1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include <sys/types.h>
  27 
  28 #include "precompiled.hpp"
  29 #include "asm/assembler.hpp"
  30 #include "asm/assembler.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 
  33 #include "compiler/disassembler.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "nativeInst_aarch64.hpp"
  36 #include "oops/klass.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "opto/compile.hpp"
  39 #include "opto/node.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/icache.hpp"
  42 #include "runtime/interfaceSupport.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/thread.hpp"
  45 
  46 #if INCLUDE_ALL_GCS
  47 #include "gc/g1/g1CollectedHeap.inline.hpp"
  48 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  49 #include "gc/g1/heapRegion.hpp"
  50 #endif
  51 
  52 #ifdef PRODUCT
  53 #define BLOCK_COMMENT(str) /* nothing */
  54 #define STOP(error) stop(error)
  55 #else
  56 #define BLOCK_COMMENT(str) block_comment(str)
  57 #define STOP(error) block_comment(error); stop(error)
  58 #endif
  59 
  60 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  61 
  62 // Patch any kind of instruction; there may be several instructions.
  63 // Return the total length (in bytes) of the instructions.
  64 int MacroAssembler::pd_patch_instruction_size(address branch, address target) {
  65   int instructions = 1;
  66   assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant");
  67   long offset = (target - branch) >> 2;
  68   unsigned insn = *(unsigned*)branch;
  69   if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) {
  70     // Load register (literal)
  71     Instruction_aarch64::spatch(branch, 23, 5, offset);
  72   } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
  73     // Unconditional branch (immediate)
  74     Instruction_aarch64::spatch(branch, 25, 0, offset);
  75   } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
  76     // Conditional branch (immediate)
  77     Instruction_aarch64::spatch(branch, 23, 5, offset);
  78   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
  79     // Compare & branch (immediate)
  80     Instruction_aarch64::spatch(branch, 23, 5, offset);
  81   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
  82     // Test & branch (immediate)
  83     Instruction_aarch64::spatch(branch, 18, 5, offset);
  84   } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
  85     // PC-rel. addressing
  86     offset = target-branch;
  87     int shift = Instruction_aarch64::extract(insn, 31, 31);
  88     if (shift) {
  89       u_int64_t dest = (u_int64_t)target;
  90       uint64_t pc_page = (uint64_t)branch >> 12;
  91       uint64_t adr_page = (uint64_t)target >> 12;
  92       unsigned offset_lo = dest & 0xfff;
  93       offset = adr_page - pc_page;
  94 
  95       // We handle 4 types of PC relative addressing
  96       //   1 - adrp    Rx, target_page
  97       //       ldr/str Ry, [Rx, #offset_in_page]
  98       //   2 - adrp    Rx, target_page
  99       //       add     Ry, Rx, #offset_in_page
 100       //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 101       //       movk    Rx, #imm16<<32
 102       //   4 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 103       // In the first 3 cases we must check that Rx is the same in the adrp and the
 104       // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end
 105       // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened
 106       // to be followed by a random unrelated ldr/str, add or movk instruction.
 107       //
 108       unsigned insn2 = ((unsigned*)branch)[1];
 109       if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 110                 Instruction_aarch64::extract(insn, 4, 0) ==
 111                         Instruction_aarch64::extract(insn2, 9, 5)) {
 112         // Load/store register (unsigned immediate)
 113         unsigned size = Instruction_aarch64::extract(insn2, 31, 30);
 114         Instruction_aarch64::patch(branch + sizeof (unsigned),
 115                                     21, 10, offset_lo >> size);
 116         guarantee(((dest >> size) << size) == dest, "misaligned target");
 117         instructions = 2;
 118       } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 119                 Instruction_aarch64::extract(insn, 4, 0) ==
 120                         Instruction_aarch64::extract(insn2, 4, 0)) {
 121         // add (immediate)
 122         Instruction_aarch64::patch(branch + sizeof (unsigned),
 123                                    21, 10, offset_lo);
 124         instructions = 2;
 125       } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
 126                    Instruction_aarch64::extract(insn, 4, 0) ==
 127                      Instruction_aarch64::extract(insn2, 4, 0)) {
 128         // movk #imm16<<32
 129         Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32);
 130         long dest = ((long)target & 0xffffffffL) | ((long)branch & 0xffff00000000L);
 131         long pc_page = (long)branch >> 12;
 132         long adr_page = (long)dest >> 12;
 133         offset = adr_page - pc_page;
 134         instructions = 2;
 135       }
 136     }
 137     int offset_lo = offset & 3;
 138     offset >>= 2;
 139     Instruction_aarch64::spatch(branch, 23, 5, offset);
 140     Instruction_aarch64::patch(branch, 30, 29, offset_lo);
 141   } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) {
 142     u_int64_t dest = (u_int64_t)target;
 143     // Move wide constant
 144     assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch");
 145     assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch");
 146     Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff);
 147     Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff);
 148     Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff);
 149     assert(target_addr_for_insn(branch) == target, "should be");
 150     instructions = 3;
 151   } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
 152              Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
 153     // nothing to do
 154     assert(target == 0, "did not expect to relocate target for polling page load");
 155   } else {
 156     ShouldNotReachHere();
 157   }
 158   return instructions * NativeInstruction::instruction_size;
 159 }
 160 
 161 int MacroAssembler::patch_oop(address insn_addr, address o) {
 162   int instructions;
 163   unsigned insn = *(unsigned*)insn_addr;
 164   assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 165 
 166   // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
 167   // narrow OOPs by setting the upper 16 bits in the first
 168   // instruction.
 169   if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
 170     // Move narrow OOP
 171     narrowOop n = oopDesc::encode_heap_oop((oop)o);
 172     Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 173     Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 174     instructions = 2;
 175   } else {
 176     // Move wide OOP
 177     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 178     uintptr_t dest = (uintptr_t)o;
 179     Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
 180     Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
 181     Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
 182     instructions = 3;
 183   }
 184   return instructions * NativeInstruction::instruction_size;
 185 }
 186 
 187 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) {
 188   long offset = 0;
 189   if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) {
 190     // Load register (literal)
 191     offset = Instruction_aarch64::sextract(insn, 23, 5);
 192     return address(((uint64_t)insn_addr + (offset << 2)));
 193   } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
 194     // Unconditional branch (immediate)
 195     offset = Instruction_aarch64::sextract(insn, 25, 0);
 196   } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
 197     // Conditional branch (immediate)
 198     offset = Instruction_aarch64::sextract(insn, 23, 5);
 199   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
 200     // Compare & branch (immediate)
 201     offset = Instruction_aarch64::sextract(insn, 23, 5);
 202    } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
 203     // Test & branch (immediate)
 204     offset = Instruction_aarch64::sextract(insn, 18, 5);
 205   } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
 206     // PC-rel. addressing
 207     offset = Instruction_aarch64::extract(insn, 30, 29);
 208     offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
 209     int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0;
 210     if (shift) {
 211       offset <<= shift;
 212       uint64_t target_page = ((uint64_t)insn_addr) + offset;
 213       target_page &= ((uint64_t)-1) << shift;
 214       // Return the target address for the following sequences
 215       //   1 - adrp    Rx, target_page
 216       //       ldr/str Ry, [Rx, #offset_in_page]
 217       //   2 - adrp    Rx, target_page
 218       //       add     Ry, Rx, #offset_in_page
 219       //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 220       //       movk    Rx, #imm12<<32
 221       //   4 - adrp    Rx, target_page (page aligned reloc, offset == 0)
 222       //
 223       // In the first two cases  we check that the register is the same and
 224       // return the target_page + the offset within the page.
 225       // Otherwise we assume it is a page aligned relocation and return
 226       // the target page only.
 227       //
 228       unsigned insn2 = ((unsigned*)insn_addr)[1];
 229       if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 230                 Instruction_aarch64::extract(insn, 4, 0) ==
 231                         Instruction_aarch64::extract(insn2, 9, 5)) {
 232         // Load/store register (unsigned immediate)
 233         unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 234         unsigned int size = Instruction_aarch64::extract(insn2, 31, 30);
 235         return address(target_page + (byte_offset << size));
 236       } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 237                 Instruction_aarch64::extract(insn, 4, 0) ==
 238                         Instruction_aarch64::extract(insn2, 4, 0)) {
 239         // add (immediate)
 240         unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 241         return address(target_page + byte_offset);
 242       } else {
 243         if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110  &&
 244                Instruction_aarch64::extract(insn, 4, 0) ==
 245                  Instruction_aarch64::extract(insn2, 4, 0)) {
 246           target_page = (target_page & 0xffffffff) |
 247                          ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
 248         }
 249         return (address)target_page;
 250       }
 251     } else {
 252       ShouldNotReachHere();
 253     }
 254   } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) {
 255     u_int32_t *insns = (u_int32_t *)insn_addr;
 256     // Move wide constant: movz, movk, movk.  See movptr().
 257     assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
 258     assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
 259     return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5))
 260                    + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
 261                    + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
 262   } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
 263              Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
 264     return 0;
 265   } else {
 266     ShouldNotReachHere();
 267   }
 268   return address(((uint64_t)insn_addr + (offset << 2)));
 269 }
 270 
 271 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
 272   dsb(Assembler::SY);
 273 }
 274 
 275 
 276 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 277                                            bool clear_pc) {
 278   // we must set sp to zero to clear frame
 279   str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
 280   // must clear fp, so that compiled frames are not confused; it is
 281   // possible that we need it only for debugging
 282   if (clear_fp) {
 283     str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
 284   }
 285 
 286   if (clear_pc) {
 287     str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
 288   }
 289 }
 290 
 291 // Calls to C land
 292 //
 293 // When entering C land, the rfp, & resp of the last Java frame have to be recorded
 294 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 295 // has to be reset to 0. This is required to allow proper stack traversal.
 296 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 297                                          Register last_java_fp,
 298                                          Register last_java_pc,
 299                                          Register scratch) {
 300 
 301   if (last_java_pc->is_valid()) {
 302       str(last_java_pc, Address(rthread,
 303                                 JavaThread::frame_anchor_offset()
 304                                 + JavaFrameAnchor::last_Java_pc_offset()));
 305     }
 306 
 307   // determine last_java_sp register
 308   if (last_java_sp == sp) {
 309     mov(scratch, sp);
 310     last_java_sp = scratch;
 311   } else if (!last_java_sp->is_valid()) {
 312     last_java_sp = esp;
 313   }
 314 
 315   str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
 316 
 317   // last_java_fp is optional
 318   if (last_java_fp->is_valid()) {
 319     str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
 320   }
 321 }
 322 
 323 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 324                                          Register last_java_fp,
 325                                          address  last_java_pc,
 326                                          Register scratch) {
 327   if (last_java_pc != NULL) {
 328     adr(scratch, last_java_pc);
 329   } else {
 330     // FIXME: This is almost never correct.  We should delete all
 331     // cases of set_last_Java_frame with last_java_pc=NULL and use the
 332     // correct return address instead.
 333     adr(scratch, pc());
 334   }
 335 
 336   str(scratch, Address(rthread,
 337                        JavaThread::frame_anchor_offset()
 338                        + JavaFrameAnchor::last_Java_pc_offset()));
 339 
 340   set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
 341 }
 342 
 343 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 344                                          Register last_java_fp,
 345                                          Label &L,
 346                                          Register scratch) {
 347   if (L.is_bound()) {
 348     set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
 349   } else {
 350     InstructionMark im(this);
 351     L.add_patch_at(code(), locator());
 352     set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch);
 353   }
 354 }
 355 
 356 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) {
 357   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 358   assert(CodeCache::find_blob(entry.target()) != NULL,
 359          "destination of far call not found in code cache");
 360   if (far_branches()) {
 361     unsigned long offset;
 362     // We can use ADRP here because we know that the total size of
 363     // the code cache cannot exceed 2Gb.
 364     adrp(tmp, entry, offset);
 365     add(tmp, tmp, offset);
 366     if (cbuf) cbuf->set_insts_mark();
 367     blr(tmp);
 368   } else {
 369     if (cbuf) cbuf->set_insts_mark();
 370     bl(entry);
 371   }
 372 }
 373 
 374 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) {
 375   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 376   assert(CodeCache::find_blob(entry.target()) != NULL,
 377          "destination of far call not found in code cache");
 378   if (far_branches()) {
 379     unsigned long offset;
 380     // We can use ADRP here because we know that the total size of
 381     // the code cache cannot exceed 2Gb.
 382     adrp(tmp, entry, offset);
 383     add(tmp, tmp, offset);
 384     if (cbuf) cbuf->set_insts_mark();
 385     br(tmp);
 386   } else {
 387     if (cbuf) cbuf->set_insts_mark();
 388     b(entry);
 389   }
 390 }
 391 
 392 int MacroAssembler::biased_locking_enter(Register lock_reg,
 393                                          Register obj_reg,
 394                                          Register swap_reg,
 395                                          Register tmp_reg,
 396                                          bool swap_reg_contains_mark,
 397                                          Label& done,
 398                                          Label* slow_case,
 399                                          BiasedLockingCounters* counters) {
 400   assert(UseBiasedLocking, "why call this otherwise?");
 401   assert_different_registers(lock_reg, obj_reg, swap_reg);
 402 
 403   if (PrintBiasedLockingStatistics && counters == NULL)
 404     counters = BiasedLocking::counters();
 405 
 406   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg);
 407   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
 408   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
 409   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
 410   Address saved_mark_addr(lock_reg, 0);
 411 
 412   // Biased locking
 413   // See whether the lock is currently biased toward our thread and
 414   // whether the epoch is still valid
 415   // Note that the runtime guarantees sufficient alignment of JavaThread
 416   // pointers to allow age to be placed into low bits
 417   // First check to see whether biasing is even enabled for this object
 418   Label cas_label;
 419   int null_check_offset = -1;
 420   if (!swap_reg_contains_mark) {
 421     null_check_offset = offset();
 422     ldr(swap_reg, mark_addr);
 423   }
 424   andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place);
 425   cmp(tmp_reg, markOopDesc::biased_lock_pattern);
 426   br(Assembler::NE, cas_label);
 427   // The bias pattern is present in the object's header. Need to check
 428   // whether the bias owner and the epoch are both still current.
 429   load_prototype_header(tmp_reg, obj_reg);
 430   orr(tmp_reg, tmp_reg, rthread);
 431   eor(tmp_reg, swap_reg, tmp_reg);
 432   andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place));
 433   if (counters != NULL) {
 434     Label around;
 435     cbnz(tmp_reg, around);
 436     atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2);
 437     b(done);
 438     bind(around);
 439   } else {
 440     cbz(tmp_reg, done);
 441   }
 442 
 443   Label try_revoke_bias;
 444   Label try_rebias;
 445 
 446   // At this point we know that the header has the bias pattern and
 447   // that we are not the bias owner in the current epoch. We need to
 448   // figure out more details about the state of the header in order to
 449   // know what operations can be legally performed on the object's
 450   // header.
 451 
 452   // If the low three bits in the xor result aren't clear, that means
 453   // the prototype header is no longer biased and we have to revoke
 454   // the bias on this object.
 455   andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place);
 456   cbnz(rscratch1, try_revoke_bias);
 457 
 458   // Biasing is still enabled for this data type. See whether the
 459   // epoch of the current bias is still valid, meaning that the epoch
 460   // bits of the mark word are equal to the epoch bits of the
 461   // prototype header. (Note that the prototype header's epoch bits
 462   // only change at a safepoint.) If not, attempt to rebias the object
 463   // toward the current thread. Note that we must be absolutely sure
 464   // that the current epoch is invalid in order to do this because
 465   // otherwise the manipulations it performs on the mark word are
 466   // illegal.
 467   andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place);
 468   cbnz(rscratch1, try_rebias);
 469 
 470   // The epoch of the current bias is still valid but we know nothing
 471   // about the owner; it might be set or it might be clear. Try to
 472   // acquire the bias of the object using an atomic operation. If this
 473   // fails we will go in to the runtime to revoke the object's bias.
 474   // Note that we first construct the presumed unbiased header so we
 475   // don't accidentally blow away another thread's valid bias.
 476   {
 477     Label here;
 478     mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
 479     andr(swap_reg, swap_reg, rscratch1);
 480     orr(tmp_reg, swap_reg, rthread);
 481     cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
 482     // If the biasing toward our thread failed, this means that
 483     // another thread succeeded in biasing it toward itself and we
 484     // need to revoke that bias. The revocation will occur in the
 485     // interpreter runtime in the slow case.
 486     bind(here);
 487     if (counters != NULL) {
 488       atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()),
 489                   tmp_reg, rscratch1, rscratch2);
 490     }
 491   }
 492   b(done);
 493 
 494   bind(try_rebias);
 495   // At this point we know the epoch has expired, meaning that the
 496   // current "bias owner", if any, is actually invalid. Under these
 497   // circumstances _only_, we are allowed to use the current header's
 498   // value as the comparison value when doing the cas to acquire the
 499   // bias in the current epoch. In other words, we allow transfer of
 500   // the bias from one thread to another directly in this situation.
 501   //
 502   // FIXME: due to a lack of registers we currently blow away the age
 503   // bits in this situation. Should attempt to preserve them.
 504   {
 505     Label here;
 506     load_prototype_header(tmp_reg, obj_reg);
 507     orr(tmp_reg, rthread, tmp_reg);
 508     cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
 509     // If the biasing toward our thread failed, then another thread
 510     // succeeded in biasing it toward itself and we need to revoke that
 511     // bias. The revocation will occur in the runtime in the slow case.
 512     bind(here);
 513     if (counters != NULL) {
 514       atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()),
 515                   tmp_reg, rscratch1, rscratch2);
 516     }
 517   }
 518   b(done);
 519 
 520   bind(try_revoke_bias);
 521   // The prototype mark in the klass doesn't have the bias bit set any
 522   // more, indicating that objects of this data type are not supposed
 523   // to be biased any more. We are going to try to reset the mark of
 524   // this object to the prototype value and fall through to the
 525   // CAS-based locking scheme. Note that if our CAS fails, it means
 526   // that another thread raced us for the privilege of revoking the
 527   // bias of this particular object, so it's okay to continue in the
 528   // normal locking code.
 529   //
 530   // FIXME: due to a lack of registers we currently blow away the age
 531   // bits in this situation. Should attempt to preserve them.
 532   {
 533     Label here, nope;
 534     load_prototype_header(tmp_reg, obj_reg);
 535     cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope);
 536     bind(here);
 537 
 538     // Fall through to the normal CAS-based lock, because no matter what
 539     // the result of the above CAS, some thread must have succeeded in
 540     // removing the bias bit from the object's header.
 541     if (counters != NULL) {
 542       atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg,
 543                   rscratch1, rscratch2);
 544     }
 545     bind(nope);
 546   }
 547 
 548   bind(cas_label);
 549 
 550   return null_check_offset;
 551 }
 552 
 553 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
 554   assert(UseBiasedLocking, "why call this otherwise?");
 555 
 556   // Check for biased locking unlock case, which is a no-op
 557   // Note: we do not have to check the thread ID for two reasons.
 558   // First, the interpreter checks for IllegalMonitorStateException at
 559   // a higher level. Second, if the bias was revoked while we held the
 560   // lock, the object could not be rebiased toward another thread, so
 561   // the bias bit would be clear.
 562   ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 563   andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
 564   cmp(temp_reg, markOopDesc::biased_lock_pattern);
 565   br(Assembler::EQ, done);
 566 }
 567 
 568 
 569 // added to make this compile
 570 
 571 REGISTER_DEFINITION(Register, noreg);
 572 
 573 static void pass_arg0(MacroAssembler* masm, Register arg) {
 574   if (c_rarg0 != arg ) {
 575     masm->mov(c_rarg0, arg);
 576   }
 577 }
 578 
 579 static void pass_arg1(MacroAssembler* masm, Register arg) {
 580   if (c_rarg1 != arg ) {
 581     masm->mov(c_rarg1, arg);
 582   }
 583 }
 584 
 585 static void pass_arg2(MacroAssembler* masm, Register arg) {
 586   if (c_rarg2 != arg ) {
 587     masm->mov(c_rarg2, arg);
 588   }
 589 }
 590 
 591 static void pass_arg3(MacroAssembler* masm, Register arg) {
 592   if (c_rarg3 != arg ) {
 593     masm->mov(c_rarg3, arg);
 594   }
 595 }
 596 
 597 void MacroAssembler::call_VM_base(Register oop_result,
 598                                   Register java_thread,
 599                                   Register last_java_sp,
 600                                   address  entry_point,
 601                                   int      number_of_arguments,
 602                                   bool     check_exceptions) {
 603    // determine java_thread register
 604   if (!java_thread->is_valid()) {
 605     java_thread = rthread;
 606   }
 607 
 608   // determine last_java_sp register
 609   if (!last_java_sp->is_valid()) {
 610     last_java_sp = esp;
 611   }
 612 
 613   // debugging support
 614   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 615   assert(java_thread == rthread, "unexpected register");
 616 #ifdef ASSERT
 617   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 618   // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
 619 #endif // ASSERT
 620 
 621   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 622   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 623 
 624   // push java thread (becomes first argument of C function)
 625 
 626   mov(c_rarg0, java_thread);
 627 
 628   // set last Java frame before call
 629   assert(last_java_sp != rfp, "can't use rfp");
 630 
 631   Label l;
 632   set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
 633 
 634   // do the call, remove parameters
 635   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
 636 
 637   // reset last Java frame
 638   // Only interpreter should have to clear fp
 639   reset_last_Java_frame(true, true);
 640 
 641    // C++ interp handles this in the interpreter
 642   check_and_handle_popframe(java_thread);
 643   check_and_handle_earlyret(java_thread);
 644 
 645   if (check_exceptions) {
 646     // check for pending exceptions (java_thread is set upon return)
 647     ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
 648     Label ok;
 649     cbz(rscratch1, ok);
 650     lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
 651     br(rscratch1);
 652     bind(ok);
 653   }
 654 
 655   // get oop result if there is one and reset the value in the thread
 656   if (oop_result->is_valid()) {
 657     get_vm_result(oop_result, java_thread);
 658   }
 659 }
 660 
 661 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 662   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
 663 }
 664 
 665 // Maybe emit a call via a trampoline.  If the code cache is small
 666 // trampolines won't be emitted.
 667 
 668 address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) {
 669   assert(entry.rspec().type() == relocInfo::runtime_call_type
 670          || entry.rspec().type() == relocInfo::opt_virtual_call_type
 671          || entry.rspec().type() == relocInfo::static_call_type
 672          || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
 673 
 674   unsigned int start_offset = offset();
 675   if (far_branches() && !Compile::current()->in_scratch_emit_size()) {
 676     address stub = emit_trampoline_stub(start_offset, entry.target());
 677     if (stub == NULL) {
 678       return NULL; // CodeCache is full
 679     }
 680   }
 681 
 682   if (cbuf) cbuf->set_insts_mark();
 683   relocate(entry.rspec());
 684   if (!far_branches()) {
 685     bl(entry.target());
 686   } else {
 687     bl(pc());
 688   }
 689   // just need to return a non-null address
 690   return pc();
 691 }
 692 
 693 
 694 // Emit a trampoline stub for a call to a target which is too far away.
 695 //
 696 // code sequences:
 697 //
 698 // call-site:
 699 //   branch-and-link to <destination> or <trampoline stub>
 700 //
 701 // Related trampoline stub for this call site in the stub section:
 702 //   load the call target from the constant pool
 703 //   branch (LR still points to the call site above)
 704 
 705 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
 706                                              address dest) {
 707   address stub = start_a_stub(Compile::MAX_stubs_size/2);
 708   if (stub == NULL) {
 709     return NULL;  // CodeBuffer::expand failed
 710   }
 711 
 712   // Create a trampoline stub relocation which relates this trampoline stub
 713   // with the call instruction at insts_call_instruction_offset in the
 714   // instructions code-section.
 715   align(wordSize);
 716   relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
 717                                             + insts_call_instruction_offset));
 718   const int stub_start_offset = offset();
 719 
 720   // Now, create the trampoline stub's code:
 721   // - load the call
 722   // - call
 723   Label target;
 724   ldr(rscratch1, target);
 725   br(rscratch1);
 726   bind(target);
 727   assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
 728          "should be");
 729   emit_int64((int64_t)dest);
 730 
 731   const address stub_start_addr = addr_at(stub_start_offset);
 732 
 733   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
 734 
 735   end_a_stub();
 736   return stub;
 737 }
 738 
 739 address MacroAssembler::ic_call(address entry, jint method_index) {
 740   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 741   // address const_ptr = long_constant((jlong)Universe::non_oop_word());
 742   // unsigned long offset;
 743   // ldr_constant(rscratch2, const_ptr);
 744   movptr(rscratch2, (uintptr_t)Universe::non_oop_word());
 745   return trampoline_call(Address(entry, rh));
 746 }
 747 
 748 // Implementation of call_VM versions
 749 
 750 void MacroAssembler::call_VM(Register oop_result,
 751                              address entry_point,
 752                              bool check_exceptions) {
 753   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 754 }
 755 
 756 void MacroAssembler::call_VM(Register oop_result,
 757                              address entry_point,
 758                              Register arg_1,
 759                              bool check_exceptions) {
 760   pass_arg1(this, arg_1);
 761   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 762 }
 763 
 764 void MacroAssembler::call_VM(Register oop_result,
 765                              address entry_point,
 766                              Register arg_1,
 767                              Register arg_2,
 768                              bool check_exceptions) {
 769   assert(arg_1 != c_rarg2, "smashed arg");
 770   pass_arg2(this, arg_2);
 771   pass_arg1(this, arg_1);
 772   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 773 }
 774 
 775 void MacroAssembler::call_VM(Register oop_result,
 776                              address entry_point,
 777                              Register arg_1,
 778                              Register arg_2,
 779                              Register arg_3,
 780                              bool check_exceptions) {
 781   assert(arg_1 != c_rarg3, "smashed arg");
 782   assert(arg_2 != c_rarg3, "smashed arg");
 783   pass_arg3(this, arg_3);
 784 
 785   assert(arg_1 != c_rarg2, "smashed arg");
 786   pass_arg2(this, arg_2);
 787 
 788   pass_arg1(this, arg_1);
 789   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 790 }
 791 
 792 void MacroAssembler::call_VM(Register oop_result,
 793                              Register last_java_sp,
 794                              address entry_point,
 795                              int number_of_arguments,
 796                              bool check_exceptions) {
 797   call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 798 }
 799 
 800 void MacroAssembler::call_VM(Register oop_result,
 801                              Register last_java_sp,
 802                              address entry_point,
 803                              Register arg_1,
 804                              bool check_exceptions) {
 805   pass_arg1(this, arg_1);
 806   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 807 }
 808 
 809 void MacroAssembler::call_VM(Register oop_result,
 810                              Register last_java_sp,
 811                              address entry_point,
 812                              Register arg_1,
 813                              Register arg_2,
 814                              bool check_exceptions) {
 815 
 816   assert(arg_1 != c_rarg2, "smashed arg");
 817   pass_arg2(this, arg_2);
 818   pass_arg1(this, arg_1);
 819   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 820 }
 821 
 822 void MacroAssembler::call_VM(Register oop_result,
 823                              Register last_java_sp,
 824                              address entry_point,
 825                              Register arg_1,
 826                              Register arg_2,
 827                              Register arg_3,
 828                              bool check_exceptions) {
 829   assert(arg_1 != c_rarg3, "smashed arg");
 830   assert(arg_2 != c_rarg3, "smashed arg");
 831   pass_arg3(this, arg_3);
 832   assert(arg_1 != c_rarg2, "smashed arg");
 833   pass_arg2(this, arg_2);
 834   pass_arg1(this, arg_1);
 835   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 836 }
 837 
 838 
 839 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
 840   ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
 841   str(zr, Address(java_thread, JavaThread::vm_result_offset()));
 842   verify_oop(oop_result, "broken oop in call_VM_base");
 843 }
 844 
 845 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
 846   ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
 847   str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
 848 }
 849 
 850 void MacroAssembler::align(int modulus) {
 851   while (offset() % modulus != 0) nop();
 852 }
 853 
 854 // these are no-ops overridden by InterpreterMacroAssembler
 855 
 856 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
 857 
 858 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
 859 
 860 
 861 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
 862                                                       Register tmp,
 863                                                       int offset) {
 864   intptr_t value = *delayed_value_addr;
 865   if (value != 0)
 866     return RegisterOrConstant(value + offset);
 867 
 868   // load indirectly to solve generation ordering problem
 869   ldr(tmp, ExternalAddress((address) delayed_value_addr));
 870 
 871   if (offset != 0)
 872     add(tmp, tmp, offset);
 873 
 874   return RegisterOrConstant(tmp);
 875 }
 876 
 877 
 878 void MacroAssembler:: notify(int type) {
 879   if (type == bytecode_start) {
 880     // set_last_Java_frame(esp, rfp, (address)NULL);
 881     Assembler:: notify(type);
 882     // reset_last_Java_frame(true, false);
 883   }
 884   else
 885     Assembler:: notify(type);
 886 }
 887 
 888 // Look up the method for a megamorphic invokeinterface call.
 889 // The target method is determined by <intf_klass, itable_index>.
 890 // The receiver klass is in recv_klass.
 891 // On success, the result will be in method_result, and execution falls through.
 892 // On failure, execution transfers to the given label.
 893 void MacroAssembler::lookup_interface_method(Register recv_klass,
 894                                              Register intf_klass,
 895                                              RegisterOrConstant itable_index,
 896                                              Register method_result,
 897                                              Register scan_temp,
 898                                              Label& L_no_such_interface) {
 899   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
 900   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
 901          "caller must use same register for non-constant itable index as for method");
 902 
 903   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
 904   int vtable_base = in_bytes(Klass::vtable_start_offset());
 905   int itentry_off = itableMethodEntry::method_offset_in_bytes();
 906   int scan_step   = itableOffsetEntry::size() * wordSize;
 907   int vte_size    = vtableEntry::size_in_bytes();
 908   assert(vte_size == wordSize, "else adjust times_vte_scale");
 909 
 910   ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
 911 
 912   // %%% Could store the aligned, prescaled offset in the klassoop.
 913   // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
 914   lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
 915   add(scan_temp, scan_temp, vtable_base);
 916 
 917   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
 918   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 919   // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
 920   lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
 921   if (itentry_off)
 922     add(recv_klass, recv_klass, itentry_off);
 923 
 924   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
 925   //   if (scan->interface() == intf) {
 926   //     result = (klass + scan->offset() + itable_index);
 927   //   }
 928   // }
 929   Label search, found_method;
 930 
 931   for (int peel = 1; peel >= 0; peel--) {
 932     ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
 933     cmp(intf_klass, method_result);
 934 
 935     if (peel) {
 936       br(Assembler::EQ, found_method);
 937     } else {
 938       br(Assembler::NE, search);
 939       // (invert the test to fall through to found_method...)
 940     }
 941 
 942     if (!peel)  break;
 943 
 944     bind(search);
 945 
 946     // Check that the previous entry is non-null.  A null entry means that
 947     // the receiver class doesn't implement the interface, and wasn't the
 948     // same as when the caller was compiled.
 949     cbz(method_result, L_no_such_interface);
 950     add(scan_temp, scan_temp, scan_step);
 951   }
 952 
 953   bind(found_method);
 954 
 955   // Got a hit.
 956   ldr(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
 957   ldr(method_result, Address(recv_klass, scan_temp));
 958 }
 959 
 960 // virtual method calling
 961 void MacroAssembler::lookup_virtual_method(Register recv_klass,
 962                                            RegisterOrConstant vtable_index,
 963                                            Register method_result) {
 964   const int base = in_bytes(Klass::vtable_start_offset());
 965   assert(vtableEntry::size() * wordSize == 8,
 966          "adjust the scaling in the code below");
 967   int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes();
 968 
 969   if (vtable_index.is_register()) {
 970     lea(method_result, Address(recv_klass,
 971                                vtable_index.as_register(),
 972                                Address::lsl(LogBytesPerWord)));
 973     ldr(method_result, Address(method_result, vtable_offset_in_bytes));
 974   } else {
 975     vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
 976     ldr(method_result, Address(recv_klass, vtable_offset_in_bytes));
 977   }
 978 }
 979 
 980 void MacroAssembler::check_klass_subtype(Register sub_klass,
 981                            Register super_klass,
 982                            Register temp_reg,
 983                            Label& L_success) {
 984   Label L_failure;
 985   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
 986   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
 987   bind(L_failure);
 988 }
 989 
 990 
 991 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
 992                                                    Register super_klass,
 993                                                    Register temp_reg,
 994                                                    Label* L_success,
 995                                                    Label* L_failure,
 996                                                    Label* L_slow_path,
 997                                         RegisterOrConstant super_check_offset) {
 998   assert_different_registers(sub_klass, super_klass, temp_reg);
 999   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1000   if (super_check_offset.is_register()) {
1001     assert_different_registers(sub_klass, super_klass,
1002                                super_check_offset.as_register());
1003   } else if (must_load_sco) {
1004     assert(temp_reg != noreg, "supply either a temp or a register offset");
1005   }
1006 
1007   Label L_fallthrough;
1008   int label_nulls = 0;
1009   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1010   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1011   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1012   assert(label_nulls <= 1, "at most one NULL in the batch");
1013 
1014   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1015   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1016   Address super_check_offset_addr(super_klass, sco_offset);
1017 
1018   // Hacked jmp, which may only be used just before L_fallthrough.
1019 #define final_jmp(label)                                                \
1020   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1021   else                            b(label)                /*omit semi*/
1022 
1023   // If the pointers are equal, we are done (e.g., String[] elements).
1024   // This self-check enables sharing of secondary supertype arrays among
1025   // non-primary types such as array-of-interface.  Otherwise, each such
1026   // type would need its own customized SSA.
1027   // We move this check to the front of the fast path because many
1028   // type checks are in fact trivially successful in this manner,
1029   // so we get a nicely predicted branch right at the start of the check.
1030   cmp(sub_klass, super_klass);
1031   br(Assembler::EQ, *L_success);
1032 
1033   // Check the supertype display:
1034   if (must_load_sco) {
1035     ldrw(temp_reg, super_check_offset_addr);
1036     super_check_offset = RegisterOrConstant(temp_reg);
1037   }
1038   Address super_check_addr(sub_klass, super_check_offset);
1039   ldr(rscratch1, super_check_addr);
1040   cmp(super_klass, rscratch1); // load displayed supertype
1041 
1042   // This check has worked decisively for primary supers.
1043   // Secondary supers are sought in the super_cache ('super_cache_addr').
1044   // (Secondary supers are interfaces and very deeply nested subtypes.)
1045   // This works in the same check above because of a tricky aliasing
1046   // between the super_cache and the primary super display elements.
1047   // (The 'super_check_addr' can address either, as the case requires.)
1048   // Note that the cache is updated below if it does not help us find
1049   // what we need immediately.
1050   // So if it was a primary super, we can just fail immediately.
1051   // Otherwise, it's the slow path for us (no success at this point).
1052 
1053   if (super_check_offset.is_register()) {
1054     br(Assembler::EQ, *L_success);
1055     cmp(super_check_offset.as_register(), sc_offset);
1056     if (L_failure == &L_fallthrough) {
1057       br(Assembler::EQ, *L_slow_path);
1058     } else {
1059       br(Assembler::NE, *L_failure);
1060       final_jmp(*L_slow_path);
1061     }
1062   } else if (super_check_offset.as_constant() == sc_offset) {
1063     // Need a slow path; fast failure is impossible.
1064     if (L_slow_path == &L_fallthrough) {
1065       br(Assembler::EQ, *L_success);
1066     } else {
1067       br(Assembler::NE, *L_slow_path);
1068       final_jmp(*L_success);
1069     }
1070   } else {
1071     // No slow path; it's a fast decision.
1072     if (L_failure == &L_fallthrough) {
1073       br(Assembler::EQ, *L_success);
1074     } else {
1075       br(Assembler::NE, *L_failure);
1076       final_jmp(*L_success);
1077     }
1078   }
1079 
1080   bind(L_fallthrough);
1081 
1082 #undef final_jmp
1083 }
1084 
1085 // These two are taken from x86, but they look generally useful
1086 
1087 // scans count pointer sized words at [addr] for occurence of value,
1088 // generic
1089 void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1090                                 Register scratch) {
1091   Label Lloop, Lexit;
1092   cbz(count, Lexit);
1093   bind(Lloop);
1094   ldr(scratch, post(addr, wordSize));
1095   cmp(value, scratch);
1096   br(EQ, Lexit);
1097   sub(count, count, 1);
1098   cbnz(count, Lloop);
1099   bind(Lexit);
1100 }
1101 
1102 // scans count 4 byte words at [addr] for occurence of value,
1103 // generic
1104 void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1105                                 Register scratch) {
1106   Label Lloop, Lexit;
1107   cbz(count, Lexit);
1108   bind(Lloop);
1109   ldrw(scratch, post(addr, wordSize));
1110   cmpw(value, scratch);
1111   br(EQ, Lexit);
1112   sub(count, count, 1);
1113   cbnz(count, Lloop);
1114   bind(Lexit);
1115 }
1116 
1117 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1118                                                    Register super_klass,
1119                                                    Register temp_reg,
1120                                                    Register temp2_reg,
1121                                                    Label* L_success,
1122                                                    Label* L_failure,
1123                                                    bool set_cond_codes) {
1124   assert_different_registers(sub_klass, super_klass, temp_reg);
1125   if (temp2_reg != noreg)
1126     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1127 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1128 
1129   Label L_fallthrough;
1130   int label_nulls = 0;
1131   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1132   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1133   assert(label_nulls <= 1, "at most one NULL in the batch");
1134 
1135   // a couple of useful fields in sub_klass:
1136   int ss_offset = in_bytes(Klass::secondary_supers_offset());
1137   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1138   Address secondary_supers_addr(sub_klass, ss_offset);
1139   Address super_cache_addr(     sub_klass, sc_offset);
1140 
1141   BLOCK_COMMENT("check_klass_subtype_slow_path");
1142 
1143   // Do a linear scan of the secondary super-klass chain.
1144   // This code is rarely used, so simplicity is a virtue here.
1145   // The repne_scan instruction uses fixed registers, which we must spill.
1146   // Don't worry too much about pre-existing connections with the input regs.
1147 
1148   assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1149   assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1150 
1151   // Get super_klass value into r0 (even if it was in r5 or r2).
1152   RegSet pushed_registers;
1153   if (!IS_A_TEMP(r2))    pushed_registers += r2;
1154   if (!IS_A_TEMP(r5))    pushed_registers += r5;
1155 
1156   if (super_klass != r0 || UseCompressedOops) {
1157     if (!IS_A_TEMP(r0))   pushed_registers += r0;
1158   }
1159 
1160   push(pushed_registers, sp);
1161 
1162 #ifndef PRODUCT
1163   mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr);
1164   Address pst_counter_addr(rscratch2);
1165   ldr(rscratch1, pst_counter_addr);
1166   add(rscratch1, rscratch1, 1);
1167   str(rscratch1, pst_counter_addr);
1168 #endif //PRODUCT
1169 
1170   // We will consult the secondary-super array.
1171   ldr(r5, secondary_supers_addr);
1172   // Load the array length.
1173   ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1174   // Skip to start of data.
1175   add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1176 
1177   cmp(sp, zr); // Clear Z flag; SP is never zero
1178   // Scan R2 words at [R5] for an occurrence of R0.
1179   // Set NZ/Z based on last compare.
1180   repne_scan(r5, r0, r2, rscratch1);
1181 
1182   // Unspill the temp. registers:
1183   pop(pushed_registers, sp);
1184 
1185   br(Assembler::NE, *L_failure);
1186 
1187   // Success.  Cache the super we found and proceed in triumph.
1188   str(super_klass, super_cache_addr);
1189 
1190   if (L_success != &L_fallthrough) {
1191     b(*L_success);
1192   }
1193 
1194 #undef IS_A_TEMP
1195 
1196   bind(L_fallthrough);
1197 }
1198 
1199 
1200 void MacroAssembler::verify_oop(Register reg, const char* s) {
1201   if (!VerifyOops) return;
1202 
1203   // Pass register number to verify_oop_subroutine
1204   const char* b = NULL;
1205   {
1206     ResourceMark rm;
1207     stringStream ss;
1208     ss.print("verify_oop: %s: %s", reg->name(), s);
1209     b = code_string(ss.as_string());
1210   }
1211   BLOCK_COMMENT("verify_oop {");
1212 
1213   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1214   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1215 
1216   mov(r0, reg);
1217   mov(rscratch1, (address)b);
1218 
1219   // call indirectly to solve generation ordering problem
1220   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1221   ldr(rscratch2, Address(rscratch2));
1222   blr(rscratch2);
1223 
1224   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1225   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1226 
1227   BLOCK_COMMENT("} verify_oop");
1228 }
1229 
1230 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
1231   if (!VerifyOops) return;
1232 
1233   const char* b = NULL;
1234   {
1235     ResourceMark rm;
1236     stringStream ss;
1237     ss.print("verify_oop_addr: %s", s);
1238     b = code_string(ss.as_string());
1239   }
1240   BLOCK_COMMENT("verify_oop_addr {");
1241 
1242   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1243   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1244 
1245   // addr may contain sp so we will have to adjust it based on the
1246   // pushes that we just did.
1247   if (addr.uses(sp)) {
1248     lea(r0, addr);
1249     ldr(r0, Address(r0, 4 * wordSize));
1250   } else {
1251     ldr(r0, addr);
1252   }
1253   mov(rscratch1, (address)b);
1254 
1255   // call indirectly to solve generation ordering problem
1256   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1257   ldr(rscratch2, Address(rscratch2));
1258   blr(rscratch2);
1259 
1260   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1261   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1262 
1263   BLOCK_COMMENT("} verify_oop_addr");
1264 }
1265 
1266 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1267                                          int extra_slot_offset) {
1268   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1269   int stackElementSize = Interpreter::stackElementSize;
1270   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1271 #ifdef ASSERT
1272   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1273   assert(offset1 - offset == stackElementSize, "correct arithmetic");
1274 #endif
1275   if (arg_slot.is_constant()) {
1276     return Address(esp, arg_slot.as_constant() * stackElementSize
1277                    + offset);
1278   } else {
1279     add(rscratch1, esp, arg_slot.as_register(),
1280         ext::uxtx, exact_log2(stackElementSize));
1281     return Address(rscratch1, offset);
1282   }
1283 }
1284 
1285 void MacroAssembler::call_VM_leaf_base(address entry_point,
1286                                        int number_of_arguments,
1287                                        Label *retaddr) {
1288   call_VM_leaf_base1(entry_point, number_of_arguments, 0, ret_type_integral, retaddr);
1289 }
1290 
1291 void MacroAssembler::call_VM_leaf_base1(address entry_point,
1292                                         int number_of_gp_arguments,
1293                                         int number_of_fp_arguments,
1294                                         ret_type type,
1295                                         Label *retaddr) {
1296   Label E, L;
1297 
1298   stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1299 
1300   // We add 1 to number_of_arguments because the thread in arg0 is
1301   // not counted
1302   mov(rscratch1, entry_point);
1303   blrt(rscratch1, number_of_gp_arguments + 1, number_of_fp_arguments, type);
1304   if (retaddr)
1305     bind(*retaddr);
1306 
1307   ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1308   maybe_isb();
1309 }
1310 
1311 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1312   call_VM_leaf_base(entry_point, number_of_arguments);
1313 }
1314 
1315 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1316   pass_arg0(this, arg_0);
1317   call_VM_leaf_base(entry_point, 1);
1318 }
1319 
1320 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1321   pass_arg0(this, arg_0);
1322   pass_arg1(this, arg_1);
1323   call_VM_leaf_base(entry_point, 2);
1324 }
1325 
1326 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1327                                   Register arg_1, Register arg_2) {
1328   pass_arg0(this, arg_0);
1329   pass_arg1(this, arg_1);
1330   pass_arg2(this, arg_2);
1331   call_VM_leaf_base(entry_point, 3);
1332 }
1333 
1334 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1335   pass_arg0(this, arg_0);
1336   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1337 }
1338 
1339 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1340 
1341   assert(arg_0 != c_rarg1, "smashed arg");
1342   pass_arg1(this, arg_1);
1343   pass_arg0(this, arg_0);
1344   MacroAssembler::call_VM_leaf_base(entry_point, 2);
1345 }
1346 
1347 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1348   assert(arg_0 != c_rarg2, "smashed arg");
1349   assert(arg_1 != c_rarg2, "smashed arg");
1350   pass_arg2(this, arg_2);
1351   assert(arg_0 != c_rarg1, "smashed arg");
1352   pass_arg1(this, arg_1);
1353   pass_arg0(this, arg_0);
1354   MacroAssembler::call_VM_leaf_base(entry_point, 3);
1355 }
1356 
1357 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1358   assert(arg_0 != c_rarg3, "smashed arg");
1359   assert(arg_1 != c_rarg3, "smashed arg");
1360   assert(arg_2 != c_rarg3, "smashed arg");
1361   pass_arg3(this, arg_3);
1362   assert(arg_0 != c_rarg2, "smashed arg");
1363   assert(arg_1 != c_rarg2, "smashed arg");
1364   pass_arg2(this, arg_2);
1365   assert(arg_0 != c_rarg1, "smashed arg");
1366   pass_arg1(this, arg_1);
1367   pass_arg0(this, arg_0);
1368   MacroAssembler::call_VM_leaf_base(entry_point, 4);
1369 }
1370 
1371 void MacroAssembler::null_check(Register reg, int offset) {
1372   if (needs_explicit_null_check(offset)) {
1373     // provoke OS NULL exception if reg = NULL by
1374     // accessing M[reg] w/o changing any registers
1375     // NOTE: this is plenty to provoke a segv
1376     ldr(zr, Address(reg));
1377   } else {
1378     // nothing to do, (later) access of M[reg + offset]
1379     // will provoke OS NULL exception if reg = NULL
1380   }
1381 }
1382 
1383 // MacroAssembler protected routines needed to implement
1384 // public methods
1385 
1386 void MacroAssembler::mov(Register r, Address dest) {
1387   code_section()->relocate(pc(), dest.rspec());
1388   u_int64_t imm64 = (u_int64_t)dest.target();
1389   movptr(r, imm64);
1390 }
1391 
1392 // Move a constant pointer into r.  In AArch64 mode the virtual
1393 // address space is 48 bits in size, so we only need three
1394 // instructions to create a patchable instruction sequence that can
1395 // reach anywhere.
1396 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1397 #ifndef PRODUCT
1398   {
1399     char buffer[64];
1400     snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1401     block_comment(buffer);
1402   }
1403 #endif
1404   assert(imm64 < (1ul << 48), "48-bit overflow in address constant");
1405   movz(r, imm64 & 0xffff);
1406   imm64 >>= 16;
1407   movk(r, imm64 & 0xffff, 16);
1408   imm64 >>= 16;
1409   movk(r, imm64 & 0xffff, 32);
1410 }
1411 
1412 // Macro to mov replicated immediate to vector register.
1413 //  Vd will get the following values for different arrangements in T
1414 //   imm32 == hex 000000gh  T8B:  Vd = ghghghghghghghgh
1415 //   imm32 == hex 000000gh  T16B: Vd = ghghghghghghghghghghghghghghghgh
1416 //   imm32 == hex 0000efgh  T4H:  Vd = efghefghefghefgh
1417 //   imm32 == hex 0000efgh  T8H:  Vd = efghefghefghefghefghefghefghefgh
1418 //   imm32 == hex abcdefgh  T2S:  Vd = abcdefghabcdefgh
1419 //   imm32 == hex abcdefgh  T4S:  Vd = abcdefghabcdefghabcdefghabcdefgh
1420 //   T1D/T2D: invalid
1421 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) {
1422   assert(T != T1D && T != T2D, "invalid arrangement");
1423   if (T == T8B || T == T16B) {
1424     assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)");
1425     movi(Vd, T, imm32 & 0xff, 0);
1426     return;
1427   }
1428   u_int32_t nimm32 = ~imm32;
1429   if (T == T4H || T == T8H) {
1430     assert((imm32  & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)");
1431     imm32 &= 0xffff;
1432     nimm32 &= 0xffff;
1433   }
1434   u_int32_t x = imm32;
1435   int movi_cnt = 0;
1436   int movn_cnt = 0;
1437   while (x) { if (x & 0xff) movi_cnt++; x >>= 8; }
1438   x = nimm32;
1439   while (x) { if (x & 0xff) movn_cnt++; x >>= 8; }
1440   if (movn_cnt < movi_cnt) imm32 = nimm32;
1441   unsigned lsl = 0;
1442   while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1443   if (movn_cnt < movi_cnt)
1444     mvni(Vd, T, imm32 & 0xff, lsl);
1445   else
1446     movi(Vd, T, imm32 & 0xff, lsl);
1447   imm32 >>= 8; lsl += 8;
1448   while (imm32) {
1449     while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1450     if (movn_cnt < movi_cnt)
1451       bici(Vd, T, imm32 & 0xff, lsl);
1452     else
1453       orri(Vd, T, imm32 & 0xff, lsl);
1454     lsl += 8; imm32 >>= 8;
1455   }
1456 }
1457 
1458 void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64)
1459 {
1460 #ifndef PRODUCT
1461   {
1462     char buffer[64];
1463     snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1464     block_comment(buffer);
1465   }
1466 #endif
1467   if (operand_valid_for_logical_immediate(false, imm64)) {
1468     orr(dst, zr, imm64);
1469   } else {
1470     // we can use a combination of MOVZ or MOVN with
1471     // MOVK to build up the constant
1472     u_int64_t imm_h[4];
1473     int zero_count = 0;
1474     int neg_count = 0;
1475     int i;
1476     for (i = 0; i < 4; i++) {
1477       imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
1478       if (imm_h[i] == 0) {
1479         zero_count++;
1480       } else if (imm_h[i] == 0xffffL) {
1481         neg_count++;
1482       }
1483     }
1484     if (zero_count == 4) {
1485       // one MOVZ will do
1486       movz(dst, 0);
1487     } else if (neg_count == 4) {
1488       // one MOVN will do
1489       movn(dst, 0);
1490     } else if (zero_count == 3) {
1491       for (i = 0; i < 4; i++) {
1492         if (imm_h[i] != 0L) {
1493           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1494           break;
1495         }
1496       }
1497     } else if (neg_count == 3) {
1498       // one MOVN will do
1499       for (int i = 0; i < 4; i++) {
1500         if (imm_h[i] != 0xffffL) {
1501           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1502           break;
1503         }
1504       }
1505     } else if (zero_count == 2) {
1506       // one MOVZ and one MOVK will do
1507       for (i = 0; i < 3; i++) {
1508         if (imm_h[i] != 0L) {
1509           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1510           i++;
1511           break;
1512         }
1513       }
1514       for (;i < 4; i++) {
1515         if (imm_h[i] != 0L) {
1516           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1517         }
1518       }
1519     } else if (neg_count == 2) {
1520       // one MOVN and one MOVK will do
1521       for (i = 0; i < 4; i++) {
1522         if (imm_h[i] != 0xffffL) {
1523           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1524           i++;
1525           break;
1526         }
1527       }
1528       for (;i < 4; i++) {
1529         if (imm_h[i] != 0xffffL) {
1530           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1531         }
1532       }
1533     } else if (zero_count == 1) {
1534       // one MOVZ and two MOVKs will do
1535       for (i = 0; i < 4; i++) {
1536         if (imm_h[i] != 0L) {
1537           movz(dst, (u_int32_t)imm_h[i], (i << 4));
1538           i++;
1539           break;
1540         }
1541       }
1542       for (;i < 4; i++) {
1543         if (imm_h[i] != 0x0L) {
1544           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1545         }
1546       }
1547     } else if (neg_count == 1) {
1548       // one MOVN and two MOVKs will do
1549       for (i = 0; i < 4; i++) {
1550         if (imm_h[i] != 0xffffL) {
1551           movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1552           i++;
1553           break;
1554         }
1555       }
1556       for (;i < 4; i++) {
1557         if (imm_h[i] != 0xffffL) {
1558           movk(dst, (u_int32_t)imm_h[i], (i << 4));
1559         }
1560       }
1561     } else {
1562       // use a MOVZ and 3 MOVKs (makes it easier to debug)
1563       movz(dst, (u_int32_t)imm_h[0], 0);
1564       for (i = 1; i < 4; i++) {
1565         movk(dst, (u_int32_t)imm_h[i], (i << 4));
1566       }
1567     }
1568   }
1569 }
1570 
1571 void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32)
1572 {
1573 #ifndef PRODUCT
1574     {
1575       char buffer[64];
1576       snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32);
1577       block_comment(buffer);
1578     }
1579 #endif
1580   if (operand_valid_for_logical_immediate(true, imm32)) {
1581     orrw(dst, zr, imm32);
1582   } else {
1583     // we can use MOVZ, MOVN or two calls to MOVK to build up the
1584     // constant
1585     u_int32_t imm_h[2];
1586     imm_h[0] = imm32 & 0xffff;
1587     imm_h[1] = ((imm32 >> 16) & 0xffff);
1588     if (imm_h[0] == 0) {
1589       movzw(dst, imm_h[1], 16);
1590     } else if (imm_h[0] == 0xffff) {
1591       movnw(dst, imm_h[1] ^ 0xffff, 16);
1592     } else if (imm_h[1] == 0) {
1593       movzw(dst, imm_h[0], 0);
1594     } else if (imm_h[1] == 0xffff) {
1595       movnw(dst, imm_h[0] ^ 0xffff, 0);
1596     } else {
1597       // use a MOVZ and MOVK (makes it easier to debug)
1598       movzw(dst, imm_h[0], 0);
1599       movkw(dst, imm_h[1], 16);
1600     }
1601   }
1602 }
1603 
1604 // Form an address from base + offset in Rd.  Rd may or may
1605 // not actually be used: you must use the Address that is returned.
1606 // It is up to you to ensure that the shift provided matches the size
1607 // of your data.
1608 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) {
1609   if (Address::offset_ok_for_immed(byte_offset, shift))
1610     // It fits; no need for any heroics
1611     return Address(base, byte_offset);
1612 
1613   // Don't do anything clever with negative or misaligned offsets
1614   unsigned mask = (1 << shift) - 1;
1615   if (byte_offset < 0 || byte_offset & mask) {
1616     mov(Rd, byte_offset);
1617     add(Rd, base, Rd);
1618     return Address(Rd);
1619   }
1620 
1621   // See if we can do this with two 12-bit offsets
1622   {
1623     unsigned long word_offset = byte_offset >> shift;
1624     unsigned long masked_offset = word_offset & 0xfff000;
1625     if (Address::offset_ok_for_immed(word_offset - masked_offset)
1626         && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
1627       add(Rd, base, masked_offset << shift);
1628       word_offset -= masked_offset;
1629       return Address(Rd, word_offset << shift);
1630     }
1631   }
1632 
1633   // Do it the hard way
1634   mov(Rd, byte_offset);
1635   add(Rd, base, Rd);
1636   return Address(Rd);
1637 }
1638 
1639 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) {
1640   if (UseLSE) {
1641     mov(tmp, 1);
1642     ldadd(Assembler::word, tmp, zr, counter_addr);
1643     return;
1644   }
1645   Label retry_load;
1646   prfm(Address(counter_addr), PSTL1STRM);
1647   bind(retry_load);
1648   // flush and load exclusive from the memory location
1649   ldxrw(tmp, counter_addr);
1650   addw(tmp, tmp, 1);
1651   // if we store+flush with no intervening write tmp wil be zero
1652   stxrw(tmp2, tmp, counter_addr);
1653   cbnzw(tmp2, retry_load);
1654 }
1655 
1656 
1657 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
1658                                     bool want_remainder, Register scratch)
1659 {
1660   // Full implementation of Java idiv and irem.  The function
1661   // returns the (pc) offset of the div instruction - may be needed
1662   // for implicit exceptions.
1663   //
1664   // constraint : ra/rb =/= scratch
1665   //         normal case
1666   //
1667   // input : ra: dividend
1668   //         rb: divisor
1669   //
1670   // result: either
1671   //         quotient  (= ra idiv rb)
1672   //         remainder (= ra irem rb)
1673 
1674   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1675 
1676   int idivl_offset = offset();
1677   if (! want_remainder) {
1678     sdivw(result, ra, rb);
1679   } else {
1680     sdivw(scratch, ra, rb);
1681     Assembler::msubw(result, scratch, rb, ra);
1682   }
1683 
1684   return idivl_offset;
1685 }
1686 
1687 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
1688                                     bool want_remainder, Register scratch)
1689 {
1690   // Full implementation of Java ldiv and lrem.  The function
1691   // returns the (pc) offset of the div instruction - may be needed
1692   // for implicit exceptions.
1693   //
1694   // constraint : ra/rb =/= scratch
1695   //         normal case
1696   //
1697   // input : ra: dividend
1698   //         rb: divisor
1699   //
1700   // result: either
1701   //         quotient  (= ra idiv rb)
1702   //         remainder (= ra irem rb)
1703 
1704   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1705 
1706   int idivq_offset = offset();
1707   if (! want_remainder) {
1708     sdiv(result, ra, rb);
1709   } else {
1710     sdiv(scratch, ra, rb);
1711     Assembler::msub(result, scratch, rb, ra);
1712   }
1713 
1714   return idivq_offset;
1715 }
1716 
1717 void MacroAssembler::membar(Membar_mask_bits order_constraint) {
1718   address prev = pc() - NativeMembar::instruction_size;
1719   if (prev == code()->last_membar()) {
1720     NativeMembar *bar = NativeMembar_at(prev);
1721     // We are merging two memory barrier instructions.  On AArch64 we
1722     // can do this simply by ORing them together.
1723     bar->set_kind(bar->get_kind() | order_constraint);
1724     BLOCK_COMMENT("merged membar");
1725   } else {
1726     code()->set_last_membar(pc());
1727     dmb(Assembler::barrier(order_constraint));
1728   }
1729 }
1730 
1731 // MacroAssembler routines found actually to be needed
1732 
1733 void MacroAssembler::push(Register src)
1734 {
1735   str(src, Address(pre(esp, -1 * wordSize)));
1736 }
1737 
1738 void MacroAssembler::pop(Register dst)
1739 {
1740   ldr(dst, Address(post(esp, 1 * wordSize)));
1741 }
1742 
1743 // Note: load_unsigned_short used to be called load_unsigned_word.
1744 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
1745   int off = offset();
1746   ldrh(dst, src);
1747   return off;
1748 }
1749 
1750 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
1751   int off = offset();
1752   ldrb(dst, src);
1753   return off;
1754 }
1755 
1756 int MacroAssembler::load_signed_short(Register dst, Address src) {
1757   int off = offset();
1758   ldrsh(dst, src);
1759   return off;
1760 }
1761 
1762 int MacroAssembler::load_signed_byte(Register dst, Address src) {
1763   int off = offset();
1764   ldrsb(dst, src);
1765   return off;
1766 }
1767 
1768 int MacroAssembler::load_signed_short32(Register dst, Address src) {
1769   int off = offset();
1770   ldrshw(dst, src);
1771   return off;
1772 }
1773 
1774 int MacroAssembler::load_signed_byte32(Register dst, Address src) {
1775   int off = offset();
1776   ldrsbw(dst, src);
1777   return off;
1778 }
1779 
1780 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
1781   switch (size_in_bytes) {
1782   case  8:  ldr(dst, src); break;
1783   case  4:  ldrw(dst, src); break;
1784   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
1785   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
1786   default:  ShouldNotReachHere();
1787   }
1788 }
1789 
1790 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
1791   switch (size_in_bytes) {
1792   case  8:  str(src, dst); break;
1793   case  4:  strw(src, dst); break;
1794   case  2:  strh(src, dst); break;
1795   case  1:  strb(src, dst); break;
1796   default:  ShouldNotReachHere();
1797   }
1798 }
1799 
1800 void MacroAssembler::decrementw(Register reg, int value)
1801 {
1802   if (value < 0)  { incrementw(reg, -value);      return; }
1803   if (value == 0) {                               return; }
1804   if (value < (1 << 12)) { subw(reg, reg, value); return; }
1805   /* else */ {
1806     guarantee(reg != rscratch2, "invalid dst for register decrement");
1807     movw(rscratch2, (unsigned)value);
1808     subw(reg, reg, rscratch2);
1809   }
1810 }
1811 
1812 void MacroAssembler::decrement(Register reg, int value)
1813 {
1814   if (value < 0)  { increment(reg, -value);      return; }
1815   if (value == 0) {                              return; }
1816   if (value < (1 << 12)) { sub(reg, reg, value); return; }
1817   /* else */ {
1818     assert(reg != rscratch2, "invalid dst for register decrement");
1819     mov(rscratch2, (unsigned long)value);
1820     sub(reg, reg, rscratch2);
1821   }
1822 }
1823 
1824 void MacroAssembler::decrementw(Address dst, int value)
1825 {
1826   assert(!dst.uses(rscratch1), "invalid dst for address decrement");
1827   ldrw(rscratch1, dst);
1828   decrementw(rscratch1, value);
1829   strw(rscratch1, dst);
1830 }
1831 
1832 void MacroAssembler::decrement(Address dst, int value)
1833 {
1834   assert(!dst.uses(rscratch1), "invalid address for decrement");
1835   ldr(rscratch1, dst);
1836   decrement(rscratch1, value);
1837   str(rscratch1, dst);
1838 }
1839 
1840 void MacroAssembler::incrementw(Register reg, int value)
1841 {
1842   if (value < 0)  { decrementw(reg, -value);      return; }
1843   if (value == 0) {                               return; }
1844   if (value < (1 << 12)) { addw(reg, reg, value); return; }
1845   /* else */ {
1846     assert(reg != rscratch2, "invalid dst for register increment");
1847     movw(rscratch2, (unsigned)value);
1848     addw(reg, reg, rscratch2);
1849   }
1850 }
1851 
1852 void MacroAssembler::increment(Register reg, int value)
1853 {
1854   if (value < 0)  { decrement(reg, -value);      return; }
1855   if (value == 0) {                              return; }
1856   if (value < (1 << 12)) { add(reg, reg, value); return; }
1857   /* else */ {
1858     assert(reg != rscratch2, "invalid dst for register increment");
1859     movw(rscratch2, (unsigned)value);
1860     add(reg, reg, rscratch2);
1861   }
1862 }
1863 
1864 void MacroAssembler::incrementw(Address dst, int value)
1865 {
1866   assert(!dst.uses(rscratch1), "invalid dst for address increment");
1867   ldrw(rscratch1, dst);
1868   incrementw(rscratch1, value);
1869   strw(rscratch1, dst);
1870 }
1871 
1872 void MacroAssembler::increment(Address dst, int value)
1873 {
1874   assert(!dst.uses(rscratch1), "invalid dst for address increment");
1875   ldr(rscratch1, dst);
1876   increment(rscratch1, value);
1877   str(rscratch1, dst);
1878 }
1879 
1880 
1881 void MacroAssembler::pusha() {
1882   push(0x7fffffff, sp);
1883 }
1884 
1885 void MacroAssembler::popa() {
1886   pop(0x7fffffff, sp);
1887 }
1888 
1889 // Push lots of registers in the bit set supplied.  Don't push sp.
1890 // Return the number of words pushed
1891 int MacroAssembler::push(unsigned int bitset, Register stack) {
1892   int words_pushed = 0;
1893 
1894   // Scan bitset to accumulate register pairs
1895   unsigned char regs[32];
1896   int count = 0;
1897   for (int reg = 0; reg <= 30; reg++) {
1898     if (1 & bitset)
1899       regs[count++] = reg;
1900     bitset >>= 1;
1901   }
1902   regs[count++] = zr->encoding_nocheck();
1903   count &= ~1;  // Only push an even nuber of regs
1904 
1905   if (count) {
1906     stp(as_Register(regs[0]), as_Register(regs[1]),
1907        Address(pre(stack, -count * wordSize)));
1908     words_pushed += 2;
1909   }
1910   for (int i = 2; i < count; i += 2) {
1911     stp(as_Register(regs[i]), as_Register(regs[i+1]),
1912        Address(stack, i * wordSize));
1913     words_pushed += 2;
1914   }
1915 
1916   assert(words_pushed == count, "oops, pushed != count");
1917 
1918   return count;
1919 }
1920 
1921 int MacroAssembler::pop(unsigned int bitset, Register stack) {
1922   int words_pushed = 0;
1923 
1924   // Scan bitset to accumulate register pairs
1925   unsigned char regs[32];
1926   int count = 0;
1927   for (int reg = 0; reg <= 30; reg++) {
1928     if (1 & bitset)
1929       regs[count++] = reg;
1930     bitset >>= 1;
1931   }
1932   regs[count++] = zr->encoding_nocheck();
1933   count &= ~1;
1934 
1935   for (int i = 2; i < count; i += 2) {
1936     ldp(as_Register(regs[i]), as_Register(regs[i+1]),
1937        Address(stack, i * wordSize));
1938     words_pushed += 2;
1939   }
1940   if (count) {
1941     ldp(as_Register(regs[0]), as_Register(regs[1]),
1942        Address(post(stack, count * wordSize)));
1943     words_pushed += 2;
1944   }
1945 
1946   assert(words_pushed == count, "oops, pushed != count");
1947 
1948   return count;
1949 }
1950 #ifdef ASSERT
1951 void MacroAssembler::verify_heapbase(const char* msg) {
1952 #if 0
1953   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
1954   assert (Universe::heap() != NULL, "java heap should be initialized");
1955   if (CheckCompressedOops) {
1956     Label ok;
1957     push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
1958     cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
1959     br(Assembler::EQ, ok);
1960     stop(msg);
1961     bind(ok);
1962     pop(1 << rscratch1->encoding(), sp);
1963   }
1964 #endif
1965 }
1966 #endif
1967 
1968 void MacroAssembler::stop(const char* msg) {
1969   address ip = pc();
1970   pusha();
1971   mov(c_rarg0, (address)msg);
1972   mov(c_rarg1, (address)ip);
1973   mov(c_rarg2, sp);
1974   mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
1975   // call(c_rarg3);
1976   blrt(c_rarg3, 3, 0, 1);
1977   hlt(0);
1978 }
1979 
1980 // If a constant does not fit in an immediate field, generate some
1981 // number of MOV instructions and then perform the operation.
1982 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1983                                            add_sub_imm_insn insn1,
1984                                            add_sub_reg_insn insn2) {
1985   assert(Rd != zr, "Rd = zr and not setting flags?");
1986   if (operand_valid_for_add_sub_immediate((int)imm)) {
1987     (this->*insn1)(Rd, Rn, imm);
1988   } else {
1989     if (uabs(imm) < (1 << 24)) {
1990        (this->*insn1)(Rd, Rn, imm & -(1 << 12));
1991        (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
1992     } else {
1993        assert_different_registers(Rd, Rn);
1994        mov(Rd, (uint64_t)imm);
1995        (this->*insn2)(Rd, Rn, Rd, LSL, 0);
1996     }
1997   }
1998 }
1999 
2000 // Seperate vsn which sets the flags. Optimisations are more restricted
2001 // because we must set the flags correctly.
2002 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
2003                                            add_sub_imm_insn insn1,
2004                                            add_sub_reg_insn insn2) {
2005   if (operand_valid_for_add_sub_immediate((int)imm)) {
2006     (this->*insn1)(Rd, Rn, imm);
2007   } else {
2008     assert_different_registers(Rd, Rn);
2009     assert(Rd != zr, "overflow in immediate operand");
2010     mov(Rd, (uint64_t)imm);
2011     (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2012   }
2013 }
2014 
2015 
2016 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
2017   if (increment.is_register()) {
2018     add(Rd, Rn, increment.as_register());
2019   } else {
2020     add(Rd, Rn, increment.as_constant());
2021   }
2022 }
2023 
2024 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
2025   if (increment.is_register()) {
2026     addw(Rd, Rn, increment.as_register());
2027   } else {
2028     addw(Rd, Rn, increment.as_constant());
2029   }
2030 }
2031 
2032 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
2033   if (decrement.is_register()) {
2034     sub(Rd, Rn, decrement.as_register());
2035   } else {
2036     sub(Rd, Rn, decrement.as_constant());
2037   }
2038 }
2039 
2040 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
2041   if (decrement.is_register()) {
2042     subw(Rd, Rn, decrement.as_register());
2043   } else {
2044     subw(Rd, Rn, decrement.as_constant());
2045   }
2046 }
2047 
2048 void MacroAssembler::reinit_heapbase()
2049 {
2050   if (UseCompressedOops) {
2051     if (Universe::is_fully_initialized()) {
2052       mov(rheapbase, Universe::narrow_ptrs_base());
2053     } else {
2054       lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
2055       ldr(rheapbase, Address(rheapbase));
2056     }
2057   }
2058 }
2059 
2060 // this simulates the behaviour of the x86 cmpxchg instruction using a
2061 // load linked/store conditional pair. we use the acquire/release
2062 // versions of these instructions so that we flush pending writes as
2063 // per Java semantics.
2064 
2065 // n.b the x86 version assumes the old value to be compared against is
2066 // in rax and updates rax with the value located in memory if the
2067 // cmpxchg fails. we supply a register for the old value explicitly
2068 
2069 // the aarch64 load linked/store conditional instructions do not
2070 // accept an offset. so, unlike x86, we must provide a plain register
2071 // to identify the memory word to be compared/exchanged rather than a
2072 // register+offset Address.
2073 
2074 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
2075                                 Label &succeed, Label *fail) {
2076   // oldv holds comparison value
2077   // newv holds value to write in exchange
2078   // addr identifies memory word to compare against/update
2079   if (UseLSE) {
2080     mov(tmp, oldv);
2081     casal(Assembler::xword, oldv, newv, addr);
2082     cmp(tmp, oldv);
2083     br(Assembler::EQ, succeed);
2084     membar(AnyAny);
2085   } else {
2086     Label retry_load, nope;
2087     prfm(Address(addr), PSTL1STRM);
2088     bind(retry_load);
2089     // flush and load exclusive from the memory location
2090     // and fail if it is not what we expect
2091     ldaxr(tmp, addr);
2092     cmp(tmp, oldv);
2093     br(Assembler::NE, nope);
2094     // if we store+flush with no intervening write tmp wil be zero
2095     stlxr(tmp, newv, addr);
2096     cbzw(tmp, succeed);
2097     // retry so we only ever return after a load fails to compare
2098     // ensures we don't return a stale value after a failed write.
2099     b(retry_load);
2100     // if the memory word differs we return it in oldv and signal a fail
2101     bind(nope);
2102     membar(AnyAny);
2103     mov(oldv, tmp);
2104   }
2105   if (fail)
2106     b(*fail);
2107 }
2108 
2109 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
2110                                 Label &succeed, Label *fail) {
2111   // oldv holds comparison value
2112   // newv holds value to write in exchange
2113   // addr identifies memory word to compare against/update
2114   // tmp returns 0/1 for success/failure
2115   if (UseLSE) {
2116     mov(tmp, oldv);
2117     casal(Assembler::word, oldv, newv, addr);
2118     cmp(tmp, oldv);
2119     br(Assembler::EQ, succeed);
2120     membar(AnyAny);
2121   } else {
2122     Label retry_load, nope;
2123     prfm(Address(addr), PSTL1STRM);
2124     bind(retry_load);
2125     // flush and load exclusive from the memory location
2126     // and fail if it is not what we expect
2127     ldaxrw(tmp, addr);
2128     cmp(tmp, oldv);
2129     br(Assembler::NE, nope);
2130     // if we store+flush with no intervening write tmp wil be zero
2131     stlxrw(tmp, newv, addr);
2132     cbzw(tmp, succeed);
2133     // retry so we only ever return after a load fails to compare
2134     // ensures we don't return a stale value after a failed write.
2135     b(retry_load);
2136     // if the memory word differs we return it in oldv and signal a fail
2137     bind(nope);
2138     membar(AnyAny);
2139     mov(oldv, tmp);
2140   }
2141   if (fail)
2142     b(*fail);
2143 }
2144 
2145 // A generic CAS; success or failure is in the EQ flag.
2146 void MacroAssembler::cmpxchg(Register addr, Register expected,
2147                              Register new_val,
2148                              enum operand_size size,
2149                              bool acquire, bool release,
2150                              Register tmp) {
2151   if (UseLSE) {
2152     mov(tmp, expected);
2153     lse_cas(tmp, new_val, addr, size, acquire, release, /*not_pair*/ true);
2154     cmp(tmp, expected);
2155   } else {
2156     BLOCK_COMMENT("cmpxchg {");
2157     Label retry_load, done;
2158     prfm(Address(addr), PSTL1STRM);
2159     bind(retry_load);
2160     load_exclusive(tmp, addr, size, acquire);
2161     if (size == xword)
2162       cmp(tmp, expected);
2163     else
2164       cmpw(tmp, expected);
2165     br(Assembler::NE, done);
2166     store_exclusive(tmp, new_val, addr, size, release);
2167     cbnzw(tmp, retry_load);
2168     bind(done);
2169     BLOCK_COMMENT("} cmpxchg");
2170   }
2171 }
2172 
2173 static bool different(Register a, RegisterOrConstant b, Register c) {
2174   if (b.is_constant())
2175     return a != c;
2176   else
2177     return a != b.as_register() && a != c && b.as_register() != c;
2178 }
2179 
2180 #define ATOMIC_OP(LDXR, OP, IOP, AOP, STXR, sz)                         \
2181 void MacroAssembler::atomic_##OP(Register prev, RegisterOrConstant incr, Register addr) { \
2182   if (UseLSE) {                                                         \
2183     prev = prev->is_valid() ? prev : zr;                                \
2184     if (incr.is_register()) {                                           \
2185       AOP(sz, incr.as_register(), prev, addr);                          \
2186     } else {                                                            \
2187       mov(rscratch2, incr.as_constant());                               \
2188       AOP(sz, rscratch2, prev, addr);                                   \
2189     }                                                                   \
2190     return;                                                             \
2191   }                                                                     \
2192   Register result = rscratch2;                                          \
2193   if (prev->is_valid())                                                 \
2194     result = different(prev, incr, addr) ? prev : rscratch2;            \
2195                                                                         \
2196   Label retry_load;                                                     \
2197   prfm(Address(addr), PSTL1STRM);                                       \
2198   bind(retry_load);                                                     \
2199   LDXR(result, addr);                                                   \
2200   OP(rscratch1, result, incr);                                          \
2201   STXR(rscratch2, rscratch1, addr);                                     \
2202   cbnzw(rscratch2, retry_load);                                         \
2203   if (prev->is_valid() && prev != result) {                             \
2204     IOP(prev, rscratch1, incr);                                         \
2205   }                                                                     \
2206 }
2207 
2208 ATOMIC_OP(ldxr, add, sub, ldadd, stxr, Assembler::xword)
2209 ATOMIC_OP(ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
2210 
2211 #undef ATOMIC_OP
2212 
2213 #define ATOMIC_XCHG(OP, LDXR, STXR, sz)                                 \
2214 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
2215   if (UseLSE) {                                                         \
2216     prev = prev->is_valid() ? prev : zr;                                \
2217     swp(sz, newv, prev, addr);                                          \
2218     return;                                                             \
2219   }                                                                     \
2220   Register result = rscratch2;                                          \
2221   if (prev->is_valid())                                                 \
2222     result = different(prev, newv, addr) ? prev : rscratch2;            \
2223                                                                         \
2224   Label retry_load;                                                     \
2225   prfm(Address(addr), PSTL1STRM);                                       \
2226   bind(retry_load);                                                     \
2227   LDXR(result, addr);                                                   \
2228   STXR(rscratch1, newv, addr);                                          \
2229   cbnzw(rscratch1, retry_load);                                         \
2230   if (prev->is_valid() && prev != result)                               \
2231     mov(prev, result);                                                  \
2232 }
2233 
2234 ATOMIC_XCHG(xchg, ldxr, stxr, Assembler::xword)
2235 ATOMIC_XCHG(xchgw, ldxrw, stxrw, Assembler::word)
2236 
2237 #undef ATOMIC_XCHG
2238 
2239 void MacroAssembler::incr_allocated_bytes(Register thread,
2240                                           Register var_size_in_bytes,
2241                                           int con_size_in_bytes,
2242                                           Register t1) {
2243   if (!thread->is_valid()) {
2244     thread = rthread;
2245   }
2246   assert(t1->is_valid(), "need temp reg");
2247 
2248   ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2249   if (var_size_in_bytes->is_valid()) {
2250     add(t1, t1, var_size_in_bytes);
2251   } else {
2252     add(t1, t1, con_size_in_bytes);
2253   }
2254   str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2255 }
2256 
2257 #ifndef PRODUCT
2258 extern "C" void findpc(intptr_t x);
2259 #endif
2260 
2261 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
2262 {
2263   // In order to get locks to work, we need to fake a in_VM state
2264   if (ShowMessageBoxOnError ) {
2265     JavaThread* thread = JavaThread::current();
2266     JavaThreadState saved_state = thread->thread_state();
2267     thread->set_thread_state(_thread_in_vm);
2268 #ifndef PRODUCT
2269     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2270       ttyLocker ttyl;
2271       BytecodeCounter::print();
2272     }
2273 #endif
2274     if (os::message_box(msg, "Execution stopped, print registers?")) {
2275       ttyLocker ttyl;
2276       tty->print_cr(" pc = 0x%016lx", pc);
2277 #ifndef PRODUCT
2278       tty->cr();
2279       findpc(pc);
2280       tty->cr();
2281 #endif
2282       tty->print_cr(" r0 = 0x%016lx", regs[0]);
2283       tty->print_cr(" r1 = 0x%016lx", regs[1]);
2284       tty->print_cr(" r2 = 0x%016lx", regs[2]);
2285       tty->print_cr(" r3 = 0x%016lx", regs[3]);
2286       tty->print_cr(" r4 = 0x%016lx", regs[4]);
2287       tty->print_cr(" r5 = 0x%016lx", regs[5]);
2288       tty->print_cr(" r6 = 0x%016lx", regs[6]);
2289       tty->print_cr(" r7 = 0x%016lx", regs[7]);
2290       tty->print_cr(" r8 = 0x%016lx", regs[8]);
2291       tty->print_cr(" r9 = 0x%016lx", regs[9]);
2292       tty->print_cr("r10 = 0x%016lx", regs[10]);
2293       tty->print_cr("r11 = 0x%016lx", regs[11]);
2294       tty->print_cr("r12 = 0x%016lx", regs[12]);
2295       tty->print_cr("r13 = 0x%016lx", regs[13]);
2296       tty->print_cr("r14 = 0x%016lx", regs[14]);
2297       tty->print_cr("r15 = 0x%016lx", regs[15]);
2298       tty->print_cr("r16 = 0x%016lx", regs[16]);
2299       tty->print_cr("r17 = 0x%016lx", regs[17]);
2300       tty->print_cr("r18 = 0x%016lx", regs[18]);
2301       tty->print_cr("r19 = 0x%016lx", regs[19]);
2302       tty->print_cr("r20 = 0x%016lx", regs[20]);
2303       tty->print_cr("r21 = 0x%016lx", regs[21]);
2304       tty->print_cr("r22 = 0x%016lx", regs[22]);
2305       tty->print_cr("r23 = 0x%016lx", regs[23]);
2306       tty->print_cr("r24 = 0x%016lx", regs[24]);
2307       tty->print_cr("r25 = 0x%016lx", regs[25]);
2308       tty->print_cr("r26 = 0x%016lx", regs[26]);
2309       tty->print_cr("r27 = 0x%016lx", regs[27]);
2310       tty->print_cr("r28 = 0x%016lx", regs[28]);
2311       tty->print_cr("r30 = 0x%016lx", regs[30]);
2312       tty->print_cr("r31 = 0x%016lx", regs[31]);
2313       BREAKPOINT;
2314     }
2315     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
2316   } else {
2317     ttyLocker ttyl;
2318     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
2319                     msg);
2320     assert(false, "DEBUG MESSAGE: %s", msg);
2321   }
2322 }
2323 
2324 #ifdef BUILTIN_SIM
2325 // routine to generate an x86 prolog for a stub function which
2326 // bootstraps into the generated ARM code which directly follows the
2327 // stub
2328 //
2329 // the argument encodes the number of general and fp registers
2330 // passed by the caller and the callng convention (currently just
2331 // the number of general registers and assumes C argument passing)
2332 
2333 extern "C" {
2334 int aarch64_stub_prolog_size();
2335 void aarch64_stub_prolog();
2336 void aarch64_prolog();
2337 }
2338 
2339 void MacroAssembler::c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type,
2340                                    address *prolog_ptr)
2341 {
2342   int calltype = (((ret_type & 0x3) << 8) |
2343                   ((fp_arg_count & 0xf) << 4) |
2344                   (gp_arg_count & 0xf));
2345 
2346   // the addresses for the x86 to ARM entry code we need to use
2347   address start = pc();
2348   // printf("start = %lx\n", start);
2349   int byteCount =  aarch64_stub_prolog_size();
2350   // printf("byteCount = %x\n", byteCount);
2351   int instructionCount = (byteCount + 3)/ 4;
2352   // printf("instructionCount = %x\n", instructionCount);
2353   for (int i = 0; i < instructionCount; i++) {
2354     nop();
2355   }
2356 
2357   memcpy(start, (void*)aarch64_stub_prolog, byteCount);
2358 
2359   // write the address of the setup routine and the call format at the
2360   // end of into the copied code
2361   u_int64_t *patch_end = (u_int64_t *)(start + byteCount);
2362   if (prolog_ptr)
2363     patch_end[-2] = (u_int64_t)prolog_ptr;
2364   patch_end[-1] = calltype;
2365 }
2366 #endif
2367 
2368 void MacroAssembler::push_call_clobbered_registers() {
2369   push(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2370 
2371   // Push v0-v7, v16-v31.
2372   for (int i = 30; i >= 0; i -= 2) {
2373     if (i <= v7->encoding() || i >= v16->encoding()) {
2374         stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2375              Address(pre(sp, -2 * wordSize)));
2376     }
2377   }
2378 }
2379 
2380 void MacroAssembler::pop_call_clobbered_registers() {
2381 
2382   for (int i = 0; i < 32; i += 2) {
2383     if (i <= v7->encoding() || i >= v16->encoding()) {
2384       ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2385            Address(post(sp, 2 * wordSize)));
2386     }
2387   }
2388 
2389   pop(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2390 }
2391 
2392 void MacroAssembler::push_CPU_state(bool save_vectors) {
2393   push(0x3fffffff, sp);         // integer registers except lr & sp
2394 
2395   if (!save_vectors) {
2396     for (int i = 30; i >= 0; i -= 2)
2397       stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2398            Address(pre(sp, -2 * wordSize)));
2399   } else {
2400     for (int i = 30; i >= 0; i -= 2)
2401       stpq(as_FloatRegister(i), as_FloatRegister(i+1),
2402            Address(pre(sp, -4 * wordSize)));
2403   }
2404 }
2405 
2406 void MacroAssembler::pop_CPU_state(bool restore_vectors) {
2407   if (!restore_vectors) {
2408     for (int i = 0; i < 32; i += 2)
2409       ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2410            Address(post(sp, 2 * wordSize)));
2411   } else {
2412     for (int i = 0; i < 32; i += 2)
2413       ldpq(as_FloatRegister(i), as_FloatRegister(i+1),
2414            Address(post(sp, 4 * wordSize)));
2415   }
2416 
2417   pop(0x3fffffff, sp);         // integer registers except lr & sp
2418 }
2419 
2420 /**
2421  * Helpers for multiply_to_len().
2422  */
2423 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
2424                                      Register src1, Register src2) {
2425   adds(dest_lo, dest_lo, src1);
2426   adc(dest_hi, dest_hi, zr);
2427   adds(dest_lo, dest_lo, src2);
2428   adc(final_dest_hi, dest_hi, zr);
2429 }
2430 
2431 // Generate an address from (r + r1 extend offset).  "size" is the
2432 // size of the operand.  The result may be in rscratch2.
2433 Address MacroAssembler::offsetted_address(Register r, Register r1,
2434                                           Address::extend ext, int offset, int size) {
2435   if (offset || (ext.shift() % size != 0)) {
2436     lea(rscratch2, Address(r, r1, ext));
2437     return Address(rscratch2, offset);
2438   } else {
2439     return Address(r, r1, ext);
2440   }
2441 }
2442 
2443 Address MacroAssembler::spill_address(int size, int offset, Register tmp)
2444 {
2445   assert(offset >= 0, "spill to negative address?");
2446   // Offset reachable ?
2447   //   Not aligned - 9 bits signed offset
2448   //   Aligned - 12 bits unsigned offset shifted
2449   Register base = sp;
2450   if ((offset & (size-1)) && offset >= (1<<8)) {
2451     add(tmp, base, offset & ((1<<12)-1));
2452     base = tmp;
2453     offset &= -1<<12;
2454   }
2455 
2456   if (offset >= (1<<12) * size) {
2457     add(tmp, base, offset & (((1<<12)-1)<<12));
2458     base = tmp;
2459     offset &= ~(((1<<12)-1)<<12);
2460   }
2461 
2462   return Address(base, offset);
2463 }
2464 
2465 /**
2466  * Multiply 64 bit by 64 bit first loop.
2467  */
2468 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2469                                            Register y, Register y_idx, Register z,
2470                                            Register carry, Register product,
2471                                            Register idx, Register kdx) {
2472   //
2473   //  jlong carry, x[], y[], z[];
2474   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2475   //    huge_128 product = y[idx] * x[xstart] + carry;
2476   //    z[kdx] = (jlong)product;
2477   //    carry  = (jlong)(product >>> 64);
2478   //  }
2479   //  z[xstart] = carry;
2480   //
2481 
2482   Label L_first_loop, L_first_loop_exit;
2483   Label L_one_x, L_one_y, L_multiply;
2484 
2485   subsw(xstart, xstart, 1);
2486   br(Assembler::MI, L_one_x);
2487 
2488   lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
2489   ldr(x_xstart, Address(rscratch1));
2490   ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
2491 
2492   bind(L_first_loop);
2493   subsw(idx, idx, 1);
2494   br(Assembler::MI, L_first_loop_exit);
2495   subsw(idx, idx, 1);
2496   br(Assembler::MI, L_one_y);
2497   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2498   ldr(y_idx, Address(rscratch1));
2499   ror(y_idx, y_idx, 32); // convert big-endian to little-endian
2500   bind(L_multiply);
2501 
2502   // AArch64 has a multiply-accumulate instruction that we can't use
2503   // here because it has no way to process carries, so we have to use
2504   // separate add and adc instructions.  Bah.
2505   umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
2506   mul(product, x_xstart, y_idx);
2507   adds(product, product, carry);
2508   adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
2509 
2510   subw(kdx, kdx, 2);
2511   ror(product, product, 32); // back to big-endian
2512   str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
2513 
2514   b(L_first_loop);
2515 
2516   bind(L_one_y);
2517   ldrw(y_idx, Address(y,  0));
2518   b(L_multiply);
2519 
2520   bind(L_one_x);
2521   ldrw(x_xstart, Address(x,  0));
2522   b(L_first_loop);
2523 
2524   bind(L_first_loop_exit);
2525 }
2526 
2527 /**
2528  * Multiply 128 bit by 128. Unrolled inner loop.
2529  *
2530  */
2531 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
2532                                              Register carry, Register carry2,
2533                                              Register idx, Register jdx,
2534                                              Register yz_idx1, Register yz_idx2,
2535                                              Register tmp, Register tmp3, Register tmp4,
2536                                              Register tmp6, Register product_hi) {
2537 
2538   //   jlong carry, x[], y[], z[];
2539   //   int kdx = ystart+1;
2540   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
2541   //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
2542   //     jlong carry2  = (jlong)(tmp3 >>> 64);
2543   //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
2544   //     carry  = (jlong)(tmp4 >>> 64);
2545   //     z[kdx+idx+1] = (jlong)tmp3;
2546   //     z[kdx+idx] = (jlong)tmp4;
2547   //   }
2548   //   idx += 2;
2549   //   if (idx > 0) {
2550   //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
2551   //     z[kdx+idx] = (jlong)yz_idx1;
2552   //     carry  = (jlong)(yz_idx1 >>> 64);
2553   //   }
2554   //
2555 
2556   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
2557 
2558   lsrw(jdx, idx, 2);
2559 
2560   bind(L_third_loop);
2561 
2562   subsw(jdx, jdx, 1);
2563   br(Assembler::MI, L_third_loop_exit);
2564   subw(idx, idx, 4);
2565 
2566   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2567 
2568   ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
2569 
2570   lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2571 
2572   ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
2573   ror(yz_idx2, yz_idx2, 32);
2574 
2575   ldp(rscratch2, rscratch1, Address(tmp6, 0));
2576 
2577   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2578   umulh(tmp4, product_hi, yz_idx1);
2579 
2580   ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
2581   ror(rscratch2, rscratch2, 32);
2582 
2583   mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
2584   umulh(carry2, product_hi, yz_idx2);
2585 
2586   // propagate sum of both multiplications into carry:tmp4:tmp3
2587   adds(tmp3, tmp3, carry);
2588   adc(tmp4, tmp4, zr);
2589   adds(tmp3, tmp3, rscratch1);
2590   adcs(tmp4, tmp4, tmp);
2591   adc(carry, carry2, zr);
2592   adds(tmp4, tmp4, rscratch2);
2593   adc(carry, carry, zr);
2594 
2595   ror(tmp3, tmp3, 32); // convert little-endian to big-endian
2596   ror(tmp4, tmp4, 32);
2597   stp(tmp4, tmp3, Address(tmp6, 0));
2598 
2599   b(L_third_loop);
2600   bind (L_third_loop_exit);
2601 
2602   andw (idx, idx, 0x3);
2603   cbz(idx, L_post_third_loop_done);
2604 
2605   Label L_check_1;
2606   subsw(idx, idx, 2);
2607   br(Assembler::MI, L_check_1);
2608 
2609   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2610   ldr(yz_idx1, Address(rscratch1, 0));
2611   ror(yz_idx1, yz_idx1, 32);
2612   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2613   umulh(tmp4, product_hi, yz_idx1);
2614   lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2615   ldr(yz_idx2, Address(rscratch1, 0));
2616   ror(yz_idx2, yz_idx2, 32);
2617 
2618   add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
2619 
2620   ror(tmp3, tmp3, 32);
2621   str(tmp3, Address(rscratch1, 0));
2622 
2623   bind (L_check_1);
2624 
2625   andw (idx, idx, 0x1);
2626   subsw(idx, idx, 1);
2627   br(Assembler::MI, L_post_third_loop_done);
2628   ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2629   mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
2630   umulh(carry2, tmp4, product_hi);
2631   ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2632 
2633   add2_with_carry(carry2, tmp3, tmp4, carry);
2634 
2635   strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2636   extr(carry, carry2, tmp3, 32);
2637 
2638   bind(L_post_third_loop_done);
2639 }
2640 
2641 /**
2642  * Code for BigInteger::multiplyToLen() instrinsic.
2643  *
2644  * r0: x
2645  * r1: xlen
2646  * r2: y
2647  * r3: ylen
2648  * r4:  z
2649  * r5: zlen
2650  * r10: tmp1
2651  * r11: tmp2
2652  * r12: tmp3
2653  * r13: tmp4
2654  * r14: tmp5
2655  * r15: tmp6
2656  * r16: tmp7
2657  *
2658  */
2659 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
2660                                      Register z, Register zlen,
2661                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4,
2662                                      Register tmp5, Register tmp6, Register product_hi) {
2663 
2664   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
2665 
2666   const Register idx = tmp1;
2667   const Register kdx = tmp2;
2668   const Register xstart = tmp3;
2669 
2670   const Register y_idx = tmp4;
2671   const Register carry = tmp5;
2672   const Register product  = xlen;
2673   const Register x_xstart = zlen;  // reuse register
2674 
2675   // First Loop.
2676   //
2677   //  final static long LONG_MASK = 0xffffffffL;
2678   //  int xstart = xlen - 1;
2679   //  int ystart = ylen - 1;
2680   //  long carry = 0;
2681   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2682   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
2683   //    z[kdx] = (int)product;
2684   //    carry = product >>> 32;
2685   //  }
2686   //  z[xstart] = (int)carry;
2687   //
2688 
2689   movw(idx, ylen);      // idx = ylen;
2690   movw(kdx, zlen);      // kdx = xlen+ylen;
2691   mov(carry, zr);       // carry = 0;
2692 
2693   Label L_done;
2694 
2695   movw(xstart, xlen);
2696   subsw(xstart, xstart, 1);
2697   br(Assembler::MI, L_done);
2698 
2699   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
2700 
2701   Label L_second_loop;
2702   cbzw(kdx, L_second_loop);
2703 
2704   Label L_carry;
2705   subw(kdx, kdx, 1);
2706   cbzw(kdx, L_carry);
2707 
2708   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2709   lsr(carry, carry, 32);
2710   subw(kdx, kdx, 1);
2711 
2712   bind(L_carry);
2713   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2714 
2715   // Second and third (nested) loops.
2716   //
2717   // for (int i = xstart-1; i >= 0; i--) { // Second loop
2718   //   carry = 0;
2719   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
2720   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
2721   //                    (z[k] & LONG_MASK) + carry;
2722   //     z[k] = (int)product;
2723   //     carry = product >>> 32;
2724   //   }
2725   //   z[i] = (int)carry;
2726   // }
2727   //
2728   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
2729 
2730   const Register jdx = tmp1;
2731 
2732   bind(L_second_loop);
2733   mov(carry, zr);                // carry = 0;
2734   movw(jdx, ylen);               // j = ystart+1
2735 
2736   subsw(xstart, xstart, 1);      // i = xstart-1;
2737   br(Assembler::MI, L_done);
2738 
2739   str(z, Address(pre(sp, -4 * wordSize)));
2740 
2741   Label L_last_x;
2742   lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
2743   subsw(xstart, xstart, 1);       // i = xstart-1;
2744   br(Assembler::MI, L_last_x);
2745 
2746   lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
2747   ldr(product_hi, Address(rscratch1));
2748   ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
2749 
2750   Label L_third_loop_prologue;
2751   bind(L_third_loop_prologue);
2752 
2753   str(ylen, Address(sp, wordSize));
2754   stp(x, xstart, Address(sp, 2 * wordSize));
2755   multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
2756                           tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
2757   ldp(z, ylen, Address(post(sp, 2 * wordSize)));
2758   ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
2759 
2760   addw(tmp3, xlen, 1);
2761   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2762   subsw(tmp3, tmp3, 1);
2763   br(Assembler::MI, L_done);
2764 
2765   lsr(carry, carry, 32);
2766   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2767   b(L_second_loop);
2768 
2769   // Next infrequent code is moved outside loops.
2770   bind(L_last_x);
2771   ldrw(product_hi, Address(x,  0));
2772   b(L_third_loop_prologue);
2773 
2774   bind(L_done);
2775 }
2776 
2777 /**
2778  * Emits code to update CRC-32 with a byte value according to constants in table
2779  *
2780  * @param [in,out]crc   Register containing the crc.
2781  * @param [in]val       Register containing the byte to fold into the CRC.
2782  * @param [in]table     Register containing the table of crc constants.
2783  *
2784  * uint32_t crc;
2785  * val = crc_table[(val ^ crc) & 0xFF];
2786  * crc = val ^ (crc >> 8);
2787  *
2788  */
2789 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
2790   eor(val, val, crc);
2791   andr(val, val, 0xff);
2792   ldrw(val, Address(table, val, Address::lsl(2)));
2793   eor(crc, val, crc, Assembler::LSR, 8);
2794 }
2795 
2796 /**
2797  * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
2798  *
2799  * @param [in,out]crc   Register containing the crc.
2800  * @param [in]v         Register containing the 32-bit to fold into the CRC.
2801  * @param [in]table0    Register containing table 0 of crc constants.
2802  * @param [in]table1    Register containing table 1 of crc constants.
2803  * @param [in]table2    Register containing table 2 of crc constants.
2804  * @param [in]table3    Register containing table 3 of crc constants.
2805  *
2806  * uint32_t crc;
2807  *   v = crc ^ v
2808  *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
2809  *
2810  */
2811 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
2812         Register table0, Register table1, Register table2, Register table3,
2813         bool upper) {
2814   eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
2815   uxtb(tmp, v);
2816   ldrw(crc, Address(table3, tmp, Address::lsl(2)));
2817   ubfx(tmp, v, 8, 8);
2818   ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
2819   eor(crc, crc, tmp);
2820   ubfx(tmp, v, 16, 8);
2821   ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
2822   eor(crc, crc, tmp);
2823   ubfx(tmp, v, 24, 8);
2824   ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
2825   eor(crc, crc, tmp);
2826 }
2827 
2828 /**
2829  * @param crc   register containing existing CRC (32-bit)
2830  * @param buf   register pointing to input byte buffer (byte*)
2831  * @param len   register containing number of bytes
2832  * @param table register that will contain address of CRC table
2833  * @param tmp   scratch register
2834  */
2835 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
2836         Register table0, Register table1, Register table2, Register table3,
2837         Register tmp, Register tmp2, Register tmp3) {
2838   Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
2839   unsigned long offset;
2840 
2841     ornw(crc, zr, crc);
2842 
2843   if (UseCRC32) {
2844     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
2845 
2846       subs(len, len, 64);
2847       br(Assembler::GE, CRC_by64_loop);
2848       adds(len, len, 64-4);
2849       br(Assembler::GE, CRC_by4_loop);
2850       adds(len, len, 4);
2851       br(Assembler::GT, CRC_by1_loop);
2852       b(L_exit);
2853 
2854     BIND(CRC_by4_loop);
2855       ldrw(tmp, Address(post(buf, 4)));
2856       subs(len, len, 4);
2857       crc32w(crc, crc, tmp);
2858       br(Assembler::GE, CRC_by4_loop);
2859       adds(len, len, 4);
2860       br(Assembler::LE, L_exit);
2861     BIND(CRC_by1_loop);
2862       ldrb(tmp, Address(post(buf, 1)));
2863       subs(len, len, 1);
2864       crc32b(crc, crc, tmp);
2865       br(Assembler::GT, CRC_by1_loop);
2866       b(L_exit);
2867 
2868       align(CodeEntryAlignment);
2869     BIND(CRC_by64_loop);
2870       subs(len, len, 64);
2871       ldp(tmp, tmp3, Address(post(buf, 16)));
2872       crc32x(crc, crc, tmp);
2873       crc32x(crc, crc, tmp3);
2874       ldp(tmp, tmp3, Address(post(buf, 16)));
2875       crc32x(crc, crc, tmp);
2876       crc32x(crc, crc, tmp3);
2877       ldp(tmp, tmp3, Address(post(buf, 16)));
2878       crc32x(crc, crc, tmp);
2879       crc32x(crc, crc, tmp3);
2880       ldp(tmp, tmp3, Address(post(buf, 16)));
2881       crc32x(crc, crc, tmp);
2882       crc32x(crc, crc, tmp3);
2883       br(Assembler::GE, CRC_by64_loop);
2884       adds(len, len, 64-4);
2885       br(Assembler::GE, CRC_by4_loop);
2886       adds(len, len, 4);
2887       br(Assembler::GT, CRC_by1_loop);
2888     BIND(L_exit);
2889       ornw(crc, zr, crc);
2890       return;
2891   }
2892 
2893     adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2894     if (offset) add(table0, table0, offset);
2895     add(table1, table0, 1*256*sizeof(juint));
2896     add(table2, table0, 2*256*sizeof(juint));
2897     add(table3, table0, 3*256*sizeof(juint));
2898 
2899   if (UseNeon) {
2900       cmp(len, 64);
2901       br(Assembler::LT, L_by16);
2902       eor(v16, T16B, v16, v16);
2903 
2904     Label L_fold;
2905 
2906       add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
2907 
2908       ld1(v0, v1, T2D, post(buf, 32));
2909       ld1r(v4, T2D, post(tmp, 8));
2910       ld1r(v5, T2D, post(tmp, 8));
2911       ld1r(v6, T2D, post(tmp, 8));
2912       ld1r(v7, T2D, post(tmp, 8));
2913       mov(v16, T4S, 0, crc);
2914 
2915       eor(v0, T16B, v0, v16);
2916       sub(len, len, 64);
2917 
2918     BIND(L_fold);
2919       pmull(v22, T8H, v0, v5, T8B);
2920       pmull(v20, T8H, v0, v7, T8B);
2921       pmull(v23, T8H, v0, v4, T8B);
2922       pmull(v21, T8H, v0, v6, T8B);
2923 
2924       pmull2(v18, T8H, v0, v5, T16B);
2925       pmull2(v16, T8H, v0, v7, T16B);
2926       pmull2(v19, T8H, v0, v4, T16B);
2927       pmull2(v17, T8H, v0, v6, T16B);
2928 
2929       uzp1(v24, v20, v22, T8H);
2930       uzp2(v25, v20, v22, T8H);
2931       eor(v20, T16B, v24, v25);
2932 
2933       uzp1(v26, v16, v18, T8H);
2934       uzp2(v27, v16, v18, T8H);
2935       eor(v16, T16B, v26, v27);
2936 
2937       ushll2(v22, T4S, v20, T8H, 8);
2938       ushll(v20, T4S, v20, T4H, 8);
2939 
2940       ushll2(v18, T4S, v16, T8H, 8);
2941       ushll(v16, T4S, v16, T4H, 8);
2942 
2943       eor(v22, T16B, v23, v22);
2944       eor(v18, T16B, v19, v18);
2945       eor(v20, T16B, v21, v20);
2946       eor(v16, T16B, v17, v16);
2947 
2948       uzp1(v17, v16, v20, T2D);
2949       uzp2(v21, v16, v20, T2D);
2950       eor(v17, T16B, v17, v21);
2951 
2952       ushll2(v20, T2D, v17, T4S, 16);
2953       ushll(v16, T2D, v17, T2S, 16);
2954 
2955       eor(v20, T16B, v20, v22);
2956       eor(v16, T16B, v16, v18);
2957 
2958       uzp1(v17, v20, v16, T2D);
2959       uzp2(v21, v20, v16, T2D);
2960       eor(v28, T16B, v17, v21);
2961 
2962       pmull(v22, T8H, v1, v5, T8B);
2963       pmull(v20, T8H, v1, v7, T8B);
2964       pmull(v23, T8H, v1, v4, T8B);
2965       pmull(v21, T8H, v1, v6, T8B);
2966 
2967       pmull2(v18, T8H, v1, v5, T16B);
2968       pmull2(v16, T8H, v1, v7, T16B);
2969       pmull2(v19, T8H, v1, v4, T16B);
2970       pmull2(v17, T8H, v1, v6, T16B);
2971 
2972       ld1(v0, v1, T2D, post(buf, 32));
2973 
2974       uzp1(v24, v20, v22, T8H);
2975       uzp2(v25, v20, v22, T8H);
2976       eor(v20, T16B, v24, v25);
2977 
2978       uzp1(v26, v16, v18, T8H);
2979       uzp2(v27, v16, v18, T8H);
2980       eor(v16, T16B, v26, v27);
2981 
2982       ushll2(v22, T4S, v20, T8H, 8);
2983       ushll(v20, T4S, v20, T4H, 8);
2984 
2985       ushll2(v18, T4S, v16, T8H, 8);
2986       ushll(v16, T4S, v16, T4H, 8);
2987 
2988       eor(v22, T16B, v23, v22);
2989       eor(v18, T16B, v19, v18);
2990       eor(v20, T16B, v21, v20);
2991       eor(v16, T16B, v17, v16);
2992 
2993       uzp1(v17, v16, v20, T2D);
2994       uzp2(v21, v16, v20, T2D);
2995       eor(v16, T16B, v17, v21);
2996 
2997       ushll2(v20, T2D, v16, T4S, 16);
2998       ushll(v16, T2D, v16, T2S, 16);
2999 
3000       eor(v20, T16B, v22, v20);
3001       eor(v16, T16B, v16, v18);
3002 
3003       uzp1(v17, v20, v16, T2D);
3004       uzp2(v21, v20, v16, T2D);
3005       eor(v20, T16B, v17, v21);
3006 
3007       shl(v16, T2D, v28, 1);
3008       shl(v17, T2D, v20, 1);
3009 
3010       eor(v0, T16B, v0, v16);
3011       eor(v1, T16B, v1, v17);
3012 
3013       subs(len, len, 32);
3014       br(Assembler::GE, L_fold);
3015 
3016       mov(crc, 0);
3017       mov(tmp, v0, T1D, 0);
3018       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3019       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3020       mov(tmp, v0, T1D, 1);
3021       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3022       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3023       mov(tmp, v1, T1D, 0);
3024       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3025       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3026       mov(tmp, v1, T1D, 1);
3027       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3028       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3029 
3030       add(len, len, 32);
3031   }
3032 
3033   BIND(L_by16);
3034     subs(len, len, 16);
3035     br(Assembler::GE, L_by16_loop);
3036     adds(len, len, 16-4);
3037     br(Assembler::GE, L_by4_loop);
3038     adds(len, len, 4);
3039     br(Assembler::GT, L_by1_loop);
3040     b(L_exit);
3041 
3042   BIND(L_by4_loop);
3043     ldrw(tmp, Address(post(buf, 4)));
3044     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
3045     subs(len, len, 4);
3046     br(Assembler::GE, L_by4_loop);
3047     adds(len, len, 4);
3048     br(Assembler::LE, L_exit);
3049   BIND(L_by1_loop);
3050     subs(len, len, 1);
3051     ldrb(tmp, Address(post(buf, 1)));
3052     update_byte_crc32(crc, tmp, table0);
3053     br(Assembler::GT, L_by1_loop);
3054     b(L_exit);
3055 
3056     align(CodeEntryAlignment);
3057   BIND(L_by16_loop);
3058     subs(len, len, 16);
3059     ldp(tmp, tmp3, Address(post(buf, 16)));
3060     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3061     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3062     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
3063     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
3064     br(Assembler::GE, L_by16_loop);
3065     adds(len, len, 16-4);
3066     br(Assembler::GE, L_by4_loop);
3067     adds(len, len, 4);
3068     br(Assembler::GT, L_by1_loop);
3069   BIND(L_exit);
3070     ornw(crc, zr, crc);
3071 }
3072 
3073 /**
3074  * @param crc   register containing existing CRC (32-bit)
3075  * @param buf   register pointing to input byte buffer (byte*)
3076  * @param len   register containing number of bytes
3077  * @param table register that will contain address of CRC table
3078  * @param tmp   scratch register
3079  */
3080 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
3081         Register table0, Register table1, Register table2, Register table3,
3082         Register tmp, Register tmp2, Register tmp3) {
3083   Label L_exit;
3084   Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
3085 
3086     subs(len, len, 64);
3087     br(Assembler::GE, CRC_by64_loop);
3088     adds(len, len, 64-4);
3089     br(Assembler::GE, CRC_by4_loop);
3090     adds(len, len, 4);
3091     br(Assembler::GT, CRC_by1_loop);
3092     b(L_exit);
3093 
3094   BIND(CRC_by4_loop);
3095     ldrw(tmp, Address(post(buf, 4)));
3096     subs(len, len, 4);
3097     crc32cw(crc, crc, tmp);
3098     br(Assembler::GE, CRC_by4_loop);
3099     adds(len, len, 4);
3100     br(Assembler::LE, L_exit);
3101   BIND(CRC_by1_loop);
3102     ldrb(tmp, Address(post(buf, 1)));
3103     subs(len, len, 1);
3104     crc32cb(crc, crc, tmp);
3105     br(Assembler::GT, CRC_by1_loop);
3106     b(L_exit);
3107 
3108     align(CodeEntryAlignment);
3109   BIND(CRC_by64_loop);
3110     subs(len, len, 64);
3111     ldp(tmp, tmp3, Address(post(buf, 16)));
3112     crc32cx(crc, crc, tmp);
3113     crc32cx(crc, crc, tmp3);
3114     ldp(tmp, tmp3, Address(post(buf, 16)));
3115     crc32cx(crc, crc, tmp);
3116     crc32cx(crc, crc, tmp3);
3117     ldp(tmp, tmp3, Address(post(buf, 16)));
3118     crc32cx(crc, crc, tmp);
3119     crc32cx(crc, crc, tmp3);
3120     ldp(tmp, tmp3, Address(post(buf, 16)));
3121     crc32cx(crc, crc, tmp);
3122     crc32cx(crc, crc, tmp3);
3123     br(Assembler::GE, CRC_by64_loop);
3124     adds(len, len, 64-4);
3125     br(Assembler::GE, CRC_by4_loop);
3126     adds(len, len, 4);
3127     br(Assembler::GT, CRC_by1_loop);
3128   BIND(L_exit);
3129     return;
3130 }
3131 
3132 SkipIfEqual::SkipIfEqual(
3133     MacroAssembler* masm, const bool* flag_addr, bool value) {
3134   _masm = masm;
3135   unsigned long offset;
3136   _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
3137   _masm->ldrb(rscratch1, Address(rscratch1, offset));
3138   _masm->cbzw(rscratch1, _label);
3139 }
3140 
3141 SkipIfEqual::~SkipIfEqual() {
3142   _masm->bind(_label);
3143 }
3144 
3145 void MacroAssembler::addptr(const Address &dst, int32_t src) {
3146   Address adr;
3147   switch(dst.getMode()) {
3148   case Address::base_plus_offset:
3149     // This is the expected mode, although we allow all the other
3150     // forms below.
3151     adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
3152     break;
3153   default:
3154     lea(rscratch2, dst);
3155     adr = Address(rscratch2);
3156     break;
3157   }
3158   ldr(rscratch1, adr);
3159   add(rscratch1, rscratch1, src);
3160   str(rscratch1, adr);
3161 }
3162 
3163 void MacroAssembler::cmpptr(Register src1, Address src2) {
3164   unsigned long offset;
3165   adrp(rscratch1, src2, offset);
3166   ldr(rscratch1, Address(rscratch1, offset));
3167   cmp(src1, rscratch1);
3168 }
3169 
3170 void MacroAssembler::store_check(Register obj, Address dst) {
3171   store_check(obj);
3172 }
3173 
3174 void MacroAssembler::store_check(Register obj) {
3175   // Does a store check for the oop in register obj. The content of
3176   // register obj is destroyed afterwards.
3177 
3178   BarrierSet* bs = Universe::heap()->barrier_set();
3179   assert(bs->kind() == BarrierSet::CardTableForRS ||
3180          bs->kind() == BarrierSet::CardTableExtension,
3181          "Wrong barrier set kind");
3182 
3183   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
3184   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3185 
3186   lsr(obj, obj, CardTableModRefBS::card_shift);
3187 
3188   assert(CardTableModRefBS::dirty_card_val() == 0, "must be");
3189 
3190   load_byte_map_base(rscratch1);
3191 
3192   if (UseCondCardMark) {
3193     Label L_already_dirty;
3194     membar(StoreLoad);
3195     ldrb(rscratch2,  Address(obj, rscratch1));
3196     cbz(rscratch2, L_already_dirty);
3197     strb(zr, Address(obj, rscratch1));
3198     bind(L_already_dirty);
3199   } else {
3200     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
3201       membar(StoreStore);
3202     }
3203     strb(zr, Address(obj, rscratch1));
3204   }
3205 }
3206 
3207 void MacroAssembler::load_klass(Register dst, Register src) {
3208   if (UseCompressedClassPointers) {
3209     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3210     decode_klass_not_null(dst);
3211   } else {
3212     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3213   }
3214 }
3215 
3216 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
3217   if (UseCompressedClassPointers) {
3218     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3219     if (Universe::narrow_klass_base() == NULL) {
3220       cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift());
3221       return;
3222     } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3223                && Universe::narrow_klass_shift() == 0) {
3224       // Only the bottom 32 bits matter
3225       cmpw(trial_klass, tmp);
3226       return;
3227     }
3228     decode_klass_not_null(tmp);
3229   } else {
3230     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3231   }
3232   cmp(trial_klass, tmp);
3233 }
3234 
3235 void MacroAssembler::load_prototype_header(Register dst, Register src) {
3236   load_klass(dst, src);
3237   ldr(dst, Address(dst, Klass::prototype_header_offset()));
3238 }
3239 
3240 void MacroAssembler::store_klass(Register dst, Register src) {
3241   // FIXME: Should this be a store release?  concurrent gcs assumes
3242   // klass length is valid if klass field is not null.
3243   if (UseCompressedClassPointers) {
3244     encode_klass_not_null(src);
3245     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3246   } else {
3247     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3248   }
3249 }
3250 
3251 void MacroAssembler::store_klass_gap(Register dst, Register src) {
3252   if (UseCompressedClassPointers) {
3253     // Store to klass gap in destination
3254     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
3255   }
3256 }
3257 
3258 // Algorithm must match oop.inline.hpp encode_heap_oop.
3259 void MacroAssembler::encode_heap_oop(Register d, Register s) {
3260 #ifdef ASSERT
3261   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
3262 #endif
3263   verify_oop(s, "broken oop in encode_heap_oop");
3264   if (Universe::narrow_oop_base() == NULL) {
3265     if (Universe::narrow_oop_shift() != 0) {
3266       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3267       lsr(d, s, LogMinObjAlignmentInBytes);
3268     } else {
3269       mov(d, s);
3270     }
3271   } else {
3272     subs(d, s, rheapbase);
3273     csel(d, d, zr, Assembler::HS);
3274     lsr(d, d, LogMinObjAlignmentInBytes);
3275 
3276     /*  Old algorithm: is this any worse?
3277     Label nonnull;
3278     cbnz(r, nonnull);
3279     sub(r, r, rheapbase);
3280     bind(nonnull);
3281     lsr(r, r, LogMinObjAlignmentInBytes);
3282     */
3283   }
3284 }
3285 
3286 void MacroAssembler::encode_heap_oop_not_null(Register r) {
3287 #ifdef ASSERT
3288   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
3289   if (CheckCompressedOops) {
3290     Label ok;
3291     cbnz(r, ok);
3292     stop("null oop passed to encode_heap_oop_not_null");
3293     bind(ok);
3294   }
3295 #endif
3296   verify_oop(r, "broken oop in encode_heap_oop_not_null");
3297   if (Universe::narrow_oop_base() != NULL) {
3298     sub(r, r, rheapbase);
3299   }
3300   if (Universe::narrow_oop_shift() != 0) {
3301     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3302     lsr(r, r, LogMinObjAlignmentInBytes);
3303   }
3304 }
3305 
3306 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
3307 #ifdef ASSERT
3308   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
3309   if (CheckCompressedOops) {
3310     Label ok;
3311     cbnz(src, ok);
3312     stop("null oop passed to encode_heap_oop_not_null2");
3313     bind(ok);
3314   }
3315 #endif
3316   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
3317 
3318   Register data = src;
3319   if (Universe::narrow_oop_base() != NULL) {
3320     sub(dst, src, rheapbase);
3321     data = dst;
3322   }
3323   if (Universe::narrow_oop_shift() != 0) {
3324     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3325     lsr(dst, data, LogMinObjAlignmentInBytes);
3326     data = dst;
3327   }
3328   if (data == src)
3329     mov(dst, src);
3330 }
3331 
3332 void  MacroAssembler::decode_heap_oop(Register d, Register s) {
3333 #ifdef ASSERT
3334   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
3335 #endif
3336   if (Universe::narrow_oop_base() == NULL) {
3337     if (Universe::narrow_oop_shift() != 0 || d != s) {
3338       lsl(d, s, Universe::narrow_oop_shift());
3339     }
3340   } else {
3341     Label done;
3342     if (d != s)
3343       mov(d, s);
3344     cbz(s, done);
3345     add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
3346     bind(done);
3347   }
3348   verify_oop(d, "broken oop in decode_heap_oop");
3349 }
3350 
3351 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
3352   assert (UseCompressedOops, "should only be used for compressed headers");
3353   assert (Universe::heap() != NULL, "java heap should be initialized");
3354   // Cannot assert, unverified entry point counts instructions (see .ad file)
3355   // vtableStubs also counts instructions in pd_code_size_limit.
3356   // Also do not verify_oop as this is called by verify_oop.
3357   if (Universe::narrow_oop_shift() != 0) {
3358     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3359     if (Universe::narrow_oop_base() != NULL) {
3360       add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3361     } else {
3362       add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3363     }
3364   } else {
3365     assert (Universe::narrow_oop_base() == NULL, "sanity");
3366   }
3367 }
3368 
3369 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
3370   assert (UseCompressedOops, "should only be used for compressed headers");
3371   assert (Universe::heap() != NULL, "java heap should be initialized");
3372   // Cannot assert, unverified entry point counts instructions (see .ad file)
3373   // vtableStubs also counts instructions in pd_code_size_limit.
3374   // Also do not verify_oop as this is called by verify_oop.
3375   if (Universe::narrow_oop_shift() != 0) {
3376     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3377     if (Universe::narrow_oop_base() != NULL) {
3378       add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3379     } else {
3380       add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3381     }
3382   } else {
3383     assert (Universe::narrow_oop_base() == NULL, "sanity");
3384     if (dst != src) {
3385       mov(dst, src);
3386     }
3387   }
3388 }
3389 
3390 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3391   if (Universe::narrow_klass_base() == NULL) {
3392     if (Universe::narrow_klass_shift() != 0) {
3393       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3394       lsr(dst, src, LogKlassAlignmentInBytes);
3395     } else {
3396       if (dst != src) mov(dst, src);
3397     }
3398     return;
3399   }
3400 
3401   if (use_XOR_for_compressed_class_base) {
3402     if (Universe::narrow_klass_shift() != 0) {
3403       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3404       lsr(dst, dst, LogKlassAlignmentInBytes);
3405     } else {
3406       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3407     }
3408     return;
3409   }
3410 
3411   if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3412       && Universe::narrow_klass_shift() == 0) {
3413     movw(dst, src);
3414     return;
3415   }
3416 
3417 #ifdef ASSERT
3418   verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
3419 #endif
3420 
3421   Register rbase = dst;
3422   if (dst == src) rbase = rheapbase;
3423   mov(rbase, (uint64_t)Universe::narrow_klass_base());
3424   sub(dst, src, rbase);
3425   if (Universe::narrow_klass_shift() != 0) {
3426     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3427     lsr(dst, dst, LogKlassAlignmentInBytes);
3428   }
3429   if (dst == src) reinit_heapbase();
3430 }
3431 
3432 void MacroAssembler::encode_klass_not_null(Register r) {
3433   encode_klass_not_null(r, r);
3434 }
3435 
3436 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3437   Register rbase = dst;
3438   assert (UseCompressedClassPointers, "should only be used for compressed headers");
3439 
3440   if (Universe::narrow_klass_base() == NULL) {
3441     if (Universe::narrow_klass_shift() != 0) {
3442       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3443       lsl(dst, src, LogKlassAlignmentInBytes);
3444     } else {
3445       if (dst != src) mov(dst, src);
3446     }
3447     return;
3448   }
3449 
3450   if (use_XOR_for_compressed_class_base) {
3451     if (Universe::narrow_klass_shift() != 0) {
3452       lsl(dst, src, LogKlassAlignmentInBytes);
3453       eor(dst, dst, (uint64_t)Universe::narrow_klass_base());
3454     } else {
3455       eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3456     }
3457     return;
3458   }
3459 
3460   if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3461       && Universe::narrow_klass_shift() == 0) {
3462     if (dst != src)
3463       movw(dst, src);
3464     movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32);
3465     return;
3466   }
3467 
3468   // Cannot assert, unverified entry point counts instructions (see .ad file)
3469   // vtableStubs also counts instructions in pd_code_size_limit.
3470   // Also do not verify_oop as this is called by verify_oop.
3471   if (dst == src) rbase = rheapbase;
3472   mov(rbase, (uint64_t)Universe::narrow_klass_base());
3473   if (Universe::narrow_klass_shift() != 0) {
3474     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3475     add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes);
3476   } else {
3477     add(dst, rbase, src);
3478   }
3479   if (dst == src) reinit_heapbase();
3480 }
3481 
3482 void  MacroAssembler::decode_klass_not_null(Register r) {
3483   decode_klass_not_null(r, r);
3484 }
3485 
3486 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
3487   assert (UseCompressedOops, "should only be used for compressed oops");
3488   assert (Universe::heap() != NULL, "java heap should be initialized");
3489   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3490 
3491   int oop_index = oop_recorder()->find_index(obj);
3492   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3493 
3494   InstructionMark im(this);
3495   RelocationHolder rspec = oop_Relocation::spec(oop_index);
3496   code_section()->relocate(inst_mark(), rspec);
3497   movz(dst, 0xDEAD, 16);
3498   movk(dst, 0xBEEF);
3499 }
3500 
3501 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
3502   assert (UseCompressedClassPointers, "should only be used for compressed headers");
3503   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3504   int index = oop_recorder()->find_index(k);
3505   assert(! Universe::heap()->is_in_reserved(k), "should not be an oop");
3506 
3507   InstructionMark im(this);
3508   RelocationHolder rspec = metadata_Relocation::spec(index);
3509   code_section()->relocate(inst_mark(), rspec);
3510   narrowKlass nk = Klass::encode_klass(k);
3511   movz(dst, (nk >> 16), 16);
3512   movk(dst, nk & 0xffff);
3513 }
3514 
3515 void MacroAssembler::load_heap_oop(Register dst, Address src)
3516 {
3517   if (UseCompressedOops) {
3518     ldrw(dst, src);
3519     decode_heap_oop(dst);
3520   } else {
3521     ldr(dst, src);
3522   }
3523 }
3524 
3525 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src)
3526 {
3527   if (UseCompressedOops) {
3528     ldrw(dst, src);
3529     decode_heap_oop_not_null(dst);
3530   } else {
3531     ldr(dst, src);
3532   }
3533 }
3534 
3535 void MacroAssembler::store_heap_oop(Address dst, Register src) {
3536   if (UseCompressedOops) {
3537     assert(!dst.uses(src), "not enough registers");
3538     encode_heap_oop(src);
3539     strw(src, dst);
3540   } else
3541     str(src, dst);
3542 }
3543 
3544 // Used for storing NULLs.
3545 void MacroAssembler::store_heap_oop_null(Address dst) {
3546   if (UseCompressedOops) {
3547     strw(zr, dst);
3548   } else
3549     str(zr, dst);
3550 }
3551 
3552 #if INCLUDE_ALL_GCS
3553 void MacroAssembler::g1_write_barrier_pre(Register obj,
3554                                           Register pre_val,
3555                                           Register thread,
3556                                           Register tmp,
3557                                           bool tosca_live,
3558                                           bool expand_call) {
3559   // If expand_call is true then we expand the call_VM_leaf macro
3560   // directly to skip generating the check by
3561   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
3562 
3563   assert(thread == rthread, "must be");
3564 
3565   Label done;
3566   Label runtime;
3567 
3568   assert(pre_val != noreg, "check this code");
3569 
3570   if (obj != noreg)
3571     assert_different_registers(obj, pre_val, tmp);
3572 
3573   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3574                                        SATBMarkQueue::byte_offset_of_active()));
3575   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3576                                        SATBMarkQueue::byte_offset_of_index()));
3577   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3578                                        SATBMarkQueue::byte_offset_of_buf()));
3579 
3580 
3581   // Is marking active?
3582   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
3583     ldrw(tmp, in_progress);
3584   } else {
3585     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
3586     ldrb(tmp, in_progress);
3587   }
3588   cbzw(tmp, done);
3589 
3590   // Do we need to load the previous value?
3591   if (obj != noreg) {
3592     load_heap_oop(pre_val, Address(obj, 0));
3593   }
3594 
3595   // Is the previous value null?
3596   cbz(pre_val, done);
3597 
3598   // Can we store original value in the thread's buffer?
3599   // Is index == 0?
3600   // (The index field is typed as size_t.)
3601 
3602   ldr(tmp, index);                      // tmp := *index_adr
3603   cbz(tmp, runtime);                    // tmp == 0?
3604                                         // If yes, goto runtime
3605 
3606   sub(tmp, tmp, wordSize);              // tmp := tmp - wordSize
3607   str(tmp, index);                      // *index_adr := tmp
3608   ldr(rscratch1, buffer);
3609   add(tmp, tmp, rscratch1);             // tmp := tmp + *buffer_adr
3610 
3611   // Record the previous value
3612   str(pre_val, Address(tmp, 0));
3613   b(done);
3614 
3615   bind(runtime);
3616   // save the live input values
3617   push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3618 
3619   // Calling the runtime using the regular call_VM_leaf mechanism generates
3620   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
3621   // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
3622   //
3623   // If we care generating the pre-barrier without a frame (e.g. in the
3624   // intrinsified Reference.get() routine) then ebp might be pointing to
3625   // the caller frame and so this check will most likely fail at runtime.
3626   //
3627   // Expanding the call directly bypasses the generation of the check.
3628   // So when we do not have have a full interpreter frame on the stack
3629   // expand_call should be passed true.
3630 
3631   if (expand_call) {
3632     assert(pre_val != c_rarg1, "smashed arg");
3633     pass_arg1(this, thread);
3634     pass_arg0(this, pre_val);
3635     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
3636   } else {
3637     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
3638   }
3639 
3640   pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3641 
3642   bind(done);
3643 }
3644 
3645 void MacroAssembler::g1_write_barrier_post(Register store_addr,
3646                                            Register new_val,
3647                                            Register thread,
3648                                            Register tmp,
3649                                            Register tmp2) {
3650   assert(thread == rthread, "must be");
3651 
3652   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3653                                        DirtyCardQueue::byte_offset_of_index()));
3654   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3655                                        DirtyCardQueue::byte_offset_of_buf()));
3656 
3657   BarrierSet* bs = Universe::heap()->barrier_set();
3658   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
3659   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3660 
3661   Label done;
3662   Label runtime;
3663 
3664   // Does store cross heap regions?
3665 
3666   eor(tmp, store_addr, new_val);
3667   lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
3668   cbz(tmp, done);
3669 
3670   // crosses regions, storing NULL?
3671 
3672   cbz(new_val, done);
3673 
3674   // storing region crossing non-NULL, is card already dirty?
3675 
3676   ExternalAddress cardtable((address) ct->byte_map_base);
3677   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3678   const Register card_addr = tmp;
3679 
3680   lsr(card_addr, store_addr, CardTableModRefBS::card_shift);
3681 
3682   // get the address of the card
3683   load_byte_map_base(tmp2);
3684   add(card_addr, card_addr, tmp2);
3685   ldrb(tmp2, Address(card_addr));
3686   cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val());
3687   br(Assembler::EQ, done);
3688 
3689   assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0");
3690 
3691   membar(Assembler::StoreLoad);
3692 
3693   ldrb(tmp2, Address(card_addr));
3694   cbzw(tmp2, done);
3695 
3696   // storing a region crossing, non-NULL oop, card is clean.
3697   // dirty card and log.
3698 
3699   strb(zr, Address(card_addr));
3700 
3701   ldr(rscratch1, queue_index);
3702   cbz(rscratch1, runtime);
3703   sub(rscratch1, rscratch1, wordSize);
3704   str(rscratch1, queue_index);
3705 
3706   ldr(tmp2, buffer);
3707   str(card_addr, Address(tmp2, rscratch1));
3708   b(done);
3709 
3710   bind(runtime);
3711   // save the live input values
3712   push(store_addr->bit(true) | new_val->bit(true), sp);
3713   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
3714   pop(store_addr->bit(true) | new_val->bit(true), sp);
3715 
3716   bind(done);
3717 }
3718 
3719 #endif // INCLUDE_ALL_GCS
3720 
3721 Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
3722   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
3723   int index = oop_recorder()->allocate_metadata_index(obj);
3724   RelocationHolder rspec = metadata_Relocation::spec(index);
3725   return Address((address)obj, rspec);
3726 }
3727 
3728 // Move an oop into a register.  immediate is true if we want
3729 // immediate instrcutions, i.e. we are not going to patch this
3730 // instruction while the code is being executed by another thread.  In
3731 // that case we can use move immediates rather than the constant pool.
3732 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) {
3733   int oop_index;
3734   if (obj == NULL) {
3735     oop_index = oop_recorder()->allocate_oop_index(obj);
3736   } else {
3737     oop_index = oop_recorder()->find_index(obj);
3738     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3739   }
3740   RelocationHolder rspec = oop_Relocation::spec(oop_index);
3741   if (! immediate) {
3742     address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
3743     ldr_constant(dst, Address(dummy, rspec));
3744   } else
3745     mov(dst, Address((address)obj, rspec));
3746 }
3747 
3748 // Move a metadata address into a register.
3749 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
3750   int oop_index;
3751   if (obj == NULL) {
3752     oop_index = oop_recorder()->allocate_metadata_index(obj);
3753   } else {
3754     oop_index = oop_recorder()->find_index(obj);
3755   }
3756   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
3757   mov(dst, Address((address)obj, rspec));
3758 }
3759 
3760 Address MacroAssembler::constant_oop_address(jobject obj) {
3761   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
3762   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
3763   int oop_index = oop_recorder()->find_index(obj);
3764   return Address((address)obj, oop_Relocation::spec(oop_index));
3765 }
3766 
3767 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
3768 void MacroAssembler::tlab_allocate(Register obj,
3769                                    Register var_size_in_bytes,
3770                                    int con_size_in_bytes,
3771                                    Register t1,
3772                                    Register t2,
3773                                    Label& slow_case) {
3774   assert_different_registers(obj, t2);
3775   assert_different_registers(obj, var_size_in_bytes);
3776   Register end = t2;
3777 
3778   // verify_tlab();
3779 
3780   ldr(obj, Address(rthread, JavaThread::tlab_top_offset()));
3781   if (var_size_in_bytes == noreg) {
3782     lea(end, Address(obj, con_size_in_bytes));
3783   } else {
3784     lea(end, Address(obj, var_size_in_bytes));
3785   }
3786   ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset()));
3787   cmp(end, rscratch1);
3788   br(Assembler::HI, slow_case);
3789 
3790   // update the tlab top pointer
3791   str(end, Address(rthread, JavaThread::tlab_top_offset()));
3792 
3793   // recover var_size_in_bytes if necessary
3794   if (var_size_in_bytes == end) {
3795     sub(var_size_in_bytes, var_size_in_bytes, obj);
3796   }
3797   // verify_tlab();
3798 }
3799 
3800 // Preserves r19, and r3.
3801 Register MacroAssembler::tlab_refill(Label& retry,
3802                                      Label& try_eden,
3803                                      Label& slow_case) {
3804   Register top = r0;
3805   Register t1  = r2;
3806   Register t2  = r4;
3807   assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3);
3808   Label do_refill, discard_tlab;
3809 
3810   if (!Universe::heap()->supports_inline_contig_alloc()) {
3811     // No allocation in the shared eden.
3812     b(slow_case);
3813   }
3814 
3815   ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3816   ldr(t1,  Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3817 
3818   // calculate amount of free space
3819   sub(t1, t1, top);
3820   lsr(t1, t1, LogHeapWordSize);
3821 
3822   // Retain tlab and allocate object in shared space if
3823   // the amount free in the tlab is too large to discard.
3824 
3825   ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3826   cmp(t1, rscratch1);
3827   br(Assembler::LE, discard_tlab);
3828 
3829   // Retain
3830   // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3831   mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
3832   add(rscratch1, rscratch1, t2);
3833   str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3834 
3835   if (TLABStats) {
3836     // increment number of slow_allocations
3837     addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())),
3838          1, rscratch1);
3839   }
3840   b(try_eden);
3841 
3842   bind(discard_tlab);
3843   if (TLABStats) {
3844     // increment number of refills
3845     addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1,
3846          rscratch1);
3847     // accumulate wastage -- t1 is amount free in tlab
3848     addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1,
3849          rscratch1);
3850   }
3851 
3852   // if tlab is currently allocated (top or end != null) then
3853   // fill [top, end + alignment_reserve) with array object
3854   cbz(top, do_refill);
3855 
3856   // set up the mark word
3857   mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
3858   str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes()));
3859   // set the length to the remaining space
3860   sub(t1, t1, typeArrayOopDesc::header_size(T_INT));
3861   add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
3862   lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint)));
3863   strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes()));
3864   // set klass to intArrayKlass
3865   {
3866     unsigned long offset;
3867     // dubious reloc why not an oop reloc?
3868     adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()),
3869          offset);
3870     ldr(t1, Address(rscratch1, offset));
3871   }
3872   // store klass last.  concurrent gcs assumes klass length is valid if
3873   // klass field is not null.
3874   store_klass(top, t1);
3875 
3876   mov(t1, top);
3877   ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3878   sub(t1, t1, rscratch1);
3879   incr_allocated_bytes(rthread, t1, 0, rscratch1);
3880 
3881   // refill the tlab with an eden allocation
3882   bind(do_refill);
3883   ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3884   lsl(t1, t1, LogHeapWordSize);
3885   // allocate new tlab, address returned in top
3886   eden_allocate(top, t1, 0, t2, slow_case);
3887 
3888   // Check that t1 was preserved in eden_allocate.
3889 #ifdef ASSERT
3890   if (UseTLAB) {
3891     Label ok;
3892     Register tsize = r4;
3893     assert_different_registers(tsize, rthread, t1);
3894     str(tsize, Address(pre(sp, -16)));
3895     ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3896     lsl(tsize, tsize, LogHeapWordSize);
3897     cmp(t1, tsize);
3898     br(Assembler::EQ, ok);
3899     STOP("assert(t1 != tlab size)");
3900     should_not_reach_here();
3901 
3902     bind(ok);
3903     ldr(tsize, Address(post(sp, 16)));
3904   }
3905 #endif
3906   str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3907   str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3908   add(top, top, t1);
3909   sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
3910   str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3911   verify_tlab();
3912   b(retry);
3913 
3914   return rthread; // for use by caller
3915 }
3916 
3917 // Defines obj, preserves var_size_in_bytes
3918 void MacroAssembler::eden_allocate(Register obj,
3919                                    Register var_size_in_bytes,
3920                                    int con_size_in_bytes,
3921                                    Register t1,
3922                                    Label& slow_case) {
3923   assert_different_registers(obj, var_size_in_bytes, t1);
3924   if (!Universe::heap()->supports_inline_contig_alloc()) {
3925     b(slow_case);
3926   } else {
3927     Register end = t1;
3928     Register heap_end = rscratch2;
3929     Label retry;
3930     bind(retry);
3931     {
3932       unsigned long offset;
3933       adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset);
3934       ldr(heap_end, Address(rscratch1, offset));
3935     }
3936 
3937     ExternalAddress heap_top((address) Universe::heap()->top_addr());
3938 
3939     // Get the current top of the heap
3940     {
3941       unsigned long offset;
3942       adrp(rscratch1, heap_top, offset);
3943       // Use add() here after ARDP, rather than lea().
3944       // lea() does not generate anything if its offset is zero.
3945       // However, relocs expect to find either an ADD or a load/store
3946       // insn after an ADRP.  add() always generates an ADD insn, even
3947       // for add(Rn, Rn, 0).
3948       add(rscratch1, rscratch1, offset);
3949       ldaxr(obj, rscratch1);
3950     }
3951 
3952     // Adjust it my the size of our new object
3953     if (var_size_in_bytes == noreg) {
3954       lea(end, Address(obj, con_size_in_bytes));
3955     } else {
3956       lea(end, Address(obj, var_size_in_bytes));
3957     }
3958 
3959     // if end < obj then we wrapped around high memory
3960     cmp(end, obj);
3961     br(Assembler::LO, slow_case);
3962 
3963     cmp(end, heap_end);
3964     br(Assembler::HI, slow_case);
3965 
3966     // If heap_top hasn't been changed by some other thread, update it.
3967     stlxr(rscratch2, end, rscratch1);
3968     cbnzw(rscratch2, retry);
3969   }
3970 }
3971 
3972 void MacroAssembler::verify_tlab() {
3973 #ifdef ASSERT
3974   if (UseTLAB && VerifyOops) {
3975     Label next, ok;
3976 
3977     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
3978 
3979     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3980     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3981     cmp(rscratch2, rscratch1);
3982     br(Assembler::HS, next);
3983     STOP("assert(top >= start)");
3984     should_not_reach_here();
3985 
3986     bind(next);
3987     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3988     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3989     cmp(rscratch2, rscratch1);
3990     br(Assembler::HS, ok);
3991     STOP("assert(top <= end)");
3992     should_not_reach_here();
3993 
3994     bind(ok);
3995     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
3996   }
3997 #endif
3998 }
3999 
4000 // Writes to stack successive pages until offset reached to check for
4001 // stack overflow + shadow pages.  This clobbers tmp.
4002 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
4003   assert_different_registers(tmp, size, rscratch1);
4004   mov(tmp, sp);
4005   // Bang stack for total size given plus shadow page size.
4006   // Bang one page at a time because large size can bang beyond yellow and
4007   // red zones.
4008   Label loop;
4009   mov(rscratch1, os::vm_page_size());
4010   bind(loop);
4011   lea(tmp, Address(tmp, -os::vm_page_size()));
4012   subsw(size, size, rscratch1);
4013   str(size, Address(tmp));
4014   br(Assembler::GT, loop);
4015 
4016   // Bang down shadow pages too.
4017   // At this point, (tmp-0) is the last address touched, so don't
4018   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
4019   // was post-decremented.)  Skip this address by starting at i=1, and
4020   // touch a few more pages below.  N.B.  It is important to touch all
4021   // the way down to and including i=StackShadowPages.
4022   for (int i = 0; i < (int)(JavaThread::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) {
4023     // this could be any sized move but this is can be a debugging crumb
4024     // so the bigger the better.
4025     lea(tmp, Address(tmp, -os::vm_page_size()));
4026     str(size, Address(tmp));
4027   }
4028 }
4029 
4030 
4031 address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) {
4032   unsigned long off;
4033   adrp(r, Address(page, rtype), off);
4034   InstructionMark im(this);
4035   code_section()->relocate(inst_mark(), rtype);
4036   ldrw(zr, Address(r, off));
4037   return inst_mark();
4038 }
4039 
4040 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
4041   InstructionMark im(this);
4042   code_section()->relocate(inst_mark(), rtype);
4043   ldrw(zr, Address(r, 0));
4044   return inst_mark();
4045 }
4046 
4047 void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) {
4048   relocInfo::relocType rtype = dest.rspec().reloc()->type();
4049   unsigned long low_page = (unsigned long)CodeCache::low_bound() >> 12;
4050   unsigned long high_page = (unsigned long)(CodeCache::high_bound()-1) >> 12;
4051   unsigned long dest_page = (unsigned long)dest.target() >> 12;
4052   long offset_low = dest_page - low_page;
4053   long offset_high = dest_page - high_page;
4054 
4055   assert(is_valid_AArch64_address(dest.target()), "bad address");
4056   assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
4057 
4058   InstructionMark im(this);
4059   code_section()->relocate(inst_mark(), dest.rspec());
4060   // 8143067: Ensure that the adrp can reach the dest from anywhere within
4061   // the code cache so that if it is relocated we know it will still reach
4062   if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
4063     _adrp(reg1, dest.target());
4064   } else {
4065     unsigned long target = (unsigned long)dest.target();
4066     unsigned long adrp_target
4067       = (target & 0xffffffffUL) | ((unsigned long)pc() & 0xffff00000000UL);
4068 
4069     _adrp(reg1, (address)adrp_target);
4070     movk(reg1, target >> 32, 32);
4071   }
4072   byte_offset = (unsigned long)dest.target() & 0xfff;
4073 }
4074 
4075 void MacroAssembler::load_byte_map_base(Register reg) {
4076   jbyte *byte_map_base =
4077     ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base;
4078 
4079   if (is_valid_AArch64_address((address)byte_map_base)) {
4080     // Strictly speaking the byte_map_base isn't an address at all,
4081     // and it might even be negative.
4082     unsigned long offset;
4083     adrp(reg, ExternalAddress((address)byte_map_base), offset);
4084     assert(offset == 0, "misaligned card table base");
4085   } else {
4086     mov(reg, (uint64_t)byte_map_base);
4087   }
4088 }
4089 
4090 void MacroAssembler::build_frame(int framesize) {
4091   assert(framesize > 0, "framesize must be > 0");
4092   if (framesize < ((1 << 9) + 2 * wordSize)) {
4093     sub(sp, sp, framesize);
4094     stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4095     if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
4096   } else {
4097     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
4098     if (PreserveFramePointer) mov(rfp, sp);
4099     if (framesize < ((1 << 12) + 2 * wordSize))
4100       sub(sp, sp, framesize - 2 * wordSize);
4101     else {
4102       mov(rscratch1, framesize - 2 * wordSize);
4103       sub(sp, sp, rscratch1);
4104     }
4105   }
4106 }
4107 
4108 void MacroAssembler::remove_frame(int framesize) {
4109   assert(framesize > 0, "framesize must be > 0");
4110   if (framesize < ((1 << 9) + 2 * wordSize)) {
4111     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4112     add(sp, sp, framesize);
4113   } else {
4114     if (framesize < ((1 << 12) + 2 * wordSize))
4115       add(sp, sp, framesize - 2 * wordSize);
4116     else {
4117       mov(rscratch1, framesize - 2 * wordSize);
4118       add(sp, sp, rscratch1);
4119     }
4120     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
4121   }
4122 }
4123 
4124 
4125 // Search for str1 in str2 and return index or -1
4126 void MacroAssembler::string_indexof(Register str2, Register str1,
4127                                     Register cnt2, Register cnt1,
4128                                     Register tmp1, Register tmp2,
4129                                     Register tmp3, Register tmp4,
4130                                     int icnt1, Register result) {
4131   Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH;
4132 
4133   Register ch1 = rscratch1;
4134   Register ch2 = rscratch2;
4135   Register cnt1tmp = tmp1;
4136   Register cnt2tmp = tmp2;
4137   Register cnt1_neg = cnt1;
4138   Register cnt2_neg = cnt2;
4139   Register result_tmp = tmp4;
4140 
4141   // Note, inline_string_indexOf() generates checks:
4142   // if (substr.count > string.count) return -1;
4143   // if (substr.count == 0) return 0;
4144 
4145 // We have two strings, a source string in str2, cnt2 and a pattern string
4146 // in str1, cnt1. Find the 1st occurence of pattern in source or return -1.
4147 
4148 // For larger pattern and source we use a simplified Boyer Moore algorithm.
4149 // With a small pattern and source we use linear scan.
4150 
4151   if (icnt1 == -1) {
4152     cmp(cnt1, 256);             // Use Linear Scan if cnt1 < 8 || cnt1 >= 256
4153     ccmp(cnt1, 8, 0b0000, LO);  // Can't handle skip >= 256 because we use
4154     br(LO, LINEARSEARCH);       // a byte array.
4155     cmp(cnt1, cnt2, LSR, 2);    // Source must be 4 * pattern for BM
4156     br(HS, LINEARSEARCH);
4157   }
4158 
4159 // The Boyer Moore alogorithm is based on the description here:-
4160 //
4161 // http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
4162 //
4163 // This describes and algorithm with 2 shift rules. The 'Bad Character' rule
4164 // and the 'Good Suffix' rule.
4165 //
4166 // These rules are essentially heuristics for how far we can shift the
4167 // pattern along the search string.
4168 //
4169 // The implementation here uses the 'Bad Character' rule only because of the
4170 // complexity of initialisation for the 'Good Suffix' rule.
4171 //
4172 // This is also known as the Boyer-Moore-Horspool algorithm:-
4173 //
4174 // http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
4175 //
4176 // #define ASIZE 128
4177 //
4178 //    int bm(unsigned char *x, int m, unsigned char *y, int n) {
4179 //       int i, j;
4180 //       unsigned c;
4181 //       unsigned char bc[ASIZE];
4182 //
4183 //       /* Preprocessing */
4184 //       for (i = 0; i < ASIZE; ++i)
4185 //          bc[i] = 0;
4186 //       for (i = 0; i < m - 1; ) {
4187 //          c = x[i];
4188 //          ++i;
4189 //          if (c < ASIZE) bc[c] = i;
4190 //       }
4191 //
4192 //       /* Searching */
4193 //       j = 0;
4194 //       while (j <= n - m) {
4195 //          c = y[i+j];
4196 //          if (x[m-1] == c)
4197 //            for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i);
4198 //          if (i < 0) return j;
4199 //          if (c < ASIZE)
4200 //            j = j - bc[y[j+m-1]] + m;
4201 //          else
4202 //            j += 1; // Advance by 1 only if char >= ASIZE
4203 //       }
4204 //    }
4205 
4206   if (icnt1 == -1) {
4207     BIND(BM);
4208 
4209     Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP;
4210     Label BMADV, BMMATCH, BMCHECKEND;
4211 
4212     Register cnt1end = tmp2;
4213     Register str2end = cnt2;
4214     Register skipch = tmp2;
4215 
4216     // Restrict ASIZE to 128 to reduce stack space/initialisation.
4217     // The presence of chars >= ASIZE in the target string does not affect
4218     // performance, but we must be careful not to initialise them in the stack
4219     // array.
4220     // The presence of chars >= ASIZE in the source string may adversely affect
4221     // performance since we can only advance by one when we encounter one.
4222 
4223       stp(zr, zr, pre(sp, -128));
4224       for (int i = 1; i < 8; i++)
4225           stp(zr, zr, Address(sp, i*16));
4226 
4227       mov(cnt1tmp, 0);
4228       sub(cnt1end, cnt1, 1);
4229     BIND(BCLOOP);
4230       ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
4231       cmp(ch1, 128);
4232       add(cnt1tmp, cnt1tmp, 1);
4233       br(HS, BCSKIP);
4234       strb(cnt1tmp, Address(sp, ch1));
4235     BIND(BCSKIP);
4236       cmp(cnt1tmp, cnt1end);
4237       br(LT, BCLOOP);
4238 
4239       mov(result_tmp, str2);
4240 
4241       sub(cnt2, cnt2, cnt1);
4242       add(str2end, str2, cnt2, LSL, 1);
4243     BIND(BMLOOPSTR2);
4244       sub(cnt1tmp, cnt1, 1);
4245       ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
4246       ldrh(skipch, Address(str2, cnt1tmp, Address::lsl(1)));
4247       cmp(ch1, skipch);
4248       br(NE, BMSKIP);
4249       subs(cnt1tmp, cnt1tmp, 1);
4250       br(LT, BMMATCH);
4251     BIND(BMLOOPSTR1);
4252       ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
4253       ldrh(ch2, Address(str2, cnt1tmp, Address::lsl(1)));
4254       cmp(ch1, ch2);
4255       br(NE, BMSKIP);
4256       subs(cnt1tmp, cnt1tmp, 1);
4257       br(GE, BMLOOPSTR1);
4258     BIND(BMMATCH);
4259       sub(result_tmp, str2, result_tmp);
4260       lsr(result, result_tmp, 1);
4261       add(sp, sp, 128);
4262       b(DONE);
4263     BIND(BMADV);
4264       add(str2, str2, 2);
4265       b(BMCHECKEND);
4266     BIND(BMSKIP);
4267       cmp(skipch, 128);
4268       br(HS, BMADV);
4269       ldrb(ch2, Address(sp, skipch));
4270       add(str2, str2, cnt1, LSL, 1);
4271       sub(str2, str2, ch2, LSL, 1);
4272     BIND(BMCHECKEND);
4273       cmp(str2, str2end);
4274       br(LE, BMLOOPSTR2);
4275       add(sp, sp, 128);
4276       b(NOMATCH);
4277   }
4278 
4279   BIND(LINEARSEARCH);
4280   {
4281     Label DO1, DO2, DO3;
4282 
4283     Register str2tmp = tmp2;
4284     Register first = tmp3;
4285 
4286     if (icnt1 == -1)
4287     {
4288         Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT, LAST_WORD;
4289 
4290         cmp(cnt1, 4);
4291         br(LT, DOSHORT);
4292 
4293         sub(cnt2, cnt2, cnt1);
4294         sub(cnt1, cnt1, 4);
4295         mov(result_tmp, cnt2);
4296 
4297         lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4298         lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4299         sub(cnt1_neg, zr, cnt1, LSL, 1);
4300         sub(cnt2_neg, zr, cnt2, LSL, 1);
4301         ldr(first, Address(str1, cnt1_neg));
4302 
4303       BIND(FIRST_LOOP);
4304         ldr(ch2, Address(str2, cnt2_neg));
4305         cmp(first, ch2);
4306         br(EQ, STR1_LOOP);
4307       BIND(STR2_NEXT);
4308         adds(cnt2_neg, cnt2_neg, 2);
4309         br(LE, FIRST_LOOP);
4310         b(NOMATCH);
4311 
4312       BIND(STR1_LOOP);
4313         adds(cnt1tmp, cnt1_neg, 8);
4314         add(cnt2tmp, cnt2_neg, 8);
4315         br(GE, LAST_WORD);
4316 
4317       BIND(STR1_NEXT);
4318         ldr(ch1, Address(str1, cnt1tmp));
4319         ldr(ch2, Address(str2, cnt2tmp));
4320         cmp(ch1, ch2);
4321         br(NE, STR2_NEXT);
4322         adds(cnt1tmp, cnt1tmp, 8);
4323         add(cnt2tmp, cnt2tmp, 8);
4324         br(LT, STR1_NEXT);
4325 
4326       BIND(LAST_WORD);
4327         ldr(ch1, Address(str1));
4328         sub(str2tmp, str2, cnt1_neg);         // adjust to corresponding
4329         ldr(ch2, Address(str2tmp, cnt2_neg)); // word in str2
4330         cmp(ch1, ch2);
4331         br(NE, STR2_NEXT);
4332         b(MATCH);
4333 
4334       BIND(DOSHORT);
4335         cmp(cnt1, 2);
4336         br(LT, DO1);
4337         br(GT, DO3);
4338     }
4339 
4340     if (icnt1 == 4) {
4341       Label CH1_LOOP;
4342 
4343         ldr(ch1, str1);
4344         sub(cnt2, cnt2, 4);
4345         mov(result_tmp, cnt2);
4346         lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4347         sub(cnt2_neg, zr, cnt2, LSL, 1);
4348 
4349       BIND(CH1_LOOP);
4350         ldr(ch2, Address(str2, cnt2_neg));
4351         cmp(ch1, ch2);
4352         br(EQ, MATCH);
4353         adds(cnt2_neg, cnt2_neg, 2);
4354         br(LE, CH1_LOOP);
4355         b(NOMATCH);
4356     }
4357 
4358     if (icnt1 == -1 || icnt1 == 2) {
4359       Label CH1_LOOP;
4360 
4361       BIND(DO2);
4362         ldrw(ch1, str1);
4363         sub(cnt2, cnt2, 2);
4364         mov(result_tmp, cnt2);
4365         lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4366         sub(cnt2_neg, zr, cnt2, LSL, 1);
4367 
4368       BIND(CH1_LOOP);
4369         ldrw(ch2, Address(str2, cnt2_neg));
4370         cmp(ch1, ch2);
4371         br(EQ, MATCH);
4372         adds(cnt2_neg, cnt2_neg, 2);
4373         br(LE, CH1_LOOP);
4374         b(NOMATCH);
4375     }
4376 
4377     if (icnt1 == -1 || icnt1 == 3) {
4378       Label FIRST_LOOP, STR2_NEXT, STR1_LOOP;
4379 
4380       BIND(DO3);
4381         ldrw(first, str1);
4382         ldrh(ch1, Address(str1, 4));
4383 
4384         sub(cnt2, cnt2, 3);
4385         mov(result_tmp, cnt2);
4386         lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4387         sub(cnt2_neg, zr, cnt2, LSL, 1);
4388 
4389       BIND(FIRST_LOOP);
4390         ldrw(ch2, Address(str2, cnt2_neg));
4391         cmpw(first, ch2);
4392         br(EQ, STR1_LOOP);
4393       BIND(STR2_NEXT);
4394         adds(cnt2_neg, cnt2_neg, 2);
4395         br(LE, FIRST_LOOP);
4396         b(NOMATCH);
4397 
4398       BIND(STR1_LOOP);
4399         add(cnt2tmp, cnt2_neg, 4);
4400         ldrh(ch2, Address(str2, cnt2tmp));
4401         cmp(ch1, ch2);
4402         br(NE, STR2_NEXT);
4403         b(MATCH);
4404     }
4405 
4406     if (icnt1 == -1 || icnt1 == 1) {
4407       Label CH1_LOOP, HAS_ZERO;
4408       Label DO1_SHORT, DO1_LOOP;
4409 
4410       BIND(DO1);
4411         ldrh(ch1, str1);
4412         cmp(cnt2, 4);
4413         br(LT, DO1_SHORT);
4414 
4415         orr(ch1, ch1, ch1, LSL, 16);
4416         orr(ch1, ch1, ch1, LSL, 32);
4417 
4418         sub(cnt2, cnt2, 4);
4419         mov(result_tmp, cnt2);
4420         lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4421         sub(cnt2_neg, zr, cnt2, LSL, 1);
4422 
4423         mov(tmp3, 0x0001000100010001);
4424       BIND(CH1_LOOP);
4425         ldr(ch2, Address(str2, cnt2_neg));
4426         eor(ch2, ch1, ch2);
4427         sub(tmp1, ch2, tmp3);
4428         orr(tmp2, ch2, 0x7fff7fff7fff7fff);
4429         bics(tmp1, tmp1, tmp2);
4430         br(NE, HAS_ZERO);
4431         adds(cnt2_neg, cnt2_neg, 8);
4432         br(LT, CH1_LOOP);
4433 
4434         cmp(cnt2_neg, 8);
4435         mov(cnt2_neg, 0);
4436         br(LT, CH1_LOOP);
4437         b(NOMATCH);
4438 
4439       BIND(HAS_ZERO);
4440         rev(tmp1, tmp1);
4441         clz(tmp1, tmp1);
4442         add(cnt2_neg, cnt2_neg, tmp1, LSR, 3);
4443         b(MATCH);
4444 
4445       BIND(DO1_SHORT);
4446         mov(result_tmp, cnt2);
4447         lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4448         sub(cnt2_neg, zr, cnt2, LSL, 1);
4449       BIND(DO1_LOOP);
4450         ldrh(ch2, Address(str2, cnt2_neg));
4451         cmpw(ch1, ch2);
4452         br(EQ, MATCH);
4453         adds(cnt2_neg, cnt2_neg, 2);
4454         br(LT, DO1_LOOP);
4455     }
4456   }
4457   BIND(NOMATCH);
4458     mov(result, -1);
4459     b(DONE);
4460   BIND(MATCH);
4461     add(result, result_tmp, cnt2_neg, ASR, 1);
4462   BIND(DONE);
4463 }
4464 
4465 // Compare strings.
4466 void MacroAssembler::string_compare(Register str1, Register str2,
4467                                     Register cnt1, Register cnt2, Register result,
4468                                     Register tmp1) {
4469   Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING,
4470     NEXT_WORD, DIFFERENCE;
4471 
4472   BLOCK_COMMENT("string_compare {");
4473 
4474   // Compute the minimum of the string lengths and save the difference.
4475   subsw(tmp1, cnt1, cnt2);
4476   cselw(cnt2, cnt1, cnt2, Assembler::LE); // min
4477 
4478   // A very short string
4479   cmpw(cnt2, 4);
4480   br(Assembler::LT, SHORT_STRING);
4481 
4482   // Check if the strings start at the same location.
4483   cmp(str1, str2);
4484   br(Assembler::EQ, LENGTH_DIFF);
4485 
4486   // Compare longwords
4487   {
4488     subw(cnt2, cnt2, 4); // The last longword is a special case
4489 
4490     // Move both string pointers to the last longword of their
4491     // strings, negate the remaining count, and convert it to bytes.
4492     lea(str1, Address(str1, cnt2, Address::uxtw(1)));
4493     lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4494     sub(cnt2, zr, cnt2, LSL, 1);
4495 
4496     // Loop, loading longwords and comparing them into rscratch2.
4497     bind(NEXT_WORD);
4498     ldr(result, Address(str1, cnt2));
4499     ldr(cnt1, Address(str2, cnt2));
4500     adds(cnt2, cnt2, wordSize);
4501     eor(rscratch2, result, cnt1);
4502     cbnz(rscratch2, DIFFERENCE);
4503     br(Assembler::LT, NEXT_WORD);
4504 
4505     // Last longword.  In the case where length == 4 we compare the
4506     // same longword twice, but that's still faster than another
4507     // conditional branch.
4508 
4509     ldr(result, Address(str1));
4510     ldr(cnt1, Address(str2));
4511     eor(rscratch2, result, cnt1);
4512     cbz(rscratch2, LENGTH_DIFF);
4513 
4514     // Find the first different characters in the longwords and
4515     // compute their difference.
4516     bind(DIFFERENCE);
4517     rev(rscratch2, rscratch2);
4518     clz(rscratch2, rscratch2);
4519     andr(rscratch2, rscratch2, -16);
4520     lsrv(result, result, rscratch2);
4521     uxthw(result, result);
4522     lsrv(cnt1, cnt1, rscratch2);
4523     uxthw(cnt1, cnt1);
4524     subw(result, result, cnt1);
4525     b(DONE);
4526   }
4527 
4528   bind(SHORT_STRING);
4529   // Is the minimum length zero?
4530   cbz(cnt2, LENGTH_DIFF);
4531 
4532   bind(SHORT_LOOP);
4533   load_unsigned_short(result, Address(post(str1, 2)));
4534   load_unsigned_short(cnt1, Address(post(str2, 2)));
4535   subw(result, result, cnt1);
4536   cbnz(result, DONE);
4537   sub(cnt2, cnt2, 1);
4538   cbnz(cnt2, SHORT_LOOP);
4539 
4540   // Strings are equal up to min length.  Return the length difference.
4541   bind(LENGTH_DIFF);
4542   mov(result, tmp1);
4543 
4544   // That's it
4545   bind(DONE);
4546 
4547   BLOCK_COMMENT("} string_compare");
4548 }
4549 
4550 // Compare Strings or char/byte arrays.
4551 
4552 // is_string is true iff this is a string comparison.
4553 
4554 // For Strings we're passed the address of the first characters in a1
4555 // and a2 and the length in cnt1.
4556 
4557 // For byte and char arrays we're passed the arrays themselves and we
4558 // have to extract length fields and do null checks here.
4559 
4560 // elem_size is the element size in bytes: either 1 or 2.
4561 
4562 // There are two implementations.  For arrays >= 8 bytes, all
4563 // comparisons (including the final one, which may overlap) are
4564 // performed 8 bytes at a time.  For arrays < 8 bytes, we compare a
4565 // halfword, then a short, and then a byte.
4566 
4567 void MacroAssembler::arrays_equals(Register a1, Register a2,
4568                                    Register result, Register cnt1,
4569                                    int elem_size, bool is_string)
4570 {
4571   Label SAME, DONE, SHORT, NEXT_WORD, ONE;
4572   Register tmp1 = rscratch1;
4573   Register tmp2 = rscratch2;
4574   Register cnt2 = tmp2;  // cnt2 only used in array length compare
4575   int elem_per_word = wordSize/elem_size;
4576   int log_elem_size = exact_log2(elem_size);
4577   int length_offset = arrayOopDesc::length_offset_in_bytes();
4578   int base_offset
4579     = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
4580 
4581   assert(elem_size == 1 || elem_size == 2, "must be char or byte");
4582   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
4583 
4584   BLOCK_COMMENT(is_string ? "string_equals {" : "array_equals {");
4585 
4586   mov(result, false);
4587 
4588   if (!is_string) {
4589     // if (a==a2)
4590     //     return true;
4591     eor(rscratch1, a1, a2);
4592     cbz(rscratch1, SAME);
4593     // if (a==null || a2==null)
4594     //     return false;
4595     cbz(a1, DONE);
4596     cbz(a2, DONE);
4597     // if (a1.length != a2.length)
4598     //      return false;
4599     ldrw(cnt1, Address(a1, length_offset));
4600     ldrw(cnt2, Address(a2, length_offset));
4601     eorw(tmp1, cnt1, cnt2);
4602     cbnzw(tmp1, DONE);
4603 
4604     lea(a1, Address(a1, base_offset));
4605     lea(a2, Address(a2, base_offset));
4606   }
4607 
4608   // Check for short strings, i.e. smaller than wordSize.
4609   subs(cnt1, cnt1, elem_per_word);
4610   br(Assembler::LT, SHORT);
4611   // Main 8 byte comparison loop.
4612   bind(NEXT_WORD); {
4613     ldr(tmp1, Address(post(a1, wordSize)));
4614     ldr(tmp2, Address(post(a2, wordSize)));
4615     subs(cnt1, cnt1, elem_per_word);
4616     eor(tmp1, tmp1, tmp2);
4617     cbnz(tmp1, DONE);
4618   } br(GT, NEXT_WORD);
4619   // Last longword.  In the case where length == 4 we compare the
4620   // same longword twice, but that's still faster than another
4621   // conditional branch.
4622   // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
4623   // length == 4.
4624   if (log_elem_size > 0)
4625     lsl(cnt1, cnt1, log_elem_size);
4626   ldr(tmp1, Address(a1, cnt1));
4627   ldr(tmp2, Address(a2, cnt1));
4628   eor(tmp1, tmp1, tmp2);
4629   cbnz(tmp1, DONE);
4630   b(SAME);
4631 
4632   bind(SHORT);
4633   Label TAIL03, TAIL01;
4634 
4635   tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
4636   {
4637     ldrw(tmp1, Address(post(a1, 4)));
4638     ldrw(tmp2, Address(post(a2, 4)));
4639     eorw(tmp1, tmp1, tmp2);
4640     cbnzw(tmp1, DONE);
4641   }
4642   bind(TAIL03);
4643   tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
4644   {
4645     ldrh(tmp1, Address(post(a1, 2)));
4646     ldrh(tmp2, Address(post(a2, 2)));
4647     eorw(tmp1, tmp1, tmp2);
4648     cbnzw(tmp1, DONE);
4649   }
4650   bind(TAIL01);
4651   if (elem_size == 1) { // Only needed when comparing byte arrays.
4652     tbz(cnt1, 0, SAME); // 0-1 bytes left.
4653     {
4654       ldrb(tmp1, a1);
4655       ldrb(tmp2, a2);
4656       eorw(tmp1, tmp1, tmp2);
4657       cbnzw(tmp1, DONE);
4658     }
4659   }
4660   // Arrays are equal.
4661   bind(SAME);
4662   mov(result, true);
4663 
4664   // That's it.
4665   bind(DONE);
4666   BLOCK_COMMENT(is_string ? "} string_equals" : "} array_equals");
4667 }
4668 
4669 
4670 // encode char[] to byte[] in ISO_8859_1
4671 void MacroAssembler::encode_iso_array(Register src, Register dst,
4672                       Register len, Register result,
4673                       FloatRegister Vtmp1, FloatRegister Vtmp2,
4674                       FloatRegister Vtmp3, FloatRegister Vtmp4)
4675 {
4676     Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1;
4677     Register tmp1 = rscratch1;
4678 
4679       mov(result, len); // Save initial len
4680 
4681 #ifndef BUILTIN_SIM
4682       subs(len, len, 32);
4683       br(LT, LOOP_8);
4684 
4685 // The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions
4686 // to convert chars to bytes. These set the 'QC' bit in the FPSR if
4687 // any char could not fit in a byte, so clear the FPSR so we can test it.
4688       clear_fpsr();
4689 
4690     BIND(NEXT_32);
4691       ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src);
4692       uqxtn(Vtmp1, T8B, Vtmp1, T8H);  // uqxtn  - write bottom half
4693       uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half
4694       uqxtn(Vtmp2, T8B, Vtmp3, T8H);
4695       uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2
4696       get_fpsr(tmp1);
4697       cbnzw(tmp1, LOOP_8);
4698       st1(Vtmp1, Vtmp2, T16B, post(dst, 32));
4699       subs(len, len, 32);
4700       add(src, src, 64);
4701       br(GE, NEXT_32);
4702 
4703     BIND(LOOP_8);
4704       adds(len, len, 32-8);
4705       br(LT, LOOP_1);
4706       clear_fpsr(); // QC may be set from loop above, clear again
4707     BIND(NEXT_8);
4708       ld1(Vtmp1, T8H, src);
4709       uqxtn(Vtmp1, T8B, Vtmp1, T8H);
4710       get_fpsr(tmp1);
4711       cbnzw(tmp1, LOOP_1);
4712       st1(Vtmp1, T8B, post(dst, 8));
4713       subs(len, len, 8);
4714       add(src, src, 16);
4715       br(GE, NEXT_8);
4716 
4717     BIND(LOOP_1);
4718       adds(len, len, 8);
4719       br(LE, DONE);
4720 #else
4721       cbz(len, DONE);
4722 #endif
4723     BIND(NEXT_1);
4724       ldrh(tmp1, Address(post(src, 2)));
4725       tst(tmp1, 0xff00);
4726       br(NE, DONE);
4727       strb(tmp1, Address(post(dst, 1)));
4728       subs(len, len, 1);
4729       br(GT, NEXT_1);
4730 
4731     BIND(DONE);
4732       sub(result, result, len); // Return index where we stopped
4733 }
4734 
4735 // get_thread() can be called anywhere inside generated code so we
4736 // need to save whatever non-callee save context might get clobbered
4737 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
4738 // the call setup code.
4739 //
4740 // aarch64_get_thread_helper() clobbers only r0, r1, and flags.
4741 //
4742 void MacroAssembler::get_thread(Register dst) {
4743   RegSet saved_regs = RegSet::range(r0, r1) + lr - dst;
4744   push(saved_regs, sp);
4745 
4746   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
4747   blrt(lr, 1, 0, 1);
4748   if (dst != c_rarg0) {
4749     mov(dst, c_rarg0);
4750   }
4751 
4752   pop(saved_regs, sp);
4753 }