1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/shared/collectedHeap.inline.hpp"
  32 #include "gc/shared/collectorCounters.hpp"
  33 #include "gc/shared/gcId.hpp"
  34 #include "gc/shared/gcLocker.inline.hpp"
  35 #include "gc/shared/gcTrace.hpp"
  36 #include "gc/shared/gcTraceTime.inline.hpp"
  37 #include "gc/shared/genCollectedHeap.hpp"
  38 #include "gc/shared/genOopClosures.inline.hpp"
  39 #include "gc/shared/generationSpec.hpp"
  40 #include "gc/shared/space.hpp"
  41 #include "gc/shared/strongRootsScope.hpp"
  42 #include "gc/shared/vmGCOperations.hpp"
  43 #include "gc/shared/workgroup.hpp"
  44 #include "memory/filemap.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/fprofiler.hpp"
  49 #include "runtime/handles.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/management.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "utilities/macros.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 #include "utilities/vmError.hpp"
  58 #if INCLUDE_ALL_GCS
  59 #include "gc/cms/concurrentMarkSweepThread.hpp"
  60 #include "gc/cms/vmCMSOperations.hpp"
  61 #endif // INCLUDE_ALL_GCS
  62 
  63 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  64 
  65 // The set of potentially parallel tasks in root scanning.
  66 enum GCH_strong_roots_tasks {
  67   GCH_PS_Universe_oops_do,
  68   GCH_PS_JNIHandles_oops_do,
  69   GCH_PS_ObjectSynchronizer_oops_do,
  70   GCH_PS_FlatProfiler_oops_do,
  71   GCH_PS_Management_oops_do,
  72   GCH_PS_SystemDictionary_oops_do,
  73   GCH_PS_ClassLoaderDataGraph_oops_do,
  74   GCH_PS_jvmti_oops_do,
  75   GCH_PS_CodeCache_oops_do,
  76   GCH_PS_younger_gens,
  77   // Leave this one last.
  78   GCH_PS_NumElements
  79 };
  80 
  81 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  82   CollectedHeap(),
  83   _rem_set(NULL),
  84   _gen_policy(policy),
  85   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  86   _full_collections_completed(0)
  87 {
  88   assert(policy != NULL, "Sanity check");
  89   if (UseConcMarkSweepGC) {
  90     _workers = new WorkGang("GC Thread", ParallelGCThreads,
  91                             /* are_GC_task_threads */true,
  92                             /* are_ConcurrentGC_threads */false);
  93     _workers->initialize_workers();
  94   } else {
  95     // Serial GC does not use workers.
  96     _workers = NULL;
  97   }
  98 }
  99 
 100 jint GenCollectedHeap::initialize() {
 101   CollectedHeap::pre_initialize();
 102 
 103   // While there are no constraints in the GC code that HeapWordSize
 104   // be any particular value, there are multiple other areas in the
 105   // system which believe this to be true (e.g. oop->object_size in some
 106   // cases incorrectly returns the size in wordSize units rather than
 107   // HeapWordSize).
 108   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 109 
 110   // Allocate space for the heap.
 111 
 112   char* heap_address;
 113   ReservedSpace heap_rs;
 114 
 115   size_t heap_alignment = collector_policy()->heap_alignment();
 116 
 117   heap_address = allocate(heap_alignment, &heap_rs);
 118 
 119   if (!heap_rs.is_reserved()) {
 120     vm_shutdown_during_initialization(
 121       "Could not reserve enough space for object heap");
 122     return JNI_ENOMEM;
 123   }
 124 
 125   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 126 
 127   _rem_set = collector_policy()->create_rem_set(reserved_region());
 128   set_barrier_set(rem_set()->bs());
 129 
 130   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 131   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 132   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 133 
 134   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 135   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 136   clear_incremental_collection_failed();
 137 
 138 #if INCLUDE_ALL_GCS
 139   // If we are running CMS, create the collector responsible
 140   // for collecting the CMS generations.
 141   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 142     bool success = create_cms_collector();
 143     if (!success) return JNI_ENOMEM;
 144   }
 145 #endif // INCLUDE_ALL_GCS
 146 
 147   return JNI_OK;
 148 }
 149 
 150 char* GenCollectedHeap::allocate(size_t alignment,
 151                                  ReservedSpace* heap_rs){
 152   // Now figure out the total size.
 153   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 154   assert(alignment % pageSize == 0, "Must be");
 155 
 156   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 157   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 158 
 159   // Check for overflow.
 160   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 161   if (total_reserved < young_spec->max_size()) {
 162     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 163                                   "the maximum representable size");
 164   }
 165   assert(total_reserved % alignment == 0,
 166          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 167          SIZE_FORMAT, total_reserved, alignment);
 168 
 169   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 170 
 171   os::trace_page_sizes("Heap",
 172                        collector_policy()->min_heap_byte_size(),
 173                        total_reserved,
 174                        alignment,
 175                        heap_rs->base(),
 176                        heap_rs->size());
 177 
 178   return heap_rs->base();
 179 }
 180 
 181 void GenCollectedHeap::post_initialize() {
 182   ref_processing_init();
 183   assert((_young_gen->kind() == Generation::DefNew) ||
 184          (_young_gen->kind() == Generation::ParNew),
 185     "Wrong youngest generation type");
 186   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 187 
 188   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
 189          _old_gen->kind() == Generation::MarkSweepCompact,
 190     "Wrong generation kind");
 191 
 192   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 193                                       _old_gen->capacity(),
 194                                       def_new_gen->from()->capacity());
 195   _gen_policy->initialize_gc_policy_counters();
 196 }
 197 
 198 void GenCollectedHeap::ref_processing_init() {
 199   _young_gen->ref_processor_init();
 200   _old_gen->ref_processor_init();
 201 }
 202 
 203 size_t GenCollectedHeap::capacity() const {
 204   return _young_gen->capacity() + _old_gen->capacity();
 205 }
 206 
 207 size_t GenCollectedHeap::used() const {
 208   return _young_gen->used() + _old_gen->used();
 209 }
 210 
 211 void GenCollectedHeap::save_used_regions() {
 212   _old_gen->save_used_region();
 213   _young_gen->save_used_region();
 214 }
 215 
 216 size_t GenCollectedHeap::max_capacity() const {
 217   return _young_gen->max_capacity() + _old_gen->max_capacity();
 218 }
 219 
 220 // Update the _full_collections_completed counter
 221 // at the end of a stop-world full GC.
 222 unsigned int GenCollectedHeap::update_full_collections_completed() {
 223   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 224   assert(_full_collections_completed <= _total_full_collections,
 225          "Can't complete more collections than were started");
 226   _full_collections_completed = _total_full_collections;
 227   ml.notify_all();
 228   return _full_collections_completed;
 229 }
 230 
 231 // Update the _full_collections_completed counter, as appropriate,
 232 // at the end of a concurrent GC cycle. Note the conditional update
 233 // below to allow this method to be called by a concurrent collector
 234 // without synchronizing in any manner with the VM thread (which
 235 // may already have initiated a STW full collection "concurrently").
 236 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 237   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 238   assert((_full_collections_completed <= _total_full_collections) &&
 239          (count <= _total_full_collections),
 240          "Can't complete more collections than were started");
 241   if (count > _full_collections_completed) {
 242     _full_collections_completed = count;
 243     ml.notify_all();
 244   }
 245   return _full_collections_completed;
 246 }
 247 
 248 
 249 #ifndef PRODUCT
 250 // Override of memory state checking method in CollectedHeap:
 251 // Some collectors (CMS for example) can't have badHeapWordVal written
 252 // in the first two words of an object. (For instance , in the case of
 253 // CMS these words hold state used to synchronize between certain
 254 // (concurrent) GC steps and direct allocating mutators.)
 255 // The skip_header_HeapWords() method below, allows us to skip
 256 // over the requisite number of HeapWord's. Note that (for
 257 // generational collectors) this means that those many words are
 258 // skipped in each object, irrespective of the generation in which
 259 // that object lives. The resultant loss of precision seems to be
 260 // harmless and the pain of avoiding that imprecision appears somewhat
 261 // higher than we are prepared to pay for such rudimentary debugging
 262 // support.
 263 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 264                                                          size_t size) {
 265   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 266     // We are asked to check a size in HeapWords,
 267     // but the memory is mangled in juint words.
 268     juint* start = (juint*) (addr + skip_header_HeapWords());
 269     juint* end   = (juint*) (addr + size);
 270     for (juint* slot = start; slot < end; slot += 1) {
 271       assert(*slot == badHeapWordVal,
 272              "Found non badHeapWordValue in pre-allocation check");
 273     }
 274   }
 275 }
 276 #endif
 277 
 278 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 279                                                bool is_tlab,
 280                                                bool first_only) {
 281   HeapWord* res = NULL;
 282 
 283   if (_young_gen->should_allocate(size, is_tlab)) {
 284     res = _young_gen->allocate(size, is_tlab);
 285     if (res != NULL || first_only) {
 286       return res;
 287     }
 288   }
 289 
 290   if (_old_gen->should_allocate(size, is_tlab)) {
 291     res = _old_gen->allocate(size, is_tlab);
 292   }
 293 
 294   return res;
 295 }
 296 
 297 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 298                                          bool* gc_overhead_limit_was_exceeded) {
 299   return gen_policy()->mem_allocate_work(size,
 300                                          false /* is_tlab */,
 301                                          gc_overhead_limit_was_exceeded);
 302 }
 303 
 304 bool GenCollectedHeap::must_clear_all_soft_refs() {
 305   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 306          _gc_cause == GCCause::_wb_full_gc;
 307 }
 308 
 309 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 310   if (!UseConcMarkSweepGC) {
 311     return false;
 312   }
 313 
 314   switch (cause) {
 315     case GCCause::_gc_locker:           return GCLockerInvokesConcurrent;
 316     case GCCause::_java_lang_system_gc:
 317     case GCCause::_dcmd_gc_run:         return ExplicitGCInvokesConcurrent;
 318     default:                            return false;
 319   }
 320 }
 321 
 322 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 323                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 324                                           bool restore_marks_for_biased_locking) {
 325   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 326   GCTraceTime(Trace, gc, phases) t1(title);
 327   TraceCollectorStats tcs(gen->counters());
 328   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 329 
 330   gen->stat_record()->invocations++;
 331   gen->stat_record()->accumulated_time.start();
 332 
 333   // Must be done anew before each collection because
 334   // a previous collection will do mangling and will
 335   // change top of some spaces.
 336   record_gen_tops_before_GC();
 337 
 338   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 339 
 340   if (run_verification && VerifyBeforeGC) {
 341     HandleMark hm;  // Discard invalid handles created during verification
 342     Universe::verify("Before GC");
 343   }
 344   COMPILER2_PRESENT(DerivedPointerTable::clear());
 345 
 346   if (restore_marks_for_biased_locking) {
 347     // We perform this mark word preservation work lazily
 348     // because it's only at this point that we know whether we
 349     // absolutely have to do it; we want to avoid doing it for
 350     // scavenge-only collections where it's unnecessary
 351     BiasedLocking::preserve_marks();
 352   }
 353 
 354   // Do collection work
 355   {
 356     // Note on ref discovery: For what appear to be historical reasons,
 357     // GCH enables and disabled (by enqueing) refs discovery.
 358     // In the future this should be moved into the generation's
 359     // collect method so that ref discovery and enqueueing concerns
 360     // are local to a generation. The collect method could return
 361     // an appropriate indication in the case that notification on
 362     // the ref lock was needed. This will make the treatment of
 363     // weak refs more uniform (and indeed remove such concerns
 364     // from GCH). XXX
 365 
 366     HandleMark hm;  // Discard invalid handles created during gc
 367     save_marks();   // save marks for all gens
 368     // We want to discover references, but not process them yet.
 369     // This mode is disabled in process_discovered_references if the
 370     // generation does some collection work, or in
 371     // enqueue_discovered_references if the generation returns
 372     // without doing any work.
 373     ReferenceProcessor* rp = gen->ref_processor();
 374     // If the discovery of ("weak") refs in this generation is
 375     // atomic wrt other collectors in this configuration, we
 376     // are guaranteed to have empty discovered ref lists.
 377     if (rp->discovery_is_atomic()) {
 378       rp->enable_discovery();
 379       rp->setup_policy(clear_soft_refs);
 380     } else {
 381       // collect() below will enable discovery as appropriate
 382     }
 383     gen->collect(full, clear_soft_refs, size, is_tlab);
 384     if (!rp->enqueuing_is_done()) {
 385       rp->enqueue_discovered_references();
 386     } else {
 387       rp->set_enqueuing_is_done(false);
 388     }
 389     rp->verify_no_references_recorded();
 390   }
 391 
 392   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 393 
 394   gen->stat_record()->accumulated_time.stop();
 395 
 396   update_gc_stats(gen, full);
 397 
 398   if (run_verification && VerifyAfterGC) {
 399     HandleMark hm;  // Discard invalid handles created during verification
 400     Universe::verify("After GC");
 401   }
 402 }
 403 
 404 void GenCollectedHeap::do_collection(bool           full,
 405                                      bool           clear_all_soft_refs,
 406                                      size_t         size,
 407                                      bool           is_tlab,
 408                                      GenerationType max_generation) {
 409   ResourceMark rm;
 410   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 411 
 412   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 413   assert(my_thread->is_VM_thread() ||
 414          my_thread->is_ConcurrentGC_thread(),
 415          "incorrect thread type capability");
 416   assert(Heap_lock->is_locked(),
 417          "the requesting thread should have the Heap_lock");
 418   guarantee(!is_gc_active(), "collection is not reentrant");
 419 
 420   if (GCLocker::check_active_before_gc()) {
 421     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 422   }
 423 
 424   GCIdMarkAndRestore gc_id_mark;
 425 
 426   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 427                           collector_policy()->should_clear_all_soft_refs();
 428 
 429   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 430 
 431   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 432 
 433   print_heap_before_gc();
 434 
 435   {
 436     FlagSetting fl(_is_gc_active, true);
 437 
 438     bool complete = full && (max_generation == OldGen);
 439     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 440     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 441 
 442     FormatBuffer<> gc_string("%s", "Pause ");
 443     if (do_young_collection) {
 444       gc_string.append("Young");
 445     } else {
 446       gc_string.append("Full");
 447     }
 448 
 449     GCTraceCPUTime tcpu;
 450     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 451 
 452     gc_prologue(complete);
 453     increment_total_collections(complete);
 454 
 455     size_t young_prev_used = _young_gen->used();
 456     size_t old_prev_used = _old_gen->used();
 457 
 458     bool run_verification = total_collections() >= VerifyGCStartAt;
 459 
 460     bool prepared_for_verification = false;
 461     bool collected_old = false;
 462 
 463     if (do_young_collection) {
 464       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 465         prepare_for_verify();
 466         prepared_for_verification = true;
 467       }
 468 
 469       collect_generation(_young_gen,
 470                          full,
 471                          size,
 472                          is_tlab,
 473                          run_verification && VerifyGCLevel <= 0,
 474                          do_clear_all_soft_refs,
 475                          false);
 476 
 477       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 478           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 479         // Allocation request was met by young GC.
 480         size = 0;
 481       }
 482     }
 483 
 484     bool must_restore_marks_for_biased_locking = false;
 485 
 486     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 487       if (!complete) {
 488         // The full_collections increment was missed above.
 489         increment_total_full_collections();
 490       }
 491 
 492       if (!prepared_for_verification && run_verification &&
 493           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 494         prepare_for_verify();
 495       }
 496 
 497       if (do_young_collection) {
 498         // We did a young GC. Need a new GC id for the old GC.
 499         GCIdMarkAndRestore gc_id_mark;
 500         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 501         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 502       } else {
 503         // No young GC done. Use the same GC id as was set up earlier in this method.
 504         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 505       }
 506 
 507       must_restore_marks_for_biased_locking = true;
 508       collected_old = true;
 509     }
 510 
 511     // Update "complete" boolean wrt what actually transpired --
 512     // for instance, a promotion failure could have led to
 513     // a whole heap collection.
 514     complete = complete || collected_old;
 515 
 516     print_heap_change(young_prev_used, old_prev_used);
 517     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 518 
 519     // Adjust generation sizes.
 520     if (collected_old) {
 521       _old_gen->compute_new_size();
 522     }
 523     _young_gen->compute_new_size();
 524 
 525     if (complete) {
 526       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 527       ClassLoaderDataGraph::purge();
 528       MetaspaceAux::verify_metrics();
 529       // Resize the metaspace capacity after full collections
 530       MetaspaceGC::compute_new_size();
 531       update_full_collections_completed();
 532     }
 533 
 534     // Track memory usage and detect low memory after GC finishes
 535     MemoryService::track_memory_usage();
 536 
 537     gc_epilogue(complete);
 538 
 539     if (must_restore_marks_for_biased_locking) {
 540       BiasedLocking::restore_marks();
 541     }
 542   }
 543 
 544   print_heap_after_gc();
 545 
 546 #ifdef TRACESPINNING
 547   ParallelTaskTerminator::print_termination_counts();
 548 #endif
 549 }
 550 
 551 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 552   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 553 }
 554 
 555 #ifdef ASSERT
 556 class AssertNonScavengableClosure: public OopClosure {
 557 public:
 558   virtual void do_oop(oop* p) {
 559     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 560       "Referent should not be scavengable.");  }
 561   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 562 };
 563 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 564 #endif
 565 
 566 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 567                                      ScanningOption so,
 568                                      OopClosure* strong_roots,
 569                                      OopClosure* weak_roots,
 570                                      CLDClosure* strong_cld_closure,
 571                                      CLDClosure* weak_cld_closure,
 572                                      CodeBlobToOopClosure* code_roots) {
 573   // General roots.
 574   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 575   assert(code_roots != NULL, "code root closure should always be set");
 576   // _n_termination for _process_strong_tasks should be set up stream
 577   // in a method not running in a GC worker.  Otherwise the GC worker
 578   // could be trying to change the termination condition while the task
 579   // is executing in another GC worker.
 580 
 581   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 582     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 583   }
 584 
 585   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 586   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 587 
 588   bool is_par = scope->n_threads() > 1;
 589   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 590 
 591   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 592     Universe::oops_do(strong_roots);
 593   }
 594   // Global (strong) JNI handles
 595   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 596     JNIHandles::oops_do(strong_roots);
 597   }
 598 
 599   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 600     ObjectSynchronizer::oops_do(strong_roots);
 601   }
 602   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 603     FlatProfiler::oops_do(strong_roots);
 604   }
 605   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 606     Management::oops_do(strong_roots);
 607   }
 608   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 609     JvmtiExport::oops_do(strong_roots);
 610   }
 611 
 612   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 613     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 614   }
 615 
 616   // All threads execute the following. A specific chunk of buckets
 617   // from the StringTable are the individual tasks.
 618   if (weak_roots != NULL) {
 619     if (is_par) {
 620       StringTable::possibly_parallel_oops_do(weak_roots);
 621     } else {
 622       StringTable::oops_do(weak_roots);
 623     }
 624   }
 625 
 626   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 627     if (so & SO_ScavengeCodeCache) {
 628       assert(code_roots != NULL, "must supply closure for code cache");
 629 
 630       // We only visit parts of the CodeCache when scavenging.
 631       CodeCache::scavenge_root_nmethods_do(code_roots);
 632     }
 633     if (so & SO_AllCodeCache) {
 634       assert(code_roots != NULL, "must supply closure for code cache");
 635 
 636       // CMSCollector uses this to do intermediate-strength collections.
 637       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 638       CodeCache::blobs_do(code_roots);
 639     }
 640     // Verify that the code cache contents are not subject to
 641     // movement by a scavenging collection.
 642     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 643     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 644   }
 645 }
 646 
 647 void GenCollectedHeap::gen_process_roots(StrongRootsScope* scope,
 648                                          GenerationType type,
 649                                          bool young_gen_as_roots,
 650                                          ScanningOption so,
 651                                          bool only_strong_roots,
 652                                          OopsInGenClosure* not_older_gens,
 653                                          OopsInGenClosure* older_gens,
 654                                          CLDClosure* cld_closure) {
 655   const bool is_adjust_phase = !only_strong_roots && !young_gen_as_roots;
 656 
 657   bool is_moving_collection = false;
 658   if (type == YoungGen || is_adjust_phase) {
 659     // young collections are always moving
 660     is_moving_collection = true;
 661   }
 662 
 663   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 664   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
 665   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 666 
 667   process_roots(scope, so,
 668                 not_older_gens, weak_roots,
 669                 cld_closure, weak_cld_closure,
 670                 &mark_code_closure);
 671 
 672   if (young_gen_as_roots) {
 673     if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 674       if (type == OldGen) {
 675         not_older_gens->set_generation(_young_gen);
 676         _young_gen->oop_iterate(not_older_gens);
 677       }
 678       not_older_gens->reset_generation();
 679     }
 680   }
 681   // When collection is parallel, all threads get to cooperate to do
 682   // old generation scanning.
 683   if (type == YoungGen) {
 684     older_gens->set_generation(_old_gen);
 685     rem_set()->younger_refs_iterate(_old_gen, older_gens, scope->n_threads());
 686     older_gens->reset_generation();
 687   }
 688 
 689   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 690 }
 691 
 692 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 693   JNIHandles::weak_oops_do(root_closure);
 694   _young_gen->ref_processor()->weak_oops_do(root_closure);
 695   _old_gen->ref_processor()->weak_oops_do(root_closure);
 696 }
 697 
 698 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 699 void GenCollectedHeap::                                                 \
 700 oop_since_save_marks_iterate(GenerationType gen,                        \
 701                              OopClosureType* cur,                       \
 702                              OopClosureType* older) {                   \
 703   if (gen == YoungGen) {                              \
 704     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 705     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 706   } else {                                                              \
 707     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 708   }                                                                     \
 709 }
 710 
 711 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 712 
 713 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 714 
 715 bool GenCollectedHeap::no_allocs_since_save_marks() {
 716   return _young_gen->no_allocs_since_save_marks() &&
 717          _old_gen->no_allocs_since_save_marks();
 718 }
 719 
 720 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 721   return _young_gen->supports_inline_contig_alloc();
 722 }
 723 
 724 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 725   return _young_gen->top_addr();
 726 }
 727 
 728 HeapWord** GenCollectedHeap::end_addr() const {
 729   return _young_gen->end_addr();
 730 }
 731 
 732 // public collection interfaces
 733 
 734 void GenCollectedHeap::collect(GCCause::Cause cause) {
 735   if (should_do_concurrent_full_gc(cause)) {
 736 #if INCLUDE_ALL_GCS
 737     // Mostly concurrent full collection.
 738     collect_mostly_concurrent(cause);
 739 #else  // INCLUDE_ALL_GCS
 740     ShouldNotReachHere();
 741 #endif // INCLUDE_ALL_GCS
 742   } else if (cause == GCCause::_wb_young_gc) {
 743     // Young collection for the WhiteBox API.
 744     collect(cause, YoungGen);
 745   } else {
 746 #ifdef ASSERT
 747   if (cause == GCCause::_scavenge_alot) {
 748     // Young collection only.
 749     collect(cause, YoungGen);
 750   } else {
 751     // Stop-the-world full collection.
 752     collect(cause, OldGen);
 753   }
 754 #else
 755     // Stop-the-world full collection.
 756     collect(cause, OldGen);
 757 #endif
 758   }
 759 }
 760 
 761 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 762   // The caller doesn't have the Heap_lock
 763   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 764   MutexLocker ml(Heap_lock);
 765   collect_locked(cause, max_generation);
 766 }
 767 
 768 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 769   // The caller has the Heap_lock
 770   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 771   collect_locked(cause, OldGen);
 772 }
 773 
 774 // this is the private collection interface
 775 // The Heap_lock is expected to be held on entry.
 776 
 777 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 778   // Read the GC count while holding the Heap_lock
 779   unsigned int gc_count_before      = total_collections();
 780   unsigned int full_gc_count_before = total_full_collections();
 781   {
 782     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 783     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 784                          cause, max_generation);
 785     VMThread::execute(&op);
 786   }
 787 }
 788 
 789 #if INCLUDE_ALL_GCS
 790 bool GenCollectedHeap::create_cms_collector() {
 791 
 792   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 793          "Unexpected generation kinds");
 794   // Skip two header words in the block content verification
 795   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 796   assert(_gen_policy->is_concurrent_mark_sweep_policy(), "Unexpected policy type");
 797   CMSCollector* collector =
 798     new CMSCollector((ConcurrentMarkSweepGeneration*)_old_gen,
 799                      _rem_set,
 800                      _gen_policy->as_concurrent_mark_sweep_policy());
 801 
 802   if (collector == NULL || !collector->completed_initialization()) {
 803     if (collector) {
 804       delete collector;  // Be nice in embedded situation
 805     }
 806     vm_shutdown_during_initialization("Could not create CMS collector");
 807     return false;
 808   }
 809   return true;  // success
 810 }
 811 
 812 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 813   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 814 
 815   MutexLocker ml(Heap_lock);
 816   // Read the GC counts while holding the Heap_lock
 817   unsigned int full_gc_count_before = total_full_collections();
 818   unsigned int gc_count_before      = total_collections();
 819   {
 820     MutexUnlocker mu(Heap_lock);
 821     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 822     VMThread::execute(&op);
 823   }
 824 }
 825 #endif // INCLUDE_ALL_GCS
 826 
 827 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 828    do_full_collection(clear_all_soft_refs, OldGen);
 829 }
 830 
 831 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 832                                           GenerationType last_generation) {
 833   GenerationType local_last_generation;
 834   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 835       gc_cause() == GCCause::_gc_locker) {
 836     local_last_generation = YoungGen;
 837   } else {
 838     local_last_generation = last_generation;
 839   }
 840 
 841   do_collection(true,                   // full
 842                 clear_all_soft_refs,    // clear_all_soft_refs
 843                 0,                      // size
 844                 false,                  // is_tlab
 845                 local_last_generation); // last_generation
 846   // Hack XXX FIX ME !!!
 847   // A scavenge may not have been attempted, or may have
 848   // been attempted and failed, because the old gen was too full
 849   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 850       incremental_collection_will_fail(false /* don't consult_young */)) {
 851     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 852     // This time allow the old gen to be collected as well
 853     do_collection(true,                // full
 854                   clear_all_soft_refs, // clear_all_soft_refs
 855                   0,                   // size
 856                   false,               // is_tlab
 857                   OldGen);             // last_generation
 858   }
 859 }
 860 
 861 bool GenCollectedHeap::is_in_young(oop p) {
 862   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 863   assert(result == _young_gen->is_in_reserved(p),
 864          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 865   return result;
 866 }
 867 
 868 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 869 bool GenCollectedHeap::is_in(const void* p) const {
 870   return _young_gen->is_in(p) || _old_gen->is_in(p);
 871 }
 872 
 873 #ifdef ASSERT
 874 // Don't implement this by using is_in_young().  This method is used
 875 // in some cases to check that is_in_young() is correct.
 876 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 877   assert(is_in_reserved(p) || p == NULL,
 878     "Does not work if address is non-null and outside of the heap");
 879   return p < _young_gen->reserved().end() && p != NULL;
 880 }
 881 #endif
 882 
 883 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 884   NoHeaderExtendedOopClosure no_header_cl(cl);
 885   oop_iterate(&no_header_cl);
 886 }
 887 
 888 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 889   _young_gen->oop_iterate(cl);
 890   _old_gen->oop_iterate(cl);
 891 }
 892 
 893 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 894   _young_gen->object_iterate(cl);
 895   _old_gen->object_iterate(cl);
 896 }
 897 
 898 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 899   _young_gen->safe_object_iterate(cl);
 900   _old_gen->safe_object_iterate(cl);
 901 }
 902 
 903 Space* GenCollectedHeap::space_containing(const void* addr) const {
 904   Space* res = _young_gen->space_containing(addr);
 905   if (res != NULL) {
 906     return res;
 907   }
 908   res = _old_gen->space_containing(addr);
 909   assert(res != NULL, "Could not find containing space");
 910   return res;
 911 }
 912 
 913 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 914   assert(is_in_reserved(addr), "block_start of address outside of heap");
 915   if (_young_gen->is_in_reserved(addr)) {
 916     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 917     return _young_gen->block_start(addr);
 918   }
 919 
 920   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 921   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 922   return _old_gen->block_start(addr);
 923 }
 924 
 925 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 926   assert(is_in_reserved(addr), "block_size of address outside of heap");
 927   if (_young_gen->is_in_reserved(addr)) {
 928     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 929     return _young_gen->block_size(addr);
 930   }
 931 
 932   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 933   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 934   return _old_gen->block_size(addr);
 935 }
 936 
 937 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 938   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 939   assert(block_start(addr) == addr, "addr must be a block start");
 940   if (_young_gen->is_in_reserved(addr)) {
 941     return _young_gen->block_is_obj(addr);
 942   }
 943 
 944   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 945   return _old_gen->block_is_obj(addr);
 946 }
 947 
 948 bool GenCollectedHeap::supports_tlab_allocation() const {
 949   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 950   return _young_gen->supports_tlab_allocation();
 951 }
 952 
 953 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 954   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 955   if (_young_gen->supports_tlab_allocation()) {
 956     return _young_gen->tlab_capacity();
 957   }
 958   return 0;
 959 }
 960 
 961 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 962   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 963   if (_young_gen->supports_tlab_allocation()) {
 964     return _young_gen->tlab_used();
 965   }
 966   return 0;
 967 }
 968 
 969 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 970   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 971   if (_young_gen->supports_tlab_allocation()) {
 972     return _young_gen->unsafe_max_tlab_alloc();
 973   }
 974   return 0;
 975 }
 976 
 977 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 978   bool gc_overhead_limit_was_exceeded;
 979   return gen_policy()->mem_allocate_work(size /* size */,
 980                                          true /* is_tlab */,
 981                                          &gc_overhead_limit_was_exceeded);
 982 }
 983 
 984 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 985 // from the list headed by "*prev_ptr".
 986 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 987   bool first = true;
 988   size_t min_size = 0;   // "first" makes this conceptually infinite.
 989   ScratchBlock **smallest_ptr, *smallest;
 990   ScratchBlock  *cur = *prev_ptr;
 991   while (cur) {
 992     assert(*prev_ptr == cur, "just checking");
 993     if (first || cur->num_words < min_size) {
 994       smallest_ptr = prev_ptr;
 995       smallest     = cur;
 996       min_size     = smallest->num_words;
 997       first        = false;
 998     }
 999     prev_ptr = &cur->next;
1000     cur     =  cur->next;
1001   }
1002   smallest      = *smallest_ptr;
1003   *smallest_ptr = smallest->next;
1004   return smallest;
1005 }
1006 
1007 // Sort the scratch block list headed by res into decreasing size order,
1008 // and set "res" to the result.
1009 static void sort_scratch_list(ScratchBlock*& list) {
1010   ScratchBlock* sorted = NULL;
1011   ScratchBlock* unsorted = list;
1012   while (unsorted) {
1013     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1014     smallest->next  = sorted;
1015     sorted          = smallest;
1016   }
1017   list = sorted;
1018 }
1019 
1020 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1021                                                size_t max_alloc_words) {
1022   ScratchBlock* res = NULL;
1023   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1024   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1025   sort_scratch_list(res);
1026   return res;
1027 }
1028 
1029 void GenCollectedHeap::release_scratch() {
1030   _young_gen->reset_scratch();
1031   _old_gen->reset_scratch();
1032 }
1033 
1034 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1035   void do_generation(Generation* gen) {
1036     gen->prepare_for_verify();
1037   }
1038 };
1039 
1040 void GenCollectedHeap::prepare_for_verify() {
1041   ensure_parsability(false);        // no need to retire TLABs
1042   GenPrepareForVerifyClosure blk;
1043   generation_iterate(&blk, false);
1044 }
1045 
1046 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1047                                           bool old_to_young) {
1048   if (old_to_young) {
1049     cl->do_generation(_old_gen);
1050     cl->do_generation(_young_gen);
1051   } else {
1052     cl->do_generation(_young_gen);
1053     cl->do_generation(_old_gen);
1054   }
1055 }
1056 
1057 bool GenCollectedHeap::is_maximal_no_gc() const {
1058   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1059 }
1060 
1061 void GenCollectedHeap::save_marks() {
1062   _young_gen->save_marks();
1063   _old_gen->save_marks();
1064 }
1065 
1066 GenCollectedHeap* GenCollectedHeap::heap() {
1067   CollectedHeap* heap = Universe::heap();
1068   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1069   assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Not a GenCollectedHeap");
1070   return (GenCollectedHeap*)heap;
1071 }
1072 
1073 void GenCollectedHeap::prepare_for_compaction() {
1074   // Start by compacting into same gen.
1075   CompactPoint cp(_old_gen);
1076   _old_gen->prepare_for_compaction(&cp);
1077   _young_gen->prepare_for_compaction(&cp);
1078 }
1079 
1080 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1081   log_debug(gc, verify)("%s", _old_gen->name());
1082   _old_gen->verify();
1083 
1084   log_debug(gc, verify)("%s", _old_gen->name());
1085   _young_gen->verify();
1086 
1087   log_debug(gc, verify)("RemSet");
1088   rem_set()->verify();
1089 }
1090 
1091 void GenCollectedHeap::print_on(outputStream* st) const {
1092   _young_gen->print_on(st);
1093   _old_gen->print_on(st);
1094   MetaspaceAux::print_on(st);
1095 }
1096 
1097 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1098   if (workers() != NULL) {
1099     workers()->threads_do(tc);
1100   }
1101 #if INCLUDE_ALL_GCS
1102   if (UseConcMarkSweepGC) {
1103     ConcurrentMarkSweepThread::threads_do(tc);
1104   }
1105 #endif // INCLUDE_ALL_GCS
1106 }
1107 
1108 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1109 #if INCLUDE_ALL_GCS
1110   if (UseConcMarkSweepGC) {
1111     workers()->print_worker_threads_on(st);
1112     ConcurrentMarkSweepThread::print_all_on(st);
1113   }
1114 #endif // INCLUDE_ALL_GCS
1115 }
1116 
1117 void GenCollectedHeap::print_on_error(outputStream* st) const {
1118   this->CollectedHeap::print_on_error(st);
1119 
1120 #if INCLUDE_ALL_GCS
1121   if (UseConcMarkSweepGC) {
1122     st->cr();
1123     CMSCollector::print_on_error(st);
1124   }
1125 #endif // INCLUDE_ALL_GCS
1126 }
1127 
1128 void GenCollectedHeap::print_tracing_info() const {
1129   if (TraceYoungGenTime) {
1130     _young_gen->print_summary_info();
1131   }
1132   if (TraceOldGenTime) {
1133     _old_gen->print_summary_info();
1134   }
1135 }
1136 
1137 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1138   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1139                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1140   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1141                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1142 }
1143 
1144 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1145  private:
1146   bool _full;
1147  public:
1148   void do_generation(Generation* gen) {
1149     gen->gc_prologue(_full);
1150   }
1151   GenGCPrologueClosure(bool full) : _full(full) {};
1152 };
1153 
1154 void GenCollectedHeap::gc_prologue(bool full) {
1155   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1156 
1157   always_do_update_barrier = false;
1158   // Fill TLAB's and such
1159   CollectedHeap::accumulate_statistics_all_tlabs();
1160   ensure_parsability(true);   // retire TLABs
1161 
1162   // Walk generations
1163   GenGCPrologueClosure blk(full);
1164   generation_iterate(&blk, false);  // not old-to-young.
1165 };
1166 
1167 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1168  private:
1169   bool _full;
1170  public:
1171   void do_generation(Generation* gen) {
1172     gen->gc_epilogue(_full);
1173   }
1174   GenGCEpilogueClosure(bool full) : _full(full) {};
1175 };
1176 
1177 void GenCollectedHeap::gc_epilogue(bool full) {
1178 #if defined(COMPILER2) || INCLUDE_JVMCI
1179   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1180   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1181   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1182 #endif /* COMPILER2 || INCLUDE_JVMCI */
1183 
1184   resize_all_tlabs();
1185 
1186   GenGCEpilogueClosure blk(full);
1187   generation_iterate(&blk, false);  // not old-to-young.
1188 
1189   if (!CleanChunkPoolAsync) {
1190     Chunk::clean_chunk_pool();
1191   }
1192 
1193   MetaspaceCounters::update_performance_counters();
1194   CompressedClassSpaceCounters::update_performance_counters();
1195 
1196   always_do_update_barrier = UseConcMarkSweepGC;
1197 };
1198 
1199 #ifndef PRODUCT
1200 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1201  private:
1202  public:
1203   void do_generation(Generation* gen) {
1204     gen->record_spaces_top();
1205   }
1206 };
1207 
1208 void GenCollectedHeap::record_gen_tops_before_GC() {
1209   if (ZapUnusedHeapArea) {
1210     GenGCSaveTopsBeforeGCClosure blk;
1211     generation_iterate(&blk, false);  // not old-to-young.
1212   }
1213 }
1214 #endif  // not PRODUCT
1215 
1216 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1217  public:
1218   void do_generation(Generation* gen) {
1219     gen->ensure_parsability();
1220   }
1221 };
1222 
1223 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1224   CollectedHeap::ensure_parsability(retire_tlabs);
1225   GenEnsureParsabilityClosure ep_cl;
1226   generation_iterate(&ep_cl, false);
1227 }
1228 
1229 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1230                                               oop obj,
1231                                               size_t obj_size) {
1232   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1233   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1234   HeapWord* result = NULL;
1235 
1236   result = old_gen->expand_and_allocate(obj_size, false);
1237 
1238   if (result != NULL) {
1239     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1240   }
1241   return oop(result);
1242 }
1243 
1244 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1245   jlong _time;   // in ms
1246   jlong _now;    // in ms
1247 
1248  public:
1249   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1250 
1251   jlong time() { return _time; }
1252 
1253   void do_generation(Generation* gen) {
1254     _time = MIN2(_time, gen->time_of_last_gc(_now));
1255   }
1256 };
1257 
1258 jlong GenCollectedHeap::millis_since_last_gc() {
1259   // We need a monotonically non-decreasing time in ms but
1260   // os::javaTimeMillis() does not guarantee monotonicity.
1261   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1262   GenTimeOfLastGCClosure tolgc_cl(now);
1263   // iterate over generations getting the oldest
1264   // time that a generation was collected
1265   generation_iterate(&tolgc_cl, false);
1266 
1267   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1268   // provided the underlying platform provides such a time source
1269   // (and it is bug free). So we still have to guard against getting
1270   // back a time later than 'now'.
1271   jlong retVal = now - tolgc_cl.time();
1272   if (retVal < 0) {
1273     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, retVal);)
1274     return 0;
1275   }
1276   return retVal;
1277 }
1278 
1279 void GenCollectedHeap::stop() {
1280 #if INCLUDE_ALL_GCS
1281   if (UseConcMarkSweepGC) {
1282     ConcurrentMarkSweepThread::cmst()->stop();
1283   }
1284 #endif
1285 }