1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "utilities/bitMap.inline.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/heapRegion.hpp"
  45 #endif // INCLUDE_ALL_GCS
  46 #ifdef TRACE_HAVE_INTRINSICS
  47 #include "trace/traceMacros.hpp"
  48 #endif
  49 
  50 #ifdef ASSERT
  51 #define __ gen()->lir(__FILE__, __LINE__)->
  52 #else
  53 #define __ gen()->lir()->
  54 #endif
  55 
  56 #ifndef PATCHED_ADDR
  57 #define PATCHED_ADDR  (max_jint)
  58 #endif
  59 
  60 void PhiResolverState::reset(int max_vregs) {
  61   // Initialize array sizes
  62   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _virtual_operands.trunc_to(0);
  64   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _other_operands.trunc_to(0);
  66   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _vreg_table.trunc_to(0);
  68 }
  69 
  70 
  71 
  72 //--------------------------------------------------------------
  73 // PhiResolver
  74 
  75 // Resolves cycles:
  76 //
  77 //  r1 := r2  becomes  temp := r1
  78 //  r2 := r1           r1 := r2
  79 //                     r2 := temp
  80 // and orders moves:
  81 //
  82 //  r2 := r3  becomes  r1 := r2
  83 //  r1 := r2           r2 := r3
  84 
  85 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  86  : _gen(gen)
  87  , _state(gen->resolver_state())
  88  , _temp(LIR_OprFact::illegalOpr)
  89 {
  90   // reinitialize the shared state arrays
  91   _state.reset(max_vregs);
  92 }
  93 
  94 
  95 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  96   assert(src->is_valid(), "");
  97   assert(dest->is_valid(), "");
  98   __ move(src, dest);
  99 }
 100 
 101 
 102 void PhiResolver::move_temp_to(LIR_Opr dest) {
 103   assert(_temp->is_valid(), "");
 104   emit_move(_temp, dest);
 105   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 106 }
 107 
 108 
 109 void PhiResolver::move_to_temp(LIR_Opr src) {
 110   assert(_temp->is_illegal(), "");
 111   _temp = _gen->new_register(src->type());
 112   emit_move(src, _temp);
 113 }
 114 
 115 
 116 // Traverse assignment graph in depth first order and generate moves in post order
 117 // ie. two assignments: b := c, a := b start with node c:
 118 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 119 // Generates moves in this order: move b to a and move c to b
 120 // ie. cycle a := b, b := a start with node a
 121 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 122 // Generates moves in this order: move b to temp, move a to b, move temp to a
 123 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 124   if (!dest->visited()) {
 125     dest->set_visited();
 126     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 127       move(dest, dest->destination_at(i));
 128     }
 129   } else if (!dest->start_node()) {
 130     // cylce in graph detected
 131     assert(_loop == NULL, "only one loop valid!");
 132     _loop = dest;
 133     move_to_temp(src->operand());
 134     return;
 135   } // else dest is a start node
 136 
 137   if (!dest->assigned()) {
 138     if (_loop == dest) {
 139       move_temp_to(dest->operand());
 140       dest->set_assigned();
 141     } else if (src != NULL) {
 142       emit_move(src->operand(), dest->operand());
 143       dest->set_assigned();
 144     }
 145   }
 146 }
 147 
 148 
 149 PhiResolver::~PhiResolver() {
 150   int i;
 151   // resolve any cycles in moves from and to virtual registers
 152   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 153     ResolveNode* node = virtual_operands()[i];
 154     if (!node->visited()) {
 155       _loop = NULL;
 156       move(NULL, node);
 157       node->set_start_node();
 158       assert(_temp->is_illegal(), "move_temp_to() call missing");
 159     }
 160   }
 161 
 162   // generate move for move from non virtual register to abitrary destination
 163   for (i = other_operands().length() - 1; i >= 0; i --) {
 164     ResolveNode* node = other_operands()[i];
 165     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 166       emit_move(node->operand(), node->destination_at(j)->operand());
 167     }
 168   }
 169 }
 170 
 171 
 172 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 173   ResolveNode* node;
 174   if (opr->is_virtual()) {
 175     int vreg_num = opr->vreg_number();
 176     node = vreg_table().at_grow(vreg_num, NULL);
 177     assert(node == NULL || node->operand() == opr, "");
 178     if (node == NULL) {
 179       node = new ResolveNode(opr);
 180       vreg_table()[vreg_num] = node;
 181     }
 182     // Make sure that all virtual operands show up in the list when
 183     // they are used as the source of a move.
 184     if (source && !virtual_operands().contains(node)) {
 185       virtual_operands().append(node);
 186     }
 187   } else {
 188     assert(source, "");
 189     node = new ResolveNode(opr);
 190     other_operands().append(node);
 191   }
 192   return node;
 193 }
 194 
 195 
 196 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 197   assert(dest->is_virtual(), "");
 198   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 199   assert(src->is_valid(), "");
 200   assert(dest->is_valid(), "");
 201   ResolveNode* source = source_node(src);
 202   source->append(destination_node(dest));
 203 }
 204 
 205 
 206 //--------------------------------------------------------------
 207 // LIRItem
 208 
 209 void LIRItem::set_result(LIR_Opr opr) {
 210   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 211   value()->set_operand(opr);
 212 
 213   if (opr->is_virtual()) {
 214     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 215   }
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   if (result()->is_illegal()) {
 222     // update the items result
 223     _result = value()->operand();
 224   }
 225   if (!result()->is_register()) {
 226     LIR_Opr reg = _gen->new_register(value()->type());
 227     __ move(result(), reg);
 228     if (result()->is_constant()) {
 229       _result = reg;
 230     } else {
 231       set_result(reg);
 232     }
 233   }
 234 }
 235 
 236 
 237 void LIRItem::load_for_store(BasicType type) {
 238   if (_gen->can_store_as_constant(value(), type)) {
 239     _result = value()->operand();
 240     if (!_result->is_constant()) {
 241       _result = LIR_OprFact::value_type(value()->type());
 242     }
 243   } else if (type == T_BYTE || type == T_BOOLEAN) {
 244     load_byte_item();
 245   } else {
 246     load_item();
 247   }
 248 }
 249 
 250 void LIRItem::load_item_force(LIR_Opr reg) {
 251   LIR_Opr r = result();
 252   if (r != reg) {
 253 #if !defined(ARM) && !defined(E500V2)
 254     if (r->type() != reg->type()) {
 255       // moves between different types need an intervening spill slot
 256       r = _gen->force_to_spill(r, reg->type());
 257     }
 258 #endif
 259     __ move(r, reg);
 260     _result = reg;
 261   }
 262 }
 263 
 264 ciObject* LIRItem::get_jobject_constant() const {
 265   ObjectType* oc = type()->as_ObjectType();
 266   if (oc) {
 267     return oc->constant_value();
 268   }
 269   return NULL;
 270 }
 271 
 272 
 273 jint LIRItem::get_jint_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_IntConstant() != NULL, "type check");
 276   return type()->as_IntConstant()->value();
 277 }
 278 
 279 
 280 jint LIRItem::get_address_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_AddressConstant() != NULL, "type check");
 283   return type()->as_AddressConstant()->value();
 284 }
 285 
 286 
 287 jfloat LIRItem::get_jfloat_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_FloatConstant() != NULL, "type check");
 290   return type()->as_FloatConstant()->value();
 291 }
 292 
 293 
 294 jdouble LIRItem::get_jdouble_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_DoubleConstant() != NULL, "type check");
 297   return type()->as_DoubleConstant()->value();
 298 }
 299 
 300 
 301 jlong LIRItem::get_jlong_constant() const {
 302   assert(is_constant() && value() != NULL, "");
 303   assert(type()->as_LongConstant() != NULL, "type check");
 304   return type()->as_LongConstant()->value();
 305 }
 306 
 307 
 308 
 309 //--------------------------------------------------------------
 310 
 311 
 312 void LIRGenerator::init() {
 313   _bs = Universe::heap()->barrier_set();
 314 }
 315 
 316 
 317 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 318 #ifndef PRODUCT
 319   if (PrintIRWithLIR) {
 320     block->print();
 321   }
 322 #endif
 323 
 324   // set up the list of LIR instructions
 325   assert(block->lir() == NULL, "LIR list already computed for this block");
 326   _lir = new LIR_List(compilation(), block);
 327   block->set_lir(_lir);
 328 
 329   __ branch_destination(block->label());
 330 
 331   if (LIRTraceExecution &&
 332       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 333       !block->is_set(BlockBegin::exception_entry_flag)) {
 334     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 335     trace_block_entry(block);
 336   }
 337 }
 338 
 339 
 340 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 341 #ifndef PRODUCT
 342   if (PrintIRWithLIR) {
 343     tty->cr();
 344   }
 345 #endif
 346 
 347   // LIR_Opr for unpinned constants shouldn't be referenced by other
 348   // blocks so clear them out after processing the block.
 349   for (int i = 0; i < _unpinned_constants.length(); i++) {
 350     _unpinned_constants.at(i)->clear_operand();
 351   }
 352   _unpinned_constants.trunc_to(0);
 353 
 354   // clear our any registers for other local constants
 355   _constants.trunc_to(0);
 356   _reg_for_constants.trunc_to(0);
 357 }
 358 
 359 
 360 void LIRGenerator::block_do(BlockBegin* block) {
 361   CHECK_BAILOUT();
 362 
 363   block_do_prolog(block);
 364   set_block(block);
 365 
 366   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 367     if (instr->is_pinned()) do_root(instr);
 368   }
 369 
 370   set_block(NULL);
 371   block_do_epilog(block);
 372 }
 373 
 374 
 375 //-------------------------LIRGenerator-----------------------------
 376 
 377 // This is where the tree-walk starts; instr must be root;
 378 void LIRGenerator::do_root(Value instr) {
 379   CHECK_BAILOUT();
 380 
 381   InstructionMark im(compilation(), instr);
 382 
 383   assert(instr->is_pinned(), "use only with roots");
 384   assert(instr->subst() == instr, "shouldn't have missed substitution");
 385 
 386   instr->visit(this);
 387 
 388   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 389          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 390 }
 391 
 392 
 393 // This is called for each node in tree; the walk stops if a root is reached
 394 void LIRGenerator::walk(Value instr) {
 395   InstructionMark im(compilation(), instr);
 396   //stop walk when encounter a root
 397   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 398     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 399   } else {
 400     assert(instr->subst() == instr, "shouldn't have missed substitution");
 401     instr->visit(this);
 402     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 403   }
 404 }
 405 
 406 
 407 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 408   assert(state != NULL, "state must be defined");
 409 
 410 #ifndef PRODUCT
 411   state->verify();
 412 #endif
 413 
 414   ValueStack* s = state;
 415   for_each_state(s) {
 416     if (s->kind() == ValueStack::EmptyExceptionState) {
 417       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 418       continue;
 419     }
 420 
 421     int index;
 422     Value value;
 423     for_each_stack_value(s, index, value) {
 424       assert(value->subst() == value, "missed substitution");
 425       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 426         walk(value);
 427         assert(value->operand()->is_valid(), "must be evaluated now");
 428       }
 429     }
 430 
 431     int bci = s->bci();
 432     IRScope* scope = s->scope();
 433     ciMethod* method = scope->method();
 434 
 435     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 436     if (bci == SynchronizationEntryBCI) {
 437       if (x->as_ExceptionObject() || x->as_Throw()) {
 438         // all locals are dead on exit from the synthetic unlocker
 439         liveness.clear();
 440       } else {
 441         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 442       }
 443     }
 444     if (!liveness.is_valid()) {
 445       // Degenerate or breakpointed method.
 446       bailout("Degenerate or breakpointed method");
 447     } else {
 448       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 449       for_each_local_value(s, index, value) {
 450         assert(value->subst() == value, "missed substition");
 451         if (liveness.at(index) && !value->type()->is_illegal()) {
 452           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 453             walk(value);
 454             assert(value->operand()->is_valid(), "must be evaluated now");
 455           }
 456         } else {
 457           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 458           s->invalidate_local(index);
 459         }
 460       }
 461     }
 462   }
 463 
 464   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 465 }
 466 
 467 
 468 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 469   return state_for(x, x->exception_state());
 470 }
 471 
 472 
 473 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 474   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 475    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 476    * the class. */
 477   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 478     assert(info != NULL, "info must be set if class is not loaded");
 479     __ klass2reg_patch(NULL, r, info);
 480   } else {
 481     // no patching needed
 482     __ metadata2reg(obj->constant_encoding(), r);
 483   }
 484 }
 485 
 486 
 487 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 488                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 489   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 490   if (index->is_constant()) {
 491     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 492                 index->as_jint(), null_check_info);
 493     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 494   } else {
 495     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 496                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 497     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 498   }
 499 }
 500 
 501 
 502 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 503   CodeStub* stub = new RangeCheckStub(info, index, true);
 504   if (index->is_constant()) {
 505     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 506     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 507   } else {
 508     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 509                 java_nio_Buffer::limit_offset(), T_INT, info);
 510     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 511   }
 512   __ move(index, result);
 513 }
 514 
 515 
 516 
 517 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 518   LIR_Opr result_op = result;
 519   LIR_Opr left_op   = left;
 520   LIR_Opr right_op  = right;
 521 
 522   if (TwoOperandLIRForm && left_op != result_op) {
 523     assert(right_op != result_op, "malformed");
 524     __ move(left_op, result_op);
 525     left_op = result_op;
 526   }
 527 
 528   switch(code) {
 529     case Bytecodes::_dadd:
 530     case Bytecodes::_fadd:
 531     case Bytecodes::_ladd:
 532     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 533     case Bytecodes::_fmul:
 534     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 535 
 536     case Bytecodes::_dmul:
 537       {
 538         if (is_strictfp) {
 539           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 540         } else {
 541           __ mul(left_op, right_op, result_op); break;
 542         }
 543       }
 544       break;
 545 
 546     case Bytecodes::_imul:
 547       {
 548         bool    did_strength_reduce = false;
 549 
 550         if (right->is_constant()) {
 551           int c = right->as_jint();
 552           if (is_power_of_2(c)) {
 553             // do not need tmp here
 554             __ shift_left(left_op, exact_log2(c), result_op);
 555             did_strength_reduce = true;
 556           } else {
 557             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 558           }
 559         }
 560         // we couldn't strength reduce so just emit the multiply
 561         if (!did_strength_reduce) {
 562           __ mul(left_op, right_op, result_op);
 563         }
 564       }
 565       break;
 566 
 567     case Bytecodes::_dsub:
 568     case Bytecodes::_fsub:
 569     case Bytecodes::_lsub:
 570     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 571 
 572     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 573     // ldiv and lrem are implemented with a direct runtime call
 574 
 575     case Bytecodes::_ddiv:
 576       {
 577         if (is_strictfp) {
 578           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 579         } else {
 580           __ div (left_op, right_op, result_op); break;
 581         }
 582       }
 583       break;
 584 
 585     case Bytecodes::_drem:
 586     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 587 
 588     default: ShouldNotReachHere();
 589   }
 590 }
 591 
 592 
 593 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 594   arithmetic_op(code, result, left, right, false, tmp);
 595 }
 596 
 597 
 598 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 599   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 600 }
 601 
 602 
 603 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 604   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 605 }
 606 
 607 
 608 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 609   if (TwoOperandLIRForm && value != result_op) {
 610     assert(count != result_op, "malformed");
 611     __ move(value, result_op);
 612     value = result_op;
 613   }
 614 
 615   assert(count->is_constant() || count->is_register(), "must be");
 616   switch(code) {
 617   case Bytecodes::_ishl:
 618   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 619   case Bytecodes::_ishr:
 620   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 621   case Bytecodes::_iushr:
 622   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 623   default: ShouldNotReachHere();
 624   }
 625 }
 626 
 627 
 628 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 629   if (TwoOperandLIRForm && left_op != result_op) {
 630     assert(right_op != result_op, "malformed");
 631     __ move(left_op, result_op);
 632     left_op = result_op;
 633   }
 634 
 635   switch(code) {
 636     case Bytecodes::_iand:
 637     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 638 
 639     case Bytecodes::_ior:
 640     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 641 
 642     case Bytecodes::_ixor:
 643     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 644 
 645     default: ShouldNotReachHere();
 646   }
 647 }
 648 
 649 
 650 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 651   if (!GenerateSynchronizationCode) return;
 652   // for slow path, use debug info for state after successful locking
 653   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 654   __ load_stack_address_monitor(monitor_no, lock);
 655   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 656   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 657 }
 658 
 659 
 660 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 661   if (!GenerateSynchronizationCode) return;
 662   // setup registers
 663   LIR_Opr hdr = lock;
 664   lock = new_hdr;
 665   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 666   __ load_stack_address_monitor(monitor_no, lock);
 667   __ unlock_object(hdr, object, lock, scratch, slow_path);
 668 }
 669 
 670 #ifndef PRODUCT
 671 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 672   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 673     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 674   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 675     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 676   }
 677 }
 678 #endif
 679 
 680 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 681   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 682   // If klass is not loaded we do not know if the klass has finalizers:
 683   if (UseFastNewInstance && klass->is_loaded()
 684       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 685 
 686     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 687 
 688     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 689 
 690     assert(klass->is_loaded(), "must be loaded");
 691     // allocate space for instance
 692     assert(klass->size_helper() >= 0, "illegal instance size");
 693     const int instance_size = align_object_size(klass->size_helper());
 694     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 695                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 696   } else {
 697     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 698     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 699     __ branch_destination(slow_path->continuation());
 700   }
 701 }
 702 
 703 
 704 static bool is_constant_zero(Instruction* inst) {
 705   IntConstant* c = inst->type()->as_IntConstant();
 706   if (c) {
 707     return (c->value() == 0);
 708   }
 709   return false;
 710 }
 711 
 712 
 713 static bool positive_constant(Instruction* inst) {
 714   IntConstant* c = inst->type()->as_IntConstant();
 715   if (c) {
 716     return (c->value() >= 0);
 717   }
 718   return false;
 719 }
 720 
 721 
 722 static ciArrayKlass* as_array_klass(ciType* type) {
 723   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 724     return (ciArrayKlass*)type;
 725   } else {
 726     return NULL;
 727   }
 728 }
 729 
 730 static ciType* phi_declared_type(Phi* phi) {
 731   ciType* t = phi->operand_at(0)->declared_type();
 732   if (t == NULL) {
 733     return NULL;
 734   }
 735   for(int i = 1; i < phi->operand_count(); i++) {
 736     if (t != phi->operand_at(i)->declared_type()) {
 737       return NULL;
 738     }
 739   }
 740   return t;
 741 }
 742 
 743 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 744   Instruction* src     = x->argument_at(0);
 745   Instruction* src_pos = x->argument_at(1);
 746   Instruction* dst     = x->argument_at(2);
 747   Instruction* dst_pos = x->argument_at(3);
 748   Instruction* length  = x->argument_at(4);
 749 
 750   // first try to identify the likely type of the arrays involved
 751   ciArrayKlass* expected_type = NULL;
 752   bool is_exact = false, src_objarray = false, dst_objarray = false;
 753   {
 754     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 755     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 756     Phi* phi;
 757     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 758       src_declared_type = as_array_klass(phi_declared_type(phi));
 759     }
 760     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 761     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 762     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 763       dst_declared_type = as_array_klass(phi_declared_type(phi));
 764     }
 765 
 766     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 767       // the types exactly match so the type is fully known
 768       is_exact = true;
 769       expected_type = src_exact_type;
 770     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 771       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 772       ciArrayKlass* src_type = NULL;
 773       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 774         src_type = (ciArrayKlass*) src_exact_type;
 775       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 776         src_type = (ciArrayKlass*) src_declared_type;
 777       }
 778       if (src_type != NULL) {
 779         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 780           is_exact = true;
 781           expected_type = dst_type;
 782         }
 783       }
 784     }
 785     // at least pass along a good guess
 786     if (expected_type == NULL) expected_type = dst_exact_type;
 787     if (expected_type == NULL) expected_type = src_declared_type;
 788     if (expected_type == NULL) expected_type = dst_declared_type;
 789 
 790     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 791     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 792   }
 793 
 794   // if a probable array type has been identified, figure out if any
 795   // of the required checks for a fast case can be elided.
 796   int flags = LIR_OpArrayCopy::all_flags;
 797 
 798   if (!src_objarray)
 799     flags &= ~LIR_OpArrayCopy::src_objarray;
 800   if (!dst_objarray)
 801     flags &= ~LIR_OpArrayCopy::dst_objarray;
 802 
 803   if (!x->arg_needs_null_check(0))
 804     flags &= ~LIR_OpArrayCopy::src_null_check;
 805   if (!x->arg_needs_null_check(2))
 806     flags &= ~LIR_OpArrayCopy::dst_null_check;
 807 
 808 
 809   if (expected_type != NULL) {
 810     Value length_limit = NULL;
 811 
 812     IfOp* ifop = length->as_IfOp();
 813     if (ifop != NULL) {
 814       // look for expressions like min(v, a.length) which ends up as
 815       //   x > y ? y : x  or  x >= y ? y : x
 816       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 817           ifop->x() == ifop->fval() &&
 818           ifop->y() == ifop->tval()) {
 819         length_limit = ifop->y();
 820       }
 821     }
 822 
 823     // try to skip null checks and range checks
 824     NewArray* src_array = src->as_NewArray();
 825     if (src_array != NULL) {
 826       flags &= ~LIR_OpArrayCopy::src_null_check;
 827       if (length_limit != NULL &&
 828           src_array->length() == length_limit &&
 829           is_constant_zero(src_pos)) {
 830         flags &= ~LIR_OpArrayCopy::src_range_check;
 831       }
 832     }
 833 
 834     NewArray* dst_array = dst->as_NewArray();
 835     if (dst_array != NULL) {
 836       flags &= ~LIR_OpArrayCopy::dst_null_check;
 837       if (length_limit != NULL &&
 838           dst_array->length() == length_limit &&
 839           is_constant_zero(dst_pos)) {
 840         flags &= ~LIR_OpArrayCopy::dst_range_check;
 841       }
 842     }
 843 
 844     // check from incoming constant values
 845     if (positive_constant(src_pos))
 846       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 847     if (positive_constant(dst_pos))
 848       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 849     if (positive_constant(length))
 850       flags &= ~LIR_OpArrayCopy::length_positive_check;
 851 
 852     // see if the range check can be elided, which might also imply
 853     // that src or dst is non-null.
 854     ArrayLength* al = length->as_ArrayLength();
 855     if (al != NULL) {
 856       if (al->array() == src) {
 857         // it's the length of the source array
 858         flags &= ~LIR_OpArrayCopy::length_positive_check;
 859         flags &= ~LIR_OpArrayCopy::src_null_check;
 860         if (is_constant_zero(src_pos))
 861           flags &= ~LIR_OpArrayCopy::src_range_check;
 862       }
 863       if (al->array() == dst) {
 864         // it's the length of the destination array
 865         flags &= ~LIR_OpArrayCopy::length_positive_check;
 866         flags &= ~LIR_OpArrayCopy::dst_null_check;
 867         if (is_constant_zero(dst_pos))
 868           flags &= ~LIR_OpArrayCopy::dst_range_check;
 869       }
 870     }
 871     if (is_exact) {
 872       flags &= ~LIR_OpArrayCopy::type_check;
 873     }
 874   }
 875 
 876   IntConstant* src_int = src_pos->type()->as_IntConstant();
 877   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 878   if (src_int && dst_int) {
 879     int s_offs = src_int->value();
 880     int d_offs = dst_int->value();
 881     if (src_int->value() >= dst_int->value()) {
 882       flags &= ~LIR_OpArrayCopy::overlapping;
 883     }
 884     if (expected_type != NULL) {
 885       BasicType t = expected_type->element_type()->basic_type();
 886       int element_size = type2aelembytes(t);
 887       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 888           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 889         flags &= ~LIR_OpArrayCopy::unaligned;
 890       }
 891     }
 892   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 893     // src and dest positions are the same, or dst is zero so assume
 894     // nonoverlapping copy.
 895     flags &= ~LIR_OpArrayCopy::overlapping;
 896   }
 897 
 898   if (src == dst) {
 899     // moving within a single array so no type checks are needed
 900     if (flags & LIR_OpArrayCopy::type_check) {
 901       flags &= ~LIR_OpArrayCopy::type_check;
 902     }
 903   }
 904   *flagsp = flags;
 905   *expected_typep = (ciArrayKlass*)expected_type;
 906 }
 907 
 908 
 909 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 910   assert(opr->is_register(), "why spill if item is not register?");
 911 
 912   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 913     LIR_Opr result = new_register(T_FLOAT);
 914     set_vreg_flag(result, must_start_in_memory);
 915     assert(opr->is_register(), "only a register can be spilled");
 916     assert(opr->value_type()->is_float(), "rounding only for floats available");
 917     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 918     return result;
 919   }
 920   return opr;
 921 }
 922 
 923 
 924 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 925   assert(type2size[t] == type2size[value->type()],
 926          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 927   if (!value->is_register()) {
 928     // force into a register
 929     LIR_Opr r = new_register(value->type());
 930     __ move(value, r);
 931     value = r;
 932   }
 933 
 934   // create a spill location
 935   LIR_Opr tmp = new_register(t);
 936   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 937 
 938   // move from register to spill
 939   __ move(value, tmp);
 940   return tmp;
 941 }
 942 
 943 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 944   if (if_instr->should_profile()) {
 945     ciMethod* method = if_instr->profiled_method();
 946     assert(method != NULL, "method should be set if branch is profiled");
 947     ciMethodData* md = method->method_data_or_null();
 948     assert(md != NULL, "Sanity");
 949     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 950     assert(data != NULL, "must have profiling data");
 951     assert(data->is_BranchData(), "need BranchData for two-way branches");
 952     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 953     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 954     if (if_instr->is_swapped()) {
 955       int t = taken_count_offset;
 956       taken_count_offset = not_taken_count_offset;
 957       not_taken_count_offset = t;
 958     }
 959 
 960     LIR_Opr md_reg = new_register(T_METADATA);
 961     __ metadata2reg(md->constant_encoding(), md_reg);
 962 
 963     LIR_Opr data_offset_reg = new_pointer_register();
 964     __ cmove(lir_cond(cond),
 965              LIR_OprFact::intptrConst(taken_count_offset),
 966              LIR_OprFact::intptrConst(not_taken_count_offset),
 967              data_offset_reg, as_BasicType(if_instr->x()->type()));
 968 
 969     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 970     LIR_Opr data_reg = new_pointer_register();
 971     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 972     __ move(data_addr, data_reg);
 973     // Use leal instead of add to avoid destroying condition codes on x86
 974     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 975     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 976     __ move(data_reg, data_addr);
 977   }
 978 }
 979 
 980 // Phi technique:
 981 // This is about passing live values from one basic block to the other.
 982 // In code generated with Java it is rather rare that more than one
 983 // value is on the stack from one basic block to the other.
 984 // We optimize our technique for efficient passing of one value
 985 // (of type long, int, double..) but it can be extended.
 986 // When entering or leaving a basic block, all registers and all spill
 987 // slots are release and empty. We use the released registers
 988 // and spill slots to pass the live values from one block
 989 // to the other. The topmost value, i.e., the value on TOS of expression
 990 // stack is passed in registers. All other values are stored in spilling
 991 // area. Every Phi has an index which designates its spill slot
 992 // At exit of a basic block, we fill the register(s) and spill slots.
 993 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 994 // and locks necessary registers and spilling slots.
 995 
 996 
 997 // move current value to referenced phi function
 998 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 999   Phi* phi = sux_val->as_Phi();
1000   // cur_val can be null without phi being null in conjunction with inlining
1001   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1002     LIR_Opr operand = cur_val->operand();
1003     if (cur_val->operand()->is_illegal()) {
1004       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1005              "these can be produced lazily");
1006       operand = operand_for_instruction(cur_val);
1007     }
1008     resolver->move(operand, operand_for_instruction(phi));
1009   }
1010 }
1011 
1012 
1013 // Moves all stack values into their PHI position
1014 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1015   BlockBegin* bb = block();
1016   if (bb->number_of_sux() == 1) {
1017     BlockBegin* sux = bb->sux_at(0);
1018     assert(sux->number_of_preds() > 0, "invalid CFG");
1019 
1020     // a block with only one predecessor never has phi functions
1021     if (sux->number_of_preds() > 1) {
1022       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1023       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1024 
1025       ValueStack* sux_state = sux->state();
1026       Value sux_value;
1027       int index;
1028 
1029       assert(cur_state->scope() == sux_state->scope(), "not matching");
1030       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1031       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1032 
1033       for_each_stack_value(sux_state, index, sux_value) {
1034         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1035       }
1036 
1037       for_each_local_value(sux_state, index, sux_value) {
1038         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1039       }
1040 
1041       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1042     }
1043   }
1044 }
1045 
1046 
1047 LIR_Opr LIRGenerator::new_register(BasicType type) {
1048   int vreg = _virtual_register_number;
1049   // add a little fudge factor for the bailout, since the bailout is
1050   // only checked periodically.  This gives a few extra registers to
1051   // hand out before we really run out, which helps us keep from
1052   // tripping over assertions.
1053   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1054     bailout("out of virtual registers");
1055     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1056       // wrap it around
1057       _virtual_register_number = LIR_OprDesc::vreg_base;
1058     }
1059   }
1060   _virtual_register_number += 1;
1061   return LIR_OprFact::virtual_register(vreg, type);
1062 }
1063 
1064 
1065 // Try to lock using register in hint
1066 LIR_Opr LIRGenerator::rlock(Value instr) {
1067   return new_register(instr->type());
1068 }
1069 
1070 
1071 // does an rlock and sets result
1072 LIR_Opr LIRGenerator::rlock_result(Value x) {
1073   LIR_Opr reg = rlock(x);
1074   set_result(x, reg);
1075   return reg;
1076 }
1077 
1078 
1079 // does an rlock and sets result
1080 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1081   LIR_Opr reg;
1082   switch (type) {
1083   case T_BYTE:
1084   case T_BOOLEAN:
1085     reg = rlock_byte(type);
1086     break;
1087   default:
1088     reg = rlock(x);
1089     break;
1090   }
1091 
1092   set_result(x, reg);
1093   return reg;
1094 }
1095 
1096 
1097 //---------------------------------------------------------------------
1098 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1099   ObjectType* oc = value->type()->as_ObjectType();
1100   if (oc) {
1101     return oc->constant_value();
1102   }
1103   return NULL;
1104 }
1105 
1106 
1107 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1108   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1109   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1110 
1111   // no moves are created for phi functions at the begin of exception
1112   // handlers, so assign operands manually here
1113   for_each_phi_fun(block(), phi,
1114                    operand_for_instruction(phi));
1115 
1116   LIR_Opr thread_reg = getThreadPointer();
1117   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1118                exceptionOopOpr());
1119   __ move_wide(LIR_OprFact::oopConst(NULL),
1120                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1121   __ move_wide(LIR_OprFact::oopConst(NULL),
1122                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1123 
1124   LIR_Opr result = new_register(T_OBJECT);
1125   __ move(exceptionOopOpr(), result);
1126   set_result(x, result);
1127 }
1128 
1129 
1130 //----------------------------------------------------------------------
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //                        visitor functions
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 //----------------------------------------------------------------------
1139 
1140 void LIRGenerator::do_Phi(Phi* x) {
1141   // phi functions are never visited directly
1142   ShouldNotReachHere();
1143 }
1144 
1145 
1146 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1147 void LIRGenerator::do_Constant(Constant* x) {
1148   if (x->state_before() != NULL) {
1149     // Any constant with a ValueStack requires patching so emit the patch here
1150     LIR_Opr reg = rlock_result(x);
1151     CodeEmitInfo* info = state_for(x, x->state_before());
1152     __ oop2reg_patch(NULL, reg, info);
1153   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1154     if (!x->is_pinned()) {
1155       // unpinned constants are handled specially so that they can be
1156       // put into registers when they are used multiple times within a
1157       // block.  After the block completes their operand will be
1158       // cleared so that other blocks can't refer to that register.
1159       set_result(x, load_constant(x));
1160     } else {
1161       LIR_Opr res = x->operand();
1162       if (!res->is_valid()) {
1163         res = LIR_OprFact::value_type(x->type());
1164       }
1165       if (res->is_constant()) {
1166         LIR_Opr reg = rlock_result(x);
1167         __ move(res, reg);
1168       } else {
1169         set_result(x, res);
1170       }
1171     }
1172   } else {
1173     set_result(x, LIR_OprFact::value_type(x->type()));
1174   }
1175 }
1176 
1177 
1178 void LIRGenerator::do_Local(Local* x) {
1179   // operand_for_instruction has the side effect of setting the result
1180   // so there's no need to do it here.
1181   operand_for_instruction(x);
1182 }
1183 
1184 
1185 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1186   Unimplemented();
1187 }
1188 
1189 
1190 void LIRGenerator::do_Return(Return* x) {
1191   if (compilation()->env()->dtrace_method_probes()) {
1192     BasicTypeList signature;
1193     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1194     signature.append(T_METADATA); // Method*
1195     LIR_OprList* args = new LIR_OprList();
1196     args->append(getThreadPointer());
1197     LIR_Opr meth = new_register(T_METADATA);
1198     __ metadata2reg(method()->constant_encoding(), meth);
1199     args->append(meth);
1200     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1201   }
1202 
1203   if (x->type()->is_void()) {
1204     __ return_op(LIR_OprFact::illegalOpr);
1205   } else {
1206     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1207     LIRItem result(x->result(), this);
1208 
1209     result.load_item_force(reg);
1210     __ return_op(result.result());
1211   }
1212   set_no_result(x);
1213 }
1214 
1215 // Examble: ref.get()
1216 // Combination of LoadField and g1 pre-write barrier
1217 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1218 
1219   const int referent_offset = java_lang_ref_Reference::referent_offset;
1220   guarantee(referent_offset > 0, "referent offset not initialized");
1221 
1222   assert(x->number_of_arguments() == 1, "wrong type");
1223 
1224   LIRItem reference(x->argument_at(0), this);
1225   reference.load_item();
1226 
1227   // need to perform the null check on the reference objecy
1228   CodeEmitInfo* info = NULL;
1229   if (x->needs_null_check()) {
1230     info = state_for(x);
1231   }
1232 
1233   LIR_Address* referent_field_adr =
1234     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1235 
1236   LIR_Opr result = rlock_result(x);
1237 
1238   __ load(referent_field_adr, result, info);
1239 
1240   // Register the value in the referent field with the pre-barrier
1241   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1242               result /* pre_val */,
1243               false  /* do_load */,
1244               false  /* patch */,
1245               NULL   /* info */);
1246 }
1247 
1248 // Example: clazz.isInstance(object)
1249 void LIRGenerator::do_isInstance(Intrinsic* x) {
1250   assert(x->number_of_arguments() == 2, "wrong type");
1251 
1252   // TODO could try to substitute this node with an equivalent InstanceOf
1253   // if clazz is known to be a constant Class. This will pick up newly found
1254   // constants after HIR construction. I'll leave this to a future change.
1255 
1256   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1257   // could follow the aastore example in a future change.
1258 
1259   LIRItem clazz(x->argument_at(0), this);
1260   LIRItem object(x->argument_at(1), this);
1261   clazz.load_item();
1262   object.load_item();
1263   LIR_Opr result = rlock_result(x);
1264 
1265   // need to perform null check on clazz
1266   if (x->needs_null_check()) {
1267     CodeEmitInfo* info = state_for(x);
1268     __ null_check(clazz.result(), info);
1269   }
1270 
1271   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1272                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1273                                      x->type(),
1274                                      NULL); // NULL CodeEmitInfo results in a leaf call
1275   __ move(call_result, result);
1276 }
1277 
1278 // Example: object.getClass ()
1279 void LIRGenerator::do_getClass(Intrinsic* x) {
1280   assert(x->number_of_arguments() == 1, "wrong type");
1281 
1282   LIRItem rcvr(x->argument_at(0), this);
1283   rcvr.load_item();
1284   LIR_Opr temp = new_register(T_METADATA);
1285   LIR_Opr result = rlock_result(x);
1286 
1287   // need to perform the null check on the rcvr
1288   CodeEmitInfo* info = NULL;
1289   if (x->needs_null_check()) {
1290     info = state_for(x);
1291   }
1292 
1293   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1294   // meaning of these two is mixed up (see JDK-8026837).
1295   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1296   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1297 }
1298 
1299 // java.lang.Class::isPrimitive()
1300 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1301   assert(x->number_of_arguments() == 1, "wrong type");
1302 
1303   LIRItem rcvr(x->argument_at(0), this);
1304   rcvr.load_item();
1305   LIR_Opr temp = new_register(T_METADATA);
1306   LIR_Opr result = rlock_result(x);
1307 
1308   CodeEmitInfo* info = NULL;
1309   if (x->needs_null_check()) {
1310     info = state_for(x);
1311   }
1312 
1313   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1314   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1315   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1316 }
1317 
1318 
1319 // Example: Thread.currentThread()
1320 void LIRGenerator::do_currentThread(Intrinsic* x) {
1321   assert(x->number_of_arguments() == 0, "wrong type");
1322   LIR_Opr reg = rlock_result(x);
1323   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1324 }
1325 
1326 
1327 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1328   assert(x->number_of_arguments() == 1, "wrong type");
1329   LIRItem receiver(x->argument_at(0), this);
1330 
1331   receiver.load_item();
1332   BasicTypeList signature;
1333   signature.append(T_OBJECT); // receiver
1334   LIR_OprList* args = new LIR_OprList();
1335   args->append(receiver.result());
1336   CodeEmitInfo* info = state_for(x, x->state());
1337   call_runtime(&signature, args,
1338                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1339                voidType, info);
1340 
1341   set_no_result(x);
1342 }
1343 
1344 
1345 //------------------------local access--------------------------------------
1346 
1347 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1348   if (x->operand()->is_illegal()) {
1349     Constant* c = x->as_Constant();
1350     if (c != NULL) {
1351       x->set_operand(LIR_OprFact::value_type(c->type()));
1352     } else {
1353       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1354       // allocate a virtual register for this local or phi
1355       x->set_operand(rlock(x));
1356       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1357     }
1358   }
1359   return x->operand();
1360 }
1361 
1362 
1363 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1364   if (opr->is_virtual()) {
1365     return instruction_for_vreg(opr->vreg_number());
1366   }
1367   return NULL;
1368 }
1369 
1370 
1371 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1372   if (reg_num < _instruction_for_operand.length()) {
1373     return _instruction_for_operand.at(reg_num);
1374   }
1375   return NULL;
1376 }
1377 
1378 
1379 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1380   if (_vreg_flags.size_in_bits() == 0) {
1381     BitMap2D temp(100, num_vreg_flags);
1382     temp.clear();
1383     _vreg_flags = temp;
1384   }
1385   _vreg_flags.at_put_grow(vreg_num, f, true);
1386 }
1387 
1388 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1389   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1390     return false;
1391   }
1392   return _vreg_flags.at(vreg_num, f);
1393 }
1394 
1395 
1396 // Block local constant handling.  This code is useful for keeping
1397 // unpinned constants and constants which aren't exposed in the IR in
1398 // registers.  Unpinned Constant instructions have their operands
1399 // cleared when the block is finished so that other blocks can't end
1400 // up referring to their registers.
1401 
1402 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1403   assert(!x->is_pinned(), "only for unpinned constants");
1404   _unpinned_constants.append(x);
1405   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1406 }
1407 
1408 
1409 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1410   BasicType t = c->type();
1411   for (int i = 0; i < _constants.length(); i++) {
1412     LIR_Const* other = _constants.at(i);
1413     if (t == other->type()) {
1414       switch (t) {
1415       case T_INT:
1416       case T_FLOAT:
1417         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1418         break;
1419       case T_LONG:
1420       case T_DOUBLE:
1421         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1422         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1423         break;
1424       case T_OBJECT:
1425         if (c->as_jobject() != other->as_jobject()) continue;
1426         break;
1427       }
1428       return _reg_for_constants.at(i);
1429     }
1430   }
1431 
1432   LIR_Opr result = new_register(t);
1433   __ move((LIR_Opr)c, result);
1434   _constants.append(c);
1435   _reg_for_constants.append(result);
1436   return result;
1437 }
1438 
1439 // Various barriers
1440 
1441 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1442                                bool do_load, bool patch, CodeEmitInfo* info) {
1443   // Do the pre-write barrier, if any.
1444   switch (_bs->kind()) {
1445 #if INCLUDE_ALL_GCS
1446     case BarrierSet::G1SATBCTLogging:
1447       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1448       break;
1449 #endif // INCLUDE_ALL_GCS
1450     case BarrierSet::CardTableForRS:
1451     case BarrierSet::CardTableExtension:
1452       // No pre barriers
1453       break;
1454     case BarrierSet::ModRef:
1455       // No pre barriers
1456       break;
1457     default      :
1458       ShouldNotReachHere();
1459 
1460   }
1461 }
1462 
1463 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1464   switch (_bs->kind()) {
1465 #if INCLUDE_ALL_GCS
1466     case BarrierSet::G1SATBCTLogging:
1467       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1468       break;
1469 #endif // INCLUDE_ALL_GCS
1470     case BarrierSet::CardTableForRS:
1471     case BarrierSet::CardTableExtension:
1472       CardTableModRef_post_barrier(addr,  new_val);
1473       break;
1474     case BarrierSet::ModRef:
1475       // No post barriers
1476       break;
1477     default      :
1478       ShouldNotReachHere();
1479     }
1480 }
1481 
1482 ////////////////////////////////////////////////////////////////////////
1483 #if INCLUDE_ALL_GCS
1484 
1485 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1486                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1487   // First we test whether marking is in progress.
1488   BasicType flag_type;
1489   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1490     flag_type = T_INT;
1491   } else {
1492     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1493               "Assumption");
1494     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1495     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1496     flag_type = T_BOOLEAN;
1497   }
1498   LIR_Opr thrd = getThreadPointer();
1499   LIR_Address* mark_active_flag_addr =
1500     new LIR_Address(thrd,
1501                     in_bytes(JavaThread::satb_mark_queue_offset() +
1502                              SATBMarkQueue::byte_offset_of_active()),
1503                     flag_type);
1504   // Read the marking-in-progress flag.
1505   LIR_Opr flag_val = new_register(T_INT);
1506   __ load(mark_active_flag_addr, flag_val);
1507   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1508 
1509   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1510 
1511   CodeStub* slow;
1512 
1513   if (do_load) {
1514     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1515     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1516 
1517     if (patch)
1518       pre_val_patch_code = lir_patch_normal;
1519 
1520     pre_val = new_register(T_OBJECT);
1521 
1522     if (!addr_opr->is_address()) {
1523       assert(addr_opr->is_register(), "must be");
1524       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1525     }
1526     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1527   } else {
1528     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1529     assert(pre_val->is_register(), "must be");
1530     assert(pre_val->type() == T_OBJECT, "must be an object");
1531     assert(info == NULL, "sanity");
1532 
1533     slow = new G1PreBarrierStub(pre_val);
1534   }
1535 
1536   __ branch(lir_cond_notEqual, T_INT, slow);
1537   __ branch_destination(slow->continuation());
1538 }
1539 
1540 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1541   // If the "new_val" is a constant NULL, no barrier is necessary.
1542   if (new_val->is_constant() &&
1543       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1544 
1545   if (!new_val->is_register()) {
1546     LIR_Opr new_val_reg = new_register(T_OBJECT);
1547     if (new_val->is_constant()) {
1548       __ move(new_val, new_val_reg);
1549     } else {
1550       __ leal(new_val, new_val_reg);
1551     }
1552     new_val = new_val_reg;
1553   }
1554   assert(new_val->is_register(), "must be a register at this point");
1555 
1556   if (addr->is_address()) {
1557     LIR_Address* address = addr->as_address_ptr();
1558     LIR_Opr ptr = new_pointer_register();
1559     if (!address->index()->is_valid() && address->disp() == 0) {
1560       __ move(address->base(), ptr);
1561     } else {
1562       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1563       __ leal(addr, ptr);
1564     }
1565     addr = ptr;
1566   }
1567   assert(addr->is_register(), "must be a register at this point");
1568 
1569   LIR_Opr xor_res = new_pointer_register();
1570   LIR_Opr xor_shift_res = new_pointer_register();
1571   if (TwoOperandLIRForm ) {
1572     __ move(addr, xor_res);
1573     __ logical_xor(xor_res, new_val, xor_res);
1574     __ move(xor_res, xor_shift_res);
1575     __ unsigned_shift_right(xor_shift_res,
1576                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1577                             xor_shift_res,
1578                             LIR_OprDesc::illegalOpr());
1579   } else {
1580     __ logical_xor(addr, new_val, xor_res);
1581     __ unsigned_shift_right(xor_res,
1582                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1583                             xor_shift_res,
1584                             LIR_OprDesc::illegalOpr());
1585   }
1586 
1587   if (!new_val->is_register()) {
1588     LIR_Opr new_val_reg = new_register(T_OBJECT);
1589     __ leal(new_val, new_val_reg);
1590     new_val = new_val_reg;
1591   }
1592   assert(new_val->is_register(), "must be a register at this point");
1593 
1594   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1595 
1596   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1597   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1598   __ branch_destination(slow->continuation());
1599 }
1600 
1601 #endif // INCLUDE_ALL_GCS
1602 ////////////////////////////////////////////////////////////////////////
1603 
1604 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1605   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1606   assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1607   LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1608   if (addr->is_address()) {
1609     LIR_Address* address = addr->as_address_ptr();
1610     // ptr cannot be an object because we use this barrier for array card marks
1611     // and addr can point in the middle of an array.
1612     LIR_Opr ptr = new_pointer_register();
1613     if (!address->index()->is_valid() && address->disp() == 0) {
1614       __ move(address->base(), ptr);
1615     } else {
1616       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1617       __ leal(addr, ptr);
1618     }
1619     addr = ptr;
1620   }
1621   assert(addr->is_register(), "must be a register at this point");
1622 
1623 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1624   CardTableModRef_post_barrier_helper(addr, card_table_base);
1625 #else
1626   LIR_Opr tmp = new_pointer_register();
1627   if (TwoOperandLIRForm) {
1628     __ move(addr, tmp);
1629     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1630   } else {
1631     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1632   }
1633 
1634   LIR_Address* card_addr;
1635   if (can_inline_as_constant(card_table_base)) {
1636     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1637   } else {
1638     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1639   }
1640 
1641   LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1642   if (UseCondCardMark) {
1643     LIR_Opr cur_value = new_register(T_INT);
1644     if (UseConcMarkSweepGC) {
1645       __ membar_storeload();
1646     }
1647     __ move(card_addr, cur_value);
1648 
1649     LabelObj* L_already_dirty = new LabelObj();
1650     __ cmp(lir_cond_equal, cur_value, dirty);
1651     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1652     __ move(dirty, card_addr);
1653     __ branch_destination(L_already_dirty->label());
1654   } else {
1655     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1656       __ membar_storestore();
1657     }
1658     __ move(dirty, card_addr);
1659   }
1660 #endif
1661 }
1662 
1663 
1664 //------------------------field access--------------------------------------
1665 
1666 // Comment copied form templateTable_i486.cpp
1667 // ----------------------------------------------------------------------------
1668 // Volatile variables demand their effects be made known to all CPU's in
1669 // order.  Store buffers on most chips allow reads & writes to reorder; the
1670 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1671 // memory barrier (i.e., it's not sufficient that the interpreter does not
1672 // reorder volatile references, the hardware also must not reorder them).
1673 //
1674 // According to the new Java Memory Model (JMM):
1675 // (1) All volatiles are serialized wrt to each other.
1676 // ALSO reads & writes act as aquire & release, so:
1677 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1678 // the read float up to before the read.  It's OK for non-volatile memory refs
1679 // that happen before the volatile read to float down below it.
1680 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1681 // that happen BEFORE the write float down to after the write.  It's OK for
1682 // non-volatile memory refs that happen after the volatile write to float up
1683 // before it.
1684 //
1685 // We only put in barriers around volatile refs (they are expensive), not
1686 // _between_ memory refs (that would require us to track the flavor of the
1687 // previous memory refs).  Requirements (2) and (3) require some barriers
1688 // before volatile stores and after volatile loads.  These nearly cover
1689 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1690 // case is placed after volatile-stores although it could just as well go
1691 // before volatile-loads.
1692 
1693 
1694 void LIRGenerator::do_StoreField(StoreField* x) {
1695   bool needs_patching = x->needs_patching();
1696   bool is_volatile = x->field()->is_volatile();
1697   BasicType field_type = x->field_type();
1698   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1699 
1700   CodeEmitInfo* info = NULL;
1701   if (needs_patching) {
1702     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1703     info = state_for(x, x->state_before());
1704   } else if (x->needs_null_check()) {
1705     NullCheck* nc = x->explicit_null_check();
1706     if (nc == NULL) {
1707       info = state_for(x);
1708     } else {
1709       info = state_for(nc);
1710     }
1711   }
1712 
1713 
1714   LIRItem object(x->obj(), this);
1715   LIRItem value(x->value(),  this);
1716 
1717   object.load_item();
1718 
1719   if (is_volatile || needs_patching) {
1720     // load item if field is volatile (fewer special cases for volatiles)
1721     // load item if field not initialized
1722     // load item if field not constant
1723     // because of code patching we cannot inline constants
1724     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1725       value.load_byte_item();
1726     } else  {
1727       value.load_item();
1728     }
1729   } else {
1730     value.load_for_store(field_type);
1731   }
1732 
1733   set_no_result(x);
1734 
1735 #ifndef PRODUCT
1736   if (PrintNotLoaded && needs_patching) {
1737     tty->print_cr("   ###class not loaded at store_%s bci %d",
1738                   x->is_static() ?  "static" : "field", x->printable_bci());
1739   }
1740 #endif
1741 
1742   if (x->needs_null_check() &&
1743       (needs_patching ||
1744        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1745     // emit an explicit null check because the offset is too large
1746     __ null_check(object.result(), new CodeEmitInfo(info));
1747   }
1748 
1749   LIR_Address* address;
1750   if (needs_patching) {
1751     // we need to patch the offset in the instruction so don't allow
1752     // generate_address to try to be smart about emitting the -1.
1753     // Otherwise the patching code won't know how to find the
1754     // instruction to patch.
1755     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1756   } else {
1757     address = generate_address(object.result(), x->offset(), field_type);
1758   }
1759 
1760   if (is_volatile && os::is_MP()) {
1761     __ membar_release();
1762   }
1763 
1764   if (is_oop) {
1765     // Do the pre-write barrier, if any.
1766     pre_barrier(LIR_OprFact::address(address),
1767                 LIR_OprFact::illegalOpr /* pre_val */,
1768                 true /* do_load*/,
1769                 needs_patching,
1770                 (info ? new CodeEmitInfo(info) : NULL));
1771   }
1772 
1773   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1774   if (needs_atomic_access && !needs_patching) {
1775     volatile_field_store(value.result(), address, info);
1776   } else {
1777     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1778     __ store(value.result(), address, info, patch_code);
1779   }
1780 
1781   if (is_oop) {
1782     // Store to object so mark the card of the header
1783     post_barrier(object.result(), value.result());
1784   }
1785 
1786   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1787     __ membar();
1788   }
1789 }
1790 
1791 
1792 void LIRGenerator::do_LoadField(LoadField* x) {
1793   bool needs_patching = x->needs_patching();
1794   bool is_volatile = x->field()->is_volatile();
1795   BasicType field_type = x->field_type();
1796 
1797   CodeEmitInfo* info = NULL;
1798   if (needs_patching) {
1799     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1800     info = state_for(x, x->state_before());
1801   } else if (x->needs_null_check()) {
1802     NullCheck* nc = x->explicit_null_check();
1803     if (nc == NULL) {
1804       info = state_for(x);
1805     } else {
1806       info = state_for(nc);
1807     }
1808   }
1809 
1810   LIRItem object(x->obj(), this);
1811 
1812   object.load_item();
1813 
1814 #ifndef PRODUCT
1815   if (PrintNotLoaded && needs_patching) {
1816     tty->print_cr("   ###class not loaded at load_%s bci %d",
1817                   x->is_static() ?  "static" : "field", x->printable_bci());
1818   }
1819 #endif
1820 
1821   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1822   if (x->needs_null_check() &&
1823       (needs_patching ||
1824        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1825        stress_deopt)) {
1826     LIR_Opr obj = object.result();
1827     if (stress_deopt) {
1828       obj = new_register(T_OBJECT);
1829       __ move(LIR_OprFact::oopConst(NULL), obj);
1830     }
1831     // emit an explicit null check because the offset is too large
1832     __ null_check(obj, new CodeEmitInfo(info));
1833   }
1834 
1835   LIR_Opr reg = rlock_result(x, field_type);
1836   LIR_Address* address;
1837   if (needs_patching) {
1838     // we need to patch the offset in the instruction so don't allow
1839     // generate_address to try to be smart about emitting the -1.
1840     // Otherwise the patching code won't know how to find the
1841     // instruction to patch.
1842     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1843   } else {
1844     address = generate_address(object.result(), x->offset(), field_type);
1845   }
1846 
1847   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1848     __ membar();
1849   }
1850 
1851   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1852   if (needs_atomic_access && !needs_patching) {
1853     volatile_field_load(address, reg, info);
1854   } else {
1855     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1856     __ load(address, reg, info, patch_code);
1857   }
1858 
1859   if (is_volatile && os::is_MP()) {
1860     __ membar_acquire();
1861   }
1862 }
1863 
1864 
1865 //------------------------java.nio.Buffer.checkIndex------------------------
1866 
1867 // int java.nio.Buffer.checkIndex(int)
1868 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1869   // NOTE: by the time we are in checkIndex() we are guaranteed that
1870   // the buffer is non-null (because checkIndex is package-private and
1871   // only called from within other methods in the buffer).
1872   assert(x->number_of_arguments() == 2, "wrong type");
1873   LIRItem buf  (x->argument_at(0), this);
1874   LIRItem index(x->argument_at(1), this);
1875   buf.load_item();
1876   index.load_item();
1877 
1878   LIR_Opr result = rlock_result(x);
1879   if (GenerateRangeChecks) {
1880     CodeEmitInfo* info = state_for(x);
1881     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1882     if (index.result()->is_constant()) {
1883       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1884       __ branch(lir_cond_belowEqual, T_INT, stub);
1885     } else {
1886       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1887                   java_nio_Buffer::limit_offset(), T_INT, info);
1888       __ branch(lir_cond_aboveEqual, T_INT, stub);
1889     }
1890     __ move(index.result(), result);
1891   } else {
1892     // Just load the index into the result register
1893     __ move(index.result(), result);
1894   }
1895 }
1896 
1897 
1898 //------------------------array access--------------------------------------
1899 
1900 
1901 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1902   LIRItem array(x->array(), this);
1903   array.load_item();
1904   LIR_Opr reg = rlock_result(x);
1905 
1906   CodeEmitInfo* info = NULL;
1907   if (x->needs_null_check()) {
1908     NullCheck* nc = x->explicit_null_check();
1909     if (nc == NULL) {
1910       info = state_for(x);
1911     } else {
1912       info = state_for(nc);
1913     }
1914     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1915       LIR_Opr obj = new_register(T_OBJECT);
1916       __ move(LIR_OprFact::oopConst(NULL), obj);
1917       __ null_check(obj, new CodeEmitInfo(info));
1918     }
1919   }
1920   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1921 }
1922 
1923 
1924 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1925   bool use_length = x->length() != NULL;
1926   LIRItem array(x->array(), this);
1927   LIRItem index(x->index(), this);
1928   LIRItem length(this);
1929   bool needs_range_check = x->compute_needs_range_check();
1930 
1931   if (use_length && needs_range_check) {
1932     length.set_instruction(x->length());
1933     length.load_item();
1934   }
1935 
1936   array.load_item();
1937   if (index.is_constant() && can_inline_as_constant(x->index())) {
1938     // let it be a constant
1939     index.dont_load_item();
1940   } else {
1941     index.load_item();
1942   }
1943 
1944   CodeEmitInfo* range_check_info = state_for(x);
1945   CodeEmitInfo* null_check_info = NULL;
1946   if (x->needs_null_check()) {
1947     NullCheck* nc = x->explicit_null_check();
1948     if (nc != NULL) {
1949       null_check_info = state_for(nc);
1950     } else {
1951       null_check_info = range_check_info;
1952     }
1953     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1954       LIR_Opr obj = new_register(T_OBJECT);
1955       __ move(LIR_OprFact::oopConst(NULL), obj);
1956       __ null_check(obj, new CodeEmitInfo(null_check_info));
1957     }
1958   }
1959 
1960   // emit array address setup early so it schedules better
1961   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1962 
1963   if (GenerateRangeChecks && needs_range_check) {
1964     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1965       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1966     } else if (use_length) {
1967       // TODO: use a (modified) version of array_range_check that does not require a
1968       //       constant length to be loaded to a register
1969       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1970       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1971     } else {
1972       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1973       // The range check performs the null check, so clear it out for the load
1974       null_check_info = NULL;
1975     }
1976   }
1977 
1978   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1979 }
1980 
1981 
1982 void LIRGenerator::do_NullCheck(NullCheck* x) {
1983   if (x->can_trap()) {
1984     LIRItem value(x->obj(), this);
1985     value.load_item();
1986     CodeEmitInfo* info = state_for(x);
1987     __ null_check(value.result(), info);
1988   }
1989 }
1990 
1991 
1992 void LIRGenerator::do_TypeCast(TypeCast* x) {
1993   LIRItem value(x->obj(), this);
1994   value.load_item();
1995   // the result is the same as from the node we are casting
1996   set_result(x, value.result());
1997 }
1998 
1999 
2000 void LIRGenerator::do_Throw(Throw* x) {
2001   LIRItem exception(x->exception(), this);
2002   exception.load_item();
2003   set_no_result(x);
2004   LIR_Opr exception_opr = exception.result();
2005   CodeEmitInfo* info = state_for(x, x->state());
2006 
2007 #ifndef PRODUCT
2008   if (PrintC1Statistics) {
2009     increment_counter(Runtime1::throw_count_address(), T_INT);
2010   }
2011 #endif
2012 
2013   // check if the instruction has an xhandler in any of the nested scopes
2014   bool unwind = false;
2015   if (info->exception_handlers()->length() == 0) {
2016     // this throw is not inside an xhandler
2017     unwind = true;
2018   } else {
2019     // get some idea of the throw type
2020     bool type_is_exact = true;
2021     ciType* throw_type = x->exception()->exact_type();
2022     if (throw_type == NULL) {
2023       type_is_exact = false;
2024       throw_type = x->exception()->declared_type();
2025     }
2026     if (throw_type != NULL && throw_type->is_instance_klass()) {
2027       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2028       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2029     }
2030   }
2031 
2032   // do null check before moving exception oop into fixed register
2033   // to avoid a fixed interval with an oop during the null check.
2034   // Use a copy of the CodeEmitInfo because debug information is
2035   // different for null_check and throw.
2036   if (GenerateCompilerNullChecks &&
2037       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2038     // if the exception object wasn't created using new then it might be null.
2039     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2040   }
2041 
2042   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2043     // we need to go through the exception lookup path to get JVMTI
2044     // notification done
2045     unwind = false;
2046   }
2047 
2048   // move exception oop into fixed register
2049   __ move(exception_opr, exceptionOopOpr());
2050 
2051   if (unwind) {
2052     __ unwind_exception(exceptionOopOpr());
2053   } else {
2054     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2055   }
2056 }
2057 
2058 
2059 void LIRGenerator::do_RoundFP(RoundFP* x) {
2060   LIRItem input(x->input(), this);
2061   input.load_item();
2062   LIR_Opr input_opr = input.result();
2063   assert(input_opr->is_register(), "why round if value is not in a register?");
2064   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2065   if (input_opr->is_single_fpu()) {
2066     set_result(x, round_item(input_opr)); // This code path not currently taken
2067   } else {
2068     LIR_Opr result = new_register(T_DOUBLE);
2069     set_vreg_flag(result, must_start_in_memory);
2070     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2071     set_result(x, result);
2072   }
2073 }
2074 
2075 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2076 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2077 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2078   LIRItem base(x->base(), this);
2079   LIRItem idx(this);
2080 
2081   base.load_item();
2082   if (x->has_index()) {
2083     idx.set_instruction(x->index());
2084     idx.load_nonconstant();
2085   }
2086 
2087   LIR_Opr reg = rlock_result(x, x->basic_type());
2088 
2089   int   log2_scale = 0;
2090   if (x->has_index()) {
2091     log2_scale = x->log2_scale();
2092   }
2093 
2094   assert(!x->has_index() || idx.value() == x->index(), "should match");
2095 
2096   LIR_Opr base_op = base.result();
2097   LIR_Opr index_op = idx.result();
2098 #ifndef _LP64
2099   if (base_op->type() == T_LONG) {
2100     base_op = new_register(T_INT);
2101     __ convert(Bytecodes::_l2i, base.result(), base_op);
2102   }
2103   if (x->has_index()) {
2104     if (index_op->type() == T_LONG) {
2105       LIR_Opr long_index_op = index_op;
2106       if (index_op->is_constant()) {
2107         long_index_op = new_register(T_LONG);
2108         __ move(index_op, long_index_op);
2109       }
2110       index_op = new_register(T_INT);
2111       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2112     } else {
2113       assert(x->index()->type()->tag() == intTag, "must be");
2114     }
2115   }
2116   // At this point base and index should be all ints.
2117   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2118   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2119 #else
2120   if (x->has_index()) {
2121     if (index_op->type() == T_INT) {
2122       if (!index_op->is_constant()) {
2123         index_op = new_register(T_LONG);
2124         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2125       }
2126     } else {
2127       assert(index_op->type() == T_LONG, "must be");
2128       if (index_op->is_constant()) {
2129         index_op = new_register(T_LONG);
2130         __ move(idx.result(), index_op);
2131       }
2132     }
2133   }
2134   // At this point base is a long non-constant
2135   // Index is a long register or a int constant.
2136   // We allow the constant to stay an int because that would allow us a more compact encoding by
2137   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2138   // move it into a register first.
2139   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2140   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2141                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2142 #endif
2143 
2144   BasicType dst_type = x->basic_type();
2145 
2146   LIR_Address* addr;
2147   if (index_op->is_constant()) {
2148     assert(log2_scale == 0, "must not have a scale");
2149     assert(index_op->type() == T_INT, "only int constants supported");
2150     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2151   } else {
2152 #ifdef X86
2153     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2154 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2155     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2156 #else
2157     if (index_op->is_illegal() || log2_scale == 0) {
2158       addr = new LIR_Address(base_op, index_op, dst_type);
2159     } else {
2160       LIR_Opr tmp = new_pointer_register();
2161       __ shift_left(index_op, log2_scale, tmp);
2162       addr = new LIR_Address(base_op, tmp, dst_type);
2163     }
2164 #endif
2165   }
2166 
2167   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2168     __ unaligned_move(addr, reg);
2169   } else {
2170     if (dst_type == T_OBJECT && x->is_wide()) {
2171       __ move_wide(addr, reg);
2172     } else {
2173       __ move(addr, reg);
2174     }
2175   }
2176 }
2177 
2178 
2179 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2180   int  log2_scale = 0;
2181   BasicType type = x->basic_type();
2182 
2183   if (x->has_index()) {
2184     log2_scale = x->log2_scale();
2185   }
2186 
2187   LIRItem base(x->base(), this);
2188   LIRItem value(x->value(), this);
2189   LIRItem idx(this);
2190 
2191   base.load_item();
2192   if (x->has_index()) {
2193     idx.set_instruction(x->index());
2194     idx.load_item();
2195   }
2196 
2197   if (type == T_BYTE || type == T_BOOLEAN) {
2198     value.load_byte_item();
2199   } else {
2200     value.load_item();
2201   }
2202 
2203   set_no_result(x);
2204 
2205   LIR_Opr base_op = base.result();
2206   LIR_Opr index_op = idx.result();
2207 
2208 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2209   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2210 #else
2211 #ifndef _LP64
2212   if (base_op->type() == T_LONG) {
2213     base_op = new_register(T_INT);
2214     __ convert(Bytecodes::_l2i, base.result(), base_op);
2215   }
2216   if (x->has_index()) {
2217     if (index_op->type() == T_LONG) {
2218       index_op = new_register(T_INT);
2219       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2220     }
2221   }
2222   // At this point base and index should be all ints and not constants
2223   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2224   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2225 #else
2226   if (x->has_index()) {
2227     if (index_op->type() == T_INT) {
2228       index_op = new_register(T_LONG);
2229       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2230     }
2231   }
2232   // At this point base and index are long and non-constant
2233   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2234   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2235 #endif
2236 
2237   if (log2_scale != 0) {
2238     // temporary fix (platform dependent code without shift on Intel would be better)
2239     // TODO: ARM also allows embedded shift in the address
2240     LIR_Opr tmp = new_pointer_register();
2241     if (TwoOperandLIRForm) {
2242       __ move(index_op, tmp);
2243       index_op = tmp;
2244     }
2245     __ shift_left(index_op, log2_scale, tmp);
2246     if (!TwoOperandLIRForm) {
2247       index_op = tmp;
2248     }
2249   }
2250 
2251   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2252 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2253   __ move(value.result(), addr);
2254 }
2255 
2256 
2257 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2258   BasicType type = x->basic_type();
2259   LIRItem src(x->object(), this);
2260   LIRItem off(x->offset(), this);
2261 
2262   off.load_item();
2263   src.load_item();
2264 
2265   LIR_Opr value = rlock_result(x, x->basic_type());
2266 
2267   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2268     __ membar();
2269   }
2270 
2271   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2272 
2273 #if INCLUDE_ALL_GCS
2274   // We might be reading the value of the referent field of a
2275   // Reference object in order to attach it back to the live
2276   // object graph. If G1 is enabled then we need to record
2277   // the value that is being returned in an SATB log buffer.
2278   //
2279   // We need to generate code similar to the following...
2280   //
2281   // if (offset == java_lang_ref_Reference::referent_offset) {
2282   //   if (src != NULL) {
2283   //     if (klass(src)->reference_type() != REF_NONE) {
2284   //       pre_barrier(..., value, ...);
2285   //     }
2286   //   }
2287   // }
2288 
2289   if (UseG1GC && type == T_OBJECT) {
2290     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2291     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2292     bool gen_source_check = true;    // Assume we need to check the src object for null.
2293     bool gen_type_check = true;      // Assume we need to check the reference_type.
2294 
2295     if (off.is_constant()) {
2296       jlong off_con = (off.type()->is_int() ?
2297                         (jlong) off.get_jint_constant() :
2298                         off.get_jlong_constant());
2299 
2300 
2301       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2302         // The constant offset is something other than referent_offset.
2303         // We can skip generating/checking the remaining guards and
2304         // skip generation of the code stub.
2305         gen_pre_barrier = false;
2306       } else {
2307         // The constant offset is the same as referent_offset -
2308         // we do not need to generate a runtime offset check.
2309         gen_offset_check = false;
2310       }
2311     }
2312 
2313     // We don't need to generate stub if the source object is an array
2314     if (gen_pre_barrier && src.type()->is_array()) {
2315       gen_pre_barrier = false;
2316     }
2317 
2318     if (gen_pre_barrier) {
2319       // We still need to continue with the checks.
2320       if (src.is_constant()) {
2321         ciObject* src_con = src.get_jobject_constant();
2322         guarantee(src_con != NULL, "no source constant");
2323 
2324         if (src_con->is_null_object()) {
2325           // The constant src object is null - We can skip
2326           // generating the code stub.
2327           gen_pre_barrier = false;
2328         } else {
2329           // Non-null constant source object. We still have to generate
2330           // the slow stub - but we don't need to generate the runtime
2331           // null object check.
2332           gen_source_check = false;
2333         }
2334       }
2335     }
2336     if (gen_pre_barrier && !PatchALot) {
2337       // Can the klass of object be statically determined to be
2338       // a sub-class of Reference?
2339       ciType* type = src.value()->declared_type();
2340       if ((type != NULL) && type->is_loaded()) {
2341         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2342           gen_type_check = false;
2343         } else if (type->is_klass() &&
2344                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2345           // Not Reference and not Object klass.
2346           gen_pre_barrier = false;
2347         }
2348       }
2349     }
2350 
2351     if (gen_pre_barrier) {
2352       LabelObj* Lcont = new LabelObj();
2353 
2354       // We can have generate one runtime check here. Let's start with
2355       // the offset check.
2356       if (gen_offset_check) {
2357         // if (offset != referent_offset) -> continue
2358         // If offset is an int then we can do the comparison with the
2359         // referent_offset constant; otherwise we need to move
2360         // referent_offset into a temporary register and generate
2361         // a reg-reg compare.
2362 
2363         LIR_Opr referent_off;
2364 
2365         if (off.type()->is_int()) {
2366           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2367         } else {
2368           assert(off.type()->is_long(), "what else?");
2369           referent_off = new_register(T_LONG);
2370           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2371         }
2372         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2373         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2374       }
2375       if (gen_source_check) {
2376         // offset is a const and equals referent offset
2377         // if (source == null) -> continue
2378         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2379         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2380       }
2381       LIR_Opr src_klass = new_register(T_OBJECT);
2382       if (gen_type_check) {
2383         // We have determined that offset == referent_offset && src != null.
2384         // if (src->_klass->_reference_type == REF_NONE) -> continue
2385         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2386         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2387         LIR_Opr reference_type = new_register(T_INT);
2388         __ move(reference_type_addr, reference_type);
2389         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2390         __ branch(lir_cond_equal, T_INT, Lcont->label());
2391       }
2392       {
2393         // We have determined that src->_klass->_reference_type != REF_NONE
2394         // so register the value in the referent field with the pre-barrier.
2395         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2396                     value  /* pre_val */,
2397                     false  /* do_load */,
2398                     false  /* patch */,
2399                     NULL   /* info */);
2400       }
2401       __ branch_destination(Lcont->label());
2402     }
2403   }
2404 #endif // INCLUDE_ALL_GCS
2405 
2406   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2407 }
2408 
2409 
2410 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2411   BasicType type = x->basic_type();
2412   LIRItem src(x->object(), this);
2413   LIRItem off(x->offset(), this);
2414   LIRItem data(x->value(), this);
2415 
2416   src.load_item();
2417   if (type == T_BOOLEAN || type == T_BYTE) {
2418     data.load_byte_item();
2419   } else {
2420     data.load_item();
2421   }
2422   off.load_item();
2423 
2424   set_no_result(x);
2425 
2426   if (x->is_volatile() && os::is_MP()) __ membar_release();
2427   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2428   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2429 }
2430 
2431 
2432 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2433   int lng = x->length();
2434 
2435   for (int i = 0; i < lng; i++) {
2436     SwitchRange* one_range = x->at(i);
2437     int low_key = one_range->low_key();
2438     int high_key = one_range->high_key();
2439     BlockBegin* dest = one_range->sux();
2440     if (low_key == high_key) {
2441       __ cmp(lir_cond_equal, value, low_key);
2442       __ branch(lir_cond_equal, T_INT, dest);
2443     } else if (high_key - low_key == 1) {
2444       __ cmp(lir_cond_equal, value, low_key);
2445       __ branch(lir_cond_equal, T_INT, dest);
2446       __ cmp(lir_cond_equal, value, high_key);
2447       __ branch(lir_cond_equal, T_INT, dest);
2448     } else {
2449       LabelObj* L = new LabelObj();
2450       __ cmp(lir_cond_less, value, low_key);
2451       __ branch(lir_cond_less, T_INT, L->label());
2452       __ cmp(lir_cond_lessEqual, value, high_key);
2453       __ branch(lir_cond_lessEqual, T_INT, dest);
2454       __ branch_destination(L->label());
2455     }
2456   }
2457   __ jump(default_sux);
2458 }
2459 
2460 
2461 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2462   SwitchRangeList* res = new SwitchRangeList();
2463   int len = x->length();
2464   if (len > 0) {
2465     BlockBegin* sux = x->sux_at(0);
2466     int key = x->lo_key();
2467     BlockBegin* default_sux = x->default_sux();
2468     SwitchRange* range = new SwitchRange(key, sux);
2469     for (int i = 0; i < len; i++, key++) {
2470       BlockBegin* new_sux = x->sux_at(i);
2471       if (sux == new_sux) {
2472         // still in same range
2473         range->set_high_key(key);
2474       } else {
2475         // skip tests which explicitly dispatch to the default
2476         if (sux != default_sux) {
2477           res->append(range);
2478         }
2479         range = new SwitchRange(key, new_sux);
2480       }
2481       sux = new_sux;
2482     }
2483     if (res->length() == 0 || res->last() != range)  res->append(range);
2484   }
2485   return res;
2486 }
2487 
2488 
2489 // we expect the keys to be sorted by increasing value
2490 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2491   SwitchRangeList* res = new SwitchRangeList();
2492   int len = x->length();
2493   if (len > 0) {
2494     BlockBegin* default_sux = x->default_sux();
2495     int key = x->key_at(0);
2496     BlockBegin* sux = x->sux_at(0);
2497     SwitchRange* range = new SwitchRange(key, sux);
2498     for (int i = 1; i < len; i++) {
2499       int new_key = x->key_at(i);
2500       BlockBegin* new_sux = x->sux_at(i);
2501       if (key+1 == new_key && sux == new_sux) {
2502         // still in same range
2503         range->set_high_key(new_key);
2504       } else {
2505         // skip tests which explicitly dispatch to the default
2506         if (range->sux() != default_sux) {
2507           res->append(range);
2508         }
2509         range = new SwitchRange(new_key, new_sux);
2510       }
2511       key = new_key;
2512       sux = new_sux;
2513     }
2514     if (res->length() == 0 || res->last() != range)  res->append(range);
2515   }
2516   return res;
2517 }
2518 
2519 
2520 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2521   LIRItem tag(x->tag(), this);
2522   tag.load_item();
2523   set_no_result(x);
2524 
2525   if (x->is_safepoint()) {
2526     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2527   }
2528 
2529   // move values into phi locations
2530   move_to_phi(x->state());
2531 
2532   int lo_key = x->lo_key();
2533   int hi_key = x->hi_key();
2534   int len = x->length();
2535   LIR_Opr value = tag.result();
2536   if (UseTableRanges) {
2537     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2538   } else {
2539     for (int i = 0; i < len; i++) {
2540       __ cmp(lir_cond_equal, value, i + lo_key);
2541       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2542     }
2543     __ jump(x->default_sux());
2544   }
2545 }
2546 
2547 
2548 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2549   LIRItem tag(x->tag(), this);
2550   tag.load_item();
2551   set_no_result(x);
2552 
2553   if (x->is_safepoint()) {
2554     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2555   }
2556 
2557   // move values into phi locations
2558   move_to_phi(x->state());
2559 
2560   LIR_Opr value = tag.result();
2561   if (UseTableRanges) {
2562     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2563   } else {
2564     int len = x->length();
2565     for (int i = 0; i < len; i++) {
2566       __ cmp(lir_cond_equal, value, x->key_at(i));
2567       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2568     }
2569     __ jump(x->default_sux());
2570   }
2571 }
2572 
2573 
2574 void LIRGenerator::do_Goto(Goto* x) {
2575   set_no_result(x);
2576 
2577   if (block()->next()->as_OsrEntry()) {
2578     // need to free up storage used for OSR entry point
2579     LIR_Opr osrBuffer = block()->next()->operand();
2580     BasicTypeList signature;
2581     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2582     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2583     __ move(osrBuffer, cc->args()->at(0));
2584     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2585                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2586   }
2587 
2588   if (x->is_safepoint()) {
2589     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2590 
2591     // increment backedge counter if needed
2592     CodeEmitInfo* info = state_for(x, state);
2593     increment_backedge_counter(info, x->profiled_bci());
2594     CodeEmitInfo* safepoint_info = state_for(x, state);
2595     __ safepoint(safepoint_poll_register(), safepoint_info);
2596   }
2597 
2598   // Gotos can be folded Ifs, handle this case.
2599   if (x->should_profile()) {
2600     ciMethod* method = x->profiled_method();
2601     assert(method != NULL, "method should be set if branch is profiled");
2602     ciMethodData* md = method->method_data_or_null();
2603     assert(md != NULL, "Sanity");
2604     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2605     assert(data != NULL, "must have profiling data");
2606     int offset;
2607     if (x->direction() == Goto::taken) {
2608       assert(data->is_BranchData(), "need BranchData for two-way branches");
2609       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2610     } else if (x->direction() == Goto::not_taken) {
2611       assert(data->is_BranchData(), "need BranchData for two-way branches");
2612       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2613     } else {
2614       assert(data->is_JumpData(), "need JumpData for branches");
2615       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2616     }
2617     LIR_Opr md_reg = new_register(T_METADATA);
2618     __ metadata2reg(md->constant_encoding(), md_reg);
2619 
2620     increment_counter(new LIR_Address(md_reg, offset,
2621                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2622   }
2623 
2624   // emit phi-instruction move after safepoint since this simplifies
2625   // describing the state as the safepoint.
2626   move_to_phi(x->state());
2627 
2628   __ jump(x->default_sux());
2629 }
2630 
2631 /**
2632  * Emit profiling code if needed for arguments, parameters, return value types
2633  *
2634  * @param md                    MDO the code will update at runtime
2635  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2636  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2637  * @param profiled_k            current profile
2638  * @param obj                   IR node for the object to be profiled
2639  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2640  *                              Set once we find an update to make and use for next ones.
2641  * @param not_null              true if we know obj cannot be null
2642  * @param signature_at_call_k   signature at call for obj
2643  * @param callee_signature_k    signature of callee for obj
2644  *                              at call and callee signatures differ at method handle call
2645  * @return                      the only klass we know will ever be seen at this profile point
2646  */
2647 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2648                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2649                                     ciKlass* callee_signature_k) {
2650   ciKlass* result = NULL;
2651   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2652   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2653   // known not to be null or null bit already set and already set to
2654   // unknown: nothing we can do to improve profiling
2655   if (!do_null && !do_update) {
2656     return result;
2657   }
2658 
2659   ciKlass* exact_klass = NULL;
2660   Compilation* comp = Compilation::current();
2661   if (do_update) {
2662     // try to find exact type, using CHA if possible, so that loading
2663     // the klass from the object can be avoided
2664     ciType* type = obj->exact_type();
2665     if (type == NULL) {
2666       type = obj->declared_type();
2667       type = comp->cha_exact_type(type);
2668     }
2669     assert(type == NULL || type->is_klass(), "type should be class");
2670     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2671 
2672     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2673   }
2674 
2675   if (!do_null && !do_update) {
2676     return result;
2677   }
2678 
2679   ciKlass* exact_signature_k = NULL;
2680   if (do_update) {
2681     // Is the type from the signature exact (the only one possible)?
2682     exact_signature_k = signature_at_call_k->exact_klass();
2683     if (exact_signature_k == NULL) {
2684       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2685     } else {
2686       result = exact_signature_k;
2687       // Known statically. No need to emit any code: prevent
2688       // LIR_Assembler::emit_profile_type() from emitting useless code
2689       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2690     }
2691     // exact_klass and exact_signature_k can be both non NULL but
2692     // different if exact_klass is loaded after the ciObject for
2693     // exact_signature_k is created.
2694     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2695       // sometimes the type of the signature is better than the best type
2696       // the compiler has
2697       exact_klass = exact_signature_k;
2698     }
2699     if (callee_signature_k != NULL &&
2700         callee_signature_k != signature_at_call_k) {
2701       ciKlass* improved_klass = callee_signature_k->exact_klass();
2702       if (improved_klass == NULL) {
2703         improved_klass = comp->cha_exact_type(callee_signature_k);
2704       }
2705       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2706         exact_klass = exact_signature_k;
2707       }
2708     }
2709     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2710   }
2711 
2712   if (!do_null && !do_update) {
2713     return result;
2714   }
2715 
2716   if (mdp == LIR_OprFact::illegalOpr) {
2717     mdp = new_register(T_METADATA);
2718     __ metadata2reg(md->constant_encoding(), mdp);
2719     if (md_base_offset != 0) {
2720       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2721       mdp = new_pointer_register();
2722       __ leal(LIR_OprFact::address(base_type_address), mdp);
2723     }
2724   }
2725   LIRItem value(obj, this);
2726   value.load_item();
2727   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2728                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2729   return result;
2730 }
2731 
2732 // profile parameters on entry to the root of the compilation
2733 void LIRGenerator::profile_parameters(Base* x) {
2734   if (compilation()->profile_parameters()) {
2735     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2736     ciMethodData* md = scope()->method()->method_data_or_null();
2737     assert(md != NULL, "Sanity");
2738 
2739     if (md->parameters_type_data() != NULL) {
2740       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2741       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2742       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2743       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2744         LIR_Opr src = args->at(i);
2745         assert(!src->is_illegal(), "check");
2746         BasicType t = src->type();
2747         if (t == T_OBJECT || t == T_ARRAY) {
2748           intptr_t profiled_k = parameters->type(j);
2749           Local* local = x->state()->local_at(java_index)->as_Local();
2750           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2751                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2752                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2753           // If the profile is known statically set it once for all and do not emit any code
2754           if (exact != NULL) {
2755             md->set_parameter_type(j, exact);
2756           }
2757           j++;
2758         }
2759         java_index += type2size[t];
2760       }
2761     }
2762   }
2763 }
2764 
2765 void LIRGenerator::do_Base(Base* x) {
2766   __ std_entry(LIR_OprFact::illegalOpr);
2767   // Emit moves from physical registers / stack slots to virtual registers
2768   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2769   IRScope* irScope = compilation()->hir()->top_scope();
2770   int java_index = 0;
2771   for (int i = 0; i < args->length(); i++) {
2772     LIR_Opr src = args->at(i);
2773     assert(!src->is_illegal(), "check");
2774     BasicType t = src->type();
2775 
2776     // Types which are smaller than int are passed as int, so
2777     // correct the type which passed.
2778     switch (t) {
2779     case T_BYTE:
2780     case T_BOOLEAN:
2781     case T_SHORT:
2782     case T_CHAR:
2783       t = T_INT;
2784       break;
2785     }
2786 
2787     LIR_Opr dest = new_register(t);
2788     __ move(src, dest);
2789 
2790     // Assign new location to Local instruction for this local
2791     Local* local = x->state()->local_at(java_index)->as_Local();
2792     assert(local != NULL, "Locals for incoming arguments must have been created");
2793 #ifndef __SOFTFP__
2794     // The java calling convention passes double as long and float as int.
2795     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2796 #endif // __SOFTFP__
2797     local->set_operand(dest);
2798     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2799     java_index += type2size[t];
2800   }
2801 
2802   if (compilation()->env()->dtrace_method_probes()) {
2803     BasicTypeList signature;
2804     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2805     signature.append(T_METADATA); // Method*
2806     LIR_OprList* args = new LIR_OprList();
2807     args->append(getThreadPointer());
2808     LIR_Opr meth = new_register(T_METADATA);
2809     __ metadata2reg(method()->constant_encoding(), meth);
2810     args->append(meth);
2811     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2812   }
2813 
2814   if (method()->is_synchronized()) {
2815     LIR_Opr obj;
2816     if (method()->is_static()) {
2817       obj = new_register(T_OBJECT);
2818       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2819     } else {
2820       Local* receiver = x->state()->local_at(0)->as_Local();
2821       assert(receiver != NULL, "must already exist");
2822       obj = receiver->operand();
2823     }
2824     assert(obj->is_valid(), "must be valid");
2825 
2826     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2827       LIR_Opr lock = syncLockOpr();
2828       __ load_stack_address_monitor(0, lock);
2829 
2830       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2831       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2832 
2833       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2834       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2835     }
2836   }
2837   if (compilation()->age_code()) {
2838     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2839     decrement_age(info);
2840   }
2841   // increment invocation counters if needed
2842   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2843     profile_parameters(x);
2844     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2845     increment_invocation_counter(info);
2846   }
2847 
2848   // all blocks with a successor must end with an unconditional jump
2849   // to the successor even if they are consecutive
2850   __ jump(x->default_sux());
2851 }
2852 
2853 
2854 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2855   // construct our frame and model the production of incoming pointer
2856   // to the OSR buffer.
2857   __ osr_entry(LIR_Assembler::osrBufferPointer());
2858   LIR_Opr result = rlock_result(x);
2859   __ move(LIR_Assembler::osrBufferPointer(), result);
2860 }
2861 
2862 
2863 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2864   assert(args->length() == arg_list->length(),
2865          "args=%d, arg_list=%d", args->length(), arg_list->length());
2866   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2867     LIRItem* param = args->at(i);
2868     LIR_Opr loc = arg_list->at(i);
2869     if (loc->is_register()) {
2870       param->load_item_force(loc);
2871     } else {
2872       LIR_Address* addr = loc->as_address_ptr();
2873       param->load_for_store(addr->type());
2874       if (addr->type() == T_OBJECT) {
2875         __ move_wide(param->result(), addr);
2876       } else
2877         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2878           __ unaligned_move(param->result(), addr);
2879         } else {
2880           __ move(param->result(), addr);
2881         }
2882     }
2883   }
2884 
2885   if (x->has_receiver()) {
2886     LIRItem* receiver = args->at(0);
2887     LIR_Opr loc = arg_list->at(0);
2888     if (loc->is_register()) {
2889       receiver->load_item_force(loc);
2890     } else {
2891       assert(loc->is_address(), "just checking");
2892       receiver->load_for_store(T_OBJECT);
2893       __ move_wide(receiver->result(), loc->as_address_ptr());
2894     }
2895   }
2896 }
2897 
2898 
2899 // Visits all arguments, returns appropriate items without loading them
2900 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2901   LIRItemList* argument_items = new LIRItemList();
2902   if (x->has_receiver()) {
2903     LIRItem* receiver = new LIRItem(x->receiver(), this);
2904     argument_items->append(receiver);
2905   }
2906   for (int i = 0; i < x->number_of_arguments(); i++) {
2907     LIRItem* param = new LIRItem(x->argument_at(i), this);
2908     argument_items->append(param);
2909   }
2910   return argument_items;
2911 }
2912 
2913 
2914 // The invoke with receiver has following phases:
2915 //   a) traverse and load/lock receiver;
2916 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2917 //   c) push receiver on stack
2918 //   d) load each of the items and push on stack
2919 //   e) unlock receiver
2920 //   f) move receiver into receiver-register %o0
2921 //   g) lock result registers and emit call operation
2922 //
2923 // Before issuing a call, we must spill-save all values on stack
2924 // that are in caller-save register. "spill-save" moves those registers
2925 // either in a free callee-save register or spills them if no free
2926 // callee save register is available.
2927 //
2928 // The problem is where to invoke spill-save.
2929 // - if invoked between e) and f), we may lock callee save
2930 //   register in "spill-save" that destroys the receiver register
2931 //   before f) is executed
2932 // - if we rearrange f) to be earlier (by loading %o0) it
2933 //   may destroy a value on the stack that is currently in %o0
2934 //   and is waiting to be spilled
2935 // - if we keep the receiver locked while doing spill-save,
2936 //   we cannot spill it as it is spill-locked
2937 //
2938 void LIRGenerator::do_Invoke(Invoke* x) {
2939   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2940 
2941   LIR_OprList* arg_list = cc->args();
2942   LIRItemList* args = invoke_visit_arguments(x);
2943   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2944 
2945   // setup result register
2946   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2947   if (x->type() != voidType) {
2948     result_register = result_register_for(x->type());
2949   }
2950 
2951   CodeEmitInfo* info = state_for(x, x->state());
2952 
2953   invoke_load_arguments(x, args, arg_list);
2954 
2955   if (x->has_receiver()) {
2956     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2957     receiver = args->at(0)->result();
2958   }
2959 
2960   // emit invoke code
2961   bool optimized = x->target_is_loaded() && x->target_is_final();
2962   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2963 
2964   // JSR 292
2965   // Preserve the SP over MethodHandle call sites, if needed.
2966   ciMethod* target = x->target();
2967   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2968                                   target->is_method_handle_intrinsic() ||
2969                                   target->is_compiled_lambda_form());
2970   if (is_method_handle_invoke) {
2971     info->set_is_method_handle_invoke(true);
2972     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2973         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2974     }
2975   }
2976 
2977   switch (x->code()) {
2978     case Bytecodes::_invokestatic:
2979       __ call_static(target, result_register,
2980                      SharedRuntime::get_resolve_static_call_stub(),
2981                      arg_list, info);
2982       break;
2983     case Bytecodes::_invokespecial:
2984     case Bytecodes::_invokevirtual:
2985     case Bytecodes::_invokeinterface:
2986       // for final target we still produce an inline cache, in order
2987       // to be able to call mixed mode
2988       if (x->code() == Bytecodes::_invokespecial || optimized) {
2989         __ call_opt_virtual(target, receiver, result_register,
2990                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2991                             arg_list, info);
2992       } else if (x->vtable_index() < 0) {
2993         __ call_icvirtual(target, receiver, result_register,
2994                           SharedRuntime::get_resolve_virtual_call_stub(),
2995                           arg_list, info);
2996       } else {
2997         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
2998         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
2999         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3000       }
3001       break;
3002     case Bytecodes::_invokedynamic: {
3003       __ call_dynamic(target, receiver, result_register,
3004                       SharedRuntime::get_resolve_static_call_stub(),
3005                       arg_list, info);
3006       break;
3007     }
3008     default:
3009       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3010       break;
3011   }
3012 
3013   // JSR 292
3014   // Restore the SP after MethodHandle call sites, if needed.
3015   if (is_method_handle_invoke
3016       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3017     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3018   }
3019 
3020   if (x->type()->is_float() || x->type()->is_double()) {
3021     // Force rounding of results from non-strictfp when in strictfp
3022     // scope (or when we don't know the strictness of the callee, to
3023     // be safe.)
3024     if (method()->is_strict()) {
3025       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3026         result_register = round_item(result_register);
3027       }
3028     }
3029   }
3030 
3031   if (result_register->is_valid()) {
3032     LIR_Opr result = rlock_result(x);
3033     __ move(result_register, result);
3034   }
3035 }
3036 
3037 
3038 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3039   assert(x->number_of_arguments() == 1, "wrong type");
3040   LIRItem value       (x->argument_at(0), this);
3041   LIR_Opr reg = rlock_result(x);
3042   value.load_item();
3043   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3044   __ move(tmp, reg);
3045 }
3046 
3047 
3048 
3049 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3050 void LIRGenerator::do_IfOp(IfOp* x) {
3051 #ifdef ASSERT
3052   {
3053     ValueTag xtag = x->x()->type()->tag();
3054     ValueTag ttag = x->tval()->type()->tag();
3055     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3056     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3057     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3058   }
3059 #endif
3060 
3061   LIRItem left(x->x(), this);
3062   LIRItem right(x->y(), this);
3063   left.load_item();
3064   if (can_inline_as_constant(right.value())) {
3065     right.dont_load_item();
3066   } else {
3067     right.load_item();
3068   }
3069 
3070   LIRItem t_val(x->tval(), this);
3071   LIRItem f_val(x->fval(), this);
3072   t_val.dont_load_item();
3073   f_val.dont_load_item();
3074   LIR_Opr reg = rlock_result(x);
3075 
3076   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3077   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3078 }
3079 
3080 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3081   assert(x->number_of_arguments() == 0, "wrong type");
3082   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3083   BasicTypeList signature;
3084   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3085   LIR_Opr reg = result_register_for(x->type());
3086   __ call_runtime_leaf(routine, getThreadTemp(),
3087                        reg, new LIR_OprList());
3088   LIR_Opr result = rlock_result(x);
3089   __ move(reg, result);
3090 }
3091 
3092 
3093 
3094 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3095   switch (x->id()) {
3096   case vmIntrinsics::_intBitsToFloat      :
3097   case vmIntrinsics::_doubleToRawLongBits :
3098   case vmIntrinsics::_longBitsToDouble    :
3099   case vmIntrinsics::_floatToRawIntBits   : {
3100     do_FPIntrinsics(x);
3101     break;
3102   }
3103 
3104 #ifdef TRACE_HAVE_INTRINSICS
3105   case vmIntrinsics::_counterTime:
3106     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3107     break;
3108 #endif
3109 
3110   case vmIntrinsics::_currentTimeMillis:
3111     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3112     break;
3113 
3114   case vmIntrinsics::_nanoTime:
3115     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3116     break;
3117 
3118   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3119   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3120   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3121   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3122   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3123 
3124   case vmIntrinsics::_dlog:           // fall through
3125   case vmIntrinsics::_dlog10:         // fall through
3126   case vmIntrinsics::_dabs:           // fall through
3127   case vmIntrinsics::_dsqrt:          // fall through
3128   case vmIntrinsics::_dtan:           // fall through
3129   case vmIntrinsics::_dsin :          // fall through
3130   case vmIntrinsics::_dcos :          // fall through
3131   case vmIntrinsics::_dexp :          // fall through
3132   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3133   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3134 
3135   // java.nio.Buffer.checkIndex
3136   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3137 
3138   case vmIntrinsics::_compareAndSwapObject:
3139     do_CompareAndSwap(x, objectType);
3140     break;
3141   case vmIntrinsics::_compareAndSwapInt:
3142     do_CompareAndSwap(x, intType);
3143     break;
3144   case vmIntrinsics::_compareAndSwapLong:
3145     do_CompareAndSwap(x, longType);
3146     break;
3147 
3148   case vmIntrinsics::_loadFence :
3149     if (os::is_MP()) __ membar_acquire();
3150     break;
3151   case vmIntrinsics::_storeFence:
3152     if (os::is_MP()) __ membar_release();
3153     break;
3154   case vmIntrinsics::_fullFence :
3155     if (os::is_MP()) __ membar();
3156     break;
3157 
3158   case vmIntrinsics::_Reference_get:
3159     do_Reference_get(x);
3160     break;
3161 
3162   case vmIntrinsics::_updateCRC32:
3163   case vmIntrinsics::_updateBytesCRC32:
3164   case vmIntrinsics::_updateByteBufferCRC32:
3165     do_update_CRC32(x);
3166     break;
3167 
3168   default: ShouldNotReachHere(); break;
3169   }
3170 }
3171 
3172 void LIRGenerator::profile_arguments(ProfileCall* x) {
3173   if (compilation()->profile_arguments()) {
3174     int bci = x->bci_of_invoke();
3175     ciMethodData* md = x->method()->method_data_or_null();
3176     ciProfileData* data = md->bci_to_data(bci);
3177     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3178         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3179       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3180       int base_offset = md->byte_offset_of_slot(data, extra);
3181       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3182       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3183 
3184       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3185       int start = 0;
3186       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3187       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3188         // first argument is not profiled at call (method handle invoke)
3189         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3190         start = 1;
3191       }
3192       ciSignature* callee_signature = x->callee()->signature();
3193       // method handle call to virtual method
3194       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3195       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3196 
3197       bool ignored_will_link;
3198       ciSignature* signature_at_call = NULL;
3199       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3200       ciSignatureStream signature_at_call_stream(signature_at_call);
3201 
3202       // if called through method handle invoke, some arguments may have been popped
3203       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3204         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3205         ciKlass* exact = profile_type(md, base_offset, off,
3206                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3207                                       !x->arg_needs_null_check(i+start),
3208                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3209         if (exact != NULL) {
3210           md->set_argument_type(bci, i, exact);
3211         }
3212       }
3213     } else {
3214 #ifdef ASSERT
3215       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3216       int n = x->nb_profiled_args();
3217       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3218                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3219              "only at JSR292 bytecodes");
3220 #endif
3221     }
3222   }
3223 }
3224 
3225 // profile parameters on entry to an inlined method
3226 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3227   if (compilation()->profile_parameters() && x->inlined()) {
3228     ciMethodData* md = x->callee()->method_data_or_null();
3229     if (md != NULL) {
3230       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3231       if (parameters_type_data != NULL) {
3232         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3233         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3234         bool has_receiver = !x->callee()->is_static();
3235         ciSignature* sig = x->callee()->signature();
3236         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3237         int i = 0; // to iterate on the Instructions
3238         Value arg = x->recv();
3239         bool not_null = false;
3240         int bci = x->bci_of_invoke();
3241         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3242         // The first parameter is the receiver so that's what we start
3243         // with if it exists. One exception is method handle call to
3244         // virtual method: the receiver is in the args list
3245         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3246           i = 1;
3247           arg = x->profiled_arg_at(0);
3248           not_null = !x->arg_needs_null_check(0);
3249         }
3250         int k = 0; // to iterate on the profile data
3251         for (;;) {
3252           intptr_t profiled_k = parameters->type(k);
3253           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3254                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3255                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3256           // If the profile is known statically set it once for all and do not emit any code
3257           if (exact != NULL) {
3258             md->set_parameter_type(k, exact);
3259           }
3260           k++;
3261           if (k >= parameters_type_data->number_of_parameters()) {
3262 #ifdef ASSERT
3263             int extra = 0;
3264             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3265                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3266                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3267               extra += 1;
3268             }
3269             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3270 #endif
3271             break;
3272           }
3273           arg = x->profiled_arg_at(i);
3274           not_null = !x->arg_needs_null_check(i);
3275           i++;
3276         }
3277       }
3278     }
3279   }
3280 }
3281 
3282 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3283   // Need recv in a temporary register so it interferes with the other temporaries
3284   LIR_Opr recv = LIR_OprFact::illegalOpr;
3285   LIR_Opr mdo = new_register(T_OBJECT);
3286   // tmp is used to hold the counters on SPARC
3287   LIR_Opr tmp = new_pointer_register();
3288 
3289   if (x->nb_profiled_args() > 0) {
3290     profile_arguments(x);
3291   }
3292 
3293   // profile parameters on inlined method entry including receiver
3294   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3295     profile_parameters_at_call(x);
3296   }
3297 
3298   if (x->recv() != NULL) {
3299     LIRItem value(x->recv(), this);
3300     value.load_item();
3301     recv = new_register(T_OBJECT);
3302     __ move(value.result(), recv);
3303   }
3304   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3305 }
3306 
3307 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3308   int bci = x->bci_of_invoke();
3309   ciMethodData* md = x->method()->method_data_or_null();
3310   ciProfileData* data = md->bci_to_data(bci);
3311   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3312   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3313   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3314 
3315   bool ignored_will_link;
3316   ciSignature* signature_at_call = NULL;
3317   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3318 
3319   // The offset within the MDO of the entry to update may be too large
3320   // to be used in load/store instructions on some platforms. So have
3321   // profile_type() compute the address of the profile in a register.
3322   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3323                                 ret->type(), x->ret(), mdp,
3324                                 !x->needs_null_check(),
3325                                 signature_at_call->return_type()->as_klass(),
3326                                 x->callee()->signature()->return_type()->as_klass());
3327   if (exact != NULL) {
3328     md->set_return_type(bci, exact);
3329   }
3330 }
3331 
3332 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3333   // We can safely ignore accessors here, since c2 will inline them anyway,
3334   // accessors are also always mature.
3335   if (!x->inlinee()->is_accessor()) {
3336     CodeEmitInfo* info = state_for(x, x->state(), true);
3337     // Notify the runtime very infrequently only to take care of counter overflows
3338     int freq_log = Tier23InlineeNotifyFreqLog;
3339     double scale;
3340     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3341       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3342     }
3343     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3344   }
3345 }
3346 
3347 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3348   int freq_log = 0;
3349   int level = compilation()->env()->comp_level();
3350   if (level == CompLevel_limited_profile) {
3351     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3352   } else if (level == CompLevel_full_profile) {
3353     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3354   } else {
3355     ShouldNotReachHere();
3356   }
3357   // Increment the appropriate invocation/backedge counter and notify the runtime.
3358   double scale;
3359   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3360     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3361   }
3362   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3363 }
3364 
3365 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3366   ciMethod* method = info->scope()->method();
3367   MethodCounters* mc_adr = method->ensure_method_counters();
3368   if (mc_adr != NULL) {
3369     LIR_Opr mc = new_pointer_register();
3370     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3371     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3372     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3373     LIR_Opr result = new_register(T_INT);
3374     __ load(counter, result);
3375     __ sub(result, LIR_OprFact::intConst(1), result);
3376     __ store(result, counter);
3377     // DeoptimizeStub will reexecute from the current state in code info.
3378     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3379                                          Deoptimization::Action_make_not_entrant);
3380     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3381     __ branch(lir_cond_lessEqual, T_INT, deopt);
3382   }
3383 }
3384 
3385 
3386 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3387                                                 ciMethod *method, int frequency,
3388                                                 int bci, bool backedge, bool notify) {
3389   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3390   int level = _compilation->env()->comp_level();
3391   assert(level > CompLevel_simple, "Shouldn't be here");
3392 
3393   int offset = -1;
3394   LIR_Opr counter_holder = NULL;
3395   if (level == CompLevel_limited_profile) {
3396     MethodCounters* counters_adr = method->ensure_method_counters();
3397     if (counters_adr == NULL) {
3398       bailout("method counters allocation failed");
3399       return;
3400     }
3401     counter_holder = new_pointer_register();
3402     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3403     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3404                                  MethodCounters::invocation_counter_offset());
3405   } else if (level == CompLevel_full_profile) {
3406     counter_holder = new_register(T_METADATA);
3407     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3408                                  MethodData::invocation_counter_offset());
3409     ciMethodData* md = method->method_data_or_null();
3410     assert(md != NULL, "Sanity");
3411     __ metadata2reg(md->constant_encoding(), counter_holder);
3412   } else {
3413     ShouldNotReachHere();
3414   }
3415   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3416   LIR_Opr result = new_register(T_INT);
3417   __ load(counter, result);
3418   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3419   __ store(result, counter);
3420   if (notify) {
3421     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3422     // The bci for info can point to cmp for if's we want the if bci
3423     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3424     int freq = frequency << InvocationCounter::count_shift;
3425     if (freq == 0) {
3426       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3427     } else {
3428       LIR_Opr mask = load_immediate(freq, T_INT);
3429       __ logical_and(result, mask, result);
3430       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3431       __ branch(lir_cond_equal, T_INT, overflow);
3432     }
3433     __ branch_destination(overflow->continuation());
3434   }
3435 }
3436 
3437 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3438   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3439   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3440 
3441   if (x->pass_thread()) {
3442     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3443     args->append(getThreadPointer());
3444   }
3445 
3446   for (int i = 0; i < x->number_of_arguments(); i++) {
3447     Value a = x->argument_at(i);
3448     LIRItem* item = new LIRItem(a, this);
3449     item->load_item();
3450     args->append(item->result());
3451     signature->append(as_BasicType(a->type()));
3452   }
3453 
3454   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3455   if (x->type() == voidType) {
3456     set_no_result(x);
3457   } else {
3458     __ move(result, rlock_result(x));
3459   }
3460 }
3461 
3462 #ifdef ASSERT
3463 void LIRGenerator::do_Assert(Assert *x) {
3464   ValueTag tag = x->x()->type()->tag();
3465   If::Condition cond = x->cond();
3466 
3467   LIRItem xitem(x->x(), this);
3468   LIRItem yitem(x->y(), this);
3469   LIRItem* xin = &xitem;
3470   LIRItem* yin = &yitem;
3471 
3472   assert(tag == intTag, "Only integer assertions are valid!");
3473 
3474   xin->load_item();
3475   yin->dont_load_item();
3476 
3477   set_no_result(x);
3478 
3479   LIR_Opr left = xin->result();
3480   LIR_Opr right = yin->result();
3481 
3482   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3483 }
3484 #endif
3485 
3486 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3487 
3488 
3489   Instruction *a = x->x();
3490   Instruction *b = x->y();
3491   if (!a || StressRangeCheckElimination) {
3492     assert(!b || StressRangeCheckElimination, "B must also be null");
3493 
3494     CodeEmitInfo *info = state_for(x, x->state());
3495     CodeStub* stub = new PredicateFailedStub(info);
3496 
3497     __ jump(stub);
3498   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3499     int a_int = a->type()->as_IntConstant()->value();
3500     int b_int = b->type()->as_IntConstant()->value();
3501 
3502     bool ok = false;
3503 
3504     switch(x->cond()) {
3505       case Instruction::eql: ok = (a_int == b_int); break;
3506       case Instruction::neq: ok = (a_int != b_int); break;
3507       case Instruction::lss: ok = (a_int < b_int); break;
3508       case Instruction::leq: ok = (a_int <= b_int); break;
3509       case Instruction::gtr: ok = (a_int > b_int); break;
3510       case Instruction::geq: ok = (a_int >= b_int); break;
3511       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3512       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3513       default: ShouldNotReachHere();
3514     }
3515 
3516     if (ok) {
3517 
3518       CodeEmitInfo *info = state_for(x, x->state());
3519       CodeStub* stub = new PredicateFailedStub(info);
3520 
3521       __ jump(stub);
3522     }
3523   } else {
3524 
3525     ValueTag tag = x->x()->type()->tag();
3526     If::Condition cond = x->cond();
3527     LIRItem xitem(x->x(), this);
3528     LIRItem yitem(x->y(), this);
3529     LIRItem* xin = &xitem;
3530     LIRItem* yin = &yitem;
3531 
3532     assert(tag == intTag, "Only integer deoptimizations are valid!");
3533 
3534     xin->load_item();
3535     yin->dont_load_item();
3536     set_no_result(x);
3537 
3538     LIR_Opr left = xin->result();
3539     LIR_Opr right = yin->result();
3540 
3541     CodeEmitInfo *info = state_for(x, x->state());
3542     CodeStub* stub = new PredicateFailedStub(info);
3543 
3544     __ cmp(lir_cond(cond), left, right);
3545     __ branch(lir_cond(cond), right->type(), stub);
3546   }
3547 }
3548 
3549 
3550 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3551   LIRItemList args(1);
3552   LIRItem value(arg1, this);
3553   args.append(&value);
3554   BasicTypeList signature;
3555   signature.append(as_BasicType(arg1->type()));
3556 
3557   return call_runtime(&signature, &args, entry, result_type, info);
3558 }
3559 
3560 
3561 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3562   LIRItemList args(2);
3563   LIRItem value1(arg1, this);
3564   LIRItem value2(arg2, this);
3565   args.append(&value1);
3566   args.append(&value2);
3567   BasicTypeList signature;
3568   signature.append(as_BasicType(arg1->type()));
3569   signature.append(as_BasicType(arg2->type()));
3570 
3571   return call_runtime(&signature, &args, entry, result_type, info);
3572 }
3573 
3574 
3575 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3576                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3577   // get a result register
3578   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3579   LIR_Opr result = LIR_OprFact::illegalOpr;
3580   if (result_type->tag() != voidTag) {
3581     result = new_register(result_type);
3582     phys_reg = result_register_for(result_type);
3583   }
3584 
3585   // move the arguments into the correct location
3586   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3587   assert(cc->length() == args->length(), "argument mismatch");
3588   for (int i = 0; i < args->length(); i++) {
3589     LIR_Opr arg = args->at(i);
3590     LIR_Opr loc = cc->at(i);
3591     if (loc->is_register()) {
3592       __ move(arg, loc);
3593     } else {
3594       LIR_Address* addr = loc->as_address_ptr();
3595 //           if (!can_store_as_constant(arg)) {
3596 //             LIR_Opr tmp = new_register(arg->type());
3597 //             __ move(arg, tmp);
3598 //             arg = tmp;
3599 //           }
3600       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3601         __ unaligned_move(arg, addr);
3602       } else {
3603         __ move(arg, addr);
3604       }
3605     }
3606   }
3607 
3608   if (info) {
3609     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3610   } else {
3611     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3612   }
3613   if (result->is_valid()) {
3614     __ move(phys_reg, result);
3615   }
3616   return result;
3617 }
3618 
3619 
3620 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3621                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3622   // get a result register
3623   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3624   LIR_Opr result = LIR_OprFact::illegalOpr;
3625   if (result_type->tag() != voidTag) {
3626     result = new_register(result_type);
3627     phys_reg = result_register_for(result_type);
3628   }
3629 
3630   // move the arguments into the correct location
3631   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3632 
3633   assert(cc->length() == args->length(), "argument mismatch");
3634   for (int i = 0; i < args->length(); i++) {
3635     LIRItem* arg = args->at(i);
3636     LIR_Opr loc = cc->at(i);
3637     if (loc->is_register()) {
3638       arg->load_item_force(loc);
3639     } else {
3640       LIR_Address* addr = loc->as_address_ptr();
3641       arg->load_for_store(addr->type());
3642       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3643         __ unaligned_move(arg->result(), addr);
3644       } else {
3645         __ move(arg->result(), addr);
3646       }
3647     }
3648   }
3649 
3650   if (info) {
3651     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3652   } else {
3653     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3654   }
3655   if (result->is_valid()) {
3656     __ move(phys_reg, result);
3657   }
3658   return result;
3659 }
3660 
3661 void LIRGenerator::do_MemBar(MemBar* x) {
3662   if (os::is_MP()) {
3663     LIR_Code code = x->code();
3664     switch(code) {
3665       case lir_membar_acquire   : __ membar_acquire(); break;
3666       case lir_membar_release   : __ membar_release(); break;
3667       case lir_membar           : __ membar(); break;
3668       case lir_membar_loadload  : __ membar_loadload(); break;
3669       case lir_membar_storestore: __ membar_storestore(); break;
3670       case lir_membar_loadstore : __ membar_loadstore(); break;
3671       case lir_membar_storeload : __ membar_storeload(); break;
3672       default                   : ShouldNotReachHere(); break;
3673     }
3674   }
3675 }