007   }
1008 
1009   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1010     starti;
1011     f(0b1101010100111, 31, 19);
1012     f(op1, 18, 16);
1013     f(CRn, 15, 12);
1014     f(CRm, 11, 8);
1015     f(op2, 7, 5);
1016     // reading to zr is a mistake
1017     rf(rt, 0);
1018   }
1019 
1020   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1021                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1022 
1023   void dsb(barrier imm) {
1024     system(0b00, 0b011, 0b00011, imm, 0b100);
1025   }
1026 
1027   void dmb(barrier imm) {
1028     system(0b00, 0b011, 0b00011, imm, 0b101);
1029   }
1030 
1031   void isb() {
1032     system(0b00, 0b011, 0b00011, SY, 0b110);
1033   }
1034 
1035   void dc(Register Rt) {
1036     system(0b01, 0b011, 0b0111, 0b1011, 0b001, Rt);
1037   }
1038 
1039   void ic(Register Rt) {
1040     system(0b01, 0b011, 0b0111, 0b0101, 0b001, Rt);
1041   }
1042 
1043   // A more convenient access to dmb for our purposes
1044   enum Membar_mask_bits {
1045     // We can use ISH for a barrier because the ARM ARM says "This
1046     // architecture assumes that all Processing Elements that use the
1047     // same operating system or hypervisor are in the same Inner
1048     // Shareable shareability domain."
1049     StoreStore = ISHST,
1050     LoadStore  = ISHLD,
1051     LoadLoad   = ISHLD,
1052     StoreLoad  = ISH,
1053     AnyAny     = ISH
1054   };
1055 
1056   void membar(Membar_mask_bits order_constraint) {
1057     dmb(Assembler::barrier(order_constraint));
1058   }
1059 
1060   // Unconditional branch (register)
1061   void branch_reg(Register R, int opc) {
1062     starti;
1063     f(0b1101011, 31, 25);
1064     f(opc, 24, 21);
1065     f(0b11111000000, 20, 10);
1066     rf(R, 5);
1067     f(0b00000, 4, 0);
1068   }
1069 
1070 #define INSN(NAME, opc)                         \
1071   void NAME(Register R) {                       \
1072     branch_reg(R, opc);                         \
1073   }
1074 
1075   INSN(br, 0b0000);
1076   INSN(blr, 0b0001);
1077   INSN(ret, 0b0010);
1078 
1079   void ret(void *p); // This forces a compile-time error for ret(0)
1080 
1081 #undef INSN
1082 
1083 #define INSN(NAME, opc)                         \
1084   void NAME() {                 \
1085     branch_reg(dummy_reg, opc);         \
1086   }
1087 
1088   INSN(eret, 0b0100);
1089   INSN(drps, 0b0101);
1090 
1091 #undef INSN
1092 
1093   // Load/store exclusive
1094   enum operand_size { byte, halfword, word, xword };
1095 
1096   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1097     Register Rn, enum operand_size sz, int op, bool ordered) {
1098     starti;
1099     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1100     rf(Rs, 16), f(ordered, 15), rf(Rt2, 10), rf(Rn, 5), rf(Rt1, 0);
1101   }
1102 
1103   void load_exclusive(Register dst, Register addr,
1104                       enum operand_size sz, bool ordered) {
1105     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1106                          sz, 0b010, ordered);
1107   }
1108 
1109   void store_exclusive(Register status, Register new_val, Register addr,
1110                        enum operand_size sz, bool ordered) {
1111     load_store_exclusive(status, new_val, dummy_reg, addr,
1112                          sz, 0b000, ordered);
1113   }
1114 
1115 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1116   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1117     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1118     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1119   }
1120 
1121 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1122   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1123     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1124     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1125   }
1126 
1127 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1128   void NAME(Register Rt, Register Rn) {                                 \
1129     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1130                          Rn, sz, op, o0);                               \
1131   }
1132 
1133 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1134   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1135     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1136     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1137   }
1138 
1139   // bytes
1140   INSN3(stxrb, byte, 0b000, 0);
1141   INSN3(stlxrb, byte, 0b000, 1);
1142   INSN2(ldxrb, byte, 0b010, 0);
1143   INSN2(ldaxrb, byte, 0b010, 1);
1144   INSN2(stlrb, byte, 0b100, 1);
1145   INSN2(ldarb, byte, 0b110, 1);
1146 
1147   // halfwords
1148   INSN3(stxrh, halfword, 0b000, 0);
1149   INSN3(stlxrh, halfword, 0b000, 1);
1150   INSN2(ldxrh, halfword, 0b010, 0);
1151   INSN2(ldaxrh, halfword, 0b010, 1);
1152   INSN2(stlrh, halfword, 0b100, 1);
1153   INSN2(ldarh, halfword, 0b110, 1);
1154 
1155   // words
1156   INSN3(stxrw, word, 0b000, 0);
1157   INSN3(stlxrw, word, 0b000, 1);
1158   INSN4(stxpw, word, 0b001, 0);
1159   INSN4(stlxpw, word, 0b001, 1);
1160   INSN2(ldxrw, word, 0b010, 0);
1161   INSN2(ldaxrw, word, 0b010, 1);
1162   INSN_FOO(ldxpw, word, 0b011, 0);
1163   INSN_FOO(ldaxpw, word, 0b011, 1);
1164   INSN2(stlrw, word, 0b100, 1);
1165   INSN2(ldarw, word, 0b110, 1);
1166 
1167   // xwords
1168   INSN3(stxr, xword, 0b000, 0);
1169   INSN3(stlxr, xword, 0b000, 1);
1170   INSN4(stxp, xword, 0b001, 0);
1171   INSN4(stlxp, xword, 0b001, 1);
1172   INSN2(ldxr, xword, 0b010, 0);
1173   INSN2(ldaxr, xword, 0b010, 1);
1174   INSN_FOO(ldxp, xword, 0b011, 0);
1175   INSN_FOO(ldaxp, xword, 0b011, 1);
1176   INSN2(stlr, xword, 0b100, 1);
1177   INSN2(ldar, xword, 0b110, 1);
1178 
1179 #undef INSN2
1180 #undef INSN3
1181 #undef INSN4
1182 #undef INSN_FOO
1183 
1184   // 8.1 Compare and swap extensions
1185   void lse_cas(Register Rs, Register Rt, Register Rn,
1186                         enum operand_size sz, bool a, bool r, bool not_pair) {
1187     starti;
1188     if (! not_pair) { // Pair
1189       assert(sz == word || sz == xword, "invalid size");
1190       /* The size bit is in bit 30, not 31 */
1191       sz = (operand_size)(sz == word ? 0b00:0b01);
1192     }
1193     f(sz, 31, 30), f(0b001000, 29, 24), f(1, 23), f(a, 22), f(1, 21);
1194     rf(Rs, 16), f(r, 15), f(0b11111, 14, 10), rf(Rn, 5), rf(Rt, 0);
1195   }
1196 
1197   // CAS
1198 #define INSN(NAME, a, r)                                                \
1199   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1200     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1201     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1202   }
1203   INSN(cas,    false, false)
1204   INSN(casa,   true,  false)
1205   INSN(casl,   false, true)
1206   INSN(casal,  true,  true)
1207 #undef INSN
1208 
1209   // CASP
1210 #define INSN(NAME, a, r)                                                \
1211   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1212             Register Rt, Register Rt1, Register Rn) {                   \
1213     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1214            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1215            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1216     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1217   }
1218   INSN(casp,    false, false)
1219   INSN(caspa,   true,  false)
1220   INSN(caspl,   false, true)
1221   INSN(caspal,  true,  true)
1222 #undef INSN
1223 
1224   // Load register (literal)
1225 #define INSN(NAME, opc, V)                                              \
1226   void NAME(Register Rt, address dest) {                                \
1227     long offset = (dest - pc()) >> 2;                                   \
1228     starti;                                                             \
1229     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1230       sf(offset, 23, 5);                                                \
1231     rf(Rt, 0);                                                          \
1232   }                                                                     \
1233   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1234     InstructionMark im(this);                                           \
1235     guarantee(rtype == relocInfo::internal_word_type,                   \
1236               "only internal_word_type relocs make sense here");        \
1237     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1238     NAME(Rt, dest);                                                     \
1239   }                                                                     \
1240   void NAME(Register Rt, Label &L) {                                    \
1241     wrap_label(Rt, L, &Assembler::NAME);                                \
1242   }
1243 
1244   INSN(ldrw, 0b00, 0);
1245   INSN(ldr, 0b01, 0);
1246   INSN(ldrsw, 0b10, 0);
1247 
1248 #undef INSN
1249 
1250 #define INSN(NAME, opc, V)                                              \
1251   void NAME(FloatRegister Rt, address dest) {                           \
1252     long offset = (dest - pc()) >> 2;                                   \
1253     starti;                                                             \
1254     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1255       sf(offset, 23, 5);                                                \
1256     rf((Register)Rt, 0);                                                \
1257   }
1258 
1259   INSN(ldrs, 0b00, 1);
1260   INSN(ldrd, 0b01, 1);
1261   INSN(ldrq, 0b10, 1);
1262 
1263 #undef INSN
1264 
1265 #define INSN(NAME, opc, V)                                              \
1266   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1267     long offset = (dest - pc()) >> 2;                                   \
1268     starti;                                                             \
1269     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1270       sf(offset, 23, 5);                                                \
1271     f(op, 4, 0);                                                        \
1272   }                                                                     \
1273   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1274     wrap_label(L, op, &Assembler::NAME);                                \
1275   }
1276 
1277   INSN(prfm, 0b11, 0);
1278 
1279 #undef INSN
1280 
1281   // Load/store
1282   void ld_st1(int opc, int p1, int V, int L,
1283               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1284     starti;
1285     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1286     zrf(Rt2, 10), zrf(Rt1, 0);
1287     if (no_allocate) {
1288       adr.encode_nontemporal_pair(current);
1289     } else {
1290       adr.encode_pair(current);
1291     }
1292   }
1293 
1294   // Load/store register pair (offset)
1295 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1296   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1297     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1298    }
1299 
1300   INSN(stpw, 0b00, 0b101, 0, 0, false);
1301   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1302   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1303   INSN(stp, 0b10, 0b101, 0, 0, false);
1304   INSN(ldp, 0b10, 0b101, 0, 1, false);
1305 
1306   // Load/store no-allocate pair (offset)
1307   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1308   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1309   INSN(stnp, 0b10, 0b101, 0, 0, true);
1310   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1311 
1312 #undef INSN
1313 
1314 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1315   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1316     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1317    }
1318 
1319   INSN(stps, 0b00, 0b101, 1, 0, false);
1320   INSN(ldps, 0b00, 0b101, 1, 1, false);
1321   INSN(stpd, 0b01, 0b101, 1, 0, false);
1322   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1323   INSN(stpq, 0b10, 0b101, 1, 0, false);
1324   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1325 
1326 #undef INSN
1327 
1328   // Load/store register (all modes)
1329   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1330     starti;
1331 
1332     f(V, 26); // general reg?
1333     zrf(Rt, 0);
1334 
1335     // Encoding for literal loads is done here (rather than pushed
1336     // down into Address::encode) because the encoding of this
1337     // instruction is too different from all of the other forms to
1338     // make it worth sharing.
1339     if (adr.getMode() == Address::literal) {
1340       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1341       assert(op == 0b01, "literal form can only be used with loads");
1342       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1343       long offset = (adr.target() - pc()) >> 2;
1344       sf(offset, 23, 5);
1345       code_section()->relocate(pc(), adr.rspec());
1346       return;
1347     }
1348 
1349     f(size, 31, 30);
1350     f(op, 23, 22); // str
1351     adr.encode(current);
1352   }
1353 
1354 #define INSN(NAME, size, op)                            \
1355   void NAME(Register Rt, const Address &adr) {          \
1356     ld_st2(Rt, adr, size, op);                          \
1357   }                                                     \
1358 
1359   INSN(str, 0b11, 0b00);
1360   INSN(strw, 0b10, 0b00);
1361   INSN(strb, 0b00, 0b00);
1362   INSN(strh, 0b01, 0b00);
1363 
1364   INSN(ldr, 0b11, 0b01);
1365   INSN(ldrw, 0b10, 0b01);
1366   INSN(ldrb, 0b00, 0b01);
1367   INSN(ldrh, 0b01, 0b01);
1368 
1369   INSN(ldrsb, 0b00, 0b10);
1370   INSN(ldrsbw, 0b00, 0b11);
1371   INSN(ldrsh, 0b01, 0b10);
1372   INSN(ldrshw, 0b01, 0b11);
1373   INSN(ldrsw, 0b10, 0b10);
1374 
1375 #undef INSN
1376 
1377 #define INSN(NAME, size, op)                                    \
1378   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1379     ld_st2((Register)pfop, adr, size, op);                      \
1380   }
1381 
1382   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1383                           // writeback modes, but the assembler
1384                           // doesn't enfore that.
