1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #ifndef NOINLINE
  46 #define NOINLINE
  47 #endif
  48 #ifndef ALWAYSINLINE
  49 #define ALWAYSINLINE inline
  50 #endif
  51 #ifndef PRAGMA_DIAG_PUSH
  52 #define PRAGMA_DIAG_PUSH
  53 #endif
  54 #ifndef PRAGMA_DIAG_POP
  55 #define PRAGMA_DIAG_POP
  56 #endif
  57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  59 #endif
  60 #ifndef PRAGMA_FORMAT_IGNORED
  61 #define PRAGMA_FORMAT_IGNORED
  62 #endif
  63 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  64 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  65 #endif
  66 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  67 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  68 #endif
  69 #ifndef ATTRIBUTE_PRINTF
  70 #define ATTRIBUTE_PRINTF(fmt, vargs)
  71 #endif
  72 #ifndef ATTRIBUTE_SCANF
  73 #define ATTRIBUTE_SCANF(fmt, vargs)
  74 #endif
  75 
  76 #include "utilities/macros.hpp"
  77 
  78 // This file holds all globally used constants & types, class (forward)
  79 // declarations and a few frequently used utility functions.
  80 
  81 //----------------------------------------------------------------------------------------------------
  82 // Constants
  83 
  84 const int LogBytesPerShort   = 1;
  85 const int LogBytesPerInt     = 2;
  86 #ifdef _LP64
  87 const int LogBytesPerWord    = 3;
  88 #else
  89 const int LogBytesPerWord    = 2;
  90 #endif
  91 const int LogBytesPerLong    = 3;
  92 
  93 const int BytesPerShort      = 1 << LogBytesPerShort;
  94 const int BytesPerInt        = 1 << LogBytesPerInt;
  95 const int BytesPerWord       = 1 << LogBytesPerWord;
  96 const int BytesPerLong       = 1 << LogBytesPerLong;
  97 
  98 const int LogBitsPerByte     = 3;
  99 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 100 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 101 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 102 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 103 
 104 const int BitsPerByte        = 1 << LogBitsPerByte;
 105 const int BitsPerShort       = 1 << LogBitsPerShort;
 106 const int BitsPerInt         = 1 << LogBitsPerInt;
 107 const int BitsPerWord        = 1 << LogBitsPerWord;
 108 const int BitsPerLong        = 1 << LogBitsPerLong;
 109 
 110 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 111 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 112 
 113 const int WordsPerLong       = 2;       // Number of stack entries for longs
 114 
 115 const int oopSize            = sizeof(char*); // Full-width oop
 116 extern int heapOopSize;                       // Oop within a java object
 117 const int wordSize           = sizeof(char*);
 118 const int longSize           = sizeof(jlong);
 119 const int jintSize           = sizeof(jint);
 120 const int size_tSize         = sizeof(size_t);
 121 
 122 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 123 
 124 extern int LogBytesPerHeapOop;                // Oop within a java object
 125 extern int LogBitsPerHeapOop;
 126 extern int BytesPerHeapOop;
 127 extern int BitsPerHeapOop;
 128 
 129 const int BitsPerJavaInteger = 32;
 130 const int BitsPerJavaLong    = 64;
 131 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 132 
 133 // Size of a char[] needed to represent a jint as a string in decimal.
 134 const int jintAsStringSize = 12;
 135 
 136 // In fact this should be
 137 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 138 // see os::set_memory_serialize_page()
 139 #ifdef _LP64
 140 const int SerializePageShiftCount = 4;
 141 #else
 142 const int SerializePageShiftCount = 3;
 143 #endif
 144 
 145 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 146 // pointer into the heap.  We require that object sizes be measured in
 147 // units of heap words, so that that
 148 //   HeapWord* hw;
 149 //   hw += oop(hw)->foo();
 150 // works, where foo is a method (like size or scavenge) that returns the
 151 // object size.
 152 class HeapWord {
 153   friend class VMStructs;
 154  private:
 155   char* i;
 156 #ifndef PRODUCT
 157  public:
 158   char* value() { return i; }
 159 #endif
 160 };
 161 
 162 // Analogous opaque struct for metadata allocated from
 163 // metaspaces.
 164 class MetaWord {
 165  private:
 166   char* i;
 167 };
 168 
 169 // HeapWordSize must be 2^LogHeapWordSize.
 170 const int HeapWordSize        = sizeof(HeapWord);
 171 #ifdef _LP64
 172 const int LogHeapWordSize     = 3;
 173 #else
 174 const int LogHeapWordSize     = 2;
 175 #endif
 176 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 177 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 178 
 179 // The larger HeapWordSize for 64bit requires larger heaps
 180 // for the same application running in 64bit.  See bug 4967770.
 181 // The minimum alignment to a heap word size is done.  Other
 182 // parts of the memory system may require additional alignment
 183 // and are responsible for those alignments.
 184 #ifdef _LP64
 185 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 186 #else
 187 #define ScaleForWordSize(x) (x)
 188 #endif
 189 
 190 // The minimum number of native machine words necessary to contain "byte_size"
 191 // bytes.
 192 inline size_t heap_word_size(size_t byte_size) {
 193   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 194 }
 195 
 196 //-------------------------------------------
 197 // Constant for jlong (standardized by C++11)
 198 
 199 // Build a 64bit integer constant
 200 #define CONST64(x)  (x ## LL)
 201 #define UCONST64(x) (x ## ULL)
 202 
 203 const jlong min_jlong = CONST64(0x8000000000000000);
 204 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 205 
 206 const size_t K                  = 1024;
 207 const size_t M                  = K*K;
 208 const size_t G                  = M*K;
 209 const size_t HWperKB            = K / sizeof(HeapWord);
 210 
 211 // Constants for converting from a base unit to milli-base units.  For
 212 // example from seconds to milliseconds and microseconds
 213 
 214 const int MILLIUNITS    = 1000;         // milli units per base unit
 215 const int MICROUNITS    = 1000000;      // micro units per base unit
 216 const int NANOUNITS     = 1000000000;   // nano units per base unit
 217 
 218 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 219 const jint  NANOSECS_PER_MILLISEC = 1000000;
 220 
 221 inline const char* proper_unit_for_byte_size(size_t s) {
 222 #ifdef _LP64
 223   if (s >= 10*G) {
 224     return "G";
 225   }
 226 #endif
 227   if (s >= 10*M) {
 228     return "M";
 229   } else if (s >= 10*K) {
 230     return "K";
 231   } else {
 232     return "B";
 233   }
 234 }
 235 
 236 template <class T>
 237 inline T byte_size_in_proper_unit(T s) {
 238 #ifdef _LP64
 239   if (s >= 10*G) {
 240     return (T)(s/G);
 241   }
 242 #endif
 243   if (s >= 10*M) {
 244     return (T)(s/M);
 245   } else if (s >= 10*K) {
 246     return (T)(s/K);
 247   } else {
 248     return s;
 249   }
 250 }
 251 
 252 inline const char* exact_unit_for_byte_size(size_t s) {
 253 #ifdef _LP64
 254   if (s >= G && (s % G) == 0) {
 255     return "G";
 256   }
 257 #endif
 258   if (s >= M && (s % M) == 0) {
 259     return "M";
 260   }
 261   if (s >= K && (s % K) == 0) {
 262     return "K";
 263   }
 264   return "B";
 265 }
 266 
 267 inline size_t byte_size_in_exact_unit(size_t s) {
 268 #ifdef _LP64
 269   if (s >= G && (s % G) == 0) {
 270     return s / G;
 271   }
 272 #endif
 273   if (s >= M && (s % M) == 0) {
 274     return s / M;
 275   }
 276   if (s >= K && (s % K) == 0) {
 277     return s / K;
 278   }
 279   return s;
 280 }
 281 
 282 //----------------------------------------------------------------------------------------------------
 283 // VM type definitions
 284 
 285 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 286 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 287 
 288 typedef intptr_t  intx;
 289 typedef uintptr_t uintx;
 290 
 291 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 292 const intx  max_intx  = (uintx)min_intx - 1;
 293 const uintx max_uintx = (uintx)-1;
 294 
 295 // Table of values:
 296 //      sizeof intx         4               8
 297 // min_intx             0x80000000      0x8000000000000000
 298 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 299 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 300 
 301 typedef unsigned int uint;   NEEDS_CLEANUP
 302 
 303 
 304 //----------------------------------------------------------------------------------------------------
 305 // Java type definitions
 306 
 307 // All kinds of 'plain' byte addresses
 308 typedef   signed char s_char;
 309 typedef unsigned char u_char;
 310 typedef u_char*       address;
 311 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 312                                     // except for some implementations of a C++
 313                                     // linkage pointer to function. Should never
 314                                     // need one of those to be placed in this
 315                                     // type anyway.
 316 
 317 //  Utility functions to "portably" (?) bit twiddle pointers
 318 //  Where portable means keep ANSI C++ compilers quiet
 319 
 320 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 321 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 322 
 323 //  Utility functions to "portably" make cast to/from function pointers.
 324 
 325 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 326 inline address_word  castable_address(address x)              { return address_word(x) ; }
 327 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 328 
 329 // Pointer subtraction.
 330 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 331 // the range we might need to find differences from one end of the heap
 332 // to the other.
 333 // A typical use might be:
 334 //     if (pointer_delta(end(), top()) >= size) {
 335 //       // enough room for an object of size
 336 //       ...
 337 // and then additions like
 338 //       ... top() + size ...
 339 // are safe because we know that top() is at least size below end().
 340 inline size_t pointer_delta(const volatile void* left,
 341                             const volatile void* right,
 342                             size_t element_size) {
 343   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 344 }
 345 
 346 // A version specialized for HeapWord*'s.
 347 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 348   return pointer_delta(left, right, sizeof(HeapWord));
 349 }
 350 // A version specialized for MetaWord*'s.
 351 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 352   return pointer_delta(left, right, sizeof(MetaWord));
 353 }
 354 
 355 //
 356 // ANSI C++ does not allow casting from one pointer type to a function pointer
 357 // directly without at best a warning. This macro accomplishes it silently
 358 // In every case that is present at this point the value be cast is a pointer
 359 // to a C linkage function. In some case the type used for the cast reflects
 360 // that linkage and a picky compiler would not complain. In other cases because
 361 // there is no convenient place to place a typedef with extern C linkage (i.e
 362 // a platform dependent header file) it doesn't. At this point no compiler seems
 363 // picky enough to catch these instances (which are few). It is possible that
 364 // using templates could fix these for all cases. This use of templates is likely
 365 // so far from the middle of the road that it is likely to be problematic in
 366 // many C++ compilers.
 367 //
 368 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 369 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 370 
 371 // Unsigned byte types for os and stream.hpp
 372 
 373 // Unsigned one, two, four and eigth byte quantities used for describing
 374 // the .class file format. See JVM book chapter 4.
 375 
 376 typedef jubyte  u1;
 377 typedef jushort u2;
 378 typedef juint   u4;
 379 typedef julong  u8;
 380 
 381 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 382 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 383 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 384 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 385 
 386 typedef jbyte  s1;
 387 typedef jshort s2;
 388 typedef jint   s4;
 389 typedef jlong  s8;
 390 
 391 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 392 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 393 const jshort min_jshort = -(1 << 15);    // smallest jshort
 394 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 395 
 396 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 397 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 398 
 399 //----------------------------------------------------------------------------------------------------
 400 // JVM spec restrictions
 401 
 402 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 403 
 404 // Default ProtectionDomainCacheSize values
 405 
 406 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 407 
 408 //----------------------------------------------------------------------------------------------------
 409 // Default and minimum StringTableSize values
 410 
 411 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 412 const int minimumStringTableSize = 1009;
 413 
 414 const int defaultSymbolTableSize = 20011;
 415 const int minimumSymbolTableSize = 1009;
 416 
 417 
 418 //----------------------------------------------------------------------------------------------------
 419 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 420 //
 421 // Determines whether on-the-fly class replacement and frame popping are enabled.
 422 
 423 #define HOTSWAP
 424 
 425 //----------------------------------------------------------------------------------------------------
 426 // Object alignment, in units of HeapWords.
 427 //
 428 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 429 // reference fields can be naturally aligned.
 430 
 431 extern int MinObjAlignment;
 432 extern int MinObjAlignmentInBytes;
 433 extern int MinObjAlignmentInBytesMask;
 434 
 435 extern int LogMinObjAlignment;
 436 extern int LogMinObjAlignmentInBytes;
 437 
 438 const int LogKlassAlignmentInBytes = 3;
 439 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 440 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 441 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 442 
 443 // Maximal size of heap where unscaled compression can be used. Also upper bound
 444 // for heap placement: 4GB.
 445 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 446 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 447 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 448 extern uint64_t OopEncodingHeapMax;
 449 
 450 // Maximal size of compressed class space. Above this limit compression is not possible.
 451 // Also upper bound for placement of zero based class space. (Class space is further limited
 452 // to be < 3G, see arguments.cpp.)
 453 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 454 
 455 // Machine dependent stuff
 456 
 457 // The maximum size of the code cache.  Can be overridden by targets.
 458 #define CODE_CACHE_SIZE_LIMIT (2*G)
 459 // Allow targets to reduce the default size of the code cache.
 460 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 461 
 462 #include CPU_HEADER(globalDefinitions)
 463 
 464 // To assure the IRIW property on processors that are not multiple copy
 465 // atomic, sync instructions must be issued between volatile reads to
 466 // assure their ordering, instead of after volatile stores.
 467 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 468 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 469 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 470 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 471 #else
 472 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 473 #endif
 474 
 475 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 476 // Note: this value must be a power of 2
 477 
 478 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 479 
 480 // Signed variants of alignment helpers.  There are two versions of each, a macro
 481 // for use in places like enum definitions that require compile-time constant
 482 // expressions and a function for all other places so as to get type checking.
 483 
 484 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 485 
 486 inline bool is_size_aligned(size_t size, size_t alignment) {
 487   return align_size_up_(size, alignment) == size;
 488 }
 489 
 490 inline bool is_ptr_aligned(const void* ptr, size_t alignment) {
 491   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 492 }
 493 
 494 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 495   return align_size_up_(size, alignment);
 496 }
 497 
 498 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 499 
 500 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 501   return align_size_down_(size, alignment);
 502 }
 503 
 504 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 505 
 506 inline void* align_ptr_up(const void* ptr, size_t alignment) {
 507   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 508 }
 509 
 510 inline void* align_ptr_down(void* ptr, size_t alignment) {
 511   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 512 }
 513 
 514 inline volatile void* align_ptr_down(volatile void* ptr, size_t alignment) {
 515   return (volatile void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 516 }
 517 
 518 // Align metaspace objects by rounding up to natural word boundary
 519 
 520 inline intptr_t align_metadata_size(intptr_t size) {
 521   return align_size_up(size, 1);
 522 }
 523 
 524 // Align objects in the Java Heap by rounding up their size, in HeapWord units.
 525 // Since the size is given in words this is somewhat of a nop, but
 526 // distinguishes it from align_object_size.
 527 inline intptr_t align_object_size(intptr_t size) {
 528   return align_size_up(size, MinObjAlignment);
 529 }
 530 
 531 inline bool is_object_aligned(intptr_t addr) {
 532   return addr == align_object_size(addr);
 533 }
 534 
 535 // Pad out certain offsets to jlong alignment, in HeapWord units.
 536 
 537 inline intptr_t align_object_offset(intptr_t offset) {
 538   return align_size_up(offset, HeapWordsPerLong);
 539 }
 540 
 541 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 542 
 543 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 544   size_t aligned_size = align_size_down_(size, alignment);
 545   return aligned_size > 0 ? aligned_size : alignment;
 546 }
 547 
 548 // Clamp an address to be within a specific page
 549 // 1. If addr is on the page it is returned as is
 550 // 2. If addr is above the page_address the start of the *next* page will be returned
 551 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 552 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 553   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 554     // address is in the specified page, just return it as is
 555     return addr;
 556   } else if (addr > page_address) {
 557     // address is above specified page, return start of next page
 558     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 559   } else {
 560     // address is below specified page, return start of page
 561     return (address)align_size_down(intptr_t(page_address), page_size);
 562   }
 563 }
 564 
 565 
 566 // The expected size in bytes of a cache line, used to pad data structures.
 567 #ifndef DEFAULT_CACHE_LINE_SIZE
 568   #define DEFAULT_CACHE_LINE_SIZE 64
 569 #endif
 570 
 571 
 572 //----------------------------------------------------------------------------------------------------
 573 // Utility macros for compilers
 574 // used to silence compiler warnings
 575 
 576 #define Unused_Variable(var) var
 577 
 578 
 579 //----------------------------------------------------------------------------------------------------
 580 // Miscellaneous
 581 
 582 // 6302670 Eliminate Hotspot __fabsf dependency
 583 // All fabs() callers should call this function instead, which will implicitly
 584 // convert the operand to double, avoiding a dependency on __fabsf which
 585 // doesn't exist in early versions of Solaris 8.
 586 inline double fabsd(double value) {
 587   return fabs(value);
 588 }
 589 
 590 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 591 // is zero, return 0.0.
 592 template<typename T>
 593 inline double percent_of(T numerator, T denominator) {
 594   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 595 }
 596 
 597 //----------------------------------------------------------------------------------------------------
 598 // Special casts
 599 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 600 typedef union {
 601   jfloat f;
 602   jint i;
 603 } FloatIntConv;
 604 
 605 typedef union {
 606   jdouble d;
 607   jlong l;
 608   julong ul;
 609 } DoubleLongConv;
 610 
 611 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 612 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 613 
 614 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 615 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 616 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 617 
 618 inline jint low (jlong value)                    { return jint(value); }
 619 inline jint high(jlong value)                    { return jint(value >> 32); }
 620 
 621 // the fancy casts are a hopefully portable way
 622 // to do unsigned 32 to 64 bit type conversion
 623 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 624                                                    *value |= (jlong)(julong)(juint)low; }
 625 
 626 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 627                                                    *value |= (jlong)high       << 32; }
 628 
 629 inline jlong jlong_from(jint h, jint l) {
 630   jlong result = 0; // initialization to avoid warning
 631   set_high(&result, h);
 632   set_low(&result,  l);
 633   return result;
 634 }
 635 
 636 union jlong_accessor {
 637   jint  words[2];
 638   jlong long_value;
 639 };
 640 
 641 void basic_types_init(); // cannot define here; uses assert
 642 
 643 
 644 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 645 enum BasicType {
 646   T_BOOLEAN     =  4,
 647   T_CHAR        =  5,
 648   T_FLOAT       =  6,
 649   T_DOUBLE      =  7,
 650   T_BYTE        =  8,
 651   T_SHORT       =  9,
 652   T_INT         = 10,
 653   T_LONG        = 11,
 654   T_OBJECT      = 12,
 655   T_ARRAY       = 13,
 656   T_VOID        = 14,
 657   T_ADDRESS     = 15,
 658   T_NARROWOOP   = 16,
 659   T_METADATA    = 17,
 660   T_NARROWKLASS = 18,
 661   T_CONFLICT    = 19, // for stack value type with conflicting contents
 662   T_ILLEGAL     = 99
 663 };
 664 
 665 inline bool is_java_primitive(BasicType t) {
 666   return T_BOOLEAN <= t && t <= T_LONG;
 667 }
 668 
 669 inline bool is_subword_type(BasicType t) {
 670   // these guys are processed exactly like T_INT in calling sequences:
 671   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 672 }
 673 
 674 inline bool is_signed_subword_type(BasicType t) {
 675   return (t == T_BYTE || t == T_SHORT);
 676 }
 677 
 678 // Convert a char from a classfile signature to a BasicType
 679 inline BasicType char2type(char c) {
 680   switch( c ) {
 681   case 'B': return T_BYTE;
 682   case 'C': return T_CHAR;
 683   case 'D': return T_DOUBLE;
 684   case 'F': return T_FLOAT;
 685   case 'I': return T_INT;
 686   case 'J': return T_LONG;
 687   case 'S': return T_SHORT;
 688   case 'Z': return T_BOOLEAN;
 689   case 'V': return T_VOID;
 690   case 'L': return T_OBJECT;
 691   case '[': return T_ARRAY;
 692   }
 693   return T_ILLEGAL;
 694 }
 695 
 696 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 697 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 698 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 699 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 700 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 701 extern BasicType name2type(const char* name);
 702 
 703 // Auxiliary math routines
 704 // least common multiple
