1 /*
  2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_VM_GC_SHARED_BARRIERSET_HPP
 26 #define SHARE_VM_GC_SHARED_BARRIERSET_HPP
 27 
 28 #include "gc/shared/barrierSetConfig.hpp"
 29 #include "memory/memRegion.hpp"
 30 #include "oops/access.hpp"
 31 #include "oops/accessBackend.hpp"
 32 #include "oops/oopsHierarchy.hpp"
 33 #include "utilities/fakeRttiSupport.hpp"
 34 
 35 class JavaThread;
 36 
 37 // This class provides the interface between a barrier implementation and
 38 // the rest of the system.
 39 
 40 class BarrierSet: public CHeapObj<mtGC> {
 41   friend class VMStructs;
 42 
 43   static BarrierSet* _bs;
 44 
 45 public:
 46   enum Name {
 47 #define BARRIER_SET_DECLARE_BS_ENUM(bs_name) bs_name ,
 48     FOR_EACH_BARRIER_SET_DO(BARRIER_SET_DECLARE_BS_ENUM)
 49 #undef BARRIER_SET_DECLARE_BS_ENUM
 50     UnknownBS
 51   };
 52 
 53   static BarrierSet* barrier_set() { return _bs; }
 54 
 55 protected:
 56   // Fake RTTI support.  For a derived class T to participate
 57   // - T must have a corresponding Name entry.
 58   // - GetName<T> must be specialized to return the corresponding Name
 59   //   entry.
 60   // - If T is a base class, the constructor must have a FakeRtti
 61   //   parameter and pass it up to its base class, with the tag set
 62   //   augmented with the corresponding Name entry.
 63   // - If T is a concrete class, the constructor must create a
 64   //   FakeRtti object whose tag set includes the corresponding Name
 65   //   entry, and pass it up to its base class.
 66   typedef FakeRttiSupport<BarrierSet, Name> FakeRtti;
 67 
 68 private:
 69   FakeRtti _fake_rtti;
 70 
 71 public:
 72   // Metafunction mapping a class derived from BarrierSet to the
 73   // corresponding Name enum tag.
 74   template<typename T> struct GetName;
 75 
 76   // Metafunction mapping a Name enum type to the corresponding
 77   // lass derived from BarrierSet.
 78   template<BarrierSet::Name T> struct GetType;
 79 
 80   // Note: This is not presently the Name corresponding to the
 81   // concrete class of this object.
 82   BarrierSet::Name kind() const { return _fake_rtti.concrete_tag(); }
 83 
 84   // Test whether this object is of the type corresponding to bsn.
 85   bool is_a(BarrierSet::Name bsn) const { return _fake_rtti.has_tag(bsn); }
 86 
 87   // End of fake RTTI support.
 88 
 89 protected:
 90   BarrierSet(const FakeRtti& fake_rtti) : _fake_rtti(fake_rtti) { }
 91   ~BarrierSet() { }
 92 
 93 public:
 94   // Operations on arrays, or general regions (e.g., for "clone") may be
 95   // optimized by some barriers.
 96 
 97   // Below length is the # array elements being written
 98   virtual void write_ref_array_pre(oop* dst, int length,
 99                                    bool dest_uninitialized = false) {}
100   virtual void write_ref_array_pre(narrowOop* dst, int length,
101                                    bool dest_uninitialized = false) {}
102   // Below count is the # array elements being written, starting
103   // at the address "start", which may not necessarily be HeapWord-aligned
104   inline void write_ref_array(HeapWord* start, size_t count);
105 
106   // Static versions, suitable for calling from generated code;
107   // count is # array elements being written, starting with "start",
108   // which may not necessarily be HeapWord-aligned.
109   static void static_write_ref_array_pre(HeapWord* start, size_t count);
110   static void static_write_ref_array_post(HeapWord* start, size_t count);
111 
112   // Support for optimizing compilers to call the barrier set on slow path allocations
113   // that did not enter a TLAB. Used for e.g. ReduceInitialCardMarks.
114   // The allocation is safe to use iff it returns true. If not, the slow-path allocation
115   // is redone until it succeeds. This can e.g. prevent allocations from the slow path
116   // to be in old.
117   virtual void on_slowpath_allocation_exit(JavaThread* thread, oop new_obj) {}
118   virtual void flush_deferred_barriers(JavaThread* thread) {}
119   virtual void make_parsable(JavaThread* thread) {}
120 
121 protected:
122   virtual void write_ref_array_work(MemRegion mr) = 0;
123 
124 public:
125   // Inform the BarrierSet that the the covered heap region that starts
126   // with "base" has been changed to have the given size (possibly from 0,
127   // for initialization.)
128   virtual void resize_covered_region(MemRegion new_region) = 0;
129 
130   // If the barrier set imposes any alignment restrictions on boundaries
131   // within the heap, this function tells whether they are met.
132   virtual bool is_aligned(HeapWord* addr) = 0;
133 
134   // Print a description of the memory for the barrier set
135   virtual void print_on(outputStream* st) const = 0;
136 
137   static void set_bs(BarrierSet* bs) { _bs = bs; }
138 
139   // The AccessBarrier of a BarrierSet subclass is called by the Access API
140   // (cf. oops/access.hpp) to perform decorated accesses. GC implementations
141   // may override these default access operations by declaring an
142   // AccessBarrier class in its BarrierSet. Its accessors will then be
143   // automatically resolved at runtime.
144   //
145   // In order to register a new FooBarrierSet::AccessBarrier with the Access API,
146   // the following steps should be taken:
147   // 1) Provide an enum "name" for the BarrierSet in barrierSetConfig.hpp
148   // 2) Make sure the barrier set headers are included from barrierSetConfig.inline.hpp
149   // 3) Provide specializations for BarrierSet::GetName and BarrierSet::GetType.
150   template <DecoratorSet decorators, typename BarrierSetT>
151   class AccessBarrier: protected RawAccessBarrier<decorators> {
152   private:
153     typedef RawAccessBarrier<decorators> Raw;
154 
155   public:
156     // Primitive heap accesses. These accessors get resolved when
157     // IN_HEAP is set (e.g. when using the HeapAccess API), it is
158     // not an oop_* overload, and the barrier strength is AS_NORMAL.
159     template <typename T>
160     static T load_in_heap(T* addr) {
161       return Raw::template load<T>(addr);
162     }
163 
164     template <typename T>
165     static T load_in_heap_at(oop base, ptrdiff_t offset) {
166       return Raw::template load_at<T>(base, offset);
167     }
168 
169     template <typename T>
170     static void store_in_heap(T* addr, T value) {
171       Raw::store(addr, value);
172     }
173 
174     template <typename T>
175     static void store_in_heap_at(oop base, ptrdiff_t offset, T value) {
176       Raw::store_at(base, offset, value);
177     }
178 
179     template <typename T>
180     static T atomic_cmpxchg_in_heap(T new_value, T* addr, T compare_value) {
181       return Raw::atomic_cmpxchg(new_value, addr, compare_value);
182     }
183 
184     template <typename T>
185     static T atomic_cmpxchg_in_heap_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
186       return Raw::oop_atomic_cmpxchg_at(new_value, base, offset, compare_value);
187     }
188 
189     template <typename T>
190     static T atomic_xchg_in_heap(T new_value, T* addr) {
191       return Raw::atomic_xchg(new_value, addr);
192     }
193 
194     template <typename T>
195     static T atomic_xchg_in_heap_at(T new_value, oop base, ptrdiff_t offset) {
196       return Raw::atomic_xchg_at(new_value, base, offset);
197     }
198 
199     template <typename T>
200     static bool arraycopy_in_heap(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length) {
201       return Raw::arraycopy(src_obj, dst_obj, src, dst, length);
202     }
203 
204     // Heap oop accesses. These accessors get resolved when
205     // IN_HEAP is set (e.g. when using the HeapAccess API), it is
206     // an oop_* overload, and the barrier strength is AS_NORMAL.
207     template <typename T>
208     static oop oop_load_in_heap(T* addr) {
209       return Raw::template oop_load<oop>(addr);
210     }
211 
212     static oop oop_load_in_heap_at(oop base, ptrdiff_t offset) {
213       return Raw::template oop_load_at<oop>(base, offset);
214     }
215 
216     template <typename T>
217     static void oop_store_in_heap(T* addr, oop value) {
218       Raw::oop_store(addr, value);
219     }
220 
221     static void oop_store_in_heap_at(oop base, ptrdiff_t offset, oop value) {
222       Raw::oop_store_at(base, offset, value);
223     }
224 
225     template <typename T>
226     static oop oop_atomic_cmpxchg_in_heap(oop new_value, T* addr, oop compare_value) {
227       return Raw::oop_atomic_cmpxchg(new_value, addr, compare_value);
228     }
229 
230     static oop oop_atomic_cmpxchg_in_heap_at(oop new_value, oop base, ptrdiff_t offset, oop compare_value) {
231       return Raw::oop_atomic_cmpxchg_at(new_value, base, offset, compare_value);
232     }
233 
234     template <typename T>
235     static oop oop_atomic_xchg_in_heap(oop new_value, T* addr) {
236       return Raw::oop_atomic_xchg(new_value, addr);
237     }
238 
239     static oop oop_atomic_xchg_in_heap_at(oop new_value, oop base, ptrdiff_t offset) {
240       return Raw::oop_atomic_xchg_at(new_value, base, offset);
241     }
242 
243     template <typename T>
244     static bool oop_arraycopy_in_heap(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length) {
245       return Raw::oop_arraycopy(src_obj, dst_obj, src, dst, length);
246     }
247 
248     // Off-heap oop accesses. These accessors get resolved when
249     // IN_HEAP is not set (e.g. when using the RootAccess API), it is
250     // an oop* overload, and the barrier strength is AS_NORMAL.
251     template <typename T>
252     static oop oop_load_not_in_heap(T* addr) {
253       return Raw::template oop_load<oop>(addr);
254     }
255 
256     template <typename T>
257     static void oop_store_not_in_heap(T* addr, oop value) {
258       Raw::oop_store(addr, value);
259     }
260 
261     template <typename T>
262     static oop oop_atomic_cmpxchg_not_in_heap(oop new_value, T* addr, oop compare_value) {
263       return Raw::oop_atomic_cmpxchg(new_value, addr, compare_value);
264     }
265 
266     template <typename T>
267     static oop oop_atomic_xchg_not_in_heap(oop new_value, T* addr) {
268       return Raw::oop_atomic_xchg(new_value, addr);
269     }
270 
271     // Clone barrier support
272     static void clone_in_heap(oop src, oop dst, size_t size) {
273       Raw::clone(src, dst, size);
274     }
275   };
276 };
277 
278 template<typename T>
279 inline T* barrier_set_cast(BarrierSet* bs) {
280   assert(bs->is_a(BarrierSet::GetName<T>::value), "wrong type of barrier set");
281   return static_cast<T*>(bs);
282 }
283 
284 #endif // SHARE_VM_GC_SHARED_BARRIERSET_HPP