1385 
1386 #undef INSN
1387 
1388 #define INSN(NAME, size, op)                            \
1389   void NAME(FloatRegister Rt, const Address &adr) {     \
1390     ld_st2((Register)Rt, adr, size, op, 1);             \
1391   }
1392 
1393   INSN(strd, 0b11, 0b00);
1394   INSN(strs, 0b10, 0b00);
1395   INSN(ldrd, 0b11, 0b01);
1396   INSN(ldrs, 0b10, 0b01);
1397   INSN(strq, 0b00, 0b10);
1398   INSN(ldrq, 0x00, 0b11);
1399 
1400 #undef INSN
1401 
1402   enum shift_kind { LSL, LSR, ASR, ROR };
1403 
1404   void op_shifted_reg(unsigned decode,
1405                       enum shift_kind kind, unsigned shift,
1406                       unsigned size, unsigned op) {
1407     f(size, 31);
1408     f(op, 30, 29);
1409     f(decode, 28, 24);
1410     f(shift, 15, 10);
1411     f(kind, 23, 22);
1412   }
1413 
1414   // Logical (shifted register)
1415 #define INSN(NAME, size, op, N)                                 \
1416   void NAME(Register Rd, Register Rn, Register Rm,              \
1417             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1418     starti;                                                     \
1419     f(N, 21);                                                   \
1420     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1421     op_shifted_reg(0b01010, kind, shift, size, op);             \
1422   }
1423 
1424   INSN(andr, 1, 0b00, 0);
1425   INSN(orr, 1, 0b01, 0);
1426   INSN(eor, 1, 0b10, 0);
1427   INSN(ands, 1, 0b11, 0);
1428   INSN(andw, 0, 0b00, 0);
1429   INSN(orrw, 0, 0b01, 0);
1430   INSN(eorw, 0, 0b10, 0);
1431   INSN(andsw, 0, 0b11, 0);
1432 
1433   INSN(bic, 1, 0b00, 1);
1434   INSN(orn, 1, 0b01, 1);
1435   INSN(eon, 1, 0b10, 1);
1436   INSN(bics, 1, 0b11, 1);
1437   INSN(bicw, 0, 0b00, 1);
1438   INSN(ornw, 0, 0b01, 1);
1439   INSN(eonw, 0, 0b10, 1);
1440   INSN(bicsw, 0, 0b11, 1);
1441 
1442 #undef INSN
1443 
1444   // Add/subtract (shifted register)
1445 #define INSN(NAME, size, op)                            \
1446   void NAME(Register Rd, Register Rn, Register Rm,      \
1447             enum shift_kind kind, unsigned shift = 0) { \
1448     starti;                                             \
1449     f(0, 21);                                           \
1450     assert_cond(kind != ROR);                           \
1451     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1452     op_shifted_reg(0b01011, kind, shift, size, op);     \
1453   }
1454 
1455   INSN(add, 1, 0b000);
1456   INSN(sub, 1, 0b10);
1457   INSN(addw, 0, 0b000);
1458   INSN(subw, 0, 0b10);
1459 
1460   INSN(adds, 1, 0b001);
1461   INSN(subs, 1, 0b11);
1462   INSN(addsw, 0, 0b001);
1463   INSN(subsw, 0, 0b11);
1464 
1465 #undef INSN
1466 
1467   // Add/subtract (extended register)
1468 #define INSN(NAME, op)                                                  \
1469   void NAME(Register Rd, Register Rn, Register Rm,                      \
1470            ext::operation option, int amount = 0) {                     \
1471     starti;                                                             \
1472     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1473     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1474   }
1475 
1476   void add_sub_extended_reg(unsigned op, unsigned decode,
1477     Register Rd, Register Rn, Register Rm,
1478     unsigned opt, ext::operation option, unsigned imm) {
1479     guarantee(imm <= 4, "shift amount must be < 4");
1480     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1481     f(option, 15, 13), f(imm, 12, 10);
1482   }
1483 
1484   INSN(addw, 0b000);
1485   INSN(subw, 0b010);
1486   INSN(add, 0b100);
1487   INSN(sub, 0b110);
1488 
1489 #undef INSN
1490 
1491 #define INSN(NAME, op)                                                  \
1492   void NAME(Register Rd, Register Rn, Register Rm,                      \
1493            ext::operation option, int amount = 0) {                     \
1494     starti;                                                             \
1495     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1496     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1497   }
1498 
1499   INSN(addsw, 0b001);
1500   INSN(subsw, 0b011);
1501   INSN(adds, 0b101);
1502   INSN(subs, 0b111);
1503 
1504 #undef INSN
1505 
1506   // Aliases for short forms of add and sub
1507 #define INSN(NAME)                                      \
1508   void NAME(Register Rd, Register Rn, Register Rm) {    \
1509     if (Rd == sp || Rn == sp)                           \
1510       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1511     else                                                \
1512       NAME(Rd, Rn, Rm, LSL);                            \
1513   }
1514 
1515   INSN(addw);
1516   INSN(subw);
1517   INSN(add);
1518   INSN(sub);
1519 
1520   INSN(addsw);
1521   INSN(subsw);
1522   INSN(adds);
1523   INSN(subs);
1524 
1525 #undef INSN
1526 
1527   // Add/subtract (with carry)
1528   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1529     starti;
1530     f(op, 31, 29);
1531     f(0b11010000, 28, 21);
1532     f(0b000000, 15, 10);
1533     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1534   }
1535 
1536   #define INSN(NAME, op)                                \
1537     void NAME(Register Rd, Register Rn, Register Rm) {  \
1538       add_sub_carry(op, Rd, Rn, Rm);                    \
1539     }
1540 
1541   INSN(adcw, 0b000);
1542   INSN(adcsw, 0b001);
1543   INSN(sbcw, 0b010);
1544   INSN(sbcsw, 0b011);
1545   INSN(adc, 0b100);
1546   INSN(adcs, 0b101);
1547   INSN(sbc,0b110);
1548   INSN(sbcs, 0b111);
1549 
1550 #undef INSN
1551 
1552   // Conditional compare (both kinds)
1553   void conditional_compare(unsigned op, int o2, int o3,
1554                            Register Rn, unsigned imm5, unsigned nzcv,
1555                            unsigned cond) {
1556     f(op, 31, 29);
1557     f(0b11010010, 28, 21);
1558     f(cond, 15, 12);
1559     f(o2, 10);
1560     f(o3, 4);
1561     f(nzcv, 3, 0);
1562     f(imm5, 20, 16), rf(Rn, 5);
1563   }
1564 
1565 #define INSN(NAME, op)                                                  \
1566   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1567     starti;                                                             \
1568     f(0, 11);                                                           \
1569     conditional_compare(op, 0, 0, Rn, (uintptr_t)Rm, imm, cond);        \
1570   }                                                                     \
1571                                                                         \
1572   void NAME(Register Rn, int imm5, int imm, Condition cond) {   \
1573     starti;                                                             \
1574     f(1, 11);                                                           \
1575     conditional_compare(op, 0, 0, Rn, imm5, imm, cond);                 \
1576   }
1577 
1578   INSN(ccmnw, 0b001);
1579   INSN(ccmpw, 0b011);
1580   INSN(ccmn, 0b101);
1581   INSN(ccmp, 0b111);
1582 
1583 #undef INSN
1584 
1585   // Conditional select
1586   void conditional_select(unsigned op, unsigned op2,
1587                           Register Rd, Register Rn, Register Rm,
1588                           unsigned cond) {
1589     starti;
1590     f(op, 31, 29);
1591     f(0b11010100, 28, 21);
1592     f(cond, 15, 12);
1593     f(op2, 11, 10);
1594     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1595   }
1596 
1597 #define INSN(NAME, op, op2)                                             \
1598   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1599     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1600   }
1601 
1602   INSN(cselw, 0b000, 0b00);
1603   INSN(csincw, 0b000, 0b01);
1604   INSN(csinvw, 0b010, 0b00);
1605   INSN(csnegw, 0b010, 0b01);
1606   INSN(csel, 0b100, 0b00);
1607   INSN(csinc, 0b100, 0b01);
1608   INSN(csinv, 0b110, 0b00);
1609   INSN(csneg, 0b110, 0b01);
1610 
1611 #undef INSN
1612 
1613   // Data processing
1614   void data_processing(unsigned op29, unsigned opcode,
1615                        Register Rd, Register Rn) {
1616     f(op29, 31, 29), f(0b11010110, 28, 21);
1617     f(opcode, 15, 10);
1618     rf(Rn, 5), rf(Rd, 0);
1619   }
1620 
1621   // (1 source)
1622 #define INSN(NAME, op29, opcode2, opcode)       \
1623   void NAME(Register Rd, Register Rn) {         \
1624     starti;                                     \
1625     f(opcode2, 20, 16);                         \
1626     data_processing(op29, opcode, Rd, Rn);      \
1627   }
1628 
1629   INSN(rbitw,  0b010, 0b00000, 0b00000);
1630   INSN(rev16w, 0b010, 0b00000, 0b00001);
1631   INSN(revw,   0b010, 0b00000, 0b00010);
1632   INSN(clzw,   0b010, 0b00000, 0b00100);
1633   INSN(clsw,   0b010, 0b00000, 0b00101);
1634 
1635   INSN(rbit,   0b110, 0b00000, 0b00000);
1636   INSN(rev16,  0b110, 0b00000, 0b00001);
1637   INSN(rev32,  0b110, 0b00000, 0b00010);
1638   INSN(rev,    0b110, 0b00000, 0b00011);
1639   INSN(clz,    0b110, 0b00000, 0b00100);
1640   INSN(cls,    0b110, 0b00000, 0b00101);
1641 
1642 #undef INSN
1643 
1644   // (2 sources)
1645 #define INSN(NAME, op29, opcode)                        \
1646   void NAME(Register Rd, Register Rn, Register Rm) {    \
1647     starti;                                             \
1648     rf(Rm, 16);                                         \
1649     data_processing(op29, opcode, Rd, Rn);              \
1650   }
1651 
1652   INSN(udivw, 0b000, 0b000010);
1653   INSN(sdivw, 0b000, 0b000011);
1654   INSN(lslvw, 0b000, 0b001000);
1655   INSN(lsrvw, 0b000, 0b001001);
1656   INSN(asrvw, 0b000, 0b001010);
1657   INSN(rorvw, 0b000, 0b001011);
1658 
1659   INSN(udiv, 0b100, 0b000010);
1660   INSN(sdiv, 0b100, 0b000011);
1661   INSN(lslv, 0b100, 0b001000);
1662   INSN(lsrv, 0b100, 0b001001);
1663   INSN(asrv, 0b100, 0b001010);
1664   INSN(rorv, 0b100, 0b001011);
1665 
1666 #undef INSN
1667 
1668   // (3 sources)
1669   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1670                        Register Rd, Register Rn, Register Rm,
1671                        Register Ra) {
1672     starti;
1673     f(op54, 31, 29), f(0b11011, 28, 24);
1674     f(op31, 23, 21), f(o0, 15);
1675     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1676   }
1677 
1678 #define INSN(NAME, op54, op31, o0)                                      \
1679   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1680     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1681   }
1682 
1683   INSN(maddw, 0b000, 0b000, 0);
1684   INSN(msubw, 0b000, 0b000, 1);
1685   INSN(madd, 0b100, 0b000, 0);
1686   INSN(msub, 0b100, 0b000, 1);
1687   INSN(smaddl, 0b100, 0b001, 0);
1688   INSN(smsubl, 0b100, 0b001, 1);
1689   INSN(umaddl, 0b100, 0b101, 0);
1690   INSN(umsubl, 0b100, 0b101, 1);
1691 
1692 #undef INSN
1693 
1694 #define INSN(NAME, op54, op31, o0)                      \
1695   void NAME(Register Rd, Register Rn, Register Rm) {    \
1696     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1697   }
1698 
1699   INSN(smulh, 0b100, 0b010, 0);
1700   INSN(umulh, 0b100, 0b110, 0);
1701 
1702 #undef INSN
1703 
1704   // Floating-point data-processing (1 source)
1705   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1706                        FloatRegister Vd, FloatRegister Vn) {
1707     starti;
1708     f(op31, 31, 29);
1709     f(0b11110, 28, 24);
1710     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1711     rf(Vn, 5), rf(Vd, 0);
1712   }
1713 
1714 #define INSN(NAME, op31, type, opcode)                  \
1715   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1716     data_processing(op31, type, opcode, Vd, Vn);        \
1717   }
1718 
1719 private:
1720   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1721 public:
1722   INSN(fabss, 0b000, 0b00, 0b000001);
1723   INSN(fnegs, 0b000, 0b00, 0b000010);
1724   INSN(fsqrts, 0b000, 0b00, 0b000011);
1725   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1726 
1727 private:
1728   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1729 public:
1730   INSN(fabsd, 0b000, 0b01, 0b000001);
1731   INSN(fnegd, 0b000, 0b01, 0b000010);
1732   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1733   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1734 
1735   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1736     assert(Vd != Vn, "should be");
1737     i_fmovd(Vd, Vn);
1738   }
1739 
1740   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1741     assert(Vd != Vn, "should be");
1742     i_fmovs(Vd, Vn);
1743   }
1744 
1745 #undef INSN
1746 
1747   // Floating-point data-processing (2 source)
1748   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1749                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1750     starti;
1751     f(op31, 31, 29);
1752     f(0b11110, 28, 24);
1753     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1754     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1755   }
1756 
1757 #define INSN(NAME, op31, type, opcode)                  \
1758   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1759     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1760   }
1761 
1762   INSN(fmuls, 0b000, 0b00, 0b0000);
1763   INSN(fdivs, 0b000, 0b00, 0b0001);
1764   INSN(fadds, 0b000, 0b00, 0b0010);
1765   INSN(fsubs, 0b000, 0b00, 0b0011);
1766   INSN(fnmuls, 0b000, 0b00, 0b1000);
1767 
1768   INSN(fmuld, 0b000, 0b01, 0b0000);
1769   INSN(fdivd, 0b000, 0b01, 0b0001);
1770   INSN(faddd, 0b000, 0b01, 0b0010);
1771   INSN(fsubd, 0b000, 0b01, 0b0011);
1772   INSN(fnmuld, 0b000, 0b01, 0b1000);
1773 
1774 #undef INSN
1775 
1776    // Floating-point data-processing (3 source)
1777   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1778                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1779                        FloatRegister Va) {
1780     starti;
1781     f(op31, 31, 29);
1782     f(0b11111, 28, 24);
1783     f(type, 23, 22), f(o1, 21), f(o0, 15);
1784     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1785   }
1786 
1787 #define INSN(NAME, op31, type, o1, o0)                                  \
1788   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1789             FloatRegister Va) {                                         \
1790     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1791   }
1792 
1793   INSN(fmadds, 0b000, 0b00, 0, 0);
1794   INSN(fmsubs, 0b000, 0b00, 0, 1);
1795   INSN(fnmadds, 0b000, 0b00, 1, 0);
1796   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1797 
1798   INSN(fmaddd, 0b000, 0b01, 0, 0);
1799   INSN(fmsubd, 0b000, 0b01, 0, 1);
1800   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1801   INSN(fnmsub, 0b000, 0b01, 1, 1);
1802 
1803 #undef INSN
1804 
1805    // Floating-point conditional select
1806   void fp_conditional_select(unsigned op31, unsigned type,
1807                              unsigned op1, unsigned op2,
1808                              Condition cond, FloatRegister Vd,
1809                              FloatRegister Vn, FloatRegister Vm) {
1810     starti;
1811     f(op31, 31, 29);
1812     f(0b11110, 28, 24);
1813     f(type, 23, 22);
1814     f(op1, 21, 21);
1815     f(op2, 11, 10);
1816     f(cond, 15, 12);
1817     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1818   }
1819 
1820 #define INSN(NAME, op31, type, op1, op2)                                \
1821   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1822             FloatRegister Vm, Condition cond) {                         \
1823     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1824   }
1825 
1826   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1827   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1828 
1829 #undef INSN
1830 
1831    // Floating-point<->integer conversions
1832   void float_int_convert(unsigned op31, unsigned type,
1833                          unsigned rmode, unsigned opcode,
1834                          Register Rd, Register Rn) {
1835     starti;
1836     f(op31, 31, 29);
1837     f(0b11110, 28, 24);
1838     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1839     f(opcode, 18, 16), f(0b000000, 15, 10);
1840     zrf(Rn, 5), zrf(Rd, 0);
1841   }
1842 
1843 #define INSN(NAME, op31, type, rmode, opcode)                           \
1844   void NAME(Register Rd, FloatRegister Vn) {                            \
1845     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1846   }
1847 
1848   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1849   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1850   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1851   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1852 
1853   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1854   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1855 
1856   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1857 
1858 #undef INSN
1859 
1860 #define INSN(NAME, op31, type, rmode, opcode)                           \
1861   void NAME(FloatRegister Vd, Register Rn) {                            \
1862     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1863   }
1864 
1865   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1866   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1867 
1868   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1869   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1870   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1871   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1872 
1873   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1874 
1875 #undef INSN
1876 
1877   // Floating-point compare
1878   void float_compare(unsigned op31, unsigned type,
1879                      unsigned op, unsigned op2,
1880                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1881     starti;
1882     f(op31, 31, 29);
1883     f(0b11110, 28, 24);
1884     f(type, 23, 22), f(1, 21);
1885     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1886     rf(Vn, 5), rf(Vm, 16);
1887   }
1888 
1889 
1890 #define INSN(NAME, op31, type, op, op2)                 \
1891   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1892     float_compare(op31, type, op, op2, Vn, Vm);         \
1893   }
1894 
1895 #define INSN1(NAME, op31, type, op, op2)        \
1896   void NAME(FloatRegister Vn, double d) {       \
1897     assert_cond(d == 0.0);                      \
1898     float_compare(op31, type, op, op2, Vn);     \
1899   }
1900 
1901   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1902   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1903   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1904   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1905 
1906   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1907   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1908   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1909   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1910 
1911 #undef INSN
1912 #undef INSN1
1913 
1914   // Floating-point Move (immediate)
1915 private:
1916   unsigned pack(double value);
1917 
1918   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
1919     starti;
1920     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
1921     f(pack(value), 20, 13), f(0b10000000, 12, 5);
1922     rf(Vn, 0);
1923   }
1924 
1925 public:
1926 
1927   void fmovs(FloatRegister Vn, double value) {
1928     if (value)
1929       fmov_imm(Vn, value, 0b00);
1930     else
1931       fmovs(Vn, zr);
1932   }
1933   void fmovd(FloatRegister Vn, double value) {
1934     if (value)
1935       fmov_imm(Vn, value, 0b01);
1936     else
1937       fmovd(Vn, zr);
1938   }
1939 
1940 /* SIMD extensions
1941  *
1942  * We just use FloatRegister in the following. They are exactly the same
1943  * as SIMD registers.
1944  */
1945  public:
1946 
1947   enum SIMD_Arrangement {
1948        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
1949   };
1950 
1951   enum SIMD_RegVariant {
1952        B, H, S, D, Q
1953   };
1954 
1955 #define INSN(NAME, op)                                            \
1956   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
1957     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
1958   }                                                                      \
1959 
1960   INSN(ldr, 1);
1961   INSN(str, 0);
1962 
1963 #undef INSN
1964 
1965  private:
1966 
1967   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
1968     starti;
1969     f(0,31), f((int)T & 1, 30);
1970     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
1971     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1972   }
1973   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
1974              int imm, int op1, int op2) {
1975     starti;
1976     f(0,31), f((int)T & 1, 30);
1977     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
1978     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1979   }
1980   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
1981              Register Xm, int op1, int op2) {
1982     starti;
1983     f(0,31), f((int)T & 1, 30);
1984     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
1985     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1986   }
1987 
1988  void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2) {
1989    switch (a.getMode()) {
1990    case Address::base_plus_offset:
1991      guarantee(a.offset() == 0, "no offset allowed here");
1992      ld_st(Vt, T, a.base(), op1, op2);
1993      break;
1994    case Address::post:
1995      ld_st(Vt, T, a.base(), a.offset(), op1, op2);
1996      break;
1997    case Address::base_plus_offset_reg:
1998      ld_st(Vt, T, a.base(), a.index(), op1, op2);
1999      break;
2000    default:
2001      ShouldNotReachHere();
2002    }
2003  }
2004 
2005  public:
2006 
2007 #define INSN1(NAME, op1, op2)                                   \
2008   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2009    ld_st(Vt, T, a, op1, op2);                                           \
2010  }
2011 
2012 #define INSN2(NAME, op1, op2)                                           \
2013   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2014     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2015     ld_st(Vt, T, a, op1, op2);                                          \
2016   }
2017 
2018 #define INSN3(NAME, op1, op2)                                           \
2019   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2020             SIMD_Arrangement T, const Address &a) {                     \
2021     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2022            "Registers must be ordered");                                \
2023     ld_st(Vt, T, a, op1, op2);                                          \
2024   }
2025 
2026 #define INSN4(NAME, op1, op2)                                           \
2027   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2028             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2029     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2030            Vt3->successor() == Vt4, "Registers must be ordered");       \
2031     ld_st(Vt, T, a, op1, op2);                                          \
2032   }
2033 
2034   INSN1(ld1,  0b001100010, 0b0111);
2035   INSN2(ld1,  0b001100010, 0b1010);
2036   INSN3(ld1,  0b001100010, 0b0110);
2037   INSN4(ld1,  0b001100010, 0b0010);
2038 
2039   INSN2(ld2,  0b001100010, 0b1000);
2040   INSN3(ld3,  0b001100010, 0b0100);
2041   INSN4(ld4,  0b001100010, 0b0000);
2042 
2043   INSN1(st1,  0b001100000, 0b0111);
2044   INSN2(st1,  0b001100000, 0b1010);
2045   INSN3(st1,  0b001100000, 0b0110);
2046   INSN4(st1,  0b001100000, 0b0010);
2047 
2048   INSN2(st2,  0b001100000, 0b1000);
2049   INSN3(st3,  0b001100000, 0b0100);
2050   INSN4(st4,  0b001100000, 0b0000);
2051 
2052   INSN1(ld1r, 0b001101010, 0b1100);
2053   INSN2(ld2r, 0b001101011, 0b1100);
2054   INSN3(ld3r, 0b001101010, 0b1110);
2055   INSN4(ld4r, 0b001101011, 0b1110);
2056 
2057 #undef INSN1
2058 #undef INSN2
2059 #undef INSN3
2060 #undef INSN4
2061 
2062 #define INSN(NAME, opc)                                                                 \
2063   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2064     starti;                                                                             \
2065     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2066     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2067     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2068   }
2069 
2070   INSN(eor,  0b101110001);
2071   INSN(orr,  0b001110101);
2072   INSN(andr, 0b001110001);
2073   INSN(bic,  0b001110011);
2074   INSN(bif,  0b101110111);
2075   INSN(bit,  0b101110101);
2076   INSN(bsl,  0b101110011);
2077   INSN(orn,  0b001110111);
2078 
2079 #undef INSN
2080 
2081 #define INSN(NAME, opc, opc2)                                                                 \
2082   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2083     starti;                                                                             \
2084     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2085     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2086     rf(Vn, 5), rf(Vd, 0);                                                               \
2087   }
2088 
2089   INSN(addv, 0, 0b100001);
2090   INSN(subv, 1, 0b100001);
2091   INSN(mulv, 0, 0b100111);
2092   INSN(mlav, 0, 0b100101);
2093   INSN(mlsv, 1, 0b100101);
2094   INSN(sshl, 0, 0b010001);
2095   INSN(ushl, 1, 0b010001);
2096 
2097 #undef INSN
2098 
2099 #define INSN(NAME, opc, opc2) \
2100   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2101     starti;                                                                             \
2102     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2103     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2104     rf(Vn, 5), rf(Vd, 0);                                                               \
2105   }
2106 
2107   INSN(absr,  0, 0b100000101110);
2108   INSN(negr,  1, 0b100000101110);
2109   INSN(notr,  1, 0b100000010110);
2110   INSN(addv,  0, 0b110001101110);
2111   INSN(cls,   0, 0b100000010010);
2112   INSN(clz,   1, 0b100000010010);
2113   INSN(cnt,   0, 0b100000010110);
2114 
2115 #undef INSN
2116 
2117 #define INSN(NAME, op0, cmode0) \
2118   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2119     unsigned cmode = cmode0;                                                           \
2120     unsigned op = op0;                                                                 \
2121     starti;                                                                            \
2122     assert(lsl == 0 ||                                                                 \
2123            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2124            ((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift");             \
2125     cmode |= lsl >> 2;                                                                 \
2126     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2127     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2128       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2129       cmode = 0b1110;                                                                  \
2130       if (T == T1D || T == T2D) op = 1;                                                \
2131     }                                                                                  \
2132     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2133     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2134     rf(Vd, 0);                                                                         \
2135   }
2136 
2137   INSN(movi, 0, 0);
2138   INSN(orri, 0, 1);
2139   INSN(mvni, 1, 0);
2140   INSN(bici, 1, 1);
2141 
2142 #undef INSN
2143 
2144 #define INSN(NAME, op1, op2, op3) \
2145   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2146     starti;                                                                             \
2147     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2148     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2149     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2150   }
2151 
2152   INSN(fadd, 0, 0, 0b110101);
2153   INSN(fdiv, 1, 0, 0b111111);
2154   INSN(fmul, 1, 0, 0b110111);
2155   INSN(fsub, 0, 1, 0b110101);
2156 
2157 #undef INSN
2158 
2159 #define INSN(NAME, opc)                                                                 \
2160   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2161     starti;                                                                             \
2162     assert(T == T4S, "arrangement must be T4S");                                        \
2163     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2164   }
2165 
2166   INSN(sha1c,     0b000000);
2167   INSN(sha1m,     0b001000);
2168   INSN(sha1p,     0b000100);
2169   INSN(sha1su0,   0b001100);
2170   INSN(sha256h2,  0b010100);
2171   INSN(sha256h,   0b010000);
2172   INSN(sha256su1, 0b011000);
2173 
2174 #undef INSN
2175 
2176 #define INSN(NAME, opc)                                                                 \
2177   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2178     starti;                                                                             \
2179     assert(T == T4S, "arrangement must be T4S");                                        \
2180     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2181   }
2182 
2183   INSN(sha1h,     0b000010);
2184   INSN(sha1su1,   0b000110);
2185   INSN(sha256su0, 0b001010);
2186 
2187 #undef INSN
2188 
2189 #define INSN(NAME, opc)                           \
2190   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2191     starti;                                       \
2192     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2193   }
2194 
2195   INSN(aese, 0b0100111000101000010010);
2196   INSN(aesd, 0b0100111000101000010110);
2197   INSN(aesmc, 0b0100111000101000011010);
2198   INSN(aesimc, 0b0100111000101000011110);
2199 
2200 #undef INSN
2201 
2202   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2203     starti;
2204     assert(T != Q, "invalid register variant");
2205     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2206     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2207   }
2208 
2209   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2210     starti;
2211     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2212     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2213     rf(Vn, 5), rf(Rd, 0);
2214   }
2215 
2216 #define INSN(NAME, opc, opc2) \
2217   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){         \
2218     starti;                                                                             \
2219     /* The encodings for the immh:immb fields (bits 22:16) are                          \
2220      *   0001 xxx       8B/16B, shift = xxx                                             \
2221      *   001x xxx       4H/8H,  shift = xxxx                                            \
2222      *   01xx xxx       2S/4S,  shift = xxxxx                                           \
2223      *   1xxx xxx       1D/2D,  shift = xxxxxx (1D is RESERVED)                         \
2224      */                                                                                 \
2225     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");                           \
2226     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),                            \
2227     f((1 << ((T>>1)+3))|shift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);          \
2228   }
2229 
2230   INSN(shl,  0, 0b010101);
2231   INSN(sshr, 0, 0b000001);
2232   INSN(ushr, 1, 0b000001);
2233 
2234 #undef INSN
2235 
2236   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2237     starti;
2238     /* The encodings for the immh:immb fields (bits 22:16) are
2239      *   0001 xxx       8H, 8B/16b shift = xxx
2240      *   001x xxx       4S, 4H/8H  shift = xxxx
2241      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2242      *   1xxx xxx       RESERVED
2243      */
2244     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2245     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2246     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2247     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2248   }
2249   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2250     ushll(Vd, Ta, Vn, Tb, shift);
2251   }
2252 
2253   void uzp1(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T, int op = 0){
2254     starti;
2255     f(0, 31), f((T & 0x1), 30), f(0b001110, 29, 24), f((T >> 1), 23, 22), f(0, 21);
2256     rf(Vm, 16), f(0, 15), f(op, 14), f(0b0110, 13, 10), rf(Vn, 5), rf(Vd, 0);
2257   }
2258   void uzp2(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T){
2259     uzp1(Vd, Vn, Vm, T, 1);
2260   }
2261 
2262   // Move from general purpose register
2263   //   mov  Vd.T[index], Rn
2264   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2265     starti;
2266     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2267     f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
2268   }
2269 
2270   // Move to general purpose register
2271   //   mov  Rd, Vn.T[index]
2272   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2273     starti;
2274     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2275     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2276     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2277   }
2278 
2279   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2280     starti;
2281     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2282            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2283     int size = (Ta == T1Q) ? 0b11 : 0b00;
2284     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2285     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2286   }
2287   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2288     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2289     pmull(Vd, Ta, Vn, Vm, Tb);
2290   }
2291 
2292   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2293     starti;
2294     int size_b = (int)Tb >> 1;
2295     int size_a = (int)Ta >> 1;
2296     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2297     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2298     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2299   }
2300 
2301   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2302   {
2303     starti;
2304     assert(T != T1D, "reserved encoding");
2305     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2306     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
2307   }
2308 
2309   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2310   {
2311     starti;
2312     assert(T != T1D, "reserved encoding");
2313     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2314     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2315     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2316   }
2317 
2318   // CRC32 instructions
2319 #define INSN(NAME, c, sf, sz)                                             \
2320   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2321     starti;                                                               \
2322     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2323     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2324   }
2325 
2326   INSN(crc32b,  0, 0, 0b00);
2327   INSN(crc32h,  0, 0, 0b01);
2328   INSN(crc32w,  0, 0, 0b10);
2329   INSN(crc32x,  0, 1, 0b11);
2330   INSN(crc32cb, 1, 0, 0b00);
2331   INSN(crc32ch, 1, 0, 0b01);
2332   INSN(crc32cw, 1, 0, 0b10);
2333   INSN(crc32cx, 1, 1, 0b11);
2334 
2335 #undef INSN
2336 
2337   // Table vector lookup
2338 #define INSN(NAME, op)                                                  \
2339   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2340     starti;                                                             \
2341     assert(T == T8B || T == T16B, "invalid arrangement");               \
2342     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2343     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2344     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2345   }
2346 
2347   INSN(tbl, 0);
2348   INSN(tbx, 1);
2349 
2350 #undef INSN
2351 
2352   // AdvSIMD two-reg misc
2353 #define INSN(NAME, U, opcode)                                                       \
2354   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2355        starti;                                                                      \
2356        assert((ASSERTION), MSG);                                                    \
2357        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2358        f((int)(T >> 1), 23, 22), f(0b10000, 21, 17), f(opcode, 16, 12);             \
2359        f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                                       \
2360  }
2361 
2362 #define MSG "invalid arrangement"
2363 
2364 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2365   INSN(fsqrt, 1, 0b11111);
2366   INSN(fabs,  0, 0b01111);
2367   INSN(fneg,  1, 0b01111);
2368 #undef ASSERTION
2369 
2370 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2371   INSN(rev64, 0, 0b00000);
2372 #undef ASSERTION
2373 
2374 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2375   INSN(rev32, 1, 0b00000);
2376 private:
2377   INSN(_rbit, 1, 0b00101);
2378 public:
2379 
2380 #undef ASSERTION
2381 
2382 #define ASSERTION (T == T8B || T == T16B)
2383   INSN(rev16, 0, 0b00001);
2384   // RBIT only allows T8B and T16B but encodes them oddly.  Argh...
2385   void rbit(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
2386     assert((ASSERTION), MSG);
2387     _rbit(Vd, SIMD_Arrangement(T & 1 | 0b010), Vn);
2388   }
2389 #undef ASSERTION
2390 
2391 #undef MSG
2392 
2393 #undef INSN
2394 
2395 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2396   {
2397     starti;
2398     assert(T == T8B || T == T16B, "invalid arrangement");
2399     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2400     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2401     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2402     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2403   }
2404 
2405 /* Simulator extensions to the ISA
2406 
2407    haltsim
2408 
2409    takes no arguments, causes the sim to enter a debug break and then
2410    return from the simulator run() call with STATUS_HALT? The linking
2411    code will call fatal() when it sees STATUS_HALT.
2412 
2413    blrt Xn, Wm
2414    blrt Xn, #gpargs, #fpargs, #type
2415    Xn holds the 64 bit x86 branch_address
2416    call format is encoded either as immediate data in the call
2417    or in register Wm. In the latter case
2418      Wm[13..6] = #gpargs,
2419      Wm[5..2] = #fpargs,
2420      Wm[1,0] = #type
2421 
2422    calls the x86 code address 'branch_address' supplied in Xn passing
2423    arguments taken from the general and floating point registers according
2424    to the supplied counts 'gpargs' and 'fpargs'. may return a result in r0
2425    or v0 according to the the return type #type' where
2426 
2427    address branch_address;
2428    uimm4 gpargs;
2429    uimm4 fpargs;
2430    enum ReturnType type;
2431 
2432    enum ReturnType
2433      {
2434        void_ret = 0,
2435        int_ret = 1,
2436        long_ret = 1,
2437        obj_ret = 1, // i.e. same as long
2438        float_ret = 2,
2439        double_ret = 3
2440      }
2441 
2442    notify
2443 
2444    notifies the simulator of a transfer of control. instr[14:0]
2445    identifies the type of change of control.
2446 
2447    0 ==> initial entry to a method.
2448 
2449    1 ==> return into a method from a submethod call.
2450 
2451    2 ==> exit out of Java method code.
2452 
2453    3 ==> start execution for a new bytecode.
2454 
2455    in cases 1 and 2 the simulator is expected to use a JVM callback to
2456    identify the name of the specific method being executed. in case 4
2457    the simulator is expected to use a JVM callback to identify the
2458    bytecode index.
2459 
2460    Instruction encodings
2461    ---------------------
2462 
2463    These are encoded in the space with instr[28:25] = 00 which is
2464    unallocated. Encodings are
2465 
2466                      10987654321098765432109876543210
2467    PSEUDO_HALT   = 0x11100000000000000000000000000000
2468    PSEUDO_BLRT  = 0x11000000000000000_______________
2469    PSEUDO_BLRTR = 0x1100000000000000100000__________
2470    PSEUDO_NOTIFY = 0x10100000000000000_______________
2471 
2472    instr[31,29] = op1 : 111 ==> HALT, 110 ==> BLRT/BLRTR, 101 ==> NOTIFY
2473 
2474    for BLRT
2475      instr[14,11] = #gpargs, instr[10,7] = #fpargs
2476      instr[6,5] = #type, instr[4,0] = Rn
2477    for BLRTR
2478      instr[9,5] = Rm, instr[4,0] = Rn
2479    for NOTIFY
2480      instr[14:0] = type : 0 ==> entry, 1 ==> reentry, 2 ==> exit, 3 ==> bcstart
2481 */
2482 
2483   enum NotifyType { method_entry, method_reentry, method_exit, bytecode_start };
2484 
2485   virtual void notify(int type) {
2486     if (UseBuiltinSim) {
2487       starti;
2488       //  109
2489       f(0b101, 31, 29);
2490       //  87654321098765
2491       f(0b00000000000000, 28, 15);
2492       f(type, 14, 0);
2493     }
2494   }
2495 
2496   void blrt(Register Rn, int gpargs, int fpargs, int type) {
2497     if (UseBuiltinSim) {
2498       starti;
2499       f(0b110, 31 ,29);
2500       f(0b00, 28, 25);
2501       //  4321098765
2502       f(0b0000000000, 24, 15);
2503       f(gpargs, 14, 11);
2504       f(fpargs, 10, 7);
2505       f(type, 6, 5);
2506       rf(Rn, 0);
2507     } else {
2508       blr(Rn);
2509     }
2510   }
2511 
2512   void blrt(Register Rn, Register Rm) {
2513     if (UseBuiltinSim) {
2514       starti;
2515       f(0b110, 31 ,29);
2516       f(0b00, 28, 25);
2517       //  4321098765
2518       f(0b0000000001, 24, 15);
2519       //  43210
2520       f(0b00000, 14, 10);
2521       rf(Rm, 5);
2522       rf(Rn, 0);
2523     } else {
2524       blr(Rn);
2525     }
2526   }
2527 
2528   void haltsim() {
2529     starti;
2530     f(0b111, 31 ,29);
2531     f(0b00, 28, 27);
2532     //  654321098765432109876543210
2533     f(0b000000000000000000000000000, 26, 0);
2534   }
2535 
2536   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2537   }
2538 
2539   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2540                                                 Register tmp,
2541                                                 int offset) {
2542     ShouldNotCallThis();
2543     return RegisterOrConstant();
2544   }
2545 
2546   // Stack overflow checking
2547   virtual void bang_stack_with_offset(int offset);
2548 
2549   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2550   static bool operand_valid_for_add_sub_immediate(long imm);
2551   static bool operand_valid_for_float_immediate(double imm);
2552 
2553   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2554   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2555 };
2556 
2557 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2558                                              Assembler::Membar_mask_bits b) {
2559   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2560 }
2561 
2562 Instruction_aarch64::~Instruction_aarch64() {
2563   assem->emit();
2564 }
2565 
2566 #undef starti
2567 
2568 // Invert a condition
2569 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2570   return Assembler::Condition(int(cond) ^ 1);
2571 }
2572 
2573 class BiasedLockingCounters;
2574 
2575 extern "C" void das(uint64_t start, int len);
2576 
2577 #endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP