1 /*
  2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "classfile/systemDictionary.hpp"
 27 #include "gc/shared/allocTracer.hpp"
 28 #include "gc/shared/barrierSet.inline.hpp"
 29 #include "gc/shared/collectedHeap.hpp"
 30 #include "gc/shared/collectedHeap.inline.hpp"
 31 #include "gc/shared/gcHeapSummary.hpp"
 32 #include "gc/shared/gcTrace.hpp"
 33 #include "gc/shared/gcTraceTime.inline.hpp"
 34 #include "gc/shared/gcWhen.hpp"
 35 #include "gc/shared/vmGCOperations.hpp"
 36 #include "logging/log.hpp"
 37 #include "memory/metaspace.hpp"
 38 #include "memory/resourceArea.hpp"
 39 #include "oops/instanceMirrorKlass.hpp"
 40 #include "oops/oop.inline.hpp"
 41 #include "runtime/init.hpp"
 42 #include "runtime/thread.inline.hpp"
 43 #include "runtime/threadSMR.hpp"
 44 #include "services/heapDumper.hpp"
 45 #include "utilities/align.hpp"
 46 
 47 
 48 #ifdef ASSERT
 49 int CollectedHeap::_fire_out_of_memory_count = 0;
 50 #endif
 51 
 52 size_t CollectedHeap::_filler_array_max_size = 0;
 53 
 54 template <>
 55 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
 56   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
 57   st->print_raw(m);
 58 }
 59 
 60 void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
 61   if (!should_log()) {
 62     return;
 63   }
 64 
 65   double timestamp = fetch_timestamp();
 66   MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
 67   int index = compute_log_index();
 68   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
 69   _records[index].timestamp = timestamp;
 70   _records[index].data.is_before = before;
 71   stringStream st(_records[index].data.buffer(), _records[index].data.size());
 72 
 73   st.print_cr("{Heap %s GC invocations=%u (full %u):",
 74                  before ? "before" : "after",
 75                  heap->total_collections(),
 76                  heap->total_full_collections());
 77 
 78   heap->print_on(&st);
 79   st.print_cr("}");
 80 }
 81 
 82 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
 83   size_t capacity_in_words = capacity() / HeapWordSize;
 84 
 85   return VirtualSpaceSummary(
 86     reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
 87 }
 88 
 89 GCHeapSummary CollectedHeap::create_heap_summary() {
 90   VirtualSpaceSummary heap_space = create_heap_space_summary();
 91   return GCHeapSummary(heap_space, used());
 92 }
 93 
 94 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
 95   const MetaspaceSizes meta_space(
 96       MetaspaceAux::committed_bytes(),
 97       MetaspaceAux::used_bytes(),
 98       MetaspaceAux::reserved_bytes());
 99   const MetaspaceSizes data_space(
100       MetaspaceAux::committed_bytes(Metaspace::NonClassType),
101       MetaspaceAux::used_bytes(Metaspace::NonClassType),
102       MetaspaceAux::reserved_bytes(Metaspace::NonClassType));
103   const MetaspaceSizes class_space(
104       MetaspaceAux::committed_bytes(Metaspace::ClassType),
105       MetaspaceAux::used_bytes(Metaspace::ClassType),
106       MetaspaceAux::reserved_bytes(Metaspace::ClassType));
107 
108   const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
109     MetaspaceAux::chunk_free_list_summary(Metaspace::NonClassType);
110   const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
111     MetaspaceAux::chunk_free_list_summary(Metaspace::ClassType);
112 
113   return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
114                           ms_chunk_free_list_summary, class_chunk_free_list_summary);
115 }
116 
117 void CollectedHeap::print_heap_before_gc() {
118   Universe::print_heap_before_gc();
119   if (_gc_heap_log != NULL) {
120     _gc_heap_log->log_heap_before(this);
121   }
122 }
123 
124 void CollectedHeap::print_heap_after_gc() {
125   Universe::print_heap_after_gc();
126   if (_gc_heap_log != NULL) {
127     _gc_heap_log->log_heap_after(this);
128   }
129 }
130 
131 void CollectedHeap::print_on_error(outputStream* st) const {
132   st->print_cr("Heap:");
133   print_extended_on(st);
134   st->cr();
135 
136   _barrier_set->print_on(st);
137 }
138 
139 void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
140   const GCHeapSummary& heap_summary = create_heap_summary();
141   gc_tracer->report_gc_heap_summary(when, heap_summary);
142 
143   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
144   gc_tracer->report_metaspace_summary(when, metaspace_summary);
145 }
146 
147 void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
148   trace_heap(GCWhen::BeforeGC, gc_tracer);
149 }
150 
151 void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
152   trace_heap(GCWhen::AfterGC, gc_tracer);
153 }
154 
155 // WhiteBox API support for concurrent collectors.  These are the
156 // default implementations, for collectors which don't support this
157 // feature.
158 bool CollectedHeap::supports_concurrent_phase_control() const {
159   return false;
160 }
161 
162 const char* const* CollectedHeap::concurrent_phases() const {
163   static const char* const result[] = { NULL };
164   return result;
165 }
166 
167 bool CollectedHeap::request_concurrent_phase(const char* phase) {
168   return false;
169 }
170 
171 // Memory state functions.
172 
173 
174 CollectedHeap::CollectedHeap() :
175   _barrier_set(NULL),
176   _is_gc_active(false),
177   _total_collections(0),
178   _total_full_collections(0),
179   _gc_cause(GCCause::_no_gc),
180   _gc_lastcause(GCCause::_no_gc),
181   _defer_initial_card_mark(false) // strengthened by subclass in pre_initialize() below.
182 {
183   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
184   const size_t elements_per_word = HeapWordSize / sizeof(jint);
185   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
186                                              max_len / elements_per_word);
187 
188   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
189   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
190 
191   if (UsePerfData) {
192     EXCEPTION_MARK;
193 
194     // create the gc cause jvmstat counters
195     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
196                              80, GCCause::to_string(_gc_cause), CHECK);
197 
198     _perf_gc_lastcause =
199                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
200                              80, GCCause::to_string(_gc_lastcause), CHECK);
201   }
202 
203   // Create the ring log
204   if (LogEvents) {
205     _gc_heap_log = new GCHeapLog();
206   } else {
207     _gc_heap_log = NULL;
208   }
209 }
210 
211 // This interface assumes that it's being called by the
212 // vm thread. It collects the heap assuming that the
213 // heap lock is already held and that we are executing in
214 // the context of the vm thread.
215 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
216   assert(Thread::current()->is_VM_thread(), "Precondition#1");
217   assert(Heap_lock->is_locked(), "Precondition#2");
218   GCCauseSetter gcs(this, cause);
219   switch (cause) {
220     case GCCause::_heap_inspection:
221     case GCCause::_heap_dump:
222     case GCCause::_metadata_GC_threshold : {
223       HandleMark hm;
224       do_full_collection(false);        // don't clear all soft refs
225       break;
226     }
227     case GCCause::_metadata_GC_clear_soft_refs: {
228       HandleMark hm;
229       do_full_collection(true);         // do clear all soft refs
230       break;
231     }
232     default:
233       ShouldNotReachHere(); // Unexpected use of this function
234   }
235 }
236 
237 void CollectedHeap::set_barrier_set(BarrierSet* barrier_set) {
238   _barrier_set = barrier_set;
239   BarrierSet::set_bs(barrier_set);
240 }
241 
242 void CollectedHeap::pre_initialize() {
243   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
244   // otherwise remains unused.
245 #if COMPILER2_OR_JVMCI
246   _defer_initial_card_mark = is_server_compilation_mode_vm() &&  ReduceInitialCardMarks && can_elide_tlab_store_barriers()
247                              && (DeferInitialCardMark || card_mark_must_follow_store());
248 #else
249   assert(_defer_initial_card_mark == false, "Who would set it?");
250 #endif
251 }
252 
253 #ifndef PRODUCT
254 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
255   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
256     for (size_t slot = 0; slot < size; slot += 1) {
257       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
258              "Found badHeapWordValue in post-allocation check");
259     }
260   }
261 }
262 
263 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
264   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
265     for (size_t slot = 0; slot < size; slot += 1) {
266       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
267              "Found non badHeapWordValue in pre-allocation check");
268     }
269   }
270 }
271 #endif // PRODUCT
272 
273 #ifdef ASSERT
274 void CollectedHeap::check_for_valid_allocation_state() {
275   Thread *thread = Thread::current();
276   // How to choose between a pending exception and a potential
277   // OutOfMemoryError?  Don't allow pending exceptions.
278   // This is a VM policy failure, so how do we exhaustively test it?
279   assert(!thread->has_pending_exception(),
280          "shouldn't be allocating with pending exception");
281   if (StrictSafepointChecks) {
282     assert(thread->allow_allocation(),
283            "Allocation done by thread for which allocation is blocked "
284            "by No_Allocation_Verifier!");
285     // Allocation of an oop can always invoke a safepoint,
286     // hence, the true argument
287     thread->check_for_valid_safepoint_state(true);
288   }
289 }
290 #endif
291 
292 HeapWord* CollectedHeap::allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size) {
293 
294   // Retain tlab and allocate object in shared space if
295   // the amount free in the tlab is too large to discard.
296   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
297     thread->tlab().record_slow_allocation(size);
298     return NULL;
299   }
300 
301   // Discard tlab and allocate a new one.
302   // To minimize fragmentation, the last TLAB may be smaller than the rest.
303   size_t new_tlab_size = thread->tlab().compute_size(size);
304 
305   thread->tlab().clear_before_allocation();
306 
307   if (new_tlab_size == 0) {
308     return NULL;
309   }
310 
311   // Allocate a new TLAB...
312   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
313   if (obj == NULL) {
314     return NULL;
315   }
316 
317   AllocTracer::send_allocation_in_new_tlab(klass, obj, new_tlab_size * HeapWordSize, size * HeapWordSize, thread);
318 
319   if (ZeroTLAB) {
320     // ..and clear it.
321     Copy::zero_to_words(obj, new_tlab_size);
322   } else {
323     // ...and zap just allocated object.
324 #ifdef ASSERT
325     // Skip mangling the space corresponding to the object header to
326     // ensure that the returned space is not considered parsable by
327     // any concurrent GC thread.
328     size_t hdr_size = oopDesc::header_size();
329     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
330 #endif // ASSERT
331   }
332   thread->tlab().fill(obj, obj + size, new_tlab_size);
333   return obj;
334 }
335 
336 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
337   MemRegion deferred = thread->deferred_card_mark();
338   if (!deferred.is_empty()) {
339     assert(_defer_initial_card_mark, "Otherwise should be empty");
340     {
341       // Verify that the storage points to a parsable object in heap
342       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
343       assert(is_in(old_obj), "Not in allocated heap");
344       assert(!can_elide_initializing_store_barrier(old_obj),
345              "Else should have been filtered in new_store_pre_barrier()");
346       assert(oopDesc::is_oop(old_obj, true), "Not an oop");
347       assert(deferred.word_size() == (size_t)(old_obj->size()),
348              "Mismatch: multiple objects?");
349     }
350     BarrierSet* bs = barrier_set();
351     bs->write_region(deferred);
352     // "Clear" the deferred_card_mark field
353     thread->set_deferred_card_mark(MemRegion());
354   }
355   assert(thread->deferred_card_mark().is_empty(), "invariant");
356 }
357 
358 size_t CollectedHeap::max_tlab_size() const {
359   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
360   // This restriction could be removed by enabling filling with multiple arrays.
361   // If we compute that the reasonable way as
362   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
363   // we'll overflow on the multiply, so we do the divide first.
364   // We actually lose a little by dividing first,
365   // but that just makes the TLAB  somewhat smaller than the biggest array,
366   // which is fine, since we'll be able to fill that.
367   size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
368               sizeof(jint) *
369               ((juint) max_jint / (size_t) HeapWordSize);
370   return align_down(max_int_size, MinObjAlignment);
371 }
372 
373 // Helper for ReduceInitialCardMarks. For performance,
374 // compiled code may elide card-marks for initializing stores
375 // to a newly allocated object along the fast-path. We
376 // compensate for such elided card-marks as follows:
377 // (a) Generational, non-concurrent collectors, such as
378 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
379 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
380 //     need the card-mark if and only if the region is
381 //     in the old gen, and do not care if the card-mark
382 //     succeeds or precedes the initializing stores themselves,
383 //     so long as the card-mark is completed before the next
384 //     scavenge. For all these cases, we can do a card mark
385 //     at the point at which we do a slow path allocation
386 //     in the old gen, i.e. in this call.
387 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
388 //     in addition that the card-mark for an old gen allocated
389 //     object strictly follow any associated initializing stores.
390 //     In these cases, the memRegion remembered below is
391 //     used to card-mark the entire region either just before the next
392 //     slow-path allocation by this thread or just before the next scavenge or
393 //     CMS-associated safepoint, whichever of these events happens first.
394 //     (The implicit assumption is that the object has been fully
395 //     initialized by this point, a fact that we assert when doing the
396 //     card-mark.)
397 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
398 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier
399 //     is used to remember the pre-value of any store. Initializing
400 //     stores will not need this barrier, so we need not worry about
401 //     compensating for the missing pre-barrier here. Turning now
402 //     to the post-barrier, we note that G1 needs a RS update barrier
403 //     which simply enqueues a (sequence of) dirty cards which may
404 //     optionally be refined by the concurrent update threads. Note
405 //     that this barrier need only be applied to a non-young write,
406 //     but, like in CMS, because of the presence of concurrent refinement
407 //     (much like CMS' precleaning), must strictly follow the oop-store.
408 //     Thus, using the same protocol for maintaining the intended
409 //     invariants turns out, serendepitously, to be the same for both
410 //     G1 and CMS.
411 //
412 // For any future collector, this code should be reexamined with
413 // that specific collector in mind, and the documentation above suitably
414 // extended and updated.
415 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
416   // If a previous card-mark was deferred, flush it now.
417   flush_deferred_store_barrier(thread);
418   if (can_elide_initializing_store_barrier(new_obj) ||
419       new_obj->is_typeArray()) {
420     // Arrays of non-references don't need a pre-barrier.
421     // The deferred_card_mark region should be empty
422     // following the flush above.
423     assert(thread->deferred_card_mark().is_empty(), "Error");
424   } else {
425     MemRegion mr((HeapWord*)new_obj, new_obj->size());
426     assert(!mr.is_empty(), "Error");
427     if (_defer_initial_card_mark) {
428       // Defer the card mark
429       thread->set_deferred_card_mark(mr);
430     } else {
431       // Do the card mark
432       BarrierSet* bs = barrier_set();
433       bs->write_region(mr);
434     }
435   }
436   return new_obj;
437 }
438 
439 size_t CollectedHeap::filler_array_hdr_size() {
440   return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long
441 }
442 
443 size_t CollectedHeap::filler_array_min_size() {
444   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
445 }
446 
447 #ifdef ASSERT
448 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
449 {
450   assert(words >= min_fill_size(), "too small to fill");
451   assert(is_object_aligned(words), "unaligned size");
452   assert(Universe::heap()->is_in_reserved(start), "not in heap");
453   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
454 }
455 
456 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
457 {
458   if (ZapFillerObjects && zap) {
459     Copy::fill_to_words(start + filler_array_hdr_size(),
460                         words - filler_array_hdr_size(), 0XDEAFBABE);
461   }
462 }
463 #endif // ASSERT
464 
465 void
466 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
467 {
468   assert(words >= filler_array_min_size(), "too small for an array");
469   assert(words <= filler_array_max_size(), "too big for a single object");
470 
471   const size_t payload_size = words - filler_array_hdr_size();
472   const size_t len = payload_size * HeapWordSize / sizeof(jint);
473   assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len);
474 
475   // Set the length first for concurrent GC.
476   ((arrayOop)start)->set_length((int)len);
477   post_allocation_setup_common(Universe::intArrayKlassObj(), start);
478   DEBUG_ONLY(zap_filler_array(start, words, zap);)
479 }
480 
481 void
482 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
483 {
484   assert(words <= filler_array_max_size(), "too big for a single object");
485 
486   if (words >= filler_array_min_size()) {
487     fill_with_array(start, words, zap);
488   } else if (words > 0) {
489     assert(words == min_fill_size(), "unaligned size");
490     post_allocation_setup_common(SystemDictionary::Object_klass(), start);
491   }
492 }
493 
494 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
495 {
496   DEBUG_ONLY(fill_args_check(start, words);)
497   HandleMark hm;  // Free handles before leaving.
498   fill_with_object_impl(start, words, zap);
499 }
500 
501 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
502 {
503   DEBUG_ONLY(fill_args_check(start, words);)
504   HandleMark hm;  // Free handles before leaving.
505 
506   // Multiple objects may be required depending on the filler array maximum size. Fill
507   // the range up to that with objects that are filler_array_max_size sized. The
508   // remainder is filled with a single object.
509   const size_t min = min_fill_size();
510   const size_t max = filler_array_max_size();
511   while (words > max) {
512     const size_t cur = (words - max) >= min ? max : max - min;
513     fill_with_array(start, cur, zap);
514     start += cur;
515     words -= cur;
516   }
517 
518   fill_with_object_impl(start, words, zap);
519 }
520 
521 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
522   guarantee(false, "thread-local allocation buffers not supported");
523   return NULL;
524 }
525 
526 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
527   // The second disjunct in the assertion below makes a concession
528   // for the start-up verification done while the VM is being
529   // created. Callers be careful that you know that mutators
530   // aren't going to interfere -- for instance, this is permissible
531   // if we are still single-threaded and have either not yet
532   // started allocating (nothing much to verify) or we have
533   // started allocating but are now a full-fledged JavaThread
534   // (and have thus made our TLAB's) available for filling.
535   assert(SafepointSynchronize::is_at_safepoint() ||
536          !is_init_completed(),
537          "Should only be called at a safepoint or at start-up"
538          " otherwise concurrent mutator activity may make heap "
539          " unparsable again");
540   const bool use_tlab = UseTLAB;
541   const bool deferred = _defer_initial_card_mark;
542   // The main thread starts allocating via a TLAB even before it
543   // has added itself to the threads list at vm boot-up.
544   JavaThreadIteratorWithHandle jtiwh;
545   assert(!use_tlab || jtiwh.length() > 0,
546          "Attempt to fill tlabs before main thread has been added"
547          " to threads list is doomed to failure!");
548   for (; JavaThread *thread = jtiwh.next(); ) {
549      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
550 #if COMPILER2_OR_JVMCI
551      // The deferred store barriers must all have been flushed to the
552      // card-table (or other remembered set structure) before GC starts
553      // processing the card-table (or other remembered set).
554      if (deferred) flush_deferred_store_barrier(thread);
555 #else
556      assert(!deferred, "Should be false");
557      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
558 #endif
559   }
560 }
561 
562 void CollectedHeap::accumulate_statistics_all_tlabs() {
563   if (UseTLAB) {
564     assert(SafepointSynchronize::is_at_safepoint() ||
565          !is_init_completed(),
566          "should only accumulate statistics on tlabs at safepoint");
567 
568     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
569   }
570 }
571 
572 void CollectedHeap::resize_all_tlabs() {
573   if (UseTLAB) {
574     assert(SafepointSynchronize::is_at_safepoint() ||
575          !is_init_completed(),
576          "should only resize tlabs at safepoint");
577 
578     ThreadLocalAllocBuffer::resize_all_tlabs();
579   }
580 }
581 
582 void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
583   assert(timer != NULL, "timer is null");
584   if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
585     GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
586     HeapDumper::dump_heap();
587   }
588 
589   LogTarget(Trace, gc, classhisto) lt;
590   if (lt.is_enabled()) {
591     GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
592     ResourceMark rm;
593     LogStream ls(lt);
594     VM_GC_HeapInspection inspector(&ls, false /* ! full gc */);
595     inspector.doit();
596   }
597 }
598 
599 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
600   full_gc_dump(timer, true);
601 }
602 
603 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
604   full_gc_dump(timer, false);
605 }
606 
607 void CollectedHeap::initialize_reserved_region(HeapWord *start, HeapWord *end) {
608   // It is important to do this in a way such that concurrent readers can't
609   // temporarily think something is in the heap.  (Seen this happen in asserts.)
610   _reserved.set_word_size(0);
611   _reserved.set_start(start);
612   _reserved.set_end(end);
613 }
614 
615 void CollectedHeap::post_initialize() {
616   initialize_serviceability();
617 }