 705 extern size_t lcm(size_t a, size_t b);
 706 
 707 
 708 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 709 enum BasicTypeSize {
 710   T_BOOLEAN_size     = 1,
 711   T_CHAR_size        = 1,
 712   T_FLOAT_size       = 1,
 713   T_DOUBLE_size      = 2,
 714   T_BYTE_size        = 1,
 715   T_SHORT_size       = 1,
 716   T_INT_size         = 1,
 717   T_LONG_size        = 2,
 718   T_OBJECT_size      = 1,
 719   T_ARRAY_size       = 1,
 720   T_NARROWOOP_size   = 1,
 721   T_NARROWKLASS_size = 1,
 722   T_VOID_size        = 0
 723 };
 724 
 725 
 726 // maps a BasicType to its instance field storage type:
 727 // all sub-word integral types are widened to T_INT
 728 extern BasicType type2field[T_CONFLICT+1];
 729 extern BasicType type2wfield[T_CONFLICT+1];
 730 
 731 
 732 // size in bytes
 733 enum ArrayElementSize {
 734   T_BOOLEAN_aelem_bytes     = 1,
 735   T_CHAR_aelem_bytes        = 2,
 736   T_FLOAT_aelem_bytes       = 4,
 737   T_DOUBLE_aelem_bytes      = 8,
 738   T_BYTE_aelem_bytes        = 1,
 739   T_SHORT_aelem_bytes       = 2,
 740   T_INT_aelem_bytes         = 4,
 741   T_LONG_aelem_bytes        = 8,
 742 #ifdef _LP64
 743   T_OBJECT_aelem_bytes      = 8,
 744   T_ARRAY_aelem_bytes       = 8,
 745 #else
 746   T_OBJECT_aelem_bytes      = 4,
 747   T_ARRAY_aelem_bytes       = 4,
 748 #endif
 749   T_NARROWOOP_aelem_bytes   = 4,
 750   T_NARROWKLASS_aelem_bytes = 4,
 751   T_VOID_aelem_bytes        = 0
 752 };
 753 
 754 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 755 #ifdef ASSERT
 756 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 757 #else
 758 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 759 #endif
 760 
 761 
 762 // JavaValue serves as a container for arbitrary Java values.
 763 
 764 class JavaValue {
 765 
 766  public:
 767   typedef union JavaCallValue {
 768     jfloat   f;
 769     jdouble  d;
 770     jint     i;
 771     jlong    l;
 772     jobject  h;
 773   } JavaCallValue;
 774 
 775  private:
 776   BasicType _type;
 777   JavaCallValue _value;
 778 
 779  public:
 780   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 781 
 782   JavaValue(jfloat value) {
 783     _type    = T_FLOAT;
 784     _value.f = value;
 785   }
 786 
 787   JavaValue(jdouble value) {
 788     _type    = T_DOUBLE;
 789     _value.d = value;
 790   }
 791 
 792  jfloat get_jfloat() const { return _value.f; }
 793  jdouble get_jdouble() const { return _value.d; }
 794  jint get_jint() const { return _value.i; }
 795  jlong get_jlong() const { return _value.l; }
 796  jobject get_jobject() const { return _value.h; }
 797  JavaCallValue* get_value_addr() { return &_value; }
 798  BasicType get_type() const { return _type; }
 799 
 800  void set_jfloat(jfloat f) { _value.f = f;}
 801  void set_jdouble(jdouble d) { _value.d = d;}
 802  void set_jint(jint i) { _value.i = i;}
 803  void set_jlong(jlong l) { _value.l = l;}
 804  void set_jobject(jobject h) { _value.h = h;}
 805  void set_type(BasicType t) { _type = t; }
 806 
 807  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 808  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 809  jchar get_jchar() const { return (jchar) (_value.i);}
 810  jshort get_jshort() const { return (jshort) (_value.i);}
 811 
 812 };
 813 
 814 
 815 #define STACK_BIAS      0
 816 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 817 // in order to extend the reach of the stack pointer.
 818 #if defined(SPARC) && defined(_LP64)
 819 #undef STACK_BIAS
 820 #define STACK_BIAS      0x7ff
 821 #endif
 822 
 823 
 824 // TosState describes the top-of-stack state before and after the execution of
 825 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 826 // registers. The TosState corresponds to the 'machine representation' of this cached
 827 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 828 // as well as a 5th state in case the top-of-stack value is actually on the top
 829 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 830 // state when it comes to machine representation but is used separately for (oop)
 831 // type specific operations (e.g. verification code).
 832 
 833 enum TosState {         // describes the tos cache contents
 834   btos = 0,             // byte, bool tos cached
 835   ztos = 1,             // byte, bool tos cached
 836   ctos = 2,             // char tos cached
 837   stos = 3,             // short tos cached
 838   itos = 4,             // int tos cached
 839   ltos = 5,             // long tos cached
 840   ftos = 6,             // float tos cached
 841   dtos = 7,             // double tos cached
 842   atos = 8,             // object cached
 843   vtos = 9,             // tos not cached
 844   number_of_states,
 845   ilgl                  // illegal state: should not occur
 846 };
 847 
 848 
 849 inline TosState as_TosState(BasicType type) {
 850   switch (type) {
 851     case T_BYTE   : return btos;
 852     case T_BOOLEAN: return ztos;
 853     case T_CHAR   : return ctos;
 854     case T_SHORT  : return stos;
 855     case T_INT    : return itos;
 856     case T_LONG   : return ltos;
 857     case T_FLOAT  : return ftos;
 858     case T_DOUBLE : return dtos;
 859     case T_VOID   : return vtos;
 860     case T_ARRAY  : // fall through
 861     case T_OBJECT : return atos;
 862   }
 863   return ilgl;
 864 }
 865 
 866 inline BasicType as_BasicType(TosState state) {
 867   switch (state) {
 868     case btos : return T_BYTE;
 869     case ztos : return T_BOOLEAN;
 870     case ctos : return T_CHAR;
 871     case stos : return T_SHORT;
 872     case itos : return T_INT;
 873     case ltos : return T_LONG;
 874     case ftos : return T_FLOAT;
 875     case dtos : return T_DOUBLE;
 876     case atos : return T_OBJECT;
 877     case vtos : return T_VOID;
 878   }
 879   return T_ILLEGAL;
 880 }
 881 
 882 
 883 // Helper function to convert BasicType info into TosState
 884 // Note: Cannot define here as it uses global constant at the time being.
 885 TosState as_TosState(BasicType type);
 886 
 887 
 888 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 889 // information is needed by the safepoint code.
 890 //
 891 // There are 4 essential states:
 892 //
 893 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 894 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 895 //  _thread_in_vm       : Executing in the vm
 896 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 897 //
 898 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 899 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 900 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 901 //
 902 // Given a state, the xxxx_trans state can always be found by adding 1.
 903 //
 904 enum JavaThreadState {
 905   _thread_uninitialized     =  0, // should never happen (missing initialization)
 906   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 907   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 908   _thread_in_native         =  4, // running in native code
 909   _thread_in_native_trans   =  5, // corresponding transition state
 910   _thread_in_vm             =  6, // running in VM
 911   _thread_in_vm_trans       =  7, // corresponding transition state
 912   _thread_in_Java           =  8, // running in Java or in stub code
 913   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 914   _thread_blocked           = 10, // blocked in vm
 915   _thread_blocked_trans     = 11, // corresponding transition state
 916   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 917 };
 918 
 919 
 920 
 921 //----------------------------------------------------------------------------------------------------
 922 // 'Forward' declarations of frequently used classes
 923 // (in order to reduce interface dependencies & reduce
 924 // number of unnecessary compilations after changes)
 925 
 926 class ClassFileStream;
 927 
 928 class Event;
 929 
 930 class Thread;
 931 class  VMThread;
 932 class  JavaThread;
 933 class Threads;
 934 
 935 class VM_Operation;
 936 class VMOperationQueue;
 937 
 938 class CodeBlob;
 939 class  CompiledMethod;
 940 class   nmethod;
 941 class RuntimeBlob;
 942 class  OSRAdapter;
 943 class  I2CAdapter;
 944 class  C2IAdapter;
 945 class CompiledIC;
 946 class relocInfo;
 947 class ScopeDesc;
 948 class PcDesc;
 949 
 950 class Recompiler;
 951 class Recompilee;
 952 class RecompilationPolicy;
 953 class RFrame;
 954 class  CompiledRFrame;
 955 class  InterpretedRFrame;
 956 
 957 class frame;
 958 
 959 class vframe;
 960 class   javaVFrame;
 961 class     interpretedVFrame;
 962 class     compiledVFrame;
 963 class     deoptimizedVFrame;
 964 class   externalVFrame;
 965 class     entryVFrame;
 966 
 967 class RegisterMap;
 968 
 969 class Mutex;
 970 class Monitor;
 971 class BasicLock;
 972 class BasicObjectLock;
 973 
 974 class PeriodicTask;
 975 
 976 class JavaCallWrapper;
 977 
 978 class   oopDesc;
 979 class   metaDataOopDesc;
 980 
 981 class NativeCall;
 982 
 983 class zone;
 984 
 985 class StubQueue;
 986 
 987 class outputStream;
 988 
 989 class ResourceArea;
 990 
 991 class DebugInformationRecorder;
 992 class ScopeValue;
 993 class CompressedStream;
 994 class   DebugInfoReadStream;
 995 class   DebugInfoWriteStream;
 996 class LocationValue;
 997 class ConstantValue;
 998 class IllegalValue;
 999 
1000 class PrivilegedElement;
1001 class MonitorArray;
1002 
1003 class MonitorInfo;
1004 
1005 class OffsetClosure;
1006 class OopMapCache;
1007 class InterpreterOopMap;
1008 class OopMapCacheEntry;
1009 class OSThread;
1010 
1011 typedef int (*OSThreadStartFunc)(void*);
1012 
1013 class Space;
1014 
1015 class JavaValue;
1016 class methodHandle;
1017 class JavaCallArguments;
1018 
1019 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1020 
1021 extern void basic_fatal(const char* msg);
1022 
1023 
1024 //----------------------------------------------------------------------------------------------------
1025 // Special constants for debugging
1026 
1027 const jint     badInt           = -3;                       // generic "bad int" value
1028 const long     badAddressVal    = -2;                       // generic "bad address" value
1029 const long     badOopVal        = -1;                       // generic "bad oop" value
1030 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1031 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1032 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1033 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1034 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1035 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
1036 const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1037 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1038 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1039 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1040 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1041 
1042 
1043 // (These must be implemented as #defines because C++ compilers are
1044 // not obligated to inline non-integral constants!)
1045 #define       badAddress        ((address)::badAddressVal)
1046 #define       badOop            (cast_to_oop(::badOopVal))
1047 #define       badHeapWord       (::badHeapWordVal)
1048 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1049 
1050 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1051 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1052 
1053 //----------------------------------------------------------------------------------------------------
1054 // Utility functions for bitfield manipulations
1055 
1056 const intptr_t AllBits    = ~0; // all bits set in a word
1057 const intptr_t NoBits     =  0; // no bits set in a word
1058 const jlong    NoLongBits =  0; // no bits set in a long
1059 const intptr_t OneBit     =  1; // only right_most bit set in a word
1060 
1061 // get a word with the n.th or the right-most or left-most n bits set
1062 // (note: #define used only so that they can be used in enum constant definitions)
1063 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1064 #define right_n_bits(n)   (nth_bit(n) - 1)
1065 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1066 
1067 // bit-operations using a mask m
1068 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1069 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1070 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1071 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1072 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1073 
1074 // bit-operations using the n.th bit
1075 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1076 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1077 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1078 
1079 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1080 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1081   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1082 }
1083 
1084 
1085 //----------------------------------------------------------------------------------------------------
1086 // Utility functions for integers
1087 
1088 // Avoid use of global min/max macros which may cause unwanted double
1089 // evaluation of arguments.
1090 #ifdef max
1091 #undef max
1092 #endif
1093 
1094 #ifdef min
1095 #undef min
1096 #endif
1097 
1098 #define max max
1099 #define min min
1100 
1101 // It is necessary to use templates here. Having normal overloaded
1102 // functions does not work because it is necessary to provide both 32-
1103 // and 64-bit overloaded functions, which does not work, and having
1104 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1105 // will be even more error-prone than macros.
1106 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1107 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1108 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1109 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1110 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1111 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1112 
1113 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1114 
1115 // true if x is a power of 2, false otherwise
1116 inline bool is_power_of_2(intptr_t x) {
1117   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1118 }
1119 
1120 // long version of is_power_of_2
1121 inline bool is_power_of_2_long(jlong x) {
1122   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1123 }
1124 
1125 // Returns largest i such that 2^i <= x.
1126 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1127 // If x == 0, the function returns -1.
1128 inline int log2_intptr(intptr_t x) {
1129   int i = -1;
1130   uintptr_t p = 1;
1131   while (p != 0 && p <= (uintptr_t)x) {
1132     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1133     i++; p *= 2;
1134   }
1135   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1136   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1137   return i;
1138 }
1139 
1140 //* largest i such that 2^i <= x
1141 //  A negative value of 'x' will return '63'
1142 inline int log2_long(jlong x) {
1143   int i = -1;
1144   julong p =  1;
1145   while (p != 0 && p <= (julong)x) {
1146     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1147     i++; p *= 2;
1148   }
1149   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1150   // (if p = 0 then overflow occurred and i = 63)
1151   return i;
1152 }
1153 
1154 //* the argument must be exactly a power of 2
1155 inline int exact_log2(intptr_t x) {
1156   #ifdef ASSERT
1157     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1158   #endif
1159   return log2_intptr(x);
1160 }
1161 
1162 //* the argument must be exactly a power of 2
1163 inline int exact_log2_long(jlong x) {
1164   #ifdef ASSERT
1165     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1166   #endif
1167   return log2_long(x);
1168 }
1169 
1170 
1171 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1172 inline intptr_t round_to(intptr_t x, uintx s) {
1173   #ifdef ASSERT
1174     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1175   #endif
1176   const uintx m = s - 1;
1177   return mask_bits(x + m, ~m);
1178 }
1179 
1180 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1181 inline intptr_t round_down(intptr_t x, uintx s) {
1182   #ifdef ASSERT
1183     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1184   #endif
1185   const uintx m = s - 1;
1186   return mask_bits(x, ~m);
1187 }
1188 
1189 
1190 inline bool is_odd (intx x) { return x & 1;      }
1191 inline bool is_even(intx x) { return !is_odd(x); }
1192 
1193 // "to" should be greater than "from."
1194 inline intx byte_size(void* from, void* to) {
1195   return (address)to - (address)from;
1196 }
1197 
1198 //----------------------------------------------------------------------------------------------------
1199 // Avoid non-portable casts with these routines (DEPRECATED)
1200 
1201 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1202 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1203 
1204 // Given sequence of four bytes, build into a 32-bit word
1205 // following the conventions used in class files.
1206 // On the 386, this could be realized with a simple address cast.
1207 //
1208 
1209 // This routine takes eight bytes:
1210 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1211   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1212        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1213        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1214        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1215        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1216        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1217        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1218        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1219 }
1220 
1221 // This routine takes four bytes:
1222 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1223   return  (( u4(c1) << 24 )  &  0xff000000)
1224        |  (( u4(c2) << 16 )  &  0x00ff0000)
1225        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1226        |  (( u4(c4) <<  0 )  &  0x000000ff);
1227 }
1228 
1229 // And this one works if the four bytes are contiguous in memory:
1230 inline u4 build_u4_from( u1* p ) {
1231   return  build_u4_from( p[0], p[1], p[2], p[3] );
1232 }
1233 
1234 // Ditto for two-byte ints:
1235 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1236   return  u2((( u2(c1) <<  8 )  &  0xff00)
1237           |  (( u2(c2) <<  0 )  &  0x00ff));
1238 }
1239 
1240 // And this one works if the two bytes are contiguous in memory:
1241 inline u2 build_u2_from( u1* p ) {
1242   return  build_u2_from( p[0], p[1] );
1243 }
1244 
1245 // Ditto for floats:
1246 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1247   u4 u = build_u4_from( c1, c2, c3, c4 );
1248   return  *(jfloat*)&u;
1249 }
1250 
1251 inline jfloat build_float_from( u1* p ) {
1252   u4 u = build_u4_from( p );
1253   return  *(jfloat*)&u;
1254 }
1255 
1256 
1257 // now (64-bit) longs
1258 
1259 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1260   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1261        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1262        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1263        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1264        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1265        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1266        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1267        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1268 }
1269 
1270 inline jlong build_long_from( u1* p ) {
1271   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1272 }
1273 
1274 
1275 // Doubles, too!
1276 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1277   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1278   return  *(jdouble*)&u;
1279 }
1280 
1281 inline jdouble build_double_from( u1* p ) {
1282   jlong u = build_long_from( p );
1283   return  *(jdouble*)&u;
1284 }
1285 
1286 
1287 // Portable routines to go the other way:
1288 
1289 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1290   c1 = u1(x >> 8);
1291   c2 = u1(x);
1292 }
1293 
1294 inline void explode_short_to( u2 x, u1* p ) {
1295   explode_short_to( x, p[0], p[1]);
1296 }
1297 
1298 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1299   c1 = u1(x >> 24);
1300   c2 = u1(x >> 16);
1301   c3 = u1(x >>  8);
1302   c4 = u1(x);
1303 }
1304 
1305 inline void explode_int_to( u4 x, u1* p ) {
1306   explode_int_to( x, p[0], p[1], p[2], p[3]);
1307 }
1308 
1309 
1310 // Pack and extract shorts to/from ints:
1311 
1312 inline int extract_low_short_from_int(jint x) {
1313   return x & 0xffff;
1314 }
1315 
1316 inline int extract_high_short_from_int(jint x) {
1317   return (x >> 16) & 0xffff;
1318 }
1319 
1320 inline int build_int_from_shorts( jushort low, jushort high ) {
1321   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1322 }
1323 
1324 // Convert pointer to intptr_t, for use in printing pointers.
1325 inline intptr_t p2i(const void * p) {
1326   return (intptr_t) p;
1327 }
1328 
1329 // swap a & b
1330 template<class T> static void swap(T& a, T& b) {
1331   T tmp = a;
1332   a = b;
1333   b = tmp;
1334 }
1335 
1336 // Printf-style formatters for fixed- and variable-width types as pointers and
1337 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1338 // doesn't provide appropriate definitions, they should be provided in
1339 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1340 
1341 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1342 
1343 // Format 32-bit quantities.
1344 #define INT32_FORMAT           "%" PRId32
1345 #define UINT32_FORMAT          "%" PRIu32
1346 #define INT32_FORMAT_W(width)  "%" #width PRId32
1347 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1348 
1349 #define PTR32_FORMAT           "0x%08" PRIx32
1350 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
1351 
1352 // Format 64-bit quantities.
1353 #define INT64_FORMAT           "%" PRId64
1354 #define UINT64_FORMAT          "%" PRIu64
1355 #define UINT64_FORMAT_X        "%" PRIx64
1356 #define INT64_FORMAT_W(width)  "%" #width PRId64
1357 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1358 
1359 #define PTR64_FORMAT           "0x%016" PRIx64
1360 
1361 // Format jlong, if necessary
1362 #ifndef JLONG_FORMAT
1363 #define JLONG_FORMAT           INT64_FORMAT
1364 #endif
1365 #ifndef JULONG_FORMAT
1366 #define JULONG_FORMAT          UINT64_FORMAT
1367 #endif
1368 #ifndef JULONG_FORMAT_X
1369 #define JULONG_FORMAT_X        UINT64_FORMAT_X
1370 #endif
1371 
1372 // Format pointers which change size between 32- and 64-bit.
1373 #ifdef  _LP64
1374 #define INTPTR_FORMAT "0x%016" PRIxPTR
1375 #define PTR_FORMAT    "0x%016" PRIxPTR
1376 #else   // !_LP64
1377 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1378 #define PTR_FORMAT    "0x%08"  PRIxPTR
1379 #endif  // _LP64
1380 
1381 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1382 
1383 #define SSIZE_FORMAT             "%"   PRIdPTR
1384 #define SIZE_FORMAT              "%"   PRIuPTR
1385 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1386 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1387 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1388 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1389 
1390 #define INTX_FORMAT           "%" PRIdPTR
1391 #define UINTX_FORMAT          "%" PRIuPTR
1392 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1393 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1394 
1395 
1396 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1397 
1398 //----------------------------------------------------------------------------------------------------
1399 // Sum and product which can never overflow: they wrap, just like the
1400 // Java operations.  Note that we don't intend these to be used for
1401 // general-purpose arithmetic: their purpose is to emulate Java
1402 // operations.
1403 
1404 // The goal of this code to avoid undefined or implementation-defined
1405 // behavior.  The use of an lvalue to reference cast is explicitly
1406 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1407 // 15 in C++03]
1408 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1409 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1410   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1411   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1412   return reinterpret_cast<TYPE&>(ures);                 \
1413 }
1414 
1415 JAVA_INTEGER_OP(+, java_add, jint, juint)
1416 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1417 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1418 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1419 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1420 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1421 
1422 #undef JAVA_INTEGER_OP
1423 
1424 // Dereference vptr
1425 // All C++ compilers that we know of have the vtbl pointer in the first
1426 // word.  If there are exceptions, this function needs to be made compiler
1427 // specific.
1428 static inline void* dereference_vptr(const void* addr) {
1429   return *(void**)addr;
1430 }
1431 
1432 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP