1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 142 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 143 Mutex* os::Linux::_createThread_lock = NULL;
 144 pthread_t os::Linux::_main_thread;
 145 int os::Linux::_page_size = -1;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 // Signal number used to suspend/resume a thread
 160 
 161 // do not use any signal number less than SIGSEGV, see 4355769
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 // utility functions
 166 
 167 static int SR_initialize();
 168 
 169 julong os::available_memory() {
 170   return Linux::available_memory();
 171 }
 172 
 173 julong os::Linux::available_memory() {
 174   // values in struct sysinfo are "unsigned long"
 175   struct sysinfo si;
 176   julong avail_mem;
 177 
 178   if (OSContainer::is_containerized()) {
 179     jlong mem_limit, mem_usage;
 180     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 181       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 182                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 183     }
 184     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 185       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 186     }
 187     if (mem_limit > 0 && mem_usage > 0 ) {
 188       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 189       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 190       return avail_mem;
 191     }
 192   }
 193 
 194   sysinfo(&si);
 195   avail_mem = (julong)si.freeram * si.mem_unit;
 196   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 197   return avail_mem;
 198 }
 199 
 200 julong os::physical_memory() {
 201   jlong phys_mem = 0;
 202   if (OSContainer::is_containerized()) {
 203     jlong mem_limit;
 204     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 205       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 206       return mem_limit;
 207     }
 208     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 209                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 210   }
 211 
 212   phys_mem = Linux::physical_memory();
 213   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 214   return phys_mem;
 215 }
 216 
 217 // Return true if user is running as root.
 218 
 219 bool os::have_special_privileges() {
 220   static bool init = false;
 221   static bool privileges = false;
 222   if (!init) {
 223     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 224     init = true;
 225   }
 226   return privileges;
 227 }
 228 
 229 
 230 #ifndef SYS_gettid
 231 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 232   #ifdef __ia64__
 233     #define SYS_gettid 1105
 234   #else
 235     #ifdef __i386__
 236       #define SYS_gettid 224
 237     #else
 238       #ifdef __amd64__
 239         #define SYS_gettid 186
 240       #else
 241         #ifdef __sparc__
 242           #define SYS_gettid 143
 243         #else
 244           #error define gettid for the arch
 245         #endif
 246       #endif
 247     #endif
 248   #endif
 249 #endif
 250 
 251 
 252 // pid_t gettid()
 253 //
 254 // Returns the kernel thread id of the currently running thread. Kernel
 255 // thread id is used to access /proc.
 256 pid_t os::Linux::gettid() {
 257   int rslt = syscall(SYS_gettid);
 258   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 259   return (pid_t)rslt;
 260 }
 261 
 262 // Most versions of linux have a bug where the number of processors are
 263 // determined by looking at the /proc file system.  In a chroot environment,
 264 // the system call returns 1.  This causes the VM to act as if it is
 265 // a single processor and elide locking (see is_MP() call).
 266 static bool unsafe_chroot_detected = false;
 267 static const char *unstable_chroot_error = "/proc file system not found.\n"
 268                      "Java may be unstable running multithreaded in a chroot "
 269                      "environment on Linux when /proc filesystem is not mounted.";
 270 
 271 void os::Linux::initialize_system_info() {
 272   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 273   if (processor_count() == 1) {
 274     pid_t pid = os::Linux::gettid();
 275     char fname[32];
 276     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 277     FILE *fp = fopen(fname, "r");
 278     if (fp == NULL) {
 279       unsafe_chroot_detected = true;
 280     } else {
 281       fclose(fp);
 282     }
 283   }
 284   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 285   assert(processor_count() > 0, "linux error");
 286 }
 287 
 288 void os::init_system_properties_values() {
 289   // The next steps are taken in the product version:
 290   //
 291   // Obtain the JAVA_HOME value from the location of libjvm.so.
 292   // This library should be located at:
 293   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 294   //
 295   // If "/jre/lib/" appears at the right place in the path, then we
 296   // assume libjvm.so is installed in a JDK and we use this path.
 297   //
 298   // Otherwise exit with message: "Could not create the Java virtual machine."
 299   //
 300   // The following extra steps are taken in the debugging version:
 301   //
 302   // If "/jre/lib/" does NOT appear at the right place in the path
 303   // instead of exit check for $JAVA_HOME environment variable.
 304   //
 305   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 306   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 307   // it looks like libjvm.so is installed there
 308   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 309   //
 310   // Otherwise exit.
 311   //
 312   // Important note: if the location of libjvm.so changes this
 313   // code needs to be changed accordingly.
 314 
 315   // See ld(1):
 316   //      The linker uses the following search paths to locate required
 317   //      shared libraries:
 318   //        1: ...
 319   //        ...
 320   //        7: The default directories, normally /lib and /usr/lib.
 321 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 322   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 323 #else
 324   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 325 #endif
 326 
 327 // Base path of extensions installed on the system.
 328 #define SYS_EXT_DIR     "/usr/java/packages"
 329 #define EXTENSIONS_DIR  "/lib/ext"
 330 
 331   // Buffer that fits several sprintfs.
 332   // Note that the space for the colon and the trailing null are provided
 333   // by the nulls included by the sizeof operator.
 334   const size_t bufsize =
 335     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 336          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 337   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 338 
 339   // sysclasspath, java_home, dll_dir
 340   {
 341     char *pslash;
 342     os::jvm_path(buf, bufsize);
 343 
 344     // Found the full path to libjvm.so.
 345     // Now cut the path to <java_home>/jre if we can.
 346     pslash = strrchr(buf, '/');
 347     if (pslash != NULL) {
 348       *pslash = '\0';            // Get rid of /libjvm.so.
 349     }
 350     pslash = strrchr(buf, '/');
 351     if (pslash != NULL) {
 352       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 353     }
 354     Arguments::set_dll_dir(buf);
 355 
 356     if (pslash != NULL) {
 357       pslash = strrchr(buf, '/');
 358       if (pslash != NULL) {
 359         *pslash = '\0';        // Get rid of /lib.
 360       }
 361     }
 362     Arguments::set_java_home(buf);
 363     set_boot_path('/', ':');
 364   }
 365 
 366   // Where to look for native libraries.
 367   //
 368   // Note: Due to a legacy implementation, most of the library path
 369   // is set in the launcher. This was to accomodate linking restrictions
 370   // on legacy Linux implementations (which are no longer supported).
 371   // Eventually, all the library path setting will be done here.
 372   //
 373   // However, to prevent the proliferation of improperly built native
 374   // libraries, the new path component /usr/java/packages is added here.
 375   // Eventually, all the library path setting will be done here.
 376   {
 377     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 378     // should always exist (until the legacy problem cited above is
 379     // addressed).
 380     const char *v = ::getenv("LD_LIBRARY_PATH");
 381     const char *v_colon = ":";
 382     if (v == NULL) { v = ""; v_colon = ""; }
 383     // That's +1 for the colon and +1 for the trailing '\0'.
 384     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 385                                                      strlen(v) + 1 +
 386                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 387                                                      mtInternal);
 388     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 389     Arguments::set_library_path(ld_library_path);
 390     FREE_C_HEAP_ARRAY(char, ld_library_path);
 391   }
 392 
 393   // Extensions directories.
 394   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 395   Arguments::set_ext_dirs(buf);
 396 
 397   FREE_C_HEAP_ARRAY(char, buf);
 398 
 399 #undef DEFAULT_LIBPATH
 400 #undef SYS_EXT_DIR
 401 #undef EXTENSIONS_DIR
 402 }
 403 
 404 ////////////////////////////////////////////////////////////////////////////////
 405 // breakpoint support
 406 
 407 void os::breakpoint() {
 408   BREAKPOINT;
 409 }
 410 
 411 extern "C" void breakpoint() {
 412   // use debugger to set breakpoint here
 413 }
 414 
 415 ////////////////////////////////////////////////////////////////////////////////
 416 // signal support
 417 
 418 debug_only(static bool signal_sets_initialized = false);
 419 static sigset_t unblocked_sigs, vm_sigs;
 420 
 421 bool os::Linux::is_sig_ignored(int sig) {
 422   struct sigaction oact;
 423   sigaction(sig, (struct sigaction*)NULL, &oact);
 424   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 425                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 426   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 427     return true;
 428   } else {
 429     return false;
 430   }
 431 }
 432 
 433 void os::Linux::signal_sets_init() {
 434   // Should also have an assertion stating we are still single-threaded.
 435   assert(!signal_sets_initialized, "Already initialized");
 436   // Fill in signals that are necessarily unblocked for all threads in
 437   // the VM. Currently, we unblock the following signals:
 438   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 439   //                         by -Xrs (=ReduceSignalUsage));
 440   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 441   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 442   // the dispositions or masks wrt these signals.
 443   // Programs embedding the VM that want to use the above signals for their
 444   // own purposes must, at this time, use the "-Xrs" option to prevent
 445   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 446   // (See bug 4345157, and other related bugs).
 447   // In reality, though, unblocking these signals is really a nop, since
 448   // these signals are not blocked by default.
 449   sigemptyset(&unblocked_sigs);
 450   sigaddset(&unblocked_sigs, SIGILL);
 451   sigaddset(&unblocked_sigs, SIGSEGV);
 452   sigaddset(&unblocked_sigs, SIGBUS);
 453   sigaddset(&unblocked_sigs, SIGFPE);
 454 #if defined(PPC64)
 455   sigaddset(&unblocked_sigs, SIGTRAP);
 456 #endif
 457   sigaddset(&unblocked_sigs, SR_signum);
 458 
 459   if (!ReduceSignalUsage) {
 460     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 461       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 462     }
 463     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 464       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 465     }
 466     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 468     }
 469   }
 470   // Fill in signals that are blocked by all but the VM thread.
 471   sigemptyset(&vm_sigs);
 472   if (!ReduceSignalUsage) {
 473     sigaddset(&vm_sigs, BREAK_SIGNAL);
 474   }
 475   debug_only(signal_sets_initialized = true);
 476 
 477 }
 478 
 479 // These are signals that are unblocked while a thread is running Java.
 480 // (For some reason, they get blocked by default.)
 481 sigset_t* os::Linux::unblocked_signals() {
 482   assert(signal_sets_initialized, "Not initialized");
 483   return &unblocked_sigs;
 484 }
 485 
 486 // These are the signals that are blocked while a (non-VM) thread is
 487 // running Java. Only the VM thread handles these signals.
 488 sigset_t* os::Linux::vm_signals() {
 489   assert(signal_sets_initialized, "Not initialized");
 490   return &vm_sigs;
 491 }
 492 
 493 void os::Linux::hotspot_sigmask(Thread* thread) {
 494 
 495   //Save caller's signal mask before setting VM signal mask
 496   sigset_t caller_sigmask;
 497   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 498 
 499   OSThread* osthread = thread->osthread();
 500   osthread->set_caller_sigmask(caller_sigmask);
 501 
 502   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 503 
 504   if (!ReduceSignalUsage) {
 505     if (thread->is_VM_thread()) {
 506       // Only the VM thread handles BREAK_SIGNAL ...
 507       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 508     } else {
 509       // ... all other threads block BREAK_SIGNAL
 510       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 511     }
 512   }
 513 }
 514 
 515 //////////////////////////////////////////////////////////////////////////////
 516 // detecting pthread library
 517 
 518 void os::Linux::libpthread_init() {
 519   // Save glibc and pthread version strings.
 520 #if !defined(_CS_GNU_LIBC_VERSION) || \
 521     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 522   #error "glibc too old (< 2.3.2)"
 523 #endif
 524 
 525   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 526   assert(n > 0, "cannot retrieve glibc version");
 527   char *str = (char *)malloc(n, mtInternal);
 528   confstr(_CS_GNU_LIBC_VERSION, str, n);
 529   os::Linux::set_glibc_version(str);
 530 
 531   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 532   assert(n > 0, "cannot retrieve pthread version");
 533   str = (char *)malloc(n, mtInternal);
 534   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 535   os::Linux::set_libpthread_version(str);
 536 }
 537 
 538 /////////////////////////////////////////////////////////////////////////////
 539 // thread stack expansion
 540 
 541 // os::Linux::manually_expand_stack() takes care of expanding the thread
 542 // stack. Note that this is normally not needed: pthread stacks allocate
 543 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 544 // committed. Therefore it is not necessary to expand the stack manually.
 545 //
 546 // Manually expanding the stack was historically needed on LinuxThreads
 547 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 548 // it is kept to deal with very rare corner cases:
 549 //
 550 // For one, user may run the VM on an own implementation of threads
 551 // whose stacks are - like the old LinuxThreads - implemented using
 552 // mmap(MAP_GROWSDOWN).
 553 //
 554 // Also, this coding may be needed if the VM is running on the primordial
 555 // thread. Normally we avoid running on the primordial thread; however,
 556 // user may still invoke the VM on the primordial thread.
 557 //
 558 // The following historical comment describes the details about running
 559 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 560 
 561 
 562 // Force Linux kernel to expand current thread stack. If "bottom" is close
 563 // to the stack guard, caller should block all signals.
 564 //
 565 // MAP_GROWSDOWN:
 566 //   A special mmap() flag that is used to implement thread stacks. It tells
 567 //   kernel that the memory region should extend downwards when needed. This
 568 //   allows early versions of LinuxThreads to only mmap the first few pages
 569 //   when creating a new thread. Linux kernel will automatically expand thread
 570 //   stack as needed (on page faults).
 571 //
 572 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 573 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 574 //   region, it's hard to tell if the fault is due to a legitimate stack
 575 //   access or because of reading/writing non-exist memory (e.g. buffer
 576 //   overrun). As a rule, if the fault happens below current stack pointer,
 577 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 578 //   application (see Linux kernel fault.c).
 579 //
 580 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 581 //   stack overflow detection.
 582 //
 583 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 584 //   not use MAP_GROWSDOWN.
 585 //
 586 // To get around the problem and allow stack banging on Linux, we need to
 587 // manually expand thread stack after receiving the SIGSEGV.
 588 //
 589 // There are two ways to expand thread stack to address "bottom", we used
 590 // both of them in JVM before 1.5:
 591 //   1. adjust stack pointer first so that it is below "bottom", and then
 592 //      touch "bottom"
 593 //   2. mmap() the page in question
 594 //
 595 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 596 // if current sp is already near the lower end of page 101, and we need to
 597 // call mmap() to map page 100, it is possible that part of the mmap() frame
 598 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 599 // That will destroy the mmap() frame and cause VM to crash.
 600 //
 601 // The following code works by adjusting sp first, then accessing the "bottom"
 602 // page to force a page fault. Linux kernel will then automatically expand the
 603 // stack mapping.
 604 //
 605 // _expand_stack_to() assumes its frame size is less than page size, which
 606 // should always be true if the function is not inlined.
 607 
 608 static void NOINLINE _expand_stack_to(address bottom) {
 609   address sp;
 610   size_t size;
 611   volatile char *p;
 612 
 613   // Adjust bottom to point to the largest address within the same page, it
 614   // gives us a one-page buffer if alloca() allocates slightly more memory.
 615   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 616   bottom += os::Linux::page_size() - 1;
 617 
 618   // sp might be slightly above current stack pointer; if that's the case, we
 619   // will alloca() a little more space than necessary, which is OK. Don't use
 620   // os::current_stack_pointer(), as its result can be slightly below current
 621   // stack pointer, causing us to not alloca enough to reach "bottom".
 622   sp = (address)&sp;
 623 
 624   if (sp > bottom) {
 625     size = sp - bottom;
 626     p = (volatile char *)alloca(size);
 627     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 628     p[0] = '\0';
 629   }
 630 }
 631 
 632 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 633   assert(t!=NULL, "just checking");
 634   assert(t->osthread()->expanding_stack(), "expand should be set");
 635   assert(t->stack_base() != NULL, "stack_base was not initialized");
 636 
 637   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 638     sigset_t mask_all, old_sigset;
 639     sigfillset(&mask_all);
 640     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 641     _expand_stack_to(addr);
 642     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 643     return true;
 644   }
 645   return false;
 646 }
 647 
 648 //////////////////////////////////////////////////////////////////////////////
 649 // create new thread
 650 
 651 // Thread start routine for all newly created threads
 652 static void *thread_native_entry(Thread *thread) {
 653   // Try to randomize the cache line index of hot stack frames.
 654   // This helps when threads of the same stack traces evict each other's
 655   // cache lines. The threads can be either from the same JVM instance, or
 656   // from different JVM instances. The benefit is especially true for
 657   // processors with hyperthreading technology.
 658   static int counter = 0;
 659   int pid = os::current_process_id();
 660   alloca(((pid ^ counter++) & 7) * 128);
 661 
 662   thread->initialize_thread_current();
 663 
 664   OSThread* osthread = thread->osthread();
 665   Monitor* sync = osthread->startThread_lock();
 666 
 667   osthread->set_thread_id(os::current_thread_id());
 668 
 669   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 670     os::current_thread_id(), (uintx) pthread_self());
 671 
 672   if (UseNUMA) {
 673     int lgrp_id = os::numa_get_group_id();
 674     if (lgrp_id != -1) {
 675       thread->set_lgrp_id(lgrp_id);
 676     }
 677   }
 678   // initialize signal mask for this thread
 679   os::Linux::hotspot_sigmask(thread);
 680 
 681   // initialize floating point control register
 682   os::Linux::init_thread_fpu_state();
 683 
 684   // handshaking with parent thread
 685   {
 686     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 687 
 688     // notify parent thread
 689     osthread->set_state(INITIALIZED);
 690     sync->notify_all();
 691 
 692     // wait until os::start_thread()
 693     while (osthread->get_state() == INITIALIZED) {
 694       sync->wait(Mutex::_no_safepoint_check_flag);
 695     }
 696   }
 697 
 698   // call one more level start routine
 699   thread->run();
 700 
 701   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 702     os::current_thread_id(), (uintx) pthread_self());
 703 
 704   // If a thread has not deleted itself ("delete this") as part of its
 705   // termination sequence, we have to ensure thread-local-storage is
 706   // cleared before we actually terminate. No threads should ever be
 707   // deleted asynchronously with respect to their termination.
 708   if (Thread::current_or_null_safe() != NULL) {
 709     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 710     thread->clear_thread_current();
 711   }
 712 
 713   return 0;
 714 }
 715 
 716 bool os::create_thread(Thread* thread, ThreadType thr_type,
 717                        size_t req_stack_size) {
 718   assert(thread->osthread() == NULL, "caller responsible");
 719 
 720   // Allocate the OSThread object
 721   OSThread* osthread = new OSThread(NULL, NULL);
 722   if (osthread == NULL) {
 723     return false;
 724   }
 725 
 726   // set the correct thread state
 727   osthread->set_thread_type(thr_type);
 728 
 729   // Initial state is ALLOCATED but not INITIALIZED
 730   osthread->set_state(ALLOCATED);
 731 
 732   thread->set_osthread(osthread);
 733 
 734   // init thread attributes
 735   pthread_attr_t attr;
 736   pthread_attr_init(&attr);
 737   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 738 
 739   // Calculate stack size if it's not specified by caller.
 740   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 741   // In the Linux NPTL pthread implementation the guard size mechanism
 742   // is not implemented properly. The posix standard requires adding
 743   // the size of the guard pages to the stack size, instead Linux
 744   // takes the space out of 'stacksize'. Thus we adapt the requested
 745   // stack_size by the size of the guard pages to mimick proper
 746   // behaviour. However, be careful not to end up with a size
 747   // of zero due to overflow. Don't add the guard page in that case.
 748   size_t guard_size = os::Linux::default_guard_size(thr_type);
 749   if (stack_size <= SIZE_MAX - guard_size) {
 750     stack_size += guard_size;
 751   }
 752   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 753 
 754   int status = pthread_attr_setstacksize(&attr, stack_size);
 755   assert_status(status == 0, status, "pthread_attr_setstacksize");
 756 
 757   // Configure glibc guard page.
 758   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 759 
 760   ThreadState state;
 761 
 762   {
 763     pthread_t tid;
 764     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 765 
 766     char buf[64];
 767     if (ret == 0) {
 768       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 769         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 770     } else {
 771       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 772         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 773     }
 774 
 775     pthread_attr_destroy(&attr);
 776 
 777     if (ret != 0) {
 778       // Need to clean up stuff we've allocated so far
 779       thread->set_osthread(NULL);
 780       delete osthread;
 781       return false;
 782     }
 783 
 784     // Store pthread info into the OSThread
 785     osthread->set_pthread_id(tid);
 786 
 787     // Wait until child thread is either initialized or aborted
 788     {
 789       Monitor* sync_with_child = osthread->startThread_lock();
 790       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 791       while ((state = osthread->get_state()) == ALLOCATED) {
 792         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 793       }
 794     }
 795   }
 796 
 797   // Aborted due to thread limit being reached
 798   if (state == ZOMBIE) {
 799     thread->set_osthread(NULL);
 800     delete osthread;
 801     return false;
 802   }
 803 
 804   // The thread is returned suspended (in state INITIALIZED),
 805   // and is started higher up in the call chain
 806   assert(state == INITIALIZED, "race condition");
 807   return true;
 808 }
 809 
 810 /////////////////////////////////////////////////////////////////////////////
 811 // attach existing thread
 812 
 813 // bootstrap the main thread
 814 bool os::create_main_thread(JavaThread* thread) {
 815   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 816   return create_attached_thread(thread);
 817 }
 818 
 819 bool os::create_attached_thread(JavaThread* thread) {
 820 #ifdef ASSERT
 821   thread->verify_not_published();
 822 #endif
 823 
 824   // Allocate the OSThread object
 825   OSThread* osthread = new OSThread(NULL, NULL);
 826 
 827   if (osthread == NULL) {
 828     return false;
 829   }
 830 
 831   // Store pthread info into the OSThread
 832   osthread->set_thread_id(os::Linux::gettid());
 833   osthread->set_pthread_id(::pthread_self());
 834 
 835   // initialize floating point control register
 836   os::Linux::init_thread_fpu_state();
 837 
 838   // Initial thread state is RUNNABLE
 839   osthread->set_state(RUNNABLE);
 840 
 841   thread->set_osthread(osthread);
 842 
 843   if (UseNUMA) {
 844     int lgrp_id = os::numa_get_group_id();
 845     if (lgrp_id != -1) {
 846       thread->set_lgrp_id(lgrp_id);
 847     }
 848   }
 849 
 850   if (os::is_primordial_thread()) {
 851     // If current thread is primordial thread, its stack is mapped on demand,
 852     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 853     // the entire stack region to avoid SEGV in stack banging.
 854     // It is also useful to get around the heap-stack-gap problem on SuSE
 855     // kernel (see 4821821 for details). We first expand stack to the top
 856     // of yellow zone, then enable stack yellow zone (order is significant,
 857     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 858     // is no gap between the last two virtual memory regions.
 859 
 860     JavaThread *jt = (JavaThread *)thread;
 861     address addr = jt->stack_reserved_zone_base();
 862     assert(addr != NULL, "initialization problem?");
 863     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 864 
 865     osthread->set_expanding_stack();
 866     os::Linux::manually_expand_stack(jt, addr);
 867     osthread->clear_expanding_stack();
 868   }
 869 
 870   // initialize signal mask for this thread
 871   // and save the caller's signal mask
 872   os::Linux::hotspot_sigmask(thread);
 873 
 874   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 875     os::current_thread_id(), (uintx) pthread_self());
 876 
 877   return true;
 878 }
 879 
 880 void os::pd_start_thread(Thread* thread) {
 881   OSThread * osthread = thread->osthread();
 882   assert(osthread->get_state() != INITIALIZED, "just checking");
 883   Monitor* sync_with_child = osthread->startThread_lock();
 884   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 885   sync_with_child->notify();
 886 }
 887 
 888 // Free Linux resources related to the OSThread
 889 void os::free_thread(OSThread* osthread) {
 890   assert(osthread != NULL, "osthread not set");
 891 
 892   // We are told to free resources of the argument thread,
 893   // but we can only really operate on the current thread.
 894   assert(Thread::current()->osthread() == osthread,
 895          "os::free_thread but not current thread");
 896 
 897 #ifdef ASSERT
 898   sigset_t current;
 899   sigemptyset(&current);
 900   pthread_sigmask(SIG_SETMASK, NULL, &current);
 901   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 902 #endif
 903 
 904   // Restore caller's signal mask
 905   sigset_t sigmask = osthread->caller_sigmask();
 906   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 907 
 908   delete osthread;
 909 }
 910 
 911 //////////////////////////////////////////////////////////////////////////////
 912 // primordial thread
 913 
 914 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 915 bool os::is_primordial_thread(void) {
 916   char dummy;
 917   // If called before init complete, thread stack bottom will be null.
 918   // Can be called if fatal error occurs before initialization.
 919   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 920   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 921          os::Linux::initial_thread_stack_size()   != 0,
 922          "os::init did not locate primordial thread's stack region");
 923   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 924       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 925                         os::Linux::initial_thread_stack_size()) {
 926     return true;
 927   } else {
 928     return false;
 929   }
 930 }
 931 
 932 // Find the virtual memory area that contains addr
 933 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 934   FILE *fp = fopen("/proc/self/maps", "r");
 935   if (fp) {
 936     address low, high;
 937     while (!feof(fp)) {
 938       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 939         if (low <= addr && addr < high) {
 940           if (vma_low)  *vma_low  = low;
 941           if (vma_high) *vma_high = high;
 942           fclose(fp);
 943           return true;
 944         }
 945       }
 946       for (;;) {
 947         int ch = fgetc(fp);
 948         if (ch == EOF || ch == (int)'\n') break;
 949       }
 950     }
 951     fclose(fp);
 952   }
 953   return false;
 954 }
 955 
 956 // Locate primordial thread stack. This special handling of primordial thread stack
 957 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 958 // bogus value for the primordial process thread. While the launcher has created
 959 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 960 // JNI invocation API from a primordial thread.
 961 void os::Linux::capture_initial_stack(size_t max_size) {
 962 
 963   // max_size is either 0 (which means accept OS default for thread stacks) or
 964   // a user-specified value known to be at least the minimum needed. If we
 965   // are actually on the primordial thread we can make it appear that we have a
 966   // smaller max_size stack by inserting the guard pages at that location. But we
 967   // cannot do anything to emulate a larger stack than what has been provided by
 968   // the OS or threading library. In fact if we try to use a stack greater than
 969   // what is set by rlimit then we will crash the hosting process.
 970 
 971   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 972   // If this is "unlimited" then it will be a huge value.
 973   struct rlimit rlim;
 974   getrlimit(RLIMIT_STACK, &rlim);
 975   size_t stack_size = rlim.rlim_cur;
 976 
 977   // 6308388: a bug in ld.so will relocate its own .data section to the
 978   //   lower end of primordial stack; reduce ulimit -s value a little bit
 979   //   so we won't install guard page on ld.so's data section.
 980   //   But ensure we don't underflow the stack size - allow 1 page spare
 981   if (stack_size >= (size_t)(3 * page_size())) {
 982     stack_size -= 2 * page_size();
 983   }
 984 
 985   // Try to figure out where the stack base (top) is. This is harder.
 986   //
 987   // When an application is started, glibc saves the initial stack pointer in
 988   // a global variable "__libc_stack_end", which is then used by system
 989   // libraries. __libc_stack_end should be pretty close to stack top. The
 990   // variable is available since the very early days. However, because it is
 991   // a private interface, it could disappear in the future.
 992   //
 993   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 994   // to __libc_stack_end, it is very close to stack top, but isn't the real
 995   // stack top. Note that /proc may not exist if VM is running as a chroot
 996   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 997   // /proc/<pid>/stat could change in the future (though unlikely).
 998   //
 999   // We try __libc_stack_end first. If that doesn't work, look for
1000   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1001   // as a hint, which should work well in most cases.
1002 
1003   uintptr_t stack_start;
1004 
1005   // try __libc_stack_end first
1006   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1007   if (p && *p) {
1008     stack_start = *p;
1009   } else {
1010     // see if we can get the start_stack field from /proc/self/stat
1011     FILE *fp;
1012     int pid;
1013     char state;
1014     int ppid;
1015     int pgrp;
1016     int session;
1017     int nr;
1018     int tpgrp;
1019     unsigned long flags;
1020     unsigned long minflt;
1021     unsigned long cminflt;
1022     unsigned long majflt;
1023     unsigned long cmajflt;
1024     unsigned long utime;
1025     unsigned long stime;
1026     long cutime;
1027     long cstime;
1028     long prio;
1029     long nice;
1030     long junk;
1031     long it_real;
1032     uintptr_t start;
1033     uintptr_t vsize;
1034     intptr_t rss;
1035     uintptr_t rsslim;
1036     uintptr_t scodes;
1037     uintptr_t ecode;
1038     int i;
1039 
1040     // Figure what the primordial thread stack base is. Code is inspired
1041     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1042     // followed by command name surrounded by parentheses, state, etc.
1043     char stat[2048];
1044     int statlen;
1045 
1046     fp = fopen("/proc/self/stat", "r");
1047     if (fp) {
1048       statlen = fread(stat, 1, 2047, fp);
1049       stat[statlen] = '\0';
1050       fclose(fp);
1051 
1052       // Skip pid and the command string. Note that we could be dealing with
1053       // weird command names, e.g. user could decide to rename java launcher
1054       // to "java 1.4.2 :)", then the stat file would look like
1055       //                1234 (java 1.4.2 :)) R ... ...
1056       // We don't really need to know the command string, just find the last
1057       // occurrence of ")" and then start parsing from there. See bug 4726580.
1058       char * s = strrchr(stat, ')');
1059 
1060       i = 0;
1061       if (s) {
1062         // Skip blank chars
1063         do { s++; } while (s && isspace(*s));
1064 
1065 #define _UFM UINTX_FORMAT
1066 #define _DFM INTX_FORMAT
1067 
1068         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1069         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1070         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1071                    &state,          // 3  %c
1072                    &ppid,           // 4  %d
1073                    &pgrp,           // 5  %d
1074                    &session,        // 6  %d
1075                    &nr,             // 7  %d
1076                    &tpgrp,          // 8  %d
1077                    &flags,          // 9  %lu
1078                    &minflt,         // 10 %lu
1079                    &cminflt,        // 11 %lu
1080                    &majflt,         // 12 %lu
1081                    &cmajflt,        // 13 %lu
1082                    &utime,          // 14 %lu
1083                    &stime,          // 15 %lu
1084                    &cutime,         // 16 %ld
1085                    &cstime,         // 17 %ld
1086                    &prio,           // 18 %ld
1087                    &nice,           // 19 %ld
1088                    &junk,           // 20 %ld
1089                    &it_real,        // 21 %ld
1090                    &start,          // 22 UINTX_FORMAT
1091                    &vsize,          // 23 UINTX_FORMAT
1092                    &rss,            // 24 INTX_FORMAT
1093                    &rsslim,         // 25 UINTX_FORMAT
1094                    &scodes,         // 26 UINTX_FORMAT
1095                    &ecode,          // 27 UINTX_FORMAT
1096                    &stack_start);   // 28 UINTX_FORMAT
1097       }
1098 
1099 #undef _UFM
1100 #undef _DFM
1101 
1102       if (i != 28 - 2) {
1103         assert(false, "Bad conversion from /proc/self/stat");
1104         // product mode - assume we are the primordial thread, good luck in the
1105         // embedded case.
1106         warning("Can't detect primordial thread stack location - bad conversion");
1107         stack_start = (uintptr_t) &rlim;
1108       }
1109     } else {
1110       // For some reason we can't open /proc/self/stat (for example, running on
1111       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1112       // most cases, so don't abort:
1113       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1114       stack_start = (uintptr_t) &rlim;
1115     }
1116   }
1117 
1118   // Now we have a pointer (stack_start) very close to the stack top, the
1119   // next thing to do is to figure out the exact location of stack top. We
1120   // can find out the virtual memory area that contains stack_start by
1121   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1122   // and its upper limit is the real stack top. (again, this would fail if
1123   // running inside chroot, because /proc may not exist.)
1124 
1125   uintptr_t stack_top;
1126   address low, high;
1127   if (find_vma((address)stack_start, &low, &high)) {
1128     // success, "high" is the true stack top. (ignore "low", because initial
1129     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1130     stack_top = (uintptr_t)high;
1131   } else {
1132     // failed, likely because /proc/self/maps does not exist
1133     warning("Can't detect primordial thread stack location - find_vma failed");
1134     // best effort: stack_start is normally within a few pages below the real
1135     // stack top, use it as stack top, and reduce stack size so we won't put
1136     // guard page outside stack.
1137     stack_top = stack_start;
1138     stack_size -= 16 * page_size();
1139   }
1140 
1141   // stack_top could be partially down the page so align it
1142   stack_top = align_up(stack_top, page_size());
1143 
1144   // Allowed stack value is minimum of max_size and what we derived from rlimit
1145   if (max_size > 0) {
1146     _initial_thread_stack_size = MIN2(max_size, stack_size);
1147   } else {
1148     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1149     // clamp it at 8MB as we do on Solaris
1150     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1151   }
1152   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1153   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1154 
1155   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1156 
1157   if (log_is_enabled(Info, os, thread)) {
1158     // See if we seem to be on primordial process thread
1159     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1160                       uintptr_t(&rlim) < stack_top;
1161 
1162     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1163                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1164                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1165                          stack_top, intptr_t(_initial_thread_stack_bottom));
1166   }
1167 }
1168 
1169 ////////////////////////////////////////////////////////////////////////////////
1170 // time support
1171 
1172 // Time since start-up in seconds to a fine granularity.
1173 // Used by VMSelfDestructTimer and the MemProfiler.
1174 double os::elapsedTime() {
1175 
1176   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1177 }
1178 
1179 jlong os::elapsed_counter() {
1180   return javaTimeNanos() - initial_time_count;
1181 }
1182 
1183 jlong os::elapsed_frequency() {
1184   return NANOSECS_PER_SEC; // nanosecond resolution
1185 }
1186 
1187 bool os::supports_vtime() { return true; }
1188 bool os::enable_vtime()   { return false; }
1189 bool os::vtime_enabled()  { return false; }
1190 
1191 double os::elapsedVTime() {
1192   struct rusage usage;
1193   int retval = getrusage(RUSAGE_THREAD, &usage);
1194   if (retval == 0) {
1195     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1196   } else {
1197     // better than nothing, but not much
1198     return elapsedTime();
1199   }
1200 }
1201 
1202 jlong os::javaTimeMillis() {
1203   timeval time;
1204   int status = gettimeofday(&time, NULL);
1205   assert(status != -1, "linux error");
1206   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1207 }
1208 
1209 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1210   timeval time;
1211   int status = gettimeofday(&time, NULL);
1212   assert(status != -1, "linux error");
1213   seconds = jlong(time.tv_sec);
1214   nanos = jlong(time.tv_usec) * 1000;
1215 }
1216 
1217 
1218 #ifndef CLOCK_MONOTONIC
1219   #define CLOCK_MONOTONIC (1)
1220 #endif
1221 
1222 void os::Linux::clock_init() {
1223   // we do dlopen's in this particular order due to bug in linux
1224   // dynamical loader (see 6348968) leading to crash on exit
1225   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1226   if (handle == NULL) {
1227     handle = dlopen("librt.so", RTLD_LAZY);
1228   }
1229 
1230   if (handle) {
1231     int (*clock_getres_func)(clockid_t, struct timespec*) =
1232            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1233     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1234            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1235     if (clock_getres_func && clock_gettime_func) {
1236       // See if monotonic clock is supported by the kernel. Note that some
1237       // early implementations simply return kernel jiffies (updated every
1238       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1239       // for nano time (though the monotonic property is still nice to have).
1240       // It's fixed in newer kernels, however clock_getres() still returns
1241       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1242       // resolution for now. Hopefully as people move to new kernels, this
1243       // won't be a problem.
1244       struct timespec res;
1245       struct timespec tp;
1246       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1247           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1248         // yes, monotonic clock is supported
1249         _clock_gettime = clock_gettime_func;
1250         return;
1251       } else {
1252         // close librt if there is no monotonic clock
1253         dlclose(handle);
1254       }
1255     }
1256   }
1257   warning("No monotonic clock was available - timed services may " \
1258           "be adversely affected if the time-of-day clock changes");
1259 }
1260 
1261 #ifndef SYS_clock_getres
1262   #if defined(X86) || defined(PPC64) || defined(S390)
1263     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1264     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1265   #else
1266     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1267     #define sys_clock_getres(x,y)  -1
1268   #endif
1269 #else
1270   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1271 #endif
1272 
1273 void os::Linux::fast_thread_clock_init() {
1274   if (!UseLinuxPosixThreadCPUClocks) {
1275     return;
1276   }
1277   clockid_t clockid;
1278   struct timespec tp;
1279   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1280       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1281 
1282   // Switch to using fast clocks for thread cpu time if
1283   // the sys_clock_getres() returns 0 error code.
1284   // Note, that some kernels may support the current thread
1285   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1286   // returned by the pthread_getcpuclockid().
1287   // If the fast Posix clocks are supported then the sys_clock_getres()
1288   // must return at least tp.tv_sec == 0 which means a resolution
1289   // better than 1 sec. This is extra check for reliability.
1290 
1291   if (pthread_getcpuclockid_func &&
1292       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1293       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1294     _supports_fast_thread_cpu_time = true;
1295     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1296   }
1297 }
1298 
1299 jlong os::javaTimeNanos() {
1300   if (os::supports_monotonic_clock()) {
1301     struct timespec tp;
1302     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1303     assert(status == 0, "gettime error");
1304     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1305     return result;
1306   } else {
1307     timeval time;
1308     int status = gettimeofday(&time, NULL);
1309     assert(status != -1, "linux error");
1310     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1311     return 1000 * usecs;
1312   }
1313 }
1314 
1315 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1316   if (os::supports_monotonic_clock()) {
1317     info_ptr->max_value = ALL_64_BITS;
1318 
1319     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1320     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1321     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1322   } else {
1323     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1324     info_ptr->max_value = ALL_64_BITS;
1325 
1326     // gettimeofday is a real time clock so it skips
1327     info_ptr->may_skip_backward = true;
1328     info_ptr->may_skip_forward = true;
1329   }
1330 
1331   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1332 }
1333 
1334 // Return the real, user, and system times in seconds from an
1335 // arbitrary fixed point in the past.
1336 bool os::getTimesSecs(double* process_real_time,
1337                       double* process_user_time,
1338                       double* process_system_time) {
1339   struct tms ticks;
1340   clock_t real_ticks = times(&ticks);
1341 
1342   if (real_ticks == (clock_t) (-1)) {
1343     return false;
1344   } else {
1345     double ticks_per_second = (double) clock_tics_per_sec;
1346     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1347     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1348     *process_real_time = ((double) real_ticks) / ticks_per_second;
1349 
1350     return true;
1351   }
1352 }
1353 
1354 
1355 char * os::local_time_string(char *buf, size_t buflen) {
1356   struct tm t;
1357   time_t long_time;
1358   time(&long_time);
1359   localtime_r(&long_time, &t);
1360   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1361                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1362                t.tm_hour, t.tm_min, t.tm_sec);
1363   return buf;
1364 }
1365 
1366 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1367   return localtime_r(clock, res);
1368 }
1369 
1370 ////////////////////////////////////////////////////////////////////////////////
1371 // runtime exit support
1372 
1373 // Note: os::shutdown() might be called very early during initialization, or
1374 // called from signal handler. Before adding something to os::shutdown(), make
1375 // sure it is async-safe and can handle partially initialized VM.
1376 void os::shutdown() {
1377 
1378   // allow PerfMemory to attempt cleanup of any persistent resources
1379   perfMemory_exit();
1380 
1381   // needs to remove object in file system
1382   AttachListener::abort();
1383 
1384   // flush buffered output, finish log files
1385   ostream_abort();
1386 
1387   // Check for abort hook
1388   abort_hook_t abort_hook = Arguments::abort_hook();
1389   if (abort_hook != NULL) {
1390     abort_hook();
1391   }
1392 
1393 }
1394 
1395 // Note: os::abort() might be called very early during initialization, or
1396 // called from signal handler. Before adding something to os::abort(), make
1397 // sure it is async-safe and can handle partially initialized VM.
1398 void os::abort(bool dump_core, void* siginfo, const void* context) {
1399   os::shutdown();
1400   if (dump_core) {
1401 #ifndef PRODUCT
1402     fdStream out(defaultStream::output_fd());
1403     out.print_raw("Current thread is ");
1404     char buf[16];
1405     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1406     out.print_raw_cr(buf);
1407     out.print_raw_cr("Dumping core ...");
1408 #endif
1409     ::abort(); // dump core
1410   }
1411 
1412   ::exit(1);
1413 }
1414 
1415 // Die immediately, no exit hook, no abort hook, no cleanup.
1416 void os::die() {
1417   ::abort();
1418 }
1419 
1420 
1421 // This method is a copy of JDK's sysGetLastErrorString
1422 // from src/solaris/hpi/src/system_md.c
1423 
1424 size_t os::lasterror(char *buf, size_t len) {
1425   if (errno == 0)  return 0;
1426 
1427   const char *s = os::strerror(errno);
1428   size_t n = ::strlen(s);
1429   if (n >= len) {
1430     n = len - 1;
1431   }
1432   ::strncpy(buf, s, n);
1433   buf[n] = '\0';
1434   return n;
1435 }
1436 
1437 // thread_id is kernel thread id (similar to Solaris LWP id)
1438 intx os::current_thread_id() { return os::Linux::gettid(); }
1439 int os::current_process_id() {
1440   return ::getpid();
1441 }
1442 
1443 // DLL functions
1444 
1445 const char* os::dll_file_extension() { return ".so"; }
1446 
1447 // This must be hard coded because it's the system's temporary
1448 // directory not the java application's temp directory, ala java.io.tmpdir.
1449 const char* os::get_temp_directory() { return "/tmp"; }
1450 
1451 static bool file_exists(const char* filename) {
1452   struct stat statbuf;
1453   if (filename == NULL || strlen(filename) == 0) {
1454     return false;
1455   }
1456   return os::stat(filename, &statbuf) == 0;
1457 }
1458 
1459 // check if addr is inside libjvm.so
1460 bool os::address_is_in_vm(address addr) {
1461   static address libjvm_base_addr;
1462   Dl_info dlinfo;
1463 
1464   if (libjvm_base_addr == NULL) {
1465     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1466       libjvm_base_addr = (address)dlinfo.dli_fbase;
1467     }
1468     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1469   }
1470 
1471   if (dladdr((void *)addr, &dlinfo) != 0) {
1472     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1473   }
1474 
1475   return false;
1476 }
1477 
1478 bool os::dll_address_to_function_name(address addr, char *buf,
1479                                       int buflen, int *offset,
1480                                       bool demangle) {
1481   // buf is not optional, but offset is optional
1482   assert(buf != NULL, "sanity check");
1483 
1484   Dl_info dlinfo;
1485 
1486   if (dladdr((void*)addr, &dlinfo) != 0) {
1487     // see if we have a matching symbol
1488     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1489       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1490         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1491       }
1492       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1493       return true;
1494     }
1495     // no matching symbol so try for just file info
1496     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1497       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1498                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1499         return true;
1500       }
1501     }
1502   }
1503 
1504   buf[0] = '\0';
1505   if (offset != NULL) *offset = -1;
1506   return false;
1507 }
1508 
1509 struct _address_to_library_name {
1510   address addr;          // input : memory address
1511   size_t  buflen;        //         size of fname
1512   char*   fname;         // output: library name
1513   address base;          //         library base addr
1514 };
1515 
1516 static int address_to_library_name_callback(struct dl_phdr_info *info,
1517                                             size_t size, void *data) {
1518   int i;
1519   bool found = false;
1520   address libbase = NULL;
1521   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1522 
1523   // iterate through all loadable segments
1524   for (i = 0; i < info->dlpi_phnum; i++) {
1525     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1526     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1527       // base address of a library is the lowest address of its loaded
1528       // segments.
1529       if (libbase == NULL || libbase > segbase) {
1530         libbase = segbase;
1531       }
1532       // see if 'addr' is within current segment
1533       if (segbase <= d->addr &&
1534           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1535         found = true;
1536       }
1537     }
1538   }
1539 
1540   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1541   // so dll_address_to_library_name() can fall through to use dladdr() which
1542   // can figure out executable name from argv[0].
1543   if (found && info->dlpi_name && info->dlpi_name[0]) {
1544     d->base = libbase;
1545     if (d->fname) {
1546       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1547     }
1548     return 1;
1549   }
1550   return 0;
1551 }
1552 
1553 bool os::dll_address_to_library_name(address addr, char* buf,
1554                                      int buflen, int* offset) {
1555   // buf is not optional, but offset is optional
1556   assert(buf != NULL, "sanity check");
1557 
1558   Dl_info dlinfo;
1559   struct _address_to_library_name data;
1560 
1561   // There is a bug in old glibc dladdr() implementation that it could resolve
1562   // to wrong library name if the .so file has a base address != NULL. Here
1563   // we iterate through the program headers of all loaded libraries to find
1564   // out which library 'addr' really belongs to. This workaround can be
1565   // removed once the minimum requirement for glibc is moved to 2.3.x.
1566   data.addr = addr;
1567   data.fname = buf;
1568   data.buflen = buflen;
1569   data.base = NULL;
1570   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1571 
1572   if (rslt) {
1573     // buf already contains library name
1574     if (offset) *offset = addr - data.base;
1575     return true;
1576   }
1577   if (dladdr((void*)addr, &dlinfo) != 0) {
1578     if (dlinfo.dli_fname != NULL) {
1579       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1580     }
1581     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1582       *offset = addr - (address)dlinfo.dli_fbase;
1583     }
1584     return true;
1585   }
1586 
1587   buf[0] = '\0';
1588   if (offset) *offset = -1;
1589   return false;
1590 }
1591 
1592 // Loads .dll/.so and
1593 // in case of error it checks if .dll/.so was built for the
1594 // same architecture as Hotspot is running on
1595 
1596 
1597 // Remember the stack's state. The Linux dynamic linker will change
1598 // the stack to 'executable' at most once, so we must safepoint only once.
1599 bool os::Linux::_stack_is_executable = false;
1600 
1601 // VM operation that loads a library.  This is necessary if stack protection
1602 // of the Java stacks can be lost during loading the library.  If we
1603 // do not stop the Java threads, they can stack overflow before the stacks
1604 // are protected again.
1605 class VM_LinuxDllLoad: public VM_Operation {
1606  private:
1607   const char *_filename;
1608   char *_ebuf;
1609   int _ebuflen;
1610   void *_lib;
1611  public:
1612   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1613     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1614   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1615   void doit() {
1616     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1617     os::Linux::_stack_is_executable = true;
1618   }
1619   void* loaded_library() { return _lib; }
1620 };
1621 
1622 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1623   void * result = NULL;
1624   bool load_attempted = false;
1625 
1626   // Check whether the library to load might change execution rights
1627   // of the stack. If they are changed, the protection of the stack
1628   // guard pages will be lost. We need a safepoint to fix this.
1629   //
1630   // See Linux man page execstack(8) for more info.
1631   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1632     if (!ElfFile::specifies_noexecstack(filename)) {
1633       if (!is_init_completed()) {
1634         os::Linux::_stack_is_executable = true;
1635         // This is OK - No Java threads have been created yet, and hence no
1636         // stack guard pages to fix.
1637         //
1638         // This should happen only when you are building JDK7 using a very
1639         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1640         //
1641         // Dynamic loader will make all stacks executable after
1642         // this function returns, and will not do that again.
1643 #ifdef ASSERT
1644         ThreadsListHandle tlh;
1645         assert(tlh.length() == 0, "no Java threads should exist yet.");
1646 #endif
1647       } else {
1648         warning("You have loaded library %s which might have disabled stack guard. "
1649                 "The VM will try to fix the stack guard now.\n"
1650                 "It's highly recommended that you fix the library with "
1651                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1652                 filename);
1653 
1654         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1655         JavaThread *jt = JavaThread::current();
1656         if (jt->thread_state() != _thread_in_native) {
1657           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1658           // that requires ExecStack. Cannot enter safe point. Let's give up.
1659           warning("Unable to fix stack guard. Giving up.");
1660         } else {
1661           if (!LoadExecStackDllInVMThread) {
1662             // This is for the case where the DLL has an static
1663             // constructor function that executes JNI code. We cannot
1664             // load such DLLs in the VMThread.
1665             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1666           }
1667 
1668           ThreadInVMfromNative tiv(jt);
1669           debug_only(VMNativeEntryWrapper vew;)
1670 
1671           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1672           VMThread::execute(&op);
1673           if (LoadExecStackDllInVMThread) {
1674             result = op.loaded_library();
1675           }
1676           load_attempted = true;
1677         }
1678       }
1679     }
1680   }
1681 
1682   if (!load_attempted) {
1683     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1684   }
1685 
1686   if (result != NULL) {
1687     // Successful loading
1688     return result;
1689   }
1690 
1691   Elf32_Ehdr elf_head;
1692   int diag_msg_max_length=ebuflen-strlen(ebuf);
1693   char* diag_msg_buf=ebuf+strlen(ebuf);
1694 
1695   if (diag_msg_max_length==0) {
1696     // No more space in ebuf for additional diagnostics message
1697     return NULL;
1698   }
1699 
1700 
1701   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1702 
1703   if (file_descriptor < 0) {
1704     // Can't open library, report dlerror() message
1705     return NULL;
1706   }
1707 
1708   bool failed_to_read_elf_head=
1709     (sizeof(elf_head)!=
1710      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1711 
1712   ::close(file_descriptor);
1713   if (failed_to_read_elf_head) {
1714     // file i/o error - report dlerror() msg
1715     return NULL;
1716   }
1717 
1718   typedef struct {
1719     Elf32_Half    code;         // Actual value as defined in elf.h
1720     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1721     unsigned char elf_class;    // 32 or 64 bit
1722     unsigned char endianess;    // MSB or LSB
1723     char*         name;         // String representation
1724   } arch_t;
1725 
1726 #ifndef EM_486
1727   #define EM_486          6               /* Intel 80486 */
1728 #endif
1729 #ifndef EM_AARCH64
1730   #define EM_AARCH64    183               /* ARM AARCH64 */
1731 #endif
1732 
1733   static const arch_t arch_array[]={
1734     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1735     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1736     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1737     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1738     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1739     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1740     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1741     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1742 #if defined(VM_LITTLE_ENDIAN)
1743     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1744     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1745 #else
1746     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1747     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1748 #endif
1749     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1750     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1751     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1752     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1753     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1754     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1755     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1756     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1757     {EM_RISCV,       EM_RISCV,   ELFCLASS64, ELFDATA2LSB, (char*)"RISCV"},
1758   };
1759 
1760 #if  (defined IA32)
1761   static  Elf32_Half running_arch_code=EM_386;
1762 #elif   (defined AMD64)
1763   static  Elf32_Half running_arch_code=EM_X86_64;
1764 #elif  (defined IA64)
1765   static  Elf32_Half running_arch_code=EM_IA_64;
1766 #elif  (defined __sparc) && (defined _LP64)
1767   static  Elf32_Half running_arch_code=EM_SPARCV9;
1768 #elif  (defined __sparc) && (!defined _LP64)
1769   static  Elf32_Half running_arch_code=EM_SPARC;
1770 #elif  (defined __powerpc64__)
1771   static  Elf32_Half running_arch_code=EM_PPC64;
1772 #elif  (defined __powerpc__)
1773   static  Elf32_Half running_arch_code=EM_PPC;
1774 #elif  (defined RISCV)
1775   static  Elf32_Half running_arch_code=EM_RISCV;
1776 #elif  (defined AARCH64)
1777   static  Elf32_Half running_arch_code=EM_AARCH64;
1778 #elif  (defined ARM)
1779   static  Elf32_Half running_arch_code=EM_ARM;
1780 #elif  (defined S390)
1781   static  Elf32_Half running_arch_code=EM_S390;
1782 #elif  (defined ALPHA)
1783   static  Elf32_Half running_arch_code=EM_ALPHA;
1784 #elif  (defined MIPSEL)
1785   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1786 #elif  (defined PARISC)
1787   static  Elf32_Half running_arch_code=EM_PARISC;
1788 #elif  (defined MIPS)
1789   static  Elf32_Half running_arch_code=EM_MIPS;
1790 #elif  (defined M68K)
1791   static  Elf32_Half running_arch_code=EM_68K;
1792 #elif  (defined SH)
1793   static  Elf32_Half running_arch_code=EM_SH;
1794 #else
1795     #error Method os::dll_load requires that one of following is defined:\
1796         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1797 #endif
1798 
1799   // Identify compatability class for VM's architecture and library's architecture
1800   // Obtain string descriptions for architectures
1801 
1802   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1803   int running_arch_index=-1;
1804 
1805   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1806     if (running_arch_code == arch_array[i].code) {
1807       running_arch_index    = i;
1808     }
1809     if (lib_arch.code == arch_array[i].code) {
1810       lib_arch.compat_class = arch_array[i].compat_class;
1811       lib_arch.name         = arch_array[i].name;
1812     }
1813   }
1814 
1815   assert(running_arch_index != -1,
1816          "Didn't find running architecture code (running_arch_code) in arch_array");
1817   if (running_arch_index == -1) {
1818     // Even though running architecture detection failed
1819     // we may still continue with reporting dlerror() message
1820     return NULL;
1821   }
1822 
1823   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1824     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1825     return NULL;
1826   }
1827 
1828 #ifndef S390
1829   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1830     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1831     return NULL;
1832   }
1833 #endif // !S390
1834 
1835   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1836     if (lib_arch.name!=NULL) {
1837       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1838                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1839                  lib_arch.name, arch_array[running_arch_index].name);
1840     } else {
1841       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1842                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1843                  lib_arch.code,
1844                  arch_array[running_arch_index].name);
1845     }
1846   }
1847 
1848   return NULL;
1849 }
1850 
1851 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1852                                 int ebuflen) {
1853   void * result = ::dlopen(filename, RTLD_LAZY);
1854   if (result == NULL) {
1855     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1856     ebuf[ebuflen-1] = '\0';
1857   }
1858   return result;
1859 }
1860 
1861 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1862                                        int ebuflen) {
1863   void * result = NULL;
1864   if (LoadExecStackDllInVMThread) {
1865     result = dlopen_helper(filename, ebuf, ebuflen);
1866   }
1867 
1868   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1869   // library that requires an executable stack, or which does not have this
1870   // stack attribute set, dlopen changes the stack attribute to executable. The
1871   // read protection of the guard pages gets lost.
1872   //
1873   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1874   // may have been queued at the same time.
1875 
1876   if (!_stack_is_executable) {
1877     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1878       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1879           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1880         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1881           warning("Attempt to reguard stack yellow zone failed.");
1882         }
1883       }
1884     }
1885   }
1886 
1887   return result;
1888 }
1889 
1890 void* os::dll_lookup(void* handle, const char* name) {
1891   void* res = dlsym(handle, name);
1892   return res;
1893 }
1894 
1895 void* os::get_default_process_handle() {
1896   return (void*)::dlopen(NULL, RTLD_LAZY);
1897 }
1898 
1899 static bool _print_ascii_file(const char* filename, outputStream* st) {
1900   int fd = ::open(filename, O_RDONLY);
1901   if (fd == -1) {
1902     return false;
1903   }
1904 
1905   char buf[33];
1906   int bytes;
1907   buf[32] = '\0';
1908   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1909     st->print_raw(buf, bytes);
1910   }
1911 
1912   ::close(fd);
1913 
1914   return true;
1915 }
1916 
1917 void os::print_dll_info(outputStream *st) {
1918   st->print_cr("Dynamic libraries:");
1919 
1920   char fname[32];
1921   pid_t pid = os::Linux::gettid();
1922 
1923   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1924 
1925   if (!_print_ascii_file(fname, st)) {
1926     st->print("Can not get library information for pid = %d\n", pid);
1927   }
1928 }
1929 
1930 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1931   FILE *procmapsFile = NULL;
1932 
1933   // Open the procfs maps file for the current process
1934   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1935     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1936     char line[PATH_MAX + 100];
1937 
1938     // Read line by line from 'file'
1939     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1940       u8 base, top, offset, inode;
1941       char permissions[5];
1942       char device[6];
1943       char name[PATH_MAX + 1];
1944 
1945       // Parse fields from line
1946       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1947              &base, &top, permissions, &offset, device, &inode, name);
1948 
1949       // Filter by device id '00:00' so that we only get file system mapped files.
1950       if (strcmp(device, "00:00") != 0) {
1951 
1952         // Call callback with the fields of interest
1953         if(callback(name, (address)base, (address)top, param)) {
1954           // Oops abort, callback aborted
1955           fclose(procmapsFile);
1956           return 1;
1957         }
1958       }
1959     }
1960     fclose(procmapsFile);
1961   }
1962   return 0;
1963 }
1964 
1965 void os::print_os_info_brief(outputStream* st) {
1966   os::Linux::print_distro_info(st);
1967 
1968   os::Posix::print_uname_info(st);
1969 
1970   os::Linux::print_libversion_info(st);
1971 
1972 }
1973 
1974 void os::print_os_info(outputStream* st) {
1975   st->print("OS:");
1976 
1977   os::Linux::print_distro_info(st);
1978 
1979   os::Posix::print_uname_info(st);
1980 
1981   // Print warning if unsafe chroot environment detected
1982   if (unsafe_chroot_detected) {
1983     st->print("WARNING!! ");
1984     st->print_cr("%s", unstable_chroot_error);
1985   }
1986 
1987   os::Linux::print_libversion_info(st);
1988 
1989   os::Posix::print_rlimit_info(st);
1990 
1991   os::Posix::print_load_average(st);
1992 
1993   os::Linux::print_full_memory_info(st);
1994 
1995   os::Linux::print_container_info(st);
1996 }
1997 
1998 // Try to identify popular distros.
1999 // Most Linux distributions have a /etc/XXX-release file, which contains
2000 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2001 // file that also contains the OS version string. Some have more than one
2002 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2003 // /etc/redhat-release.), so the order is important.
2004 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2005 // their own specific XXX-release file as well as a redhat-release file.
2006 // Because of this the XXX-release file needs to be searched for before the
2007 // redhat-release file.
2008 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2009 // search for redhat-release / SuSE-release needs to be before lsb-release.
2010 // Since the lsb-release file is the new standard it needs to be searched
2011 // before the older style release files.
2012 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2013 // next to last resort.  The os-release file is a new standard that contains
2014 // distribution information and the system-release file seems to be an old
2015 // standard that has been replaced by the lsb-release and os-release files.
2016 // Searching for the debian_version file is the last resort.  It contains
2017 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2018 // "Debian " is printed before the contents of the debian_version file.
2019 
2020 const char* distro_files[] = {
2021   "/etc/oracle-release",
2022   "/etc/mandriva-release",
2023   "/etc/mandrake-release",
2024   "/etc/sun-release",
2025   "/etc/redhat-release",
2026   "/etc/SuSE-release",
2027   "/etc/lsb-release",
2028   "/etc/turbolinux-release",
2029   "/etc/gentoo-release",
2030   "/etc/ltib-release",
2031   "/etc/angstrom-version",
2032   "/etc/system-release",
2033   "/etc/os-release",
2034   NULL };
2035 
2036 void os::Linux::print_distro_info(outputStream* st) {
2037   for (int i = 0;; i++) {
2038     const char* file = distro_files[i];
2039     if (file == NULL) {
2040       break;  // done
2041     }
2042     // If file prints, we found it.
2043     if (_print_ascii_file(file, st)) {
2044       return;
2045     }
2046   }
2047 
2048   if (file_exists("/etc/debian_version")) {
2049     st->print("Debian ");
2050     _print_ascii_file("/etc/debian_version", st);
2051   } else {
2052     st->print("Linux");
2053   }
2054   st->cr();
2055 }
2056 
2057 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2058   char buf[256];
2059   while (fgets(buf, sizeof(buf), fp)) {
2060     // Edit out extra stuff in expected format
2061     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2062       char* ptr = strstr(buf, "\"");  // the name is in quotes
2063       if (ptr != NULL) {
2064         ptr++; // go beyond first quote
2065         char* nl = strchr(ptr, '\"');
2066         if (nl != NULL) *nl = '\0';
2067         strncpy(distro, ptr, length);
2068       } else {
2069         ptr = strstr(buf, "=");
2070         ptr++; // go beyond equals then
2071         char* nl = strchr(ptr, '\n');
2072         if (nl != NULL) *nl = '\0';
2073         strncpy(distro, ptr, length);
2074       }
2075       return;
2076     } else if (get_first_line) {
2077       char* nl = strchr(buf, '\n');
2078       if (nl != NULL) *nl = '\0';
2079       strncpy(distro, buf, length);
2080       return;
2081     }
2082   }
2083   // print last line and close
2084   char* nl = strchr(buf, '\n');
2085   if (nl != NULL) *nl = '\0';
2086   strncpy(distro, buf, length);
2087 }
2088 
2089 static void parse_os_info(char* distro, size_t length, const char* file) {
2090   FILE* fp = fopen(file, "r");
2091   if (fp != NULL) {
2092     // if suse format, print out first line
2093     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2094     parse_os_info_helper(fp, distro, length, get_first_line);
2095     fclose(fp);
2096   }
2097 }
2098 
2099 void os::get_summary_os_info(char* buf, size_t buflen) {
2100   for (int i = 0;; i++) {
2101     const char* file = distro_files[i];
2102     if (file == NULL) {
2103       break; // ran out of distro_files
2104     }
2105     if (file_exists(file)) {
2106       parse_os_info(buf, buflen, file);
2107       return;
2108     }
2109   }
2110   // special case for debian
2111   if (file_exists("/etc/debian_version")) {
2112     strncpy(buf, "Debian ", buflen);
2113     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2114   } else {
2115     strncpy(buf, "Linux", buflen);
2116   }
2117 }
2118 
2119 void os::Linux::print_libversion_info(outputStream* st) {
2120   // libc, pthread
2121   st->print("libc:");
2122   st->print("%s ", os::Linux::glibc_version());
2123   st->print("%s ", os::Linux::libpthread_version());
2124   st->cr();
2125 }
2126 
2127 void os::Linux::print_full_memory_info(outputStream* st) {
2128   st->print("\n/proc/meminfo:\n");
2129   _print_ascii_file("/proc/meminfo", st);
2130   st->cr();
2131 }
2132 
2133 void os::Linux::print_container_info(outputStream* st) {
2134   if (!OSContainer::is_containerized()) {
2135     return;
2136   }
2137 
2138   st->print("container (cgroup) information:\n");
2139 
2140   const char *p_ct = OSContainer::container_type();
2141   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2142 
2143   char *p = OSContainer::cpu_cpuset_cpus();
2144   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2145   free(p);
2146 
2147   p = OSContainer::cpu_cpuset_memory_nodes();
2148   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2149   free(p);
2150 
2151   int i = OSContainer::active_processor_count();
2152   if (i > 0) {
2153     st->print("active_processor_count: %d\n", i);
2154   } else {
2155     st->print("active_processor_count: failed\n");
2156   }
2157 
2158   i = OSContainer::cpu_quota();
2159   st->print("cpu_quota: %d\n", i);
2160 
2161   i = OSContainer::cpu_period();
2162   st->print("cpu_period: %d\n", i);
2163 
2164   i = OSContainer::cpu_shares();
2165   st->print("cpu_shares: %d\n", i);
2166 
2167   jlong j = OSContainer::memory_limit_in_bytes();
2168   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2169 
2170   j = OSContainer::memory_and_swap_limit_in_bytes();
2171   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2172 
2173   j = OSContainer::memory_soft_limit_in_bytes();
2174   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2175 
2176   j = OSContainer::OSContainer::memory_usage_in_bytes();
2177   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2178 
2179   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2180   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2181   st->cr();
2182 }
2183 
2184 void os::print_memory_info(outputStream* st) {
2185 
2186   st->print("Memory:");
2187   st->print(" %dk page", os::vm_page_size()>>10);
2188 
2189   // values in struct sysinfo are "unsigned long"
2190   struct sysinfo si;
2191   sysinfo(&si);
2192 
2193   st->print(", physical " UINT64_FORMAT "k",
2194             os::physical_memory() >> 10);
2195   st->print("(" UINT64_FORMAT "k free)",
2196             os::available_memory() >> 10);
2197   st->print(", swap " UINT64_FORMAT "k",
2198             ((jlong)si.totalswap * si.mem_unit) >> 10);
2199   st->print("(" UINT64_FORMAT "k free)",
2200             ((jlong)si.freeswap * si.mem_unit) >> 10);
2201   st->cr();
2202 }
2203 
2204 // Print the first "model name" line and the first "flags" line
2205 // that we find and nothing more. We assume "model name" comes
2206 // before "flags" so if we find a second "model name", then the
2207 // "flags" field is considered missing.
2208 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2209 #if defined(IA32) || defined(AMD64)
2210   // Other platforms have less repetitive cpuinfo files
2211   FILE *fp = fopen("/proc/cpuinfo", "r");
2212   if (fp) {
2213     while (!feof(fp)) {
2214       if (fgets(buf, buflen, fp)) {
2215         // Assume model name comes before flags
2216         bool model_name_printed = false;
2217         if (strstr(buf, "model name") != NULL) {
2218           if (!model_name_printed) {
2219             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2220             st->print_raw(buf);
2221             model_name_printed = true;
2222           } else {
2223             // model name printed but not flags?  Odd, just return
2224             fclose(fp);
2225             return true;
2226           }
2227         }
2228         // print the flags line too
2229         if (strstr(buf, "flags") != NULL) {
2230           st->print_raw(buf);
2231           fclose(fp);
2232           return true;
2233         }
2234       }
2235     }
2236     fclose(fp);
2237   }
2238 #endif // x86 platforms
2239   return false;
2240 }
2241 
2242 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2243   // Only print the model name if the platform provides this as a summary
2244   if (!print_model_name_and_flags(st, buf, buflen)) {
2245     st->print("\n/proc/cpuinfo:\n");
2246     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2247       st->print_cr("  <Not Available>");
2248     }
2249   }
2250 }
2251 
2252 #if defined(AMD64) || defined(IA32) || defined(X32)
2253 const char* search_string = "model name";
2254 #elif defined(M68K)
2255 const char* search_string = "CPU";
2256 #elif defined(PPC64)
2257 const char* search_string = "cpu";
2258 #elif defined(S390)
2259 const char* search_string = "processor";
2260 #elif defined(SPARC)
2261 const char* search_string = "cpu";
2262 #else
2263 const char* search_string = "Processor";
2264 #endif
2265 
2266 // Parses the cpuinfo file for string representing the model name.
2267 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2268   FILE* fp = fopen("/proc/cpuinfo", "r");
2269   if (fp != NULL) {
2270     while (!feof(fp)) {
2271       char buf[256];
2272       if (fgets(buf, sizeof(buf), fp)) {
2273         char* start = strstr(buf, search_string);
2274         if (start != NULL) {
2275           char *ptr = start + strlen(search_string);
2276           char *end = buf + strlen(buf);
2277           while (ptr != end) {
2278              // skip whitespace and colon for the rest of the name.
2279              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2280                break;
2281              }
2282              ptr++;
2283           }
2284           if (ptr != end) {
2285             // reasonable string, get rid of newline and keep the rest
2286             char* nl = strchr(buf, '\n');
2287             if (nl != NULL) *nl = '\0';
2288             strncpy(cpuinfo, ptr, length);
2289             fclose(fp);
2290             return;
2291           }
2292         }
2293       }
2294     }
2295     fclose(fp);
2296   }
2297   // cpuinfo not found or parsing failed, just print generic string.  The entire
2298   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2299 #if   defined(AARCH64)
2300   strncpy(cpuinfo, "AArch64", length);
2301 #elif defined(AMD64)
2302   strncpy(cpuinfo, "x86_64", length);
2303 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2304   strncpy(cpuinfo, "ARM", length);
2305 #elif defined(IA32)
2306   strncpy(cpuinfo, "x86_32", length);
2307 #elif defined(IA64)
2308   strncpy(cpuinfo, "IA64", length);
2309 #elif defined(PPC)
2310   strncpy(cpuinfo, "PPC64", length);
2311 #elif defined(RISCV)
2312   strncpy(cpuinfo, "RISCV", length);
2313 #elif defined(S390)
2314   strncpy(cpuinfo, "S390", length);
2315 #elif defined(SPARC)
2316   strncpy(cpuinfo, "sparcv9", length);
2317 #elif defined(ZERO_LIBARCH)
2318   strncpy(cpuinfo, ZERO_LIBARCH, length);
2319 #else
2320   strncpy(cpuinfo, "unknown", length);
2321 #endif
2322 }
2323 
2324 static void print_signal_handler(outputStream* st, int sig,
2325                                  char* buf, size_t buflen);
2326 
2327 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2328   st->print_cr("Signal Handlers:");
2329   print_signal_handler(st, SIGSEGV, buf, buflen);
2330   print_signal_handler(st, SIGBUS , buf, buflen);
2331   print_signal_handler(st, SIGFPE , buf, buflen);
2332   print_signal_handler(st, SIGPIPE, buf, buflen);
2333   print_signal_handler(st, SIGXFSZ, buf, buflen);
2334   print_signal_handler(st, SIGILL , buf, buflen);
2335   print_signal_handler(st, SR_signum, buf, buflen);
2336   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2337   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2338   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2339   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2340 #if defined(PPC64)
2341   print_signal_handler(st, SIGTRAP, buf, buflen);
2342 #endif
2343 }
2344 
2345 static char saved_jvm_path[MAXPATHLEN] = {0};
2346 
2347 // Find the full path to the current module, libjvm.so
2348 void os::jvm_path(char *buf, jint buflen) {
2349   // Error checking.
2350   if (buflen < MAXPATHLEN) {
2351     assert(false, "must use a large-enough buffer");
2352     buf[0] = '\0';
2353     return;
2354   }
2355   // Lazy resolve the path to current module.
2356   if (saved_jvm_path[0] != 0) {
2357     strcpy(buf, saved_jvm_path);
2358     return;
2359   }
2360 
2361   char dli_fname[MAXPATHLEN];
2362   bool ret = dll_address_to_library_name(
2363                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2364                                          dli_fname, sizeof(dli_fname), NULL);
2365   assert(ret, "cannot locate libjvm");
2366   char *rp = NULL;
2367   if (ret && dli_fname[0] != '\0') {
2368     rp = os::Posix::realpath(dli_fname, buf, buflen);
2369   }
2370   if (rp == NULL) {
2371     return;
2372   }
2373 
2374   if (Arguments::sun_java_launcher_is_altjvm()) {
2375     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2376     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2377     // If "/jre/lib/" appears at the right place in the string, then
2378     // assume we are installed in a JDK and we're done. Otherwise, check
2379     // for a JAVA_HOME environment variable and fix up the path so it
2380     // looks like libjvm.so is installed there (append a fake suffix
2381     // hotspot/libjvm.so).
2382     const char *p = buf + strlen(buf) - 1;
2383     for (int count = 0; p > buf && count < 5; ++count) {
2384       for (--p; p > buf && *p != '/'; --p)
2385         /* empty */ ;
2386     }
2387 
2388     if (strncmp(p, "/jre/lib/", 9) != 0) {
2389       // Look for JAVA_HOME in the environment.
2390       char* java_home_var = ::getenv("JAVA_HOME");
2391       if (java_home_var != NULL && java_home_var[0] != 0) {
2392         char* jrelib_p;
2393         int len;
2394 
2395         // Check the current module name "libjvm.so".
2396         p = strrchr(buf, '/');
2397         if (p == NULL) {
2398           return;
2399         }
2400         assert(strstr(p, "/libjvm") == p, "invalid library name");
2401 
2402         rp = os::Posix::realpath(java_home_var, buf, buflen);
2403         if (rp == NULL) {
2404           return;
2405         }
2406 
2407         // determine if this is a legacy image or modules image
2408         // modules image doesn't have "jre" subdirectory
2409         len = strlen(buf);
2410         assert(len < buflen, "Ran out of buffer room");
2411         jrelib_p = buf + len;
2412         snprintf(jrelib_p, buflen-len, "/jre/lib");
2413         if (0 != access(buf, F_OK)) {
2414           snprintf(jrelib_p, buflen-len, "/lib");
2415         }
2416 
2417         if (0 == access(buf, F_OK)) {
2418           // Use current module name "libjvm.so"
2419           len = strlen(buf);
2420           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2421         } else {
2422           // Go back to path of .so
2423           rp = os::Posix::realpath(dli_fname, buf, buflen);
2424           if (rp == NULL) {
2425             return;
2426           }
2427         }
2428       }
2429     }
2430   }
2431 
2432   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2433   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2434 }
2435 
2436 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2437   // no prefix required, not even "_"
2438 }
2439 
2440 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2441   // no suffix required
2442 }
2443 
2444 ////////////////////////////////////////////////////////////////////////////////
2445 // sun.misc.Signal support
2446 
2447 static volatile jint sigint_count = 0;
2448 
2449 static void UserHandler(int sig, void *siginfo, void *context) {
2450   // 4511530 - sem_post is serialized and handled by the manager thread. When
2451   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2452   // don't want to flood the manager thread with sem_post requests.
2453   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2454     return;
2455   }
2456 
2457   // Ctrl-C is pressed during error reporting, likely because the error
2458   // handler fails to abort. Let VM die immediately.
2459   if (sig == SIGINT && VMError::is_error_reported()) {
2460     os::die();
2461   }
2462 
2463   os::signal_notify(sig);
2464 }
2465 
2466 void* os::user_handler() {
2467   return CAST_FROM_FN_PTR(void*, UserHandler);
2468 }
2469 
2470 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2471   struct timespec ts;
2472   // Semaphore's are always associated with CLOCK_REALTIME
2473   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2474   // see os_posix.cpp for discussion on overflow checking
2475   if (sec >= MAX_SECS) {
2476     ts.tv_sec += MAX_SECS;
2477     ts.tv_nsec = 0;
2478   } else {
2479     ts.tv_sec += sec;
2480     ts.tv_nsec += nsec;
2481     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2482       ts.tv_nsec -= NANOSECS_PER_SEC;
2483       ++ts.tv_sec; // note: this must be <= max_secs
2484     }
2485   }
2486 
2487   return ts;
2488 }
2489 
2490 extern "C" {
2491   typedef void (*sa_handler_t)(int);
2492   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2493 }
2494 
2495 void* os::signal(int signal_number, void* handler) {
2496   struct sigaction sigAct, oldSigAct;
2497 
2498   sigfillset(&(sigAct.sa_mask));
2499   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2500   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2501 
2502   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2503     // -1 means registration failed
2504     return (void *)-1;
2505   }
2506 
2507   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2508 }
2509 
2510 void os::signal_raise(int signal_number) {
2511   ::raise(signal_number);
2512 }
2513 
2514 // The following code is moved from os.cpp for making this
2515 // code platform specific, which it is by its very nature.
2516 
2517 // Will be modified when max signal is changed to be dynamic
2518 int os::sigexitnum_pd() {
2519   return NSIG;
2520 }
2521 
2522 // a counter for each possible signal value
2523 static volatile jint pending_signals[NSIG+1] = { 0 };
2524 
2525 // Linux(POSIX) specific hand shaking semaphore.
2526 static Semaphore* sig_sem = NULL;
2527 static PosixSemaphore sr_semaphore;
2528 
2529 void os::signal_init_pd() {
2530   // Initialize signal structures
2531   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2532 
2533   // Initialize signal semaphore
2534   sig_sem = new Semaphore();
2535 }
2536 
2537 void os::signal_notify(int sig) {
2538   if (sig_sem != NULL) {
2539     Atomic::inc(&pending_signals[sig]);
2540     sig_sem->signal();
2541   } else {
2542     // Signal thread is not created with ReduceSignalUsage and signal_init_pd
2543     // initialization isn't called.
2544     assert(ReduceSignalUsage, "signal semaphore should be created");
2545   }
2546 }
2547 
2548 static int check_pending_signals() {
2549   Atomic::store(0, &sigint_count);
2550   for (;;) {
2551     for (int i = 0; i < NSIG + 1; i++) {
2552       jint n = pending_signals[i];
2553       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2554         return i;
2555       }
2556     }
2557     JavaThread *thread = JavaThread::current();
2558     ThreadBlockInVM tbivm(thread);
2559 
2560     bool threadIsSuspended;
2561     do {
2562       thread->set_suspend_equivalent();
2563       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2564       sig_sem->wait();
2565 
2566       // were we externally suspended while we were waiting?
2567       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2568       if (threadIsSuspended) {
2569         // The semaphore has been incremented, but while we were waiting
2570         // another thread suspended us. We don't want to continue running
2571         // while suspended because that would surprise the thread that
2572         // suspended us.
2573         sig_sem->signal();
2574 
2575         thread->java_suspend_self();
2576       }
2577     } while (threadIsSuspended);
2578   }
2579 }
2580 
2581 int os::signal_wait() {
2582   return check_pending_signals();
2583 }
2584 
2585 ////////////////////////////////////////////////////////////////////////////////
2586 // Virtual Memory
2587 
2588 int os::vm_page_size() {
2589   // Seems redundant as all get out
2590   assert(os::Linux::page_size() != -1, "must call os::init");
2591   return os::Linux::page_size();
2592 }
2593 
2594 // Solaris allocates memory by pages.
2595 int os::vm_allocation_granularity() {
2596   assert(os::Linux::page_size() != -1, "must call os::init");
2597   return os::Linux::page_size();
2598 }
2599 
2600 // Rationale behind this function:
2601 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2602 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2603 //  samples for JITted code. Here we create private executable mapping over the code cache
2604 //  and then we can use standard (well, almost, as mapping can change) way to provide
2605 //  info for the reporting script by storing timestamp and location of symbol
2606 void linux_wrap_code(char* base, size_t size) {
2607   static volatile jint cnt = 0;
2608 
2609   if (!UseOprofile) {
2610     return;
2611   }
2612 
2613   char buf[PATH_MAX+1];
2614   int num = Atomic::add(1, &cnt);
2615 
2616   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2617            os::get_temp_directory(), os::current_process_id(), num);
2618   unlink(buf);
2619 
2620   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2621 
2622   if (fd != -1) {
2623     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2624     if (rv != (off_t)-1) {
2625       if (::write(fd, "", 1) == 1) {
2626         mmap(base, size,
2627              PROT_READ|PROT_WRITE|PROT_EXEC,
2628              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2629       }
2630     }
2631     ::close(fd);
2632     unlink(buf);
2633   }
2634 }
2635 
2636 static bool recoverable_mmap_error(int err) {
2637   // See if the error is one we can let the caller handle. This
2638   // list of errno values comes from JBS-6843484. I can't find a
2639   // Linux man page that documents this specific set of errno
2640   // values so while this list currently matches Solaris, it may
2641   // change as we gain experience with this failure mode.
2642   switch (err) {
2643   case EBADF:
2644   case EINVAL:
2645   case ENOTSUP:
2646     // let the caller deal with these errors
2647     return true;
2648 
2649   default:
2650     // Any remaining errors on this OS can cause our reserved mapping
2651     // to be lost. That can cause confusion where different data
2652     // structures think they have the same memory mapped. The worst
2653     // scenario is if both the VM and a library think they have the
2654     // same memory mapped.
2655     return false;
2656   }
2657 }
2658 
2659 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2660                                     int err) {
2661   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2662           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2663           os::strerror(err), err);
2664 }
2665 
2666 static void warn_fail_commit_memory(char* addr, size_t size,
2667                                     size_t alignment_hint, bool exec,
2668                                     int err) {
2669   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2670           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2671           alignment_hint, exec, os::strerror(err), err);
2672 }
2673 
2674 // NOTE: Linux kernel does not really reserve the pages for us.
2675 //       All it does is to check if there are enough free pages
2676 //       left at the time of mmap(). This could be a potential
2677 //       problem.
2678 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2679   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2680   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2681                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2682   if (res != (uintptr_t) MAP_FAILED) {
2683     if (UseNUMAInterleaving) {
2684       numa_make_global(addr, size);
2685     }
2686     return 0;
2687   }
2688 
2689   int err = errno;  // save errno from mmap() call above
2690 
2691   if (!recoverable_mmap_error(err)) {
2692     warn_fail_commit_memory(addr, size, exec, err);
2693     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2694   }
2695 
2696   return err;
2697 }
2698 
2699 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2700   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2701 }
2702 
2703 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2704                                   const char* mesg) {
2705   assert(mesg != NULL, "mesg must be specified");
2706   int err = os::Linux::commit_memory_impl(addr, size, exec);
2707   if (err != 0) {
2708     // the caller wants all commit errors to exit with the specified mesg:
2709     warn_fail_commit_memory(addr, size, exec, err);
2710     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2711   }
2712 }
2713 
2714 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2715 #ifndef MAP_HUGETLB
2716   #define MAP_HUGETLB 0x40000
2717 #endif
2718 
2719 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2720 #ifndef MADV_HUGEPAGE
2721   #define MADV_HUGEPAGE 14
2722 #endif
2723 
2724 int os::Linux::commit_memory_impl(char* addr, size_t size,
2725                                   size_t alignment_hint, bool exec) {
2726   int err = os::Linux::commit_memory_impl(addr, size, exec);
2727   if (err == 0) {
2728     realign_memory(addr, size, alignment_hint);
2729   }
2730   return err;
2731 }
2732 
2733 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2734                           bool exec) {
2735   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2736 }
2737 
2738 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2739                                   size_t alignment_hint, bool exec,
2740                                   const char* mesg) {
2741   assert(mesg != NULL, "mesg must be specified");
2742   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2743   if (err != 0) {
2744     // the caller wants all commit errors to exit with the specified mesg:
2745     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2746     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2747   }
2748 }
2749 
2750 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2751   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2752     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2753     // be supported or the memory may already be backed by huge pages.
2754     ::madvise(addr, bytes, MADV_HUGEPAGE);
2755   }
2756 }
2757 
2758 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2759   // This method works by doing an mmap over an existing mmaping and effectively discarding
2760   // the existing pages. However it won't work for SHM-based large pages that cannot be
2761   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2762   // small pages on top of the SHM segment. This method always works for small pages, so we
2763   // allow that in any case.
2764   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2765     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2766   }
2767 }
2768 
2769 void os::numa_make_global(char *addr, size_t bytes) {
2770   Linux::numa_interleave_memory(addr, bytes);
2771 }
2772 
2773 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2774 // bind policy to MPOL_PREFERRED for the current thread.
2775 #define USE_MPOL_PREFERRED 0
2776 
2777 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2778   // To make NUMA and large pages more robust when both enabled, we need to ease
2779   // the requirements on where the memory should be allocated. MPOL_BIND is the
2780   // default policy and it will force memory to be allocated on the specified
2781   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2782   // the specified node, but will not force it. Using this policy will prevent
2783   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2784   // free large pages.
2785   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2786   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2787 }
2788 
2789 bool os::numa_topology_changed() { return false; }
2790 
2791 size_t os::numa_get_groups_num() {
2792   // Return just the number of nodes in which it's possible to allocate memory
2793   // (in numa terminology, configured nodes).
2794   return Linux::numa_num_configured_nodes();
2795 }
2796 
2797 int os::numa_get_group_id() {
2798   int cpu_id = Linux::sched_getcpu();
2799   if (cpu_id != -1) {
2800     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2801     if (lgrp_id != -1) {
2802       return lgrp_id;
2803     }
2804   }
2805   return 0;
2806 }
2807 
2808 int os::Linux::get_existing_num_nodes() {
2809   size_t node;
2810   size_t highest_node_number = Linux::numa_max_node();
2811   int num_nodes = 0;
2812 
2813   // Get the total number of nodes in the system including nodes without memory.
2814   for (node = 0; node <= highest_node_number; node++) {
2815     if (isnode_in_existing_nodes(node)) {
2816       num_nodes++;
2817     }
2818   }
2819   return num_nodes;
2820 }
2821 
2822 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2823   size_t highest_node_number = Linux::numa_max_node();
2824   size_t i = 0;
2825 
2826   // Map all node ids in which is possible to allocate memory. Also nodes are
2827   // not always consecutively available, i.e. available from 0 to the highest
2828   // node number.
2829   for (size_t node = 0; node <= highest_node_number; node++) {
2830     if (Linux::isnode_in_configured_nodes(node)) {
2831       ids[i++] = node;
2832     }
2833   }
2834   return i;
2835 }
2836 
2837 bool os::get_page_info(char *start, page_info* info) {
2838   return false;
2839 }
2840 
2841 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2842                      page_info* page_found) {
2843   return end;
2844 }
2845 
2846 
2847 int os::Linux::sched_getcpu_syscall(void) {
2848   unsigned int cpu = 0;
2849   int retval = -1;
2850 
2851 #if defined(IA32)
2852   #ifndef SYS_getcpu
2853     #define SYS_getcpu 318
2854   #endif
2855   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2856 #elif defined(AMD64)
2857 // Unfortunately we have to bring all these macros here from vsyscall.h
2858 // to be able to compile on old linuxes.
2859   #define __NR_vgetcpu 2
2860   #define VSYSCALL_START (-10UL << 20)
2861   #define VSYSCALL_SIZE 1024
2862   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2863   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2864   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2865   retval = vgetcpu(&cpu, NULL, NULL);
2866 #endif
2867 
2868   return (retval == -1) ? retval : cpu;
2869 }
2870 
2871 void os::Linux::sched_getcpu_init() {
2872   // sched_getcpu() should be in libc.
2873   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2874                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2875 
2876   // If it's not, try a direct syscall.
2877   if (sched_getcpu() == -1) {
2878     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2879                                     (void*)&sched_getcpu_syscall));
2880   }
2881 }
2882 
2883 // Something to do with the numa-aware allocator needs these symbols
2884 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2885 extern "C" JNIEXPORT void numa_error(char *where) { }
2886 
2887 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2888 // load symbol from base version instead.
2889 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2890   void *f = dlvsym(handle, name, "libnuma_1.1");
2891   if (f == NULL) {
2892     f = dlsym(handle, name);
2893   }
2894   return f;
2895 }
2896 
2897 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2898 // Return NULL if the symbol is not defined in this particular version.
2899 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2900   return dlvsym(handle, name, "libnuma_1.2");
2901 }
2902 
2903 bool os::Linux::libnuma_init() {
2904   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2905     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2906     if (handle != NULL) {
2907       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2908                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2909       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2910                                        libnuma_dlsym(handle, "numa_max_node")));
2911       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2912                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2913       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2914                                         libnuma_dlsym(handle, "numa_available")));
2915       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2916                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2917       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2918                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2919       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2920                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2921       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2922                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2923       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2924                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2925       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2926                                        libnuma_dlsym(handle, "numa_distance")));
2927 
2928       if (numa_available() != -1) {
2929         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2930         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2931         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2932         // Create an index -> node mapping, since nodes are not always consecutive
2933         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2934         rebuild_nindex_to_node_map();
2935         // Create a cpu -> node mapping
2936         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2937         rebuild_cpu_to_node_map();
2938         return true;
2939       }
2940     }
2941   }
2942   return false;
2943 }
2944 
2945 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2946   // Creating guard page is very expensive. Java thread has HotSpot
2947   // guard pages, only enable glibc guard page for non-Java threads.
2948   // (Remember: compiler thread is a Java thread, too!)
2949   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2950 }
2951 
2952 void os::Linux::rebuild_nindex_to_node_map() {
2953   int highest_node_number = Linux::numa_max_node();
2954 
2955   nindex_to_node()->clear();
2956   for (int node = 0; node <= highest_node_number; node++) {
2957     if (Linux::isnode_in_existing_nodes(node)) {
2958       nindex_to_node()->append(node);
2959     }
2960   }
2961 }
2962 
2963 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2964 // The table is later used in get_node_by_cpu().
2965 void os::Linux::rebuild_cpu_to_node_map() {
2966   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2967                               // in libnuma (possible values are starting from 16,
2968                               // and continuing up with every other power of 2, but less
2969                               // than the maximum number of CPUs supported by kernel), and
2970                               // is a subject to change (in libnuma version 2 the requirements
2971                               // are more reasonable) we'll just hardcode the number they use
2972                               // in the library.
2973   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2974 
2975   size_t cpu_num = processor_count();
2976   size_t cpu_map_size = NCPUS / BitsPerCLong;
2977   size_t cpu_map_valid_size =
2978     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2979 
2980   cpu_to_node()->clear();
2981   cpu_to_node()->at_grow(cpu_num - 1);
2982 
2983   size_t node_num = get_existing_num_nodes();
2984 
2985   int distance = 0;
2986   int closest_distance = INT_MAX;
2987   int closest_node = 0;
2988   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2989   for (size_t i = 0; i < node_num; i++) {
2990     // Check if node is configured (not a memory-less node). If it is not, find
2991     // the closest configured node.
2992     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2993       closest_distance = INT_MAX;
2994       // Check distance from all remaining nodes in the system. Ignore distance
2995       // from itself and from another non-configured node.
2996       for (size_t m = 0; m < node_num; m++) {
2997         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2998           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2999           // If a closest node is found, update. There is always at least one
3000           // configured node in the system so there is always at least one node
3001           // close.
3002           if (distance != 0 && distance < closest_distance) {
3003             closest_distance = distance;
3004             closest_node = nindex_to_node()->at(m);
3005           }
3006         }
3007       }
3008      } else {
3009        // Current node is already a configured node.
3010        closest_node = nindex_to_node()->at(i);
3011      }
3012 
3013     // Get cpus from the original node and map them to the closest node. If node
3014     // is a configured node (not a memory-less node), then original node and
3015     // closest node are the same.
3016     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3017       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3018         if (cpu_map[j] != 0) {
3019           for (size_t k = 0; k < BitsPerCLong; k++) {
3020             if (cpu_map[j] & (1UL << k)) {
3021               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3022             }
3023           }
3024         }
3025       }
3026     }
3027   }
3028   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3029 }
3030 
3031 int os::Linux::get_node_by_cpu(int cpu_id) {
3032   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3033     return cpu_to_node()->at(cpu_id);
3034   }
3035   return -1;
3036 }
3037 
3038 GrowableArray<int>* os::Linux::_cpu_to_node;
3039 GrowableArray<int>* os::Linux::_nindex_to_node;
3040 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3041 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3042 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3043 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3044 os::Linux::numa_available_func_t os::Linux::_numa_available;
3045 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3046 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3047 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3048 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3049 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3050 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3051 unsigned long* os::Linux::_numa_all_nodes;
3052 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3053 struct bitmask* os::Linux::_numa_nodes_ptr;
3054 
3055 bool os::pd_uncommit_memory(char* addr, size_t size) {
3056   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3057                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3058   return res  != (uintptr_t) MAP_FAILED;
3059 }
3060 
3061 static address get_stack_commited_bottom(address bottom, size_t size) {
3062   address nbot = bottom;
3063   address ntop = bottom + size;
3064 
3065   size_t page_sz = os::vm_page_size();
3066   unsigned pages = size / page_sz;
3067 
3068   unsigned char vec[1];
3069   unsigned imin = 1, imax = pages + 1, imid;
3070   int mincore_return_value = 0;
3071 
3072   assert(imin <= imax, "Unexpected page size");
3073 
3074   while (imin < imax) {
3075     imid = (imax + imin) / 2;
3076     nbot = ntop - (imid * page_sz);
3077 
3078     // Use a trick with mincore to check whether the page is mapped or not.
3079     // mincore sets vec to 1 if page resides in memory and to 0 if page
3080     // is swapped output but if page we are asking for is unmapped
3081     // it returns -1,ENOMEM
3082     mincore_return_value = mincore(nbot, page_sz, vec);
3083 
3084     if (mincore_return_value == -1) {
3085       // Page is not mapped go up
3086       // to find first mapped page
3087       if (errno != EAGAIN) {
3088         assert(errno == ENOMEM, "Unexpected mincore errno");
3089         imax = imid;
3090       }
3091     } else {
3092       // Page is mapped go down
3093       // to find first not mapped page
3094       imin = imid + 1;
3095     }
3096   }
3097 
3098   nbot = nbot + page_sz;
3099 
3100   // Adjust stack bottom one page up if last checked page is not mapped
3101   if (mincore_return_value == -1) {
3102     nbot = nbot + page_sz;
3103   }
3104 
3105   return nbot;
3106 }
3107 
3108 
3109 // Linux uses a growable mapping for the stack, and if the mapping for
3110 // the stack guard pages is not removed when we detach a thread the
3111 // stack cannot grow beyond the pages where the stack guard was
3112 // mapped.  If at some point later in the process the stack expands to
3113 // that point, the Linux kernel cannot expand the stack any further
3114 // because the guard pages are in the way, and a segfault occurs.
3115 //
3116 // However, it's essential not to split the stack region by unmapping
3117 // a region (leaving a hole) that's already part of the stack mapping,
3118 // so if the stack mapping has already grown beyond the guard pages at
3119 // the time we create them, we have to truncate the stack mapping.
3120 // So, we need to know the extent of the stack mapping when
3121 // create_stack_guard_pages() is called.
3122 
3123 // We only need this for stacks that are growable: at the time of
3124 // writing thread stacks don't use growable mappings (i.e. those
3125 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3126 // only applies to the main thread.
3127 
3128 // If the (growable) stack mapping already extends beyond the point
3129 // where we're going to put our guard pages, truncate the mapping at
3130 // that point by munmap()ping it.  This ensures that when we later
3131 // munmap() the guard pages we don't leave a hole in the stack
3132 // mapping. This only affects the main/primordial thread
3133 
3134 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3135   if (os::is_primordial_thread()) {
3136     // As we manually grow stack up to bottom inside create_attached_thread(),
3137     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3138     // we don't need to do anything special.
3139     // Check it first, before calling heavy function.
3140     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3141     unsigned char vec[1];
3142 
3143     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3144       // Fallback to slow path on all errors, including EAGAIN
3145       stack_extent = (uintptr_t) get_stack_commited_bottom(
3146                                                            os::Linux::initial_thread_stack_bottom(),
3147                                                            (size_t)addr - stack_extent);
3148     }
3149 
3150     if (stack_extent < (uintptr_t)addr) {
3151       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3152     }
3153   }
3154 
3155   return os::commit_memory(addr, size, !ExecMem);
3156 }
3157 
3158 // If this is a growable mapping, remove the guard pages entirely by
3159 // munmap()ping them.  If not, just call uncommit_memory(). This only
3160 // affects the main/primordial thread, but guard against future OS changes.
3161 // It's safe to always unmap guard pages for primordial thread because we
3162 // always place it right after end of the mapped region.
3163 
3164 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3165   uintptr_t stack_extent, stack_base;
3166 
3167   if (os::is_primordial_thread()) {
3168     return ::munmap(addr, size) == 0;
3169   }
3170 
3171   return os::uncommit_memory(addr, size);
3172 }
3173 
3174 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3175 // at 'requested_addr'. If there are existing memory mappings at the same
3176 // location, however, they will be overwritten. If 'fixed' is false,
3177 // 'requested_addr' is only treated as a hint, the return value may or
3178 // may not start from the requested address. Unlike Linux mmap(), this
3179 // function returns NULL to indicate failure.
3180 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3181   char * addr;
3182   int flags;
3183 
3184   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3185   if (fixed) {
3186     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3187     flags |= MAP_FIXED;
3188   }
3189 
3190   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3191   // touch an uncommitted page. Otherwise, the read/write might
3192   // succeed if we have enough swap space to back the physical page.
3193   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3194                        flags, -1, 0);
3195 
3196   return addr == MAP_FAILED ? NULL : addr;
3197 }
3198 
3199 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3200 //   (req_addr != NULL) or with a given alignment.
3201 //  - bytes shall be a multiple of alignment.
3202 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3203 //  - alignment sets the alignment at which memory shall be allocated.
3204 //     It must be a multiple of allocation granularity.
3205 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3206 //  req_addr or NULL.
3207 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3208 
3209   size_t extra_size = bytes;
3210   if (req_addr == NULL && alignment > 0) {
3211     extra_size += alignment;
3212   }
3213 
3214   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3215     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3216     -1, 0);
3217   if (start == MAP_FAILED) {
3218     start = NULL;
3219   } else {
3220     if (req_addr != NULL) {
3221       if (start != req_addr) {
3222         ::munmap(start, extra_size);
3223         start = NULL;
3224       }
3225     } else {
3226       char* const start_aligned = align_up(start, alignment);
3227       char* const end_aligned = start_aligned + bytes;
3228       char* const end = start + extra_size;
3229       if (start_aligned > start) {
3230         ::munmap(start, start_aligned - start);
3231       }
3232       if (end_aligned < end) {
3233         ::munmap(end_aligned, end - end_aligned);
3234       }
3235       start = start_aligned;
3236     }
3237   }
3238   return start;
3239 }
3240 
3241 static int anon_munmap(char * addr, size_t size) {
3242   return ::munmap(addr, size) == 0;
3243 }
3244 
3245 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3246                             size_t alignment_hint) {
3247   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3248 }
3249 
3250 bool os::pd_release_memory(char* addr, size_t size) {
3251   return anon_munmap(addr, size);
3252 }
3253 
3254 static bool linux_mprotect(char* addr, size_t size, int prot) {
3255   // Linux wants the mprotect address argument to be page aligned.
3256   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3257 
3258   // According to SUSv3, mprotect() should only be used with mappings
3259   // established by mmap(), and mmap() always maps whole pages. Unaligned
3260   // 'addr' likely indicates problem in the VM (e.g. trying to change
3261   // protection of malloc'ed or statically allocated memory). Check the
3262   // caller if you hit this assert.
3263   assert(addr == bottom, "sanity check");
3264 
3265   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3266   return ::mprotect(bottom, size, prot) == 0;
3267 }
3268 
3269 // Set protections specified
3270 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3271                         bool is_committed) {
3272   unsigned int p = 0;
3273   switch (prot) {
3274   case MEM_PROT_NONE: p = PROT_NONE; break;
3275   case MEM_PROT_READ: p = PROT_READ; break;
3276   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3277   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3278   default:
3279     ShouldNotReachHere();
3280   }
3281   // is_committed is unused.
3282   return linux_mprotect(addr, bytes, p);
3283 }
3284 
3285 bool os::guard_memory(char* addr, size_t size) {
3286   return linux_mprotect(addr, size, PROT_NONE);
3287 }
3288 
3289 bool os::unguard_memory(char* addr, size_t size) {
3290   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3291 }
3292 
3293 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3294                                                     size_t page_size) {
3295   bool result = false;
3296   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3297                  MAP_ANONYMOUS|MAP_PRIVATE,
3298                  -1, 0);
3299   if (p != MAP_FAILED) {
3300     void *aligned_p = align_up(p, page_size);
3301 
3302     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3303 
3304     munmap(p, page_size * 2);
3305   }
3306 
3307   if (warn && !result) {
3308     warning("TransparentHugePages is not supported by the operating system.");
3309   }
3310 
3311   return result;
3312 }
3313 
3314 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3315   bool result = false;
3316   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3317                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3318                  -1, 0);
3319 
3320   if (p != MAP_FAILED) {
3321     // We don't know if this really is a huge page or not.
3322     FILE *fp = fopen("/proc/self/maps", "r");
3323     if (fp) {
3324       while (!feof(fp)) {
3325         char chars[257];
3326         long x = 0;
3327         if (fgets(chars, sizeof(chars), fp)) {
3328           if (sscanf(chars, "%lx-%*x", &x) == 1
3329               && x == (long)p) {
3330             if (strstr (chars, "hugepage")) {
3331               result = true;
3332               break;
3333             }
3334           }
3335         }
3336       }
3337       fclose(fp);
3338     }
3339     munmap(p, page_size);
3340   }
3341 
3342   if (warn && !result) {
3343     warning("HugeTLBFS is not supported by the operating system.");
3344   }
3345 
3346   return result;
3347 }
3348 
3349 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3350 //
3351 // From the coredump_filter documentation:
3352 //
3353 // - (bit 0) anonymous private memory
3354 // - (bit 1) anonymous shared memory
3355 // - (bit 2) file-backed private memory
3356 // - (bit 3) file-backed shared memory
3357 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3358 //           effective only if the bit 2 is cleared)
3359 // - (bit 5) hugetlb private memory
3360 // - (bit 6) hugetlb shared memory
3361 // - (bit 7) dax private memory
3362 // - (bit 8) dax shared memory
3363 //
3364 static void set_coredump_filter(bool largepages, bool dax_shared) {
3365   FILE *f;
3366   long cdm;
3367   bool filter_changed = false;
3368 
3369   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3370     return;
3371   }
3372 
3373   if (fscanf(f, "%lx", &cdm) != 1) {
3374     fclose(f);
3375     return;
3376   }
3377 
3378   rewind(f);
3379 
3380   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3381     cdm |= LARGEPAGES_BIT;
3382     filter_changed = true;
3383   }
3384   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3385     cdm |= DAX_SHARED_BIT;
3386     filter_changed = true;
3387   }
3388   if (filter_changed) {
3389     fprintf(f, "%#lx", cdm);
3390   }
3391 
3392   fclose(f);
3393 }
3394 
3395 // Large page support
3396 
3397 static size_t _large_page_size = 0;
3398 
3399 size_t os::Linux::find_large_page_size() {
3400   size_t large_page_size = 0;
3401 
3402   // large_page_size on Linux is used to round up heap size. x86 uses either
3403   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3404   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3405   // page as large as 256M.
3406   //
3407   // Here we try to figure out page size by parsing /proc/meminfo and looking
3408   // for a line with the following format:
3409   //    Hugepagesize:     2048 kB
3410   //
3411   // If we can't determine the value (e.g. /proc is not mounted, or the text
3412   // format has been changed), we'll use the largest page size supported by
3413   // the processor.
3414 
3415 #ifndef ZERO
3416   large_page_size =
3417     AARCH64_ONLY(2 * M)
3418     AMD64_ONLY(2 * M)
3419     ARM32_ONLY(2 * M)
3420     IA32_ONLY(4 * M)
3421     IA64_ONLY(256 * M)
3422     PPC_ONLY(4 * M)
3423     S390_ONLY(1 * M)
3424     SPARC_ONLY(4 * M);
3425 #endif // ZERO
3426 
3427   FILE *fp = fopen("/proc/meminfo", "r");
3428   if (fp) {
3429     while (!feof(fp)) {
3430       int x = 0;
3431       char buf[16];
3432       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3433         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3434           large_page_size = x * K;
3435           break;
3436         }
3437       } else {
3438         // skip to next line
3439         for (;;) {
3440           int ch = fgetc(fp);
3441           if (ch == EOF || ch == (int)'\n') break;
3442         }
3443       }
3444     }
3445     fclose(fp);
3446   }
3447 
3448   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3449     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3450             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3451             proper_unit_for_byte_size(large_page_size));
3452   }
3453 
3454   return large_page_size;
3455 }
3456 
3457 size_t os::Linux::setup_large_page_size() {
3458   _large_page_size = Linux::find_large_page_size();
3459   const size_t default_page_size = (size_t)Linux::page_size();
3460   if (_large_page_size > default_page_size) {
3461     _page_sizes[0] = _large_page_size;
3462     _page_sizes[1] = default_page_size;
3463     _page_sizes[2] = 0;
3464   }
3465 
3466   return _large_page_size;
3467 }
3468 
3469 bool os::Linux::setup_large_page_type(size_t page_size) {
3470   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3471       FLAG_IS_DEFAULT(UseSHM) &&
3472       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3473 
3474     // The type of large pages has not been specified by the user.
3475 
3476     // Try UseHugeTLBFS and then UseSHM.
3477     UseHugeTLBFS = UseSHM = true;
3478 
3479     // Don't try UseTransparentHugePages since there are known
3480     // performance issues with it turned on. This might change in the future.
3481     UseTransparentHugePages = false;
3482   }
3483 
3484   if (UseTransparentHugePages) {
3485     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3486     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3487       UseHugeTLBFS = false;
3488       UseSHM = false;
3489       return true;
3490     }
3491     UseTransparentHugePages = false;
3492   }
3493 
3494   if (UseHugeTLBFS) {
3495     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3496     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3497       UseSHM = false;
3498       return true;
3499     }
3500     UseHugeTLBFS = false;
3501   }
3502 
3503   return UseSHM;
3504 }
3505 
3506 void os::large_page_init() {
3507   if (!UseLargePages &&
3508       !UseTransparentHugePages &&
3509       !UseHugeTLBFS &&
3510       !UseSHM) {
3511     // Not using large pages.
3512     return;
3513   }
3514 
3515   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3516     // The user explicitly turned off large pages.
3517     // Ignore the rest of the large pages flags.
3518     UseTransparentHugePages = false;
3519     UseHugeTLBFS = false;
3520     UseSHM = false;
3521     return;
3522   }
3523 
3524   size_t large_page_size = Linux::setup_large_page_size();
3525   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3526 
3527   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3528 }
3529 
3530 #ifndef SHM_HUGETLB
3531   #define SHM_HUGETLB 04000
3532 #endif
3533 
3534 #define shm_warning_format(format, ...)              \
3535   do {                                               \
3536     if (UseLargePages &&                             \
3537         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3538          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3539          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3540       warning(format, __VA_ARGS__);                  \
3541     }                                                \
3542   } while (0)
3543 
3544 #define shm_warning(str) shm_warning_format("%s", str)
3545 
3546 #define shm_warning_with_errno(str)                \
3547   do {                                             \
3548     int err = errno;                               \
3549     shm_warning_format(str " (error = %d)", err);  \
3550   } while (0)
3551 
3552 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3553   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3554 
3555   if (!is_aligned(alignment, SHMLBA)) {
3556     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3557     return NULL;
3558   }
3559 
3560   // To ensure that we get 'alignment' aligned memory from shmat,
3561   // we pre-reserve aligned virtual memory and then attach to that.
3562 
3563   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3564   if (pre_reserved_addr == NULL) {
3565     // Couldn't pre-reserve aligned memory.
3566     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3567     return NULL;
3568   }
3569 
3570   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3571   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3572 
3573   if ((intptr_t)addr == -1) {
3574     int err = errno;
3575     shm_warning_with_errno("Failed to attach shared memory.");
3576 
3577     assert(err != EACCES, "Unexpected error");
3578     assert(err != EIDRM,  "Unexpected error");
3579     assert(err != EINVAL, "Unexpected error");
3580 
3581     // Since we don't know if the kernel unmapped the pre-reserved memory area
3582     // we can't unmap it, since that would potentially unmap memory that was
3583     // mapped from other threads.
3584     return NULL;
3585   }
3586 
3587   return addr;
3588 }
3589 
3590 static char* shmat_at_address(int shmid, char* req_addr) {
3591   if (!is_aligned(req_addr, SHMLBA)) {
3592     assert(false, "Requested address needs to be SHMLBA aligned");
3593     return NULL;
3594   }
3595 
3596   char* addr = (char*)shmat(shmid, req_addr, 0);
3597 
3598   if ((intptr_t)addr == -1) {
3599     shm_warning_with_errno("Failed to attach shared memory.");
3600     return NULL;
3601   }
3602 
3603   return addr;
3604 }
3605 
3606 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3607   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3608   if (req_addr != NULL) {
3609     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3610     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3611     return shmat_at_address(shmid, req_addr);
3612   }
3613 
3614   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3615   // return large page size aligned memory addresses when req_addr == NULL.
3616   // However, if the alignment is larger than the large page size, we have
3617   // to manually ensure that the memory returned is 'alignment' aligned.
3618   if (alignment > os::large_page_size()) {
3619     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3620     return shmat_with_alignment(shmid, bytes, alignment);
3621   } else {
3622     return shmat_at_address(shmid, NULL);
3623   }
3624 }
3625 
3626 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3627                                             char* req_addr, bool exec) {
3628   // "exec" is passed in but not used.  Creating the shared image for
3629   // the code cache doesn't have an SHM_X executable permission to check.
3630   assert(UseLargePages && UseSHM, "only for SHM large pages");
3631   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3632   assert(is_aligned(req_addr, alignment), "Unaligned address");
3633 
3634   if (!is_aligned(bytes, os::large_page_size())) {
3635     return NULL; // Fallback to small pages.
3636   }
3637 
3638   // Create a large shared memory region to attach to based on size.
3639   // Currently, size is the total size of the heap.
3640   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3641   if (shmid == -1) {
3642     // Possible reasons for shmget failure:
3643     // 1. shmmax is too small for Java heap.
3644     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3645     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3646     // 2. not enough large page memory.
3647     //    > check available large pages: cat /proc/meminfo
3648     //    > increase amount of large pages:
3649     //          echo new_value > /proc/sys/vm/nr_hugepages
3650     //      Note 1: different Linux may use different name for this property,
3651     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3652     //      Note 2: it's possible there's enough physical memory available but
3653     //            they are so fragmented after a long run that they can't
3654     //            coalesce into large pages. Try to reserve large pages when
3655     //            the system is still "fresh".
3656     shm_warning_with_errno("Failed to reserve shared memory.");
3657     return NULL;
3658   }
3659 
3660   // Attach to the region.
3661   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3662 
3663   // Remove shmid. If shmat() is successful, the actual shared memory segment
3664   // will be deleted when it's detached by shmdt() or when the process
3665   // terminates. If shmat() is not successful this will remove the shared
3666   // segment immediately.
3667   shmctl(shmid, IPC_RMID, NULL);
3668 
3669   return addr;
3670 }
3671 
3672 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3673                                         int error) {
3674   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3675 
3676   bool warn_on_failure = UseLargePages &&
3677       (!FLAG_IS_DEFAULT(UseLargePages) ||
3678        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3679        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3680 
3681   if (warn_on_failure) {
3682     char msg[128];
3683     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3684                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3685     warning("%s", msg);
3686   }
3687 }
3688 
3689 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3690                                                         char* req_addr,
3691                                                         bool exec) {
3692   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3693   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3694   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3695 
3696   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3697   char* addr = (char*)::mmap(req_addr, bytes, prot,
3698                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3699                              -1, 0);
3700 
3701   if (addr == MAP_FAILED) {
3702     warn_on_large_pages_failure(req_addr, bytes, errno);
3703     return NULL;
3704   }
3705 
3706   assert(is_aligned(addr, os::large_page_size()), "Must be");
3707 
3708   return addr;
3709 }
3710 
3711 // Reserve memory using mmap(MAP_HUGETLB).
3712 //  - bytes shall be a multiple of alignment.
3713 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3714 //  - alignment sets the alignment at which memory shall be allocated.
3715 //     It must be a multiple of allocation granularity.
3716 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3717 //  req_addr or NULL.
3718 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3719                                                          size_t alignment,
3720                                                          char* req_addr,
3721                                                          bool exec) {
3722   size_t large_page_size = os::large_page_size();
3723   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3724 
3725   assert(is_aligned(req_addr, alignment), "Must be");
3726   assert(is_aligned(bytes, alignment), "Must be");
3727 
3728   // First reserve - but not commit - the address range in small pages.
3729   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3730 
3731   if (start == NULL) {
3732     return NULL;
3733   }
3734 
3735   assert(is_aligned(start, alignment), "Must be");
3736 
3737   char* end = start + bytes;
3738 
3739   // Find the regions of the allocated chunk that can be promoted to large pages.
3740   char* lp_start = align_up(start, large_page_size);
3741   char* lp_end   = align_down(end, large_page_size);
3742 
3743   size_t lp_bytes = lp_end - lp_start;
3744 
3745   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3746 
3747   if (lp_bytes == 0) {
3748     // The mapped region doesn't even span the start and the end of a large page.
3749     // Fall back to allocate a non-special area.
3750     ::munmap(start, end - start);
3751     return NULL;
3752   }
3753 
3754   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3755 
3756   void* result;
3757 
3758   // Commit small-paged leading area.
3759   if (start != lp_start) {
3760     result = ::mmap(start, lp_start - start, prot,
3761                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3762                     -1, 0);
3763     if (result == MAP_FAILED) {
3764       ::munmap(lp_start, end - lp_start);
3765       return NULL;
3766     }
3767   }
3768 
3769   // Commit large-paged area.
3770   result = ::mmap(lp_start, lp_bytes, prot,
3771                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3772                   -1, 0);
3773   if (result == MAP_FAILED) {
3774     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3775     // If the mmap above fails, the large pages region will be unmapped and we
3776     // have regions before and after with small pages. Release these regions.
3777     //
3778     // |  mapped  |  unmapped  |  mapped  |
3779     // ^          ^            ^          ^
3780     // start      lp_start     lp_end     end
3781     //
3782     ::munmap(start, lp_start - start);
3783     ::munmap(lp_end, end - lp_end);
3784     return NULL;
3785   }
3786 
3787   // Commit small-paged trailing area.
3788   if (lp_end != end) {
3789     result = ::mmap(lp_end, end - lp_end, prot,
3790                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3791                     -1, 0);
3792     if (result == MAP_FAILED) {
3793       ::munmap(start, lp_end - start);
3794       return NULL;
3795     }
3796   }
3797 
3798   return start;
3799 }
3800 
3801 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3802                                                    size_t alignment,
3803                                                    char* req_addr,
3804                                                    bool exec) {
3805   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3806   assert(is_aligned(req_addr, alignment), "Must be");
3807   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3808   assert(is_power_of_2(os::large_page_size()), "Must be");
3809   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3810 
3811   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3812     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3813   } else {
3814     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3815   }
3816 }
3817 
3818 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3819                                  char* req_addr, bool exec) {
3820   assert(UseLargePages, "only for large pages");
3821 
3822   char* addr;
3823   if (UseSHM) {
3824     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3825   } else {
3826     assert(UseHugeTLBFS, "must be");
3827     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3828   }
3829 
3830   if (addr != NULL) {
3831     if (UseNUMAInterleaving) {
3832       numa_make_global(addr, bytes);
3833     }
3834 
3835     // The memory is committed
3836     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3837   }
3838 
3839   return addr;
3840 }
3841 
3842 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3843   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3844   return shmdt(base) == 0;
3845 }
3846 
3847 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3848   return pd_release_memory(base, bytes);
3849 }
3850 
3851 bool os::release_memory_special(char* base, size_t bytes) {
3852   bool res;
3853   if (MemTracker::tracking_level() > NMT_minimal) {
3854     Tracker tkr(Tracker::release);
3855     res = os::Linux::release_memory_special_impl(base, bytes);
3856     if (res) {
3857       tkr.record((address)base, bytes);
3858     }
3859 
3860   } else {
3861     res = os::Linux::release_memory_special_impl(base, bytes);
3862   }
3863   return res;
3864 }
3865 
3866 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3867   assert(UseLargePages, "only for large pages");
3868   bool res;
3869 
3870   if (UseSHM) {
3871     res = os::Linux::release_memory_special_shm(base, bytes);
3872   } else {
3873     assert(UseHugeTLBFS, "must be");
3874     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3875   }
3876   return res;
3877 }
3878 
3879 size_t os::large_page_size() {
3880   return _large_page_size;
3881 }
3882 
3883 // With SysV SHM the entire memory region must be allocated as shared
3884 // memory.
3885 // HugeTLBFS allows application to commit large page memory on demand.
3886 // However, when committing memory with HugeTLBFS fails, the region
3887 // that was supposed to be committed will lose the old reservation
3888 // and allow other threads to steal that memory region. Because of this
3889 // behavior we can't commit HugeTLBFS memory.
3890 bool os::can_commit_large_page_memory() {
3891   return UseTransparentHugePages;
3892 }
3893 
3894 bool os::can_execute_large_page_memory() {
3895   return UseTransparentHugePages || UseHugeTLBFS;
3896 }
3897 
3898 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3899   assert(file_desc >= 0, "file_desc is not valid");
3900   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3901   if (result != NULL) {
3902     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3903       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3904     }
3905   }
3906   return result;
3907 }
3908 
3909 // Reserve memory at an arbitrary address, only if that area is
3910 // available (and not reserved for something else).
3911 
3912 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3913   const int max_tries = 10;
3914   char* base[max_tries];
3915   size_t size[max_tries];
3916   const size_t gap = 0x000000;
3917 
3918   // Assert only that the size is a multiple of the page size, since
3919   // that's all that mmap requires, and since that's all we really know
3920   // about at this low abstraction level.  If we need higher alignment,
3921   // we can either pass an alignment to this method or verify alignment
3922   // in one of the methods further up the call chain.  See bug 5044738.
3923   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3924 
3925   // Repeatedly allocate blocks until the block is allocated at the
3926   // right spot.
3927 
3928   // Linux mmap allows caller to pass an address as hint; give it a try first,
3929   // if kernel honors the hint then we can return immediately.
3930   char * addr = anon_mmap(requested_addr, bytes, false);
3931   if (addr == requested_addr) {
3932     return requested_addr;
3933   }
3934 
3935   if (addr != NULL) {
3936     // mmap() is successful but it fails to reserve at the requested address
3937     anon_munmap(addr, bytes);
3938   }
3939 
3940   int i;
3941   for (i = 0; i < max_tries; ++i) {
3942     base[i] = reserve_memory(bytes);
3943 
3944     if (base[i] != NULL) {
3945       // Is this the block we wanted?
3946       if (base[i] == requested_addr) {
3947         size[i] = bytes;
3948         break;
3949       }
3950 
3951       // Does this overlap the block we wanted? Give back the overlapped
3952       // parts and try again.
3953 
3954       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3955       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3956         unmap_memory(base[i], top_overlap);
3957         base[i] += top_overlap;
3958         size[i] = bytes - top_overlap;
3959       } else {
3960         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3961         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3962           unmap_memory(requested_addr, bottom_overlap);
3963           size[i] = bytes - bottom_overlap;
3964         } else {
3965           size[i] = bytes;
3966         }
3967       }
3968     }
3969   }
3970 
3971   // Give back the unused reserved pieces.
3972 
3973   for (int j = 0; j < i; ++j) {
3974     if (base[j] != NULL) {
3975       unmap_memory(base[j], size[j]);
3976     }
3977   }
3978 
3979   if (i < max_tries) {
3980     return requested_addr;
3981   } else {
3982     return NULL;
3983   }
3984 }
3985 
3986 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3987   return ::read(fd, buf, nBytes);
3988 }
3989 
3990 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3991   return ::pread(fd, buf, nBytes, offset);
3992 }
3993 
3994 // Short sleep, direct OS call.
3995 //
3996 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3997 // sched_yield(2) will actually give up the CPU:
3998 //
3999 //   * Alone on this pariticular CPU, keeps running.
4000 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4001 //     (pre 2.6.39).
4002 //
4003 // So calling this with 0 is an alternative.
4004 //
4005 void os::naked_short_sleep(jlong ms) {
4006   struct timespec req;
4007 
4008   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4009   req.tv_sec = 0;
4010   if (ms > 0) {
4011     req.tv_nsec = (ms % 1000) * 1000000;
4012   } else {
4013     req.tv_nsec = 1;
4014   }
4015 
4016   nanosleep(&req, NULL);
4017 
4018   return;
4019 }
4020 
4021 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4022 void os::infinite_sleep() {
4023   while (true) {    // sleep forever ...
4024     ::sleep(100);   // ... 100 seconds at a time
4025   }
4026 }
4027 
4028 // Used to convert frequent JVM_Yield() to nops
4029 bool os::dont_yield() {
4030   return DontYieldALot;
4031 }
4032 
4033 void os::naked_yield() {
4034   sched_yield();
4035 }
4036 
4037 ////////////////////////////////////////////////////////////////////////////////
4038 // thread priority support
4039 
4040 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4041 // only supports dynamic priority, static priority must be zero. For real-time
4042 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4043 // However, for large multi-threaded applications, SCHED_RR is not only slower
4044 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4045 // of 5 runs - Sep 2005).
4046 //
4047 // The following code actually changes the niceness of kernel-thread/LWP. It
4048 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4049 // not the entire user process, and user level threads are 1:1 mapped to kernel
4050 // threads. It has always been the case, but could change in the future. For
4051 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4052 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4053 
4054 int os::java_to_os_priority[CriticalPriority + 1] = {
4055   19,              // 0 Entry should never be used
4056 
4057    4,              // 1 MinPriority
4058    3,              // 2
4059    2,              // 3
4060 
4061    1,              // 4
4062    0,              // 5 NormPriority
4063   -1,              // 6
4064 
4065   -2,              // 7
4066   -3,              // 8
4067   -4,              // 9 NearMaxPriority
4068 
4069   -5,              // 10 MaxPriority
4070 
4071   -5               // 11 CriticalPriority
4072 };
4073 
4074 static int prio_init() {
4075   if (ThreadPriorityPolicy == 1) {
4076     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4077     // if effective uid is not root. Perhaps, a more elegant way of doing
4078     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4079     if (geteuid() != 0) {
4080       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4081         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4082       }
4083       ThreadPriorityPolicy = 0;
4084     }
4085   }
4086   if (UseCriticalJavaThreadPriority) {
4087     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4088   }
4089   return 0;
4090 }
4091 
4092 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4093   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4094 
4095   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4096   return (ret == 0) ? OS_OK : OS_ERR;
4097 }
4098 
4099 OSReturn os::get_native_priority(const Thread* const thread,
4100                                  int *priority_ptr) {
4101   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4102     *priority_ptr = java_to_os_priority[NormPriority];
4103     return OS_OK;
4104   }
4105 
4106   errno = 0;
4107   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4108   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4109 }
4110 
4111 // Hint to the underlying OS that a task switch would not be good.
4112 // Void return because it's a hint and can fail.
4113 void os::hint_no_preempt() {}
4114 
4115 ////////////////////////////////////////////////////////////////////////////////
4116 // suspend/resume support
4117 
4118 //  The low-level signal-based suspend/resume support is a remnant from the
4119 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4120 //  within hotspot. Currently used by JFR's OSThreadSampler
4121 //
4122 //  The remaining code is greatly simplified from the more general suspension
4123 //  code that used to be used.
4124 //
4125 //  The protocol is quite simple:
4126 //  - suspend:
4127 //      - sends a signal to the target thread
4128 //      - polls the suspend state of the osthread using a yield loop
4129 //      - target thread signal handler (SR_handler) sets suspend state
4130 //        and blocks in sigsuspend until continued
4131 //  - resume:
4132 //      - sets target osthread state to continue
4133 //      - sends signal to end the sigsuspend loop in the SR_handler
4134 //
4135 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4136 //  but is checked for NULL in SR_handler as a thread termination indicator.
4137 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4138 //
4139 //  Note that resume_clear_context() and suspend_save_context() are needed
4140 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4141 //  which in part is used by:
4142 //    - Forte Analyzer: AsyncGetCallTrace()
4143 //    - StackBanging: get_frame_at_stack_banging_point()
4144 
4145 static void resume_clear_context(OSThread *osthread) {
4146   osthread->set_ucontext(NULL);
4147   osthread->set_siginfo(NULL);
4148 }
4149 
4150 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4151                                  ucontext_t* context) {
4152   osthread->set_ucontext(context);
4153   osthread->set_siginfo(siginfo);
4154 }
4155 
4156 // Handler function invoked when a thread's execution is suspended or
4157 // resumed. We have to be careful that only async-safe functions are
4158 // called here (Note: most pthread functions are not async safe and
4159 // should be avoided.)
4160 //
4161 // Note: sigwait() is a more natural fit than sigsuspend() from an
4162 // interface point of view, but sigwait() prevents the signal hander
4163 // from being run. libpthread would get very confused by not having
4164 // its signal handlers run and prevents sigwait()'s use with the
4165 // mutex granting granting signal.
4166 //
4167 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4168 //
4169 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4170   // Save and restore errno to avoid confusing native code with EINTR
4171   // after sigsuspend.
4172   int old_errno = errno;
4173 
4174   Thread* thread = Thread::current_or_null_safe();
4175   assert(thread != NULL, "Missing current thread in SR_handler");
4176 
4177   // On some systems we have seen signal delivery get "stuck" until the signal
4178   // mask is changed as part of thread termination. Check that the current thread
4179   // has not already terminated (via SR_lock()) - else the following assertion
4180   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4181   // destructor has completed.
4182 
4183   if (thread->SR_lock() == NULL) {
4184     return;
4185   }
4186 
4187   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4188 
4189   OSThread* osthread = thread->osthread();
4190 
4191   os::SuspendResume::State current = osthread->sr.state();
4192   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4193     suspend_save_context(osthread, siginfo, context);
4194 
4195     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4196     os::SuspendResume::State state = osthread->sr.suspended();
4197     if (state == os::SuspendResume::SR_SUSPENDED) {
4198       sigset_t suspend_set;  // signals for sigsuspend()
4199       sigemptyset(&suspend_set);
4200       // get current set of blocked signals and unblock resume signal
4201       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4202       sigdelset(&suspend_set, SR_signum);
4203 
4204       sr_semaphore.signal();
4205       // wait here until we are resumed
4206       while (1) {
4207         sigsuspend(&suspend_set);
4208 
4209         os::SuspendResume::State result = osthread->sr.running();
4210         if (result == os::SuspendResume::SR_RUNNING) {
4211           sr_semaphore.signal();
4212           break;
4213         }
4214       }
4215 
4216     } else if (state == os::SuspendResume::SR_RUNNING) {
4217       // request was cancelled, continue
4218     } else {
4219       ShouldNotReachHere();
4220     }
4221 
4222     resume_clear_context(osthread);
4223   } else if (current == os::SuspendResume::SR_RUNNING) {
4224     // request was cancelled, continue
4225   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4226     // ignore
4227   } else {
4228     // ignore
4229   }
4230 
4231   errno = old_errno;
4232 }
4233 
4234 static int SR_initialize() {
4235   struct sigaction act;
4236   char *s;
4237 
4238   // Get signal number to use for suspend/resume
4239   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4240     int sig = ::strtol(s, 0, 10);
4241     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4242         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4243       SR_signum = sig;
4244     } else {
4245       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4246               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4247     }
4248   }
4249 
4250   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4251          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4252 
4253   sigemptyset(&SR_sigset);
4254   sigaddset(&SR_sigset, SR_signum);
4255 
4256   // Set up signal handler for suspend/resume
4257   act.sa_flags = SA_RESTART|SA_SIGINFO;
4258   act.sa_handler = (void (*)(int)) SR_handler;
4259 
4260   // SR_signum is blocked by default.
4261   // 4528190 - We also need to block pthread restart signal (32 on all
4262   // supported Linux platforms). Note that LinuxThreads need to block
4263   // this signal for all threads to work properly. So we don't have
4264   // to use hard-coded signal number when setting up the mask.
4265   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4266 
4267   if (sigaction(SR_signum, &act, 0) == -1) {
4268     return -1;
4269   }
4270 
4271   // Save signal flag
4272   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4273   return 0;
4274 }
4275 
4276 static int sr_notify(OSThread* osthread) {
4277   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4278   assert_status(status == 0, status, "pthread_kill");
4279   return status;
4280 }
4281 
4282 // "Randomly" selected value for how long we want to spin
4283 // before bailing out on suspending a thread, also how often
4284 // we send a signal to a thread we want to resume
4285 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4286 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4287 
4288 // returns true on success and false on error - really an error is fatal
4289 // but this seems the normal response to library errors
4290 static bool do_suspend(OSThread* osthread) {
4291   assert(osthread->sr.is_running(), "thread should be running");
4292   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4293 
4294   // mark as suspended and send signal
4295   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4296     // failed to switch, state wasn't running?
4297     ShouldNotReachHere();
4298     return false;
4299   }
4300 
4301   if (sr_notify(osthread) != 0) {
4302     ShouldNotReachHere();
4303   }
4304 
4305   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4306   while (true) {
4307     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4308       break;
4309     } else {
4310       // timeout
4311       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4312       if (cancelled == os::SuspendResume::SR_RUNNING) {
4313         return false;
4314       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4315         // make sure that we consume the signal on the semaphore as well
4316         sr_semaphore.wait();
4317         break;
4318       } else {
4319         ShouldNotReachHere();
4320         return false;
4321       }
4322     }
4323   }
4324 
4325   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4326   return true;
4327 }
4328 
4329 static void do_resume(OSThread* osthread) {
4330   assert(osthread->sr.is_suspended(), "thread should be suspended");
4331   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4332 
4333   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4334     // failed to switch to WAKEUP_REQUEST
4335     ShouldNotReachHere();
4336     return;
4337   }
4338 
4339   while (true) {
4340     if (sr_notify(osthread) == 0) {
4341       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4342         if (osthread->sr.is_running()) {
4343           return;
4344         }
4345       }
4346     } else {
4347       ShouldNotReachHere();
4348     }
4349   }
4350 
4351   guarantee(osthread->sr.is_running(), "Must be running!");
4352 }
4353 
4354 ///////////////////////////////////////////////////////////////////////////////////
4355 // signal handling (except suspend/resume)
4356 
4357 // This routine may be used by user applications as a "hook" to catch signals.
4358 // The user-defined signal handler must pass unrecognized signals to this
4359 // routine, and if it returns true (non-zero), then the signal handler must
4360 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4361 // routine will never retun false (zero), but instead will execute a VM panic
4362 // routine kill the process.
4363 //
4364 // If this routine returns false, it is OK to call it again.  This allows
4365 // the user-defined signal handler to perform checks either before or after
4366 // the VM performs its own checks.  Naturally, the user code would be making
4367 // a serious error if it tried to handle an exception (such as a null check
4368 // or breakpoint) that the VM was generating for its own correct operation.
4369 //
4370 // This routine may recognize any of the following kinds of signals:
4371 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4372 // It should be consulted by handlers for any of those signals.
4373 //
4374 // The caller of this routine must pass in the three arguments supplied
4375 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4376 // field of the structure passed to sigaction().  This routine assumes that
4377 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4378 //
4379 // Note that the VM will print warnings if it detects conflicting signal
4380 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4381 //
4382 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4383                                                  siginfo_t* siginfo,
4384                                                  void* ucontext,
4385                                                  int abort_if_unrecognized);
4386 
4387 void signalHandler(int sig, siginfo_t* info, void* uc) {
4388   assert(info != NULL && uc != NULL, "it must be old kernel");
4389   int orig_errno = errno;  // Preserve errno value over signal handler.
4390   JVM_handle_linux_signal(sig, info, uc, true);
4391   errno = orig_errno;
4392 }
4393 
4394 
4395 // This boolean allows users to forward their own non-matching signals
4396 // to JVM_handle_linux_signal, harmlessly.
4397 bool os::Linux::signal_handlers_are_installed = false;
4398 
4399 // For signal-chaining
4400 struct sigaction sigact[NSIG];
4401 uint64_t sigs = 0;
4402 #if (64 < NSIG-1)
4403 #error "Not all signals can be encoded in sigs. Adapt its type!"
4404 #endif
4405 bool os::Linux::libjsig_is_loaded = false;
4406 typedef struct sigaction *(*get_signal_t)(int);
4407 get_signal_t os::Linux::get_signal_action = NULL;
4408 
4409 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4410   struct sigaction *actp = NULL;
4411 
4412   if (libjsig_is_loaded) {
4413     // Retrieve the old signal handler from libjsig
4414     actp = (*get_signal_action)(sig);
4415   }
4416   if (actp == NULL) {
4417     // Retrieve the preinstalled signal handler from jvm
4418     actp = get_preinstalled_handler(sig);
4419   }
4420 
4421   return actp;
4422 }
4423 
4424 static bool call_chained_handler(struct sigaction *actp, int sig,
4425                                  siginfo_t *siginfo, void *context) {
4426   // Call the old signal handler
4427   if (actp->sa_handler == SIG_DFL) {
4428     // It's more reasonable to let jvm treat it as an unexpected exception
4429     // instead of taking the default action.
4430     return false;
4431   } else if (actp->sa_handler != SIG_IGN) {
4432     if ((actp->sa_flags & SA_NODEFER) == 0) {
4433       // automaticlly block the signal
4434       sigaddset(&(actp->sa_mask), sig);
4435     }
4436 
4437     sa_handler_t hand = NULL;
4438     sa_sigaction_t sa = NULL;
4439     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4440     // retrieve the chained handler
4441     if (siginfo_flag_set) {
4442       sa = actp->sa_sigaction;
4443     } else {
4444       hand = actp->sa_handler;
4445     }
4446 
4447     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4448       actp->sa_handler = SIG_DFL;
4449     }
4450 
4451     // try to honor the signal mask
4452     sigset_t oset;
4453     sigemptyset(&oset);
4454     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4455 
4456     // call into the chained handler
4457     if (siginfo_flag_set) {
4458       (*sa)(sig, siginfo, context);
4459     } else {
4460       (*hand)(sig);
4461     }
4462 
4463     // restore the signal mask
4464     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4465   }
4466   // Tell jvm's signal handler the signal is taken care of.
4467   return true;
4468 }
4469 
4470 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4471   bool chained = false;
4472   // signal-chaining
4473   if (UseSignalChaining) {
4474     struct sigaction *actp = get_chained_signal_action(sig);
4475     if (actp != NULL) {
4476       chained = call_chained_handler(actp, sig, siginfo, context);
4477     }
4478   }
4479   return chained;
4480 }
4481 
4482 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4483   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4484     return &sigact[sig];
4485   }
4486   return NULL;
4487 }
4488 
4489 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4490   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4491   sigact[sig] = oldAct;
4492   sigs |= (uint64_t)1 << (sig-1);
4493 }
4494 
4495 // for diagnostic
4496 int sigflags[NSIG];
4497 
4498 int os::Linux::get_our_sigflags(int sig) {
4499   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4500   return sigflags[sig];
4501 }
4502 
4503 void os::Linux::set_our_sigflags(int sig, int flags) {
4504   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4505   if (sig > 0 && sig < NSIG) {
4506     sigflags[sig] = flags;
4507   }
4508 }
4509 
4510 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4511   // Check for overwrite.
4512   struct sigaction oldAct;
4513   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4514 
4515   void* oldhand = oldAct.sa_sigaction
4516                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4517                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4518   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4519       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4520       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4521     if (AllowUserSignalHandlers || !set_installed) {
4522       // Do not overwrite; user takes responsibility to forward to us.
4523       return;
4524     } else if (UseSignalChaining) {
4525       // save the old handler in jvm
4526       save_preinstalled_handler(sig, oldAct);
4527       // libjsig also interposes the sigaction() call below and saves the
4528       // old sigaction on it own.
4529     } else {
4530       fatal("Encountered unexpected pre-existing sigaction handler "
4531             "%#lx for signal %d.", (long)oldhand, sig);
4532     }
4533   }
4534 
4535   struct sigaction sigAct;
4536   sigfillset(&(sigAct.sa_mask));
4537   sigAct.sa_handler = SIG_DFL;
4538   if (!set_installed) {
4539     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4540   } else {
4541     sigAct.sa_sigaction = signalHandler;
4542     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4543   }
4544   // Save flags, which are set by ours
4545   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4546   sigflags[sig] = sigAct.sa_flags;
4547 
4548   int ret = sigaction(sig, &sigAct, &oldAct);
4549   assert(ret == 0, "check");
4550 
4551   void* oldhand2  = oldAct.sa_sigaction
4552                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4553                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4554   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4555 }
4556 
4557 // install signal handlers for signals that HotSpot needs to
4558 // handle in order to support Java-level exception handling.
4559 
4560 void os::Linux::install_signal_handlers() {
4561   if (!signal_handlers_are_installed) {
4562     signal_handlers_are_installed = true;
4563 
4564     // signal-chaining
4565     typedef void (*signal_setting_t)();
4566     signal_setting_t begin_signal_setting = NULL;
4567     signal_setting_t end_signal_setting = NULL;
4568     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4569                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4570     if (begin_signal_setting != NULL) {
4571       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4572                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4573       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4574                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4575       libjsig_is_loaded = true;
4576       assert(UseSignalChaining, "should enable signal-chaining");
4577     }
4578     if (libjsig_is_loaded) {
4579       // Tell libjsig jvm is setting signal handlers
4580       (*begin_signal_setting)();
4581     }
4582 
4583     set_signal_handler(SIGSEGV, true);
4584     set_signal_handler(SIGPIPE, true);
4585     set_signal_handler(SIGBUS, true);
4586     set_signal_handler(SIGILL, true);
4587     set_signal_handler(SIGFPE, true);
4588 #if defined(PPC64)
4589     set_signal_handler(SIGTRAP, true);
4590 #endif
4591     set_signal_handler(SIGXFSZ, true);
4592 
4593     if (libjsig_is_loaded) {
4594       // Tell libjsig jvm finishes setting signal handlers
4595       (*end_signal_setting)();
4596     }
4597 
4598     // We don't activate signal checker if libjsig is in place, we trust ourselves
4599     // and if UserSignalHandler is installed all bets are off.
4600     // Log that signal checking is off only if -verbose:jni is specified.
4601     if (CheckJNICalls) {
4602       if (libjsig_is_loaded) {
4603         if (PrintJNIResolving) {
4604           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4605         }
4606         check_signals = false;
4607       }
4608       if (AllowUserSignalHandlers) {
4609         if (PrintJNIResolving) {
4610           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4611         }
4612         check_signals = false;
4613       }
4614     }
4615   }
4616 }
4617 
4618 // This is the fastest way to get thread cpu time on Linux.
4619 // Returns cpu time (user+sys) for any thread, not only for current.
4620 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4621 // It might work on 2.6.10+ with a special kernel/glibc patch.
4622 // For reference, please, see IEEE Std 1003.1-2004:
4623 //   http://www.unix.org/single_unix_specification
4624 
4625 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4626   struct timespec tp;
4627   int rc = os::Linux::clock_gettime(clockid, &tp);
4628   assert(rc == 0, "clock_gettime is expected to return 0 code");
4629 
4630   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4631 }
4632 
4633 void os::Linux::initialize_os_info() {
4634   assert(_os_version == 0, "OS info already initialized");
4635 
4636   struct utsname _uname;
4637 
4638   uint32_t major;
4639   uint32_t minor;
4640   uint32_t fix;
4641 
4642   int rc;
4643 
4644   // Kernel version is unknown if
4645   // verification below fails.
4646   _os_version = 0x01000000;
4647 
4648   rc = uname(&_uname);
4649   if (rc != -1) {
4650 
4651     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4652     if (rc == 3) {
4653 
4654       if (major < 256 && minor < 256 && fix < 256) {
4655         // Kernel version format is as expected,
4656         // set it overriding unknown state.
4657         _os_version = (major << 16) |
4658                       (minor << 8 ) |
4659                       (fix   << 0 ) ;
4660       }
4661     }
4662   }
4663 }
4664 
4665 uint32_t os::Linux::os_version() {
4666   assert(_os_version != 0, "not initialized");
4667   return _os_version & 0x00FFFFFF;
4668 }
4669 
4670 bool os::Linux::os_version_is_known() {
4671   assert(_os_version != 0, "not initialized");
4672   return _os_version & 0x01000000 ? false : true;
4673 }
4674 
4675 /////
4676 // glibc on Linux platform uses non-documented flag
4677 // to indicate, that some special sort of signal
4678 // trampoline is used.
4679 // We will never set this flag, and we should
4680 // ignore this flag in our diagnostic
4681 #ifdef SIGNIFICANT_SIGNAL_MASK
4682   #undef SIGNIFICANT_SIGNAL_MASK
4683 #endif
4684 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4685 
4686 static const char* get_signal_handler_name(address handler,
4687                                            char* buf, int buflen) {
4688   int offset = 0;
4689   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4690   if (found) {
4691     // skip directory names
4692     const char *p1, *p2;
4693     p1 = buf;
4694     size_t len = strlen(os::file_separator());
4695     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4696     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4697   } else {
4698     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4699   }
4700   return buf;
4701 }
4702 
4703 static void print_signal_handler(outputStream* st, int sig,
4704                                  char* buf, size_t buflen) {
4705   struct sigaction sa;
4706 
4707   sigaction(sig, NULL, &sa);
4708 
4709   // See comment for SIGNIFICANT_SIGNAL_MASK define
4710   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4711 
4712   st->print("%s: ", os::exception_name(sig, buf, buflen));
4713 
4714   address handler = (sa.sa_flags & SA_SIGINFO)
4715     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4716     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4717 
4718   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4719     st->print("SIG_DFL");
4720   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4721     st->print("SIG_IGN");
4722   } else {
4723     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4724   }
4725 
4726   st->print(", sa_mask[0]=");
4727   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4728 
4729   address rh = VMError::get_resetted_sighandler(sig);
4730   // May be, handler was resetted by VMError?
4731   if (rh != NULL) {
4732     handler = rh;
4733     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4734   }
4735 
4736   st->print(", sa_flags=");
4737   os::Posix::print_sa_flags(st, sa.sa_flags);
4738 
4739   // Check: is it our handler?
4740   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4741       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4742     // It is our signal handler
4743     // check for flags, reset system-used one!
4744     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4745       st->print(
4746                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4747                 os::Linux::get_our_sigflags(sig));
4748     }
4749   }
4750   st->cr();
4751 }
4752 
4753 
4754 #define DO_SIGNAL_CHECK(sig)                      \
4755   do {                                            \
4756     if (!sigismember(&check_signal_done, sig)) {  \
4757       os::Linux::check_signal_handler(sig);       \
4758     }                                             \
4759   } while (0)
4760 
4761 // This method is a periodic task to check for misbehaving JNI applications
4762 // under CheckJNI, we can add any periodic checks here
4763 
4764 void os::run_periodic_checks() {
4765   if (check_signals == false) return;
4766 
4767   // SEGV and BUS if overridden could potentially prevent
4768   // generation of hs*.log in the event of a crash, debugging
4769   // such a case can be very challenging, so we absolutely
4770   // check the following for a good measure:
4771   DO_SIGNAL_CHECK(SIGSEGV);
4772   DO_SIGNAL_CHECK(SIGILL);
4773   DO_SIGNAL_CHECK(SIGFPE);
4774   DO_SIGNAL_CHECK(SIGBUS);
4775   DO_SIGNAL_CHECK(SIGPIPE);
4776   DO_SIGNAL_CHECK(SIGXFSZ);
4777 #if defined(PPC64)
4778   DO_SIGNAL_CHECK(SIGTRAP);
4779 #endif
4780 
4781   // ReduceSignalUsage allows the user to override these handlers
4782   // see comments at the very top and jvm_md.h
4783   if (!ReduceSignalUsage) {
4784     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4785     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4786     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4787     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4788   }
4789 
4790   DO_SIGNAL_CHECK(SR_signum);
4791 }
4792 
4793 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4794 
4795 static os_sigaction_t os_sigaction = NULL;
4796 
4797 void os::Linux::check_signal_handler(int sig) {
4798   char buf[O_BUFLEN];
4799   address jvmHandler = NULL;
4800 
4801 
4802   struct sigaction act;
4803   if (os_sigaction == NULL) {
4804     // only trust the default sigaction, in case it has been interposed
4805     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4806     if (os_sigaction == NULL) return;
4807   }
4808 
4809   os_sigaction(sig, (struct sigaction*)NULL, &act);
4810 
4811 
4812   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4813 
4814   address thisHandler = (act.sa_flags & SA_SIGINFO)
4815     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4816     : CAST_FROM_FN_PTR(address, act.sa_handler);
4817 
4818 
4819   switch (sig) {
4820   case SIGSEGV:
4821   case SIGBUS:
4822   case SIGFPE:
4823   case SIGPIPE:
4824   case SIGILL:
4825   case SIGXFSZ:
4826     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4827     break;
4828 
4829   case SHUTDOWN1_SIGNAL:
4830   case SHUTDOWN2_SIGNAL:
4831   case SHUTDOWN3_SIGNAL:
4832   case BREAK_SIGNAL:
4833     jvmHandler = (address)user_handler();
4834     break;
4835 
4836   default:
4837     if (sig == SR_signum) {
4838       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4839     } else {
4840       return;
4841     }
4842     break;
4843   }
4844 
4845   if (thisHandler != jvmHandler) {
4846     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4847     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4848     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4849     // No need to check this sig any longer
4850     sigaddset(&check_signal_done, sig);
4851     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4852     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4853       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4854                     exception_name(sig, buf, O_BUFLEN));
4855     }
4856   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4857     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4858     tty->print("expected:");
4859     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4860     tty->cr();
4861     tty->print("  found:");
4862     os::Posix::print_sa_flags(tty, act.sa_flags);
4863     tty->cr();
4864     // No need to check this sig any longer
4865     sigaddset(&check_signal_done, sig);
4866   }
4867 
4868   // Dump all the signal
4869   if (sigismember(&check_signal_done, sig)) {
4870     print_signal_handlers(tty, buf, O_BUFLEN);
4871   }
4872 }
4873 
4874 extern void report_error(char* file_name, int line_no, char* title,
4875                          char* format, ...);
4876 
4877 // this is called _before_ most of the global arguments have been parsed
4878 void os::init(void) {
4879   char dummy;   // used to get a guess on initial stack address
4880 
4881   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4882 
4883   init_random(1234567);
4884 
4885   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4886   if (Linux::page_size() == -1) {
4887     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4888           os::strerror(errno));
4889   }
4890   init_page_sizes((size_t) Linux::page_size());
4891 
4892   Linux::initialize_system_info();
4893 
4894   Linux::initialize_os_info();
4895 
4896   // _main_thread points to the thread that created/loaded the JVM.
4897   Linux::_main_thread = pthread_self();
4898 
4899   Linux::clock_init();
4900   initial_time_count = javaTimeNanos();
4901 
4902   // retrieve entry point for pthread_setname_np
4903   Linux::_pthread_setname_np =
4904     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4905 
4906   os::Posix::init();
4907 }
4908 
4909 // To install functions for atexit system call
4910 extern "C" {
4911   static void perfMemory_exit_helper() {
4912     perfMemory_exit();
4913   }
4914 }
4915 
4916 void os::pd_init_container_support() {
4917   OSContainer::init();
4918 }
4919 
4920 // this is called _after_ the global arguments have been parsed
4921 jint os::init_2(void) {
4922 
4923   os::Posix::init_2();
4924 
4925   Linux::fast_thread_clock_init();
4926 
4927   // initialize suspend/resume support - must do this before signal_sets_init()
4928   if (SR_initialize() != 0) {
4929     perror("SR_initialize failed");
4930     return JNI_ERR;
4931   }
4932 
4933   Linux::signal_sets_init();
4934   Linux::install_signal_handlers();
4935 
4936   // Check and sets minimum stack sizes against command line options
4937   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4938     return JNI_ERR;
4939   }
4940   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4941 
4942 #if defined(IA32)
4943   workaround_expand_exec_shield_cs_limit();
4944 #endif
4945 
4946   Linux::libpthread_init();
4947   Linux::sched_getcpu_init();
4948   log_info(os)("HotSpot is running with %s, %s",
4949                Linux::glibc_version(), Linux::libpthread_version());
4950 
4951   if (UseNUMA) {
4952     if (!Linux::libnuma_init()) {
4953       UseNUMA = false;
4954     } else {
4955       if ((Linux::numa_max_node() < 1)) {
4956         // There's only one node(they start from 0), disable NUMA.
4957         UseNUMA = false;
4958       }
4959     }
4960 
4961     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4962       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4963       // we can make the adaptive lgrp chunk resizing work. If the user specified both
4964       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
4965       // and disable adaptive resizing.
4966       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4967         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
4968                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4969         UseAdaptiveSizePolicy = false;
4970         UseAdaptiveNUMAChunkSizing = false;
4971       }
4972     }
4973 
4974     if (!UseNUMA && ForceNUMA) {
4975       UseNUMA = true;
4976     }
4977   }
4978 
4979   if (MaxFDLimit) {
4980     // set the number of file descriptors to max. print out error
4981     // if getrlimit/setrlimit fails but continue regardless.
4982     struct rlimit nbr_files;
4983     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4984     if (status != 0) {
4985       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4986     } else {
4987       nbr_files.rlim_cur = nbr_files.rlim_max;
4988       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4989       if (status != 0) {
4990         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4991       }
4992     }
4993   }
4994 
4995   // Initialize lock used to serialize thread creation (see os::create_thread)
4996   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4997 
4998   // at-exit methods are called in the reverse order of their registration.
4999   // atexit functions are called on return from main or as a result of a
5000   // call to exit(3C). There can be only 32 of these functions registered
5001   // and atexit() does not set errno.
5002 
5003   if (PerfAllowAtExitRegistration) {
5004     // only register atexit functions if PerfAllowAtExitRegistration is set.
5005     // atexit functions can be delayed until process exit time, which
5006     // can be problematic for embedded VM situations. Embedded VMs should
5007     // call DestroyJavaVM() to assure that VM resources are released.
5008 
5009     // note: perfMemory_exit_helper atexit function may be removed in
5010     // the future if the appropriate cleanup code can be added to the
5011     // VM_Exit VMOperation's doit method.
5012     if (atexit(perfMemory_exit_helper) != 0) {
5013       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5014     }
5015   }
5016 
5017   // initialize thread priority policy
5018   prio_init();
5019 
5020   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5021     set_coredump_filter(false /*largepages*/, true /*dax_shared*/);
5022   }
5023   return JNI_OK;
5024 }
5025 
5026 // Mark the polling page as unreadable
5027 void os::make_polling_page_unreadable(void) {
5028   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5029     fatal("Could not disable polling page");
5030   }
5031 }
5032 
5033 // Mark the polling page as readable
5034 void os::make_polling_page_readable(void) {
5035   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5036     fatal("Could not enable polling page");
5037   }
5038 }
5039 
5040 // older glibc versions don't have this macro (which expands to
5041 // an optimized bit-counting function) so we have to roll our own
5042 #ifndef CPU_COUNT
5043 
5044 static int _cpu_count(const cpu_set_t* cpus) {
5045   int count = 0;
5046   // only look up to the number of configured processors
5047   for (int i = 0; i < os::processor_count(); i++) {
5048     if (CPU_ISSET(i, cpus)) {
5049       count++;
5050     }
5051   }
5052   return count;
5053 }
5054 
5055 #define CPU_COUNT(cpus) _cpu_count(cpus)
5056 
5057 #endif // CPU_COUNT
5058 
5059 // Get the current number of available processors for this process.
5060 // This value can change at any time during a process's lifetime.
5061 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5062 // If it appears there may be more than 1024 processors then we do a
5063 // dynamic check - see 6515172 for details.
5064 // If anything goes wrong we fallback to returning the number of online
5065 // processors - which can be greater than the number available to the process.
5066 int os::Linux::active_processor_count() {
5067   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5068   cpu_set_t* cpus_p = &cpus;
5069   int cpus_size = sizeof(cpu_set_t);
5070 
5071   int configured_cpus = os::processor_count();  // upper bound on available cpus
5072   int cpu_count = 0;
5073 
5074 // old build platforms may not support dynamic cpu sets
5075 #ifdef CPU_ALLOC
5076 
5077   // To enable easy testing of the dynamic path on different platforms we
5078   // introduce a diagnostic flag: UseCpuAllocPath
5079   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5080     // kernel may use a mask bigger than cpu_set_t
5081     log_trace(os)("active_processor_count: using dynamic path %s"
5082                   "- configured processors: %d",
5083                   UseCpuAllocPath ? "(forced) " : "",
5084                   configured_cpus);
5085     cpus_p = CPU_ALLOC(configured_cpus);
5086     if (cpus_p != NULL) {
5087       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5088       // zero it just to be safe
5089       CPU_ZERO_S(cpus_size, cpus_p);
5090     }
5091     else {
5092        // failed to allocate so fallback to online cpus
5093        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5094        log_trace(os)("active_processor_count: "
5095                      "CPU_ALLOC failed (%s) - using "
5096                      "online processor count: %d",
5097                      os::strerror(errno), online_cpus);
5098        return online_cpus;
5099     }
5100   }
5101   else {
5102     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5103                   configured_cpus);
5104   }
5105 #else // CPU_ALLOC
5106 // these stubs won't be executed
5107 #define CPU_COUNT_S(size, cpus) -1
5108 #define CPU_FREE(cpus)
5109 
5110   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5111                 configured_cpus);
5112 #endif // CPU_ALLOC
5113 
5114   // pid 0 means the current thread - which we have to assume represents the process
5115   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5116     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5117       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5118     }
5119     else {
5120       cpu_count = CPU_COUNT(cpus_p);
5121     }
5122     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5123   }
5124   else {
5125     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5126     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5127             "which may exceed available processors", os::strerror(errno), cpu_count);
5128   }
5129 
5130   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5131     CPU_FREE(cpus_p);
5132   }
5133 
5134   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5135   return cpu_count;
5136 }
5137 
5138 // Determine the active processor count from one of
5139 // three different sources:
5140 //
5141 // 1. User option -XX:ActiveProcessorCount
5142 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5143 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5144 //
5145 // Option 1, if specified, will always override.
5146 // If the cgroup subsystem is active and configured, we
5147 // will return the min of the cgroup and option 2 results.
5148 // This is required since tools, such as numactl, that
5149 // alter cpu affinity do not update cgroup subsystem
5150 // cpuset configuration files.
5151 int os::active_processor_count() {
5152   // User has overridden the number of active processors
5153   if (ActiveProcessorCount > 0) {
5154     log_trace(os)("active_processor_count: "
5155                   "active processor count set by user : %d",
5156                   ActiveProcessorCount);
5157     return ActiveProcessorCount;
5158   }
5159 
5160   int active_cpus;
5161   if (OSContainer::is_containerized()) {
5162     active_cpus = OSContainer::active_processor_count();
5163     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5164                    active_cpus);
5165   } else {
5166     active_cpus = os::Linux::active_processor_count();
5167   }
5168 
5169   return active_cpus;
5170 }
5171 
5172 void os::set_native_thread_name(const char *name) {
5173   if (Linux::_pthread_setname_np) {
5174     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5175     snprintf(buf, sizeof(buf), "%s", name);
5176     buf[sizeof(buf) - 1] = '\0';
5177     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5178     // ERANGE should not happen; all other errors should just be ignored.
5179     assert(rc != ERANGE, "pthread_setname_np failed");
5180   }
5181 }
5182 
5183 bool os::distribute_processes(uint length, uint* distribution) {
5184   // Not yet implemented.
5185   return false;
5186 }
5187 
5188 bool os::bind_to_processor(uint processor_id) {
5189   // Not yet implemented.
5190   return false;
5191 }
5192 
5193 ///
5194 
5195 void os::SuspendedThreadTask::internal_do_task() {
5196   if (do_suspend(_thread->osthread())) {
5197     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5198     do_task(context);
5199     do_resume(_thread->osthread());
5200   }
5201 }
5202 
5203 ////////////////////////////////////////////////////////////////////////////////
5204 // debug support
5205 
5206 bool os::find(address addr, outputStream* st) {
5207   Dl_info dlinfo;
5208   memset(&dlinfo, 0, sizeof(dlinfo));
5209   if (dladdr(addr, &dlinfo) != 0) {
5210     st->print(PTR_FORMAT ": ", p2i(addr));
5211     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5212       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5213                 p2i(addr) - p2i(dlinfo.dli_saddr));
5214     } else if (dlinfo.dli_fbase != NULL) {
5215       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5216     } else {
5217       st->print("<absolute address>");
5218     }
5219     if (dlinfo.dli_fname != NULL) {
5220       st->print(" in %s", dlinfo.dli_fname);
5221     }
5222     if (dlinfo.dli_fbase != NULL) {
5223       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5224     }
5225     st->cr();
5226 
5227     if (Verbose) {
5228       // decode some bytes around the PC
5229       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5230       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5231       address       lowest = (address) dlinfo.dli_sname;
5232       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5233       if (begin < lowest)  begin = lowest;
5234       Dl_info dlinfo2;
5235       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5236           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5237         end = (address) dlinfo2.dli_saddr;
5238       }
5239       Disassembler::decode(begin, end, st);
5240     }
5241     return true;
5242   }
5243   return false;
5244 }
5245 
5246 ////////////////////////////////////////////////////////////////////////////////
5247 // misc
5248 
5249 // This does not do anything on Linux. This is basically a hook for being
5250 // able to use structured exception handling (thread-local exception filters)
5251 // on, e.g., Win32.
5252 void
5253 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5254                          JavaCallArguments* args, Thread* thread) {
5255   f(value, method, args, thread);
5256 }
5257 
5258 void os::print_statistics() {
5259 }
5260 
5261 bool os::message_box(const char* title, const char* message) {
5262   int i;
5263   fdStream err(defaultStream::error_fd());
5264   for (i = 0; i < 78; i++) err.print_raw("=");
5265   err.cr();
5266   err.print_raw_cr(title);
5267   for (i = 0; i < 78; i++) err.print_raw("-");
5268   err.cr();
5269   err.print_raw_cr(message);
5270   for (i = 0; i < 78; i++) err.print_raw("=");
5271   err.cr();
5272 
5273   char buf[16];
5274   // Prevent process from exiting upon "read error" without consuming all CPU
5275   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5276 
5277   return buf[0] == 'y' || buf[0] == 'Y';
5278 }
5279 
5280 int os::stat(const char *path, struct stat *sbuf) {
5281   char pathbuf[MAX_PATH];
5282   if (strlen(path) > MAX_PATH - 1) {
5283     errno = ENAMETOOLONG;
5284     return -1;
5285   }
5286   os::native_path(strcpy(pathbuf, path));
5287   return ::stat(pathbuf, sbuf);
5288 }
5289 
5290 // Is a (classpath) directory empty?
5291 bool os::dir_is_empty(const char* path) {
5292   DIR *dir = NULL;
5293   struct dirent *ptr;
5294 
5295   dir = opendir(path);
5296   if (dir == NULL) return true;
5297 
5298   // Scan the directory
5299   bool result = true;
5300   char buf[sizeof(struct dirent) + MAX_PATH];
5301   while (result && (ptr = ::readdir(dir)) != NULL) {
5302     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5303       result = false;
5304     }
5305   }
5306   closedir(dir);
5307   return result;
5308 }
5309 
5310 // This code originates from JDK's sysOpen and open64_w
5311 // from src/solaris/hpi/src/system_md.c
5312 
5313 int os::open(const char *path, int oflag, int mode) {
5314   if (strlen(path) > MAX_PATH - 1) {
5315     errno = ENAMETOOLONG;
5316     return -1;
5317   }
5318 
5319   // All file descriptors that are opened in the Java process and not
5320   // specifically destined for a subprocess should have the close-on-exec
5321   // flag set.  If we don't set it, then careless 3rd party native code
5322   // might fork and exec without closing all appropriate file descriptors
5323   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5324   // turn might:
5325   //
5326   // - cause end-of-file to fail to be detected on some file
5327   //   descriptors, resulting in mysterious hangs, or
5328   //
5329   // - might cause an fopen in the subprocess to fail on a system
5330   //   suffering from bug 1085341.
5331   //
5332   // (Yes, the default setting of the close-on-exec flag is a Unix
5333   // design flaw)
5334   //
5335   // See:
5336   // 1085341: 32-bit stdio routines should support file descriptors >255
5337   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5338   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5339   //
5340   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5341   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5342   // because it saves a system call and removes a small window where the flag
5343   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5344   // and we fall back to using FD_CLOEXEC (see below).
5345 #ifdef O_CLOEXEC
5346   oflag |= O_CLOEXEC;
5347 #endif
5348 
5349   int fd = ::open64(path, oflag, mode);
5350   if (fd == -1) return -1;
5351 
5352   //If the open succeeded, the file might still be a directory
5353   {
5354     struct stat64 buf64;
5355     int ret = ::fstat64(fd, &buf64);
5356     int st_mode = buf64.st_mode;
5357 
5358     if (ret != -1) {
5359       if ((st_mode & S_IFMT) == S_IFDIR) {
5360         errno = EISDIR;
5361         ::close(fd);
5362         return -1;
5363       }
5364     } else {
5365       ::close(fd);
5366       return -1;
5367     }
5368   }
5369 
5370 #ifdef FD_CLOEXEC
5371   // Validate that the use of the O_CLOEXEC flag on open above worked.
5372   // With recent kernels, we will perform this check exactly once.
5373   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5374   if (!O_CLOEXEC_is_known_to_work) {
5375     int flags = ::fcntl(fd, F_GETFD);
5376     if (flags != -1) {
5377       if ((flags & FD_CLOEXEC) != 0)
5378         O_CLOEXEC_is_known_to_work = 1;
5379       else
5380         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5381     }
5382   }
5383 #endif
5384 
5385   return fd;
5386 }
5387 
5388 
5389 // create binary file, rewriting existing file if required
5390 int os::create_binary_file(const char* path, bool rewrite_existing) {
5391   int oflags = O_WRONLY | O_CREAT;
5392   if (!rewrite_existing) {
5393     oflags |= O_EXCL;
5394   }
5395   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5396 }
5397 
5398 // return current position of file pointer
5399 jlong os::current_file_offset(int fd) {
5400   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5401 }
5402 
5403 // move file pointer to the specified offset
5404 jlong os::seek_to_file_offset(int fd, jlong offset) {
5405   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5406 }
5407 
5408 // This code originates from JDK's sysAvailable
5409 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5410 
5411 int os::available(int fd, jlong *bytes) {
5412   jlong cur, end;
5413   int mode;
5414   struct stat64 buf64;
5415 
5416   if (::fstat64(fd, &buf64) >= 0) {
5417     mode = buf64.st_mode;
5418     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5419       int n;
5420       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5421         *bytes = n;
5422         return 1;
5423       }
5424     }
5425   }
5426   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5427     return 0;
5428   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5429     return 0;
5430   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5431     return 0;
5432   }
5433   *bytes = end - cur;
5434   return 1;
5435 }
5436 
5437 // Map a block of memory.
5438 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5439                         char *addr, size_t bytes, bool read_only,
5440                         bool allow_exec) {
5441   int prot;
5442   int flags = MAP_PRIVATE;
5443 
5444   if (read_only) {
5445     prot = PROT_READ;
5446   } else {
5447     prot = PROT_READ | PROT_WRITE;
5448   }
5449 
5450   if (allow_exec) {
5451     prot |= PROT_EXEC;
5452   }
5453 
5454   if (addr != NULL) {
5455     flags |= MAP_FIXED;
5456   }
5457 
5458   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5459                                      fd, file_offset);
5460   if (mapped_address == MAP_FAILED) {
5461     return NULL;
5462   }
5463   return mapped_address;
5464 }
5465 
5466 
5467 // Remap a block of memory.
5468 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5469                           char *addr, size_t bytes, bool read_only,
5470                           bool allow_exec) {
5471   // same as map_memory() on this OS
5472   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5473                         allow_exec);
5474 }
5475 
5476 
5477 // Unmap a block of memory.
5478 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5479   return munmap(addr, bytes) == 0;
5480 }
5481 
5482 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5483 
5484 static clockid_t thread_cpu_clockid(Thread* thread) {
5485   pthread_t tid = thread->osthread()->pthread_id();
5486   clockid_t clockid;
5487 
5488   // Get thread clockid
5489   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5490   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5491   return clockid;
5492 }
5493 
5494 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5495 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5496 // of a thread.
5497 //
5498 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5499 // the fast estimate available on the platform.
5500 
5501 jlong os::current_thread_cpu_time() {
5502   if (os::Linux::supports_fast_thread_cpu_time()) {
5503     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5504   } else {
5505     // return user + sys since the cost is the same
5506     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5507   }
5508 }
5509 
5510 jlong os::thread_cpu_time(Thread* thread) {
5511   // consistent with what current_thread_cpu_time() returns
5512   if (os::Linux::supports_fast_thread_cpu_time()) {
5513     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5514   } else {
5515     return slow_thread_cpu_time(thread, true /* user + sys */);
5516   }
5517 }
5518 
5519 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5520   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5521     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5522   } else {
5523     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5524   }
5525 }
5526 
5527 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5528   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5529     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5530   } else {
5531     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5532   }
5533 }
5534 
5535 //  -1 on error.
5536 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5537   pid_t  tid = thread->osthread()->thread_id();
5538   char *s;
5539   char stat[2048];
5540   int statlen;
5541   char proc_name[64];
5542   int count;
5543   long sys_time, user_time;
5544   char cdummy;
5545   int idummy;
5546   long ldummy;
5547   FILE *fp;
5548 
5549   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5550   fp = fopen(proc_name, "r");
5551   if (fp == NULL) return -1;
5552   statlen = fread(stat, 1, 2047, fp);
5553   stat[statlen] = '\0';
5554   fclose(fp);
5555 
5556   // Skip pid and the command string. Note that we could be dealing with
5557   // weird command names, e.g. user could decide to rename java launcher
5558   // to "java 1.4.2 :)", then the stat file would look like
5559   //                1234 (java 1.4.2 :)) R ... ...
5560   // We don't really need to know the command string, just find the last
5561   // occurrence of ")" and then start parsing from there. See bug 4726580.
5562   s = strrchr(stat, ')');
5563   if (s == NULL) return -1;
5564 
5565   // Skip blank chars
5566   do { s++; } while (s && isspace(*s));
5567 
5568   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5569                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5570                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5571                  &user_time, &sys_time);
5572   if (count != 13) return -1;
5573   if (user_sys_cpu_time) {
5574     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5575   } else {
5576     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5577   }
5578 }
5579 
5580 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5581   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5582   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5583   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5584   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5585 }
5586 
5587 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5588   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5589   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5590   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5591   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5592 }
5593 
5594 bool os::is_thread_cpu_time_supported() {
5595   return true;
5596 }
5597 
5598 // System loadavg support.  Returns -1 if load average cannot be obtained.
5599 // Linux doesn't yet have a (official) notion of processor sets,
5600 // so just return the system wide load average.
5601 int os::loadavg(double loadavg[], int nelem) {
5602   return ::getloadavg(loadavg, nelem);
5603 }
5604 
5605 void os::pause() {
5606   char filename[MAX_PATH];
5607   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5608     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5609   } else {
5610     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5611   }
5612 
5613   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5614   if (fd != -1) {
5615     struct stat buf;
5616     ::close(fd);
5617     while (::stat(filename, &buf) == 0) {
5618       (void)::poll(NULL, 0, 100);
5619     }
5620   } else {
5621     jio_fprintf(stderr,
5622                 "Could not open pause file '%s', continuing immediately.\n", filename);
5623   }
5624 }
5625 
5626 extern char** environ;
5627 
5628 // Run the specified command in a separate process. Return its exit value,
5629 // or -1 on failure (e.g. can't fork a new process).
5630 // Unlike system(), this function can be called from signal handler. It
5631 // doesn't block SIGINT et al.
5632 int os::fork_and_exec(char* cmd) {
5633   const char * argv[4] = {"sh", "-c", cmd, NULL};
5634 
5635   pid_t pid = fork();
5636 
5637   if (pid < 0) {
5638     // fork failed
5639     return -1;
5640 
5641   } else if (pid == 0) {
5642     // child process
5643 
5644     execve("/bin/sh", (char* const*)argv, environ);
5645 
5646     // execve failed
5647     _exit(-1);
5648 
5649   } else  {
5650     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5651     // care about the actual exit code, for now.
5652 
5653     int status;
5654 
5655     // Wait for the child process to exit.  This returns immediately if
5656     // the child has already exited. */
5657     while (waitpid(pid, &status, 0) < 0) {
5658       switch (errno) {
5659       case ECHILD: return 0;
5660       case EINTR: break;
5661       default: return -1;
5662       }
5663     }
5664 
5665     if (WIFEXITED(status)) {
5666       // The child exited normally; get its exit code.
5667       return WEXITSTATUS(status);
5668     } else if (WIFSIGNALED(status)) {
5669       // The child exited because of a signal
5670       // The best value to return is 0x80 + signal number,
5671       // because that is what all Unix shells do, and because
5672       // it allows callers to distinguish between process exit and
5673       // process death by signal.
5674       return 0x80 + WTERMSIG(status);
5675     } else {
5676       // Unknown exit code; pass it through
5677       return status;
5678     }
5679   }
5680 }
5681 
5682 // Get the default path to the core file
5683 // Returns the length of the string
5684 int os::get_core_path(char* buffer, size_t bufferSize) {
5685   /*
5686    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5687    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5688    */
5689   const int core_pattern_len = 129;
5690   char core_pattern[core_pattern_len] = {0};
5691 
5692   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5693   if (core_pattern_file == -1) {
5694     return -1;
5695   }
5696 
5697   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5698   ::close(core_pattern_file);
5699   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5700     return -1;
5701   }
5702   if (core_pattern[ret-1] == '\n') {
5703     core_pattern[ret-1] = '\0';
5704   } else {
5705     core_pattern[ret] = '\0';
5706   }
5707 
5708   char *pid_pos = strstr(core_pattern, "%p");
5709   int written;
5710 
5711   if (core_pattern[0] == '/') {
5712     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5713   } else {
5714     char cwd[PATH_MAX];
5715 
5716     const char* p = get_current_directory(cwd, PATH_MAX);
5717     if (p == NULL) {
5718       return -1;
5719     }
5720 
5721     if (core_pattern[0] == '|') {
5722       written = jio_snprintf(buffer, bufferSize,
5723                              "\"%s\" (or dumping to %s/core.%d)",
5724                              &core_pattern[1], p, current_process_id());
5725     } else {
5726       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5727     }
5728   }
5729 
5730   if (written < 0) {
5731     return -1;
5732   }
5733 
5734   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5735     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5736 
5737     if (core_uses_pid_file != -1) {
5738       char core_uses_pid = 0;
5739       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5740       ::close(core_uses_pid_file);
5741 
5742       if (core_uses_pid == '1') {
5743         jio_snprintf(buffer + written, bufferSize - written,
5744                                           ".%d", current_process_id());
5745       }
5746     }
5747   }
5748 
5749   return strlen(buffer);
5750 }
5751 
5752 bool os::start_debugging(char *buf, int buflen) {
5753   int len = (int)strlen(buf);
5754   char *p = &buf[len];
5755 
5756   jio_snprintf(p, buflen-len,
5757                "\n\n"
5758                "Do you want to debug the problem?\n\n"
5759                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5760                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5761                "Otherwise, press RETURN to abort...",
5762                os::current_process_id(), os::current_process_id(),
5763                os::current_thread_id(), os::current_thread_id());
5764 
5765   bool yes = os::message_box("Unexpected Error", buf);
5766 
5767   if (yes) {
5768     // yes, user asked VM to launch debugger
5769     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5770                  os::current_process_id(), os::current_process_id());
5771 
5772     os::fork_and_exec(buf);
5773     yes = false;
5774   }
5775   return yes;
5776 }
5777 
5778 
5779 // Java/Compiler thread:
5780 //
5781 //   Low memory addresses
5782 // P0 +------------------------+
5783 //    |                        |\  Java thread created by VM does not have glibc
5784 //    |    glibc guard page    | - guard page, attached Java thread usually has
5785 //    |                        |/  1 glibc guard page.
5786 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5787 //    |                        |\
5788 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5789 //    |                        |/
5790 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5791 //    |                        |\
5792 //    |      Normal Stack      | -
5793 //    |                        |/
5794 // P2 +------------------------+ Thread::stack_base()
5795 //
5796 // Non-Java thread:
5797 //
5798 //   Low memory addresses
5799 // P0 +------------------------+
5800 //    |                        |\
5801 //    |  glibc guard page      | - usually 1 page
5802 //    |                        |/
5803 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5804 //    |                        |\
5805 //    |      Normal Stack      | -
5806 //    |                        |/
5807 // P2 +------------------------+ Thread::stack_base()
5808 //
5809 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5810 //    returned from pthread_attr_getstack().
5811 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5812 //    of the stack size given in pthread_attr. We work around this for
5813 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5814 //
5815 #ifndef ZERO
5816 static void current_stack_region(address * bottom, size_t * size) {
5817   if (os::is_primordial_thread()) {
5818     // primordial thread needs special handling because pthread_getattr_np()
5819     // may return bogus value.
5820     *bottom = os::Linux::initial_thread_stack_bottom();
5821     *size   = os::Linux::initial_thread_stack_size();
5822   } else {
5823     pthread_attr_t attr;
5824 
5825     int rslt = pthread_getattr_np(pthread_self(), &attr);
5826 
5827     // JVM needs to know exact stack location, abort if it fails
5828     if (rslt != 0) {
5829       if (rslt == ENOMEM) {
5830         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5831       } else {
5832         fatal("pthread_getattr_np failed with error = %d", rslt);
5833       }
5834     }
5835 
5836     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5837       fatal("Cannot locate current stack attributes!");
5838     }
5839 
5840     // Work around NPTL stack guard error.
5841     size_t guard_size = 0;
5842     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5843     if (rslt != 0) {
5844       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5845     }
5846     *bottom += guard_size;
5847     *size   -= guard_size;
5848 
5849     pthread_attr_destroy(&attr);
5850 
5851   }
5852   assert(os::current_stack_pointer() >= *bottom &&
5853          os::current_stack_pointer() < *bottom + *size, "just checking");
5854 }
5855 
5856 address os::current_stack_base() {
5857   address bottom;
5858   size_t size;
5859   current_stack_region(&bottom, &size);
5860   return (bottom + size);
5861 }
5862 
5863 size_t os::current_stack_size() {
5864   // This stack size includes the usable stack and HotSpot guard pages
5865   // (for the threads that have Hotspot guard pages).
5866   address bottom;
5867   size_t size;
5868   current_stack_region(&bottom, &size);
5869   return size;
5870 }
5871 #endif
5872 
5873 static inline struct timespec get_mtime(const char* filename) {
5874   struct stat st;
5875   int ret = os::stat(filename, &st);
5876   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5877   return st.st_mtim;
5878 }
5879 
5880 int os::compare_file_modified_times(const char* file1, const char* file2) {
5881   struct timespec filetime1 = get_mtime(file1);
5882   struct timespec filetime2 = get_mtime(file2);
5883   int diff = filetime1.tv_sec - filetime2.tv_sec;
5884   if (diff == 0) {
5885     return filetime1.tv_nsec - filetime2.tv_nsec;
5886   }
5887   return diff;
5888 }
5889 
5890 /////////////// Unit tests ///////////////
5891 
5892 #ifndef PRODUCT
5893 
5894 #define test_log(...)              \
5895   do {                             \
5896     if (VerboseInternalVMTests) {  \
5897       tty->print_cr(__VA_ARGS__);  \
5898       tty->flush();                \
5899     }                              \
5900   } while (false)
5901 
5902 class TestReserveMemorySpecial : AllStatic {
5903  public:
5904   static void small_page_write(void* addr, size_t size) {
5905     size_t page_size = os::vm_page_size();
5906 
5907     char* end = (char*)addr + size;
5908     for (char* p = (char*)addr; p < end; p += page_size) {
5909       *p = 1;
5910     }
5911   }
5912 
5913   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5914     if (!UseHugeTLBFS) {
5915       return;
5916     }
5917 
5918     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5919 
5920     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5921 
5922     if (addr != NULL) {
5923       small_page_write(addr, size);
5924 
5925       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5926     }
5927   }
5928 
5929   static void test_reserve_memory_special_huge_tlbfs_only() {
5930     if (!UseHugeTLBFS) {
5931       return;
5932     }
5933 
5934     size_t lp = os::large_page_size();
5935 
5936     for (size_t size = lp; size <= lp * 10; size += lp) {
5937       test_reserve_memory_special_huge_tlbfs_only(size);
5938     }
5939   }
5940 
5941   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5942     size_t lp = os::large_page_size();
5943     size_t ag = os::vm_allocation_granularity();
5944 
5945     // sizes to test
5946     const size_t sizes[] = {
5947       lp, lp + ag, lp + lp / 2, lp * 2,
5948       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5949       lp * 10, lp * 10 + lp / 2
5950     };
5951     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5952 
5953     // For each size/alignment combination, we test three scenarios:
5954     // 1) with req_addr == NULL
5955     // 2) with a non-null req_addr at which we expect to successfully allocate
5956     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5957     //    expect the allocation to either fail or to ignore req_addr
5958 
5959     // Pre-allocate two areas; they shall be as large as the largest allocation
5960     //  and aligned to the largest alignment we will be testing.
5961     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5962     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5963       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5964       -1, 0);
5965     assert(mapping1 != MAP_FAILED, "should work");
5966 
5967     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5968       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5969       -1, 0);
5970     assert(mapping2 != MAP_FAILED, "should work");
5971 
5972     // Unmap the first mapping, but leave the second mapping intact: the first
5973     // mapping will serve as a value for a "good" req_addr (case 2). The second
5974     // mapping, still intact, as "bad" req_addr (case 3).
5975     ::munmap(mapping1, mapping_size);
5976 
5977     // Case 1
5978     test_log("%s, req_addr NULL:", __FUNCTION__);
5979     test_log("size            align           result");
5980 
5981     for (int i = 0; i < num_sizes; i++) {
5982       const size_t size = sizes[i];
5983       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5984         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5985         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5986                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5987         if (p != NULL) {
5988           assert(is_aligned(p, alignment), "must be");
5989           small_page_write(p, size);
5990           os::Linux::release_memory_special_huge_tlbfs(p, size);
5991         }
5992       }
5993     }
5994 
5995     // Case 2
5996     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5997     test_log("size            align           req_addr         result");
5998 
5999     for (int i = 0; i < num_sizes; i++) {
6000       const size_t size = sizes[i];
6001       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6002         char* const req_addr = align_up(mapping1, alignment);
6003         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6004         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6005                  size, alignment, p2i(req_addr), p2i(p),
6006                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6007         if (p != NULL) {
6008           assert(p == req_addr, "must be");
6009           small_page_write(p, size);
6010           os::Linux::release_memory_special_huge_tlbfs(p, size);
6011         }
6012       }
6013     }
6014 
6015     // Case 3
6016     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6017     test_log("size            align           req_addr         result");
6018 
6019     for (int i = 0; i < num_sizes; i++) {
6020       const size_t size = sizes[i];
6021       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6022         char* const req_addr = align_up(mapping2, alignment);
6023         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6024         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6025                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6026         // as the area around req_addr contains already existing mappings, the API should always
6027         // return NULL (as per contract, it cannot return another address)
6028         assert(p == NULL, "must be");
6029       }
6030     }
6031 
6032     ::munmap(mapping2, mapping_size);
6033 
6034   }
6035 
6036   static void test_reserve_memory_special_huge_tlbfs() {
6037     if (!UseHugeTLBFS) {
6038       return;
6039     }
6040 
6041     test_reserve_memory_special_huge_tlbfs_only();
6042     test_reserve_memory_special_huge_tlbfs_mixed();
6043   }
6044 
6045   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6046     if (!UseSHM) {
6047       return;
6048     }
6049 
6050     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6051 
6052     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6053 
6054     if (addr != NULL) {
6055       assert(is_aligned(addr, alignment), "Check");
6056       assert(is_aligned(addr, os::large_page_size()), "Check");
6057 
6058       small_page_write(addr, size);
6059 
6060       os::Linux::release_memory_special_shm(addr, size);
6061     }
6062   }
6063 
6064   static void test_reserve_memory_special_shm() {
6065     size_t lp = os::large_page_size();
6066     size_t ag = os::vm_allocation_granularity();
6067 
6068     for (size_t size = ag; size < lp * 3; size += ag) {
6069       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6070         test_reserve_memory_special_shm(size, alignment);
6071       }
6072     }
6073   }
6074 
6075   static void test() {
6076     test_reserve_memory_special_huge_tlbfs();
6077     test_reserve_memory_special_shm();
6078   }
6079 };
6080 
6081 void TestReserveMemorySpecial_test() {
6082   TestReserveMemorySpecial::test();
6083 }
6084 
6085 #endif