1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument VALUE_OBJ_CLASS_SPEC {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch, r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 143 
 144 namespace asm_util {
 145   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 146 };
 147 
 148 using namespace asm_util;
 149 
 150 
 151 class Assembler;
 152 
 153 class Instruction_aarch64 {
 154   unsigned insn;
 155 #ifdef ASSERT
 156   unsigned bits;
 157 #endif
 158   Assembler *assem;
 159 
 160 public:
 161 
 162   Instruction_aarch64(class Assembler *as) {
 163 #ifdef ASSERT
 164     bits = 0;
 165 #endif
 166     insn = 0;
 167     assem = as;
 168   }
 169 
 170   inline ~Instruction_aarch64();
 171 
 172   unsigned &get_insn() { return insn; }
 173 #ifdef ASSERT
 174   unsigned &get_bits() { return bits; }
 175 #endif
 176 
 177   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 178     union {
 179       unsigned u;
 180       int n;
 181     };
 182 
 183     u = val << (31 - hi);
 184     n = n >> (31 - hi + lo);
 185     return n;
 186   }
 187 
 188   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 189     int nbits = msb - lsb + 1;
 190     assert_cond(msb >= lsb);
 191     uint32_t mask = (1U << nbits) - 1;
 192     uint32_t result = val >> lsb;
 193     result &= mask;
 194     return result;
 195   }
 196 
 197   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 198     uint32_t uval = extract(val, msb, lsb);
 199     return extend(uval, msb - lsb);
 200   }
 201 
 202   static void patch(address a, int msb, int lsb, unsigned long val) {
 203     int nbits = msb - lsb + 1;
 204     guarantee(val < (1U << nbits), "Field too big for insn");
 205     assert_cond(msb >= lsb);
 206     unsigned mask = (1U << nbits) - 1;
 207     val <<= lsb;
 208     mask <<= lsb;
 209     unsigned target = *(unsigned *)a;
 210     target &= ~mask;
 211     target |= val;
 212     *(unsigned *)a = target;
 213   }
 214 
 215   static void spatch(address a, int msb, int lsb, long val) {
 216     int nbits = msb - lsb + 1;
 217     long chk = val >> (nbits - 1);
 218     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 219     unsigned uval = val;
 220     unsigned mask = (1U << nbits) - 1;
 221     uval &= mask;
 222     uval <<= lsb;
 223     mask <<= lsb;
 224     unsigned target = *(unsigned *)a;
 225     target &= ~mask;
 226     target |= uval;
 227     *(unsigned *)a = target;
 228   }
 229 
 230   void f(unsigned val, int msb, int lsb) {
 231     int nbits = msb - lsb + 1;
 232     guarantee(val < (1U << nbits), "Field too big for insn");
 233     assert_cond(msb >= lsb);
 234     unsigned mask = (1U << nbits) - 1;
 235     val <<= lsb;
 236     mask <<= lsb;
 237     insn |= val;
 238     assert_cond((bits & mask) == 0);
 239 #ifdef ASSERT
 240     bits |= mask;
 241 #endif
 242   }
 243 
 244   void f(unsigned val, int bit) {
 245     f(val, bit, bit);
 246   }
 247 
 248   void sf(long val, int msb, int lsb) {
 249     int nbits = msb - lsb + 1;
 250     long chk = val >> (nbits - 1);
 251     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 252     unsigned uval = val;
 253     unsigned mask = (1U << nbits) - 1;
 254     uval &= mask;
 255     f(uval, lsb + nbits - 1, lsb);
 256   }
 257 
 258   void rf(Register r, int lsb) {
 259     f(r->encoding_nocheck(), lsb + 4, lsb);
 260   }
 261 
 262   // reg|ZR
 263   void zrf(Register r, int lsb) {
 264     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 265   }
 266 
 267   // reg|SP
 268   void srf(Register r, int lsb) {
 269     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 270   }
 271 
 272   void rf(FloatRegister r, int lsb) {
 273     f(r->encoding_nocheck(), lsb + 4, lsb);
 274   }
 275 
 276   unsigned get(int msb = 31, int lsb = 0) {
 277     int nbits = msb - lsb + 1;
 278     unsigned mask = ((1U << nbits) - 1) << lsb;
 279     assert_cond(bits & mask == mask);
 280     return (insn & mask) >> lsb;
 281   }
 282 
 283   void fixed(unsigned value, unsigned mask) {
 284     assert_cond ((mask & bits) == 0);
 285 #ifdef ASSERT
 286     bits |= mask;
 287 #endif
 288     insn |= value;
 289   }
 290 };
 291 
 292 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 293 
 294 class PrePost {
 295   int _offset;
 296   Register _r;
 297 public:
 298   PrePost(Register reg, int o) : _r(reg), _offset(o) { }
 299   int offset() { return _offset; }
 300   Register reg() { return _r; }
 301 };
 302 
 303 class Pre : public PrePost {
 304 public:
 305   Pre(Register reg, int o) : PrePost(reg, o) { }
 306 };
 307 class Post : public PrePost {
 308 public:
 309   Post(Register reg, int o) : PrePost(reg, o) { }
 310 };
 311 
 312 namespace ext
 313 {
 314   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 315 };
 316 
 317 // abs methods which cannot overflow and so are well-defined across
 318 // the entire domain of integer types.
 319 static inline unsigned int uabs(unsigned int n) {
 320   union {
 321     unsigned int result;
 322     int value;
 323   };
 324   result = n;
 325   if (value < 0) result = -result;
 326   return result;
 327 }
 328 static inline unsigned long uabs(unsigned long n) {
 329   union {
 330     unsigned long result;
 331     long value;
 332   };
 333   result = n;
 334   if (value < 0) result = -result;
 335   return result;
 336 }
 337 static inline unsigned long uabs(long n) { return uabs((unsigned long)n); }
 338 static inline unsigned long uabs(int n) { return uabs((unsigned int)n); }
 339 
 340 // Addressing modes
 341 class Address VALUE_OBJ_CLASS_SPEC {
 342  public:
 343 
 344   enum mode { no_mode, base_plus_offset, pre, post, pcrel,
 345               base_plus_offset_reg, literal };
 346 
 347   // Shift and extend for base reg + reg offset addressing
 348   class extend {
 349     int _option, _shift;
 350     ext::operation _op;
 351   public:
 352     extend() { }
 353     extend(int s, int o, ext::operation op) : _shift(s), _option(o), _op(op) { }
 354     int option() const{ return _option; }
 355     int shift() const { return _shift; }
 356     ext::operation op() const { return _op; }
 357   };
 358   class uxtw : public extend {
 359   public:
 360     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 361   };
 362   class lsl : public extend {
 363   public:
 364     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 365   };
 366   class sxtw : public extend {
 367   public:
 368     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 369   };
 370   class sxtx : public extend {
 371   public:
 372     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 373   };
 374 
 375  private:
 376   Register _base;
 377   Register _index;
 378   long _offset;
 379   enum mode _mode;
 380   extend _ext;
 381 
 382   RelocationHolder _rspec;
 383 
 384   // Typically we use AddressLiterals we want to use their rval
 385   // However in some situations we want the lval (effect address) of
 386   // the item.  We provide a special factory for making those lvals.
 387   bool _is_lval;
 388 
 389   // If the target is far we'll need to load the ea of this to a
 390   // register to reach it. Otherwise if near we can do PC-relative
 391   // addressing.
 392   address          _target;
 393 
 394  public:
 395   Address()
 396     : _mode(no_mode) { }
 397   Address(Register r)
 398     : _mode(base_plus_offset), _base(r), _offset(0), _index(noreg), _target(0) { }
 399   Address(Register r, int o)
 400     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 401   Address(Register r, long o)
 402     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 403   Address(Register r, unsigned long o)
 404     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 405 #ifdef ASSERT
 406   Address(Register r, ByteSize disp)
 407     : _mode(base_plus_offset), _base(r), _offset(in_bytes(disp)),
 408       _index(noreg), _target(0) { }
 409 #endif
 410   Address(Register r, Register r1, extend ext = lsl())
 411     : _mode(base_plus_offset_reg), _base(r), _index(r1),
 412     _ext(ext), _offset(0), _target(0) { }
 413   Address(Pre p)
 414     : _mode(pre), _base(p.reg()), _offset(p.offset()) { }
 415   Address(Post p)
 416     : _mode(post), _base(p.reg()), _offset(p.offset()), _target(0) { }
 417   Address(address target, RelocationHolder const& rspec)
 418     : _mode(literal),
 419       _rspec(rspec),
 420       _is_lval(false),
 421       _target(target)  { }
 422   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 423   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 424     : _base (base),
 425       _ext(ext), _offset(0), _target(0) {
 426     if (index.is_register()) {
 427       _mode = base_plus_offset_reg;
 428       _index = index.as_register();
 429     } else {
 430       guarantee(ext.option() == ext::uxtx, "should be");
 431       assert(index.is_constant(), "should be");
 432       _mode = base_plus_offset;
 433       _offset = index.as_constant() << ext.shift();
 434     }
 435   }
 436 
 437   Register base() const {
 438     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 439                | _mode == post),
 440               "wrong mode");
 441     return _base;
 442   }
 443   long offset() const {
 444     return _offset;
 445   }
 446   Register index() const {
 447     return _index;
 448   }
 449   mode getMode() const {
 450     return _mode;
 451   }
 452   bool uses(Register reg) const { return _base == reg || _index == reg; }
 453   address target() const { return _target; }
 454   const RelocationHolder& rspec() const { return _rspec; }
 455 
 456   void encode(Instruction_aarch64 *i) const {
 457     i->f(0b111, 29, 27);
 458     i->srf(_base, 5);
 459 
 460     switch(_mode) {
 461     case base_plus_offset:
 462       {
 463         unsigned size = i->get(31, 30);
 464         if (i->get(26, 26) && i->get(23, 23)) {
 465           // SIMD Q Type - Size = 128 bits
 466           assert(size == 0, "bad size");
 467           size = 0b100;
 468         }
 469         unsigned mask = (1 << size) - 1;
 470         if (_offset < 0 || _offset & mask)
 471           {
 472             i->f(0b00, 25, 24);
 473             i->f(0, 21), i->f(0b00, 11, 10);
 474             i->sf(_offset, 20, 12);
 475           } else {
 476             i->f(0b01, 25, 24);
 477             i->f(_offset >> size, 21, 10);
 478           }
 479       }
 480       break;
 481 
 482     case base_plus_offset_reg:
 483       {
 484         i->f(0b00, 25, 24);
 485         i->f(1, 21);
 486         i->rf(_index, 16);
 487         i->f(_ext.option(), 15, 13);
 488         unsigned size = i->get(31, 30);
 489         if (i->get(26, 26) && i->get(23, 23)) {
 490           // SIMD Q Type - Size = 128 bits
 491           assert(size == 0, "bad size");
 492           size = 0b100;
 493         }
 494         if (size == 0) // It's a byte
 495           i->f(_ext.shift() >= 0, 12);
 496         else {
 497           if (_ext.shift() > 0)
 498             assert(_ext.shift() == (int)size, "bad shift");
 499           i->f(_ext.shift() > 0, 12);
 500         }
 501         i->f(0b10, 11, 10);
 502       }
 503       break;
 504 
 505     case pre:
 506       i->f(0b00, 25, 24);
 507       i->f(0, 21), i->f(0b11, 11, 10);
 508       i->sf(_offset, 20, 12);
 509       break;
 510 
 511     case post:
 512       i->f(0b00, 25, 24);
 513       i->f(0, 21), i->f(0b01, 11, 10);
 514       i->sf(_offset, 20, 12);
 515       break;
 516 
 517     default:
 518       ShouldNotReachHere();
 519     }
 520   }
 521 
 522   void encode_pair(Instruction_aarch64 *i) const {
 523     switch(_mode) {
 524     case base_plus_offset:
 525       i->f(0b010, 25, 23);
 526       break;
 527     case pre:
 528       i->f(0b011, 25, 23);
 529       break;
 530     case post:
 531       i->f(0b001, 25, 23);
 532       break;
 533     default:
 534       ShouldNotReachHere();
 535     }
 536 
 537     unsigned size; // Operand shift in 32-bit words
 538 
 539     if (i->get(26, 26)) { // float
 540       switch(i->get(31, 30)) {
 541       case 0b10:
 542         size = 2; break;
 543       case 0b01:
 544         size = 1; break;
 545       case 0b00:
 546         size = 0; break;
 547       default:
 548         ShouldNotReachHere();
 549         size = 0;  // unreachable
 550       }
 551     } else {
 552       size = i->get(31, 31);
 553     }
 554 
 555     size = 4 << size;
 556     guarantee(_offset % size == 0, "bad offset");
 557     i->sf(_offset / size, 21, 15);
 558     i->srf(_base, 5);
 559   }
 560 
 561   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 562     // Only base + offset is allowed
 563     i->f(0b000, 25, 23);
 564     unsigned size = i->get(31, 31);
 565     size = 4 << size;
 566     guarantee(_offset % size == 0, "bad offset");
 567     i->sf(_offset / size, 21, 15);
 568     i->srf(_base, 5);
 569     guarantee(_mode == Address::base_plus_offset,
 570               "Bad addressing mode for non-temporal op");
 571   }
 572 
 573   void lea(MacroAssembler *, Register) const;
 574 
 575   static bool offset_ok_for_immed(long offset, int shift = 0) {
 576     unsigned mask = (1 << shift) - 1;
 577     if (offset < 0 || offset & mask) {
 578       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 579     } else {
 580       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 581     }
 582   }
 583 };
 584 
 585 // Convience classes
 586 class RuntimeAddress: public Address {
 587 
 588   public:
 589 
 590   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 591 
 592 };
 593 
 594 class OopAddress: public Address {
 595 
 596   public:
 597 
 598   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 599 
 600 };
 601 
 602 class ExternalAddress: public Address {
 603  private:
 604   static relocInfo::relocType reloc_for_target(address target) {
 605     // Sometimes ExternalAddress is used for values which aren't
 606     // exactly addresses, like the card table base.
 607     // external_word_type can't be used for values in the first page
 608     // so just skip the reloc in that case.
 609     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 610   }
 611 
 612  public:
 613 
 614   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 615 
 616 };
 617 
 618 class InternalAddress: public Address {
 619 
 620   public:
 621 
 622   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 623 };
 624 
 625 const int FPUStateSizeInWords = 32 * 2;
 626 typedef enum {
 627   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 628   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 629   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 630 } prfop;
 631 
 632 class Assembler : public AbstractAssembler {
 633 
 634 #ifndef PRODUCT
 635   static const unsigned long asm_bp;
 636 
 637   void emit_long(jint x) {
 638     if ((unsigned long)pc() == asm_bp)
 639       asm volatile ("nop");
 640     AbstractAssembler::emit_int32(x);
 641   }
 642 #else
 643   void emit_long(jint x) {
 644     AbstractAssembler::emit_int32(x);
 645   }
 646 #endif
 647 
 648 public:
 649 
 650   enum { instruction_size = 4 };
 651 
 652   Address adjust(Register base, int offset, bool preIncrement) {
 653     if (preIncrement)
 654       return Address(Pre(base, offset));
 655     else
 656       return Address(Post(base, offset));
 657   }
 658 
 659   Address pre(Register base, int offset) {
 660     return adjust(base, offset, true);
 661   }
 662 
 663   Address post (Register base, int offset) {
 664     return adjust(base, offset, false);
 665   }
 666 
 667   Instruction_aarch64* current;
 668 
 669   void set_current(Instruction_aarch64* i) { current = i; }
 670 
 671   void f(unsigned val, int msb, int lsb) {
 672     current->f(val, msb, lsb);
 673   }
 674   void f(unsigned val, int msb) {
 675     current->f(val, msb, msb);
 676   }
 677   void sf(long val, int msb, int lsb) {
 678     current->sf(val, msb, lsb);
 679   }
 680   void rf(Register reg, int lsb) {
 681     current->rf(reg, lsb);
 682   }
 683   void srf(Register reg, int lsb) {
 684     current->srf(reg, lsb);
 685   }
 686   void zrf(Register reg, int lsb) {
 687     current->zrf(reg, lsb);
 688   }
 689   void rf(FloatRegister reg, int lsb) {
 690     current->rf(reg, lsb);
 691   }
 692   void fixed(unsigned value, unsigned mask) {
 693     current->fixed(value, mask);
 694   }
 695 
 696   void emit() {
 697     emit_long(current->get_insn());
 698     assert_cond(current->get_bits() == 0xffffffff);
 699     current = NULL;
 700   }
 701 
 702   typedef void (Assembler::* uncond_branch_insn)(address dest);
 703   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 704   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 705   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 706 
 707   void wrap_label(Label &L, uncond_branch_insn insn);
 708   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 709   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 710   void wrap_label(Label &L, prfop, prefetch_insn insn);
 711 
 712   // PC-rel. addressing
 713 
 714   void adr(Register Rd, address dest);
 715   void _adrp(Register Rd, address dest);
 716 
 717   void adr(Register Rd, const Address &dest);
 718   void _adrp(Register Rd, const Address &dest);
 719 
 720   void adr(Register Rd, Label &L) {
 721     wrap_label(Rd, L, &Assembler::Assembler::adr);
 722   }
 723   void _adrp(Register Rd, Label &L) {
 724     wrap_label(Rd, L, &Assembler::_adrp);
 725   }
 726 
 727   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 728 
 729 #undef INSN
 730 
 731   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 732                          int negated_op);
 733 
 734   // Add/subtract (immediate)
 735 #define INSN(NAME, decode, negated)                                     \
 736   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 737     starti;                                                             \
 738     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 739     zrf(Rd, 0), srf(Rn, 5);                                             \
 740   }                                                                     \
 741                                                                         \
 742   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 743     starti;                                                             \
 744     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 745   }
 746 
 747   INSN(addsw, 0b001, 0b011);
 748   INSN(subsw, 0b011, 0b001);
 749   INSN(adds,  0b101, 0b111);
 750   INSN(subs,  0b111, 0b101);
 751 
 752 #undef INSN
 753 
 754 #define INSN(NAME, decode, negated)                     \
 755   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 756     starti;                                             \
 757     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 758   }
 759 
 760   INSN(addw, 0b000, 0b010);
 761   INSN(subw, 0b010, 0b000);
 762   INSN(add,  0b100, 0b110);
 763   INSN(sub,  0b110, 0b100);
 764 
 765 #undef INSN
 766 
 767  // Logical (immediate)
 768 #define INSN(NAME, decode, is32)                                \
 769   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 770     starti;                                                     \
 771     uint32_t val = encode_logical_immediate(is32, imm);         \
 772     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 773     srf(Rd, 0), zrf(Rn, 5);                                     \
 774   }
 775 
 776   INSN(andw, 0b000, true);
 777   INSN(orrw, 0b001, true);
 778   INSN(eorw, 0b010, true);
 779   INSN(andr,  0b100, false);
 780   INSN(orr,  0b101, false);
 781   INSN(eor,  0b110, false);
 782 
 783 #undef INSN
 784 
 785 #define INSN(NAME, decode, is32)                                \
 786   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 787     starti;                                                     \
 788     uint32_t val = encode_logical_immediate(is32, imm);         \
 789     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 790     zrf(Rd, 0), zrf(Rn, 5);                                     \
 791   }
 792 
 793   INSN(ands, 0b111, false);
 794   INSN(andsw, 0b011, true);
 795 
 796 #undef INSN
 797 
 798   // Move wide (immediate)
 799 #define INSN(NAME, opcode)                                              \
 800   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 801     assert_cond((shift/16)*16 == shift);                                \
 802     starti;                                                             \
 803     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 804       f(imm, 20, 5);                                                    \
 805     rf(Rd, 0);                                                          \
 806   }
 807 
 808   INSN(movnw, 0b000);
 809   INSN(movzw, 0b010);
 810   INSN(movkw, 0b011);
 811   INSN(movn, 0b100);
 812   INSN(movz, 0b110);
 813   INSN(movk, 0b111);
 814 
 815 #undef INSN
 816 
 817   // Bitfield
 818 #define INSN(NAME, opcode)                                              \
 819   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 820     starti;                                                             \
 821     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 822     rf(Rn, 5), rf(Rd, 0);                                               \
 823   }
 824 
 825   INSN(sbfmw, 0b0001001100);
 826   INSN(bfmw,  0b0011001100);
 827   INSN(ubfmw, 0b0101001100);
 828   INSN(sbfm,  0b1001001101);
 829   INSN(bfm,   0b1011001101);
 830   INSN(ubfm,  0b1101001101);
 831 
 832 #undef INSN
 833 
 834   // Extract
 835 #define INSN(NAME, opcode)                                              \
 836   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 837     starti;                                                             \
 838     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 839     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                   \
 840   }
 841 
 842   INSN(extrw, 0b00010011100);
 843   INSN(extr,  0b10010011110);
 844 
 845 #undef INSN
 846 
 847   // The maximum range of a branch is fixed for the AArch64
 848   // architecture.  In debug mode we shrink it in order to test
 849   // trampolines, but not so small that branches in the interpreter
 850   // are out of range.
 851   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 852 
 853   static bool reachable_from_branch_at(address branch, address target) {
 854     return uabs(target - branch) < branch_range;
 855   }
 856 
 857   // Unconditional branch (immediate)
 858 #define INSN(NAME, opcode)                                              \
 859   void NAME(address dest) {                                             \
 860     starti;                                                             \
 861     long offset = (dest - pc()) >> 2;                                   \
 862     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 863     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 864   }                                                                     \
 865   void NAME(Label &L) {                                                 \
 866     wrap_label(L, &Assembler::NAME);                                    \
 867   }                                                                     \
 868   void NAME(const Address &dest);
 869 
 870   INSN(b, 0);
 871   INSN(bl, 1);
 872 
 873 #undef INSN
 874 
 875   // Compare & branch (immediate)
 876 #define INSN(NAME, opcode)                              \
 877   void NAME(Register Rt, address dest) {                \
 878     long offset = (dest - pc()) >> 2;                   \
 879     starti;                                             \
 880     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 881   }                                                     \
 882   void NAME(Register Rt, Label &L) {                    \
 883     wrap_label(Rt, L, &Assembler::NAME);                \
 884   }
 885 
 886   INSN(cbzw,  0b00110100);
 887   INSN(cbnzw, 0b00110101);
 888   INSN(cbz,   0b10110100);
 889   INSN(cbnz,  0b10110101);
 890 
 891 #undef INSN
 892 
 893   // Test & branch (immediate)
 894 #define INSN(NAME, opcode)                                              \
 895   void NAME(Register Rt, int bitpos, address dest) {                    \
 896     long offset = (dest - pc()) >> 2;                                   \
 897     int b5 = bitpos >> 5;                                               \
 898     bitpos &= 0x1f;                                                     \
 899     starti;                                                             \
 900     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 901     rf(Rt, 0);                                                          \
 902   }                                                                     \
 903   void NAME(Register Rt, int bitpos, Label &L) {                        \
 904     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 905   }
 906 
 907   INSN(tbz,  0b0110110);
 908   INSN(tbnz, 0b0110111);
 909 
 910 #undef INSN
 911 
 912   // Conditional branch (immediate)
 913   enum Condition
 914     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 915 
 916   void br(Condition  cond, address dest) {
 917     long offset = (dest - pc()) >> 2;
 918     starti;
 919     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 920   }
 921 
 922 #define INSN(NAME, cond)                        \
 923   void NAME(address dest) {                     \
 924     br(cond, dest);                             \
 925   }
 926 
 927   INSN(beq, EQ);
 928   INSN(bne, NE);
 929   INSN(bhs, HS);
 930   INSN(bcs, CS);
 931   INSN(blo, LO);
 932   INSN(bcc, CC);
 933   INSN(bmi, MI);
 934   INSN(bpl, PL);
 935   INSN(bvs, VS);
 936   INSN(bvc, VC);
 937   INSN(bhi, HI);
 938   INSN(bls, LS);
 939   INSN(bge, GE);
 940   INSN(blt, LT);
 941   INSN(bgt, GT);
 942   INSN(ble, LE);
 943   INSN(bal, AL);
 944   INSN(bnv, NV);
 945 
 946   void br(Condition cc, Label &L);
 947 
 948 #undef INSN
 949 
 950   // Exception generation
 951   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 952     starti;
 953     f(0b11010100, 31, 24);
 954     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 955   }
 956 
 957 #define INSN(NAME, opc, op2, LL)                \
 958   void NAME(unsigned imm) {                     \
 959     generate_exception(opc, op2, LL, imm);      \
 960   }
 961 
 962   INSN(svc, 0b000, 0, 0b01);
 963   INSN(hvc, 0b000, 0, 0b10);
 964   INSN(smc, 0b000, 0, 0b11);
 965   INSN(brk, 0b001, 0, 0b00);
 966   INSN(hlt, 0b010, 0, 0b00);
 967   INSN(dpcs1, 0b101, 0, 0b01);
 968   INSN(dpcs2, 0b101, 0, 0b10);
 969   INSN(dpcs3, 0b101, 0, 0b11);
 970 
 971 #undef INSN
 972 
 973   // System
 974   void system(int op0, int op1, int CRn, int CRm, int op2,
 975               Register rt = dummy_reg)
 976   {
 977     starti;
 978     f(0b11010101000, 31, 21);
 979     f(op0, 20, 19);
 980     f(op1, 18, 16);
 981     f(CRn, 15, 12);
 982     f(CRm, 11, 8);
 983     f(op2, 7, 5);
 984     rf(rt, 0);
 985   }
 986 
 987   void hint(int imm) {
 988     system(0b00, 0b011, 0b0010, imm, 0b000);
 989   }
 990 
 991   void nop() {
 992     hint(0);
 993   }
 994   // we only provide mrs and msr for the special purpose system
 995   // registers where op1 (instr[20:19]) == 11 and, (currently) only
 996   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
 997 
 998   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
 999     starti;
1000     f(0b1101010100011, 31, 19);
1001     f(op1, 18, 16);
1002     f(CRn, 15, 12);
1003     f(CRm, 11, 8);
1004     f(op2, 7, 5);
1005     // writing zr is ok
1006     zrf(rt, 0);
1007   }
1008 
1009   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1010     starti;
1011     f(0b1101010100111, 31, 19);
1012     f(op1, 18, 16);
1013     f(CRn, 15, 12);
1014     f(CRm, 11, 8);
1015     f(op2, 7, 5);
1016     // reading to zr is a mistake
1017     rf(rt, 0);
1018   }
1019 
1020   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1021                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1022 
1023   void dsb(barrier imm) {
1024     system(0b00, 0b011, 0b00011, imm, 0b100);
1025   }
1026 
1027   void dmb(barrier imm) {
1028     system(0b00, 0b011, 0b00011, imm, 0b101);
1029   }
1030 
1031   void isb() {
1032     system(0b00, 0b011, 0b00011, SY, 0b110);
1033   }
1034 
1035   void sys(int op1, int CRn, int CRm, int op2,
1036            Register rt = (Register)0b11111) {
1037     system(0b01, op1, CRn, CRm, op2, rt);
1038   }
1039 
1040   // Only implement operations accessible from EL0 or higher, i.e.,
1041   //            op1    CRn    CRm    op2
1042   // IC IVAU     3      7      5      1
1043   // DC CVAC     3      7      10     1
1044   // DC CVAU     3      7      11     1
1045   // DC CIVAC    3      7      14     1
1046   // DC ZVA      3      7      4      1
1047   // So only deal with the CRm field.
1048   enum icache_maintenance {IVAU = 0b0101};
1049   enum dcache_maintenance {CVAC = 0b1010, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1050 
1051   void dc(dcache_maintenance cm, Register Rt) {
1052     sys(0b011, 0b0111, cm, 0b001, Rt);
1053   }
1054 
1055   void ic(icache_maintenance cm, Register Rt) {
1056     sys(0b011, 0b0111, cm, 0b001, Rt);
1057   }
1058 
1059   // A more convenient access to dmb for our purposes
1060   enum Membar_mask_bits {
1061     // We can use ISH for a barrier because the ARM ARM says "This
1062     // architecture assumes that all Processing Elements that use the
1063     // same operating system or hypervisor are in the same Inner
1064     // Shareable shareability domain."
1065     StoreStore = ISHST,
1066     LoadStore  = ISHLD,
1067     LoadLoad   = ISHLD,
1068     StoreLoad  = ISH,
1069     AnyAny     = ISH
1070   };
1071 
1072   void membar(Membar_mask_bits order_constraint) {
1073     dmb(Assembler::barrier(order_constraint));
1074   }
1075 
1076   // Unconditional branch (register)
1077   void branch_reg(Register R, int opc) {
1078     starti;
1079     f(0b1101011, 31, 25);
1080     f(opc, 24, 21);
1081     f(0b11111000000, 20, 10);
1082     rf(R, 5);
1083     f(0b00000, 4, 0);
1084   }
1085 
1086 #define INSN(NAME, opc)                         \
1087   void NAME(Register R) {                       \
1088     branch_reg(R, opc);                         \
1089   }
1090 
1091   INSN(br, 0b0000);
1092   INSN(blr, 0b0001);
1093   INSN(ret, 0b0010);
1094 
1095   void ret(void *p); // This forces a compile-time error for ret(0)
1096 
1097 #undef INSN
1098 
1099 #define INSN(NAME, opc)                         \
1100   void NAME() {                 \
1101     branch_reg(dummy_reg, opc);         \
1102   }
1103 
1104   INSN(eret, 0b0100);
1105   INSN(drps, 0b0101);
1106 
1107 #undef INSN
1108 
1109   // Load/store exclusive
1110   enum operand_size { byte, halfword, word, xword };
1111 
1112   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1113     Register Rn, enum operand_size sz, int op, bool ordered) {
1114     starti;
1115     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1116     rf(Rs, 16), f(ordered, 15), rf(Rt2, 10), rf(Rn, 5), rf(Rt1, 0);
1117   }
1118 
1119   void load_exclusive(Register dst, Register addr,
1120                       enum operand_size sz, bool ordered) {
1121     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1122                          sz, 0b010, ordered);
1123   }
1124 
1125   void store_exclusive(Register status, Register new_val, Register addr,
1126                        enum operand_size sz, bool ordered) {
1127     load_store_exclusive(status, new_val, dummy_reg, addr,
1128                          sz, 0b000, ordered);
1129   }
1130 
1131 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1132   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1133     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1134     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1135   }
1136 
1137 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1138   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1139     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1140     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1141   }
1142 
1143 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1144   void NAME(Register Rt, Register Rn) {                                 \
1145     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1146                          Rn, sz, op, o0);                               \
1147   }
1148 
1149 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1150   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1151     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1152     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1153   }
1154 
1155   // bytes
1156   INSN3(stxrb, byte, 0b000, 0);
1157   INSN3(stlxrb, byte, 0b000, 1);
1158   INSN2(ldxrb, byte, 0b010, 0);
1159   INSN2(ldaxrb, byte, 0b010, 1);
1160   INSN2(stlrb, byte, 0b100, 1);
1161   INSN2(ldarb, byte, 0b110, 1);
1162 
1163   // halfwords
1164   INSN3(stxrh, halfword, 0b000, 0);
1165   INSN3(stlxrh, halfword, 0b000, 1);
1166   INSN2(ldxrh, halfword, 0b010, 0);
1167   INSN2(ldaxrh, halfword, 0b010, 1);
1168   INSN2(stlrh, halfword, 0b100, 1);
1169   INSN2(ldarh, halfword, 0b110, 1);
1170 
1171   // words
1172   INSN3(stxrw, word, 0b000, 0);
1173   INSN3(stlxrw, word, 0b000, 1);
1174   INSN4(stxpw, word, 0b001, 0);
1175   INSN4(stlxpw, word, 0b001, 1);
1176   INSN2(ldxrw, word, 0b010, 0);
1177   INSN2(ldaxrw, word, 0b010, 1);
1178   INSN_FOO(ldxpw, word, 0b011, 0);
1179   INSN_FOO(ldaxpw, word, 0b011, 1);
1180   INSN2(stlrw, word, 0b100, 1);
1181   INSN2(ldarw, word, 0b110, 1);
1182 
1183   // xwords
1184   INSN3(stxr, xword, 0b000, 0);
1185   INSN3(stlxr, xword, 0b000, 1);
1186   INSN4(stxp, xword, 0b001, 0);
1187   INSN4(stlxp, xword, 0b001, 1);
1188   INSN2(ldxr, xword, 0b010, 0);
1189   INSN2(ldaxr, xword, 0b010, 1);
1190   INSN_FOO(ldxp, xword, 0b011, 0);
1191   INSN_FOO(ldaxp, xword, 0b011, 1);
1192   INSN2(stlr, xword, 0b100, 1);
1193   INSN2(ldar, xword, 0b110, 1);
1194 
1195 #undef INSN2
1196 #undef INSN3
1197 #undef INSN4
1198 #undef INSN_FOO
1199 
1200   // 8.1 Compare and swap extensions
1201   void lse_cas(Register Rs, Register Rt, Register Rn,
1202                         enum operand_size sz, bool a, bool r, bool not_pair) {
1203     starti;
1204     if (! not_pair) { // Pair
1205       assert(sz == word || sz == xword, "invalid size");
1206       /* The size bit is in bit 30, not 31 */
1207       sz = (operand_size)(sz == word ? 0b00:0b01);
1208     }
1209     f(sz, 31, 30), f(0b001000, 29, 24), f(1, 23), f(a, 22), f(1, 21);
1210     rf(Rs, 16), f(r, 15), f(0b11111, 14, 10), rf(Rn, 5), rf(Rt, 0);
1211   }
1212 
1213   // CAS
1214 #define INSN(NAME, a, r)                                                \
1215   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1216     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1217     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1218   }
1219   INSN(cas,    false, false)
1220   INSN(casa,   true,  false)
1221   INSN(casl,   false, true)
1222   INSN(casal,  true,  true)
1223 #undef INSN
1224 
1225   // CASP
1226 #define INSN(NAME, a, r)                                                \
1227   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1228             Register Rt, Register Rt1, Register Rn) {                   \
1229     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1230            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1231            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1232     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1233   }
1234   INSN(casp,    false, false)
1235   INSN(caspa,   true,  false)
1236   INSN(caspl,   false, true)
1237   INSN(caspal,  true,  true)
1238 #undef INSN
1239 
1240   // 8.1 Atomic operations
1241   void lse_atomic(Register Rs, Register Rt, Register Rn,
1242                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1243     starti;
1244     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1245     rf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), rf(Rn, 5), zrf(Rt, 0);
1246   }
1247 
1248 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1249   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1250     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1251   }                                                                     \
1252   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1253     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1254   }                                                                     \
1255   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1256     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1257   }                                                                     \
1258   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1259     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1260   }
1261   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1262   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1263   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1264   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1265   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1266   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1267   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1268   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1269   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1270 #undef INSN
1271 
1272   // Load register (literal)
1273 #define INSN(NAME, opc, V)                                              \
1274   void NAME(Register Rt, address dest) {                                \
1275     long offset = (dest - pc()) >> 2;                                   \
1276     starti;                                                             \
1277     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1278       sf(offset, 23, 5);                                                \
1279     rf(Rt, 0);                                                          \
1280   }                                                                     \
1281   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1282     InstructionMark im(this);                                           \
1283     guarantee(rtype == relocInfo::internal_word_type,                   \
1284               "only internal_word_type relocs make sense here");        \
1285     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1286     NAME(Rt, dest);                                                     \
1287   }                                                                     \
1288   void NAME(Register Rt, Label &L) {                                    \
1289     wrap_label(Rt, L, &Assembler::NAME);                                \
1290   }
1291 
1292   INSN(ldrw, 0b00, 0);
1293   INSN(ldr, 0b01, 0);
1294   INSN(ldrsw, 0b10, 0);
1295 
1296 #undef INSN
1297 
1298 #define INSN(NAME, opc, V)                                              \
1299   void NAME(FloatRegister Rt, address dest) {                           \
1300     long offset = (dest - pc()) >> 2;                                   \
1301     starti;                                                             \
1302     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1303       sf(offset, 23, 5);                                                \
1304     rf((Register)Rt, 0);                                                \
1305   }
1306 
1307   INSN(ldrs, 0b00, 1);
1308   INSN(ldrd, 0b01, 1);
1309   INSN(ldrq, 0b10, 1);
1310 
1311 #undef INSN
1312 
1313 #define INSN(NAME, opc, V)                                              \
1314   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1315     long offset = (dest - pc()) >> 2;                                   \
1316     starti;                                                             \
1317     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1318       sf(offset, 23, 5);                                                \
1319     f(op, 4, 0);                                                        \
1320   }                                                                     \
1321   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1322     wrap_label(L, op, &Assembler::NAME);                                \
1323   }
1324 
1325   INSN(prfm, 0b11, 0);
1326 
1327 #undef INSN
1328 
1329   // Load/store
1330   void ld_st1(int opc, int p1, int V, int L,
1331               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1332     starti;
1333     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1334     zrf(Rt2, 10), zrf(Rt1, 0);
1335     if (no_allocate) {
1336       adr.encode_nontemporal_pair(current);
1337     } else {
1338       adr.encode_pair(current);
1339     }
1340   }
1341 
1342   // Load/store register pair (offset)
1343 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1344   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1345     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1346    }
1347 
1348   INSN(stpw, 0b00, 0b101, 0, 0, false);
1349   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1350   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1351   INSN(stp, 0b10, 0b101, 0, 0, false);
1352   INSN(ldp, 0b10, 0b101, 0, 1, false);
1353 
1354   // Load/store no-allocate pair (offset)
1355   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1356   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1357   INSN(stnp, 0b10, 0b101, 0, 0, true);
1358   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1359 
1360 #undef INSN
1361 
1362 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1363   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1364     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1365    }
1366 
1367   INSN(stps, 0b00, 0b101, 1, 0, false);
1368   INSN(ldps, 0b00, 0b101, 1, 1, false);
1369   INSN(stpd, 0b01, 0b101, 1, 0, false);
1370   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1371   INSN(stpq, 0b10, 0b101, 1, 0, false);
1372   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1373 
1374 #undef INSN
1375 
1376   // Load/store register (all modes)
1377   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1378     starti;
1379 
1380     f(V, 26); // general reg?
1381     zrf(Rt, 0);
1382 
1383     // Encoding for literal loads is done here (rather than pushed
1384     // down into Address::encode) because the encoding of this
1385     // instruction is too different from all of the other forms to
1386     // make it worth sharing.
1387     if (adr.getMode() == Address::literal) {
1388       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1389       assert(op == 0b01, "literal form can only be used with loads");
1390       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1391       long offset = (adr.target() - pc()) >> 2;
1392       sf(offset, 23, 5);
1393       code_section()->relocate(pc(), adr.rspec());
1394       return;
1395     }
1396 
1397     f(size, 31, 30);
1398     f(op, 23, 22); // str
1399     adr.encode(current);
1400   }
1401 
1402 #define INSN(NAME, size, op)                            \
1403   void NAME(Register Rt, const Address &adr) {          \
1404     ld_st2(Rt, adr, size, op);                          \
1405   }                                                     \
1406 
1407   INSN(str, 0b11, 0b00);
1408   INSN(strw, 0b10, 0b00);
1409   INSN(strb, 0b00, 0b00);
1410   INSN(strh, 0b01, 0b00);
1411 
1412   INSN(ldr, 0b11, 0b01);
1413   INSN(ldrw, 0b10, 0b01);
1414   INSN(ldrb, 0b00, 0b01);
1415   INSN(ldrh, 0b01, 0b01);
1416 
1417   INSN(ldrsb, 0b00, 0b10);
1418   INSN(ldrsbw, 0b00, 0b11);
1419   INSN(ldrsh, 0b01, 0b10);
1420   INSN(ldrshw, 0b01, 0b11);
1421   INSN(ldrsw, 0b10, 0b10);
1422 
1423 #undef INSN
1424 
1425 #define INSN(NAME, size, op)                                    \
1426   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1427     ld_st2((Register)pfop, adr, size, op);                      \
1428   }
1429 
1430   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1431                           // writeback modes, but the assembler
1432                           // doesn't enfore that.
1433 
1434 #undef INSN
1435 
1436 #define INSN(NAME, size, op)                            \
1437   void NAME(FloatRegister Rt, const Address &adr) {     \
1438     ld_st2((Register)Rt, adr, size, op, 1);             \
1439   }
1440 
1441   INSN(strd, 0b11, 0b00);
1442   INSN(strs, 0b10, 0b00);
1443   INSN(ldrd, 0b11, 0b01);
1444   INSN(ldrs, 0b10, 0b01);
1445   INSN(strq, 0b00, 0b10);
1446   INSN(ldrq, 0x00, 0b11);
1447 
1448 #undef INSN
1449 
1450   enum shift_kind { LSL, LSR, ASR, ROR };
1451 
1452   void op_shifted_reg(unsigned decode,
1453                       enum shift_kind kind, unsigned shift,
1454                       unsigned size, unsigned op) {
1455     f(size, 31);
1456     f(op, 30, 29);
1457     f(decode, 28, 24);
1458     f(shift, 15, 10);
1459     f(kind, 23, 22);
1460   }
1461 
1462   // Logical (shifted register)
1463 #define INSN(NAME, size, op, N)                                 \
1464   void NAME(Register Rd, Register Rn, Register Rm,              \
1465             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1466     starti;                                                     \
1467     f(N, 21);                                                   \
1468     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1469     op_shifted_reg(0b01010, kind, shift, size, op);             \
1470   }
1471 
1472   INSN(andr, 1, 0b00, 0);
1473   INSN(orr, 1, 0b01, 0);
1474   INSN(eor, 1, 0b10, 0);
1475   INSN(ands, 1, 0b11, 0);
1476   INSN(andw, 0, 0b00, 0);
1477   INSN(orrw, 0, 0b01, 0);
1478   INSN(eorw, 0, 0b10, 0);
1479   INSN(andsw, 0, 0b11, 0);
1480 
1481   INSN(bic, 1, 0b00, 1);
1482   INSN(orn, 1, 0b01, 1);
1483   INSN(eon, 1, 0b10, 1);
1484   INSN(bics, 1, 0b11, 1);
1485   INSN(bicw, 0, 0b00, 1);
1486   INSN(ornw, 0, 0b01, 1);
1487   INSN(eonw, 0, 0b10, 1);
1488   INSN(bicsw, 0, 0b11, 1);
1489 
1490 #undef INSN
1491 
1492   // Add/subtract (shifted register)
1493 #define INSN(NAME, size, op)                            \
1494   void NAME(Register Rd, Register Rn, Register Rm,      \
1495             enum shift_kind kind, unsigned shift = 0) { \
1496     starti;                                             \
1497     f(0, 21);                                           \
1498     assert_cond(kind != ROR);                           \
1499     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1500     op_shifted_reg(0b01011, kind, shift, size, op);     \
1501   }
1502 
1503   INSN(add, 1, 0b000);
1504   INSN(sub, 1, 0b10);
1505   INSN(addw, 0, 0b000);
1506   INSN(subw, 0, 0b10);
1507 
1508   INSN(adds, 1, 0b001);
1509   INSN(subs, 1, 0b11);
1510   INSN(addsw, 0, 0b001);
1511   INSN(subsw, 0, 0b11);
1512 
1513 #undef INSN
1514 
1515   // Add/subtract (extended register)
1516 #define INSN(NAME, op)                                                  \
1517   void NAME(Register Rd, Register Rn, Register Rm,                      \
1518            ext::operation option, int amount = 0) {                     \
1519     starti;                                                             \
1520     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1521     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1522   }
1523 
1524   void add_sub_extended_reg(unsigned op, unsigned decode,
1525     Register Rd, Register Rn, Register Rm,
1526     unsigned opt, ext::operation option, unsigned imm) {
1527     guarantee(imm <= 4, "shift amount must be < 4");
1528     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1529     f(option, 15, 13), f(imm, 12, 10);
1530   }
1531 
1532   INSN(addw, 0b000);
1533   INSN(subw, 0b010);
1534   INSN(add, 0b100);
1535   INSN(sub, 0b110);
1536 
1537 #undef INSN
1538 
1539 #define INSN(NAME, op)                                                  \
1540   void NAME(Register Rd, Register Rn, Register Rm,                      \
1541            ext::operation option, int amount = 0) {                     \
1542     starti;                                                             \
1543     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1544     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1545   }
1546 
1547   INSN(addsw, 0b001);
1548   INSN(subsw, 0b011);
1549   INSN(adds, 0b101);
1550   INSN(subs, 0b111);
1551 
1552 #undef INSN
1553 
1554   // Aliases for short forms of add and sub
1555 #define INSN(NAME)                                      \
1556   void NAME(Register Rd, Register Rn, Register Rm) {    \
1557     if (Rd == sp || Rn == sp)                           \
1558       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1559     else                                                \
1560       NAME(Rd, Rn, Rm, LSL);                            \
1561   }
1562 
1563   INSN(addw);
1564   INSN(subw);
1565   INSN(add);
1566   INSN(sub);
1567 
1568   INSN(addsw);
1569   INSN(subsw);
1570   INSN(adds);
1571   INSN(subs);
1572 
1573 #undef INSN
1574 
1575   // Add/subtract (with carry)
1576   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1577     starti;
1578     f(op, 31, 29);
1579     f(0b11010000, 28, 21);
1580     f(0b000000, 15, 10);
1581     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1582   }
1583 
1584   #define INSN(NAME, op)                                \
1585     void NAME(Register Rd, Register Rn, Register Rm) {  \
1586       add_sub_carry(op, Rd, Rn, Rm);                    \
1587     }
1588 
1589   INSN(adcw, 0b000);
1590   INSN(adcsw, 0b001);
1591   INSN(sbcw, 0b010);
1592   INSN(sbcsw, 0b011);
1593   INSN(adc, 0b100);
1594   INSN(adcs, 0b101);
1595   INSN(sbc,0b110);
1596   INSN(sbcs, 0b111);
1597 
1598 #undef INSN
1599 
1600   // Conditional compare (both kinds)
1601   void conditional_compare(unsigned op, int o2, int o3,
1602                            Register Rn, unsigned imm5, unsigned nzcv,
1603                            unsigned cond) {
1604     f(op, 31, 29);
1605     f(0b11010010, 28, 21);
1606     f(cond, 15, 12);
1607     f(o2, 10);
1608     f(o3, 4);
1609     f(nzcv, 3, 0);
1610     f(imm5, 20, 16), rf(Rn, 5);
1611   }
1612 
1613 #define INSN(NAME, op)                                                  \
1614   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1615     starti;                                                             \
1616     f(0, 11);                                                           \
1617     conditional_compare(op, 0, 0, Rn, (uintptr_t)Rm, imm, cond);        \
1618   }                                                                     \
1619                                                                         \
1620   void NAME(Register Rn, int imm5, int imm, Condition cond) {   \
1621     starti;                                                             \
1622     f(1, 11);                                                           \
1623     conditional_compare(op, 0, 0, Rn, imm5, imm, cond);                 \
1624   }
1625 
1626   INSN(ccmnw, 0b001);
1627   INSN(ccmpw, 0b011);
1628   INSN(ccmn, 0b101);
1629   INSN(ccmp, 0b111);
1630 
1631 #undef INSN
1632 
1633   // Conditional select
1634   void conditional_select(unsigned op, unsigned op2,
1635                           Register Rd, Register Rn, Register Rm,
1636                           unsigned cond) {
1637     starti;
1638     f(op, 31, 29);
1639     f(0b11010100, 28, 21);
1640     f(cond, 15, 12);
1641     f(op2, 11, 10);
1642     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1643   }
1644 
1645 #define INSN(NAME, op, op2)                                             \
1646   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1647     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1648   }
1649 
1650   INSN(cselw, 0b000, 0b00);
1651   INSN(csincw, 0b000, 0b01);
1652   INSN(csinvw, 0b010, 0b00);
1653   INSN(csnegw, 0b010, 0b01);
1654   INSN(csel, 0b100, 0b00);
1655   INSN(csinc, 0b100, 0b01);
1656   INSN(csinv, 0b110, 0b00);
1657   INSN(csneg, 0b110, 0b01);
1658 
1659 #undef INSN
1660 
1661   // Data processing
1662   void data_processing(unsigned op29, unsigned opcode,
1663                        Register Rd, Register Rn) {
1664     f(op29, 31, 29), f(0b11010110, 28, 21);
1665     f(opcode, 15, 10);
1666     rf(Rn, 5), rf(Rd, 0);
1667   }
1668 
1669   // (1 source)
1670 #define INSN(NAME, op29, opcode2, opcode)       \
1671   void NAME(Register Rd, Register Rn) {         \
1672     starti;                                     \
1673     f(opcode2, 20, 16);                         \
1674     data_processing(op29, opcode, Rd, Rn);      \
1675   }
1676 
1677   INSN(rbitw,  0b010, 0b00000, 0b00000);
1678   INSN(rev16w, 0b010, 0b00000, 0b00001);
1679   INSN(revw,   0b010, 0b00000, 0b00010);
1680   INSN(clzw,   0b010, 0b00000, 0b00100);
1681   INSN(clsw,   0b010, 0b00000, 0b00101);
1682 
1683   INSN(rbit,   0b110, 0b00000, 0b00000);
1684   INSN(rev16,  0b110, 0b00000, 0b00001);
1685   INSN(rev32,  0b110, 0b00000, 0b00010);
1686   INSN(rev,    0b110, 0b00000, 0b00011);
1687   INSN(clz,    0b110, 0b00000, 0b00100);
1688   INSN(cls,    0b110, 0b00000, 0b00101);
1689 
1690 #undef INSN
1691 
1692   // (2 sources)
1693 #define INSN(NAME, op29, opcode)                        \
1694   void NAME(Register Rd, Register Rn, Register Rm) {    \
1695     starti;                                             \
1696     rf(Rm, 16);                                         \
1697     data_processing(op29, opcode, Rd, Rn);              \
1698   }
1699 
1700   INSN(udivw, 0b000, 0b000010);
1701   INSN(sdivw, 0b000, 0b000011);
1702   INSN(lslvw, 0b000, 0b001000);
1703   INSN(lsrvw, 0b000, 0b001001);
1704   INSN(asrvw, 0b000, 0b001010);
1705   INSN(rorvw, 0b000, 0b001011);
1706 
1707   INSN(udiv, 0b100, 0b000010);
1708   INSN(sdiv, 0b100, 0b000011);
1709   INSN(lslv, 0b100, 0b001000);
1710   INSN(lsrv, 0b100, 0b001001);
1711   INSN(asrv, 0b100, 0b001010);
1712   INSN(rorv, 0b100, 0b001011);
1713 
1714 #undef INSN
1715 
1716   // (3 sources)
1717   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1718                        Register Rd, Register Rn, Register Rm,
1719                        Register Ra) {
1720     starti;
1721     f(op54, 31, 29), f(0b11011, 28, 24);
1722     f(op31, 23, 21), f(o0, 15);
1723     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1724   }
1725 
1726 #define INSN(NAME, op54, op31, o0)                                      \
1727   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1728     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1729   }
1730 
1731   INSN(maddw, 0b000, 0b000, 0);
1732   INSN(msubw, 0b000, 0b000, 1);
1733   INSN(madd, 0b100, 0b000, 0);
1734   INSN(msub, 0b100, 0b000, 1);
1735   INSN(smaddl, 0b100, 0b001, 0);
1736   INSN(smsubl, 0b100, 0b001, 1);
1737   INSN(umaddl, 0b100, 0b101, 0);
1738   INSN(umsubl, 0b100, 0b101, 1);
1739 
1740 #undef INSN
1741 
1742 #define INSN(NAME, op54, op31, o0)                      \
1743   void NAME(Register Rd, Register Rn, Register Rm) {    \
1744     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1745   }
1746 
1747   INSN(smulh, 0b100, 0b010, 0);
1748   INSN(umulh, 0b100, 0b110, 0);
1749 
1750 #undef INSN
1751 
1752   // Floating-point data-processing (1 source)
1753   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1754                        FloatRegister Vd, FloatRegister Vn) {
1755     starti;
1756     f(op31, 31, 29);
1757     f(0b11110, 28, 24);
1758     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1759     rf(Vn, 5), rf(Vd, 0);
1760   }
1761 
1762 #define INSN(NAME, op31, type, opcode)                  \
1763   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1764     data_processing(op31, type, opcode, Vd, Vn);        \
1765   }
1766 
1767 private:
1768   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1769 public:
1770   INSN(fabss, 0b000, 0b00, 0b000001);
1771   INSN(fnegs, 0b000, 0b00, 0b000010);
1772   INSN(fsqrts, 0b000, 0b00, 0b000011);
1773   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1774 
1775 private:
1776   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1777 public:
1778   INSN(fabsd, 0b000, 0b01, 0b000001);
1779   INSN(fnegd, 0b000, 0b01, 0b000010);
1780   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1781   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1782 
1783   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1784     assert(Vd != Vn, "should be");
1785     i_fmovd(Vd, Vn);
1786   }
1787 
1788   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1789     assert(Vd != Vn, "should be");
1790     i_fmovs(Vd, Vn);
1791   }
1792 
1793 #undef INSN
1794 
1795   // Floating-point data-processing (2 source)
1796   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1797                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1798     starti;
1799     f(op31, 31, 29);
1800     f(0b11110, 28, 24);
1801     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1802     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1803   }
1804 
1805 #define INSN(NAME, op31, type, opcode)                  \
1806   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1807     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1808   }
1809 
1810   INSN(fmuls, 0b000, 0b00, 0b0000);
1811   INSN(fdivs, 0b000, 0b00, 0b0001);
1812   INSN(fadds, 0b000, 0b00, 0b0010);
1813   INSN(fsubs, 0b000, 0b00, 0b0011);
1814   INSN(fnmuls, 0b000, 0b00, 0b1000);
1815 
1816   INSN(fmuld, 0b000, 0b01, 0b0000);
1817   INSN(fdivd, 0b000, 0b01, 0b0001);
1818   INSN(faddd, 0b000, 0b01, 0b0010);
1819   INSN(fsubd, 0b000, 0b01, 0b0011);
1820   INSN(fnmuld, 0b000, 0b01, 0b1000);
1821 
1822 #undef INSN
1823 
1824    // Floating-point data-processing (3 source)
1825   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1826                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1827                        FloatRegister Va) {
1828     starti;
1829     f(op31, 31, 29);
1830     f(0b11111, 28, 24);
1831     f(type, 23, 22), f(o1, 21), f(o0, 15);
1832     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1833   }
1834 
1835 #define INSN(NAME, op31, type, o1, o0)                                  \
1836   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1837             FloatRegister Va) {                                         \
1838     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1839   }
1840 
1841   INSN(fmadds, 0b000, 0b00, 0, 0);
1842   INSN(fmsubs, 0b000, 0b00, 0, 1);
1843   INSN(fnmadds, 0b000, 0b00, 1, 0);
1844   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1845 
1846   INSN(fmaddd, 0b000, 0b01, 0, 0);
1847   INSN(fmsubd, 0b000, 0b01, 0, 1);
1848   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1849   INSN(fnmsub, 0b000, 0b01, 1, 1);
1850 
1851 #undef INSN
1852 
1853    // Floating-point conditional select
1854   void fp_conditional_select(unsigned op31, unsigned type,
1855                              unsigned op1, unsigned op2,
1856                              Condition cond, FloatRegister Vd,
1857                              FloatRegister Vn, FloatRegister Vm) {
1858     starti;
1859     f(op31, 31, 29);
1860     f(0b11110, 28, 24);
1861     f(type, 23, 22);
1862     f(op1, 21, 21);
1863     f(op2, 11, 10);
1864     f(cond, 15, 12);
1865     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1866   }
1867 
1868 #define INSN(NAME, op31, type, op1, op2)                                \
1869   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1870             FloatRegister Vm, Condition cond) {                         \
1871     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1872   }
1873 
1874   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1875   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1876 
1877 #undef INSN
1878 
1879    // Floating-point<->integer conversions
1880   void float_int_convert(unsigned op31, unsigned type,
1881                          unsigned rmode, unsigned opcode,
1882                          Register Rd, Register Rn) {
1883     starti;
1884     f(op31, 31, 29);
1885     f(0b11110, 28, 24);
1886     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1887     f(opcode, 18, 16), f(0b000000, 15, 10);
1888     zrf(Rn, 5), zrf(Rd, 0);
1889   }
1890 
1891 #define INSN(NAME, op31, type, rmode, opcode)                           \
1892   void NAME(Register Rd, FloatRegister Vn) {                            \
1893     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1894   }
1895 
1896   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1897   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1898   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1899   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1900 
1901   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1902   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1903 
1904   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1905 
1906 #undef INSN
1907 
1908 #define INSN(NAME, op31, type, rmode, opcode)                           \
1909   void NAME(FloatRegister Vd, Register Rn) {                            \
1910     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1911   }
1912 
1913   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1914   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1915 
1916   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1917   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1918   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1919   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1920 
1921   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1922 
1923 #undef INSN
1924 
1925   // Floating-point compare
1926   void float_compare(unsigned op31, unsigned type,
1927                      unsigned op, unsigned op2,
1928                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1929     starti;
1930     f(op31, 31, 29);
1931     f(0b11110, 28, 24);
1932     f(type, 23, 22), f(1, 21);
1933     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1934     rf(Vn, 5), rf(Vm, 16);
1935   }
1936 
1937 
1938 #define INSN(NAME, op31, type, op, op2)                 \
1939   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1940     float_compare(op31, type, op, op2, Vn, Vm);         \
1941   }
1942 
1943 #define INSN1(NAME, op31, type, op, op2)        \
1944   void NAME(FloatRegister Vn, double d) {       \
1945     assert_cond(d == 0.0);                      \
1946     float_compare(op31, type, op, op2, Vn);     \
1947   }
1948 
1949   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1950   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1951   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1952   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1953 
1954   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1955   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1956   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1957   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1958 
1959 #undef INSN
1960 #undef INSN1
1961 
1962   // Floating-point Move (immediate)
1963 private:
1964   unsigned pack(double value);
1965 
1966   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
1967     starti;
1968     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
1969     f(pack(value), 20, 13), f(0b10000000, 12, 5);
1970     rf(Vn, 0);
1971   }
1972 
1973 public:
1974 
1975   void fmovs(FloatRegister Vn, double value) {
1976     if (value)
1977       fmov_imm(Vn, value, 0b00);
1978     else
1979       fmovs(Vn, zr);
1980   }
1981   void fmovd(FloatRegister Vn, double value) {
1982     if (value)
1983       fmov_imm(Vn, value, 0b01);
1984     else
1985       fmovd(Vn, zr);
1986   }
1987 
1988 /* SIMD extensions
1989  *
1990  * We just use FloatRegister in the following. They are exactly the same
1991  * as SIMD registers.
1992  */
1993  public:
1994 
1995   enum SIMD_Arrangement {
1996        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
1997   };
1998 
1999   enum SIMD_RegVariant {
2000        B, H, S, D, Q
2001   };
2002 
2003 #define INSN(NAME, op)                                            \
2004   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
2005     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2006   }                                                                      \
2007 
2008   INSN(ldr, 1);
2009   INSN(str, 0);
2010 
2011 #undef INSN
2012 
2013  private:
2014 
2015   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2016     starti;
2017     f(0,31), f((int)T & 1, 30);
2018     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2019     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
2020   }
2021   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2022              int imm, int op1, int op2) {
2023     starti;
2024     f(0,31), f((int)T & 1, 30);
2025     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2026     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
2027   }
2028   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2029              Register Xm, int op1, int op2) {
2030     starti;
2031     f(0,31), f((int)T & 1, 30);
2032     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2033     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
2034   }
2035 
2036  void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2) {
2037    switch (a.getMode()) {
2038    case Address::base_plus_offset:
2039      guarantee(a.offset() == 0, "no offset allowed here");
2040      ld_st(Vt, T, a.base(), op1, op2);
2041      break;
2042    case Address::post:
2043      ld_st(Vt, T, a.base(), a.offset(), op1, op2);
2044      break;
2045    case Address::base_plus_offset_reg:
2046      ld_st(Vt, T, a.base(), a.index(), op1, op2);
2047      break;
2048    default:
2049      ShouldNotReachHere();
2050    }
2051  }
2052 
2053  public:
2054 
2055 #define INSN1(NAME, op1, op2)                                   \
2056   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2057    ld_st(Vt, T, a, op1, op2);                                           \
2058  }
2059 
2060 #define INSN2(NAME, op1, op2)                                           \
2061   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2062     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2063     ld_st(Vt, T, a, op1, op2);                                          \
2064   }
2065 
2066 #define INSN3(NAME, op1, op2)                                           \
2067   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2068             SIMD_Arrangement T, const Address &a) {                     \
2069     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2070            "Registers must be ordered");                                \
2071     ld_st(Vt, T, a, op1, op2);                                          \
2072   }
2073 
2074 #define INSN4(NAME, op1, op2)                                           \
2075   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2076             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2077     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2078            Vt3->successor() == Vt4, "Registers must be ordered");       \
2079     ld_st(Vt, T, a, op1, op2);                                          \
2080   }
2081 
2082   INSN1(ld1,  0b001100010, 0b0111);
2083   INSN2(ld1,  0b001100010, 0b1010);
2084   INSN3(ld1,  0b001100010, 0b0110);
2085   INSN4(ld1,  0b001100010, 0b0010);
2086 
2087   INSN2(ld2,  0b001100010, 0b1000);
2088   INSN3(ld3,  0b001100010, 0b0100);
2089   INSN4(ld4,  0b001100010, 0b0000);
2090 
2091   INSN1(st1,  0b001100000, 0b0111);
2092   INSN2(st1,  0b001100000, 0b1010);
2093   INSN3(st1,  0b001100000, 0b0110);
2094   INSN4(st1,  0b001100000, 0b0010);
2095 
2096   INSN2(st2,  0b001100000, 0b1000);
2097   INSN3(st3,  0b001100000, 0b0100);
2098   INSN4(st4,  0b001100000, 0b0000);
2099 
2100   INSN1(ld1r, 0b001101010, 0b1100);
2101   INSN2(ld2r, 0b001101011, 0b1100);
2102   INSN3(ld3r, 0b001101010, 0b1110);
2103   INSN4(ld4r, 0b001101011, 0b1110);
2104 
2105 #undef INSN1
2106 #undef INSN2
2107 #undef INSN3
2108 #undef INSN4
2109 
2110 #define INSN(NAME, opc)                                                                 \
2111   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2112     starti;                                                                             \
2113     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2114     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2115     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2116   }
2117 
2118   INSN(eor,  0b101110001);
2119   INSN(orr,  0b001110101);
2120   INSN(andr, 0b001110001);
2121   INSN(bic,  0b001110011);
2122   INSN(bif,  0b101110111);
2123   INSN(bit,  0b101110101);
2124   INSN(bsl,  0b101110011);
2125   INSN(orn,  0b001110111);
2126 
2127 #undef INSN
2128 
2129 #define INSN(NAME, opc, opc2)                                                                 \
2130   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2131     starti;                                                                             \
2132     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2133     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2134     rf(Vn, 5), rf(Vd, 0);                                                               \
2135   }
2136 
2137   INSN(addv, 0, 0b100001);
2138   INSN(subv, 1, 0b100001);
2139   INSN(mulv, 0, 0b100111);
2140   INSN(mlav, 0, 0b100101);
2141   INSN(mlsv, 1, 0b100101);
2142   INSN(sshl, 0, 0b010001);
2143   INSN(ushl, 1, 0b010001);
2144 
2145 #undef INSN
2146 
2147 #define INSN(NAME, opc, opc2) \
2148   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2149     starti;                                                                             \
2150     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2151     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2152     rf(Vn, 5), rf(Vd, 0);                                                               \
2153   }
2154 
2155   INSN(absr,  0, 0b100000101110);
2156   INSN(negr,  1, 0b100000101110);
2157   INSN(notr,  1, 0b100000010110);
2158   INSN(addv,  0, 0b110001101110);
2159   INSN(cls,   0, 0b100000010010);
2160   INSN(clz,   1, 0b100000010010);
2161   INSN(cnt,   0, 0b100000010110);
2162   INSN(smaxv, 0, 0b110000101010);
2163   INSN(sminv, 0, 0b110001101010);
2164   INSN(umaxv, 1, 0b110000101010);
2165   INSN(uminv, 1, 0b110001101010);
2166 
2167 #undef INSN
2168 
2169 #define INSN(NAME, op0, cmode0) \
2170   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2171     unsigned cmode = cmode0;                                                           \
2172     unsigned op = op0;                                                                 \
2173     starti;                                                                            \
2174     assert(lsl == 0 ||                                                                 \
2175            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2176            ((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift");             \
2177     cmode |= lsl >> 2;                                                                 \
2178     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2179     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2180       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2181       cmode = 0b1110;                                                                  \
2182       if (T == T1D || T == T2D) op = 1;                                                \
2183     }                                                                                  \
2184     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2185     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2186     rf(Vd, 0);                                                                         \
2187   }
2188 
2189   INSN(movi, 0, 0);
2190   INSN(orri, 0, 1);
2191   INSN(mvni, 1, 0);
2192   INSN(bici, 1, 1);
2193 
2194 #undef INSN
2195 
2196 #define INSN(NAME, op1, op2, op3) \
2197   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2198     starti;                                                                             \
2199     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2200     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2201     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2202   }
2203 
2204   INSN(fadd, 0, 0, 0b110101);
2205   INSN(fdiv, 1, 0, 0b111111);
2206   INSN(fmul, 1, 0, 0b110111);
2207   INSN(fsub, 0, 1, 0b110101);
2208 
2209 #undef INSN
2210 
2211 #define INSN(NAME, opc)                                                                 \
2212   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2213     starti;                                                                             \
2214     assert(T == T4S, "arrangement must be T4S");                                        \
2215     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2216   }
2217 
2218   INSN(sha1c,     0b000000);
2219   INSN(sha1m,     0b001000);
2220   INSN(sha1p,     0b000100);
2221   INSN(sha1su0,   0b001100);
2222   INSN(sha256h2,  0b010100);
2223   INSN(sha256h,   0b010000);
2224   INSN(sha256su1, 0b011000);
2225 
2226 #undef INSN
2227 
2228 #define INSN(NAME, opc)                                                                 \
2229   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2230     starti;                                                                             \
2231     assert(T == T4S, "arrangement must be T4S");                                        \
2232     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2233   }
2234 
2235   INSN(sha1h,     0b000010);
2236   INSN(sha1su1,   0b000110);
2237   INSN(sha256su0, 0b001010);
2238 
2239 #undef INSN
2240 
2241 #define INSN(NAME, opc)                           \
2242   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2243     starti;                                       \
2244     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2245   }
2246 
2247   INSN(aese, 0b0100111000101000010010);
2248   INSN(aesd, 0b0100111000101000010110);
2249   INSN(aesmc, 0b0100111000101000011010);
2250   INSN(aesimc, 0b0100111000101000011110);
2251 
2252 #undef INSN
2253 
2254   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2255     starti;
2256     assert(T != Q, "invalid register variant");
2257     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2258     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2259   }
2260 
2261   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2262     starti;
2263     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2264     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2265     rf(Vn, 5), rf(Rd, 0);
2266   }
2267 
2268 #define INSN(NAME, opc, opc2)                                           \
2269   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2270     starti;                                                             \
2271     /* The encodings for the immh:immb fields (bits 22:16) are          \
2272      *   0001 xxx       8B/16B, shift = xxx                             \
2273      *   001x xxx       4H/8H,  shift = xxxx                            \
2274      *   01xx xxx       2S/4S,  shift = xxxxx                           \
2275      *   1xxx xxx       1D/2D,  shift = xxxxxx (1D is RESERVED)         \
2276      */                                                                 \
2277     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2278     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2279     f((1 << ((T>>1)+3))|shift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2280   }
2281 
2282   INSN(shl,  0, 0b010101);
2283   INSN(sshr, 0, 0b000001);
2284   INSN(ushr, 1, 0b000001);
2285 
2286 #undef INSN
2287 
2288   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2289     starti;
2290     /* The encodings for the immh:immb fields (bits 22:16) are
2291      *   0001 xxx       8H, 8B/16b shift = xxx
2292      *   001x xxx       4S, 4H/8H  shift = xxxx
2293      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2294      *   1xxx xxx       RESERVED
2295      */
2296     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2297     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2298     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2299     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2300   }
2301   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2302     ushll(Vd, Ta, Vn, Tb, shift);
2303   }
2304 
2305   void uzp1(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T, int op = 0){
2306     starti;
2307     f(0, 31), f((T & 0x1), 30), f(0b001110, 29, 24), f((T >> 1), 23, 22), f(0, 21);
2308     rf(Vm, 16), f(0, 15), f(op, 14), f(0b0110, 13, 10), rf(Vn, 5), rf(Vd, 0);
2309   }
2310   void uzp2(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T){
2311     uzp1(Vd, Vn, Vm, T, 1);
2312   }
2313 
2314   // Move from general purpose register
2315   //   mov  Vd.T[index], Rn
2316   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2317     starti;
2318     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2319     f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
2320   }
2321 
2322   // Move to general purpose register
2323   //   mov  Rd, Vn.T[index]
2324   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2325     starti;
2326     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2327     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2328     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2329   }
2330 
2331   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2332     starti;
2333     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2334            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2335     int size = (Ta == T1Q) ? 0b11 : 0b00;
2336     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2337     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2338   }
2339   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2340     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2341     pmull(Vd, Ta, Vn, Vm, Tb);
2342   }
2343 
2344   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2345     starti;
2346     int size_b = (int)Tb >> 1;
2347     int size_a = (int)Ta >> 1;
2348     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2349     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2350     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2351   }
2352 
2353   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2354   {
2355     starti;
2356     assert(T != T1D, "reserved encoding");
2357     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2358     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
2359   }
2360 
2361   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2362   {
2363     starti;
2364     assert(T != T1D, "reserved encoding");
2365     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2366     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2367     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2368   }
2369 
2370   // AdvSIMD ZIP/UZP/TRN
2371 #define INSN(NAME, opcode)                                              \
2372   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2373     starti;                                                             \
2374     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0b001110, 15, 10);       \
2375     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
2376     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
2377   }
2378 
2379   INSN(uzp1, 0b001);
2380   INSN(trn1, 0b010);
2381   INSN(zip1, 0b011);
2382   INSN(uzp2, 0b101);
2383   INSN(trn2, 0b110);
2384   INSN(zip2, 0b111);
2385 
2386 #undef INSN
2387 
2388   // CRC32 instructions
2389 #define INSN(NAME, c, sf, sz)                                             \
2390   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2391     starti;                                                               \
2392     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2393     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2394   }
2395 
2396   INSN(crc32b,  0, 0, 0b00);
2397   INSN(crc32h,  0, 0, 0b01);
2398   INSN(crc32w,  0, 0, 0b10);
2399   INSN(crc32x,  0, 1, 0b11);
2400   INSN(crc32cb, 1, 0, 0b00);
2401   INSN(crc32ch, 1, 0, 0b01);
2402   INSN(crc32cw, 1, 0, 0b10);
2403   INSN(crc32cx, 1, 1, 0b11);
2404 
2405 #undef INSN
2406 
2407   // Table vector lookup
2408 #define INSN(NAME, op)                                                  \
2409   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2410     starti;                                                             \
2411     assert(T == T8B || T == T16B, "invalid arrangement");               \
2412     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2413     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2414     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2415   }
2416 
2417   INSN(tbl, 0);
2418   INSN(tbx, 1);
2419 
2420 #undef INSN
2421 
2422   // AdvSIMD two-reg misc
2423 #define INSN(NAME, U, opcode)                                                       \
2424   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2425        starti;                                                                      \
2426        assert((ASSERTION), MSG);                                                    \
2427        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2428        f((int)(T >> 1), 23, 22), f(0b10000, 21, 17), f(opcode, 16, 12);             \
2429        f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                                       \
2430  }
2431 
2432 #define MSG "invalid arrangement"
2433 
2434 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2435   INSN(fsqrt, 1, 0b11111);
2436   INSN(fabs,  0, 0b01111);
2437   INSN(fneg,  1, 0b01111);
2438 #undef ASSERTION
2439 
2440 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2441   INSN(rev64, 0, 0b00000);
2442 #undef ASSERTION
2443 
2444 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2445   INSN(rev32, 1, 0b00000);
2446 private:
2447   INSN(_rbit, 1, 0b00101);
2448 public:
2449 
2450 #undef ASSERTION
2451 
2452 #define ASSERTION (T == T8B || T == T16B)
2453   INSN(rev16, 0, 0b00001);
2454   // RBIT only allows T8B and T16B but encodes them oddly.  Argh...
2455   void rbit(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
2456     assert((ASSERTION), MSG);
2457     _rbit(Vd, SIMD_Arrangement(T & 1 | 0b010), Vn);
2458   }
2459 #undef ASSERTION
2460 
2461 #undef MSG
2462 
2463 #undef INSN
2464 
2465 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2466   {
2467     starti;
2468     assert(T == T8B || T == T16B, "invalid arrangement");
2469     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2470     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2471     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2472     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2473   }
2474 
2475 /* Simulator extensions to the ISA
2476 
2477    haltsim
2478 
2479    takes no arguments, causes the sim to enter a debug break and then
2480    return from the simulator run() call with STATUS_HALT? The linking
2481    code will call fatal() when it sees STATUS_HALT.
2482 
2483    blrt Xn, Wm
2484    blrt Xn, #gpargs, #fpargs, #type
2485    Xn holds the 64 bit x86 branch_address
2486    call format is encoded either as immediate data in the call
2487    or in register Wm. In the latter case
2488      Wm[13..6] = #gpargs,
2489      Wm[5..2] = #fpargs,
2490      Wm[1,0] = #type
2491 
2492    calls the x86 code address 'branch_address' supplied in Xn passing
2493    arguments taken from the general and floating point registers according
2494    to the supplied counts 'gpargs' and 'fpargs'. may return a result in r0
2495    or v0 according to the the return type #type' where
2496 
2497    address branch_address;
2498    uimm4 gpargs;
2499    uimm4 fpargs;
2500    enum ReturnType type;
2501 
2502    enum ReturnType
2503      {
2504        void_ret = 0,
2505        int_ret = 1,
2506        long_ret = 1,
2507        obj_ret = 1, // i.e. same as long
2508        float_ret = 2,
2509        double_ret = 3
2510      }
2511 
2512    notify
2513 
2514    notifies the simulator of a transfer of control. instr[14:0]
2515    identifies the type of change of control.
2516 
2517    0 ==> initial entry to a method.
2518 
2519    1 ==> return into a method from a submethod call.
2520 
2521    2 ==> exit out of Java method code.
2522 
2523    3 ==> start execution for a new bytecode.
2524 
2525    in cases 1 and 2 the simulator is expected to use a JVM callback to
2526    identify the name of the specific method being executed. in case 4
2527    the simulator is expected to use a JVM callback to identify the
2528    bytecode index.
2529 
2530    Instruction encodings
2531    ---------------------
2532 
2533    These are encoded in the space with instr[28:25] = 00 which is
2534    unallocated. Encodings are
2535 
2536                      10987654321098765432109876543210
2537    PSEUDO_HALT   = 0x11100000000000000000000000000000
2538    PSEUDO_BLRT  = 0x11000000000000000_______________
2539    PSEUDO_BLRTR = 0x1100000000000000100000__________
2540    PSEUDO_NOTIFY = 0x10100000000000000_______________
2541 
2542    instr[31,29] = op1 : 111 ==> HALT, 110 ==> BLRT/BLRTR, 101 ==> NOTIFY
2543 
2544    for BLRT
2545      instr[14,11] = #gpargs, instr[10,7] = #fpargs
2546      instr[6,5] = #type, instr[4,0] = Rn
2547    for BLRTR
2548      instr[9,5] = Rm, instr[4,0] = Rn
2549    for NOTIFY
2550      instr[14:0] = type : 0 ==> entry, 1 ==> reentry, 2 ==> exit, 3 ==> bcstart
2551 */
2552 
2553   enum NotifyType { method_entry, method_reentry, method_exit, bytecode_start };
2554 
2555   virtual void notify(int type) {
2556     if (UseBuiltinSim) {
2557       starti;
2558       //  109
2559       f(0b101, 31, 29);
2560       //  87654321098765
2561       f(0b00000000000000, 28, 15);
2562       f(type, 14, 0);
2563     }
2564   }
2565 
2566   void blrt(Register Rn, int gpargs, int fpargs, int type) {
2567     if (UseBuiltinSim) {
2568       starti;
2569       f(0b110, 31 ,29);
2570       f(0b00, 28, 25);
2571       //  4321098765
2572       f(0b0000000000, 24, 15);
2573       f(gpargs, 14, 11);
2574       f(fpargs, 10, 7);
2575       f(type, 6, 5);
2576       rf(Rn, 0);
2577     } else {
2578       blr(Rn);
2579     }
2580   }
2581 
2582   void blrt(Register Rn, Register Rm) {
2583     if (UseBuiltinSim) {
2584       starti;
2585       f(0b110, 31 ,29);
2586       f(0b00, 28, 25);
2587       //  4321098765
2588       f(0b0000000001, 24, 15);
2589       //  43210
2590       f(0b00000, 14, 10);
2591       rf(Rm, 5);
2592       rf(Rn, 0);
2593     } else {
2594       blr(Rn);
2595     }
2596   }
2597 
2598   void haltsim() {
2599     starti;
2600     f(0b111, 31 ,29);
2601     f(0b00, 28, 27);
2602     //  654321098765432109876543210
2603     f(0b000000000000000000000000000, 26, 0);
2604   }
2605 
2606   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2607   }
2608 
2609   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2610                                                 Register tmp,
2611                                                 int offset) {
2612     ShouldNotCallThis();
2613     return RegisterOrConstant();
2614   }
2615 
2616   // Stack overflow checking
2617   virtual void bang_stack_with_offset(int offset);
2618 
2619   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2620   static bool operand_valid_for_add_sub_immediate(long imm);
2621   static bool operand_valid_for_float_immediate(double imm);
2622 
2623   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2624   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2625 };
2626 
2627 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2628                                              Assembler::Membar_mask_bits b) {
2629   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2630 }
2631 
2632 Instruction_aarch64::~Instruction_aarch64() {
2633   assem->emit();
2634 }
2635 
2636 #undef starti
2637 
2638 // Invert a condition
2639 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2640   return Assembler::Condition(int(cond) ^ 1);
2641 }
2642 
2643 class BiasedLockingCounters;
2644 
2645 extern "C" void das(uint64_t start, int len);
2646 
2647 #endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP