1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.inline.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 142 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 143 Mutex* os::Linux::_createThread_lock = NULL;
 144 pthread_t os::Linux::_main_thread;
 145 int os::Linux::_page_size = -1;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 // Signal number used to suspend/resume a thread
 160 
 161 // do not use any signal number less than SIGSEGV, see 4355769
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 // utility functions
 166 
 167 static int SR_initialize();
 168 
 169 julong os::available_memory() {
 170   return Linux::available_memory();
 171 }
 172 
 173 julong os::Linux::available_memory() {
 174   // values in struct sysinfo are "unsigned long"
 175   struct sysinfo si;
 176   julong avail_mem;
 177 
 178   if (OSContainer::is_containerized()) {
 179     jlong mem_limit, mem_usage;
 180     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 181       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 182                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 183     }
 184     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 185       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 186     }
 187     if (mem_limit > 0 && mem_usage > 0 ) {
 188       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 189       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 190       return avail_mem;
 191     }
 192   }
 193 
 194   sysinfo(&si);
 195   avail_mem = (julong)si.freeram * si.mem_unit;
 196   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 197   return avail_mem;
 198 }
 199 
 200 julong os::physical_memory() {
 201   jlong phys_mem = 0;
 202   if (OSContainer::is_containerized()) {
 203     jlong mem_limit;
 204     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 205       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 206       return mem_limit;
 207     }
 208     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 209                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 210   }
 211 
 212   phys_mem = Linux::physical_memory();
 213   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 214   return phys_mem;
 215 }
 216 
 217 // Return true if user is running as root.
 218 
 219 bool os::have_special_privileges() {
 220   static bool init = false;
 221   static bool privileges = false;
 222   if (!init) {
 223     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 224     init = true;
 225   }
 226   return privileges;
 227 }
 228 
 229 
 230 #ifndef SYS_gettid
 231 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 232   #ifdef __ia64__
 233     #define SYS_gettid 1105
 234   #else
 235     #ifdef __i386__
 236       #define SYS_gettid 224
 237     #else
 238       #ifdef __amd64__
 239         #define SYS_gettid 186
 240       #else
 241         #ifdef __sparc__
 242           #define SYS_gettid 143
 243         #else
 244           #error define gettid for the arch
 245         #endif
 246       #endif
 247     #endif
 248   #endif
 249 #endif
 250 
 251 
 252 // pid_t gettid()
 253 //
 254 // Returns the kernel thread id of the currently running thread. Kernel
 255 // thread id is used to access /proc.
 256 pid_t os::Linux::gettid() {
 257   int rslt = syscall(SYS_gettid);
 258   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 259   return (pid_t)rslt;
 260 }
 261 
 262 // Most versions of linux have a bug where the number of processors are
 263 // determined by looking at the /proc file system.  In a chroot environment,
 264 // the system call returns 1.  This causes the VM to act as if it is
 265 // a single processor and elide locking (see is_MP() call).
 266 static bool unsafe_chroot_detected = false;
 267 static const char *unstable_chroot_error = "/proc file system not found.\n"
 268                      "Java may be unstable running multithreaded in a chroot "
 269                      "environment on Linux when /proc filesystem is not mounted.";
 270 
 271 void os::Linux::initialize_system_info() {
 272   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 273   if (processor_count() == 1) {
 274     pid_t pid = os::Linux::gettid();
 275     char fname[32];
 276     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 277     FILE *fp = fopen(fname, "r");
 278     if (fp == NULL) {
 279       unsafe_chroot_detected = true;
 280     } else {
 281       fclose(fp);
 282     }
 283   }
 284   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 285   assert(processor_count() > 0, "linux error");
 286 }
 287 
 288 void os::init_system_properties_values() {
 289   // The next steps are taken in the product version:
 290   //
 291   // Obtain the JAVA_HOME value from the location of libjvm.so.
 292   // This library should be located at:
 293   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 294   //
 295   // If "/jre/lib/" appears at the right place in the path, then we
 296   // assume libjvm.so is installed in a JDK and we use this path.
 297   //
 298   // Otherwise exit with message: "Could not create the Java virtual machine."
 299   //
 300   // The following extra steps are taken in the debugging version:
 301   //
 302   // If "/jre/lib/" does NOT appear at the right place in the path
 303   // instead of exit check for $JAVA_HOME environment variable.
 304   //
 305   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 306   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 307   // it looks like libjvm.so is installed there
 308   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 309   //
 310   // Otherwise exit.
 311   //
 312   // Important note: if the location of libjvm.so changes this
 313   // code needs to be changed accordingly.
 314 
 315   // See ld(1):
 316   //      The linker uses the following search paths to locate required
 317   //      shared libraries:
 318   //        1: ...
 319   //        ...
 320   //        7: The default directories, normally /lib and /usr/lib.
 321 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 322   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 323 #else
 324   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 325 #endif
 326 
 327 // Base path of extensions installed on the system.
 328 #define SYS_EXT_DIR     "/usr/java/packages"
 329 #define EXTENSIONS_DIR  "/lib/ext"
 330 
 331   // Buffer that fits several sprintfs.
 332   // Note that the space for the colon and the trailing null are provided
 333   // by the nulls included by the sizeof operator.
 334   const size_t bufsize =
 335     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 336          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 337   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 338 
 339   // sysclasspath, java_home, dll_dir
 340   {
 341     char *pslash;
 342     os::jvm_path(buf, bufsize);
 343 
 344     // Found the full path to libjvm.so.
 345     // Now cut the path to <java_home>/jre if we can.
 346     pslash = strrchr(buf, '/');
 347     if (pslash != NULL) {
 348       *pslash = '\0';            // Get rid of /libjvm.so.
 349     }
 350     pslash = strrchr(buf, '/');
 351     if (pslash != NULL) {
 352       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 353     }
 354     Arguments::set_dll_dir(buf);
 355 
 356     if (pslash != NULL) {
 357       pslash = strrchr(buf, '/');
 358       if (pslash != NULL) {
 359         *pslash = '\0';        // Get rid of /lib.
 360       }
 361     }
 362     Arguments::set_java_home(buf);
 363     set_boot_path('/', ':');
 364   }
 365 
 366   // Where to look for native libraries.
 367   //
 368   // Note: Due to a legacy implementation, most of the library path
 369   // is set in the launcher. This was to accomodate linking restrictions
 370   // on legacy Linux implementations (which are no longer supported).
 371   // Eventually, all the library path setting will be done here.
 372   //
 373   // However, to prevent the proliferation of improperly built native
 374   // libraries, the new path component /usr/java/packages is added here.
 375   // Eventually, all the library path setting will be done here.
 376   {
 377     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 378     // should always exist (until the legacy problem cited above is
 379     // addressed).
 380     const char *v = ::getenv("LD_LIBRARY_PATH");
 381     const char *v_colon = ":";
 382     if (v == NULL) { v = ""; v_colon = ""; }
 383     // That's +1 for the colon and +1 for the trailing '\0'.
 384     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 385                                                      strlen(v) + 1 +
 386                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 387                                                      mtInternal);
 388     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 389     Arguments::set_library_path(ld_library_path);
 390     FREE_C_HEAP_ARRAY(char, ld_library_path);
 391   }
 392 
 393   // Extensions directories.
 394   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 395   Arguments::set_ext_dirs(buf);
 396 
 397   FREE_C_HEAP_ARRAY(char, buf);
 398 
 399 #undef DEFAULT_LIBPATH
 400 #undef SYS_EXT_DIR
 401 #undef EXTENSIONS_DIR
 402 }
 403 
 404 ////////////////////////////////////////////////////////////////////////////////
 405 // breakpoint support
 406 
 407 void os::breakpoint() {
 408   BREAKPOINT;
 409 }
 410 
 411 extern "C" void breakpoint() {
 412   // use debugger to set breakpoint here
 413 }
 414 
 415 ////////////////////////////////////////////////////////////////////////////////
 416 // signal support
 417 
 418 debug_only(static bool signal_sets_initialized = false);
 419 static sigset_t unblocked_sigs, vm_sigs;
 420 
 421 bool os::Linux::is_sig_ignored(int sig) {
 422   struct sigaction oact;
 423   sigaction(sig, (struct sigaction*)NULL, &oact);
 424   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 425                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 426   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 427     return true;
 428   } else {
 429     return false;
 430   }
 431 }
 432 
 433 void os::Linux::signal_sets_init() {
 434   // Should also have an assertion stating we are still single-threaded.
 435   assert(!signal_sets_initialized, "Already initialized");
 436   // Fill in signals that are necessarily unblocked for all threads in
 437   // the VM. Currently, we unblock the following signals:
 438   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 439   //                         by -Xrs (=ReduceSignalUsage));
 440   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 441   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 442   // the dispositions or masks wrt these signals.
 443   // Programs embedding the VM that want to use the above signals for their
 444   // own purposes must, at this time, use the "-Xrs" option to prevent
 445   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 446   // (See bug 4345157, and other related bugs).
 447   // In reality, though, unblocking these signals is really a nop, since
 448   // these signals are not blocked by default.
 449   sigemptyset(&unblocked_sigs);
 450   sigaddset(&unblocked_sigs, SIGILL);
 451   sigaddset(&unblocked_sigs, SIGSEGV);
 452   sigaddset(&unblocked_sigs, SIGBUS);
 453   sigaddset(&unblocked_sigs, SIGFPE);
 454 #if defined(PPC64)
 455   sigaddset(&unblocked_sigs, SIGTRAP);
 456 #endif
 457   sigaddset(&unblocked_sigs, SR_signum);
 458 
 459   if (!ReduceSignalUsage) {
 460     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 461       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 462     }
 463     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 464       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 465     }
 466     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 468     }
 469   }
 470   // Fill in signals that are blocked by all but the VM thread.
 471   sigemptyset(&vm_sigs);
 472   if (!ReduceSignalUsage) {
 473     sigaddset(&vm_sigs, BREAK_SIGNAL);
 474   }
 475   debug_only(signal_sets_initialized = true);
 476 
 477 }
 478 
 479 // These are signals that are unblocked while a thread is running Java.
 480 // (For some reason, they get blocked by default.)
 481 sigset_t* os::Linux::unblocked_signals() {
 482   assert(signal_sets_initialized, "Not initialized");
 483   return &unblocked_sigs;
 484 }
 485 
 486 // These are the signals that are blocked while a (non-VM) thread is
 487 // running Java. Only the VM thread handles these signals.
 488 sigset_t* os::Linux::vm_signals() {
 489   assert(signal_sets_initialized, "Not initialized");
 490   return &vm_sigs;
 491 }
 492 
 493 void os::Linux::hotspot_sigmask(Thread* thread) {
 494 
 495   //Save caller's signal mask before setting VM signal mask
 496   sigset_t caller_sigmask;
 497   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 498 
 499   OSThread* osthread = thread->osthread();
 500   osthread->set_caller_sigmask(caller_sigmask);
 501 
 502   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 503 
 504   if (!ReduceSignalUsage) {
 505     if (thread->is_VM_thread()) {
 506       // Only the VM thread handles BREAK_SIGNAL ...
 507       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 508     } else {
 509       // ... all other threads block BREAK_SIGNAL
 510       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 511     }
 512   }
 513 }
 514 
 515 //////////////////////////////////////////////////////////////////////////////
 516 // detecting pthread library
 517 
 518 void os::Linux::libpthread_init() {
 519   // Save glibc and pthread version strings.
 520 #if !defined(_CS_GNU_LIBC_VERSION) || \
 521     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 522   #error "glibc too old (< 2.3.2)"
 523 #endif
 524 
 525   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 526   assert(n > 0, "cannot retrieve glibc version");
 527   char *str = (char *)malloc(n, mtInternal);
 528   confstr(_CS_GNU_LIBC_VERSION, str, n);
 529   os::Linux::set_glibc_version(str);
 530 
 531   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 532   assert(n > 0, "cannot retrieve pthread version");
 533   str = (char *)malloc(n, mtInternal);
 534   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 535   os::Linux::set_libpthread_version(str);
 536 }
 537 
 538 /////////////////////////////////////////////////////////////////////////////
 539 // thread stack expansion
 540 
 541 // os::Linux::manually_expand_stack() takes care of expanding the thread
 542 // stack. Note that this is normally not needed: pthread stacks allocate
 543 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 544 // committed. Therefore it is not necessary to expand the stack manually.
 545 //
 546 // Manually expanding the stack was historically needed on LinuxThreads
 547 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 548 // it is kept to deal with very rare corner cases:
 549 //
 550 // For one, user may run the VM on an own implementation of threads
 551 // whose stacks are - like the old LinuxThreads - implemented using
 552 // mmap(MAP_GROWSDOWN).
 553 //
 554 // Also, this coding may be needed if the VM is running on the primordial
 555 // thread. Normally we avoid running on the primordial thread; however,
 556 // user may still invoke the VM on the primordial thread.
 557 //
 558 // The following historical comment describes the details about running
 559 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 560 
 561 
 562 // Force Linux kernel to expand current thread stack. If "bottom" is close
 563 // to the stack guard, caller should block all signals.
 564 //
 565 // MAP_GROWSDOWN:
 566 //   A special mmap() flag that is used to implement thread stacks. It tells
 567 //   kernel that the memory region should extend downwards when needed. This
 568 //   allows early versions of LinuxThreads to only mmap the first few pages
 569 //   when creating a new thread. Linux kernel will automatically expand thread
 570 //   stack as needed (on page faults).
 571 //
 572 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 573 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 574 //   region, it's hard to tell if the fault is due to a legitimate stack
 575 //   access or because of reading/writing non-exist memory (e.g. buffer
 576 //   overrun). As a rule, if the fault happens below current stack pointer,
 577 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 578 //   application (see Linux kernel fault.c).
 579 //
 580 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 581 //   stack overflow detection.
 582 //
 583 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 584 //   not use MAP_GROWSDOWN.
 585 //
 586 // To get around the problem and allow stack banging on Linux, we need to
 587 // manually expand thread stack after receiving the SIGSEGV.
 588 //
 589 // There are two ways to expand thread stack to address "bottom", we used
 590 // both of them in JVM before 1.5:
 591 //   1. adjust stack pointer first so that it is below "bottom", and then
 592 //      touch "bottom"
 593 //   2. mmap() the page in question
 594 //
 595 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 596 // if current sp is already near the lower end of page 101, and we need to
 597 // call mmap() to map page 100, it is possible that part of the mmap() frame
 598 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 599 // That will destroy the mmap() frame and cause VM to crash.
 600 //
 601 // The following code works by adjusting sp first, then accessing the "bottom"
 602 // page to force a page fault. Linux kernel will then automatically expand the
 603 // stack mapping.
 604 //
 605 // _expand_stack_to() assumes its frame size is less than page size, which
 606 // should always be true if the function is not inlined.
 607 
 608 static void NOINLINE _expand_stack_to(address bottom) {
 609   address sp;
 610   size_t size;
 611   volatile char *p;
 612 
 613   // Adjust bottom to point to the largest address within the same page, it
 614   // gives us a one-page buffer if alloca() allocates slightly more memory.
 615   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 616   bottom += os::Linux::page_size() - 1;
 617 
 618   // sp might be slightly above current stack pointer; if that's the case, we
 619   // will alloca() a little more space than necessary, which is OK. Don't use
 620   // os::current_stack_pointer(), as its result can be slightly below current
 621   // stack pointer, causing us to not alloca enough to reach "bottom".
 622   sp = (address)&sp;
 623 
 624   if (sp > bottom) {
 625     size = sp - bottom;
 626     p = (volatile char *)alloca(size);
 627     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 628     p[0] = '\0';
 629   }
 630 }
 631 
 632 void os::Linux::expand_stack_to(address bottom) {
 633   _expand_stack_to(bottom);
 634 }
 635 
 636 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 637   assert(t!=NULL, "just checking");
 638   assert(t->osthread()->expanding_stack(), "expand should be set");
 639   assert(t->stack_base() != NULL, "stack_base was not initialized");
 640 
 641   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 642     sigset_t mask_all, old_sigset;
 643     sigfillset(&mask_all);
 644     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 645     _expand_stack_to(addr);
 646     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 647     return true;
 648   }
 649   return false;
 650 }
 651 
 652 //////////////////////////////////////////////////////////////////////////////
 653 // create new thread
 654 
 655 // Thread start routine for all newly created threads
 656 static void *thread_native_entry(Thread *thread) {
 657   // Try to randomize the cache line index of hot stack frames.
 658   // This helps when threads of the same stack traces evict each other's
 659   // cache lines. The threads can be either from the same JVM instance, or
 660   // from different JVM instances. The benefit is especially true for
 661   // processors with hyperthreading technology.
 662   static int counter = 0;
 663   int pid = os::current_process_id();
 664   alloca(((pid ^ counter++) & 7) * 128);
 665 
 666   thread->initialize_thread_current();
 667 
 668   OSThread* osthread = thread->osthread();
 669   Monitor* sync = osthread->startThread_lock();
 670 
 671   osthread->set_thread_id(os::current_thread_id());
 672 
 673   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 674     os::current_thread_id(), (uintx) pthread_self());
 675 
 676   if (UseNUMA) {
 677     int lgrp_id = os::numa_get_group_id();
 678     if (lgrp_id != -1) {
 679       thread->set_lgrp_id(lgrp_id);
 680     }
 681   }
 682   // initialize signal mask for this thread
 683   os::Linux::hotspot_sigmask(thread);
 684 
 685   // initialize floating point control register
 686   os::Linux::init_thread_fpu_state();
 687 
 688   // handshaking with parent thread
 689   {
 690     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 691 
 692     // notify parent thread
 693     osthread->set_state(INITIALIZED);
 694     sync->notify_all();
 695 
 696     // wait until os::start_thread()
 697     while (osthread->get_state() == INITIALIZED) {
 698       sync->wait(Mutex::_no_safepoint_check_flag);
 699     }
 700   }
 701 
 702   // call one more level start routine
 703   thread->run();
 704 
 705   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 706     os::current_thread_id(), (uintx) pthread_self());
 707 
 708   // If a thread has not deleted itself ("delete this") as part of its
 709   // termination sequence, we have to ensure thread-local-storage is
 710   // cleared before we actually terminate. No threads should ever be
 711   // deleted asynchronously with respect to their termination.
 712   if (Thread::current_or_null_safe() != NULL) {
 713     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 714     thread->clear_thread_current();
 715   }
 716 
 717   return 0;
 718 }
 719 
 720 bool os::create_thread(Thread* thread, ThreadType thr_type,
 721                        size_t req_stack_size) {
 722   assert(thread->osthread() == NULL, "caller responsible");
 723 
 724   // Allocate the OSThread object
 725   OSThread* osthread = new OSThread(NULL, NULL);
 726   if (osthread == NULL) {
 727     return false;
 728   }
 729 
 730   // set the correct thread state
 731   osthread->set_thread_type(thr_type);
 732 
 733   // Initial state is ALLOCATED but not INITIALIZED
 734   osthread->set_state(ALLOCATED);
 735 
 736   thread->set_osthread(osthread);
 737 
 738   // init thread attributes
 739   pthread_attr_t attr;
 740   pthread_attr_init(&attr);
 741   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 742 
 743   // Calculate stack size if it's not specified by caller.
 744   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 745   // In the Linux NPTL pthread implementation the guard size mechanism
 746   // is not implemented properly. The posix standard requires adding
 747   // the size of the guard pages to the stack size, instead Linux
 748   // takes the space out of 'stacksize'. Thus we adapt the requested
 749   // stack_size by the size of the guard pages to mimick proper
 750   // behaviour. However, be careful not to end up with a size
 751   // of zero due to overflow. Don't add the guard page in that case.
 752   size_t guard_size = os::Linux::default_guard_size(thr_type);
 753   if (stack_size <= SIZE_MAX - guard_size) {
 754     stack_size += guard_size;
 755   }
 756   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 757 
 758   int status = pthread_attr_setstacksize(&attr, stack_size);
 759   assert_status(status == 0, status, "pthread_attr_setstacksize");
 760 
 761   // Configure glibc guard page.
 762   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 763 
 764   ThreadState state;
 765 
 766   {
 767     pthread_t tid;
 768     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 769 
 770     char buf[64];
 771     if (ret == 0) {
 772       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 773         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 774     } else {
 775       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 776         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 777     }
 778 
 779     pthread_attr_destroy(&attr);
 780 
 781     if (ret != 0) {
 782       // Need to clean up stuff we've allocated so far
 783       thread->set_osthread(NULL);
 784       delete osthread;
 785       return false;
 786     }
 787 
 788     // Store pthread info into the OSThread
 789     osthread->set_pthread_id(tid);
 790 
 791     // Wait until child thread is either initialized or aborted
 792     {
 793       Monitor* sync_with_child = osthread->startThread_lock();
 794       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 795       while ((state = osthread->get_state()) == ALLOCATED) {
 796         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 797       }
 798     }
 799   }
 800 
 801   // Aborted due to thread limit being reached
 802   if (state == ZOMBIE) {
 803     thread->set_osthread(NULL);
 804     delete osthread;
 805     return false;
 806   }
 807 
 808   // The thread is returned suspended (in state INITIALIZED),
 809   // and is started higher up in the call chain
 810   assert(state == INITIALIZED, "race condition");
 811   return true;
 812 }
 813 
 814 /////////////////////////////////////////////////////////////////////////////
 815 // attach existing thread
 816 
 817 // bootstrap the main thread
 818 bool os::create_main_thread(JavaThread* thread) {
 819   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 820   return create_attached_thread(thread);
 821 }
 822 
 823 bool os::create_attached_thread(JavaThread* thread) {
 824 #ifdef ASSERT
 825   thread->verify_not_published();
 826 #endif
 827 
 828   // Allocate the OSThread object
 829   OSThread* osthread = new OSThread(NULL, NULL);
 830 
 831   if (osthread == NULL) {
 832     return false;
 833   }
 834 
 835   // Store pthread info into the OSThread
 836   osthread->set_thread_id(os::Linux::gettid());
 837   osthread->set_pthread_id(::pthread_self());
 838 
 839   // initialize floating point control register
 840   os::Linux::init_thread_fpu_state();
 841 
 842   // Initial thread state is RUNNABLE
 843   osthread->set_state(RUNNABLE);
 844 
 845   thread->set_osthread(osthread);
 846 
 847   if (UseNUMA) {
 848     int lgrp_id = os::numa_get_group_id();
 849     if (lgrp_id != -1) {
 850       thread->set_lgrp_id(lgrp_id);
 851     }
 852   }
 853 
 854   if (os::is_primordial_thread()) {
 855     // If current thread is primordial thread, its stack is mapped on demand,
 856     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 857     // the entire stack region to avoid SEGV in stack banging.
 858     // It is also useful to get around the heap-stack-gap problem on SuSE
 859     // kernel (see 4821821 for details). We first expand stack to the top
 860     // of yellow zone, then enable stack yellow zone (order is significant,
 861     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 862     // is no gap between the last two virtual memory regions.
 863 
 864     JavaThread *jt = (JavaThread *)thread;
 865     address addr = jt->stack_reserved_zone_base();
 866     assert(addr != NULL, "initialization problem?");
 867     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 868 
 869     osthread->set_expanding_stack();
 870     os::Linux::manually_expand_stack(jt, addr);
 871     osthread->clear_expanding_stack();
 872   }
 873 
 874   // initialize signal mask for this thread
 875   // and save the caller's signal mask
 876   os::Linux::hotspot_sigmask(thread);
 877 
 878   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 879     os::current_thread_id(), (uintx) pthread_self());
 880 
 881   return true;
 882 }
 883 
 884 void os::pd_start_thread(Thread* thread) {
 885   OSThread * osthread = thread->osthread();
 886   assert(osthread->get_state() != INITIALIZED, "just checking");
 887   Monitor* sync_with_child = osthread->startThread_lock();
 888   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 889   sync_with_child->notify();
 890 }
 891 
 892 // Free Linux resources related to the OSThread
 893 void os::free_thread(OSThread* osthread) {
 894   assert(osthread != NULL, "osthread not set");
 895 
 896   // We are told to free resources of the argument thread,
 897   // but we can only really operate on the current thread.
 898   assert(Thread::current()->osthread() == osthread,
 899          "os::free_thread but not current thread");
 900 
 901 #ifdef ASSERT
 902   sigset_t current;
 903   sigemptyset(&current);
 904   pthread_sigmask(SIG_SETMASK, NULL, &current);
 905   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 906 #endif
 907 
 908   // Restore caller's signal mask
 909   sigset_t sigmask = osthread->caller_sigmask();
 910   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 911 
 912   delete osthread;
 913 }
 914 
 915 //////////////////////////////////////////////////////////////////////////////
 916 // primordial thread
 917 
 918 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 919 bool os::is_primordial_thread(void) {
 920   char dummy;
 921   // If called before init complete, thread stack bottom will be null.
 922   // Can be called if fatal error occurs before initialization.
 923   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 924   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 925          os::Linux::initial_thread_stack_size()   != 0,
 926          "os::init did not locate primordial thread's stack region");
 927   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 928       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 929                         os::Linux::initial_thread_stack_size()) {
 930     return true;
 931   } else {
 932     return false;
 933   }
 934 }
 935 
 936 // Find the virtual memory area that contains addr
 937 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 938   FILE *fp = fopen("/proc/self/maps", "r");
 939   if (fp) {
 940     address low, high;
 941     while (!feof(fp)) {
 942       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 943         if (low <= addr && addr < high) {
 944           if (vma_low)  *vma_low  = low;
 945           if (vma_high) *vma_high = high;
 946           fclose(fp);
 947           return true;
 948         }
 949       }
 950       for (;;) {
 951         int ch = fgetc(fp);
 952         if (ch == EOF || ch == (int)'\n') break;
 953       }
 954     }
 955     fclose(fp);
 956   }
 957   return false;
 958 }
 959 
 960 // Locate primordial thread stack. This special handling of primordial thread stack
 961 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 962 // bogus value for the primordial process thread. While the launcher has created
 963 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 964 // JNI invocation API from a primordial thread.
 965 void os::Linux::capture_initial_stack(size_t max_size) {
 966 
 967   // max_size is either 0 (which means accept OS default for thread stacks) or
 968   // a user-specified value known to be at least the minimum needed. If we
 969   // are actually on the primordial thread we can make it appear that we have a
 970   // smaller max_size stack by inserting the guard pages at that location. But we
 971   // cannot do anything to emulate a larger stack than what has been provided by
 972   // the OS or threading library. In fact if we try to use a stack greater than
 973   // what is set by rlimit then we will crash the hosting process.
 974 
 975   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 976   // If this is "unlimited" then it will be a huge value.
 977   struct rlimit rlim;
 978   getrlimit(RLIMIT_STACK, &rlim);
 979   size_t stack_size = rlim.rlim_cur;
 980 
 981   // 6308388: a bug in ld.so will relocate its own .data section to the
 982   //   lower end of primordial stack; reduce ulimit -s value a little bit
 983   //   so we won't install guard page on ld.so's data section.
 984   //   But ensure we don't underflow the stack size - allow 1 page spare
 985   if (stack_size >= (size_t)(3 * page_size())) {
 986     stack_size -= 2 * page_size();
 987   }
 988 
 989   // Try to figure out where the stack base (top) is. This is harder.
 990   //
 991   // When an application is started, glibc saves the initial stack pointer in
 992   // a global variable "__libc_stack_end", which is then used by system
 993   // libraries. __libc_stack_end should be pretty close to stack top. The
 994   // variable is available since the very early days. However, because it is
 995   // a private interface, it could disappear in the future.
 996   //
 997   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 998   // to __libc_stack_end, it is very close to stack top, but isn't the real
 999   // stack top. Note that /proc may not exist if VM is running as a chroot
1000   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1001   // /proc/<pid>/stat could change in the future (though unlikely).
1002   //
1003   // We try __libc_stack_end first. If that doesn't work, look for
1004   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1005   // as a hint, which should work well in most cases.
1006 
1007   uintptr_t stack_start;
1008 
1009   // try __libc_stack_end first
1010   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1011   if (p && *p) {
1012     stack_start = *p;
1013   } else {
1014     // see if we can get the start_stack field from /proc/self/stat
1015     FILE *fp;
1016     int pid;
1017     char state;
1018     int ppid;
1019     int pgrp;
1020     int session;
1021     int nr;
1022     int tpgrp;
1023     unsigned long flags;
1024     unsigned long minflt;
1025     unsigned long cminflt;
1026     unsigned long majflt;
1027     unsigned long cmajflt;
1028     unsigned long utime;
1029     unsigned long stime;
1030     long cutime;
1031     long cstime;
1032     long prio;
1033     long nice;
1034     long junk;
1035     long it_real;
1036     uintptr_t start;
1037     uintptr_t vsize;
1038     intptr_t rss;
1039     uintptr_t rsslim;
1040     uintptr_t scodes;
1041     uintptr_t ecode;
1042     int i;
1043 
1044     // Figure what the primordial thread stack base is. Code is inspired
1045     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1046     // followed by command name surrounded by parentheses, state, etc.
1047     char stat[2048];
1048     int statlen;
1049 
1050     fp = fopen("/proc/self/stat", "r");
1051     if (fp) {
1052       statlen = fread(stat, 1, 2047, fp);
1053       stat[statlen] = '\0';
1054       fclose(fp);
1055 
1056       // Skip pid and the command string. Note that we could be dealing with
1057       // weird command names, e.g. user could decide to rename java launcher
1058       // to "java 1.4.2 :)", then the stat file would look like
1059       //                1234 (java 1.4.2 :)) R ... ...
1060       // We don't really need to know the command string, just find the last
1061       // occurrence of ")" and then start parsing from there. See bug 4726580.
1062       char * s = strrchr(stat, ')');
1063 
1064       i = 0;
1065       if (s) {
1066         // Skip blank chars
1067         do { s++; } while (s && isspace(*s));
1068 
1069 #define _UFM UINTX_FORMAT
1070 #define _DFM INTX_FORMAT
1071 
1072         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1073         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1074         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1075                    &state,          // 3  %c
1076                    &ppid,           // 4  %d
1077                    &pgrp,           // 5  %d
1078                    &session,        // 6  %d
1079                    &nr,             // 7  %d
1080                    &tpgrp,          // 8  %d
1081                    &flags,          // 9  %lu
1082                    &minflt,         // 10 %lu
1083                    &cminflt,        // 11 %lu
1084                    &majflt,         // 12 %lu
1085                    &cmajflt,        // 13 %lu
1086                    &utime,          // 14 %lu
1087                    &stime,          // 15 %lu
1088                    &cutime,         // 16 %ld
1089                    &cstime,         // 17 %ld
1090                    &prio,           // 18 %ld
1091                    &nice,           // 19 %ld
1092                    &junk,           // 20 %ld
1093                    &it_real,        // 21 %ld
1094                    &start,          // 22 UINTX_FORMAT
1095                    &vsize,          // 23 UINTX_FORMAT
1096                    &rss,            // 24 INTX_FORMAT
1097                    &rsslim,         // 25 UINTX_FORMAT
1098                    &scodes,         // 26 UINTX_FORMAT
1099                    &ecode,          // 27 UINTX_FORMAT
1100                    &stack_start);   // 28 UINTX_FORMAT
1101       }
1102 
1103 #undef _UFM
1104 #undef _DFM
1105 
1106       if (i != 28 - 2) {
1107         assert(false, "Bad conversion from /proc/self/stat");
1108         // product mode - assume we are the primordial thread, good luck in the
1109         // embedded case.
1110         warning("Can't detect primordial thread stack location - bad conversion");
1111         stack_start = (uintptr_t) &rlim;
1112       }
1113     } else {
1114       // For some reason we can't open /proc/self/stat (for example, running on
1115       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1116       // most cases, so don't abort:
1117       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1118       stack_start = (uintptr_t) &rlim;
1119     }
1120   }
1121 
1122   // Now we have a pointer (stack_start) very close to the stack top, the
1123   // next thing to do is to figure out the exact location of stack top. We
1124   // can find out the virtual memory area that contains stack_start by
1125   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1126   // and its upper limit is the real stack top. (again, this would fail if
1127   // running inside chroot, because /proc may not exist.)
1128 
1129   uintptr_t stack_top;
1130   address low, high;
1131   if (find_vma((address)stack_start, &low, &high)) {
1132     // success, "high" is the true stack top. (ignore "low", because initial
1133     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1134     stack_top = (uintptr_t)high;
1135   } else {
1136     // failed, likely because /proc/self/maps does not exist
1137     warning("Can't detect primordial thread stack location - find_vma failed");
1138     // best effort: stack_start is normally within a few pages below the real
1139     // stack top, use it as stack top, and reduce stack size so we won't put
1140     // guard page outside stack.
1141     stack_top = stack_start;
1142     stack_size -= 16 * page_size();
1143   }
1144 
1145   // stack_top could be partially down the page so align it
1146   stack_top = align_up(stack_top, page_size());
1147 
1148   // Allowed stack value is minimum of max_size and what we derived from rlimit
1149   if (max_size > 0) {
1150     _initial_thread_stack_size = MIN2(max_size, stack_size);
1151   } else {
1152     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1153     // clamp it at 8MB as we do on Solaris
1154     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1155   }
1156   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1157   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1158 
1159   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1160 
1161   if (log_is_enabled(Info, os, thread)) {
1162     // See if we seem to be on primordial process thread
1163     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1164                       uintptr_t(&rlim) < stack_top;
1165 
1166     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1167                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1168                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1169                          stack_top, intptr_t(_initial_thread_stack_bottom));
1170   }
1171 }
1172 
1173 ////////////////////////////////////////////////////////////////////////////////
1174 // time support
1175 
1176 // Time since start-up in seconds to a fine granularity.
1177 // Used by VMSelfDestructTimer and the MemProfiler.
1178 double os::elapsedTime() {
1179 
1180   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1181 }
1182 
1183 jlong os::elapsed_counter() {
1184   return javaTimeNanos() - initial_time_count;
1185 }
1186 
1187 jlong os::elapsed_frequency() {
1188   return NANOSECS_PER_SEC; // nanosecond resolution
1189 }
1190 
1191 bool os::supports_vtime() { return true; }
1192 bool os::enable_vtime()   { return false; }
1193 bool os::vtime_enabled()  { return false; }
1194 
1195 double os::elapsedVTime() {
1196   struct rusage usage;
1197   int retval = getrusage(RUSAGE_THREAD, &usage);
1198   if (retval == 0) {
1199     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1200   } else {
1201     // better than nothing, but not much
1202     return elapsedTime();
1203   }
1204 }
1205 
1206 jlong os::javaTimeMillis() {
1207   timeval time;
1208   int status = gettimeofday(&time, NULL);
1209   assert(status != -1, "linux error");
1210   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1211 }
1212 
1213 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1214   timeval time;
1215   int status = gettimeofday(&time, NULL);
1216   assert(status != -1, "linux error");
1217   seconds = jlong(time.tv_sec);
1218   nanos = jlong(time.tv_usec) * 1000;
1219 }
1220 
1221 
1222 #ifndef CLOCK_MONOTONIC
1223   #define CLOCK_MONOTONIC (1)
1224 #endif
1225 
1226 void os::Linux::clock_init() {
1227   // we do dlopen's in this particular order due to bug in linux
1228   // dynamical loader (see 6348968) leading to crash on exit
1229   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1230   if (handle == NULL) {
1231     handle = dlopen("librt.so", RTLD_LAZY);
1232   }
1233 
1234   if (handle) {
1235     int (*clock_getres_func)(clockid_t, struct timespec*) =
1236            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1237     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1238            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1239     if (clock_getres_func && clock_gettime_func) {
1240       // See if monotonic clock is supported by the kernel. Note that some
1241       // early implementations simply return kernel jiffies (updated every
1242       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1243       // for nano time (though the monotonic property is still nice to have).
1244       // It's fixed in newer kernels, however clock_getres() still returns
1245       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1246       // resolution for now. Hopefully as people move to new kernels, this
1247       // won't be a problem.
1248       struct timespec res;
1249       struct timespec tp;
1250       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1251           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1252         // yes, monotonic clock is supported
1253         _clock_gettime = clock_gettime_func;
1254         return;
1255       } else {
1256         // close librt if there is no monotonic clock
1257         dlclose(handle);
1258       }
1259     }
1260   }
1261   warning("No monotonic clock was available - timed services may " \
1262           "be adversely affected if the time-of-day clock changes");
1263 }
1264 
1265 #ifndef SYS_clock_getres
1266   #if defined(X86) || defined(PPC64) || defined(S390)
1267     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1268     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1269   #else
1270     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1271     #define sys_clock_getres(x,y)  -1
1272   #endif
1273 #else
1274   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1275 #endif
1276 
1277 void os::Linux::fast_thread_clock_init() {
1278   if (!UseLinuxPosixThreadCPUClocks) {
1279     return;
1280   }
1281   clockid_t clockid;
1282   struct timespec tp;
1283   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1284       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1285 
1286   // Switch to using fast clocks for thread cpu time if
1287   // the sys_clock_getres() returns 0 error code.
1288   // Note, that some kernels may support the current thread
1289   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1290   // returned by the pthread_getcpuclockid().
1291   // If the fast Posix clocks are supported then the sys_clock_getres()
1292   // must return at least tp.tv_sec == 0 which means a resolution
1293   // better than 1 sec. This is extra check for reliability.
1294 
1295   if (pthread_getcpuclockid_func &&
1296       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1297       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1298     _supports_fast_thread_cpu_time = true;
1299     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1300   }
1301 }
1302 
1303 jlong os::javaTimeNanos() {
1304   if (os::supports_monotonic_clock()) {
1305     struct timespec tp;
1306     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1307     assert(status == 0, "gettime error");
1308     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1309     return result;
1310   } else {
1311     timeval time;
1312     int status = gettimeofday(&time, NULL);
1313     assert(status != -1, "linux error");
1314     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1315     return 1000 * usecs;
1316   }
1317 }
1318 
1319 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1320   if (os::supports_monotonic_clock()) {
1321     info_ptr->max_value = ALL_64_BITS;
1322 
1323     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1324     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1325     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1326   } else {
1327     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1328     info_ptr->max_value = ALL_64_BITS;
1329 
1330     // gettimeofday is a real time clock so it skips
1331     info_ptr->may_skip_backward = true;
1332     info_ptr->may_skip_forward = true;
1333   }
1334 
1335   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1336 }
1337 
1338 // Return the real, user, and system times in seconds from an
1339 // arbitrary fixed point in the past.
1340 bool os::getTimesSecs(double* process_real_time,
1341                       double* process_user_time,
1342                       double* process_system_time) {
1343   struct tms ticks;
1344   clock_t real_ticks = times(&ticks);
1345 
1346   if (real_ticks == (clock_t) (-1)) {
1347     return false;
1348   } else {
1349     double ticks_per_second = (double) clock_tics_per_sec;
1350     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1351     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1352     *process_real_time = ((double) real_ticks) / ticks_per_second;
1353 
1354     return true;
1355   }
1356 }
1357 
1358 
1359 char * os::local_time_string(char *buf, size_t buflen) {
1360   struct tm t;
1361   time_t long_time;
1362   time(&long_time);
1363   localtime_r(&long_time, &t);
1364   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1365                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1366                t.tm_hour, t.tm_min, t.tm_sec);
1367   return buf;
1368 }
1369 
1370 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1371   return localtime_r(clock, res);
1372 }
1373 
1374 ////////////////////////////////////////////////////////////////////////////////
1375 // runtime exit support
1376 
1377 // Note: os::shutdown() might be called very early during initialization, or
1378 // called from signal handler. Before adding something to os::shutdown(), make
1379 // sure it is async-safe and can handle partially initialized VM.
1380 void os::shutdown() {
1381 
1382   // allow PerfMemory to attempt cleanup of any persistent resources
1383   perfMemory_exit();
1384 
1385   // needs to remove object in file system
1386   AttachListener::abort();
1387 
1388   // flush buffered output, finish log files
1389   ostream_abort();
1390 
1391   // Check for abort hook
1392   abort_hook_t abort_hook = Arguments::abort_hook();
1393   if (abort_hook != NULL) {
1394     abort_hook();
1395   }
1396 
1397 }
1398 
1399 // Note: os::abort() might be called very early during initialization, or
1400 // called from signal handler. Before adding something to os::abort(), make
1401 // sure it is async-safe and can handle partially initialized VM.
1402 void os::abort(bool dump_core, void* siginfo, const void* context) {
1403   os::shutdown();
1404   if (dump_core) {
1405 #ifndef PRODUCT
1406     fdStream out(defaultStream::output_fd());
1407     out.print_raw("Current thread is ");
1408     char buf[16];
1409     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1410     out.print_raw_cr(buf);
1411     out.print_raw_cr("Dumping core ...");
1412 #endif
1413     ::abort(); // dump core
1414   }
1415 
1416   ::exit(1);
1417 }
1418 
1419 // Die immediately, no exit hook, no abort hook, no cleanup.
1420 void os::die() {
1421   ::abort();
1422 }
1423 
1424 
1425 // This method is a copy of JDK's sysGetLastErrorString
1426 // from src/solaris/hpi/src/system_md.c
1427 
1428 size_t os::lasterror(char *buf, size_t len) {
1429   if (errno == 0)  return 0;
1430 
1431   const char *s = os::strerror(errno);
1432   size_t n = ::strlen(s);
1433   if (n >= len) {
1434     n = len - 1;
1435   }
1436   ::strncpy(buf, s, n);
1437   buf[n] = '\0';
1438   return n;
1439 }
1440 
1441 // thread_id is kernel thread id (similar to Solaris LWP id)
1442 intx os::current_thread_id() { return os::Linux::gettid(); }
1443 int os::current_process_id() {
1444   return ::getpid();
1445 }
1446 
1447 // DLL functions
1448 
1449 const char* os::dll_file_extension() { return ".so"; }
1450 
1451 // This must be hard coded because it's the system's temporary
1452 // directory not the java application's temp directory, ala java.io.tmpdir.
1453 const char* os::get_temp_directory() { return "/tmp"; }
1454 
1455 static bool file_exists(const char* filename) {
1456   struct stat statbuf;
1457   if (filename == NULL || strlen(filename) == 0) {
1458     return false;
1459   }
1460   return os::stat(filename, &statbuf) == 0;
1461 }
1462 
1463 // check if addr is inside libjvm.so
1464 bool os::address_is_in_vm(address addr) {
1465   static address libjvm_base_addr;
1466   Dl_info dlinfo;
1467 
1468   if (libjvm_base_addr == NULL) {
1469     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1470       libjvm_base_addr = (address)dlinfo.dli_fbase;
1471     }
1472     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1473   }
1474 
1475   if (dladdr((void *)addr, &dlinfo) != 0) {
1476     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1477   }
1478 
1479   return false;
1480 }
1481 
1482 bool os::dll_address_to_function_name(address addr, char *buf,
1483                                       int buflen, int *offset,
1484                                       bool demangle) {
1485   // buf is not optional, but offset is optional
1486   assert(buf != NULL, "sanity check");
1487 
1488   Dl_info dlinfo;
1489 
1490   if (dladdr((void*)addr, &dlinfo) != 0) {
1491     // see if we have a matching symbol
1492     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1493       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1494         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1495       }
1496       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1497       return true;
1498     }
1499     // no matching symbol so try for just file info
1500     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1501       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1502                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1503         return true;
1504       }
1505     }
1506   }
1507 
1508   buf[0] = '\0';
1509   if (offset != NULL) *offset = -1;
1510   return false;
1511 }
1512 
1513 struct _address_to_library_name {
1514   address addr;          // input : memory address
1515   size_t  buflen;        //         size of fname
1516   char*   fname;         // output: library name
1517   address base;          //         library base addr
1518 };
1519 
1520 static int address_to_library_name_callback(struct dl_phdr_info *info,
1521                                             size_t size, void *data) {
1522   int i;
1523   bool found = false;
1524   address libbase = NULL;
1525   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1526 
1527   // iterate through all loadable segments
1528   for (i = 0; i < info->dlpi_phnum; i++) {
1529     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1530     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1531       // base address of a library is the lowest address of its loaded
1532       // segments.
1533       if (libbase == NULL || libbase > segbase) {
1534         libbase = segbase;
1535       }
1536       // see if 'addr' is within current segment
1537       if (segbase <= d->addr &&
1538           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1539         found = true;
1540       }
1541     }
1542   }
1543 
1544   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1545   // so dll_address_to_library_name() can fall through to use dladdr() which
1546   // can figure out executable name from argv[0].
1547   if (found && info->dlpi_name && info->dlpi_name[0]) {
1548     d->base = libbase;
1549     if (d->fname) {
1550       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1551     }
1552     return 1;
1553   }
1554   return 0;
1555 }
1556 
1557 bool os::dll_address_to_library_name(address addr, char* buf,
1558                                      int buflen, int* offset) {
1559   // buf is not optional, but offset is optional
1560   assert(buf != NULL, "sanity check");
1561 
1562   Dl_info dlinfo;
1563   struct _address_to_library_name data;
1564 
1565   // There is a bug in old glibc dladdr() implementation that it could resolve
1566   // to wrong library name if the .so file has a base address != NULL. Here
1567   // we iterate through the program headers of all loaded libraries to find
1568   // out which library 'addr' really belongs to. This workaround can be
1569   // removed once the minimum requirement for glibc is moved to 2.3.x.
1570   data.addr = addr;
1571   data.fname = buf;
1572   data.buflen = buflen;
1573   data.base = NULL;
1574   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1575 
1576   if (rslt) {
1577     // buf already contains library name
1578     if (offset) *offset = addr - data.base;
1579     return true;
1580   }
1581   if (dladdr((void*)addr, &dlinfo) != 0) {
1582     if (dlinfo.dli_fname != NULL) {
1583       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1584     }
1585     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1586       *offset = addr - (address)dlinfo.dli_fbase;
1587     }
1588     return true;
1589   }
1590 
1591   buf[0] = '\0';
1592   if (offset) *offset = -1;
1593   return false;
1594 }
1595 
1596 // Loads .dll/.so and
1597 // in case of error it checks if .dll/.so was built for the
1598 // same architecture as Hotspot is running on
1599 
1600 
1601 // Remember the stack's state. The Linux dynamic linker will change
1602 // the stack to 'executable' at most once, so we must safepoint only once.
1603 bool os::Linux::_stack_is_executable = false;
1604 
1605 // VM operation that loads a library.  This is necessary if stack protection
1606 // of the Java stacks can be lost during loading the library.  If we
1607 // do not stop the Java threads, they can stack overflow before the stacks
1608 // are protected again.
1609 class VM_LinuxDllLoad: public VM_Operation {
1610  private:
1611   const char *_filename;
1612   char *_ebuf;
1613   int _ebuflen;
1614   void *_lib;
1615  public:
1616   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1617     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1618   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1619   void doit() {
1620     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1621     os::Linux::_stack_is_executable = true;
1622   }
1623   void* loaded_library() { return _lib; }
1624 };
1625 
1626 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1627   void * result = NULL;
1628   bool load_attempted = false;
1629 
1630   // Check whether the library to load might change execution rights
1631   // of the stack. If they are changed, the protection of the stack
1632   // guard pages will be lost. We need a safepoint to fix this.
1633   //
1634   // See Linux man page execstack(8) for more info.
1635   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1636     if (!ElfFile::specifies_noexecstack(filename)) {
1637       if (!is_init_completed()) {
1638         os::Linux::_stack_is_executable = true;
1639         // This is OK - No Java threads have been created yet, and hence no
1640         // stack guard pages to fix.
1641         //
1642         // This should happen only when you are building JDK7 using a very
1643         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1644         //
1645         // Dynamic loader will make all stacks executable after
1646         // this function returns, and will not do that again.
1647 #ifdef ASSERT
1648         ThreadsListHandle tlh;
1649         assert(tlh.length() == 0, "no Java threads should exist yet.");
1650 #endif
1651       } else {
1652         warning("You have loaded library %s which might have disabled stack guard. "
1653                 "The VM will try to fix the stack guard now.\n"
1654                 "It's highly recommended that you fix the library with "
1655                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1656                 filename);
1657 
1658         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1659         JavaThread *jt = JavaThread::current();
1660         if (jt->thread_state() != _thread_in_native) {
1661           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1662           // that requires ExecStack. Cannot enter safe point. Let's give up.
1663           warning("Unable to fix stack guard. Giving up.");
1664         } else {
1665           if (!LoadExecStackDllInVMThread) {
1666             // This is for the case where the DLL has an static
1667             // constructor function that executes JNI code. We cannot
1668             // load such DLLs in the VMThread.
1669             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1670           }
1671 
1672           ThreadInVMfromNative tiv(jt);
1673           debug_only(VMNativeEntryWrapper vew;)
1674 
1675           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1676           VMThread::execute(&op);
1677           if (LoadExecStackDllInVMThread) {
1678             result = op.loaded_library();
1679           }
1680           load_attempted = true;
1681         }
1682       }
1683     }
1684   }
1685 
1686   if (!load_attempted) {
1687     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1688   }
1689 
1690   if (result != NULL) {
1691     // Successful loading
1692     return result;
1693   }
1694 
1695   Elf32_Ehdr elf_head;
1696   int diag_msg_max_length=ebuflen-strlen(ebuf);
1697   char* diag_msg_buf=ebuf+strlen(ebuf);
1698 
1699   if (diag_msg_max_length==0) {
1700     // No more space in ebuf for additional diagnostics message
1701     return NULL;
1702   }
1703 
1704 
1705   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1706 
1707   if (file_descriptor < 0) {
1708     // Can't open library, report dlerror() message
1709     return NULL;
1710   }
1711 
1712   bool failed_to_read_elf_head=
1713     (sizeof(elf_head)!=
1714      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1715 
1716   ::close(file_descriptor);
1717   if (failed_to_read_elf_head) {
1718     // file i/o error - report dlerror() msg
1719     return NULL;
1720   }
1721 
1722   typedef struct {
1723     Elf32_Half    code;         // Actual value as defined in elf.h
1724     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1725     unsigned char elf_class;    // 32 or 64 bit
1726     unsigned char endianess;    // MSB or LSB
1727     char*         name;         // String representation
1728   } arch_t;
1729 
1730 #ifndef EM_486
1731   #define EM_486          6               /* Intel 80486 */
1732 #endif
1733 #ifndef EM_AARCH64
1734   #define EM_AARCH64    183               /* ARM AARCH64 */
1735 #endif
1736 #ifndef EM_RISCV                          /* RISCV */
1737   #define EM_RISCV      243
1738 #endif
1739 
1740   static const arch_t arch_array[]={
1741     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1742     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1743     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1744     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1745     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1746     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1747     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1748     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1749 #if defined(VM_LITTLE_ENDIAN)
1750     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1751     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1752 #else
1753     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1754     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1755 #endif
1756     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1757     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1758     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1759     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1760     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1761     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1762     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1763     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1764     {EM_RISCV,       EM_RISCV,   ELFCLASS64, ELFDATA2LSB, (char*)"RISCV"},
1765   };
1766 
1767 #if  (defined IA32)
1768   static  Elf32_Half running_arch_code=EM_386;
1769 #elif   (defined AMD64)
1770   static  Elf32_Half running_arch_code=EM_X86_64;
1771 #elif  (defined IA64)
1772   static  Elf32_Half running_arch_code=EM_IA_64;
1773 #elif  (defined __sparc) && (defined _LP64)
1774   static  Elf32_Half running_arch_code=EM_SPARCV9;
1775 #elif  (defined __sparc) && (!defined _LP64)
1776   static  Elf32_Half running_arch_code=EM_SPARC;
1777 #elif  (defined __powerpc64__)
1778   static  Elf32_Half running_arch_code=EM_PPC64;
1779 #elif  (defined __powerpc__)
1780   static  Elf32_Half running_arch_code=EM_PPC;
1781 #elif  (defined RISCV)
1782   static  Elf32_Half running_arch_code=EM_RISCV;
1783 #elif  (defined AARCH64)
1784   static  Elf32_Half running_arch_code=EM_AARCH64;
1785 #elif  (defined ARM)
1786   static  Elf32_Half running_arch_code=EM_ARM;
1787 #elif  (defined S390)
1788   static  Elf32_Half running_arch_code=EM_S390;
1789 #elif  (defined ALPHA)
1790   static  Elf32_Half running_arch_code=EM_ALPHA;
1791 #elif  (defined MIPSEL)
1792   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1793 #elif  (defined PARISC)
1794   static  Elf32_Half running_arch_code=EM_PARISC;
1795 #elif  (defined MIPS)
1796   static  Elf32_Half running_arch_code=EM_MIPS;
1797 #elif  (defined M68K)
1798   static  Elf32_Half running_arch_code=EM_68K;
1799 #elif  (defined SH)
1800   static  Elf32_Half running_arch_code=EM_SH;
1801 #else
1802     #error Method os::dll_load requires that one of following is defined:\
1803         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc, RISCV
1804 #endif
1805 
1806   // Identify compatability class for VM's architecture and library's architecture
1807   // Obtain string descriptions for architectures
1808 
1809   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1810   int running_arch_index=-1;
1811 
1812   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1813     if (running_arch_code == arch_array[i].code) {
1814       running_arch_index    = i;
1815     }
1816     if (lib_arch.code == arch_array[i].code) {
1817       lib_arch.compat_class = arch_array[i].compat_class;
1818       lib_arch.name         = arch_array[i].name;
1819     }
1820   }
1821 
1822   assert(running_arch_index != -1,
1823          "Didn't find running architecture code (running_arch_code) in arch_array");
1824   if (running_arch_index == -1) {
1825     // Even though running architecture detection failed
1826     // we may still continue with reporting dlerror() message
1827     return NULL;
1828   }
1829 
1830   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1831     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1832     return NULL;
1833   }
1834 
1835 #ifndef S390
1836   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1837     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1838     return NULL;
1839   }
1840 #endif // !S390
1841 
1842   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1843     if (lib_arch.name!=NULL) {
1844       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1845                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1846                  lib_arch.name, arch_array[running_arch_index].name);
1847     } else {
1848       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1849                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1850                  lib_arch.code,
1851                  arch_array[running_arch_index].name);
1852     }
1853   }
1854 
1855   return NULL;
1856 }
1857 
1858 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1859                                 int ebuflen) {
1860   void * result = ::dlopen(filename, RTLD_LAZY);
1861   if (result == NULL) {
1862     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1863     ebuf[ebuflen-1] = '\0';
1864   }
1865   return result;
1866 }
1867 
1868 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1869                                        int ebuflen) {
1870   void * result = NULL;
1871   if (LoadExecStackDllInVMThread) {
1872     result = dlopen_helper(filename, ebuf, ebuflen);
1873   }
1874 
1875   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1876   // library that requires an executable stack, or which does not have this
1877   // stack attribute set, dlopen changes the stack attribute to executable. The
1878   // read protection of the guard pages gets lost.
1879   //
1880   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1881   // may have been queued at the same time.
1882 
1883   if (!_stack_is_executable) {
1884     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1885       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1886           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1887         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1888           warning("Attempt to reguard stack yellow zone failed.");
1889         }
1890       }
1891     }
1892   }
1893 
1894   return result;
1895 }
1896 
1897 void* os::dll_lookup(void* handle, const char* name) {
1898   void* res = dlsym(handle, name);
1899   return res;
1900 }
1901 
1902 void* os::get_default_process_handle() {
1903   return (void*)::dlopen(NULL, RTLD_LAZY);
1904 }
1905 
1906 static bool _print_ascii_file(const char* filename, outputStream* st) {
1907   int fd = ::open(filename, O_RDONLY);
1908   if (fd == -1) {
1909     return false;
1910   }
1911 
1912   char buf[33];
1913   int bytes;
1914   buf[32] = '\0';
1915   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1916     st->print_raw(buf, bytes);
1917   }
1918 
1919   ::close(fd);
1920 
1921   return true;
1922 }
1923 
1924 void os::print_dll_info(outputStream *st) {
1925   st->print_cr("Dynamic libraries:");
1926 
1927   char fname[32];
1928   pid_t pid = os::Linux::gettid();
1929 
1930   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1931 
1932   if (!_print_ascii_file(fname, st)) {
1933     st->print("Can not get library information for pid = %d\n", pid);
1934   }
1935 }
1936 
1937 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1938   FILE *procmapsFile = NULL;
1939 
1940   // Open the procfs maps file for the current process
1941   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1942     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1943     char line[PATH_MAX + 100];
1944 
1945     // Read line by line from 'file'
1946     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1947       u8 base, top, offset, inode;
1948       char permissions[5];
1949       char device[6];
1950       char name[PATH_MAX + 1];
1951 
1952       // Parse fields from line
1953       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1954              &base, &top, permissions, &offset, device, &inode, name);
1955 
1956       // Filter by device id '00:00' so that we only get file system mapped files.
1957       if (strcmp(device, "00:00") != 0) {
1958 
1959         // Call callback with the fields of interest
1960         if(callback(name, (address)base, (address)top, param)) {
1961           // Oops abort, callback aborted
1962           fclose(procmapsFile);
1963           return 1;
1964         }
1965       }
1966     }
1967     fclose(procmapsFile);
1968   }
1969   return 0;
1970 }
1971 
1972 void os::print_os_info_brief(outputStream* st) {
1973   os::Linux::print_distro_info(st);
1974 
1975   os::Posix::print_uname_info(st);
1976 
1977   os::Linux::print_libversion_info(st);
1978 
1979 }
1980 
1981 void os::print_os_info(outputStream* st) {
1982   st->print("OS:");
1983 
1984   os::Linux::print_distro_info(st);
1985 
1986   os::Posix::print_uname_info(st);
1987 
1988   // Print warning if unsafe chroot environment detected
1989   if (unsafe_chroot_detected) {
1990     st->print("WARNING!! ");
1991     st->print_cr("%s", unstable_chroot_error);
1992   }
1993 
1994   os::Linux::print_libversion_info(st);
1995 
1996   os::Posix::print_rlimit_info(st);
1997 
1998   os::Posix::print_load_average(st);
1999 
2000   os::Linux::print_full_memory_info(st);
2001 
2002   os::Linux::print_container_info(st);
2003 }
2004 
2005 // Try to identify popular distros.
2006 // Most Linux distributions have a /etc/XXX-release file, which contains
2007 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2008 // file that also contains the OS version string. Some have more than one
2009 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2010 // /etc/redhat-release.), so the order is important.
2011 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2012 // their own specific XXX-release file as well as a redhat-release file.
2013 // Because of this the XXX-release file needs to be searched for before the
2014 // redhat-release file.
2015 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2016 // search for redhat-release / SuSE-release needs to be before lsb-release.
2017 // Since the lsb-release file is the new standard it needs to be searched
2018 // before the older style release files.
2019 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2020 // next to last resort.  The os-release file is a new standard that contains
2021 // distribution information and the system-release file seems to be an old
2022 // standard that has been replaced by the lsb-release and os-release files.
2023 // Searching for the debian_version file is the last resort.  It contains
2024 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2025 // "Debian " is printed before the contents of the debian_version file.
2026 
2027 const char* distro_files[] = {
2028   "/etc/oracle-release",
2029   "/etc/mandriva-release",
2030   "/etc/mandrake-release",
2031   "/etc/sun-release",
2032   "/etc/redhat-release",
2033   "/etc/SuSE-release",
2034   "/etc/lsb-release",
2035   "/etc/turbolinux-release",
2036   "/etc/gentoo-release",
2037   "/etc/ltib-release",
2038   "/etc/angstrom-version",
2039   "/etc/system-release",
2040   "/etc/os-release",
2041   NULL };
2042 
2043 void os::Linux::print_distro_info(outputStream* st) {
2044   for (int i = 0;; i++) {
2045     const char* file = distro_files[i];
2046     if (file == NULL) {
2047       break;  // done
2048     }
2049     // If file prints, we found it.
2050     if (_print_ascii_file(file, st)) {
2051       return;
2052     }
2053   }
2054 
2055   if (file_exists("/etc/debian_version")) {
2056     st->print("Debian ");
2057     _print_ascii_file("/etc/debian_version", st);
2058   } else {
2059     st->print("Linux");
2060   }
2061   st->cr();
2062 }
2063 
2064 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2065   char buf[256];
2066   while (fgets(buf, sizeof(buf), fp)) {
2067     // Edit out extra stuff in expected format
2068     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2069       char* ptr = strstr(buf, "\"");  // the name is in quotes
2070       if (ptr != NULL) {
2071         ptr++; // go beyond first quote
2072         char* nl = strchr(ptr, '\"');
2073         if (nl != NULL) *nl = '\0';
2074         strncpy(distro, ptr, length);
2075       } else {
2076         ptr = strstr(buf, "=");
2077         ptr++; // go beyond equals then
2078         char* nl = strchr(ptr, '\n');
2079         if (nl != NULL) *nl = '\0';
2080         strncpy(distro, ptr, length);
2081       }
2082       return;
2083     } else if (get_first_line) {
2084       char* nl = strchr(buf, '\n');
2085       if (nl != NULL) *nl = '\0';
2086       strncpy(distro, buf, length);
2087       return;
2088     }
2089   }
2090   // print last line and close
2091   char* nl = strchr(buf, '\n');
2092   if (nl != NULL) *nl = '\0';
2093   strncpy(distro, buf, length);
2094 }
2095 
2096 static void parse_os_info(char* distro, size_t length, const char* file) {
2097   FILE* fp = fopen(file, "r");
2098   if (fp != NULL) {
2099     // if suse format, print out first line
2100     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2101     parse_os_info_helper(fp, distro, length, get_first_line);
2102     fclose(fp);
2103   }
2104 }
2105 
2106 void os::get_summary_os_info(char* buf, size_t buflen) {
2107   for (int i = 0;; i++) {
2108     const char* file = distro_files[i];
2109     if (file == NULL) {
2110       break; // ran out of distro_files
2111     }
2112     if (file_exists(file)) {
2113       parse_os_info(buf, buflen, file);
2114       return;
2115     }
2116   }
2117   // special case for debian
2118   if (file_exists("/etc/debian_version")) {
2119     strncpy(buf, "Debian ", buflen);
2120     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2121   } else {
2122     strncpy(buf, "Linux", buflen);
2123   }
2124 }
2125 
2126 void os::Linux::print_libversion_info(outputStream* st) {
2127   // libc, pthread
2128   st->print("libc:");
2129   st->print("%s ", os::Linux::glibc_version());
2130   st->print("%s ", os::Linux::libpthread_version());
2131   st->cr();
2132 }
2133 
2134 void os::Linux::print_full_memory_info(outputStream* st) {
2135   st->print("\n/proc/meminfo:\n");
2136   _print_ascii_file("/proc/meminfo", st);
2137   st->cr();
2138 }
2139 
2140 void os::Linux::print_container_info(outputStream* st) {
2141   if (!OSContainer::is_containerized()) {
2142     return;
2143   }
2144 
2145   st->print("container (cgroup) information:\n");
2146 
2147   const char *p_ct = OSContainer::container_type();
2148   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2149 
2150   char *p = OSContainer::cpu_cpuset_cpus();
2151   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2152   free(p);
2153 
2154   p = OSContainer::cpu_cpuset_memory_nodes();
2155   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2156   free(p);
2157 
2158   int i = OSContainer::active_processor_count();
2159   if (i > 0) {
2160     st->print("active_processor_count: %d\n", i);
2161   } else {
2162     st->print("active_processor_count: failed\n");
2163   }
2164 
2165   i = OSContainer::cpu_quota();
2166   st->print("cpu_quota: %d\n", i);
2167 
2168   i = OSContainer::cpu_period();
2169   st->print("cpu_period: %d\n", i);
2170 
2171   i = OSContainer::cpu_shares();
2172   st->print("cpu_shares: %d\n", i);
2173 
2174   jlong j = OSContainer::memory_limit_in_bytes();
2175   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2176 
2177   j = OSContainer::memory_and_swap_limit_in_bytes();
2178   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2179 
2180   j = OSContainer::memory_soft_limit_in_bytes();
2181   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2182 
2183   j = OSContainer::OSContainer::memory_usage_in_bytes();
2184   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2185 
2186   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2187   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2188   st->cr();
2189 }
2190 
2191 void os::print_memory_info(outputStream* st) {
2192 
2193   st->print("Memory:");
2194   st->print(" %dk page", os::vm_page_size()>>10);
2195 
2196   // values in struct sysinfo are "unsigned long"
2197   struct sysinfo si;
2198   sysinfo(&si);
2199 
2200   st->print(", physical " UINT64_FORMAT "k",
2201             os::physical_memory() >> 10);
2202   st->print("(" UINT64_FORMAT "k free)",
2203             os::available_memory() >> 10);
2204   st->print(", swap " UINT64_FORMAT "k",
2205             ((jlong)si.totalswap * si.mem_unit) >> 10);
2206   st->print("(" UINT64_FORMAT "k free)",
2207             ((jlong)si.freeswap * si.mem_unit) >> 10);
2208   st->cr();
2209 }
2210 
2211 // Print the first "model name" line and the first "flags" line
2212 // that we find and nothing more. We assume "model name" comes
2213 // before "flags" so if we find a second "model name", then the
2214 // "flags" field is considered missing.
2215 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2216 #if defined(IA32) || defined(AMD64)
2217   // Other platforms have less repetitive cpuinfo files
2218   FILE *fp = fopen("/proc/cpuinfo", "r");
2219   if (fp) {
2220     while (!feof(fp)) {
2221       if (fgets(buf, buflen, fp)) {
2222         // Assume model name comes before flags
2223         bool model_name_printed = false;
2224         if (strstr(buf, "model name") != NULL) {
2225           if (!model_name_printed) {
2226             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2227             st->print_raw(buf);
2228             model_name_printed = true;
2229           } else {
2230             // model name printed but not flags?  Odd, just return
2231             fclose(fp);
2232             return true;
2233           }
2234         }
2235         // print the flags line too
2236         if (strstr(buf, "flags") != NULL) {
2237           st->print_raw(buf);
2238           fclose(fp);
2239           return true;
2240         }
2241       }
2242     }
2243     fclose(fp);
2244   }
2245 #endif // x86 platforms
2246   return false;
2247 }
2248 
2249 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2250   // Only print the model name if the platform provides this as a summary
2251   if (!print_model_name_and_flags(st, buf, buflen)) {
2252     st->print("\n/proc/cpuinfo:\n");
2253     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2254       st->print_cr("  <Not Available>");
2255     }
2256   }
2257 }
2258 
2259 #if defined(AMD64) || defined(IA32) || defined(X32)
2260 const char* search_string = "model name";
2261 #elif defined(M68K)
2262 const char* search_string = "CPU";
2263 #elif defined(PPC64)
2264 const char* search_string = "cpu";
2265 #elif defined(S390)
2266 const char* search_string = "processor";
2267 #elif defined(SPARC)
2268 const char* search_string = "cpu";
2269 #else
2270 const char* search_string = "Processor";
2271 #endif
2272 
2273 // Parses the cpuinfo file for string representing the model name.
2274 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2275   FILE* fp = fopen("/proc/cpuinfo", "r");
2276   if (fp != NULL) {
2277     while (!feof(fp)) {
2278       char buf[256];
2279       if (fgets(buf, sizeof(buf), fp)) {
2280         char* start = strstr(buf, search_string);
2281         if (start != NULL) {
2282           char *ptr = start + strlen(search_string);
2283           char *end = buf + strlen(buf);
2284           while (ptr != end) {
2285              // skip whitespace and colon for the rest of the name.
2286              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2287                break;
2288              }
2289              ptr++;
2290           }
2291           if (ptr != end) {
2292             // reasonable string, get rid of newline and keep the rest
2293             char* nl = strchr(buf, '\n');
2294             if (nl != NULL) *nl = '\0';
2295             strncpy(cpuinfo, ptr, length);
2296             fclose(fp);
2297             return;
2298           }
2299         }
2300       }
2301     }
2302     fclose(fp);
2303   }
2304   // cpuinfo not found or parsing failed, just print generic string.  The entire
2305   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2306 #if   defined(AARCH64)
2307   strncpy(cpuinfo, "AArch64", length);
2308 #elif defined(AMD64)
2309   strncpy(cpuinfo, "x86_64", length);
2310 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2311   strncpy(cpuinfo, "ARM", length);
2312 #elif defined(IA32)
2313   strncpy(cpuinfo, "x86_32", length);
2314 #elif defined(IA64)
2315   strncpy(cpuinfo, "IA64", length);
2316 #elif defined(PPC)
2317   strncpy(cpuinfo, "PPC64", length);
2318 #elif defined(RISCV)
2319   strncpy(cpuinfo, "RISCV", length);
2320 #elif defined(S390)
2321   strncpy(cpuinfo, "S390", length);
2322 #elif defined(SPARC)
2323   strncpy(cpuinfo, "sparcv9", length);
2324 #elif defined(ZERO_LIBARCH)
2325   strncpy(cpuinfo, ZERO_LIBARCH, length);
2326 #else
2327   strncpy(cpuinfo, "unknown", length);
2328 #endif
2329 }
2330 
2331 static void print_signal_handler(outputStream* st, int sig,
2332                                  char* buf, size_t buflen);
2333 
2334 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2335   st->print_cr("Signal Handlers:");
2336   print_signal_handler(st, SIGSEGV, buf, buflen);
2337   print_signal_handler(st, SIGBUS , buf, buflen);
2338   print_signal_handler(st, SIGFPE , buf, buflen);
2339   print_signal_handler(st, SIGPIPE, buf, buflen);
2340   print_signal_handler(st, SIGXFSZ, buf, buflen);
2341   print_signal_handler(st, SIGILL , buf, buflen);
2342   print_signal_handler(st, SR_signum, buf, buflen);
2343   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2344   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2345   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2346   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2347 #if defined(PPC64)
2348   print_signal_handler(st, SIGTRAP, buf, buflen);
2349 #endif
2350 }
2351 
2352 static char saved_jvm_path[MAXPATHLEN] = {0};
2353 
2354 // Find the full path to the current module, libjvm.so
2355 void os::jvm_path(char *buf, jint buflen) {
2356   // Error checking.
2357   if (buflen < MAXPATHLEN) {
2358     assert(false, "must use a large-enough buffer");
2359     buf[0] = '\0';
2360     return;
2361   }
2362   // Lazy resolve the path to current module.
2363   if (saved_jvm_path[0] != 0) {
2364     strcpy(buf, saved_jvm_path);
2365     return;
2366   }
2367 
2368   char dli_fname[MAXPATHLEN];
2369   bool ret = dll_address_to_library_name(
2370                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2371                                          dli_fname, sizeof(dli_fname), NULL);
2372   assert(ret, "cannot locate libjvm");
2373   char *rp = NULL;
2374   if (ret && dli_fname[0] != '\0') {
2375     rp = os::Posix::realpath(dli_fname, buf, buflen);
2376   }
2377   if (rp == NULL) {
2378     return;
2379   }
2380 
2381   if (Arguments::sun_java_launcher_is_altjvm()) {
2382     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2383     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2384     // If "/jre/lib/" appears at the right place in the string, then
2385     // assume we are installed in a JDK and we're done. Otherwise, check
2386     // for a JAVA_HOME environment variable and fix up the path so it
2387     // looks like libjvm.so is installed there (append a fake suffix
2388     // hotspot/libjvm.so).
2389     const char *p = buf + strlen(buf) - 1;
2390     for (int count = 0; p > buf && count < 5; ++count) {
2391       for (--p; p > buf && *p != '/'; --p)
2392         /* empty */ ;
2393     }
2394 
2395     if (strncmp(p, "/jre/lib/", 9) != 0) {
2396       // Look for JAVA_HOME in the environment.
2397       char* java_home_var = ::getenv("JAVA_HOME");
2398       if (java_home_var != NULL && java_home_var[0] != 0) {
2399         char* jrelib_p;
2400         int len;
2401 
2402         // Check the current module name "libjvm.so".
2403         p = strrchr(buf, '/');
2404         if (p == NULL) {
2405           return;
2406         }
2407         assert(strstr(p, "/libjvm") == p, "invalid library name");
2408 
2409         rp = os::Posix::realpath(java_home_var, buf, buflen);
2410         if (rp == NULL) {
2411           return;
2412         }
2413 
2414         // determine if this is a legacy image or modules image
2415         // modules image doesn't have "jre" subdirectory
2416         len = strlen(buf);
2417         assert(len < buflen, "Ran out of buffer room");
2418         jrelib_p = buf + len;
2419         snprintf(jrelib_p, buflen-len, "/jre/lib");
2420         if (0 != access(buf, F_OK)) {
2421           snprintf(jrelib_p, buflen-len, "/lib");
2422         }
2423 
2424         if (0 == access(buf, F_OK)) {
2425           // Use current module name "libjvm.so"
2426           len = strlen(buf);
2427           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2428         } else {
2429           // Go back to path of .so
2430           rp = os::Posix::realpath(dli_fname, buf, buflen);
2431           if (rp == NULL) {
2432             return;
2433           }
2434         }
2435       }
2436     }
2437   }
2438 
2439   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2440   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2441 }
2442 
2443 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2444   // no prefix required, not even "_"
2445 }
2446 
2447 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2448   // no suffix required
2449 }
2450 
2451 ////////////////////////////////////////////////////////////////////////////////
2452 // sun.misc.Signal support
2453 
2454 static volatile jint sigint_count = 0;
2455 
2456 static void UserHandler(int sig, void *siginfo, void *context) {
2457   // 4511530 - sem_post is serialized and handled by the manager thread. When
2458   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2459   // don't want to flood the manager thread with sem_post requests.
2460   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2461     return;
2462   }
2463 
2464   // Ctrl-C is pressed during error reporting, likely because the error
2465   // handler fails to abort. Let VM die immediately.
2466   if (sig == SIGINT && VMError::is_error_reported()) {
2467     os::die();
2468   }
2469 
2470   os::signal_notify(sig);
2471 }
2472 
2473 void* os::user_handler() {
2474   return CAST_FROM_FN_PTR(void*, UserHandler);
2475 }
2476 
2477 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2478   struct timespec ts;
2479   // Semaphore's are always associated with CLOCK_REALTIME
2480   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2481   // see os_posix.cpp for discussion on overflow checking
2482   if (sec >= MAX_SECS) {
2483     ts.tv_sec += MAX_SECS;
2484     ts.tv_nsec = 0;
2485   } else {
2486     ts.tv_sec += sec;
2487     ts.tv_nsec += nsec;
2488     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2489       ts.tv_nsec -= NANOSECS_PER_SEC;
2490       ++ts.tv_sec; // note: this must be <= max_secs
2491     }
2492   }
2493 
2494   return ts;
2495 }
2496 
2497 extern "C" {
2498   typedef void (*sa_handler_t)(int);
2499   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2500 }
2501 
2502 void* os::signal(int signal_number, void* handler) {
2503   struct sigaction sigAct, oldSigAct;
2504 
2505   sigfillset(&(sigAct.sa_mask));
2506   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2507   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2508 
2509   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2510     // -1 means registration failed
2511     return (void *)-1;
2512   }
2513 
2514   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2515 }
2516 
2517 void os::signal_raise(int signal_number) {
2518   ::raise(signal_number);
2519 }
2520 
2521 // The following code is moved from os.cpp for making this
2522 // code platform specific, which it is by its very nature.
2523 
2524 // Will be modified when max signal is changed to be dynamic
2525 int os::sigexitnum_pd() {
2526   return NSIG;
2527 }
2528 
2529 // a counter for each possible signal value
2530 static volatile jint pending_signals[NSIG+1] = { 0 };
2531 
2532 // Linux(POSIX) specific hand shaking semaphore.
2533 static Semaphore* sig_sem = NULL;
2534 static PosixSemaphore sr_semaphore;
2535 
2536 void os::signal_init_pd() {
2537   // Initialize signal structures
2538   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2539 
2540   // Initialize signal semaphore
2541   sig_sem = new Semaphore();
2542 }
2543 
2544 void os::signal_notify(int sig) {
2545   if (sig_sem != NULL) {
2546     Atomic::inc(&pending_signals[sig]);
2547     sig_sem->signal();
2548   } else {
2549     // Signal thread is not created with ReduceSignalUsage and signal_init_pd
2550     // initialization isn't called.
2551     assert(ReduceSignalUsage, "signal semaphore should be created");
2552   }
2553 }
2554 
2555 static int check_pending_signals() {
2556   Atomic::store(0, &sigint_count);
2557   for (;;) {
2558     for (int i = 0; i < NSIG + 1; i++) {
2559       jint n = pending_signals[i];
2560       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2561         return i;
2562       }
2563     }
2564     JavaThread *thread = JavaThread::current();
2565     ThreadBlockInVM tbivm(thread);
2566 
2567     bool threadIsSuspended;
2568     do {
2569       thread->set_suspend_equivalent();
2570       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2571       sig_sem->wait();
2572 
2573       // were we externally suspended while we were waiting?
2574       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2575       if (threadIsSuspended) {
2576         // The semaphore has been incremented, but while we were waiting
2577         // another thread suspended us. We don't want to continue running
2578         // while suspended because that would surprise the thread that
2579         // suspended us.
2580         sig_sem->signal();
2581 
2582         thread->java_suspend_self();
2583       }
2584     } while (threadIsSuspended);
2585   }
2586 }
2587 
2588 int os::signal_wait() {
2589   return check_pending_signals();
2590 }
2591 
2592 ////////////////////////////////////////////////////////////////////////////////
2593 // Virtual Memory
2594 
2595 int os::vm_page_size() {
2596   // Seems redundant as all get out
2597   assert(os::Linux::page_size() != -1, "must call os::init");
2598   return os::Linux::page_size();
2599 }
2600 
2601 // Solaris allocates memory by pages.
2602 int os::vm_allocation_granularity() {
2603   assert(os::Linux::page_size() != -1, "must call os::init");
2604   return os::Linux::page_size();
2605 }
2606 
2607 // Rationale behind this function:
2608 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2609 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2610 //  samples for JITted code. Here we create private executable mapping over the code cache
2611 //  and then we can use standard (well, almost, as mapping can change) way to provide
2612 //  info for the reporting script by storing timestamp and location of symbol
2613 void linux_wrap_code(char* base, size_t size) {
2614   static volatile jint cnt = 0;
2615 
2616   if (!UseOprofile) {
2617     return;
2618   }
2619 
2620   char buf[PATH_MAX+1];
2621   int num = Atomic::add(1, &cnt);
2622 
2623   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2624            os::get_temp_directory(), os::current_process_id(), num);
2625   unlink(buf);
2626 
2627   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2628 
2629   if (fd != -1) {
2630     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2631     if (rv != (off_t)-1) {
2632       if (::write(fd, "", 1) == 1) {
2633         mmap(base, size,
2634              PROT_READ|PROT_WRITE|PROT_EXEC,
2635              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2636       }
2637     }
2638     ::close(fd);
2639     unlink(buf);
2640   }
2641 }
2642 
2643 static bool recoverable_mmap_error(int err) {
2644   // See if the error is one we can let the caller handle. This
2645   // list of errno values comes from JBS-6843484. I can't find a
2646   // Linux man page that documents this specific set of errno
2647   // values so while this list currently matches Solaris, it may
2648   // change as we gain experience with this failure mode.
2649   switch (err) {
2650   case EBADF:
2651   case EINVAL:
2652   case ENOTSUP:
2653     // let the caller deal with these errors
2654     return true;
2655 
2656   default:
2657     // Any remaining errors on this OS can cause our reserved mapping
2658     // to be lost. That can cause confusion where different data
2659     // structures think they have the same memory mapped. The worst
2660     // scenario is if both the VM and a library think they have the
2661     // same memory mapped.
2662     return false;
2663   }
2664 }
2665 
2666 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2667                                     int err) {
2668   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2669           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2670           os::strerror(err), err);
2671 }
2672 
2673 static void warn_fail_commit_memory(char* addr, size_t size,
2674                                     size_t alignment_hint, bool exec,
2675                                     int err) {
2676   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2677           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2678           alignment_hint, exec, os::strerror(err), err);
2679 }
2680 
2681 // NOTE: Linux kernel does not really reserve the pages for us.
2682 //       All it does is to check if there are enough free pages
2683 //       left at the time of mmap(). This could be a potential
2684 //       problem.
2685 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2686   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2687   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2688                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2689   if (res != (uintptr_t) MAP_FAILED) {
2690     if (UseNUMAInterleaving) {
2691       numa_make_global(addr, size);
2692     }
2693     return 0;
2694   }
2695 
2696   int err = errno;  // save errno from mmap() call above
2697 
2698   if (!recoverable_mmap_error(err)) {
2699     warn_fail_commit_memory(addr, size, exec, err);
2700     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2701   }
2702 
2703   return err;
2704 }
2705 
2706 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2707   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2708 }
2709 
2710 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2711                                   const char* mesg) {
2712   assert(mesg != NULL, "mesg must be specified");
2713   int err = os::Linux::commit_memory_impl(addr, size, exec);
2714   if (err != 0) {
2715     // the caller wants all commit errors to exit with the specified mesg:
2716     warn_fail_commit_memory(addr, size, exec, err);
2717     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2718   }
2719 }
2720 
2721 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2722 #ifndef MAP_HUGETLB
2723   #define MAP_HUGETLB 0x40000
2724 #endif
2725 
2726 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2727 #ifndef MADV_HUGEPAGE
2728   #define MADV_HUGEPAGE 14
2729 #endif
2730 
2731 int os::Linux::commit_memory_impl(char* addr, size_t size,
2732                                   size_t alignment_hint, bool exec) {
2733   int err = os::Linux::commit_memory_impl(addr, size, exec);
2734   if (err == 0) {
2735     realign_memory(addr, size, alignment_hint);
2736   }
2737   return err;
2738 }
2739 
2740 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2741                           bool exec) {
2742   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2743 }
2744 
2745 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2746                                   size_t alignment_hint, bool exec,
2747                                   const char* mesg) {
2748   assert(mesg != NULL, "mesg must be specified");
2749   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2750   if (err != 0) {
2751     // the caller wants all commit errors to exit with the specified mesg:
2752     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2753     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2754   }
2755 }
2756 
2757 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2758   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2759     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2760     // be supported or the memory may already be backed by huge pages.
2761     ::madvise(addr, bytes, MADV_HUGEPAGE);
2762   }
2763 }
2764 
2765 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2766   // This method works by doing an mmap over an existing mmaping and effectively discarding
2767   // the existing pages. However it won't work for SHM-based large pages that cannot be
2768   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2769   // small pages on top of the SHM segment. This method always works for small pages, so we
2770   // allow that in any case.
2771   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2772     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2773   }
2774 }
2775 
2776 void os::numa_make_global(char *addr, size_t bytes) {
2777   Linux::numa_interleave_memory(addr, bytes);
2778 }
2779 
2780 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2781 // bind policy to MPOL_PREFERRED for the current thread.
2782 #define USE_MPOL_PREFERRED 0
2783 
2784 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2785   // To make NUMA and large pages more robust when both enabled, we need to ease
2786   // the requirements on where the memory should be allocated. MPOL_BIND is the
2787   // default policy and it will force memory to be allocated on the specified
2788   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2789   // the specified node, but will not force it. Using this policy will prevent
2790   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2791   // free large pages.
2792   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2793   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2794 }
2795 
2796 bool os::numa_topology_changed() { return false; }
2797 
2798 size_t os::numa_get_groups_num() {
2799   // Return just the number of nodes in which it's possible to allocate memory
2800   // (in numa terminology, configured nodes).
2801   return Linux::numa_num_configured_nodes();
2802 }
2803 
2804 int os::numa_get_group_id() {
2805   int cpu_id = Linux::sched_getcpu();
2806   if (cpu_id != -1) {
2807     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2808     if (lgrp_id != -1) {
2809       return lgrp_id;
2810     }
2811   }
2812   return 0;
2813 }
2814 
2815 int os::Linux::get_existing_num_nodes() {
2816   size_t node;
2817   size_t highest_node_number = Linux::numa_max_node();
2818   int num_nodes = 0;
2819 
2820   // Get the total number of nodes in the system including nodes without memory.
2821   for (node = 0; node <= highest_node_number; node++) {
2822     if (isnode_in_existing_nodes(node)) {
2823       num_nodes++;
2824     }
2825   }
2826   return num_nodes;
2827 }
2828 
2829 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2830   size_t highest_node_number = Linux::numa_max_node();
2831   size_t i = 0;
2832 
2833   // Map all node ids in which is possible to allocate memory. Also nodes are
2834   // not always consecutively available, i.e. available from 0 to the highest
2835   // node number.
2836   for (size_t node = 0; node <= highest_node_number; node++) {
2837     if (Linux::isnode_in_configured_nodes(node)) {
2838       ids[i++] = node;
2839     }
2840   }
2841   return i;
2842 }
2843 
2844 bool os::get_page_info(char *start, page_info* info) {
2845   return false;
2846 }
2847 
2848 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2849                      page_info* page_found) {
2850   return end;
2851 }
2852 
2853 
2854 int os::Linux::sched_getcpu_syscall(void) {
2855   unsigned int cpu = 0;
2856   int retval = -1;
2857 
2858 #if defined(IA32)
2859   #ifndef SYS_getcpu
2860     #define SYS_getcpu 318
2861   #endif
2862   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2863 #elif defined(AMD64)
2864 // Unfortunately we have to bring all these macros here from vsyscall.h
2865 // to be able to compile on old linuxes.
2866   #define __NR_vgetcpu 2
2867   #define VSYSCALL_START (-10UL << 20)
2868   #define VSYSCALL_SIZE 1024
2869   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2870   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2871   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2872   retval = vgetcpu(&cpu, NULL, NULL);
2873 #endif
2874 
2875   return (retval == -1) ? retval : cpu;
2876 }
2877 
2878 void os::Linux::sched_getcpu_init() {
2879   // sched_getcpu() should be in libc.
2880   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2881                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2882 
2883   // If it's not, try a direct syscall.
2884   if (sched_getcpu() == -1) {
2885     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2886                                     (void*)&sched_getcpu_syscall));
2887   }
2888 }
2889 
2890 // Something to do with the numa-aware allocator needs these symbols
2891 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2892 extern "C" JNIEXPORT void numa_error(char *where) { }
2893 
2894 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2895 // load symbol from base version instead.
2896 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2897   void *f = dlvsym(handle, name, "libnuma_1.1");
2898   if (f == NULL) {
2899     f = dlsym(handle, name);
2900   }
2901   return f;
2902 }
2903 
2904 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2905 // Return NULL if the symbol is not defined in this particular version.
2906 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2907   return dlvsym(handle, name, "libnuma_1.2");
2908 }
2909 
2910 bool os::Linux::libnuma_init() {
2911   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2912     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2913     if (handle != NULL) {
2914       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2915                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2916       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2917                                        libnuma_dlsym(handle, "numa_max_node")));
2918       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2919                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2920       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2921                                         libnuma_dlsym(handle, "numa_available")));
2922       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2923                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2924       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2925                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2926       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2927                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2928       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2929                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2930       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2931                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2932       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2933                                        libnuma_dlsym(handle, "numa_distance")));
2934 
2935       if (numa_available() != -1) {
2936         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2937         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2938         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2939         // Create an index -> node mapping, since nodes are not always consecutive
2940         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2941         rebuild_nindex_to_node_map();
2942         // Create a cpu -> node mapping
2943         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2944         rebuild_cpu_to_node_map();
2945         return true;
2946       }
2947     }
2948   }
2949   return false;
2950 }
2951 
2952 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2953   // Creating guard page is very expensive. Java thread has HotSpot
2954   // guard pages, only enable glibc guard page for non-Java threads.
2955   // (Remember: compiler thread is a Java thread, too!)
2956   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2957 }
2958 
2959 void os::Linux::rebuild_nindex_to_node_map() {
2960   int highest_node_number = Linux::numa_max_node();
2961 
2962   nindex_to_node()->clear();
2963   for (int node = 0; node <= highest_node_number; node++) {
2964     if (Linux::isnode_in_existing_nodes(node)) {
2965       nindex_to_node()->append(node);
2966     }
2967   }
2968 }
2969 
2970 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2971 // The table is later used in get_node_by_cpu().
2972 void os::Linux::rebuild_cpu_to_node_map() {
2973   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2974                               // in libnuma (possible values are starting from 16,
2975                               // and continuing up with every other power of 2, but less
2976                               // than the maximum number of CPUs supported by kernel), and
2977                               // is a subject to change (in libnuma version 2 the requirements
2978                               // are more reasonable) we'll just hardcode the number they use
2979                               // in the library.
2980   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2981 
2982   size_t cpu_num = processor_count();
2983   size_t cpu_map_size = NCPUS / BitsPerCLong;
2984   size_t cpu_map_valid_size =
2985     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2986 
2987   cpu_to_node()->clear();
2988   cpu_to_node()->at_grow(cpu_num - 1);
2989 
2990   size_t node_num = get_existing_num_nodes();
2991 
2992   int distance = 0;
2993   int closest_distance = INT_MAX;
2994   int closest_node = 0;
2995   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2996   for (size_t i = 0; i < node_num; i++) {
2997     // Check if node is configured (not a memory-less node). If it is not, find
2998     // the closest configured node.
2999     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
3000       closest_distance = INT_MAX;
3001       // Check distance from all remaining nodes in the system. Ignore distance
3002       // from itself and from another non-configured node.
3003       for (size_t m = 0; m < node_num; m++) {
3004         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
3005           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3006           // If a closest node is found, update. There is always at least one
3007           // configured node in the system so there is always at least one node
3008           // close.
3009           if (distance != 0 && distance < closest_distance) {
3010             closest_distance = distance;
3011             closest_node = nindex_to_node()->at(m);
3012           }
3013         }
3014       }
3015      } else {
3016        // Current node is already a configured node.
3017        closest_node = nindex_to_node()->at(i);
3018      }
3019 
3020     // Get cpus from the original node and map them to the closest node. If node
3021     // is a configured node (not a memory-less node), then original node and
3022     // closest node are the same.
3023     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3024       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3025         if (cpu_map[j] != 0) {
3026           for (size_t k = 0; k < BitsPerCLong; k++) {
3027             if (cpu_map[j] & (1UL << k)) {
3028               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3029             }
3030           }
3031         }
3032       }
3033     }
3034   }
3035   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3036 }
3037 
3038 int os::Linux::get_node_by_cpu(int cpu_id) {
3039   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3040     return cpu_to_node()->at(cpu_id);
3041   }
3042   return -1;
3043 }
3044 
3045 GrowableArray<int>* os::Linux::_cpu_to_node;
3046 GrowableArray<int>* os::Linux::_nindex_to_node;
3047 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3048 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3049 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3050 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3051 os::Linux::numa_available_func_t os::Linux::_numa_available;
3052 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3053 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3054 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3055 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3056 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3057 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3058 unsigned long* os::Linux::_numa_all_nodes;
3059 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3060 struct bitmask* os::Linux::_numa_nodes_ptr;
3061 
3062 bool os::pd_uncommit_memory(char* addr, size_t size) {
3063   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3064                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3065   return res  != (uintptr_t) MAP_FAILED;
3066 }
3067 
3068 static address get_stack_commited_bottom(address bottom, size_t size) {
3069   address nbot = bottom;
3070   address ntop = bottom + size;
3071 
3072   size_t page_sz = os::vm_page_size();
3073   unsigned pages = size / page_sz;
3074 
3075   unsigned char vec[1];
3076   unsigned imin = 1, imax = pages + 1, imid;
3077   int mincore_return_value = 0;
3078 
3079   assert(imin <= imax, "Unexpected page size");
3080 
3081   while (imin < imax) {
3082     imid = (imax + imin) / 2;
3083     nbot = ntop - (imid * page_sz);
3084 
3085     // Use a trick with mincore to check whether the page is mapped or not.
3086     // mincore sets vec to 1 if page resides in memory and to 0 if page
3087     // is swapped output but if page we are asking for is unmapped
3088     // it returns -1,ENOMEM
3089     mincore_return_value = mincore(nbot, page_sz, vec);
3090 
3091     if (mincore_return_value == -1) {
3092       // Page is not mapped go up
3093       // to find first mapped page
3094       if (errno != EAGAIN) {
3095         assert(errno == ENOMEM, "Unexpected mincore errno");
3096         imax = imid;
3097       }
3098     } else {
3099       // Page is mapped go down
3100       // to find first not mapped page
3101       imin = imid + 1;
3102     }
3103   }
3104 
3105   nbot = nbot + page_sz;
3106 
3107   // Adjust stack bottom one page up if last checked page is not mapped
3108   if (mincore_return_value == -1) {
3109     nbot = nbot + page_sz;
3110   }
3111 
3112   return nbot;
3113 }
3114 
3115 
3116 // Linux uses a growable mapping for the stack, and if the mapping for
3117 // the stack guard pages is not removed when we detach a thread the
3118 // stack cannot grow beyond the pages where the stack guard was
3119 // mapped.  If at some point later in the process the stack expands to
3120 // that point, the Linux kernel cannot expand the stack any further
3121 // because the guard pages are in the way, and a segfault occurs.
3122 //
3123 // However, it's essential not to split the stack region by unmapping
3124 // a region (leaving a hole) that's already part of the stack mapping,
3125 // so if the stack mapping has already grown beyond the guard pages at
3126 // the time we create them, we have to truncate the stack mapping.
3127 // So, we need to know the extent of the stack mapping when
3128 // create_stack_guard_pages() is called.
3129 
3130 // We only need this for stacks that are growable: at the time of
3131 // writing thread stacks don't use growable mappings (i.e. those
3132 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3133 // only applies to the main thread.
3134 
3135 // If the (growable) stack mapping already extends beyond the point
3136 // where we're going to put our guard pages, truncate the mapping at
3137 // that point by munmap()ping it.  This ensures that when we later
3138 // munmap() the guard pages we don't leave a hole in the stack
3139 // mapping. This only affects the main/primordial thread
3140 
3141 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3142   if (os::is_primordial_thread()) {
3143     // As we manually grow stack up to bottom inside create_attached_thread(),
3144     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3145     // we don't need to do anything special.
3146     // Check it first, before calling heavy function.
3147     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3148     unsigned char vec[1];
3149 
3150     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3151       // Fallback to slow path on all errors, including EAGAIN
3152       stack_extent = (uintptr_t) get_stack_commited_bottom(
3153                                                            os::Linux::initial_thread_stack_bottom(),
3154                                                            (size_t)addr - stack_extent);
3155     }
3156 
3157     if (stack_extent < (uintptr_t)addr) {
3158       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3159     }
3160   }
3161 
3162   return os::commit_memory(addr, size, !ExecMem);
3163 }
3164 
3165 // If this is a growable mapping, remove the guard pages entirely by
3166 // munmap()ping them.  If not, just call uncommit_memory(). This only
3167 // affects the main/primordial thread, but guard against future OS changes.
3168 // It's safe to always unmap guard pages for primordial thread because we
3169 // always place it right after end of the mapped region.
3170 
3171 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3172   uintptr_t stack_extent, stack_base;
3173 
3174   if (os::is_primordial_thread()) {
3175     return ::munmap(addr, size) == 0;
3176   }
3177 
3178   return os::uncommit_memory(addr, size);
3179 }
3180 
3181 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3182 // at 'requested_addr'. If there are existing memory mappings at the same
3183 // location, however, they will be overwritten. If 'fixed' is false,
3184 // 'requested_addr' is only treated as a hint, the return value may or
3185 // may not start from the requested address. Unlike Linux mmap(), this
3186 // function returns NULL to indicate failure.
3187 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3188   char * addr;
3189   int flags;
3190 
3191   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3192   if (fixed) {
3193     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3194     flags |= MAP_FIXED;
3195   }
3196 
3197   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3198   // touch an uncommitted page. Otherwise, the read/write might
3199   // succeed if we have enough swap space to back the physical page.
3200   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3201                        flags, -1, 0);
3202 
3203   return addr == MAP_FAILED ? NULL : addr;
3204 }
3205 
3206 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3207 //   (req_addr != NULL) or with a given alignment.
3208 //  - bytes shall be a multiple of alignment.
3209 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3210 //  - alignment sets the alignment at which memory shall be allocated.
3211 //     It must be a multiple of allocation granularity.
3212 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3213 //  req_addr or NULL.
3214 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3215 
3216   size_t extra_size = bytes;
3217   if (req_addr == NULL && alignment > 0) {
3218     extra_size += alignment;
3219   }
3220 
3221   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3222     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3223     -1, 0);
3224   if (start == MAP_FAILED) {
3225     start = NULL;
3226   } else {
3227     if (req_addr != NULL) {
3228       if (start != req_addr) {
3229         ::munmap(start, extra_size);
3230         start = NULL;
3231       }
3232     } else {
3233       char* const start_aligned = align_up(start, alignment);
3234       char* const end_aligned = start_aligned + bytes;
3235       char* const end = start + extra_size;
3236       if (start_aligned > start) {
3237         ::munmap(start, start_aligned - start);
3238       }
3239       if (end_aligned < end) {
3240         ::munmap(end_aligned, end - end_aligned);
3241       }
3242       start = start_aligned;
3243     }
3244   }
3245   return start;
3246 }
3247 
3248 static int anon_munmap(char * addr, size_t size) {
3249   return ::munmap(addr, size) == 0;
3250 }
3251 
3252 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3253                             size_t alignment_hint) {
3254   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3255 }
3256 
3257 bool os::pd_release_memory(char* addr, size_t size) {
3258   return anon_munmap(addr, size);
3259 }
3260 
3261 static bool linux_mprotect(char* addr, size_t size, int prot) {
3262   // Linux wants the mprotect address argument to be page aligned.
3263   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3264 
3265   // According to SUSv3, mprotect() should only be used with mappings
3266   // established by mmap(), and mmap() always maps whole pages. Unaligned
3267   // 'addr' likely indicates problem in the VM (e.g. trying to change
3268   // protection of malloc'ed or statically allocated memory). Check the
3269   // caller if you hit this assert.
3270   assert(addr == bottom, "sanity check");
3271 
3272   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3273   return ::mprotect(bottom, size, prot) == 0;
3274 }
3275 
3276 // Set protections specified
3277 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3278                         bool is_committed) {
3279   unsigned int p = 0;
3280   switch (prot) {
3281   case MEM_PROT_NONE: p = PROT_NONE; break;
3282   case MEM_PROT_READ: p = PROT_READ; break;
3283   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3284   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3285   default:
3286     ShouldNotReachHere();
3287   }
3288   // is_committed is unused.
3289   return linux_mprotect(addr, bytes, p);
3290 }
3291 
3292 bool os::guard_memory(char* addr, size_t size) {
3293   return linux_mprotect(addr, size, PROT_NONE);
3294 }
3295 
3296 bool os::unguard_memory(char* addr, size_t size) {
3297   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3298 }
3299 
3300 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3301                                                     size_t page_size) {
3302   bool result = false;
3303   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3304                  MAP_ANONYMOUS|MAP_PRIVATE,
3305                  -1, 0);
3306   if (p != MAP_FAILED) {
3307     void *aligned_p = align_up(p, page_size);
3308 
3309     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3310 
3311     munmap(p, page_size * 2);
3312   }
3313 
3314   if (warn && !result) {
3315     warning("TransparentHugePages is not supported by the operating system.");
3316   }
3317 
3318   return result;
3319 }
3320 
3321 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3322   bool result = false;
3323   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3324                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3325                  -1, 0);
3326 
3327   if (p != MAP_FAILED) {
3328     // We don't know if this really is a huge page or not.
3329     FILE *fp = fopen("/proc/self/maps", "r");
3330     if (fp) {
3331       while (!feof(fp)) {
3332         char chars[257];
3333         long x = 0;
3334         if (fgets(chars, sizeof(chars), fp)) {
3335           if (sscanf(chars, "%lx-%*x", &x) == 1
3336               && x == (long)p) {
3337             if (strstr (chars, "hugepage")) {
3338               result = true;
3339               break;
3340             }
3341           }
3342         }
3343       }
3344       fclose(fp);
3345     }
3346     munmap(p, page_size);
3347   }
3348 
3349   if (warn && !result) {
3350     warning("HugeTLBFS is not supported by the operating system.");
3351   }
3352 
3353   return result;
3354 }
3355 
3356 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3357 //
3358 // From the coredump_filter documentation:
3359 //
3360 // - (bit 0) anonymous private memory
3361 // - (bit 1) anonymous shared memory
3362 // - (bit 2) file-backed private memory
3363 // - (bit 3) file-backed shared memory
3364 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3365 //           effective only if the bit 2 is cleared)
3366 // - (bit 5) hugetlb private memory
3367 // - (bit 6) hugetlb shared memory
3368 // - (bit 7) dax private memory
3369 // - (bit 8) dax shared memory
3370 //
3371 static void set_coredump_filter(bool largepages, bool dax_shared) {
3372   FILE *f;
3373   long cdm;
3374   bool filter_changed = false;
3375 
3376   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3377     return;
3378   }
3379 
3380   if (fscanf(f, "%lx", &cdm) != 1) {
3381     fclose(f);
3382     return;
3383   }
3384 
3385   rewind(f);
3386 
3387   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3388     cdm |= LARGEPAGES_BIT;
3389     filter_changed = true;
3390   }
3391   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3392     cdm |= DAX_SHARED_BIT;
3393     filter_changed = true;
3394   }
3395   if (filter_changed) {
3396     fprintf(f, "%#lx", cdm);
3397   }
3398 
3399   fclose(f);
3400 }
3401 
3402 // Large page support
3403 
3404 static size_t _large_page_size = 0;
3405 
3406 size_t os::Linux::find_large_page_size() {
3407   size_t large_page_size = 0;
3408 
3409   // large_page_size on Linux is used to round up heap size. x86 uses either
3410   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3411   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3412   // page as large as 256M.
3413   //
3414   // Here we try to figure out page size by parsing /proc/meminfo and looking
3415   // for a line with the following format:
3416   //    Hugepagesize:     2048 kB
3417   //
3418   // If we can't determine the value (e.g. /proc is not mounted, or the text
3419   // format has been changed), we'll use the largest page size supported by
3420   // the processor.
3421 
3422 #ifndef ZERO
3423   large_page_size =
3424     AARCH64_ONLY(2 * M)
3425     AMD64_ONLY(2 * M)
3426     ARM32_ONLY(2 * M)
3427     IA32_ONLY(4 * M)
3428     IA64_ONLY(256 * M)
3429     PPC_ONLY(4 * M)
3430     S390_ONLY(1 * M)
3431     SPARC_ONLY(4 * M);
3432 #endif // ZERO
3433 
3434   FILE *fp = fopen("/proc/meminfo", "r");
3435   if (fp) {
3436     while (!feof(fp)) {
3437       int x = 0;
3438       char buf[16];
3439       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3440         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3441           large_page_size = x * K;
3442           break;
3443         }
3444       } else {
3445         // skip to next line
3446         for (;;) {
3447           int ch = fgetc(fp);
3448           if (ch == EOF || ch == (int)'\n') break;
3449         }
3450       }
3451     }
3452     fclose(fp);
3453   }
3454 
3455   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3456     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3457             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3458             proper_unit_for_byte_size(large_page_size));
3459   }
3460 
3461   return large_page_size;
3462 }
3463 
3464 size_t os::Linux::setup_large_page_size() {
3465   _large_page_size = Linux::find_large_page_size();
3466   const size_t default_page_size = (size_t)Linux::page_size();
3467   if (_large_page_size > default_page_size) {
3468     _page_sizes[0] = _large_page_size;
3469     _page_sizes[1] = default_page_size;
3470     _page_sizes[2] = 0;
3471   }
3472 
3473   return _large_page_size;
3474 }
3475 
3476 bool os::Linux::setup_large_page_type(size_t page_size) {
3477   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3478       FLAG_IS_DEFAULT(UseSHM) &&
3479       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3480 
3481     // The type of large pages has not been specified by the user.
3482 
3483     // Try UseHugeTLBFS and then UseSHM.
3484     UseHugeTLBFS = UseSHM = true;
3485 
3486     // Don't try UseTransparentHugePages since there are known
3487     // performance issues with it turned on. This might change in the future.
3488     UseTransparentHugePages = false;
3489   }
3490 
3491   if (UseTransparentHugePages) {
3492     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3493     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3494       UseHugeTLBFS = false;
3495       UseSHM = false;
3496       return true;
3497     }
3498     UseTransparentHugePages = false;
3499   }
3500 
3501   if (UseHugeTLBFS) {
3502     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3503     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3504       UseSHM = false;
3505       return true;
3506     }
3507     UseHugeTLBFS = false;
3508   }
3509 
3510   return UseSHM;
3511 }
3512 
3513 void os::large_page_init() {
3514   if (!UseLargePages &&
3515       !UseTransparentHugePages &&
3516       !UseHugeTLBFS &&
3517       !UseSHM) {
3518     // Not using large pages.
3519     return;
3520   }
3521 
3522   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3523     // The user explicitly turned off large pages.
3524     // Ignore the rest of the large pages flags.
3525     UseTransparentHugePages = false;
3526     UseHugeTLBFS = false;
3527     UseSHM = false;
3528     return;
3529   }
3530 
3531   size_t large_page_size = Linux::setup_large_page_size();
3532   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3533 
3534   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3535 }
3536 
3537 #ifndef SHM_HUGETLB
3538   #define SHM_HUGETLB 04000
3539 #endif
3540 
3541 #define shm_warning_format(format, ...)              \
3542   do {                                               \
3543     if (UseLargePages &&                             \
3544         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3545          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3546          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3547       warning(format, __VA_ARGS__);                  \
3548     }                                                \
3549   } while (0)
3550 
3551 #define shm_warning(str) shm_warning_format("%s", str)
3552 
3553 #define shm_warning_with_errno(str)                \
3554   do {                                             \
3555     int err = errno;                               \
3556     shm_warning_format(str " (error = %d)", err);  \
3557   } while (0)
3558 
3559 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3560   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3561 
3562   if (!is_aligned(alignment, SHMLBA)) {
3563     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3564     return NULL;
3565   }
3566 
3567   // To ensure that we get 'alignment' aligned memory from shmat,
3568   // we pre-reserve aligned virtual memory and then attach to that.
3569 
3570   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3571   if (pre_reserved_addr == NULL) {
3572     // Couldn't pre-reserve aligned memory.
3573     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3574     return NULL;
3575   }
3576 
3577   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3578   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3579 
3580   if ((intptr_t)addr == -1) {
3581     int err = errno;
3582     shm_warning_with_errno("Failed to attach shared memory.");
3583 
3584     assert(err != EACCES, "Unexpected error");
3585     assert(err != EIDRM,  "Unexpected error");
3586     assert(err != EINVAL, "Unexpected error");
3587 
3588     // Since we don't know if the kernel unmapped the pre-reserved memory area
3589     // we can't unmap it, since that would potentially unmap memory that was
3590     // mapped from other threads.
3591     return NULL;
3592   }
3593 
3594   return addr;
3595 }
3596 
3597 static char* shmat_at_address(int shmid, char* req_addr) {
3598   if (!is_aligned(req_addr, SHMLBA)) {
3599     assert(false, "Requested address needs to be SHMLBA aligned");
3600     return NULL;
3601   }
3602 
3603   char* addr = (char*)shmat(shmid, req_addr, 0);
3604 
3605   if ((intptr_t)addr == -1) {
3606     shm_warning_with_errno("Failed to attach shared memory.");
3607     return NULL;
3608   }
3609 
3610   return addr;
3611 }
3612 
3613 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3614   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3615   if (req_addr != NULL) {
3616     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3617     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3618     return shmat_at_address(shmid, req_addr);
3619   }
3620 
3621   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3622   // return large page size aligned memory addresses when req_addr == NULL.
3623   // However, if the alignment is larger than the large page size, we have
3624   // to manually ensure that the memory returned is 'alignment' aligned.
3625   if (alignment > os::large_page_size()) {
3626     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3627     return shmat_with_alignment(shmid, bytes, alignment);
3628   } else {
3629     return shmat_at_address(shmid, NULL);
3630   }
3631 }
3632 
3633 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3634                                             char* req_addr, bool exec) {
3635   // "exec" is passed in but not used.  Creating the shared image for
3636   // the code cache doesn't have an SHM_X executable permission to check.
3637   assert(UseLargePages && UseSHM, "only for SHM large pages");
3638   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3639   assert(is_aligned(req_addr, alignment), "Unaligned address");
3640 
3641   if (!is_aligned(bytes, os::large_page_size())) {
3642     return NULL; // Fallback to small pages.
3643   }
3644 
3645   // Create a large shared memory region to attach to based on size.
3646   // Currently, size is the total size of the heap.
3647   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3648   if (shmid == -1) {
3649     // Possible reasons for shmget failure:
3650     // 1. shmmax is too small for Java heap.
3651     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3652     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3653     // 2. not enough large page memory.
3654     //    > check available large pages: cat /proc/meminfo
3655     //    > increase amount of large pages:
3656     //          echo new_value > /proc/sys/vm/nr_hugepages
3657     //      Note 1: different Linux may use different name for this property,
3658     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3659     //      Note 2: it's possible there's enough physical memory available but
3660     //            they are so fragmented after a long run that they can't
3661     //            coalesce into large pages. Try to reserve large pages when
3662     //            the system is still "fresh".
3663     shm_warning_with_errno("Failed to reserve shared memory.");
3664     return NULL;
3665   }
3666 
3667   // Attach to the region.
3668   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3669 
3670   // Remove shmid. If shmat() is successful, the actual shared memory segment
3671   // will be deleted when it's detached by shmdt() or when the process
3672   // terminates. If shmat() is not successful this will remove the shared
3673   // segment immediately.
3674   shmctl(shmid, IPC_RMID, NULL);
3675 
3676   return addr;
3677 }
3678 
3679 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3680                                         int error) {
3681   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3682 
3683   bool warn_on_failure = UseLargePages &&
3684       (!FLAG_IS_DEFAULT(UseLargePages) ||
3685        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3686        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3687 
3688   if (warn_on_failure) {
3689     char msg[128];
3690     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3691                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3692     warning("%s", msg);
3693   }
3694 }
3695 
3696 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3697                                                         char* req_addr,
3698                                                         bool exec) {
3699   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3700   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3701   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3702 
3703   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3704   char* addr = (char*)::mmap(req_addr, bytes, prot,
3705                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3706                              -1, 0);
3707 
3708   if (addr == MAP_FAILED) {
3709     warn_on_large_pages_failure(req_addr, bytes, errno);
3710     return NULL;
3711   }
3712 
3713   assert(is_aligned(addr, os::large_page_size()), "Must be");
3714 
3715   return addr;
3716 }
3717 
3718 // Reserve memory using mmap(MAP_HUGETLB).
3719 //  - bytes shall be a multiple of alignment.
3720 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3721 //  - alignment sets the alignment at which memory shall be allocated.
3722 //     It must be a multiple of allocation granularity.
3723 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3724 //  req_addr or NULL.
3725 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3726                                                          size_t alignment,
3727                                                          char* req_addr,
3728                                                          bool exec) {
3729   size_t large_page_size = os::large_page_size();
3730   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3731 
3732   assert(is_aligned(req_addr, alignment), "Must be");
3733   assert(is_aligned(bytes, alignment), "Must be");
3734 
3735   // First reserve - but not commit - the address range in small pages.
3736   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3737 
3738   if (start == NULL) {
3739     return NULL;
3740   }
3741 
3742   assert(is_aligned(start, alignment), "Must be");
3743 
3744   char* end = start + bytes;
3745 
3746   // Find the regions of the allocated chunk that can be promoted to large pages.
3747   char* lp_start = align_up(start, large_page_size);
3748   char* lp_end   = align_down(end, large_page_size);
3749 
3750   size_t lp_bytes = lp_end - lp_start;
3751 
3752   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3753 
3754   if (lp_bytes == 0) {
3755     // The mapped region doesn't even span the start and the end of a large page.
3756     // Fall back to allocate a non-special area.
3757     ::munmap(start, end - start);
3758     return NULL;
3759   }
3760 
3761   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3762 
3763   void* result;
3764 
3765   // Commit small-paged leading area.
3766   if (start != lp_start) {
3767     result = ::mmap(start, lp_start - start, prot,
3768                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3769                     -1, 0);
3770     if (result == MAP_FAILED) {
3771       ::munmap(lp_start, end - lp_start);
3772       return NULL;
3773     }
3774   }
3775 
3776   // Commit large-paged area.
3777   result = ::mmap(lp_start, lp_bytes, prot,
3778                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3779                   -1, 0);
3780   if (result == MAP_FAILED) {
3781     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3782     // If the mmap above fails, the large pages region will be unmapped and we
3783     // have regions before and after with small pages. Release these regions.
3784     //
3785     // |  mapped  |  unmapped  |  mapped  |
3786     // ^          ^            ^          ^
3787     // start      lp_start     lp_end     end
3788     //
3789     ::munmap(start, lp_start - start);
3790     ::munmap(lp_end, end - lp_end);
3791     return NULL;
3792   }
3793 
3794   // Commit small-paged trailing area.
3795   if (lp_end != end) {
3796     result = ::mmap(lp_end, end - lp_end, prot,
3797                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3798                     -1, 0);
3799     if (result == MAP_FAILED) {
3800       ::munmap(start, lp_end - start);
3801       return NULL;
3802     }
3803   }
3804 
3805   return start;
3806 }
3807 
3808 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3809                                                    size_t alignment,
3810                                                    char* req_addr,
3811                                                    bool exec) {
3812   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3813   assert(is_aligned(req_addr, alignment), "Must be");
3814   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3815   assert(is_power_of_2(os::large_page_size()), "Must be");
3816   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3817 
3818   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3819     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3820   } else {
3821     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3822   }
3823 }
3824 
3825 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3826                                  char* req_addr, bool exec) {
3827   assert(UseLargePages, "only for large pages");
3828 
3829   char* addr;
3830   if (UseSHM) {
3831     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3832   } else {
3833     assert(UseHugeTLBFS, "must be");
3834     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3835   }
3836 
3837   if (addr != NULL) {
3838     if (UseNUMAInterleaving) {
3839       numa_make_global(addr, bytes);
3840     }
3841 
3842     // The memory is committed
3843     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3844   }
3845 
3846   return addr;
3847 }
3848 
3849 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3850   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3851   return shmdt(base) == 0;
3852 }
3853 
3854 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3855   return pd_release_memory(base, bytes);
3856 }
3857 
3858 bool os::release_memory_special(char* base, size_t bytes) {
3859   bool res;
3860   if (MemTracker::tracking_level() > NMT_minimal) {
3861     Tracker tkr(Tracker::release);
3862     res = os::Linux::release_memory_special_impl(base, bytes);
3863     if (res) {
3864       tkr.record((address)base, bytes);
3865     }
3866 
3867   } else {
3868     res = os::Linux::release_memory_special_impl(base, bytes);
3869   }
3870   return res;
3871 }
3872 
3873 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3874   assert(UseLargePages, "only for large pages");
3875   bool res;
3876 
3877   if (UseSHM) {
3878     res = os::Linux::release_memory_special_shm(base, bytes);
3879   } else {
3880     assert(UseHugeTLBFS, "must be");
3881     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3882   }
3883   return res;
3884 }
3885 
3886 size_t os::large_page_size() {
3887   return _large_page_size;
3888 }
3889 
3890 // With SysV SHM the entire memory region must be allocated as shared
3891 // memory.
3892 // HugeTLBFS allows application to commit large page memory on demand.
3893 // However, when committing memory with HugeTLBFS fails, the region
3894 // that was supposed to be committed will lose the old reservation
3895 // and allow other threads to steal that memory region. Because of this
3896 // behavior we can't commit HugeTLBFS memory.
3897 bool os::can_commit_large_page_memory() {
3898   return UseTransparentHugePages;
3899 }
3900 
3901 bool os::can_execute_large_page_memory() {
3902   return UseTransparentHugePages || UseHugeTLBFS;
3903 }
3904 
3905 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3906   assert(file_desc >= 0, "file_desc is not valid");
3907   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3908   if (result != NULL) {
3909     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3910       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3911     }
3912   }
3913   return result;
3914 }
3915 
3916 // Reserve memory at an arbitrary address, only if that area is
3917 // available (and not reserved for something else).
3918 
3919 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3920   const int max_tries = 10;
3921   char* base[max_tries];
3922   size_t size[max_tries];
3923   const size_t gap = 0x000000;
3924 
3925   // Assert only that the size is a multiple of the page size, since
3926   // that's all that mmap requires, and since that's all we really know
3927   // about at this low abstraction level.  If we need higher alignment,
3928   // we can either pass an alignment to this method or verify alignment
3929   // in one of the methods further up the call chain.  See bug 5044738.
3930   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3931 
3932   // Repeatedly allocate blocks until the block is allocated at the
3933   // right spot.
3934 
3935   // Linux mmap allows caller to pass an address as hint; give it a try first,
3936   // if kernel honors the hint then we can return immediately.
3937   char * addr = anon_mmap(requested_addr, bytes, false);
3938   if (addr == requested_addr) {
3939     return requested_addr;
3940   }
3941 
3942   if (addr != NULL) {
3943     // mmap() is successful but it fails to reserve at the requested address
3944     anon_munmap(addr, bytes);
3945   }
3946 
3947   int i;
3948   for (i = 0; i < max_tries; ++i) {
3949     base[i] = reserve_memory(bytes);
3950 
3951     if (base[i] != NULL) {
3952       // Is this the block we wanted?
3953       if (base[i] == requested_addr) {
3954         size[i] = bytes;
3955         break;
3956       }
3957 
3958       // Does this overlap the block we wanted? Give back the overlapped
3959       // parts and try again.
3960 
3961       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3962       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3963         unmap_memory(base[i], top_overlap);
3964         base[i] += top_overlap;
3965         size[i] = bytes - top_overlap;
3966       } else {
3967         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3968         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3969           unmap_memory(requested_addr, bottom_overlap);
3970           size[i] = bytes - bottom_overlap;
3971         } else {
3972           size[i] = bytes;
3973         }
3974       }
3975     }
3976   }
3977 
3978   // Give back the unused reserved pieces.
3979 
3980   for (int j = 0; j < i; ++j) {
3981     if (base[j] != NULL) {
3982       unmap_memory(base[j], size[j]);
3983     }
3984   }
3985 
3986   if (i < max_tries) {
3987     return requested_addr;
3988   } else {
3989     return NULL;
3990   }
3991 }
3992 
3993 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3994   return ::read(fd, buf, nBytes);
3995 }
3996 
3997 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3998   return ::pread(fd, buf, nBytes, offset);
3999 }
4000 
4001 // Short sleep, direct OS call.
4002 //
4003 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4004 // sched_yield(2) will actually give up the CPU:
4005 //
4006 //   * Alone on this pariticular CPU, keeps running.
4007 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4008 //     (pre 2.6.39).
4009 //
4010 // So calling this with 0 is an alternative.
4011 //
4012 void os::naked_short_sleep(jlong ms) {
4013   struct timespec req;
4014 
4015   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4016   req.tv_sec = 0;
4017   if (ms > 0) {
4018     req.tv_nsec = (ms % 1000) * 1000000;
4019   } else {
4020     req.tv_nsec = 1;
4021   }
4022 
4023   nanosleep(&req, NULL);
4024 
4025   return;
4026 }
4027 
4028 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4029 void os::infinite_sleep() {
4030   while (true) {    // sleep forever ...
4031     ::sleep(100);   // ... 100 seconds at a time
4032   }
4033 }
4034 
4035 // Used to convert frequent JVM_Yield() to nops
4036 bool os::dont_yield() {
4037   return DontYieldALot;
4038 }
4039 
4040 void os::naked_yield() {
4041   sched_yield();
4042 }
4043 
4044 ////////////////////////////////////////////////////////////////////////////////
4045 // thread priority support
4046 
4047 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4048 // only supports dynamic priority, static priority must be zero. For real-time
4049 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4050 // However, for large multi-threaded applications, SCHED_RR is not only slower
4051 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4052 // of 5 runs - Sep 2005).
4053 //
4054 // The following code actually changes the niceness of kernel-thread/LWP. It
4055 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4056 // not the entire user process, and user level threads are 1:1 mapped to kernel
4057 // threads. It has always been the case, but could change in the future. For
4058 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4059 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4060 
4061 int os::java_to_os_priority[CriticalPriority + 1] = {
4062   19,              // 0 Entry should never be used
4063 
4064    4,              // 1 MinPriority
4065    3,              // 2
4066    2,              // 3
4067 
4068    1,              // 4
4069    0,              // 5 NormPriority
4070   -1,              // 6
4071 
4072   -2,              // 7
4073   -3,              // 8
4074   -4,              // 9 NearMaxPriority
4075 
4076   -5,              // 10 MaxPriority
4077 
4078   -5               // 11 CriticalPriority
4079 };
4080 
4081 static int prio_init() {
4082   if (ThreadPriorityPolicy == 1) {
4083     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4084     // if effective uid is not root. Perhaps, a more elegant way of doing
4085     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4086     if (geteuid() != 0) {
4087       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4088         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4089       }
4090       ThreadPriorityPolicy = 0;
4091     }
4092   }
4093   if (UseCriticalJavaThreadPriority) {
4094     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4095   }
4096   return 0;
4097 }
4098 
4099 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4100   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4101 
4102   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4103   return (ret == 0) ? OS_OK : OS_ERR;
4104 }
4105 
4106 OSReturn os::get_native_priority(const Thread* const thread,
4107                                  int *priority_ptr) {
4108   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4109     *priority_ptr = java_to_os_priority[NormPriority];
4110     return OS_OK;
4111   }
4112 
4113   errno = 0;
4114   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4115   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4116 }
4117 
4118 // Hint to the underlying OS that a task switch would not be good.
4119 // Void return because it's a hint and can fail.
4120 void os::hint_no_preempt() {}
4121 
4122 ////////////////////////////////////////////////////////////////////////////////
4123 // suspend/resume support
4124 
4125 //  The low-level signal-based suspend/resume support is a remnant from the
4126 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4127 //  within hotspot. Currently used by JFR's OSThreadSampler
4128 //
4129 //  The remaining code is greatly simplified from the more general suspension
4130 //  code that used to be used.
4131 //
4132 //  The protocol is quite simple:
4133 //  - suspend:
4134 //      - sends a signal to the target thread
4135 //      - polls the suspend state of the osthread using a yield loop
4136 //      - target thread signal handler (SR_handler) sets suspend state
4137 //        and blocks in sigsuspend until continued
4138 //  - resume:
4139 //      - sets target osthread state to continue
4140 //      - sends signal to end the sigsuspend loop in the SR_handler
4141 //
4142 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4143 //  but is checked for NULL in SR_handler as a thread termination indicator.
4144 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4145 //
4146 //  Note that resume_clear_context() and suspend_save_context() are needed
4147 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4148 //  which in part is used by:
4149 //    - Forte Analyzer: AsyncGetCallTrace()
4150 //    - StackBanging: get_frame_at_stack_banging_point()
4151 
4152 static void resume_clear_context(OSThread *osthread) {
4153   osthread->set_ucontext(NULL);
4154   osthread->set_siginfo(NULL);
4155 }
4156 
4157 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4158                                  ucontext_t* context) {
4159   osthread->set_ucontext(context);
4160   osthread->set_siginfo(siginfo);
4161 }
4162 
4163 // Handler function invoked when a thread's execution is suspended or
4164 // resumed. We have to be careful that only async-safe functions are
4165 // called here (Note: most pthread functions are not async safe and
4166 // should be avoided.)
4167 //
4168 // Note: sigwait() is a more natural fit than sigsuspend() from an
4169 // interface point of view, but sigwait() prevents the signal hander
4170 // from being run. libpthread would get very confused by not having
4171 // its signal handlers run and prevents sigwait()'s use with the
4172 // mutex granting granting signal.
4173 //
4174 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4175 //
4176 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4177   // Save and restore errno to avoid confusing native code with EINTR
4178   // after sigsuspend.
4179   int old_errno = errno;
4180 
4181   Thread* thread = Thread::current_or_null_safe();
4182   assert(thread != NULL, "Missing current thread in SR_handler");
4183 
4184   // On some systems we have seen signal delivery get "stuck" until the signal
4185   // mask is changed as part of thread termination. Check that the current thread
4186   // has not already terminated (via SR_lock()) - else the following assertion
4187   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4188   // destructor has completed.
4189 
4190   if (thread->SR_lock() == NULL) {
4191     return;
4192   }
4193 
4194   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4195 
4196   OSThread* osthread = thread->osthread();
4197 
4198   os::SuspendResume::State current = osthread->sr.state();
4199   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4200     suspend_save_context(osthread, siginfo, context);
4201 
4202     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4203     os::SuspendResume::State state = osthread->sr.suspended();
4204     if (state == os::SuspendResume::SR_SUSPENDED) {
4205       sigset_t suspend_set;  // signals for sigsuspend()
4206       sigemptyset(&suspend_set);
4207       // get current set of blocked signals and unblock resume signal
4208       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4209       sigdelset(&suspend_set, SR_signum);
4210 
4211       sr_semaphore.signal();
4212       // wait here until we are resumed
4213       while (1) {
4214         sigsuspend(&suspend_set);
4215 
4216         os::SuspendResume::State result = osthread->sr.running();
4217         if (result == os::SuspendResume::SR_RUNNING) {
4218           sr_semaphore.signal();
4219           break;
4220         }
4221       }
4222 
4223     } else if (state == os::SuspendResume::SR_RUNNING) {
4224       // request was cancelled, continue
4225     } else {
4226       ShouldNotReachHere();
4227     }
4228 
4229     resume_clear_context(osthread);
4230   } else if (current == os::SuspendResume::SR_RUNNING) {
4231     // request was cancelled, continue
4232   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4233     // ignore
4234   } else {
4235     // ignore
4236   }
4237 
4238   errno = old_errno;
4239 }
4240 
4241 static int SR_initialize() {
4242   struct sigaction act;
4243   char *s;
4244 
4245   // Get signal number to use for suspend/resume
4246   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4247     int sig = ::strtol(s, 0, 10);
4248     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4249         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4250       SR_signum = sig;
4251     } else {
4252       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4253               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4254     }
4255   }
4256 
4257   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4258          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4259 
4260   sigemptyset(&SR_sigset);
4261   sigaddset(&SR_sigset, SR_signum);
4262 
4263   // Set up signal handler for suspend/resume
4264   act.sa_flags = SA_RESTART|SA_SIGINFO;
4265   act.sa_handler = (void (*)(int)) SR_handler;
4266 
4267   // SR_signum is blocked by default.
4268   // 4528190 - We also need to block pthread restart signal (32 on all
4269   // supported Linux platforms). Note that LinuxThreads need to block
4270   // this signal for all threads to work properly. So we don't have
4271   // to use hard-coded signal number when setting up the mask.
4272   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4273 
4274   if (sigaction(SR_signum, &act, 0) == -1) {
4275     return -1;
4276   }
4277 
4278   // Save signal flag
4279   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4280   return 0;
4281 }
4282 
4283 static int sr_notify(OSThread* osthread) {
4284   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4285   assert_status(status == 0, status, "pthread_kill");
4286   return status;
4287 }
4288 
4289 // "Randomly" selected value for how long we want to spin
4290 // before bailing out on suspending a thread, also how often
4291 // we send a signal to a thread we want to resume
4292 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4293 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4294 
4295 // returns true on success and false on error - really an error is fatal
4296 // but this seems the normal response to library errors
4297 static bool do_suspend(OSThread* osthread) {
4298   assert(osthread->sr.is_running(), "thread should be running");
4299   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4300 
4301   // mark as suspended and send signal
4302   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4303     // failed to switch, state wasn't running?
4304     ShouldNotReachHere();
4305     return false;
4306   }
4307 
4308   if (sr_notify(osthread) != 0) {
4309     ShouldNotReachHere();
4310   }
4311 
4312   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4313   while (true) {
4314     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4315       break;
4316     } else {
4317       // timeout
4318       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4319       if (cancelled == os::SuspendResume::SR_RUNNING) {
4320         return false;
4321       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4322         // make sure that we consume the signal on the semaphore as well
4323         sr_semaphore.wait();
4324         break;
4325       } else {
4326         ShouldNotReachHere();
4327         return false;
4328       }
4329     }
4330   }
4331 
4332   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4333   return true;
4334 }
4335 
4336 static void do_resume(OSThread* osthread) {
4337   assert(osthread->sr.is_suspended(), "thread should be suspended");
4338   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4339 
4340   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4341     // failed to switch to WAKEUP_REQUEST
4342     ShouldNotReachHere();
4343     return;
4344   }
4345 
4346   while (true) {
4347     if (sr_notify(osthread) == 0) {
4348       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4349         if (osthread->sr.is_running()) {
4350           return;
4351         }
4352       }
4353     } else {
4354       ShouldNotReachHere();
4355     }
4356   }
4357 
4358   guarantee(osthread->sr.is_running(), "Must be running!");
4359 }
4360 
4361 ///////////////////////////////////////////////////////////////////////////////////
4362 // signal handling (except suspend/resume)
4363 
4364 // This routine may be used by user applications as a "hook" to catch signals.
4365 // The user-defined signal handler must pass unrecognized signals to this
4366 // routine, and if it returns true (non-zero), then the signal handler must
4367 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4368 // routine will never retun false (zero), but instead will execute a VM panic
4369 // routine kill the process.
4370 //
4371 // If this routine returns false, it is OK to call it again.  This allows
4372 // the user-defined signal handler to perform checks either before or after
4373 // the VM performs its own checks.  Naturally, the user code would be making
4374 // a serious error if it tried to handle an exception (such as a null check
4375 // or breakpoint) that the VM was generating for its own correct operation.
4376 //
4377 // This routine may recognize any of the following kinds of signals:
4378 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4379 // It should be consulted by handlers for any of those signals.
4380 //
4381 // The caller of this routine must pass in the three arguments supplied
4382 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4383 // field of the structure passed to sigaction().  This routine assumes that
4384 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4385 //
4386 // Note that the VM will print warnings if it detects conflicting signal
4387 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4388 //
4389 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4390                                                  siginfo_t* siginfo,
4391                                                  void* ucontext,
4392                                                  int abort_if_unrecognized);
4393 
4394 void signalHandler(int sig, siginfo_t* info, void* uc) {
4395   assert(info != NULL && uc != NULL, "it must be old kernel");
4396   int orig_errno = errno;  // Preserve errno value over signal handler.
4397   JVM_handle_linux_signal(sig, info, uc, true);
4398   errno = orig_errno;
4399 }
4400 
4401 
4402 // This boolean allows users to forward their own non-matching signals
4403 // to JVM_handle_linux_signal, harmlessly.
4404 bool os::Linux::signal_handlers_are_installed = false;
4405 
4406 // For signal-chaining
4407 struct sigaction sigact[NSIG];
4408 uint64_t sigs = 0;
4409 #if (64 < NSIG-1)
4410 #error "Not all signals can be encoded in sigs. Adapt its type!"
4411 #endif
4412 bool os::Linux::libjsig_is_loaded = false;
4413 typedef struct sigaction *(*get_signal_t)(int);
4414 get_signal_t os::Linux::get_signal_action = NULL;
4415 
4416 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4417   struct sigaction *actp = NULL;
4418 
4419   if (libjsig_is_loaded) {
4420     // Retrieve the old signal handler from libjsig
4421     actp = (*get_signal_action)(sig);
4422   }
4423   if (actp == NULL) {
4424     // Retrieve the preinstalled signal handler from jvm
4425     actp = get_preinstalled_handler(sig);
4426   }
4427 
4428   return actp;
4429 }
4430 
4431 static bool call_chained_handler(struct sigaction *actp, int sig,
4432                                  siginfo_t *siginfo, void *context) {
4433   // Call the old signal handler
4434   if (actp->sa_handler == SIG_DFL) {
4435     // It's more reasonable to let jvm treat it as an unexpected exception
4436     // instead of taking the default action.
4437     return false;
4438   } else if (actp->sa_handler != SIG_IGN) {
4439     if ((actp->sa_flags & SA_NODEFER) == 0) {
4440       // automaticlly block the signal
4441       sigaddset(&(actp->sa_mask), sig);
4442     }
4443 
4444     sa_handler_t hand = NULL;
4445     sa_sigaction_t sa = NULL;
4446     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4447     // retrieve the chained handler
4448     if (siginfo_flag_set) {
4449       sa = actp->sa_sigaction;
4450     } else {
4451       hand = actp->sa_handler;
4452     }
4453 
4454     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4455       actp->sa_handler = SIG_DFL;
4456     }
4457 
4458     // try to honor the signal mask
4459     sigset_t oset;
4460     sigemptyset(&oset);
4461     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4462 
4463     // call into the chained handler
4464     if (siginfo_flag_set) {
4465       (*sa)(sig, siginfo, context);
4466     } else {
4467       (*hand)(sig);
4468     }
4469 
4470     // restore the signal mask
4471     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4472   }
4473   // Tell jvm's signal handler the signal is taken care of.
4474   return true;
4475 }
4476 
4477 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4478   bool chained = false;
4479   // signal-chaining
4480   if (UseSignalChaining) {
4481     struct sigaction *actp = get_chained_signal_action(sig);
4482     if (actp != NULL) {
4483       chained = call_chained_handler(actp, sig, siginfo, context);
4484     }
4485   }
4486   return chained;
4487 }
4488 
4489 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4490   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4491     return &sigact[sig];
4492   }
4493   return NULL;
4494 }
4495 
4496 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4497   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4498   sigact[sig] = oldAct;
4499   sigs |= (uint64_t)1 << (sig-1);
4500 }
4501 
4502 // for diagnostic
4503 int sigflags[NSIG];
4504 
4505 int os::Linux::get_our_sigflags(int sig) {
4506   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4507   return sigflags[sig];
4508 }
4509 
4510 void os::Linux::set_our_sigflags(int sig, int flags) {
4511   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4512   if (sig > 0 && sig < NSIG) {
4513     sigflags[sig] = flags;
4514   }
4515 }
4516 
4517 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4518   // Check for overwrite.
4519   struct sigaction oldAct;
4520   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4521 
4522   void* oldhand = oldAct.sa_sigaction
4523                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4524                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4525   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4526       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4527       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4528     if (AllowUserSignalHandlers || !set_installed) {
4529       // Do not overwrite; user takes responsibility to forward to us.
4530       return;
4531     } else if (UseSignalChaining) {
4532       // save the old handler in jvm
4533       save_preinstalled_handler(sig, oldAct);
4534       // libjsig also interposes the sigaction() call below and saves the
4535       // old sigaction on it own.
4536     } else {
4537       fatal("Encountered unexpected pre-existing sigaction handler "
4538             "%#lx for signal %d.", (long)oldhand, sig);
4539     }
4540   }
4541 
4542   struct sigaction sigAct;
4543   sigfillset(&(sigAct.sa_mask));
4544   sigAct.sa_handler = SIG_DFL;
4545   if (!set_installed) {
4546     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4547   } else {
4548     sigAct.sa_sigaction = signalHandler;
4549     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4550   }
4551   // Save flags, which are set by ours
4552   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4553   sigflags[sig] = sigAct.sa_flags;
4554 
4555   int ret = sigaction(sig, &sigAct, &oldAct);
4556   assert(ret == 0, "check");
4557 
4558   void* oldhand2  = oldAct.sa_sigaction
4559                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4560                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4561   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4562 }
4563 
4564 // install signal handlers for signals that HotSpot needs to
4565 // handle in order to support Java-level exception handling.
4566 
4567 void os::Linux::install_signal_handlers() {
4568   if (!signal_handlers_are_installed) {
4569     signal_handlers_are_installed = true;
4570 
4571     // signal-chaining
4572     typedef void (*signal_setting_t)();
4573     signal_setting_t begin_signal_setting = NULL;
4574     signal_setting_t end_signal_setting = NULL;
4575     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4576                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4577     if (begin_signal_setting != NULL) {
4578       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4579                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4580       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4581                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4582       libjsig_is_loaded = true;
4583       assert(UseSignalChaining, "should enable signal-chaining");
4584     }
4585     if (libjsig_is_loaded) {
4586       // Tell libjsig jvm is setting signal handlers
4587       (*begin_signal_setting)();
4588     }
4589 
4590     set_signal_handler(SIGSEGV, true);
4591     set_signal_handler(SIGPIPE, true);
4592     set_signal_handler(SIGBUS, true);
4593     set_signal_handler(SIGILL, true);
4594     set_signal_handler(SIGFPE, true);
4595 #if defined(PPC64)
4596     set_signal_handler(SIGTRAP, true);
4597 #endif
4598     set_signal_handler(SIGXFSZ, true);
4599 
4600     if (libjsig_is_loaded) {
4601       // Tell libjsig jvm finishes setting signal handlers
4602       (*end_signal_setting)();
4603     }
4604 
4605     // We don't activate signal checker if libjsig is in place, we trust ourselves
4606     // and if UserSignalHandler is installed all bets are off.
4607     // Log that signal checking is off only if -verbose:jni is specified.
4608     if (CheckJNICalls) {
4609       if (libjsig_is_loaded) {
4610         if (PrintJNIResolving) {
4611           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4612         }
4613         check_signals = false;
4614       }
4615       if (AllowUserSignalHandlers) {
4616         if (PrintJNIResolving) {
4617           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4618         }
4619         check_signals = false;
4620       }
4621     }
4622   }
4623 }
4624 
4625 // This is the fastest way to get thread cpu time on Linux.
4626 // Returns cpu time (user+sys) for any thread, not only for current.
4627 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4628 // It might work on 2.6.10+ with a special kernel/glibc patch.
4629 // For reference, please, see IEEE Std 1003.1-2004:
4630 //   http://www.unix.org/single_unix_specification
4631 
4632 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4633   struct timespec tp;
4634   int rc = os::Linux::clock_gettime(clockid, &tp);
4635   assert(rc == 0, "clock_gettime is expected to return 0 code");
4636 
4637   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4638 }
4639 
4640 void os::Linux::initialize_os_info() {
4641   assert(_os_version == 0, "OS info already initialized");
4642 
4643   struct utsname _uname;
4644 
4645   uint32_t major;
4646   uint32_t minor;
4647   uint32_t fix;
4648 
4649   int rc;
4650 
4651   // Kernel version is unknown if
4652   // verification below fails.
4653   _os_version = 0x01000000;
4654 
4655   rc = uname(&_uname);
4656   if (rc != -1) {
4657 
4658     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4659     if (rc == 3) {
4660 
4661       if (major < 256 && minor < 256 && fix < 256) {
4662         // Kernel version format is as expected,
4663         // set it overriding unknown state.
4664         _os_version = (major << 16) |
4665                       (minor << 8 ) |
4666                       (fix   << 0 ) ;
4667       }
4668     }
4669   }
4670 }
4671 
4672 uint32_t os::Linux::os_version() {
4673   assert(_os_version != 0, "not initialized");
4674   return _os_version & 0x00FFFFFF;
4675 }
4676 
4677 bool os::Linux::os_version_is_known() {
4678   assert(_os_version != 0, "not initialized");
4679   return _os_version & 0x01000000 ? false : true;
4680 }
4681 
4682 /////
4683 // glibc on Linux platform uses non-documented flag
4684 // to indicate, that some special sort of signal
4685 // trampoline is used.
4686 // We will never set this flag, and we should
4687 // ignore this flag in our diagnostic
4688 #ifdef SIGNIFICANT_SIGNAL_MASK
4689   #undef SIGNIFICANT_SIGNAL_MASK
4690 #endif
4691 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4692 
4693 static const char* get_signal_handler_name(address handler,
4694                                            char* buf, int buflen) {
4695   int offset = 0;
4696   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4697   if (found) {
4698     // skip directory names
4699     const char *p1, *p2;
4700     p1 = buf;
4701     size_t len = strlen(os::file_separator());
4702     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4703     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4704   } else {
4705     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4706   }
4707   return buf;
4708 }
4709 
4710 static void print_signal_handler(outputStream* st, int sig,
4711                                  char* buf, size_t buflen) {
4712   struct sigaction sa;
4713 
4714   sigaction(sig, NULL, &sa);
4715 
4716   // See comment for SIGNIFICANT_SIGNAL_MASK define
4717   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4718 
4719   st->print("%s: ", os::exception_name(sig, buf, buflen));
4720 
4721   address handler = (sa.sa_flags & SA_SIGINFO)
4722     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4723     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4724 
4725   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4726     st->print("SIG_DFL");
4727   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4728     st->print("SIG_IGN");
4729   } else {
4730     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4731   }
4732 
4733   st->print(", sa_mask[0]=");
4734   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4735 
4736   address rh = VMError::get_resetted_sighandler(sig);
4737   // May be, handler was resetted by VMError?
4738   if (rh != NULL) {
4739     handler = rh;
4740     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4741   }
4742 
4743   st->print(", sa_flags=");
4744   os::Posix::print_sa_flags(st, sa.sa_flags);
4745 
4746   // Check: is it our handler?
4747   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4748       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4749     // It is our signal handler
4750     // check for flags, reset system-used one!
4751     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4752       st->print(
4753                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4754                 os::Linux::get_our_sigflags(sig));
4755     }
4756   }
4757   st->cr();
4758 }
4759 
4760 
4761 #define DO_SIGNAL_CHECK(sig)                      \
4762   do {                                            \
4763     if (!sigismember(&check_signal_done, sig)) {  \
4764       os::Linux::check_signal_handler(sig);       \
4765     }                                             \
4766   } while (0)
4767 
4768 // This method is a periodic task to check for misbehaving JNI applications
4769 // under CheckJNI, we can add any periodic checks here
4770 
4771 void os::run_periodic_checks() {
4772   if (check_signals == false) return;
4773 
4774   // SEGV and BUS if overridden could potentially prevent
4775   // generation of hs*.log in the event of a crash, debugging
4776   // such a case can be very challenging, so we absolutely
4777   // check the following for a good measure:
4778   DO_SIGNAL_CHECK(SIGSEGV);
4779   DO_SIGNAL_CHECK(SIGILL);
4780   DO_SIGNAL_CHECK(SIGFPE);
4781   DO_SIGNAL_CHECK(SIGBUS);
4782   DO_SIGNAL_CHECK(SIGPIPE);
4783   DO_SIGNAL_CHECK(SIGXFSZ);
4784 #if defined(PPC64)
4785   DO_SIGNAL_CHECK(SIGTRAP);
4786 #endif
4787 
4788   // ReduceSignalUsage allows the user to override these handlers
4789   // see comments at the very top and jvm_md.h
4790   if (!ReduceSignalUsage) {
4791     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4792     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4793     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4794     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4795   }
4796 
4797   DO_SIGNAL_CHECK(SR_signum);
4798 }
4799 
4800 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4801 
4802 static os_sigaction_t os_sigaction = NULL;
4803 
4804 void os::Linux::check_signal_handler(int sig) {
4805   char buf[O_BUFLEN];
4806   address jvmHandler = NULL;
4807 
4808 
4809   struct sigaction act;
4810   if (os_sigaction == NULL) {
4811     // only trust the default sigaction, in case it has been interposed
4812     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4813     if (os_sigaction == NULL) return;
4814   }
4815 
4816   os_sigaction(sig, (struct sigaction*)NULL, &act);
4817 
4818 
4819   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4820 
4821   address thisHandler = (act.sa_flags & SA_SIGINFO)
4822     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4823     : CAST_FROM_FN_PTR(address, act.sa_handler);
4824 
4825 
4826   switch (sig) {
4827   case SIGSEGV:
4828   case SIGBUS:
4829   case SIGFPE:
4830   case SIGPIPE:
4831   case SIGILL:
4832   case SIGXFSZ:
4833     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4834     break;
4835 
4836   case SHUTDOWN1_SIGNAL:
4837   case SHUTDOWN2_SIGNAL:
4838   case SHUTDOWN3_SIGNAL:
4839   case BREAK_SIGNAL:
4840     jvmHandler = (address)user_handler();
4841     break;
4842 
4843   default:
4844     if (sig == SR_signum) {
4845       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4846     } else {
4847       return;
4848     }
4849     break;
4850   }
4851 
4852   if (thisHandler != jvmHandler) {
4853     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4854     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4855     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4856     // No need to check this sig any longer
4857     sigaddset(&check_signal_done, sig);
4858     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4859     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4860       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4861                     exception_name(sig, buf, O_BUFLEN));
4862     }
4863   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4864     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4865     tty->print("expected:");
4866     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4867     tty->cr();
4868     tty->print("  found:");
4869     os::Posix::print_sa_flags(tty, act.sa_flags);
4870     tty->cr();
4871     // No need to check this sig any longer
4872     sigaddset(&check_signal_done, sig);
4873   }
4874 
4875   // Dump all the signal
4876   if (sigismember(&check_signal_done, sig)) {
4877     print_signal_handlers(tty, buf, O_BUFLEN);
4878   }
4879 }
4880 
4881 extern void report_error(char* file_name, int line_no, char* title,
4882                          char* format, ...);
4883 
4884 // this is called _before_ most of the global arguments have been parsed
4885 void os::init(void) {
4886   char dummy;   // used to get a guess on initial stack address
4887 
4888   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4889 
4890   init_random(1234567);
4891 
4892   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4893   if (Linux::page_size() == -1) {
4894     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4895           os::strerror(errno));
4896   }
4897   init_page_sizes((size_t) Linux::page_size());
4898 
4899   Linux::initialize_system_info();
4900 
4901   Linux::initialize_os_info();
4902 
4903   // _main_thread points to the thread that created/loaded the JVM.
4904   Linux::_main_thread = pthread_self();
4905 
4906   Linux::clock_init();
4907   initial_time_count = javaTimeNanos();
4908 
4909   // retrieve entry point for pthread_setname_np
4910   Linux::_pthread_setname_np =
4911     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4912 
4913   os::Posix::init();
4914 }
4915 
4916 // To install functions for atexit system call
4917 extern "C" {
4918   static void perfMemory_exit_helper() {
4919     perfMemory_exit();
4920   }
4921 }
4922 
4923 void os::pd_init_container_support() {
4924   OSContainer::init();
4925 }
4926 
4927 // this is called _after_ the global arguments have been parsed
4928 jint os::init_2(void) {
4929 
4930   os::Posix::init_2();
4931 
4932   Linux::fast_thread_clock_init();
4933 
4934   // initialize suspend/resume support - must do this before signal_sets_init()
4935   if (SR_initialize() != 0) {
4936     perror("SR_initialize failed");
4937     return JNI_ERR;
4938   }
4939 
4940   Linux::signal_sets_init();
4941   Linux::install_signal_handlers();
4942 
4943   // Check and sets minimum stack sizes against command line options
4944   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4945     return JNI_ERR;
4946   }
4947   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4948 
4949 #if defined(IA32)
4950   workaround_expand_exec_shield_cs_limit();
4951 #endif
4952 
4953   Linux::libpthread_init();
4954   Linux::sched_getcpu_init();
4955   log_info(os)("HotSpot is running with %s, %s",
4956                Linux::glibc_version(), Linux::libpthread_version());
4957 
4958   if (UseNUMA) {
4959     if (!Linux::libnuma_init()) {
4960       UseNUMA = false;
4961     } else {
4962       if ((Linux::numa_max_node() < 1)) {
4963         // There's only one node(they start from 0), disable NUMA.
4964         UseNUMA = false;
4965       }
4966     }
4967 
4968     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4969       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4970       // we can make the adaptive lgrp chunk resizing work. If the user specified both
4971       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
4972       // and disable adaptive resizing.
4973       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4974         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
4975                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4976         UseAdaptiveSizePolicy = false;
4977         UseAdaptiveNUMAChunkSizing = false;
4978       }
4979     }
4980 
4981     if (!UseNUMA && ForceNUMA) {
4982       UseNUMA = true;
4983     }
4984   }
4985 
4986   if (MaxFDLimit) {
4987     // set the number of file descriptors to max. print out error
4988     // if getrlimit/setrlimit fails but continue regardless.
4989     struct rlimit nbr_files;
4990     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4991     if (status != 0) {
4992       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4993     } else {
4994       nbr_files.rlim_cur = nbr_files.rlim_max;
4995       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4996       if (status != 0) {
4997         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4998       }
4999     }
5000   }
5001 
5002   // Initialize lock used to serialize thread creation (see os::create_thread)
5003   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5004 
5005   // at-exit methods are called in the reverse order of their registration.
5006   // atexit functions are called on return from main or as a result of a
5007   // call to exit(3C). There can be only 32 of these functions registered
5008   // and atexit() does not set errno.
5009 
5010   if (PerfAllowAtExitRegistration) {
5011     // only register atexit functions if PerfAllowAtExitRegistration is set.
5012     // atexit functions can be delayed until process exit time, which
5013     // can be problematic for embedded VM situations. Embedded VMs should
5014     // call DestroyJavaVM() to assure that VM resources are released.
5015 
5016     // note: perfMemory_exit_helper atexit function may be removed in
5017     // the future if the appropriate cleanup code can be added to the
5018     // VM_Exit VMOperation's doit method.
5019     if (atexit(perfMemory_exit_helper) != 0) {
5020       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5021     }
5022   }
5023 
5024   // initialize thread priority policy
5025   prio_init();
5026 
5027   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5028     set_coredump_filter(false /*largepages*/, true /*dax_shared*/);
5029   }
5030   return JNI_OK;
5031 }
5032 
5033 // Mark the polling page as unreadable
5034 void os::make_polling_page_unreadable(void) {
5035   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5036     fatal("Could not disable polling page");
5037   }
5038 }
5039 
5040 // Mark the polling page as readable
5041 void os::make_polling_page_readable(void) {
5042   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5043     fatal("Could not enable polling page");
5044   }
5045 }
5046 
5047 // older glibc versions don't have this macro (which expands to
5048 // an optimized bit-counting function) so we have to roll our own
5049 #ifndef CPU_COUNT
5050 
5051 static int _cpu_count(const cpu_set_t* cpus) {
5052   int count = 0;
5053   // only look up to the number of configured processors
5054   for (int i = 0; i < os::processor_count(); i++) {
5055     if (CPU_ISSET(i, cpus)) {
5056       count++;
5057     }
5058   }
5059   return count;
5060 }
5061 
5062 #define CPU_COUNT(cpus) _cpu_count(cpus)
5063 
5064 #endif // CPU_COUNT
5065 
5066 // Get the current number of available processors for this process.
5067 // This value can change at any time during a process's lifetime.
5068 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5069 // If it appears there may be more than 1024 processors then we do a
5070 // dynamic check - see 6515172 for details.
5071 // If anything goes wrong we fallback to returning the number of online
5072 // processors - which can be greater than the number available to the process.
5073 int os::Linux::active_processor_count() {
5074   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5075   cpu_set_t* cpus_p = &cpus;
5076   int cpus_size = sizeof(cpu_set_t);
5077 
5078   int configured_cpus = os::processor_count();  // upper bound on available cpus
5079   int cpu_count = 0;
5080 
5081 // old build platforms may not support dynamic cpu sets
5082 #ifdef CPU_ALLOC
5083 
5084   // To enable easy testing of the dynamic path on different platforms we
5085   // introduce a diagnostic flag: UseCpuAllocPath
5086   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5087     // kernel may use a mask bigger than cpu_set_t
5088     log_trace(os)("active_processor_count: using dynamic path %s"
5089                   "- configured processors: %d",
5090                   UseCpuAllocPath ? "(forced) " : "",
5091                   configured_cpus);
5092     cpus_p = CPU_ALLOC(configured_cpus);
5093     if (cpus_p != NULL) {
5094       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5095       // zero it just to be safe
5096       CPU_ZERO_S(cpus_size, cpus_p);
5097     }
5098     else {
5099        // failed to allocate so fallback to online cpus
5100        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5101        log_trace(os)("active_processor_count: "
5102                      "CPU_ALLOC failed (%s) - using "
5103                      "online processor count: %d",
5104                      os::strerror(errno), online_cpus);
5105        return online_cpus;
5106     }
5107   }
5108   else {
5109     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5110                   configured_cpus);
5111   }
5112 #else // CPU_ALLOC
5113 // these stubs won't be executed
5114 #define CPU_COUNT_S(size, cpus) -1
5115 #define CPU_FREE(cpus)
5116 
5117   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5118                 configured_cpus);
5119 #endif // CPU_ALLOC
5120 
5121   // pid 0 means the current thread - which we have to assume represents the process
5122   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5123     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5124       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5125     }
5126     else {
5127       cpu_count = CPU_COUNT(cpus_p);
5128     }
5129     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5130   }
5131   else {
5132     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5133     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5134             "which may exceed available processors", os::strerror(errno), cpu_count);
5135   }
5136 
5137   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5138     CPU_FREE(cpus_p);
5139   }
5140 
5141   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5142   return cpu_count;
5143 }
5144 
5145 // Determine the active processor count from one of
5146 // three different sources:
5147 //
5148 // 1. User option -XX:ActiveProcessorCount
5149 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5150 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5151 //
5152 // Option 1, if specified, will always override.
5153 // If the cgroup subsystem is active and configured, we
5154 // will return the min of the cgroup and option 2 results.
5155 // This is required since tools, such as numactl, that
5156 // alter cpu affinity do not update cgroup subsystem
5157 // cpuset configuration files.
5158 int os::active_processor_count() {
5159   // User has overridden the number of active processors
5160   if (ActiveProcessorCount > 0) {
5161     log_trace(os)("active_processor_count: "
5162                   "active processor count set by user : %d",
5163                   ActiveProcessorCount);
5164     return ActiveProcessorCount;
5165   }
5166 
5167   int active_cpus;
5168   if (OSContainer::is_containerized()) {
5169     active_cpus = OSContainer::active_processor_count();
5170     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5171                    active_cpus);
5172   } else {
5173     active_cpus = os::Linux::active_processor_count();
5174   }
5175 
5176   return active_cpus;
5177 }
5178 
5179 void os::set_native_thread_name(const char *name) {
5180   if (Linux::_pthread_setname_np) {
5181     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5182     snprintf(buf, sizeof(buf), "%s", name);
5183     buf[sizeof(buf) - 1] = '\0';
5184     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5185     // ERANGE should not happen; all other errors should just be ignored.
5186     assert(rc != ERANGE, "pthread_setname_np failed");
5187   }
5188 }
5189 
5190 bool os::distribute_processes(uint length, uint* distribution) {
5191   // Not yet implemented.
5192   return false;
5193 }
5194 
5195 bool os::bind_to_processor(uint processor_id) {
5196   // Not yet implemented.
5197   return false;
5198 }
5199 
5200 ///
5201 
5202 void os::SuspendedThreadTask::internal_do_task() {
5203   if (do_suspend(_thread->osthread())) {
5204     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5205     do_task(context);
5206     do_resume(_thread->osthread());
5207   }
5208 }
5209 
5210 ////////////////////////////////////////////////////////////////////////////////
5211 // debug support
5212 
5213 bool os::find(address addr, outputStream* st) {
5214   Dl_info dlinfo;
5215   memset(&dlinfo, 0, sizeof(dlinfo));
5216   if (dladdr(addr, &dlinfo) != 0) {
5217     st->print(PTR_FORMAT ": ", p2i(addr));
5218     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5219       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5220                 p2i(addr) - p2i(dlinfo.dli_saddr));
5221     } else if (dlinfo.dli_fbase != NULL) {
5222       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5223     } else {
5224       st->print("<absolute address>");
5225     }
5226     if (dlinfo.dli_fname != NULL) {
5227       st->print(" in %s", dlinfo.dli_fname);
5228     }
5229     if (dlinfo.dli_fbase != NULL) {
5230       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5231     }
5232     st->cr();
5233 
5234     if (Verbose) {
5235       // decode some bytes around the PC
5236       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5237       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5238       address       lowest = (address) dlinfo.dli_sname;
5239       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5240       if (begin < lowest)  begin = lowest;
5241       Dl_info dlinfo2;
5242       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5243           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5244         end = (address) dlinfo2.dli_saddr;
5245       }
5246       Disassembler::decode(begin, end, st);
5247     }
5248     return true;
5249   }
5250   return false;
5251 }
5252 
5253 ////////////////////////////////////////////////////////////////////////////////
5254 // misc
5255 
5256 // This does not do anything on Linux. This is basically a hook for being
5257 // able to use structured exception handling (thread-local exception filters)
5258 // on, e.g., Win32.
5259 void
5260 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5261                          JavaCallArguments* args, Thread* thread) {
5262   f(value, method, args, thread);
5263 }
5264 
5265 void os::print_statistics() {
5266 }
5267 
5268 bool os::message_box(const char* title, const char* message) {
5269   int i;
5270   fdStream err(defaultStream::error_fd());
5271   for (i = 0; i < 78; i++) err.print_raw("=");
5272   err.cr();
5273   err.print_raw_cr(title);
5274   for (i = 0; i < 78; i++) err.print_raw("-");
5275   err.cr();
5276   err.print_raw_cr(message);
5277   for (i = 0; i < 78; i++) err.print_raw("=");
5278   err.cr();
5279 
5280   char buf[16];
5281   // Prevent process from exiting upon "read error" without consuming all CPU
5282   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5283 
5284   return buf[0] == 'y' || buf[0] == 'Y';
5285 }
5286 
5287 int os::stat(const char *path, struct stat *sbuf) {
5288   char pathbuf[MAX_PATH];
5289   if (strlen(path) > MAX_PATH - 1) {
5290     errno = ENAMETOOLONG;
5291     return -1;
5292   }
5293   os::native_path(strcpy(pathbuf, path));
5294   return ::stat(pathbuf, sbuf);
5295 }
5296 
5297 // Is a (classpath) directory empty?
5298 bool os::dir_is_empty(const char* path) {
5299   DIR *dir = NULL;
5300   struct dirent *ptr;
5301 
5302   dir = opendir(path);
5303   if (dir == NULL) return true;
5304 
5305   // Scan the directory
5306   bool result = true;
5307   char buf[sizeof(struct dirent) + MAX_PATH];
5308   while (result && (ptr = ::readdir(dir)) != NULL) {
5309     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5310       result = false;
5311     }
5312   }
5313   closedir(dir);
5314   return result;
5315 }
5316 
5317 // This code originates from JDK's sysOpen and open64_w
5318 // from src/solaris/hpi/src/system_md.c
5319 
5320 int os::open(const char *path, int oflag, int mode) {
5321   if (strlen(path) > MAX_PATH - 1) {
5322     errno = ENAMETOOLONG;
5323     return -1;
5324   }
5325 
5326   // All file descriptors that are opened in the Java process and not
5327   // specifically destined for a subprocess should have the close-on-exec
5328   // flag set.  If we don't set it, then careless 3rd party native code
5329   // might fork and exec without closing all appropriate file descriptors
5330   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5331   // turn might:
5332   //
5333   // - cause end-of-file to fail to be detected on some file
5334   //   descriptors, resulting in mysterious hangs, or
5335   //
5336   // - might cause an fopen in the subprocess to fail on a system
5337   //   suffering from bug 1085341.
5338   //
5339   // (Yes, the default setting of the close-on-exec flag is a Unix
5340   // design flaw)
5341   //
5342   // See:
5343   // 1085341: 32-bit stdio routines should support file descriptors >255
5344   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5345   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5346   //
5347   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5348   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5349   // because it saves a system call and removes a small window where the flag
5350   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5351   // and we fall back to using FD_CLOEXEC (see below).
5352 #ifdef O_CLOEXEC
5353   oflag |= O_CLOEXEC;
5354 #endif
5355 
5356   int fd = ::open64(path, oflag, mode);
5357   if (fd == -1) return -1;
5358 
5359   //If the open succeeded, the file might still be a directory
5360   {
5361     struct stat64 buf64;
5362     int ret = ::fstat64(fd, &buf64);
5363     int st_mode = buf64.st_mode;
5364 
5365     if (ret != -1) {
5366       if ((st_mode & S_IFMT) == S_IFDIR) {
5367         errno = EISDIR;
5368         ::close(fd);
5369         return -1;
5370       }
5371     } else {
5372       ::close(fd);
5373       return -1;
5374     }
5375   }
5376 
5377 #ifdef FD_CLOEXEC
5378   // Validate that the use of the O_CLOEXEC flag on open above worked.
5379   // With recent kernels, we will perform this check exactly once.
5380   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5381   if (!O_CLOEXEC_is_known_to_work) {
5382     int flags = ::fcntl(fd, F_GETFD);
5383     if (flags != -1) {
5384       if ((flags & FD_CLOEXEC) != 0)
5385         O_CLOEXEC_is_known_to_work = 1;
5386       else
5387         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5388     }
5389   }
5390 #endif
5391 
5392   return fd;
5393 }
5394 
5395 
5396 // create binary file, rewriting existing file if required
5397 int os::create_binary_file(const char* path, bool rewrite_existing) {
5398   int oflags = O_WRONLY | O_CREAT;
5399   if (!rewrite_existing) {
5400     oflags |= O_EXCL;
5401   }
5402   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5403 }
5404 
5405 // return current position of file pointer
5406 jlong os::current_file_offset(int fd) {
5407   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5408 }
5409 
5410 // move file pointer to the specified offset
5411 jlong os::seek_to_file_offset(int fd, jlong offset) {
5412   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5413 }
5414 
5415 // This code originates from JDK's sysAvailable
5416 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5417 
5418 int os::available(int fd, jlong *bytes) {
5419   jlong cur, end;
5420   int mode;
5421   struct stat64 buf64;
5422 
5423   if (::fstat64(fd, &buf64) >= 0) {
5424     mode = buf64.st_mode;
5425     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5426       int n;
5427       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5428         *bytes = n;
5429         return 1;
5430       }
5431     }
5432   }
5433   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5434     return 0;
5435   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5436     return 0;
5437   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5438     return 0;
5439   }
5440   *bytes = end - cur;
5441   return 1;
5442 }
5443 
5444 // Map a block of memory.
5445 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5446                         char *addr, size_t bytes, bool read_only,
5447                         bool allow_exec) {
5448   int prot;
5449   int flags = MAP_PRIVATE;
5450 
5451   if (read_only) {
5452     prot = PROT_READ;
5453   } else {
5454     prot = PROT_READ | PROT_WRITE;
5455   }
5456 
5457   if (allow_exec) {
5458     prot |= PROT_EXEC;
5459   }
5460 
5461   if (addr != NULL) {
5462     flags |= MAP_FIXED;
5463   }
5464 
5465   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5466                                      fd, file_offset);
5467   if (mapped_address == MAP_FAILED) {
5468     return NULL;
5469   }
5470   return mapped_address;
5471 }
5472 
5473 
5474 // Remap a block of memory.
5475 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5476                           char *addr, size_t bytes, bool read_only,
5477                           bool allow_exec) {
5478   // same as map_memory() on this OS
5479   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5480                         allow_exec);
5481 }
5482 
5483 
5484 // Unmap a block of memory.
5485 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5486   return munmap(addr, bytes) == 0;
5487 }
5488 
5489 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5490 
5491 static clockid_t thread_cpu_clockid(Thread* thread) {
5492   pthread_t tid = thread->osthread()->pthread_id();
5493   clockid_t clockid;
5494 
5495   // Get thread clockid
5496   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5497   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5498   return clockid;
5499 }
5500 
5501 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5502 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5503 // of a thread.
5504 //
5505 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5506 // the fast estimate available on the platform.
5507 
5508 jlong os::current_thread_cpu_time() {
5509   if (os::Linux::supports_fast_thread_cpu_time()) {
5510     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5511   } else {
5512     // return user + sys since the cost is the same
5513     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5514   }
5515 }
5516 
5517 jlong os::thread_cpu_time(Thread* thread) {
5518   // consistent with what current_thread_cpu_time() returns
5519   if (os::Linux::supports_fast_thread_cpu_time()) {
5520     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5521   } else {
5522     return slow_thread_cpu_time(thread, true /* user + sys */);
5523   }
5524 }
5525 
5526 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5527   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5528     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5529   } else {
5530     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5531   }
5532 }
5533 
5534 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5535   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5536     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5537   } else {
5538     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5539   }
5540 }
5541 
5542 //  -1 on error.
5543 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5544   pid_t  tid = thread->osthread()->thread_id();
5545   char *s;
5546   char stat[2048];
5547   int statlen;
5548   char proc_name[64];
5549   int count;
5550   long sys_time, user_time;
5551   char cdummy;
5552   int idummy;
5553   long ldummy;
5554   FILE *fp;
5555 
5556   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5557   fp = fopen(proc_name, "r");
5558   if (fp == NULL) return -1;
5559   statlen = fread(stat, 1, 2047, fp);
5560   stat[statlen] = '\0';
5561   fclose(fp);
5562 
5563   // Skip pid and the command string. Note that we could be dealing with
5564   // weird command names, e.g. user could decide to rename java launcher
5565   // to "java 1.4.2 :)", then the stat file would look like
5566   //                1234 (java 1.4.2 :)) R ... ...
5567   // We don't really need to know the command string, just find the last
5568   // occurrence of ")" and then start parsing from there. See bug 4726580.
5569   s = strrchr(stat, ')');
5570   if (s == NULL) return -1;
5571 
5572   // Skip blank chars
5573   do { s++; } while (s && isspace(*s));
5574 
5575   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5576                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5577                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5578                  &user_time, &sys_time);
5579   if (count != 13) return -1;
5580   if (user_sys_cpu_time) {
5581     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5582   } else {
5583     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5584   }
5585 }
5586 
5587 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5588   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5589   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5590   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5591   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5592 }
5593 
5594 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5595   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5596   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5597   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5598   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5599 }
5600 
5601 bool os::is_thread_cpu_time_supported() {
5602   return true;
5603 }
5604 
5605 // System loadavg support.  Returns -1 if load average cannot be obtained.
5606 // Linux doesn't yet have a (official) notion of processor sets,
5607 // so just return the system wide load average.
5608 int os::loadavg(double loadavg[], int nelem) {
5609   return ::getloadavg(loadavg, nelem);
5610 }
5611 
5612 void os::pause() {
5613   char filename[MAX_PATH];
5614   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5615     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5616   } else {
5617     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5618   }
5619 
5620   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5621   if (fd != -1) {
5622     struct stat buf;
5623     ::close(fd);
5624     while (::stat(filename, &buf) == 0) {
5625       (void)::poll(NULL, 0, 100);
5626     }
5627   } else {
5628     jio_fprintf(stderr,
5629                 "Could not open pause file '%s', continuing immediately.\n", filename);
5630   }
5631 }
5632 
5633 extern char** environ;
5634 
5635 // Run the specified command in a separate process. Return its exit value,
5636 // or -1 on failure (e.g. can't fork a new process).
5637 // Unlike system(), this function can be called from signal handler. It
5638 // doesn't block SIGINT et al.
5639 int os::fork_and_exec(char* cmd) {
5640   const char * argv[4] = {"sh", "-c", cmd, NULL};
5641 
5642   pid_t pid = fork();
5643 
5644   if (pid < 0) {
5645     // fork failed
5646     return -1;
5647 
5648   } else if (pid == 0) {
5649     // child process
5650 
5651     execve("/bin/sh", (char* const*)argv, environ);
5652 
5653     // execve failed
5654     _exit(-1);
5655 
5656   } else  {
5657     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5658     // care about the actual exit code, for now.
5659 
5660     int status;
5661 
5662     // Wait for the child process to exit.  This returns immediately if
5663     // the child has already exited. */
5664     while (waitpid(pid, &status, 0) < 0) {
5665       switch (errno) {
5666       case ECHILD: return 0;
5667       case EINTR: break;
5668       default: return -1;
5669       }
5670     }
5671 
5672     if (WIFEXITED(status)) {
5673       // The child exited normally; get its exit code.
5674       return WEXITSTATUS(status);
5675     } else if (WIFSIGNALED(status)) {
5676       // The child exited because of a signal
5677       // The best value to return is 0x80 + signal number,
5678       // because that is what all Unix shells do, and because
5679       // it allows callers to distinguish between process exit and
5680       // process death by signal.
5681       return 0x80 + WTERMSIG(status);
5682     } else {
5683       // Unknown exit code; pass it through
5684       return status;
5685     }
5686   }
5687 }
5688 
5689 // Get the default path to the core file
5690 // Returns the length of the string
5691 int os::get_core_path(char* buffer, size_t bufferSize) {
5692   /*
5693    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5694    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5695    */
5696   const int core_pattern_len = 129;
5697   char core_pattern[core_pattern_len] = {0};
5698 
5699   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5700   if (core_pattern_file == -1) {
5701     return -1;
5702   }
5703 
5704   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5705   ::close(core_pattern_file);
5706   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5707     return -1;
5708   }
5709   if (core_pattern[ret-1] == '\n') {
5710     core_pattern[ret-1] = '\0';
5711   } else {
5712     core_pattern[ret] = '\0';
5713   }
5714 
5715   char *pid_pos = strstr(core_pattern, "%p");
5716   int written;
5717 
5718   if (core_pattern[0] == '/') {
5719     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5720   } else {
5721     char cwd[PATH_MAX];
5722 
5723     const char* p = get_current_directory(cwd, PATH_MAX);
5724     if (p == NULL) {
5725       return -1;
5726     }
5727 
5728     if (core_pattern[0] == '|') {
5729       written = jio_snprintf(buffer, bufferSize,
5730                              "\"%s\" (or dumping to %s/core.%d)",
5731                              &core_pattern[1], p, current_process_id());
5732     } else {
5733       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5734     }
5735   }
5736 
5737   if (written < 0) {
5738     return -1;
5739   }
5740 
5741   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5742     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5743 
5744     if (core_uses_pid_file != -1) {
5745       char core_uses_pid = 0;
5746       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5747       ::close(core_uses_pid_file);
5748 
5749       if (core_uses_pid == '1') {
5750         jio_snprintf(buffer + written, bufferSize - written,
5751                                           ".%d", current_process_id());
5752       }
5753     }
5754   }
5755 
5756   return strlen(buffer);
5757 }
5758 
5759 bool os::start_debugging(char *buf, int buflen) {
5760   int len = (int)strlen(buf);
5761   char *p = &buf[len];
5762 
5763   jio_snprintf(p, buflen-len,
5764                "\n\n"
5765                "Do you want to debug the problem?\n\n"
5766                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5767                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5768                "Otherwise, press RETURN to abort...",
5769                os::current_process_id(), os::current_process_id(),
5770                os::current_thread_id(), os::current_thread_id());
5771 
5772   bool yes = os::message_box("Unexpected Error", buf);
5773 
5774   if (yes) {
5775     // yes, user asked VM to launch debugger
5776     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5777                  os::current_process_id(), os::current_process_id());
5778 
5779     os::fork_and_exec(buf);
5780     yes = false;
5781   }
5782   return yes;
5783 }
5784 
5785 
5786 // Java/Compiler thread:
5787 //
5788 //   Low memory addresses
5789 // P0 +------------------------+
5790 //    |                        |\  Java thread created by VM does not have glibc
5791 //    |    glibc guard page    | - guard page, attached Java thread usually has
5792 //    |                        |/  1 glibc guard page.
5793 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5794 //    |                        |\
5795 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5796 //    |                        |/
5797 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5798 //    |                        |\
5799 //    |      Normal Stack      | -
5800 //    |                        |/
5801 // P2 +------------------------+ Thread::stack_base()
5802 //
5803 // Non-Java thread:
5804 //
5805 //   Low memory addresses
5806 // P0 +------------------------+
5807 //    |                        |\
5808 //    |  glibc guard page      | - usually 1 page
5809 //    |                        |/
5810 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5811 //    |                        |\
5812 //    |      Normal Stack      | -
5813 //    |                        |/
5814 // P2 +------------------------+ Thread::stack_base()
5815 //
5816 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5817 //    returned from pthread_attr_getstack().
5818 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5819 //    of the stack size given in pthread_attr. We work around this for
5820 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5821 //
5822 #ifndef ZERO
5823 static void current_stack_region(address * bottom, size_t * size) {
5824   if (os::is_primordial_thread()) {
5825     // primordial thread needs special handling because pthread_getattr_np()
5826     // may return bogus value.
5827     *bottom = os::Linux::initial_thread_stack_bottom();
5828     *size   = os::Linux::initial_thread_stack_size();
5829   } else {
5830     pthread_attr_t attr;
5831 
5832     int rslt = pthread_getattr_np(pthread_self(), &attr);
5833 
5834     // JVM needs to know exact stack location, abort if it fails
5835     if (rslt != 0) {
5836       if (rslt == ENOMEM) {
5837         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5838       } else {
5839         fatal("pthread_getattr_np failed with error = %d", rslt);
5840       }
5841     }
5842 
5843     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5844       fatal("Cannot locate current stack attributes!");
5845     }
5846 
5847     // Work around NPTL stack guard error.
5848     size_t guard_size = 0;
5849     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5850     if (rslt != 0) {
5851       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5852     }
5853     *bottom += guard_size;
5854     *size   -= guard_size;
5855 
5856     pthread_attr_destroy(&attr);
5857 
5858   }
5859   assert(os::current_stack_pointer() >= *bottom &&
5860          os::current_stack_pointer() < *bottom + *size, "just checking");
5861 }
5862 
5863 address os::current_stack_base() {
5864   address bottom;
5865   size_t size;
5866   current_stack_region(&bottom, &size);
5867   return (bottom + size);
5868 }
5869 
5870 size_t os::current_stack_size() {
5871   // This stack size includes the usable stack and HotSpot guard pages
5872   // (for the threads that have Hotspot guard pages).
5873   address bottom;
5874   size_t size;
5875   current_stack_region(&bottom, &size);
5876   return size;
5877 }
5878 #endif
5879 
5880 static inline struct timespec get_mtime(const char* filename) {
5881   struct stat st;
5882   int ret = os::stat(filename, &st);
5883   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5884   return st.st_mtim;
5885 }
5886 
5887 int os::compare_file_modified_times(const char* file1, const char* file2) {
5888   struct timespec filetime1 = get_mtime(file1);
5889   struct timespec filetime2 = get_mtime(file2);
5890   int diff = filetime1.tv_sec - filetime2.tv_sec;
5891   if (diff == 0) {
5892     return filetime1.tv_nsec - filetime2.tv_nsec;
5893   }
5894   return diff;
5895 }
5896 
5897 /////////////// Unit tests ///////////////
5898 
5899 #ifndef PRODUCT
5900 
5901 #define test_log(...)              \
5902   do {                             \
5903     if (VerboseInternalVMTests) {  \
5904       tty->print_cr(__VA_ARGS__);  \
5905       tty->flush();                \
5906     }                              \
5907   } while (false)
5908 
5909 class TestReserveMemorySpecial : AllStatic {
5910  public:
5911   static void small_page_write(void* addr, size_t size) {
5912     size_t page_size = os::vm_page_size();
5913 
5914     char* end = (char*)addr + size;
5915     for (char* p = (char*)addr; p < end; p += page_size) {
5916       *p = 1;
5917     }
5918   }
5919 
5920   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5921     if (!UseHugeTLBFS) {
5922       return;
5923     }
5924 
5925     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5926 
5927     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5928 
5929     if (addr != NULL) {
5930       small_page_write(addr, size);
5931 
5932       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5933     }
5934   }
5935 
5936   static void test_reserve_memory_special_huge_tlbfs_only() {
5937     if (!UseHugeTLBFS) {
5938       return;
5939     }
5940 
5941     size_t lp = os::large_page_size();
5942 
5943     for (size_t size = lp; size <= lp * 10; size += lp) {
5944       test_reserve_memory_special_huge_tlbfs_only(size);
5945     }
5946   }
5947 
5948   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5949     size_t lp = os::large_page_size();
5950     size_t ag = os::vm_allocation_granularity();
5951 
5952     // sizes to test
5953     const size_t sizes[] = {
5954       lp, lp + ag, lp + lp / 2, lp * 2,
5955       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5956       lp * 10, lp * 10 + lp / 2
5957     };
5958     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5959 
5960     // For each size/alignment combination, we test three scenarios:
5961     // 1) with req_addr == NULL
5962     // 2) with a non-null req_addr at which we expect to successfully allocate
5963     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5964     //    expect the allocation to either fail or to ignore req_addr
5965 
5966     // Pre-allocate two areas; they shall be as large as the largest allocation
5967     //  and aligned to the largest alignment we will be testing.
5968     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5969     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5970       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5971       -1, 0);
5972     assert(mapping1 != MAP_FAILED, "should work");
5973 
5974     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5975       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5976       -1, 0);
5977     assert(mapping2 != MAP_FAILED, "should work");
5978 
5979     // Unmap the first mapping, but leave the second mapping intact: the first
5980     // mapping will serve as a value for a "good" req_addr (case 2). The second
5981     // mapping, still intact, as "bad" req_addr (case 3).
5982     ::munmap(mapping1, mapping_size);
5983 
5984     // Case 1
5985     test_log("%s, req_addr NULL:", __FUNCTION__);
5986     test_log("size            align           result");
5987 
5988     for (int i = 0; i < num_sizes; i++) {
5989       const size_t size = sizes[i];
5990       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5991         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5992         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5993                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5994         if (p != NULL) {
5995           assert(is_aligned(p, alignment), "must be");
5996           small_page_write(p, size);
5997           os::Linux::release_memory_special_huge_tlbfs(p, size);
5998         }
5999       }
6000     }
6001 
6002     // Case 2
6003     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6004     test_log("size            align           req_addr         result");
6005 
6006     for (int i = 0; i < num_sizes; i++) {
6007       const size_t size = sizes[i];
6008       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6009         char* const req_addr = align_up(mapping1, alignment);
6010         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6011         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6012                  size, alignment, p2i(req_addr), p2i(p),
6013                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6014         if (p != NULL) {
6015           assert(p == req_addr, "must be");
6016           small_page_write(p, size);
6017           os::Linux::release_memory_special_huge_tlbfs(p, size);
6018         }
6019       }
6020     }
6021 
6022     // Case 3
6023     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6024     test_log("size            align           req_addr         result");
6025 
6026     for (int i = 0; i < num_sizes; i++) {
6027       const size_t size = sizes[i];
6028       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6029         char* const req_addr = align_up(mapping2, alignment);
6030         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6031         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6032                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6033         // as the area around req_addr contains already existing mappings, the API should always
6034         // return NULL (as per contract, it cannot return another address)
6035         assert(p == NULL, "must be");
6036       }
6037     }
6038 
6039     ::munmap(mapping2, mapping_size);
6040 
6041   }
6042 
6043   static void test_reserve_memory_special_huge_tlbfs() {
6044     if (!UseHugeTLBFS) {
6045       return;
6046     }
6047 
6048     test_reserve_memory_special_huge_tlbfs_only();
6049     test_reserve_memory_special_huge_tlbfs_mixed();
6050   }
6051 
6052   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6053     if (!UseSHM) {
6054       return;
6055     }
6056 
6057     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6058 
6059     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6060 
6061     if (addr != NULL) {
6062       assert(is_aligned(addr, alignment), "Check");
6063       assert(is_aligned(addr, os::large_page_size()), "Check");
6064 
6065       small_page_write(addr, size);
6066 
6067       os::Linux::release_memory_special_shm(addr, size);
6068     }
6069   }
6070 
6071   static void test_reserve_memory_special_shm() {
6072     size_t lp = os::large_page_size();
6073     size_t ag = os::vm_allocation_granularity();
6074 
6075     for (size_t size = ag; size < lp * 3; size += ag) {
6076       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6077         test_reserve_memory_special_shm(size, alignment);
6078       }
6079     }
6080   }
6081 
6082   static void test() {
6083     test_reserve_memory_special_huge_tlbfs();
6084     test_reserve_memory_special_shm();
6085   }
6086 };
6087 
6088 void TestReserveMemorySpecial_test() {
6089   TestReserveMemorySpecial::test();
6090 }
6091 
6092 #endif