1 /*
  2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "memory/allocation.hpp"
 31 #include "runtime/handles.hpp"
 32 #include "runtime/perfData.hpp"
 33 #include "runtime/safepoint.hpp"
 34 #include "utilities/debug.hpp"
 35 #include "utilities/events.hpp"
 36 #include "utilities/formatBuffer.hpp"
 37 #include "utilities/growableArray.hpp"
 38 
 39 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 40 // is an abstract class: there may be many different kinds of heaps.  This
 41 // class defines the functions that a heap must implement, and contains
 42 // infrastructure common to all heaps.
 43 
 44 class AdaptiveSizePolicy;
 45 class BarrierSet;
 46 class CollectorPolicy;
 47 class GCHeapSummary;
 48 class GCTimer;
 49 class GCTracer;
 50 class GCMemoryManager;
 51 class MemoryPool;
 52 class MetaspaceSummary;
 53 class Thread;
 54 class ThreadClosure;
 55 class VirtualSpaceSummary;
 56 class WorkGang;
 57 class nmethod;
 58 
 59 class GCMessage : public FormatBuffer<1024> {
 60  public:
 61   bool is_before;
 62 
 63  public:
 64   GCMessage() {}
 65 };
 66 
 67 class CollectedHeap;
 68 
 69 class GCHeapLog : public EventLogBase<GCMessage> {
 70  private:
 71   void log_heap(CollectedHeap* heap, bool before);
 72 
 73  public:
 74   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
 75 
 76   void log_heap_before(CollectedHeap* heap) {
 77     log_heap(heap, true);
 78   }
 79   void log_heap_after(CollectedHeap* heap) {
 80     log_heap(heap, false);
 81   }
 82 };
 83 
 84 //
 85 // CollectedHeap
 86 //   GenCollectedHeap
 87 //     SerialHeap
 88 //     CMSHeap
 89 //   G1CollectedHeap
 90 //   ParallelScavengeHeap
 91 //
 92 class CollectedHeap : public CHeapObj<mtInternal> {
 93   friend class VMStructs;
 94   friend class JVMCIVMStructs;
 95   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
 96 
 97  private:
 98 #ifdef ASSERT
 99   static int       _fire_out_of_memory_count;
100 #endif
101 
102   GCHeapLog* _gc_heap_log;
103 
104   MemRegion _reserved;
105 
106  protected:
107   BarrierSet* _barrier_set;
108   bool _is_gc_active;
109 
110   // Used for filler objects (static, but initialized in ctor).
111   static size_t _filler_array_max_size;
112 
113   unsigned int _total_collections;          // ... started
114   unsigned int _total_full_collections;     // ... started
115   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
116   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
117 
118   // Reason for current garbage collection.  Should be set to
119   // a value reflecting no collection between collections.
120   GCCause::Cause _gc_cause;
121   GCCause::Cause _gc_lastcause;
122   PerfStringVariable* _perf_gc_cause;
123   PerfStringVariable* _perf_gc_lastcause;
124 
125   // Constructor
126   CollectedHeap();
127 
128   // Create a new tlab. All TLAB allocations must go through this.
129   virtual HeapWord* allocate_new_tlab(size_t size);
130 
131   // Accumulate statistics on all tlabs.
132   virtual void accumulate_statistics_all_tlabs();
133 
134   // Reinitialize tlabs before resuming mutators.
135   virtual void resize_all_tlabs();
136 
137   // Allocate from the current thread's TLAB, with broken-out slow path.
138   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
139   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
140 
141   // Allocate an uninitialized block of the given size, or returns NULL if
142   // this is impossible.
143   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
144 
145   // Like allocate_init, but the block returned by a successful allocation
146   // is guaranteed initialized to zeros.
147   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
148 
149   // Helper functions for (VM) allocation.
150   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
151   inline static void post_allocation_setup_no_klass_install(Klass* klass,
152                                                             HeapWord* objPtr);
153 
154   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
155 
156   inline static void post_allocation_setup_array(Klass* klass,
157                                                  HeapWord* obj, int length);
158 
159   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
160 
161   // Clears an allocated object.
162   inline static void init_obj(HeapWord* obj, size_t size);
163 
164   // Filler object utilities.
165   static inline size_t filler_array_hdr_size();
166   static inline size_t filler_array_min_size();
167 
168   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
169   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
170 
171   // Fill with a single array; caller must ensure filler_array_min_size() <=
172   // words <= filler_array_max_size().
173   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
174 
175   // Fill with a single object (either an int array or a java.lang.Object).
176   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
177 
178   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
179 
180   // Verification functions
181   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
182     PRODUCT_RETURN;
183   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
184     PRODUCT_RETURN;
185   debug_only(static void check_for_valid_allocation_state();)
186 
187  public:
188   enum Name {
189     SerialHeap,
190     ParallelScavengeHeap,
191     G1CollectedHeap,
192     CMSHeap
193   };
194 
195   static inline size_t filler_array_max_size() {
196     return _filler_array_max_size;
197   }
198 
199   virtual Name kind() const = 0;
200 
201   virtual const char* name() const = 0;
202 
203   /**
204    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
205    * and JNI_OK on success.
206    */
207   virtual jint initialize() = 0;
208 
209   // In many heaps, there will be a need to perform some initialization activities
210   // after the Universe is fully formed, but before general heap allocation is allowed.
211   // This is the correct place to place such initialization methods.
212   virtual void post_initialize();
213 
214   // Stop any onging concurrent work and prepare for exit.
215   virtual void stop() {}
216 
217   // Stop and resume concurrent GC threads interfering with safepoint operations
218   virtual void safepoint_synchronize_begin() {}
219   virtual void safepoint_synchronize_end() {}
220 
221   void initialize_reserved_region(HeapWord *start, HeapWord *end);
222   MemRegion reserved_region() const { return _reserved; }
223   address base() const { return (address)reserved_region().start(); }
224 
225   virtual size_t capacity() const = 0;
226   virtual size_t used() const = 0;
227 
228   // Return "true" if the part of the heap that allocates Java
229   // objects has reached the maximal committed limit that it can
230   // reach, without a garbage collection.
231   virtual bool is_maximal_no_gc() const = 0;
232 
233   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
234   // memory that the vm could make available for storing 'normal' java objects.
235   // This is based on the reserved address space, but should not include space
236   // that the vm uses internally for bookkeeping or temporary storage
237   // (e.g., in the case of the young gen, one of the survivor
238   // spaces).
239   virtual size_t max_capacity() const = 0;
240 
241   // Returns "TRUE" if "p" points into the reserved area of the heap.
242   bool is_in_reserved(const void* p) const {
243     return _reserved.contains(p);
244   }
245 
246   bool is_in_reserved_or_null(const void* p) const {
247     return p == NULL || is_in_reserved(p);
248   }
249 
250   // Returns "TRUE" iff "p" points into the committed areas of the heap.
251   // This method can be expensive so avoid using it in performance critical
252   // code.
253   virtual bool is_in(const void* p) const = 0;
254 
255   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
256 
257   // Let's define some terms: a "closed" subset of a heap is one that
258   //
259   // 1) contains all currently-allocated objects, and
260   //
261   // 2) is closed under reference: no object in the closed subset
262   //    references one outside the closed subset.
263   //
264   // Membership in a heap's closed subset is useful for assertions.
265   // Clearly, the entire heap is a closed subset, so the default
266   // implementation is to use "is_in_reserved".  But this may not be too
267   // liberal to perform useful checking.  Also, the "is_in" predicate
268   // defines a closed subset, but may be too expensive, since "is_in"
269   // verifies that its argument points to an object head.  The
270   // "closed_subset" method allows a heap to define an intermediate
271   // predicate, allowing more precise checking than "is_in_reserved" at
272   // lower cost than "is_in."
273 
274   // One important case is a heap composed of disjoint contiguous spaces,
275   // such as the Garbage-First collector.  Such heaps have a convenient
276   // closed subset consisting of the allocated portions of those
277   // contiguous spaces.
278 
279   // Return "TRUE" iff the given pointer points into the heap's defined
280   // closed subset (which defaults to the entire heap).
281   virtual bool is_in_closed_subset(const void* p) const {
282     return is_in_reserved(p);
283   }
284 
285   bool is_in_closed_subset_or_null(const void* p) const {
286     return p == NULL || is_in_closed_subset(p);
287   }
288 
289   void set_gc_cause(GCCause::Cause v) {
290      if (UsePerfData) {
291        _gc_lastcause = _gc_cause;
292        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
293        _perf_gc_cause->set_value(GCCause::to_string(v));
294      }
295     _gc_cause = v;
296   }
297   GCCause::Cause gc_cause() { return _gc_cause; }
298 
299   // General obj/array allocation facilities.
300   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
301   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
302   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
303   inline static oop class_allocate(Klass* klass, int size, TRAPS);
304 
305   // Raw memory allocation facilities
306   // The obj and array allocate methods are covers for these methods.
307   // mem_allocate() should never be
308   // called to allocate TLABs, only individual objects.
309   virtual HeapWord* mem_allocate(size_t size,
310                                  bool* gc_overhead_limit_was_exceeded) = 0;
311 
312   // Utilities for turning raw memory into filler objects.
313   //
314   // min_fill_size() is the smallest region that can be filled.
315   // fill_with_objects() can fill arbitrary-sized regions of the heap using
316   // multiple objects.  fill_with_object() is for regions known to be smaller
317   // than the largest array of integers; it uses a single object to fill the
318   // region and has slightly less overhead.
319   static size_t min_fill_size() {
320     return size_t(align_object_size(oopDesc::header_size()));
321   }
322 
323   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
324 
325   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
326   static void fill_with_object(MemRegion region, bool zap = true) {
327     fill_with_object(region.start(), region.word_size(), zap);
328   }
329   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
330     fill_with_object(start, pointer_delta(end, start), zap);
331   }
332 
333   // Return the address "addr" aligned by "alignment_in_bytes" if such
334   // an address is below "end".  Return NULL otherwise.
335   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
336                                                    HeapWord* end,
337                                                    unsigned short alignment_in_bytes);
338 
339   // Some heaps may offer a contiguous region for shared non-blocking
340   // allocation, via inlined code (by exporting the address of the top and
341   // end fields defining the extent of the contiguous allocation region.)
342 
343   // This function returns "true" iff the heap supports this kind of
344   // allocation.  (Default is "no".)
345   virtual bool supports_inline_contig_alloc() const {
346     return false;
347   }
348   // These functions return the addresses of the fields that define the
349   // boundaries of the contiguous allocation area.  (These fields should be
350   // physically near to one another.)
351   virtual HeapWord* volatile* top_addr() const {
352     guarantee(false, "inline contiguous allocation not supported");
353     return NULL;
354   }
355   virtual HeapWord** end_addr() const {
356     guarantee(false, "inline contiguous allocation not supported");
357     return NULL;
358   }
359 
360   // Some heaps may be in an unparseable state at certain times between
361   // collections. This may be necessary for efficient implementation of
362   // certain allocation-related activities. Calling this function before
363   // attempting to parse a heap ensures that the heap is in a parsable
364   // state (provided other concurrent activity does not introduce
365   // unparsability). It is normally expected, therefore, that this
366   // method is invoked with the world stopped.
367   // NOTE: if you override this method, make sure you call
368   // super::ensure_parsability so that the non-generational
369   // part of the work gets done. See implementation of
370   // CollectedHeap::ensure_parsability and, for instance,
371   // that of GenCollectedHeap::ensure_parsability().
372   // The argument "retire_tlabs" controls whether existing TLABs
373   // are merely filled or also retired, thus preventing further
374   // allocation from them and necessitating allocation of new TLABs.
375   virtual void ensure_parsability(bool retire_tlabs);
376 
377   // Section on thread-local allocation buffers (TLABs)
378   // If the heap supports thread-local allocation buffers, it should override
379   // the following methods:
380   // Returns "true" iff the heap supports thread-local allocation buffers.
381   // The default is "no".
382   virtual bool supports_tlab_allocation() const = 0;
383 
384   // The amount of space available for thread-local allocation buffers.
385   virtual size_t tlab_capacity(Thread *thr) const = 0;
386 
387   // The amount of used space for thread-local allocation buffers for the given thread.
388   virtual size_t tlab_used(Thread *thr) const = 0;
389 
390   virtual size_t max_tlab_size() const;
391 
392   // An estimate of the maximum allocation that could be performed
393   // for thread-local allocation buffers without triggering any
394   // collection or expansion activity.
395   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
396     guarantee(false, "thread-local allocation buffers not supported");
397     return 0;
398   }
399 
400   // Perform a collection of the heap; intended for use in implementing
401   // "System.gc".  This probably implies as full a collection as the
402   // "CollectedHeap" supports.
403   virtual void collect(GCCause::Cause cause) = 0;
404 
405   // Perform a full collection
406   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
407 
408   // This interface assumes that it's being called by the
409   // vm thread. It collects the heap assuming that the
410   // heap lock is already held and that we are executing in
411   // the context of the vm thread.
412   virtual void collect_as_vm_thread(GCCause::Cause cause);
413 
414   // Returns the barrier set for this heap
415   BarrierSet* barrier_set() { return _barrier_set; }
416   void set_barrier_set(BarrierSet* barrier_set);
417 
418   // Returns "true" iff there is a stop-world GC in progress.  (I assume
419   // that it should answer "false" for the concurrent part of a concurrent
420   // collector -- dld).
421   bool is_gc_active() const { return _is_gc_active; }
422 
423   // Total number of GC collections (started)
424   unsigned int total_collections() const { return _total_collections; }
425   unsigned int total_full_collections() const { return _total_full_collections;}
426 
427   // Increment total number of GC collections (started)
428   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
429   void increment_total_collections(bool full = false) {
430     _total_collections++;
431     if (full) {
432       increment_total_full_collections();
433     }
434   }
435 
436   void increment_total_full_collections() { _total_full_collections++; }
437 
438   // Return the CollectorPolicy for the heap
439   virtual CollectorPolicy* collector_policy() const = 0;
440 
441   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
442   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
443 
444   // Iterate over all objects, calling "cl.do_object" on each.
445   virtual void object_iterate(ObjectClosure* cl) = 0;
446 
447   // Similar to object_iterate() except iterates only
448   // over live objects.
449   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
450 
451   // NOTE! There is no requirement that a collector implement these
452   // functions.
453   //
454   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
455   // each address in the (reserved) heap is a member of exactly
456   // one block.  The defining characteristic of a block is that it is
457   // possible to find its size, and thus to progress forward to the next
458   // block.  (Blocks may be of different sizes.)  Thus, blocks may
459   // represent Java objects, or they might be free blocks in a
460   // free-list-based heap (or subheap), as long as the two kinds are
461   // distinguishable and the size of each is determinable.
462 
463   // Returns the address of the start of the "block" that contains the
464   // address "addr".  We say "blocks" instead of "object" since some heaps
465   // may not pack objects densely; a chunk may either be an object or a
466   // non-object.
467   virtual HeapWord* block_start(const void* addr) const = 0;
468 
469   // Requires "addr" to be the start of a chunk, and returns its size.
470   // "addr + size" is required to be the start of a new chunk, or the end
471   // of the active area of the heap.
472   virtual size_t block_size(const HeapWord* addr) const = 0;
473 
474   // Requires "addr" to be the start of a block, and returns "TRUE" iff
475   // the block is an object.
476   virtual bool block_is_obj(const HeapWord* addr) const = 0;
477 
478   // Returns the longest time (in ms) that has elapsed since the last
479   // time that any part of the heap was examined by a garbage collection.
480   virtual jlong millis_since_last_gc() = 0;
481 
482   // Perform any cleanup actions necessary before allowing a verification.
483   virtual void prepare_for_verify() = 0;
484 
485   // Generate any dumps preceding or following a full gc
486  private:
487   void full_gc_dump(GCTimer* timer, bool before);
488 
489   virtual void initialize_serviceability() = 0;
490 
491  public:
492   void pre_full_gc_dump(GCTimer* timer);
493   void post_full_gc_dump(GCTimer* timer);
494 
495   VirtualSpaceSummary create_heap_space_summary();
496   GCHeapSummary create_heap_summary();
497 
498   MetaspaceSummary create_metaspace_summary();
499 
500   // Print heap information on the given outputStream.
501   virtual void print_on(outputStream* st) const = 0;
502   // The default behavior is to call print_on() on tty.
503   virtual void print() const {
504     print_on(tty);
505   }
506   // Print more detailed heap information on the given
507   // outputStream. The default behavior is to call print_on(). It is
508   // up to each subclass to override it and add any additional output
509   // it needs.
510   virtual void print_extended_on(outputStream* st) const {
511     print_on(st);
512   }
513 
514   virtual void print_on_error(outputStream* st) const;
515 
516   // Print all GC threads (other than the VM thread)
517   // used by this heap.
518   virtual void print_gc_threads_on(outputStream* st) const = 0;
519   // The default behavior is to call print_gc_threads_on() on tty.
520   void print_gc_threads() {
521     print_gc_threads_on(tty);
522   }
523   // Iterator for all GC threads (other than VM thread)
524   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
525 
526   // Print any relevant tracing info that flags imply.
527   // Default implementation does nothing.
528   virtual void print_tracing_info() const = 0;
529 
530   void print_heap_before_gc();
531   void print_heap_after_gc();
532 
533   // An object is scavengable if its location may move during a scavenge.
534   // (A scavenge is a GC which is not a full GC.)
535   virtual bool is_scavengable(oop obj) = 0;
536   // Registering and unregistering an nmethod (compiled code) with the heap.
537   // Override with specific mechanism for each specialized heap type.
538   virtual void register_nmethod(nmethod* nm) {}
539   virtual void unregister_nmethod(nmethod* nm) {}
540   virtual void verify_nmethod(nmethod* nmethod) {}
541 
542   void trace_heap_before_gc(const GCTracer* gc_tracer);
543   void trace_heap_after_gc(const GCTracer* gc_tracer);
544 
545   // Heap verification
546   virtual void verify(VerifyOption option) = 0;
547 
548   // Return true if concurrent phase control (via
549   // request_concurrent_phase_control) is supported by this collector.
550   // The default implementation returns false.
551   virtual bool supports_concurrent_phase_control() const;
552 
553   // Return a NULL terminated array of concurrent phase names provided
554   // by this collector.  Supports Whitebox testing.  These are the
555   // names recognized by request_concurrent_phase(). The default
556   // implementation returns an array of one NULL element.
557   virtual const char* const* concurrent_phases() const;
558 
559   // Request the collector enter the indicated concurrent phase, and
560   // wait until it does so.  Supports WhiteBox testing.  Only one
561   // request may be active at a time.  Phases are designated by name;
562   // the set of names and their meaning is GC-specific.  Once the
563   // requested phase has been reached, the collector will attempt to
564   // avoid transitioning to a new phase until a new request is made.
565   // [Note: A collector might not be able to remain in a given phase.
566   // For example, a full collection might cancel an in-progress
567   // concurrent collection.]
568   //
569   // Returns true when the phase is reached.  Returns false for an
570   // unknown phase.  The default implementation returns false.
571   virtual bool request_concurrent_phase(const char* phase);
572 
573   // Provides a thread pool to SafepointSynchronize to use
574   // for parallel safepoint cleanup.
575   // GCs that use a GC worker thread pool may want to share
576   // it for use during safepoint cleanup. This is only possible
577   // if the GC can pause and resume concurrent work (e.g. G1
578   // concurrent marking) for an intermittent non-GC safepoint.
579   // If this method returns NULL, SafepointSynchronize will
580   // perform cleanup tasks serially in the VMThread.
581   virtual WorkGang* get_safepoint_workers() { return NULL; }
582 
583   // Non product verification and debugging.
584 #ifndef PRODUCT
585   // Support for PromotionFailureALot.  Return true if it's time to cause a
586   // promotion failure.  The no-argument version uses
587   // this->_promotion_failure_alot_count as the counter.
588   inline bool promotion_should_fail(volatile size_t* count);
589   inline bool promotion_should_fail();
590 
591   // Reset the PromotionFailureALot counters.  Should be called at the end of a
592   // GC in which promotion failure occurred.
593   inline void reset_promotion_should_fail(volatile size_t* count);
594   inline void reset_promotion_should_fail();
595 #endif  // #ifndef PRODUCT
596 
597 #ifdef ASSERT
598   static int fired_fake_oom() {
599     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
600   }
601 #endif
602 
603  public:
604   // Copy the current allocation context statistics for the specified contexts.
605   // For each context in contexts, set the corresponding entries in the totals
606   // and accuracy arrays to the current values held by the statistics.  Each
607   // array should be of length len.
608   // Returns true if there are more stats available.
609   virtual bool copy_allocation_context_stats(const jint* contexts,
610                                              jlong* totals,
611                                              jbyte* accuracy,
612                                              jint len) {
613     return false;
614   }
615 
616 };
617 
618 // Class to set and reset the GC cause for a CollectedHeap.
619 
620 class GCCauseSetter : StackObj {
621   CollectedHeap* _heap;
622   GCCause::Cause _previous_cause;
623  public:
624   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
625     assert(SafepointSynchronize::is_at_safepoint(),
626            "This method manipulates heap state without locking");
627     _heap = heap;
628     _previous_cause = _heap->gc_cause();
629     _heap->set_gc_cause(cause);
630   }
631 
632   ~GCCauseSetter() {
633     assert(SafepointSynchronize::is_at_safepoint(),
634           "This method manipulates heap state without locking");
635     _heap->set_gc_cause(_previous_cause);
636   }
637 };
638 
639 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP