/* * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef OS_CPU_LINUX_ARM_VM_ATOMIC_LINUX_ARM_HPP #define OS_CPU_LINUX_ARM_VM_ATOMIC_LINUX_ARM_HPP #include "runtime/os.hpp" #include "vm_version_arm.hpp" // Implementation of class atomic /* * Atomic long operations on 32-bit ARM * ARM v7 supports LDREXD/STREXD synchronization instructions so no problem. * ARM < v7 does not have explicit 64 atomic load/store capability. * However, gcc emits LDRD/STRD instructions on v5te and LDM/STM on v5t * when loading/storing 64 bits. * For non-MP machines (which is all we support for ARM < v7) * under current Linux distros these instructions appear atomic. * See section A3.5.3 of ARM Architecture Reference Manual for ARM v7. * Also, for cmpxchg64, if ARM < v7 we check for cmpxchg64 support in the * Linux kernel using _kuser_helper_version. See entry-armv.S in the Linux * kernel source or kernel_user_helpers.txt in Linux Doc. */ template <> inline void GeneralizedAtomic::specialized_store(int64_t value, volatile int64_t* dest) { assert(((intx)dest & (sizeof(int64_t)-1)) == 0, "Atomic 64 bit store mis-aligned"); #ifdef AARCH64 *dest = value; #else (*os::atomic_store_long_func)(value, dest); #endif } template <> inline int64_t GeneralizedAtomic::specialized_load(const volatile int64_t* src) { assert(((intx)src & (sizeof(int64_t)-1)) == 0, "Atomic 64 bit load mis-aligned"); #ifdef AARCH64 return *src; #else return (*os::atomic_load_long_func)(src); #endif } // As per atomic.hpp all read-modify-write operations have to provide two-way // barriers semantics. For AARCH64 we are using load-acquire-with-reservation and // store-release-with-reservation. While load-acquire combined with store-release // do not generally form two-way barriers, their use with reservations does - the // ARMv8 architecture manual Section F "Barrier Litmus Tests" indicates they // provide sequentially consistent semantics. All we need to add is an explicit // barrier in the failure path of the cmpxchg operations (as these don't execute // the store) - arguably this may be overly cautious as there is a very low // likelihood that the hardware would pull loads/stores into the region guarded // by the reservation. // // For ARMv7 we add explicit barriers in the stubs. template <> inline int32_t GeneralizedAtomic::specialized_add(int32_t add_value, volatile int32_t* dest) { #ifdef AARCH64 int32_t val; int tmp; __asm__ volatile( "1:\n\t" " ldaxr %w[val], [%[dest]]\n\t" " add %w[val], %w[val], %w[add_val]\n\t" " stlxr %w[tmp], %w[val], [%[dest]]\n\t" " cbnz %w[tmp], 1b\n\t" : [val] "=&r" (val), [tmp] "=&r" (tmp) : [add_val] "r" (add_value), [dest] "r" (dest) : "memory"); return val; #else return (*os::atomic_add_func)(add_value, dest); #endif } template <> inline int32_t GeneralizedAtomic::specialized_xchg(int32_t exchange_value, volatile int32_t* dest) { #ifdef AARCH64 int32_t old_val; int tmp; __asm__ volatile( "1:\n\t" " ldaxr %w[old_val], [%[dest]]\n\t" " stlxr %w[tmp], %w[new_val], [%[dest]]\n\t" " cbnz %w[tmp], 1b\n\t" : [old_val] "=&r" (old_val), [tmp] "=&r" (tmp) : [new_val] "r" (exchange_value), [dest] "r" (dest) : "memory"); return old_val; #else return (*os::atomic_xchg_func)(exchange_value, dest); #endif } // The memory_order parameter is ignored - we always provide the strongest/most-conservative ordering template <> inline int32_t GeneralizedAtomic::specialized_cmpxchg(int32_t exchange_value, volatile int32_t* dest, int32_t compare_value, cmpxchg_memory_order order) { #ifdef AARCH64 int32_t rv; int tmp; __asm__ volatile( "1:\n\t" " ldaxr %w[rv], [%[dest]]\n\t" " cmp %w[rv], %w[cv]\n\t" " b.ne 2f\n\t" " stlxr %w[tmp], %w[ev], [%[dest]]\n\t" " cbnz %w[tmp], 1b\n\t" " b 3f\n\t" "2:\n\t" " dmb sy\n\t" "3:\n\t" : [rv] "=&r" (rv), [tmp] "=&r" (tmp) : [ev] "r" (exchange_value), [dest] "r" (dest), [cv] "r" (compare_value) : "memory"); return rv; #else // Warning: Arguments are swapped to avoid moving them for kernel call return (*os::atomic_cmpxchg_func)(compare_value, exchange_value, dest); #endif } template <> inline int64_t GeneralizedAtomic::specialized_cmpxchg(int64_t exchange_value, volatile int64_t* dest, int64_t compare_value, cmpxchg_memory_order order) { #ifdef AARCH64 int64_t rv; int tmp; __asm__ volatile( "1:\n\t" " ldaxr %[rv], [%[dest]]\n\t" " cmp %[rv], %[cv]\n\t" " b.ne 2f\n\t" " stlxr %w[tmp], %[ev], [%[dest]]\n\t" " cbnz %w[tmp], 1b\n\t" " b 3f\n\t" "2:\n\t" " dmb sy\n\t" "3:\n\t" : [rv] "=&r" (rv), [tmp] "=&r" (tmp) : [ev] "r" (exchange_value), [dest] "r" (dest), [cv] "r" (compare_value) : "memory"); return rv; #else assert(VM_Version::supports_cx8(), "64 bit atomic compare and exchange not supported on this architecture!"); return (*os::atomic_cmpxchg_long_func)(compare_value, exchange_value, dest); #endif } #ifdef AARCH64 template <> inline int64_t GeneralizedAtomic::specialized_add(int64_t add_value, volatile int64_t* dest) { int64_t val; int tmp; __asm__ volatile( "1:\n\t" " ldaxr %[val], [%[dest]]\n\t" " add %[val], %[val], %[add_val]\n\t" " stlxr %w[tmp], %[val], [%[dest]]\n\t" " cbnz %w[tmp], 1b\n\t" : [val] "=&r" (val), [tmp] "=&r" (tmp) : [add_val] "r" (add_value), [dest] "r" (dest) : "memory"); return val; } template <> inline int64_t GeneralizedAtomic::specialized_xchg(int64_t exchange_value, volatile int64_t* dest) { int64_t old_val; int tmp; __asm__ volatile( "1:\n\t" " ldaxr %[old_val], [%[dest]]\n\t" " stlxr %w[tmp], %[new_val], [%[dest]]\n\t" " cbnz %w[tmp], 1b\n\t" : [old_val] "=&r" (old_val), [tmp] "=&r" (tmp) : [new_val] "r" (exchange_value), [dest] "r" (dest) : "memory"); return old_val; } #endif #endif // OS_CPU_LINUX_ARM_VM_ATOMIC_LINUX_ARM_HPP